]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/usb/host/xhci.c
xhci: workaround CSS timeout on AMD SNPS 3.0 xHC
[mirror_ubuntu-bionic-kernel.git] / drivers / usb / host / xhci.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * xHCI host controller driver
4 *
5 * Copyright (C) 2008 Intel Corp.
6 *
7 * Author: Sarah Sharp
8 * Some code borrowed from the Linux EHCI driver.
9 */
10
11 #include <linux/pci.h>
12 #include <linux/irq.h>
13 #include <linux/log2.h>
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16 #include <linux/slab.h>
17 #include <linux/dmi.h>
18 #include <linux/dma-mapping.h>
19
20 #include "xhci.h"
21 #include "xhci-trace.h"
22 #include "xhci-mtk.h"
23 #include "xhci-debugfs.h"
24 #include "xhci-dbgcap.h"
25
26 #define DRIVER_AUTHOR "Sarah Sharp"
27 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
28
29 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
30
31 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
32 static int link_quirk;
33 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
34 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
35
36 static unsigned long long quirks;
37 module_param(quirks, ullong, S_IRUGO);
38 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
39
40 /* TODO: copied from ehci-hcd.c - can this be refactored? */
41 /*
42 * xhci_handshake - spin reading hc until handshake completes or fails
43 * @ptr: address of hc register to be read
44 * @mask: bits to look at in result of read
45 * @done: value of those bits when handshake succeeds
46 * @usec: timeout in microseconds
47 *
48 * Returns negative errno, or zero on success
49 *
50 * Success happens when the "mask" bits have the specified value (hardware
51 * handshake done). There are two failure modes: "usec" have passed (major
52 * hardware flakeout), or the register reads as all-ones (hardware removed).
53 */
54 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
55 {
56 u32 result;
57
58 do {
59 result = readl(ptr);
60 if (result == ~(u32)0) /* card removed */
61 return -ENODEV;
62 result &= mask;
63 if (result == done)
64 return 0;
65 udelay(1);
66 usec--;
67 } while (usec > 0);
68 return -ETIMEDOUT;
69 }
70
71 /*
72 * Disable interrupts and begin the xHCI halting process.
73 */
74 void xhci_quiesce(struct xhci_hcd *xhci)
75 {
76 u32 halted;
77 u32 cmd;
78 u32 mask;
79
80 mask = ~(XHCI_IRQS);
81 halted = readl(&xhci->op_regs->status) & STS_HALT;
82 if (!halted)
83 mask &= ~CMD_RUN;
84
85 cmd = readl(&xhci->op_regs->command);
86 cmd &= mask;
87 writel(cmd, &xhci->op_regs->command);
88 }
89
90 /*
91 * Force HC into halt state.
92 *
93 * Disable any IRQs and clear the run/stop bit.
94 * HC will complete any current and actively pipelined transactions, and
95 * should halt within 16 ms of the run/stop bit being cleared.
96 * Read HC Halted bit in the status register to see when the HC is finished.
97 */
98 int xhci_halt(struct xhci_hcd *xhci)
99 {
100 int ret;
101 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
102 xhci_quiesce(xhci);
103
104 ret = xhci_handshake(&xhci->op_regs->status,
105 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
106 if (ret) {
107 xhci_warn(xhci, "Host halt failed, %d\n", ret);
108 return ret;
109 }
110 xhci->xhc_state |= XHCI_STATE_HALTED;
111 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
112 return ret;
113 }
114
115 /*
116 * Set the run bit and wait for the host to be running.
117 */
118 int xhci_start(struct xhci_hcd *xhci)
119 {
120 u32 temp;
121 int ret;
122
123 temp = readl(&xhci->op_regs->command);
124 temp |= (CMD_RUN);
125 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
126 temp);
127 writel(temp, &xhci->op_regs->command);
128
129 /*
130 * Wait for the HCHalted Status bit to be 0 to indicate the host is
131 * running.
132 */
133 ret = xhci_handshake(&xhci->op_regs->status,
134 STS_HALT, 0, XHCI_MAX_HALT_USEC);
135 if (ret == -ETIMEDOUT)
136 xhci_err(xhci, "Host took too long to start, "
137 "waited %u microseconds.\n",
138 XHCI_MAX_HALT_USEC);
139 if (!ret)
140 /* clear state flags. Including dying, halted or removing */
141 xhci->xhc_state = 0;
142
143 return ret;
144 }
145
146 /*
147 * Reset a halted HC.
148 *
149 * This resets pipelines, timers, counters, state machines, etc.
150 * Transactions will be terminated immediately, and operational registers
151 * will be set to their defaults.
152 */
153 int xhci_reset(struct xhci_hcd *xhci)
154 {
155 u32 command;
156 u32 state;
157 int ret, i;
158
159 state = readl(&xhci->op_regs->status);
160
161 if (state == ~(u32)0) {
162 xhci_warn(xhci, "Host not accessible, reset failed.\n");
163 return -ENODEV;
164 }
165
166 if ((state & STS_HALT) == 0) {
167 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
168 return 0;
169 }
170
171 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
172 command = readl(&xhci->op_regs->command);
173 command |= CMD_RESET;
174 writel(command, &xhci->op_regs->command);
175
176 /* Existing Intel xHCI controllers require a delay of 1 mS,
177 * after setting the CMD_RESET bit, and before accessing any
178 * HC registers. This allows the HC to complete the
179 * reset operation and be ready for HC register access.
180 * Without this delay, the subsequent HC register access,
181 * may result in a system hang very rarely.
182 */
183 if (xhci->quirks & XHCI_INTEL_HOST)
184 udelay(1000);
185
186 ret = xhci_handshake(&xhci->op_regs->command,
187 CMD_RESET, 0, 10 * 1000 * 1000);
188 if (ret)
189 return ret;
190
191 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
192 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
193
194 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
195 "Wait for controller to be ready for doorbell rings");
196 /*
197 * xHCI cannot write to any doorbells or operational registers other
198 * than status until the "Controller Not Ready" flag is cleared.
199 */
200 ret = xhci_handshake(&xhci->op_regs->status,
201 STS_CNR, 0, 10 * 1000 * 1000);
202
203 for (i = 0; i < 2; i++) {
204 xhci->bus_state[i].port_c_suspend = 0;
205 xhci->bus_state[i].suspended_ports = 0;
206 xhci->bus_state[i].resuming_ports = 0;
207 }
208
209 return ret;
210 }
211
212
213 #ifdef CONFIG_USB_PCI
214 /*
215 * Set up MSI
216 */
217 static int xhci_setup_msi(struct xhci_hcd *xhci)
218 {
219 int ret;
220 /*
221 * TODO:Check with MSI Soc for sysdev
222 */
223 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
224
225 ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
226 if (ret < 0) {
227 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
228 "failed to allocate MSI entry");
229 return ret;
230 }
231
232 ret = request_irq(pdev->irq, xhci_msi_irq,
233 0, "xhci_hcd", xhci_to_hcd(xhci));
234 if (ret) {
235 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
236 "disable MSI interrupt");
237 pci_free_irq_vectors(pdev);
238 }
239
240 return ret;
241 }
242
243 /*
244 * Set up MSI-X
245 */
246 static int xhci_setup_msix(struct xhci_hcd *xhci)
247 {
248 int i, ret = 0;
249 struct usb_hcd *hcd = xhci_to_hcd(xhci);
250 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
251
252 /*
253 * calculate number of msi-x vectors supported.
254 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
255 * with max number of interrupters based on the xhci HCSPARAMS1.
256 * - num_online_cpus: maximum msi-x vectors per CPUs core.
257 * Add additional 1 vector to ensure always available interrupt.
258 */
259 xhci->msix_count = min(num_online_cpus() + 1,
260 HCS_MAX_INTRS(xhci->hcs_params1));
261
262 ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
263 PCI_IRQ_MSIX);
264 if (ret < 0) {
265 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
266 "Failed to enable MSI-X");
267 return ret;
268 }
269
270 for (i = 0; i < xhci->msix_count; i++) {
271 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
272 "xhci_hcd", xhci_to_hcd(xhci));
273 if (ret)
274 goto disable_msix;
275 }
276
277 hcd->msix_enabled = 1;
278 return ret;
279
280 disable_msix:
281 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
282 while (--i >= 0)
283 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
284 pci_free_irq_vectors(pdev);
285 return ret;
286 }
287
288 /* Free any IRQs and disable MSI-X */
289 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
290 {
291 struct usb_hcd *hcd = xhci_to_hcd(xhci);
292 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
293
294 if (xhci->quirks & XHCI_PLAT)
295 return;
296
297 /* return if using legacy interrupt */
298 if (hcd->irq > 0)
299 return;
300
301 if (hcd->msix_enabled) {
302 int i;
303
304 for (i = 0; i < xhci->msix_count; i++)
305 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
306 } else {
307 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
308 }
309
310 pci_free_irq_vectors(pdev);
311 hcd->msix_enabled = 0;
312 }
313
314 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
315 {
316 struct usb_hcd *hcd = xhci_to_hcd(xhci);
317
318 if (hcd->msix_enabled) {
319 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
320 int i;
321
322 for (i = 0; i < xhci->msix_count; i++)
323 synchronize_irq(pci_irq_vector(pdev, i));
324 }
325 }
326
327 static int xhci_try_enable_msi(struct usb_hcd *hcd)
328 {
329 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
330 struct pci_dev *pdev;
331 int ret;
332
333 /* The xhci platform device has set up IRQs through usb_add_hcd. */
334 if (xhci->quirks & XHCI_PLAT)
335 return 0;
336
337 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
338 /*
339 * Some Fresco Logic host controllers advertise MSI, but fail to
340 * generate interrupts. Don't even try to enable MSI.
341 */
342 if (xhci->quirks & XHCI_BROKEN_MSI)
343 goto legacy_irq;
344
345 /* unregister the legacy interrupt */
346 if (hcd->irq)
347 free_irq(hcd->irq, hcd);
348 hcd->irq = 0;
349
350 ret = xhci_setup_msix(xhci);
351 if (ret)
352 /* fall back to msi*/
353 ret = xhci_setup_msi(xhci);
354
355 if (!ret) {
356 hcd->msi_enabled = 1;
357 return 0;
358 }
359
360 if (!pdev->irq) {
361 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
362 return -EINVAL;
363 }
364
365 legacy_irq:
366 if (!strlen(hcd->irq_descr))
367 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
368 hcd->driver->description, hcd->self.busnum);
369
370 /* fall back to legacy interrupt*/
371 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
372 hcd->irq_descr, hcd);
373 if (ret) {
374 xhci_err(xhci, "request interrupt %d failed\n",
375 pdev->irq);
376 return ret;
377 }
378 hcd->irq = pdev->irq;
379 return 0;
380 }
381
382 #else
383
384 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
385 {
386 return 0;
387 }
388
389 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
390 {
391 }
392
393 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
394 {
395 }
396
397 #endif
398
399 static void compliance_mode_recovery(struct timer_list *t)
400 {
401 struct xhci_hcd *xhci;
402 struct usb_hcd *hcd;
403 u32 temp;
404 int i;
405
406 xhci = from_timer(xhci, t, comp_mode_recovery_timer);
407
408 for (i = 0; i < xhci->num_usb3_ports; i++) {
409 temp = readl(xhci->usb3_ports[i]);
410 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
411 /*
412 * Compliance Mode Detected. Letting USB Core
413 * handle the Warm Reset
414 */
415 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
416 "Compliance mode detected->port %d",
417 i + 1);
418 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
419 "Attempting compliance mode recovery");
420 hcd = xhci->shared_hcd;
421
422 if (hcd->state == HC_STATE_SUSPENDED)
423 usb_hcd_resume_root_hub(hcd);
424
425 usb_hcd_poll_rh_status(hcd);
426 }
427 }
428
429 if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
430 mod_timer(&xhci->comp_mode_recovery_timer,
431 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
432 }
433
434 /*
435 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
436 * that causes ports behind that hardware to enter compliance mode sometimes.
437 * The quirk creates a timer that polls every 2 seconds the link state of
438 * each host controller's port and recovers it by issuing a Warm reset
439 * if Compliance mode is detected, otherwise the port will become "dead" (no
440 * device connections or disconnections will be detected anymore). Becasue no
441 * status event is generated when entering compliance mode (per xhci spec),
442 * this quirk is needed on systems that have the failing hardware installed.
443 */
444 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
445 {
446 xhci->port_status_u0 = 0;
447 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
448 0);
449 xhci->comp_mode_recovery_timer.expires = jiffies +
450 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
451
452 add_timer(&xhci->comp_mode_recovery_timer);
453 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
454 "Compliance mode recovery timer initialized");
455 }
456
457 /*
458 * This function identifies the systems that have installed the SN65LVPE502CP
459 * USB3.0 re-driver and that need the Compliance Mode Quirk.
460 * Systems:
461 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
462 */
463 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
464 {
465 const char *dmi_product_name, *dmi_sys_vendor;
466
467 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
468 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
469 if (!dmi_product_name || !dmi_sys_vendor)
470 return false;
471
472 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
473 return false;
474
475 if (strstr(dmi_product_name, "Z420") ||
476 strstr(dmi_product_name, "Z620") ||
477 strstr(dmi_product_name, "Z820") ||
478 strstr(dmi_product_name, "Z1 Workstation"))
479 return true;
480
481 return false;
482 }
483
484 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
485 {
486 return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
487 }
488
489
490 /*
491 * Initialize memory for HCD and xHC (one-time init).
492 *
493 * Program the PAGESIZE register, initialize the device context array, create
494 * device contexts (?), set up a command ring segment (or two?), create event
495 * ring (one for now).
496 */
497 static int xhci_init(struct usb_hcd *hcd)
498 {
499 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
500 int retval = 0;
501
502 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
503 spin_lock_init(&xhci->lock);
504 if (xhci->hci_version == 0x95 && link_quirk) {
505 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
506 "QUIRK: Not clearing Link TRB chain bits.");
507 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
508 } else {
509 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
510 "xHCI doesn't need link TRB QUIRK");
511 }
512 retval = xhci_mem_init(xhci, GFP_KERNEL);
513 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
514
515 /* Initializing Compliance Mode Recovery Data If Needed */
516 if (xhci_compliance_mode_recovery_timer_quirk_check()) {
517 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
518 compliance_mode_recovery_timer_init(xhci);
519 }
520
521 return retval;
522 }
523
524 /*-------------------------------------------------------------------------*/
525
526
527 static int xhci_run_finished(struct xhci_hcd *xhci)
528 {
529 if (xhci_start(xhci)) {
530 xhci_halt(xhci);
531 return -ENODEV;
532 }
533 xhci->shared_hcd->state = HC_STATE_RUNNING;
534 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
535
536 if (xhci->quirks & XHCI_NEC_HOST)
537 xhci_ring_cmd_db(xhci);
538
539 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
540 "Finished xhci_run for USB3 roothub");
541 return 0;
542 }
543
544 /*
545 * Start the HC after it was halted.
546 *
547 * This function is called by the USB core when the HC driver is added.
548 * Its opposite is xhci_stop().
549 *
550 * xhci_init() must be called once before this function can be called.
551 * Reset the HC, enable device slot contexts, program DCBAAP, and
552 * set command ring pointer and event ring pointer.
553 *
554 * Setup MSI-X vectors and enable interrupts.
555 */
556 int xhci_run(struct usb_hcd *hcd)
557 {
558 u32 temp;
559 u64 temp_64;
560 int ret;
561 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
562
563 /* Start the xHCI host controller running only after the USB 2.0 roothub
564 * is setup.
565 */
566
567 hcd->uses_new_polling = 1;
568 if (!usb_hcd_is_primary_hcd(hcd))
569 return xhci_run_finished(xhci);
570
571 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
572
573 ret = xhci_try_enable_msi(hcd);
574 if (ret)
575 return ret;
576
577 xhci_dbg_cmd_ptrs(xhci);
578
579 xhci_dbg(xhci, "ERST memory map follows:\n");
580 xhci_dbg_erst(xhci, &xhci->erst);
581 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
582 temp_64 &= ~ERST_PTR_MASK;
583 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
584 "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
585
586 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
587 "// Set the interrupt modulation register");
588 temp = readl(&xhci->ir_set->irq_control);
589 temp &= ~ER_IRQ_INTERVAL_MASK;
590 /*
591 * the increment interval is 8 times as much as that defined
592 * in xHCI spec on MTK's controller
593 */
594 temp |= (u32) ((xhci->quirks & XHCI_MTK_HOST) ? 20 : 160);
595 writel(temp, &xhci->ir_set->irq_control);
596
597 /* Set the HCD state before we enable the irqs */
598 temp = readl(&xhci->op_regs->command);
599 temp |= (CMD_EIE);
600 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
601 "// Enable interrupts, cmd = 0x%x.", temp);
602 writel(temp, &xhci->op_regs->command);
603
604 temp = readl(&xhci->ir_set->irq_pending);
605 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
606 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
607 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
608 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
609 xhci_print_ir_set(xhci, 0);
610
611 if (xhci->quirks & XHCI_NEC_HOST) {
612 struct xhci_command *command;
613
614 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
615 if (!command)
616 return -ENOMEM;
617
618 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
619 TRB_TYPE(TRB_NEC_GET_FW));
620 if (ret)
621 xhci_free_command(xhci, command);
622 }
623 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
624 "Finished xhci_run for USB2 roothub");
625
626 xhci_dbc_init(xhci);
627
628 xhci_debugfs_init(xhci);
629
630 return 0;
631 }
632 EXPORT_SYMBOL_GPL(xhci_run);
633
634 /*
635 * Stop xHCI driver.
636 *
637 * This function is called by the USB core when the HC driver is removed.
638 * Its opposite is xhci_run().
639 *
640 * Disable device contexts, disable IRQs, and quiesce the HC.
641 * Reset the HC, finish any completed transactions, and cleanup memory.
642 */
643 static void xhci_stop(struct usb_hcd *hcd)
644 {
645 u32 temp;
646 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
647
648 mutex_lock(&xhci->mutex);
649
650 /* Only halt host and free memory after both hcds are removed */
651 if (!usb_hcd_is_primary_hcd(hcd)) {
652 /* usb core will free this hcd shortly, unset pointer */
653 xhci->shared_hcd = NULL;
654 mutex_unlock(&xhci->mutex);
655 return;
656 }
657
658 xhci_dbc_exit(xhci);
659
660 spin_lock_irq(&xhci->lock);
661 xhci->xhc_state |= XHCI_STATE_HALTED;
662 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
663 xhci_halt(xhci);
664 xhci_reset(xhci);
665 spin_unlock_irq(&xhci->lock);
666
667 xhci_cleanup_msix(xhci);
668
669 /* Deleting Compliance Mode Recovery Timer */
670 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
671 (!(xhci_all_ports_seen_u0(xhci)))) {
672 del_timer_sync(&xhci->comp_mode_recovery_timer);
673 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
674 "%s: compliance mode recovery timer deleted",
675 __func__);
676 }
677
678 if (xhci->quirks & XHCI_AMD_PLL_FIX)
679 usb_amd_dev_put();
680
681 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
682 "// Disabling event ring interrupts");
683 temp = readl(&xhci->op_regs->status);
684 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
685 temp = readl(&xhci->ir_set->irq_pending);
686 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
687 xhci_print_ir_set(xhci, 0);
688
689 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
690 xhci_mem_cleanup(xhci);
691 xhci_debugfs_exit(xhci);
692 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
693 "xhci_stop completed - status = %x",
694 readl(&xhci->op_regs->status));
695 mutex_unlock(&xhci->mutex);
696 }
697
698 /*
699 * Shutdown HC (not bus-specific)
700 *
701 * This is called when the machine is rebooting or halting. We assume that the
702 * machine will be powered off, and the HC's internal state will be reset.
703 * Don't bother to free memory.
704 *
705 * This will only ever be called with the main usb_hcd (the USB3 roothub).
706 */
707 static void xhci_shutdown(struct usb_hcd *hcd)
708 {
709 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
710
711 if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
712 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
713
714 spin_lock_irq(&xhci->lock);
715 xhci_halt(xhci);
716 /* Workaround for spurious wakeups at shutdown with HSW */
717 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
718 xhci_reset(xhci);
719 spin_unlock_irq(&xhci->lock);
720
721 xhci_cleanup_msix(xhci);
722
723 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
724 "xhci_shutdown completed - status = %x",
725 readl(&xhci->op_regs->status));
726
727 /* Yet another workaround for spurious wakeups at shutdown with HSW */
728 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
729 pci_set_power_state(to_pci_dev(hcd->self.sysdev), PCI_D3hot);
730 }
731
732 #ifdef CONFIG_PM
733 static void xhci_save_registers(struct xhci_hcd *xhci)
734 {
735 xhci->s3.command = readl(&xhci->op_regs->command);
736 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
737 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
738 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
739 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
740 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
741 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
742 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
743 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
744 }
745
746 static void xhci_restore_registers(struct xhci_hcd *xhci)
747 {
748 writel(xhci->s3.command, &xhci->op_regs->command);
749 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
750 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
751 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
752 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
753 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
754 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
755 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
756 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
757 }
758
759 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
760 {
761 u64 val_64;
762
763 /* step 2: initialize command ring buffer */
764 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
765 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
766 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
767 xhci->cmd_ring->dequeue) &
768 (u64) ~CMD_RING_RSVD_BITS) |
769 xhci->cmd_ring->cycle_state;
770 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
771 "// Setting command ring address to 0x%llx",
772 (long unsigned long) val_64);
773 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
774 }
775
776 /*
777 * The whole command ring must be cleared to zero when we suspend the host.
778 *
779 * The host doesn't save the command ring pointer in the suspend well, so we
780 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
781 * aligned, because of the reserved bits in the command ring dequeue pointer
782 * register. Therefore, we can't just set the dequeue pointer back in the
783 * middle of the ring (TRBs are 16-byte aligned).
784 */
785 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
786 {
787 struct xhci_ring *ring;
788 struct xhci_segment *seg;
789
790 ring = xhci->cmd_ring;
791 seg = ring->deq_seg;
792 do {
793 memset(seg->trbs, 0,
794 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
795 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
796 cpu_to_le32(~TRB_CYCLE);
797 seg = seg->next;
798 } while (seg != ring->deq_seg);
799
800 /* Reset the software enqueue and dequeue pointers */
801 ring->deq_seg = ring->first_seg;
802 ring->dequeue = ring->first_seg->trbs;
803 ring->enq_seg = ring->deq_seg;
804 ring->enqueue = ring->dequeue;
805
806 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
807 /*
808 * Ring is now zeroed, so the HW should look for change of ownership
809 * when the cycle bit is set to 1.
810 */
811 ring->cycle_state = 1;
812
813 /*
814 * Reset the hardware dequeue pointer.
815 * Yes, this will need to be re-written after resume, but we're paranoid
816 * and want to make sure the hardware doesn't access bogus memory
817 * because, say, the BIOS or an SMI started the host without changing
818 * the command ring pointers.
819 */
820 xhci_set_cmd_ring_deq(xhci);
821 }
822
823 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
824 {
825 int port_index;
826 __le32 __iomem **port_array;
827 unsigned long flags;
828 u32 t1, t2;
829
830 spin_lock_irqsave(&xhci->lock, flags);
831
832 /* disable usb3 ports Wake bits */
833 port_index = xhci->num_usb3_ports;
834 port_array = xhci->usb3_ports;
835 while (port_index--) {
836 t1 = readl(port_array[port_index]);
837 t1 = xhci_port_state_to_neutral(t1);
838 t2 = t1 & ~PORT_WAKE_BITS;
839 if (t1 != t2)
840 writel(t2, port_array[port_index]);
841 }
842
843 /* disable usb2 ports Wake bits */
844 port_index = xhci->num_usb2_ports;
845 port_array = xhci->usb2_ports;
846 while (port_index--) {
847 t1 = readl(port_array[port_index]);
848 t1 = xhci_port_state_to_neutral(t1);
849 t2 = t1 & ~PORT_WAKE_BITS;
850 if (t1 != t2)
851 writel(t2, port_array[port_index]);
852 }
853
854 spin_unlock_irqrestore(&xhci->lock, flags);
855 }
856
857 /*
858 * Stop HC (not bus-specific)
859 *
860 * This is called when the machine transition into S3/S4 mode.
861 *
862 */
863 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
864 {
865 int rc = 0;
866 unsigned int delay = XHCI_MAX_HALT_USEC;
867 struct usb_hcd *hcd = xhci_to_hcd(xhci);
868 u32 command;
869 u32 res;
870
871 if (!hcd->state)
872 return 0;
873
874 if (hcd->state != HC_STATE_SUSPENDED ||
875 xhci->shared_hcd->state != HC_STATE_SUSPENDED)
876 return -EINVAL;
877
878 xhci_dbc_suspend(xhci);
879
880 /* Clear root port wake on bits if wakeup not allowed. */
881 if (!do_wakeup)
882 xhci_disable_port_wake_on_bits(xhci);
883
884 /* Don't poll the roothubs on bus suspend. */
885 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
886 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
887 del_timer_sync(&hcd->rh_timer);
888 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
889 del_timer_sync(&xhci->shared_hcd->rh_timer);
890
891 if (xhci->quirks & XHCI_SUSPEND_DELAY)
892 usleep_range(1000, 1500);
893
894 spin_lock_irq(&xhci->lock);
895 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
896 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
897 /* step 1: stop endpoint */
898 /* skipped assuming that port suspend has done */
899
900 /* step 2: clear Run/Stop bit */
901 command = readl(&xhci->op_regs->command);
902 command &= ~CMD_RUN;
903 writel(command, &xhci->op_regs->command);
904
905 /* Some chips from Fresco Logic need an extraordinary delay */
906 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
907
908 if (xhci_handshake(&xhci->op_regs->status,
909 STS_HALT, STS_HALT, delay)) {
910 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
911 spin_unlock_irq(&xhci->lock);
912 return -ETIMEDOUT;
913 }
914 xhci_clear_command_ring(xhci);
915
916 /* step 3: save registers */
917 xhci_save_registers(xhci);
918
919 /* step 4: set CSS flag */
920 command = readl(&xhci->op_regs->command);
921 command |= CMD_CSS;
922 writel(command, &xhci->op_regs->command);
923 xhci->broken_suspend = 0;
924 if (xhci_handshake(&xhci->op_regs->status,
925 STS_SAVE, 0, 10 * 1000)) {
926 /*
927 * AMD SNPS xHC 3.0 occasionally does not clear the
928 * SSS bit of USBSTS and when driver tries to poll
929 * to see if the xHC clears BIT(8) which never happens
930 * and driver assumes that controller is not responding
931 * and times out. To workaround this, its good to check
932 * if SRE and HCE bits are not set (as per xhci
933 * Section 5.4.2) and bypass the timeout.
934 */
935 res = readl(&xhci->op_regs->status);
936 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
937 (((res & STS_SRE) == 0) &&
938 ((res & STS_HCE) == 0))) {
939 xhci->broken_suspend = 1;
940 } else {
941 xhci_warn(xhci, "WARN: xHC save state timeout\n");
942 spin_unlock_irq(&xhci->lock);
943 return -ETIMEDOUT;
944 }
945 }
946 spin_unlock_irq(&xhci->lock);
947
948 /*
949 * Deleting Compliance Mode Recovery Timer because the xHCI Host
950 * is about to be suspended.
951 */
952 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
953 (!(xhci_all_ports_seen_u0(xhci)))) {
954 del_timer_sync(&xhci->comp_mode_recovery_timer);
955 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
956 "%s: compliance mode recovery timer deleted",
957 __func__);
958 }
959
960 /* step 5: remove core well power */
961 /* synchronize irq when using MSI-X */
962 xhci_msix_sync_irqs(xhci);
963
964 return rc;
965 }
966 EXPORT_SYMBOL_GPL(xhci_suspend);
967
968 /*
969 * start xHC (not bus-specific)
970 *
971 * This is called when the machine transition from S3/S4 mode.
972 *
973 */
974 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
975 {
976 u32 command, temp = 0, status;
977 struct usb_hcd *hcd = xhci_to_hcd(xhci);
978 struct usb_hcd *secondary_hcd;
979 int retval = 0;
980 bool comp_timer_running = false;
981
982 if (!hcd->state)
983 return 0;
984
985 /* Wait a bit if either of the roothubs need to settle from the
986 * transition into bus suspend.
987 */
988 if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
989 time_before(jiffies,
990 xhci->bus_state[1].next_statechange))
991 msleep(100);
992
993 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
994 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
995
996 spin_lock_irq(&xhci->lock);
997 if ((xhci->quirks & XHCI_RESET_ON_RESUME) || xhci->broken_suspend)
998 hibernated = true;
999
1000 if (!hibernated) {
1001 /* step 1: restore register */
1002 xhci_restore_registers(xhci);
1003 /* step 2: initialize command ring buffer */
1004 xhci_set_cmd_ring_deq(xhci);
1005 /* step 3: restore state and start state*/
1006 /* step 3: set CRS flag */
1007 command = readl(&xhci->op_regs->command);
1008 command |= CMD_CRS;
1009 writel(command, &xhci->op_regs->command);
1010 if (xhci_handshake(&xhci->op_regs->status,
1011 STS_RESTORE, 0, 10 * 1000)) {
1012 xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1013 spin_unlock_irq(&xhci->lock);
1014 return -ETIMEDOUT;
1015 }
1016 temp = readl(&xhci->op_regs->status);
1017 }
1018
1019 /* If restore operation fails, re-initialize the HC during resume */
1020 if ((temp & STS_SRE) || hibernated) {
1021
1022 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1023 !(xhci_all_ports_seen_u0(xhci))) {
1024 del_timer_sync(&xhci->comp_mode_recovery_timer);
1025 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1026 "Compliance Mode Recovery Timer deleted!");
1027 }
1028
1029 /* Let the USB core know _both_ roothubs lost power. */
1030 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1031 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1032
1033 xhci_dbg(xhci, "Stop HCD\n");
1034 xhci_halt(xhci);
1035 xhci_reset(xhci);
1036 spin_unlock_irq(&xhci->lock);
1037 xhci_cleanup_msix(xhci);
1038
1039 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1040 temp = readl(&xhci->op_regs->status);
1041 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1042 temp = readl(&xhci->ir_set->irq_pending);
1043 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1044 xhci_print_ir_set(xhci, 0);
1045
1046 xhci_dbg(xhci, "cleaning up memory\n");
1047 xhci_mem_cleanup(xhci);
1048 xhci_debugfs_exit(xhci);
1049 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1050 readl(&xhci->op_regs->status));
1051
1052 /* USB core calls the PCI reinit and start functions twice:
1053 * first with the primary HCD, and then with the secondary HCD.
1054 * If we don't do the same, the host will never be started.
1055 */
1056 if (!usb_hcd_is_primary_hcd(hcd))
1057 secondary_hcd = hcd;
1058 else
1059 secondary_hcd = xhci->shared_hcd;
1060
1061 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1062 retval = xhci_init(hcd->primary_hcd);
1063 if (retval)
1064 return retval;
1065 comp_timer_running = true;
1066
1067 xhci_dbg(xhci, "Start the primary HCD\n");
1068 retval = xhci_run(hcd->primary_hcd);
1069 if (!retval) {
1070 xhci_dbg(xhci, "Start the secondary HCD\n");
1071 retval = xhci_run(secondary_hcd);
1072 }
1073 hcd->state = HC_STATE_SUSPENDED;
1074 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1075 goto done;
1076 }
1077
1078 /* step 4: set Run/Stop bit */
1079 command = readl(&xhci->op_regs->command);
1080 command |= CMD_RUN;
1081 writel(command, &xhci->op_regs->command);
1082 xhci_handshake(&xhci->op_regs->status, STS_HALT,
1083 0, 250 * 1000);
1084
1085 /* step 5: walk topology and initialize portsc,
1086 * portpmsc and portli
1087 */
1088 /* this is done in bus_resume */
1089
1090 /* step 6: restart each of the previously
1091 * Running endpoints by ringing their doorbells
1092 */
1093
1094 spin_unlock_irq(&xhci->lock);
1095
1096 xhci_dbc_resume(xhci);
1097
1098 done:
1099 if (retval == 0) {
1100 /* Resume root hubs only when have pending events. */
1101 status = readl(&xhci->op_regs->status);
1102 if (status & STS_EINT) {
1103 usb_hcd_resume_root_hub(xhci->shared_hcd);
1104 usb_hcd_resume_root_hub(hcd);
1105 }
1106 }
1107
1108 /*
1109 * If system is subject to the Quirk, Compliance Mode Timer needs to
1110 * be re-initialized Always after a system resume. Ports are subject
1111 * to suffer the Compliance Mode issue again. It doesn't matter if
1112 * ports have entered previously to U0 before system's suspension.
1113 */
1114 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1115 compliance_mode_recovery_timer_init(xhci);
1116
1117 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1118 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1119
1120 /* Re-enable port polling. */
1121 xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1122 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1123 usb_hcd_poll_rh_status(xhci->shared_hcd);
1124 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1125 usb_hcd_poll_rh_status(hcd);
1126
1127 return retval;
1128 }
1129 EXPORT_SYMBOL_GPL(xhci_resume);
1130 #endif /* CONFIG_PM */
1131
1132 /*-------------------------------------------------------------------------*/
1133
1134 /**
1135 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1136 * HCDs. Find the index for an endpoint given its descriptor. Use the return
1137 * value to right shift 1 for the bitmask.
1138 *
1139 * Index = (epnum * 2) + direction - 1,
1140 * where direction = 0 for OUT, 1 for IN.
1141 * For control endpoints, the IN index is used (OUT index is unused), so
1142 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1143 */
1144 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1145 {
1146 unsigned int index;
1147 if (usb_endpoint_xfer_control(desc))
1148 index = (unsigned int) (usb_endpoint_num(desc)*2);
1149 else
1150 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1151 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1152 return index;
1153 }
1154
1155 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1156 * address from the XHCI endpoint index.
1157 */
1158 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1159 {
1160 unsigned int number = DIV_ROUND_UP(ep_index, 2);
1161 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1162 return direction | number;
1163 }
1164
1165 /* Find the flag for this endpoint (for use in the control context). Use the
1166 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1167 * bit 1, etc.
1168 */
1169 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1170 {
1171 return 1 << (xhci_get_endpoint_index(desc) + 1);
1172 }
1173
1174 /* Find the flag for this endpoint (for use in the control context). Use the
1175 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1176 * bit 1, etc.
1177 */
1178 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1179 {
1180 return 1 << (ep_index + 1);
1181 }
1182
1183 /* Compute the last valid endpoint context index. Basically, this is the
1184 * endpoint index plus one. For slot contexts with more than valid endpoint,
1185 * we find the most significant bit set in the added contexts flags.
1186 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1187 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1188 */
1189 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1190 {
1191 return fls(added_ctxs) - 1;
1192 }
1193
1194 /* Returns 1 if the arguments are OK;
1195 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1196 */
1197 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1198 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1199 const char *func) {
1200 struct xhci_hcd *xhci;
1201 struct xhci_virt_device *virt_dev;
1202
1203 if (!hcd || (check_ep && !ep) || !udev) {
1204 pr_debug("xHCI %s called with invalid args\n", func);
1205 return -EINVAL;
1206 }
1207 if (!udev->parent) {
1208 pr_debug("xHCI %s called for root hub\n", func);
1209 return 0;
1210 }
1211
1212 xhci = hcd_to_xhci(hcd);
1213 if (check_virt_dev) {
1214 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1215 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1216 func);
1217 return -EINVAL;
1218 }
1219
1220 virt_dev = xhci->devs[udev->slot_id];
1221 if (virt_dev->udev != udev) {
1222 xhci_dbg(xhci, "xHCI %s called with udev and "
1223 "virt_dev does not match\n", func);
1224 return -EINVAL;
1225 }
1226 }
1227
1228 if (xhci->xhc_state & XHCI_STATE_HALTED)
1229 return -ENODEV;
1230
1231 return 1;
1232 }
1233
1234 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1235 struct usb_device *udev, struct xhci_command *command,
1236 bool ctx_change, bool must_succeed);
1237
1238 /*
1239 * Full speed devices may have a max packet size greater than 8 bytes, but the
1240 * USB core doesn't know that until it reads the first 8 bytes of the
1241 * descriptor. If the usb_device's max packet size changes after that point,
1242 * we need to issue an evaluate context command and wait on it.
1243 */
1244 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1245 unsigned int ep_index, struct urb *urb)
1246 {
1247 struct xhci_container_ctx *out_ctx;
1248 struct xhci_input_control_ctx *ctrl_ctx;
1249 struct xhci_ep_ctx *ep_ctx;
1250 struct xhci_command *command;
1251 int max_packet_size;
1252 int hw_max_packet_size;
1253 int ret = 0;
1254
1255 out_ctx = xhci->devs[slot_id]->out_ctx;
1256 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1257 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1258 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1259 if (hw_max_packet_size != max_packet_size) {
1260 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1261 "Max Packet Size for ep 0 changed.");
1262 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1263 "Max packet size in usb_device = %d",
1264 max_packet_size);
1265 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1266 "Max packet size in xHCI HW = %d",
1267 hw_max_packet_size);
1268 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1269 "Issuing evaluate context command.");
1270
1271 /* Set up the input context flags for the command */
1272 /* FIXME: This won't work if a non-default control endpoint
1273 * changes max packet sizes.
1274 */
1275
1276 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
1277 if (!command)
1278 return -ENOMEM;
1279
1280 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1281 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1282 if (!ctrl_ctx) {
1283 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1284 __func__);
1285 ret = -ENOMEM;
1286 goto command_cleanup;
1287 }
1288 /* Set up the modified control endpoint 0 */
1289 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1290 xhci->devs[slot_id]->out_ctx, ep_index);
1291
1292 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1293 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1294 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1295
1296 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1297 ctrl_ctx->drop_flags = 0;
1298
1299 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1300 true, false);
1301
1302 /* Clean up the input context for later use by bandwidth
1303 * functions.
1304 */
1305 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1306 command_cleanup:
1307 kfree(command->completion);
1308 kfree(command);
1309 }
1310 return ret;
1311 }
1312
1313 /*
1314 * non-error returns are a promise to giveback() the urb later
1315 * we drop ownership so next owner (or urb unlink) can get it
1316 */
1317 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1318 {
1319 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1320 unsigned long flags;
1321 int ret = 0;
1322 unsigned int slot_id, ep_index, ep_state;
1323 struct urb_priv *urb_priv;
1324 int num_tds;
1325
1326 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1327 true, true, __func__) <= 0)
1328 return -EINVAL;
1329
1330 slot_id = urb->dev->slot_id;
1331 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1332
1333 if (!HCD_HW_ACCESSIBLE(hcd)) {
1334 if (!in_interrupt())
1335 xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1336 return -ESHUTDOWN;
1337 }
1338
1339 if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1340 num_tds = urb->number_of_packets;
1341 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1342 urb->transfer_buffer_length > 0 &&
1343 urb->transfer_flags & URB_ZERO_PACKET &&
1344 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1345 num_tds = 2;
1346 else
1347 num_tds = 1;
1348
1349 urb_priv = kzalloc(sizeof(struct urb_priv) +
1350 num_tds * sizeof(struct xhci_td), mem_flags);
1351 if (!urb_priv)
1352 return -ENOMEM;
1353
1354 urb_priv->num_tds = num_tds;
1355 urb_priv->num_tds_done = 0;
1356 urb->hcpriv = urb_priv;
1357
1358 trace_xhci_urb_enqueue(urb);
1359
1360 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1361 /* Check to see if the max packet size for the default control
1362 * endpoint changed during FS device enumeration
1363 */
1364 if (urb->dev->speed == USB_SPEED_FULL) {
1365 ret = xhci_check_maxpacket(xhci, slot_id,
1366 ep_index, urb);
1367 if (ret < 0) {
1368 xhci_urb_free_priv(urb_priv);
1369 urb->hcpriv = NULL;
1370 return ret;
1371 }
1372 }
1373 }
1374
1375 spin_lock_irqsave(&xhci->lock, flags);
1376
1377 if (xhci->xhc_state & XHCI_STATE_DYING) {
1378 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1379 urb->ep->desc.bEndpointAddress, urb);
1380 ret = -ESHUTDOWN;
1381 goto free_priv;
1382 }
1383
1384 switch (usb_endpoint_type(&urb->ep->desc)) {
1385
1386 case USB_ENDPOINT_XFER_CONTROL:
1387 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1388 slot_id, ep_index);
1389 break;
1390 case USB_ENDPOINT_XFER_BULK:
1391 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
1392 if (ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1393 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1394 ep_state);
1395 ret = -EINVAL;
1396 break;
1397 }
1398 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1399 slot_id, ep_index);
1400 break;
1401
1402
1403 case USB_ENDPOINT_XFER_INT:
1404 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1405 slot_id, ep_index);
1406 break;
1407
1408 case USB_ENDPOINT_XFER_ISOC:
1409 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1410 slot_id, ep_index);
1411 }
1412
1413 if (ret) {
1414 free_priv:
1415 xhci_urb_free_priv(urb_priv);
1416 urb->hcpriv = NULL;
1417 }
1418 spin_unlock_irqrestore(&xhci->lock, flags);
1419 return ret;
1420 }
1421
1422 /*
1423 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1424 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1425 * should pick up where it left off in the TD, unless a Set Transfer Ring
1426 * Dequeue Pointer is issued.
1427 *
1428 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1429 * the ring. Since the ring is a contiguous structure, they can't be physically
1430 * removed. Instead, there are two options:
1431 *
1432 * 1) If the HC is in the middle of processing the URB to be canceled, we
1433 * simply move the ring's dequeue pointer past those TRBs using the Set
1434 * Transfer Ring Dequeue Pointer command. This will be the common case,
1435 * when drivers timeout on the last submitted URB and attempt to cancel.
1436 *
1437 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1438 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1439 * HC will need to invalidate the any TRBs it has cached after the stop
1440 * endpoint command, as noted in the xHCI 0.95 errata.
1441 *
1442 * 3) The TD may have completed by the time the Stop Endpoint Command
1443 * completes, so software needs to handle that case too.
1444 *
1445 * This function should protect against the TD enqueueing code ringing the
1446 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1447 * It also needs to account for multiple cancellations on happening at the same
1448 * time for the same endpoint.
1449 *
1450 * Note that this function can be called in any context, or so says
1451 * usb_hcd_unlink_urb()
1452 */
1453 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1454 {
1455 unsigned long flags;
1456 int ret, i;
1457 u32 temp;
1458 struct xhci_hcd *xhci;
1459 struct urb_priv *urb_priv;
1460 struct xhci_td *td;
1461 unsigned int ep_index;
1462 struct xhci_ring *ep_ring;
1463 struct xhci_virt_ep *ep;
1464 struct xhci_command *command;
1465 struct xhci_virt_device *vdev;
1466
1467 xhci = hcd_to_xhci(hcd);
1468 spin_lock_irqsave(&xhci->lock, flags);
1469
1470 trace_xhci_urb_dequeue(urb);
1471
1472 /* Make sure the URB hasn't completed or been unlinked already */
1473 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1474 if (ret)
1475 goto done;
1476
1477 /* give back URB now if we can't queue it for cancel */
1478 vdev = xhci->devs[urb->dev->slot_id];
1479 urb_priv = urb->hcpriv;
1480 if (!vdev || !urb_priv)
1481 goto err_giveback;
1482
1483 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1484 ep = &vdev->eps[ep_index];
1485 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1486 if (!ep || !ep_ring)
1487 goto err_giveback;
1488
1489 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1490 temp = readl(&xhci->op_regs->status);
1491 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1492 xhci_hc_died(xhci);
1493 goto done;
1494 }
1495
1496 if (xhci->xhc_state & XHCI_STATE_HALTED) {
1497 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1498 "HC halted, freeing TD manually.");
1499 for (i = urb_priv->num_tds_done;
1500 i < urb_priv->num_tds;
1501 i++) {
1502 td = &urb_priv->td[i];
1503 if (!list_empty(&td->td_list))
1504 list_del_init(&td->td_list);
1505 if (!list_empty(&td->cancelled_td_list))
1506 list_del_init(&td->cancelled_td_list);
1507 }
1508 goto err_giveback;
1509 }
1510
1511 i = urb_priv->num_tds_done;
1512 if (i < urb_priv->num_tds)
1513 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1514 "Cancel URB %p, dev %s, ep 0x%x, "
1515 "starting at offset 0x%llx",
1516 urb, urb->dev->devpath,
1517 urb->ep->desc.bEndpointAddress,
1518 (unsigned long long) xhci_trb_virt_to_dma(
1519 urb_priv->td[i].start_seg,
1520 urb_priv->td[i].first_trb));
1521
1522 for (; i < urb_priv->num_tds; i++) {
1523 td = &urb_priv->td[i];
1524 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1525 }
1526
1527 /* Queue a stop endpoint command, but only if this is
1528 * the first cancellation to be handled.
1529 */
1530 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1531 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1532 if (!command) {
1533 ret = -ENOMEM;
1534 goto done;
1535 }
1536 ep->ep_state |= EP_STOP_CMD_PENDING;
1537 ep->stop_cmd_timer.expires = jiffies +
1538 XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1539 add_timer(&ep->stop_cmd_timer);
1540 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1541 ep_index, 0);
1542 xhci_ring_cmd_db(xhci);
1543 }
1544 done:
1545 spin_unlock_irqrestore(&xhci->lock, flags);
1546 return ret;
1547
1548 err_giveback:
1549 if (urb_priv)
1550 xhci_urb_free_priv(urb_priv);
1551 usb_hcd_unlink_urb_from_ep(hcd, urb);
1552 spin_unlock_irqrestore(&xhci->lock, flags);
1553 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1554 return ret;
1555 }
1556
1557 /* Drop an endpoint from a new bandwidth configuration for this device.
1558 * Only one call to this function is allowed per endpoint before
1559 * check_bandwidth() or reset_bandwidth() must be called.
1560 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1561 * add the endpoint to the schedule with possibly new parameters denoted by a
1562 * different endpoint descriptor in usb_host_endpoint.
1563 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1564 * not allowed.
1565 *
1566 * The USB core will not allow URBs to be queued to an endpoint that is being
1567 * disabled, so there's no need for mutual exclusion to protect
1568 * the xhci->devs[slot_id] structure.
1569 */
1570 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1571 struct usb_host_endpoint *ep)
1572 {
1573 struct xhci_hcd *xhci;
1574 struct xhci_container_ctx *in_ctx, *out_ctx;
1575 struct xhci_input_control_ctx *ctrl_ctx;
1576 unsigned int ep_index;
1577 struct xhci_ep_ctx *ep_ctx;
1578 u32 drop_flag;
1579 u32 new_add_flags, new_drop_flags;
1580 int ret;
1581
1582 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1583 if (ret <= 0)
1584 return ret;
1585 xhci = hcd_to_xhci(hcd);
1586 if (xhci->xhc_state & XHCI_STATE_DYING)
1587 return -ENODEV;
1588
1589 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1590 drop_flag = xhci_get_endpoint_flag(&ep->desc);
1591 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1592 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1593 __func__, drop_flag);
1594 return 0;
1595 }
1596
1597 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1598 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1599 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1600 if (!ctrl_ctx) {
1601 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1602 __func__);
1603 return 0;
1604 }
1605
1606 ep_index = xhci_get_endpoint_index(&ep->desc);
1607 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1608 /* If the HC already knows the endpoint is disabled,
1609 * or the HCD has noted it is disabled, ignore this request
1610 */
1611 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1612 le32_to_cpu(ctrl_ctx->drop_flags) &
1613 xhci_get_endpoint_flag(&ep->desc)) {
1614 /* Do not warn when called after a usb_device_reset */
1615 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1616 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1617 __func__, ep);
1618 return 0;
1619 }
1620
1621 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1622 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1623
1624 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1625 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1626
1627 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1628
1629 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1630
1631 if (xhci->quirks & XHCI_MTK_HOST)
1632 xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1633
1634 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1635 (unsigned int) ep->desc.bEndpointAddress,
1636 udev->slot_id,
1637 (unsigned int) new_drop_flags,
1638 (unsigned int) new_add_flags);
1639 return 0;
1640 }
1641
1642 /* Add an endpoint to a new possible bandwidth configuration for this device.
1643 * Only one call to this function is allowed per endpoint before
1644 * check_bandwidth() or reset_bandwidth() must be called.
1645 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1646 * add the endpoint to the schedule with possibly new parameters denoted by a
1647 * different endpoint descriptor in usb_host_endpoint.
1648 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1649 * not allowed.
1650 *
1651 * The USB core will not allow URBs to be queued to an endpoint until the
1652 * configuration or alt setting is installed in the device, so there's no need
1653 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1654 */
1655 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1656 struct usb_host_endpoint *ep)
1657 {
1658 struct xhci_hcd *xhci;
1659 struct xhci_container_ctx *in_ctx;
1660 unsigned int ep_index;
1661 struct xhci_input_control_ctx *ctrl_ctx;
1662 u32 added_ctxs;
1663 u32 new_add_flags, new_drop_flags;
1664 struct xhci_virt_device *virt_dev;
1665 int ret = 0;
1666
1667 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1668 if (ret <= 0) {
1669 /* So we won't queue a reset ep command for a root hub */
1670 ep->hcpriv = NULL;
1671 return ret;
1672 }
1673 xhci = hcd_to_xhci(hcd);
1674 if (xhci->xhc_state & XHCI_STATE_DYING)
1675 return -ENODEV;
1676
1677 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1678 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1679 /* FIXME when we have to issue an evaluate endpoint command to
1680 * deal with ep0 max packet size changing once we get the
1681 * descriptors
1682 */
1683 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1684 __func__, added_ctxs);
1685 return 0;
1686 }
1687
1688 virt_dev = xhci->devs[udev->slot_id];
1689 in_ctx = virt_dev->in_ctx;
1690 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1691 if (!ctrl_ctx) {
1692 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1693 __func__);
1694 return 0;
1695 }
1696
1697 ep_index = xhci_get_endpoint_index(&ep->desc);
1698 /* If this endpoint is already in use, and the upper layers are trying
1699 * to add it again without dropping it, reject the addition.
1700 */
1701 if (virt_dev->eps[ep_index].ring &&
1702 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1703 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1704 "without dropping it.\n",
1705 (unsigned int) ep->desc.bEndpointAddress);
1706 return -EINVAL;
1707 }
1708
1709 /* If the HCD has already noted the endpoint is enabled,
1710 * ignore this request.
1711 */
1712 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1713 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1714 __func__, ep);
1715 return 0;
1716 }
1717
1718 /*
1719 * Configuration and alternate setting changes must be done in
1720 * process context, not interrupt context (or so documenation
1721 * for usb_set_interface() and usb_set_configuration() claim).
1722 */
1723 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1724 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1725 __func__, ep->desc.bEndpointAddress);
1726 return -ENOMEM;
1727 }
1728
1729 if (xhci->quirks & XHCI_MTK_HOST) {
1730 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1731 if (ret < 0) {
1732 xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring);
1733 virt_dev->eps[ep_index].new_ring = NULL;
1734 return ret;
1735 }
1736 }
1737
1738 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1739 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1740
1741 /* If xhci_endpoint_disable() was called for this endpoint, but the
1742 * xHC hasn't been notified yet through the check_bandwidth() call,
1743 * this re-adds a new state for the endpoint from the new endpoint
1744 * descriptors. We must drop and re-add this endpoint, so we leave the
1745 * drop flags alone.
1746 */
1747 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1748
1749 /* Store the usb_device pointer for later use */
1750 ep->hcpriv = udev;
1751
1752 xhci_debugfs_create_endpoint(xhci, virt_dev, ep_index);
1753
1754 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1755 (unsigned int) ep->desc.bEndpointAddress,
1756 udev->slot_id,
1757 (unsigned int) new_drop_flags,
1758 (unsigned int) new_add_flags);
1759 return 0;
1760 }
1761
1762 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1763 {
1764 struct xhci_input_control_ctx *ctrl_ctx;
1765 struct xhci_ep_ctx *ep_ctx;
1766 struct xhci_slot_ctx *slot_ctx;
1767 int i;
1768
1769 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1770 if (!ctrl_ctx) {
1771 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1772 __func__);
1773 return;
1774 }
1775
1776 /* When a device's add flag and drop flag are zero, any subsequent
1777 * configure endpoint command will leave that endpoint's state
1778 * untouched. Make sure we don't leave any old state in the input
1779 * endpoint contexts.
1780 */
1781 ctrl_ctx->drop_flags = 0;
1782 ctrl_ctx->add_flags = 0;
1783 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1784 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1785 /* Endpoint 0 is always valid */
1786 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1787 for (i = 1; i < 31; i++) {
1788 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1789 ep_ctx->ep_info = 0;
1790 ep_ctx->ep_info2 = 0;
1791 ep_ctx->deq = 0;
1792 ep_ctx->tx_info = 0;
1793 }
1794 }
1795
1796 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1797 struct usb_device *udev, u32 *cmd_status)
1798 {
1799 int ret;
1800
1801 switch (*cmd_status) {
1802 case COMP_COMMAND_ABORTED:
1803 case COMP_COMMAND_RING_STOPPED:
1804 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1805 ret = -ETIME;
1806 break;
1807 case COMP_RESOURCE_ERROR:
1808 dev_warn(&udev->dev,
1809 "Not enough host controller resources for new device state.\n");
1810 ret = -ENOMEM;
1811 /* FIXME: can we allocate more resources for the HC? */
1812 break;
1813 case COMP_BANDWIDTH_ERROR:
1814 case COMP_SECONDARY_BANDWIDTH_ERROR:
1815 dev_warn(&udev->dev,
1816 "Not enough bandwidth for new device state.\n");
1817 ret = -ENOSPC;
1818 /* FIXME: can we go back to the old state? */
1819 break;
1820 case COMP_TRB_ERROR:
1821 /* the HCD set up something wrong */
1822 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1823 "add flag = 1, "
1824 "and endpoint is not disabled.\n");
1825 ret = -EINVAL;
1826 break;
1827 case COMP_INCOMPATIBLE_DEVICE_ERROR:
1828 dev_warn(&udev->dev,
1829 "ERROR: Incompatible device for endpoint configure command.\n");
1830 ret = -ENODEV;
1831 break;
1832 case COMP_SUCCESS:
1833 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1834 "Successful Endpoint Configure command");
1835 ret = 0;
1836 break;
1837 default:
1838 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1839 *cmd_status);
1840 ret = -EINVAL;
1841 break;
1842 }
1843 return ret;
1844 }
1845
1846 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1847 struct usb_device *udev, u32 *cmd_status)
1848 {
1849 int ret;
1850
1851 switch (*cmd_status) {
1852 case COMP_COMMAND_ABORTED:
1853 case COMP_COMMAND_RING_STOPPED:
1854 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1855 ret = -ETIME;
1856 break;
1857 case COMP_PARAMETER_ERROR:
1858 dev_warn(&udev->dev,
1859 "WARN: xHCI driver setup invalid evaluate context command.\n");
1860 ret = -EINVAL;
1861 break;
1862 case COMP_SLOT_NOT_ENABLED_ERROR:
1863 dev_warn(&udev->dev,
1864 "WARN: slot not enabled for evaluate context command.\n");
1865 ret = -EINVAL;
1866 break;
1867 case COMP_CONTEXT_STATE_ERROR:
1868 dev_warn(&udev->dev,
1869 "WARN: invalid context state for evaluate context command.\n");
1870 ret = -EINVAL;
1871 break;
1872 case COMP_INCOMPATIBLE_DEVICE_ERROR:
1873 dev_warn(&udev->dev,
1874 "ERROR: Incompatible device for evaluate context command.\n");
1875 ret = -ENODEV;
1876 break;
1877 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
1878 /* Max Exit Latency too large error */
1879 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1880 ret = -EINVAL;
1881 break;
1882 case COMP_SUCCESS:
1883 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1884 "Successful evaluate context command");
1885 ret = 0;
1886 break;
1887 default:
1888 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1889 *cmd_status);
1890 ret = -EINVAL;
1891 break;
1892 }
1893 return ret;
1894 }
1895
1896 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1897 struct xhci_input_control_ctx *ctrl_ctx)
1898 {
1899 u32 valid_add_flags;
1900 u32 valid_drop_flags;
1901
1902 /* Ignore the slot flag (bit 0), and the default control endpoint flag
1903 * (bit 1). The default control endpoint is added during the Address
1904 * Device command and is never removed until the slot is disabled.
1905 */
1906 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1907 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1908
1909 /* Use hweight32 to count the number of ones in the add flags, or
1910 * number of endpoints added. Don't count endpoints that are changed
1911 * (both added and dropped).
1912 */
1913 return hweight32(valid_add_flags) -
1914 hweight32(valid_add_flags & valid_drop_flags);
1915 }
1916
1917 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1918 struct xhci_input_control_ctx *ctrl_ctx)
1919 {
1920 u32 valid_add_flags;
1921 u32 valid_drop_flags;
1922
1923 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1924 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1925
1926 return hweight32(valid_drop_flags) -
1927 hweight32(valid_add_flags & valid_drop_flags);
1928 }
1929
1930 /*
1931 * We need to reserve the new number of endpoints before the configure endpoint
1932 * command completes. We can't subtract the dropped endpoints from the number
1933 * of active endpoints until the command completes because we can oversubscribe
1934 * the host in this case:
1935 *
1936 * - the first configure endpoint command drops more endpoints than it adds
1937 * - a second configure endpoint command that adds more endpoints is queued
1938 * - the first configure endpoint command fails, so the config is unchanged
1939 * - the second command may succeed, even though there isn't enough resources
1940 *
1941 * Must be called with xhci->lock held.
1942 */
1943 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1944 struct xhci_input_control_ctx *ctrl_ctx)
1945 {
1946 u32 added_eps;
1947
1948 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1949 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1950 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1951 "Not enough ep ctxs: "
1952 "%u active, need to add %u, limit is %u.",
1953 xhci->num_active_eps, added_eps,
1954 xhci->limit_active_eps);
1955 return -ENOMEM;
1956 }
1957 xhci->num_active_eps += added_eps;
1958 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1959 "Adding %u ep ctxs, %u now active.", added_eps,
1960 xhci->num_active_eps);
1961 return 0;
1962 }
1963
1964 /*
1965 * The configure endpoint was failed by the xHC for some other reason, so we
1966 * need to revert the resources that failed configuration would have used.
1967 *
1968 * Must be called with xhci->lock held.
1969 */
1970 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1971 struct xhci_input_control_ctx *ctrl_ctx)
1972 {
1973 u32 num_failed_eps;
1974
1975 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1976 xhci->num_active_eps -= num_failed_eps;
1977 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1978 "Removing %u failed ep ctxs, %u now active.",
1979 num_failed_eps,
1980 xhci->num_active_eps);
1981 }
1982
1983 /*
1984 * Now that the command has completed, clean up the active endpoint count by
1985 * subtracting out the endpoints that were dropped (but not changed).
1986 *
1987 * Must be called with xhci->lock held.
1988 */
1989 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1990 struct xhci_input_control_ctx *ctrl_ctx)
1991 {
1992 u32 num_dropped_eps;
1993
1994 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
1995 xhci->num_active_eps -= num_dropped_eps;
1996 if (num_dropped_eps)
1997 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1998 "Removing %u dropped ep ctxs, %u now active.",
1999 num_dropped_eps,
2000 xhci->num_active_eps);
2001 }
2002
2003 static unsigned int xhci_get_block_size(struct usb_device *udev)
2004 {
2005 switch (udev->speed) {
2006 case USB_SPEED_LOW:
2007 case USB_SPEED_FULL:
2008 return FS_BLOCK;
2009 case USB_SPEED_HIGH:
2010 return HS_BLOCK;
2011 case USB_SPEED_SUPER:
2012 case USB_SPEED_SUPER_PLUS:
2013 return SS_BLOCK;
2014 case USB_SPEED_UNKNOWN:
2015 case USB_SPEED_WIRELESS:
2016 default:
2017 /* Should never happen */
2018 return 1;
2019 }
2020 }
2021
2022 static unsigned int
2023 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2024 {
2025 if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2026 return LS_OVERHEAD;
2027 if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2028 return FS_OVERHEAD;
2029 return HS_OVERHEAD;
2030 }
2031
2032 /* If we are changing a LS/FS device under a HS hub,
2033 * make sure (if we are activating a new TT) that the HS bus has enough
2034 * bandwidth for this new TT.
2035 */
2036 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2037 struct xhci_virt_device *virt_dev,
2038 int old_active_eps)
2039 {
2040 struct xhci_interval_bw_table *bw_table;
2041 struct xhci_tt_bw_info *tt_info;
2042
2043 /* Find the bandwidth table for the root port this TT is attached to. */
2044 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2045 tt_info = virt_dev->tt_info;
2046 /* If this TT already had active endpoints, the bandwidth for this TT
2047 * has already been added. Removing all periodic endpoints (and thus
2048 * making the TT enactive) will only decrease the bandwidth used.
2049 */
2050 if (old_active_eps)
2051 return 0;
2052 if (old_active_eps == 0 && tt_info->active_eps != 0) {
2053 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2054 return -ENOMEM;
2055 return 0;
2056 }
2057 /* Not sure why we would have no new active endpoints...
2058 *
2059 * Maybe because of an Evaluate Context change for a hub update or a
2060 * control endpoint 0 max packet size change?
2061 * FIXME: skip the bandwidth calculation in that case.
2062 */
2063 return 0;
2064 }
2065
2066 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2067 struct xhci_virt_device *virt_dev)
2068 {
2069 unsigned int bw_reserved;
2070
2071 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2072 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2073 return -ENOMEM;
2074
2075 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2076 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2077 return -ENOMEM;
2078
2079 return 0;
2080 }
2081
2082 /*
2083 * This algorithm is a very conservative estimate of the worst-case scheduling
2084 * scenario for any one interval. The hardware dynamically schedules the
2085 * packets, so we can't tell which microframe could be the limiting factor in
2086 * the bandwidth scheduling. This only takes into account periodic endpoints.
2087 *
2088 * Obviously, we can't solve an NP complete problem to find the minimum worst
2089 * case scenario. Instead, we come up with an estimate that is no less than
2090 * the worst case bandwidth used for any one microframe, but may be an
2091 * over-estimate.
2092 *
2093 * We walk the requirements for each endpoint by interval, starting with the
2094 * smallest interval, and place packets in the schedule where there is only one
2095 * possible way to schedule packets for that interval. In order to simplify
2096 * this algorithm, we record the largest max packet size for each interval, and
2097 * assume all packets will be that size.
2098 *
2099 * For interval 0, we obviously must schedule all packets for each interval.
2100 * The bandwidth for interval 0 is just the amount of data to be transmitted
2101 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2102 * the number of packets).
2103 *
2104 * For interval 1, we have two possible microframes to schedule those packets
2105 * in. For this algorithm, if we can schedule the same number of packets for
2106 * each possible scheduling opportunity (each microframe), we will do so. The
2107 * remaining number of packets will be saved to be transmitted in the gaps in
2108 * the next interval's scheduling sequence.
2109 *
2110 * As we move those remaining packets to be scheduled with interval 2 packets,
2111 * we have to double the number of remaining packets to transmit. This is
2112 * because the intervals are actually powers of 2, and we would be transmitting
2113 * the previous interval's packets twice in this interval. We also have to be
2114 * sure that when we look at the largest max packet size for this interval, we
2115 * also look at the largest max packet size for the remaining packets and take
2116 * the greater of the two.
2117 *
2118 * The algorithm continues to evenly distribute packets in each scheduling
2119 * opportunity, and push the remaining packets out, until we get to the last
2120 * interval. Then those packets and their associated overhead are just added
2121 * to the bandwidth used.
2122 */
2123 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2124 struct xhci_virt_device *virt_dev,
2125 int old_active_eps)
2126 {
2127 unsigned int bw_reserved;
2128 unsigned int max_bandwidth;
2129 unsigned int bw_used;
2130 unsigned int block_size;
2131 struct xhci_interval_bw_table *bw_table;
2132 unsigned int packet_size = 0;
2133 unsigned int overhead = 0;
2134 unsigned int packets_transmitted = 0;
2135 unsigned int packets_remaining = 0;
2136 unsigned int i;
2137
2138 if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2139 return xhci_check_ss_bw(xhci, virt_dev);
2140
2141 if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2142 max_bandwidth = HS_BW_LIMIT;
2143 /* Convert percent of bus BW reserved to blocks reserved */
2144 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2145 } else {
2146 max_bandwidth = FS_BW_LIMIT;
2147 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2148 }
2149
2150 bw_table = virt_dev->bw_table;
2151 /* We need to translate the max packet size and max ESIT payloads into
2152 * the units the hardware uses.
2153 */
2154 block_size = xhci_get_block_size(virt_dev->udev);
2155
2156 /* If we are manipulating a LS/FS device under a HS hub, double check
2157 * that the HS bus has enough bandwidth if we are activing a new TT.
2158 */
2159 if (virt_dev->tt_info) {
2160 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2161 "Recalculating BW for rootport %u",
2162 virt_dev->real_port);
2163 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2164 xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2165 "newly activated TT.\n");
2166 return -ENOMEM;
2167 }
2168 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2169 "Recalculating BW for TT slot %u port %u",
2170 virt_dev->tt_info->slot_id,
2171 virt_dev->tt_info->ttport);
2172 } else {
2173 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2174 "Recalculating BW for rootport %u",
2175 virt_dev->real_port);
2176 }
2177
2178 /* Add in how much bandwidth will be used for interval zero, or the
2179 * rounded max ESIT payload + number of packets * largest overhead.
2180 */
2181 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2182 bw_table->interval_bw[0].num_packets *
2183 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2184
2185 for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2186 unsigned int bw_added;
2187 unsigned int largest_mps;
2188 unsigned int interval_overhead;
2189
2190 /*
2191 * How many packets could we transmit in this interval?
2192 * If packets didn't fit in the previous interval, we will need
2193 * to transmit that many packets twice within this interval.
2194 */
2195 packets_remaining = 2 * packets_remaining +
2196 bw_table->interval_bw[i].num_packets;
2197
2198 /* Find the largest max packet size of this or the previous
2199 * interval.
2200 */
2201 if (list_empty(&bw_table->interval_bw[i].endpoints))
2202 largest_mps = 0;
2203 else {
2204 struct xhci_virt_ep *virt_ep;
2205 struct list_head *ep_entry;
2206
2207 ep_entry = bw_table->interval_bw[i].endpoints.next;
2208 virt_ep = list_entry(ep_entry,
2209 struct xhci_virt_ep, bw_endpoint_list);
2210 /* Convert to blocks, rounding up */
2211 largest_mps = DIV_ROUND_UP(
2212 virt_ep->bw_info.max_packet_size,
2213 block_size);
2214 }
2215 if (largest_mps > packet_size)
2216 packet_size = largest_mps;
2217
2218 /* Use the larger overhead of this or the previous interval. */
2219 interval_overhead = xhci_get_largest_overhead(
2220 &bw_table->interval_bw[i]);
2221 if (interval_overhead > overhead)
2222 overhead = interval_overhead;
2223
2224 /* How many packets can we evenly distribute across
2225 * (1 << (i + 1)) possible scheduling opportunities?
2226 */
2227 packets_transmitted = packets_remaining >> (i + 1);
2228
2229 /* Add in the bandwidth used for those scheduled packets */
2230 bw_added = packets_transmitted * (overhead + packet_size);
2231
2232 /* How many packets do we have remaining to transmit? */
2233 packets_remaining = packets_remaining % (1 << (i + 1));
2234
2235 /* What largest max packet size should those packets have? */
2236 /* If we've transmitted all packets, don't carry over the
2237 * largest packet size.
2238 */
2239 if (packets_remaining == 0) {
2240 packet_size = 0;
2241 overhead = 0;
2242 } else if (packets_transmitted > 0) {
2243 /* Otherwise if we do have remaining packets, and we've
2244 * scheduled some packets in this interval, take the
2245 * largest max packet size from endpoints with this
2246 * interval.
2247 */
2248 packet_size = largest_mps;
2249 overhead = interval_overhead;
2250 }
2251 /* Otherwise carry over packet_size and overhead from the last
2252 * time we had a remainder.
2253 */
2254 bw_used += bw_added;
2255 if (bw_used > max_bandwidth) {
2256 xhci_warn(xhci, "Not enough bandwidth. "
2257 "Proposed: %u, Max: %u\n",
2258 bw_used, max_bandwidth);
2259 return -ENOMEM;
2260 }
2261 }
2262 /*
2263 * Ok, we know we have some packets left over after even-handedly
2264 * scheduling interval 15. We don't know which microframes they will
2265 * fit into, so we over-schedule and say they will be scheduled every
2266 * microframe.
2267 */
2268 if (packets_remaining > 0)
2269 bw_used += overhead + packet_size;
2270
2271 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2272 unsigned int port_index = virt_dev->real_port - 1;
2273
2274 /* OK, we're manipulating a HS device attached to a
2275 * root port bandwidth domain. Include the number of active TTs
2276 * in the bandwidth used.
2277 */
2278 bw_used += TT_HS_OVERHEAD *
2279 xhci->rh_bw[port_index].num_active_tts;
2280 }
2281
2282 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2283 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2284 "Available: %u " "percent",
2285 bw_used, max_bandwidth, bw_reserved,
2286 (max_bandwidth - bw_used - bw_reserved) * 100 /
2287 max_bandwidth);
2288
2289 bw_used += bw_reserved;
2290 if (bw_used > max_bandwidth) {
2291 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2292 bw_used, max_bandwidth);
2293 return -ENOMEM;
2294 }
2295
2296 bw_table->bw_used = bw_used;
2297 return 0;
2298 }
2299
2300 static bool xhci_is_async_ep(unsigned int ep_type)
2301 {
2302 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2303 ep_type != ISOC_IN_EP &&
2304 ep_type != INT_IN_EP);
2305 }
2306
2307 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2308 {
2309 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2310 }
2311
2312 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2313 {
2314 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2315
2316 if (ep_bw->ep_interval == 0)
2317 return SS_OVERHEAD_BURST +
2318 (ep_bw->mult * ep_bw->num_packets *
2319 (SS_OVERHEAD + mps));
2320 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2321 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2322 1 << ep_bw->ep_interval);
2323
2324 }
2325
2326 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2327 struct xhci_bw_info *ep_bw,
2328 struct xhci_interval_bw_table *bw_table,
2329 struct usb_device *udev,
2330 struct xhci_virt_ep *virt_ep,
2331 struct xhci_tt_bw_info *tt_info)
2332 {
2333 struct xhci_interval_bw *interval_bw;
2334 int normalized_interval;
2335
2336 if (xhci_is_async_ep(ep_bw->type))
2337 return;
2338
2339 if (udev->speed >= USB_SPEED_SUPER) {
2340 if (xhci_is_sync_in_ep(ep_bw->type))
2341 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2342 xhci_get_ss_bw_consumed(ep_bw);
2343 else
2344 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2345 xhci_get_ss_bw_consumed(ep_bw);
2346 return;
2347 }
2348
2349 /* SuperSpeed endpoints never get added to intervals in the table, so
2350 * this check is only valid for HS/FS/LS devices.
2351 */
2352 if (list_empty(&virt_ep->bw_endpoint_list))
2353 return;
2354 /* For LS/FS devices, we need to translate the interval expressed in
2355 * microframes to frames.
2356 */
2357 if (udev->speed == USB_SPEED_HIGH)
2358 normalized_interval = ep_bw->ep_interval;
2359 else
2360 normalized_interval = ep_bw->ep_interval - 3;
2361
2362 if (normalized_interval == 0)
2363 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2364 interval_bw = &bw_table->interval_bw[normalized_interval];
2365 interval_bw->num_packets -= ep_bw->num_packets;
2366 switch (udev->speed) {
2367 case USB_SPEED_LOW:
2368 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2369 break;
2370 case USB_SPEED_FULL:
2371 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2372 break;
2373 case USB_SPEED_HIGH:
2374 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2375 break;
2376 case USB_SPEED_SUPER:
2377 case USB_SPEED_SUPER_PLUS:
2378 case USB_SPEED_UNKNOWN:
2379 case USB_SPEED_WIRELESS:
2380 /* Should never happen because only LS/FS/HS endpoints will get
2381 * added to the endpoint list.
2382 */
2383 return;
2384 }
2385 if (tt_info)
2386 tt_info->active_eps -= 1;
2387 list_del_init(&virt_ep->bw_endpoint_list);
2388 }
2389
2390 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2391 struct xhci_bw_info *ep_bw,
2392 struct xhci_interval_bw_table *bw_table,
2393 struct usb_device *udev,
2394 struct xhci_virt_ep *virt_ep,
2395 struct xhci_tt_bw_info *tt_info)
2396 {
2397 struct xhci_interval_bw *interval_bw;
2398 struct xhci_virt_ep *smaller_ep;
2399 int normalized_interval;
2400
2401 if (xhci_is_async_ep(ep_bw->type))
2402 return;
2403
2404 if (udev->speed == USB_SPEED_SUPER) {
2405 if (xhci_is_sync_in_ep(ep_bw->type))
2406 xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2407 xhci_get_ss_bw_consumed(ep_bw);
2408 else
2409 xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2410 xhci_get_ss_bw_consumed(ep_bw);
2411 return;
2412 }
2413
2414 /* For LS/FS devices, we need to translate the interval expressed in
2415 * microframes to frames.
2416 */
2417 if (udev->speed == USB_SPEED_HIGH)
2418 normalized_interval = ep_bw->ep_interval;
2419 else
2420 normalized_interval = ep_bw->ep_interval - 3;
2421
2422 if (normalized_interval == 0)
2423 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2424 interval_bw = &bw_table->interval_bw[normalized_interval];
2425 interval_bw->num_packets += ep_bw->num_packets;
2426 switch (udev->speed) {
2427 case USB_SPEED_LOW:
2428 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2429 break;
2430 case USB_SPEED_FULL:
2431 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2432 break;
2433 case USB_SPEED_HIGH:
2434 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2435 break;
2436 case USB_SPEED_SUPER:
2437 case USB_SPEED_SUPER_PLUS:
2438 case USB_SPEED_UNKNOWN:
2439 case USB_SPEED_WIRELESS:
2440 /* Should never happen because only LS/FS/HS endpoints will get
2441 * added to the endpoint list.
2442 */
2443 return;
2444 }
2445
2446 if (tt_info)
2447 tt_info->active_eps += 1;
2448 /* Insert the endpoint into the list, largest max packet size first. */
2449 list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2450 bw_endpoint_list) {
2451 if (ep_bw->max_packet_size >=
2452 smaller_ep->bw_info.max_packet_size) {
2453 /* Add the new ep before the smaller endpoint */
2454 list_add_tail(&virt_ep->bw_endpoint_list,
2455 &smaller_ep->bw_endpoint_list);
2456 return;
2457 }
2458 }
2459 /* Add the new endpoint at the end of the list. */
2460 list_add_tail(&virt_ep->bw_endpoint_list,
2461 &interval_bw->endpoints);
2462 }
2463
2464 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2465 struct xhci_virt_device *virt_dev,
2466 int old_active_eps)
2467 {
2468 struct xhci_root_port_bw_info *rh_bw_info;
2469 if (!virt_dev->tt_info)
2470 return;
2471
2472 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2473 if (old_active_eps == 0 &&
2474 virt_dev->tt_info->active_eps != 0) {
2475 rh_bw_info->num_active_tts += 1;
2476 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2477 } else if (old_active_eps != 0 &&
2478 virt_dev->tt_info->active_eps == 0) {
2479 rh_bw_info->num_active_tts -= 1;
2480 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2481 }
2482 }
2483
2484 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2485 struct xhci_virt_device *virt_dev,
2486 struct xhci_container_ctx *in_ctx)
2487 {
2488 struct xhci_bw_info ep_bw_info[31];
2489 int i;
2490 struct xhci_input_control_ctx *ctrl_ctx;
2491 int old_active_eps = 0;
2492
2493 if (virt_dev->tt_info)
2494 old_active_eps = virt_dev->tt_info->active_eps;
2495
2496 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2497 if (!ctrl_ctx) {
2498 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2499 __func__);
2500 return -ENOMEM;
2501 }
2502
2503 for (i = 0; i < 31; i++) {
2504 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2505 continue;
2506
2507 /* Make a copy of the BW info in case we need to revert this */
2508 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2509 sizeof(ep_bw_info[i]));
2510 /* Drop the endpoint from the interval table if the endpoint is
2511 * being dropped or changed.
2512 */
2513 if (EP_IS_DROPPED(ctrl_ctx, i))
2514 xhci_drop_ep_from_interval_table(xhci,
2515 &virt_dev->eps[i].bw_info,
2516 virt_dev->bw_table,
2517 virt_dev->udev,
2518 &virt_dev->eps[i],
2519 virt_dev->tt_info);
2520 }
2521 /* Overwrite the information stored in the endpoints' bw_info */
2522 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2523 for (i = 0; i < 31; i++) {
2524 /* Add any changed or added endpoints to the interval table */
2525 if (EP_IS_ADDED(ctrl_ctx, i))
2526 xhci_add_ep_to_interval_table(xhci,
2527 &virt_dev->eps[i].bw_info,
2528 virt_dev->bw_table,
2529 virt_dev->udev,
2530 &virt_dev->eps[i],
2531 virt_dev->tt_info);
2532 }
2533
2534 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2535 /* Ok, this fits in the bandwidth we have.
2536 * Update the number of active TTs.
2537 */
2538 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2539 return 0;
2540 }
2541
2542 /* We don't have enough bandwidth for this, revert the stored info. */
2543 for (i = 0; i < 31; i++) {
2544 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2545 continue;
2546
2547 /* Drop the new copies of any added or changed endpoints from
2548 * the interval table.
2549 */
2550 if (EP_IS_ADDED(ctrl_ctx, i)) {
2551 xhci_drop_ep_from_interval_table(xhci,
2552 &virt_dev->eps[i].bw_info,
2553 virt_dev->bw_table,
2554 virt_dev->udev,
2555 &virt_dev->eps[i],
2556 virt_dev->tt_info);
2557 }
2558 /* Revert the endpoint back to its old information */
2559 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2560 sizeof(ep_bw_info[i]));
2561 /* Add any changed or dropped endpoints back into the table */
2562 if (EP_IS_DROPPED(ctrl_ctx, i))
2563 xhci_add_ep_to_interval_table(xhci,
2564 &virt_dev->eps[i].bw_info,
2565 virt_dev->bw_table,
2566 virt_dev->udev,
2567 &virt_dev->eps[i],
2568 virt_dev->tt_info);
2569 }
2570 return -ENOMEM;
2571 }
2572
2573
2574 /* Issue a configure endpoint command or evaluate context command
2575 * and wait for it to finish.
2576 */
2577 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2578 struct usb_device *udev,
2579 struct xhci_command *command,
2580 bool ctx_change, bool must_succeed)
2581 {
2582 int ret;
2583 unsigned long flags;
2584 struct xhci_input_control_ctx *ctrl_ctx;
2585 struct xhci_virt_device *virt_dev;
2586 struct xhci_slot_ctx *slot_ctx;
2587
2588 if (!command)
2589 return -EINVAL;
2590
2591 spin_lock_irqsave(&xhci->lock, flags);
2592
2593 if (xhci->xhc_state & XHCI_STATE_DYING) {
2594 spin_unlock_irqrestore(&xhci->lock, flags);
2595 return -ESHUTDOWN;
2596 }
2597
2598 virt_dev = xhci->devs[udev->slot_id];
2599
2600 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2601 if (!ctrl_ctx) {
2602 spin_unlock_irqrestore(&xhci->lock, flags);
2603 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2604 __func__);
2605 return -ENOMEM;
2606 }
2607
2608 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2609 xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2610 spin_unlock_irqrestore(&xhci->lock, flags);
2611 xhci_warn(xhci, "Not enough host resources, "
2612 "active endpoint contexts = %u\n",
2613 xhci->num_active_eps);
2614 return -ENOMEM;
2615 }
2616 if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2617 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2618 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2619 xhci_free_host_resources(xhci, ctrl_ctx);
2620 spin_unlock_irqrestore(&xhci->lock, flags);
2621 xhci_warn(xhci, "Not enough bandwidth\n");
2622 return -ENOMEM;
2623 }
2624
2625 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2626 trace_xhci_configure_endpoint(slot_ctx);
2627
2628 if (!ctx_change)
2629 ret = xhci_queue_configure_endpoint(xhci, command,
2630 command->in_ctx->dma,
2631 udev->slot_id, must_succeed);
2632 else
2633 ret = xhci_queue_evaluate_context(xhci, command,
2634 command->in_ctx->dma,
2635 udev->slot_id, must_succeed);
2636 if (ret < 0) {
2637 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2638 xhci_free_host_resources(xhci, ctrl_ctx);
2639 spin_unlock_irqrestore(&xhci->lock, flags);
2640 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2641 "FIXME allocate a new ring segment");
2642 return -ENOMEM;
2643 }
2644 xhci_ring_cmd_db(xhci);
2645 spin_unlock_irqrestore(&xhci->lock, flags);
2646
2647 /* Wait for the configure endpoint command to complete */
2648 wait_for_completion(command->completion);
2649
2650 if (!ctx_change)
2651 ret = xhci_configure_endpoint_result(xhci, udev,
2652 &command->status);
2653 else
2654 ret = xhci_evaluate_context_result(xhci, udev,
2655 &command->status);
2656
2657 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2658 spin_lock_irqsave(&xhci->lock, flags);
2659 /* If the command failed, remove the reserved resources.
2660 * Otherwise, clean up the estimate to include dropped eps.
2661 */
2662 if (ret)
2663 xhci_free_host_resources(xhci, ctrl_ctx);
2664 else
2665 xhci_finish_resource_reservation(xhci, ctrl_ctx);
2666 spin_unlock_irqrestore(&xhci->lock, flags);
2667 }
2668 return ret;
2669 }
2670
2671 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2672 struct xhci_virt_device *vdev, int i)
2673 {
2674 struct xhci_virt_ep *ep = &vdev->eps[i];
2675
2676 if (ep->ep_state & EP_HAS_STREAMS) {
2677 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2678 xhci_get_endpoint_address(i));
2679 xhci_free_stream_info(xhci, ep->stream_info);
2680 ep->stream_info = NULL;
2681 ep->ep_state &= ~EP_HAS_STREAMS;
2682 }
2683 }
2684
2685 /* Called after one or more calls to xhci_add_endpoint() or
2686 * xhci_drop_endpoint(). If this call fails, the USB core is expected
2687 * to call xhci_reset_bandwidth().
2688 *
2689 * Since we are in the middle of changing either configuration or
2690 * installing a new alt setting, the USB core won't allow URBs to be
2691 * enqueued for any endpoint on the old config or interface. Nothing
2692 * else should be touching the xhci->devs[slot_id] structure, so we
2693 * don't need to take the xhci->lock for manipulating that.
2694 */
2695 static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2696 {
2697 int i;
2698 int ret = 0;
2699 struct xhci_hcd *xhci;
2700 struct xhci_virt_device *virt_dev;
2701 struct xhci_input_control_ctx *ctrl_ctx;
2702 struct xhci_slot_ctx *slot_ctx;
2703 struct xhci_command *command;
2704
2705 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2706 if (ret <= 0)
2707 return ret;
2708 xhci = hcd_to_xhci(hcd);
2709 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2710 (xhci->xhc_state & XHCI_STATE_REMOVING))
2711 return -ENODEV;
2712
2713 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2714 virt_dev = xhci->devs[udev->slot_id];
2715
2716 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2717 if (!command)
2718 return -ENOMEM;
2719
2720 command->in_ctx = virt_dev->in_ctx;
2721
2722 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2723 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2724 if (!ctrl_ctx) {
2725 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2726 __func__);
2727 ret = -ENOMEM;
2728 goto command_cleanup;
2729 }
2730 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2731 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2732 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2733
2734 /* Don't issue the command if there's no endpoints to update. */
2735 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2736 ctrl_ctx->drop_flags == 0) {
2737 ret = 0;
2738 goto command_cleanup;
2739 }
2740 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2741 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2742 for (i = 31; i >= 1; i--) {
2743 __le32 le32 = cpu_to_le32(BIT(i));
2744
2745 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2746 || (ctrl_ctx->add_flags & le32) || i == 1) {
2747 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2748 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2749 break;
2750 }
2751 }
2752
2753 ret = xhci_configure_endpoint(xhci, udev, command,
2754 false, false);
2755 if (ret)
2756 /* Callee should call reset_bandwidth() */
2757 goto command_cleanup;
2758
2759 /* Free any rings that were dropped, but not changed. */
2760 for (i = 1; i < 31; i++) {
2761 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2762 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2763 xhci_free_endpoint_ring(xhci, virt_dev, i);
2764 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2765 }
2766 }
2767 xhci_zero_in_ctx(xhci, virt_dev);
2768 /*
2769 * Install any rings for completely new endpoints or changed endpoints,
2770 * and free any old rings from changed endpoints.
2771 */
2772 for (i = 1; i < 31; i++) {
2773 if (!virt_dev->eps[i].new_ring)
2774 continue;
2775 /* Only free the old ring if it exists.
2776 * It may not if this is the first add of an endpoint.
2777 */
2778 if (virt_dev->eps[i].ring) {
2779 xhci_free_endpoint_ring(xhci, virt_dev, i);
2780 }
2781 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2782 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2783 virt_dev->eps[i].new_ring = NULL;
2784 }
2785 command_cleanup:
2786 kfree(command->completion);
2787 kfree(command);
2788
2789 return ret;
2790 }
2791
2792 static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2793 {
2794 struct xhci_hcd *xhci;
2795 struct xhci_virt_device *virt_dev;
2796 int i, ret;
2797
2798 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2799 if (ret <= 0)
2800 return;
2801 xhci = hcd_to_xhci(hcd);
2802
2803 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2804 virt_dev = xhci->devs[udev->slot_id];
2805 /* Free any rings allocated for added endpoints */
2806 for (i = 0; i < 31; i++) {
2807 if (virt_dev->eps[i].new_ring) {
2808 xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
2809 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2810 virt_dev->eps[i].new_ring = NULL;
2811 }
2812 }
2813 xhci_zero_in_ctx(xhci, virt_dev);
2814 }
2815
2816 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2817 struct xhci_container_ctx *in_ctx,
2818 struct xhci_container_ctx *out_ctx,
2819 struct xhci_input_control_ctx *ctrl_ctx,
2820 u32 add_flags, u32 drop_flags)
2821 {
2822 ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2823 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2824 xhci_slot_copy(xhci, in_ctx, out_ctx);
2825 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2826 }
2827
2828 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2829 unsigned int slot_id, unsigned int ep_index,
2830 struct xhci_dequeue_state *deq_state)
2831 {
2832 struct xhci_input_control_ctx *ctrl_ctx;
2833 struct xhci_container_ctx *in_ctx;
2834 struct xhci_ep_ctx *ep_ctx;
2835 u32 added_ctxs;
2836 dma_addr_t addr;
2837
2838 in_ctx = xhci->devs[slot_id]->in_ctx;
2839 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2840 if (!ctrl_ctx) {
2841 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2842 __func__);
2843 return;
2844 }
2845
2846 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2847 xhci->devs[slot_id]->out_ctx, ep_index);
2848 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2849 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2850 deq_state->new_deq_ptr);
2851 if (addr == 0) {
2852 xhci_warn(xhci, "WARN Cannot submit config ep after "
2853 "reset ep command\n");
2854 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2855 deq_state->new_deq_seg,
2856 deq_state->new_deq_ptr);
2857 return;
2858 }
2859 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2860
2861 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2862 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2863 xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2864 added_ctxs, added_ctxs);
2865 }
2866
2867 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int ep_index,
2868 unsigned int stream_id, struct xhci_td *td)
2869 {
2870 struct xhci_dequeue_state deq_state;
2871 struct xhci_virt_ep *ep;
2872 struct usb_device *udev = td->urb->dev;
2873
2874 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2875 "Cleaning up stalled endpoint ring");
2876 ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2877 /* We need to move the HW's dequeue pointer past this TD,
2878 * or it will attempt to resend it on the next doorbell ring.
2879 */
2880 xhci_find_new_dequeue_state(xhci, udev->slot_id,
2881 ep_index, stream_id, td, &deq_state);
2882
2883 if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2884 return;
2885
2886 /* HW with the reset endpoint quirk will use the saved dequeue state to
2887 * issue a configure endpoint command later.
2888 */
2889 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2890 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2891 "Queueing new dequeue state");
2892 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2893 ep_index, &deq_state);
2894 } else {
2895 /* Better hope no one uses the input context between now and the
2896 * reset endpoint completion!
2897 * XXX: No idea how this hardware will react when stream rings
2898 * are enabled.
2899 */
2900 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2901 "Setting up input context for "
2902 "configure endpoint command");
2903 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2904 ep_index, &deq_state);
2905 }
2906 }
2907
2908 /* Called when clearing halted device. The core should have sent the control
2909 * message to clear the device halt condition. The host side of the halt should
2910 * already be cleared with a reset endpoint command issued when the STALL tx
2911 * event was received.
2912 *
2913 * Context: in_interrupt
2914 */
2915
2916 static void xhci_endpoint_reset(struct usb_hcd *hcd,
2917 struct usb_host_endpoint *ep)
2918 {
2919 struct xhci_hcd *xhci;
2920
2921 xhci = hcd_to_xhci(hcd);
2922
2923 /*
2924 * We might need to implement the config ep cmd in xhci 4.8.1 note:
2925 * The Reset Endpoint Command may only be issued to endpoints in the
2926 * Halted state. If software wishes reset the Data Toggle or Sequence
2927 * Number of an endpoint that isn't in the Halted state, then software
2928 * may issue a Configure Endpoint Command with the Drop and Add bits set
2929 * for the target endpoint. that is in the Stopped state.
2930 */
2931
2932 /* For now just print debug to follow the situation */
2933 xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
2934 ep->desc.bEndpointAddress);
2935 }
2936
2937 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2938 struct usb_device *udev, struct usb_host_endpoint *ep,
2939 unsigned int slot_id)
2940 {
2941 int ret;
2942 unsigned int ep_index;
2943 unsigned int ep_state;
2944
2945 if (!ep)
2946 return -EINVAL;
2947 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2948 if (ret <= 0)
2949 return -EINVAL;
2950 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
2951 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2952 " descriptor for ep 0x%x does not support streams\n",
2953 ep->desc.bEndpointAddress);
2954 return -EINVAL;
2955 }
2956
2957 ep_index = xhci_get_endpoint_index(&ep->desc);
2958 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2959 if (ep_state & EP_HAS_STREAMS ||
2960 ep_state & EP_GETTING_STREAMS) {
2961 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2962 "already has streams set up.\n",
2963 ep->desc.bEndpointAddress);
2964 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2965 "dynamic stream context array reallocation.\n");
2966 return -EINVAL;
2967 }
2968 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2969 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2970 "endpoint 0x%x; URBs are pending.\n",
2971 ep->desc.bEndpointAddress);
2972 return -EINVAL;
2973 }
2974 return 0;
2975 }
2976
2977 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2978 unsigned int *num_streams, unsigned int *num_stream_ctxs)
2979 {
2980 unsigned int max_streams;
2981
2982 /* The stream context array size must be a power of two */
2983 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
2984 /*
2985 * Find out how many primary stream array entries the host controller
2986 * supports. Later we may use secondary stream arrays (similar to 2nd
2987 * level page entries), but that's an optional feature for xHCI host
2988 * controllers. xHCs must support at least 4 stream IDs.
2989 */
2990 max_streams = HCC_MAX_PSA(xhci->hcc_params);
2991 if (*num_stream_ctxs > max_streams) {
2992 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2993 max_streams);
2994 *num_stream_ctxs = max_streams;
2995 *num_streams = max_streams;
2996 }
2997 }
2998
2999 /* Returns an error code if one of the endpoint already has streams.
3000 * This does not change any data structures, it only checks and gathers
3001 * information.
3002 */
3003 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3004 struct usb_device *udev,
3005 struct usb_host_endpoint **eps, unsigned int num_eps,
3006 unsigned int *num_streams, u32 *changed_ep_bitmask)
3007 {
3008 unsigned int max_streams;
3009 unsigned int endpoint_flag;
3010 int i;
3011 int ret;
3012
3013 for (i = 0; i < num_eps; i++) {
3014 ret = xhci_check_streams_endpoint(xhci, udev,
3015 eps[i], udev->slot_id);
3016 if (ret < 0)
3017 return ret;
3018
3019 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3020 if (max_streams < (*num_streams - 1)) {
3021 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3022 eps[i]->desc.bEndpointAddress,
3023 max_streams);
3024 *num_streams = max_streams+1;
3025 }
3026
3027 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3028 if (*changed_ep_bitmask & endpoint_flag)
3029 return -EINVAL;
3030 *changed_ep_bitmask |= endpoint_flag;
3031 }
3032 return 0;
3033 }
3034
3035 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3036 struct usb_device *udev,
3037 struct usb_host_endpoint **eps, unsigned int num_eps)
3038 {
3039 u32 changed_ep_bitmask = 0;
3040 unsigned int slot_id;
3041 unsigned int ep_index;
3042 unsigned int ep_state;
3043 int i;
3044
3045 slot_id = udev->slot_id;
3046 if (!xhci->devs[slot_id])
3047 return 0;
3048
3049 for (i = 0; i < num_eps; i++) {
3050 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3051 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3052 /* Are streams already being freed for the endpoint? */
3053 if (ep_state & EP_GETTING_NO_STREAMS) {
3054 xhci_warn(xhci, "WARN Can't disable streams for "
3055 "endpoint 0x%x, "
3056 "streams are being disabled already\n",
3057 eps[i]->desc.bEndpointAddress);
3058 return 0;
3059 }
3060 /* Are there actually any streams to free? */
3061 if (!(ep_state & EP_HAS_STREAMS) &&
3062 !(ep_state & EP_GETTING_STREAMS)) {
3063 xhci_warn(xhci, "WARN Can't disable streams for "
3064 "endpoint 0x%x, "
3065 "streams are already disabled!\n",
3066 eps[i]->desc.bEndpointAddress);
3067 xhci_warn(xhci, "WARN xhci_free_streams() called "
3068 "with non-streams endpoint\n");
3069 return 0;
3070 }
3071 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3072 }
3073 return changed_ep_bitmask;
3074 }
3075
3076 /*
3077 * The USB device drivers use this function (through the HCD interface in USB
3078 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
3079 * coordinate mass storage command queueing across multiple endpoints (basically
3080 * a stream ID == a task ID).
3081 *
3082 * Setting up streams involves allocating the same size stream context array
3083 * for each endpoint and issuing a configure endpoint command for all endpoints.
3084 *
3085 * Don't allow the call to succeed if one endpoint only supports one stream
3086 * (which means it doesn't support streams at all).
3087 *
3088 * Drivers may get less stream IDs than they asked for, if the host controller
3089 * hardware or endpoints claim they can't support the number of requested
3090 * stream IDs.
3091 */
3092 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3093 struct usb_host_endpoint **eps, unsigned int num_eps,
3094 unsigned int num_streams, gfp_t mem_flags)
3095 {
3096 int i, ret;
3097 struct xhci_hcd *xhci;
3098 struct xhci_virt_device *vdev;
3099 struct xhci_command *config_cmd;
3100 struct xhci_input_control_ctx *ctrl_ctx;
3101 unsigned int ep_index;
3102 unsigned int num_stream_ctxs;
3103 unsigned int max_packet;
3104 unsigned long flags;
3105 u32 changed_ep_bitmask = 0;
3106
3107 if (!eps)
3108 return -EINVAL;
3109
3110 /* Add one to the number of streams requested to account for
3111 * stream 0 that is reserved for xHCI usage.
3112 */
3113 num_streams += 1;
3114 xhci = hcd_to_xhci(hcd);
3115 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3116 num_streams);
3117
3118 /* MaxPSASize value 0 (2 streams) means streams are not supported */
3119 if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3120 HCC_MAX_PSA(xhci->hcc_params) < 4) {
3121 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3122 return -ENOSYS;
3123 }
3124
3125 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3126 if (!config_cmd)
3127 return -ENOMEM;
3128
3129 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3130 if (!ctrl_ctx) {
3131 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3132 __func__);
3133 xhci_free_command(xhci, config_cmd);
3134 return -ENOMEM;
3135 }
3136
3137 /* Check to make sure all endpoints are not already configured for
3138 * streams. While we're at it, find the maximum number of streams that
3139 * all the endpoints will support and check for duplicate endpoints.
3140 */
3141 spin_lock_irqsave(&xhci->lock, flags);
3142 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3143 num_eps, &num_streams, &changed_ep_bitmask);
3144 if (ret < 0) {
3145 xhci_free_command(xhci, config_cmd);
3146 spin_unlock_irqrestore(&xhci->lock, flags);
3147 return ret;
3148 }
3149 if (num_streams <= 1) {
3150 xhci_warn(xhci, "WARN: endpoints can't handle "
3151 "more than one stream.\n");
3152 xhci_free_command(xhci, config_cmd);
3153 spin_unlock_irqrestore(&xhci->lock, flags);
3154 return -EINVAL;
3155 }
3156 vdev = xhci->devs[udev->slot_id];
3157 /* Mark each endpoint as being in transition, so
3158 * xhci_urb_enqueue() will reject all URBs.
3159 */
3160 for (i = 0; i < num_eps; i++) {
3161 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3162 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3163 }
3164 spin_unlock_irqrestore(&xhci->lock, flags);
3165
3166 /* Setup internal data structures and allocate HW data structures for
3167 * streams (but don't install the HW structures in the input context
3168 * until we're sure all memory allocation succeeded).
3169 */
3170 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3171 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3172 num_stream_ctxs, num_streams);
3173
3174 for (i = 0; i < num_eps; i++) {
3175 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3176 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3177 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3178 num_stream_ctxs,
3179 num_streams,
3180 max_packet, mem_flags);
3181 if (!vdev->eps[ep_index].stream_info)
3182 goto cleanup;
3183 /* Set maxPstreams in endpoint context and update deq ptr to
3184 * point to stream context array. FIXME
3185 */
3186 }
3187
3188 /* Set up the input context for a configure endpoint command. */
3189 for (i = 0; i < num_eps; i++) {
3190 struct xhci_ep_ctx *ep_ctx;
3191
3192 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3193 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3194
3195 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3196 vdev->out_ctx, ep_index);
3197 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3198 vdev->eps[ep_index].stream_info);
3199 }
3200 /* Tell the HW to drop its old copy of the endpoint context info
3201 * and add the updated copy from the input context.
3202 */
3203 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3204 vdev->out_ctx, ctrl_ctx,
3205 changed_ep_bitmask, changed_ep_bitmask);
3206
3207 /* Issue and wait for the configure endpoint command */
3208 ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3209 false, false);
3210
3211 /* xHC rejected the configure endpoint command for some reason, so we
3212 * leave the old ring intact and free our internal streams data
3213 * structure.
3214 */
3215 if (ret < 0)
3216 goto cleanup;
3217
3218 spin_lock_irqsave(&xhci->lock, flags);
3219 for (i = 0; i < num_eps; i++) {
3220 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3221 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3222 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3223 udev->slot_id, ep_index);
3224 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3225 }
3226 xhci_free_command(xhci, config_cmd);
3227 spin_unlock_irqrestore(&xhci->lock, flags);
3228
3229 /* Subtract 1 for stream 0, which drivers can't use */
3230 return num_streams - 1;
3231
3232 cleanup:
3233 /* If it didn't work, free the streams! */
3234 for (i = 0; i < num_eps; i++) {
3235 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3236 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3237 vdev->eps[ep_index].stream_info = NULL;
3238 /* FIXME Unset maxPstreams in endpoint context and
3239 * update deq ptr to point to normal string ring.
3240 */
3241 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3242 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3243 xhci_endpoint_zero(xhci, vdev, eps[i]);
3244 }
3245 xhci_free_command(xhci, config_cmd);
3246 return -ENOMEM;
3247 }
3248
3249 /* Transition the endpoint from using streams to being a "normal" endpoint
3250 * without streams.
3251 *
3252 * Modify the endpoint context state, submit a configure endpoint command,
3253 * and free all endpoint rings for streams if that completes successfully.
3254 */
3255 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3256 struct usb_host_endpoint **eps, unsigned int num_eps,
3257 gfp_t mem_flags)
3258 {
3259 int i, ret;
3260 struct xhci_hcd *xhci;
3261 struct xhci_virt_device *vdev;
3262 struct xhci_command *command;
3263 struct xhci_input_control_ctx *ctrl_ctx;
3264 unsigned int ep_index;
3265 unsigned long flags;
3266 u32 changed_ep_bitmask;
3267
3268 xhci = hcd_to_xhci(hcd);
3269 vdev = xhci->devs[udev->slot_id];
3270
3271 /* Set up a configure endpoint command to remove the streams rings */
3272 spin_lock_irqsave(&xhci->lock, flags);
3273 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3274 udev, eps, num_eps);
3275 if (changed_ep_bitmask == 0) {
3276 spin_unlock_irqrestore(&xhci->lock, flags);
3277 return -EINVAL;
3278 }
3279
3280 /* Use the xhci_command structure from the first endpoint. We may have
3281 * allocated too many, but the driver may call xhci_free_streams() for
3282 * each endpoint it grouped into one call to xhci_alloc_streams().
3283 */
3284 ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3285 command = vdev->eps[ep_index].stream_info->free_streams_command;
3286 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3287 if (!ctrl_ctx) {
3288 spin_unlock_irqrestore(&xhci->lock, flags);
3289 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3290 __func__);
3291 return -EINVAL;
3292 }
3293
3294 for (i = 0; i < num_eps; i++) {
3295 struct xhci_ep_ctx *ep_ctx;
3296
3297 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3298 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3299 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3300 EP_GETTING_NO_STREAMS;
3301
3302 xhci_endpoint_copy(xhci, command->in_ctx,
3303 vdev->out_ctx, ep_index);
3304 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3305 &vdev->eps[ep_index]);
3306 }
3307 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3308 vdev->out_ctx, ctrl_ctx,
3309 changed_ep_bitmask, changed_ep_bitmask);
3310 spin_unlock_irqrestore(&xhci->lock, flags);
3311
3312 /* Issue and wait for the configure endpoint command,
3313 * which must succeed.
3314 */
3315 ret = xhci_configure_endpoint(xhci, udev, command,
3316 false, true);
3317
3318 /* xHC rejected the configure endpoint command for some reason, so we
3319 * leave the streams rings intact.
3320 */
3321 if (ret < 0)
3322 return ret;
3323
3324 spin_lock_irqsave(&xhci->lock, flags);
3325 for (i = 0; i < num_eps; i++) {
3326 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3327 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3328 vdev->eps[ep_index].stream_info = NULL;
3329 /* FIXME Unset maxPstreams in endpoint context and
3330 * update deq ptr to point to normal string ring.
3331 */
3332 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3333 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3334 }
3335 spin_unlock_irqrestore(&xhci->lock, flags);
3336
3337 return 0;
3338 }
3339
3340 /*
3341 * Deletes endpoint resources for endpoints that were active before a Reset
3342 * Device command, or a Disable Slot command. The Reset Device command leaves
3343 * the control endpoint intact, whereas the Disable Slot command deletes it.
3344 *
3345 * Must be called with xhci->lock held.
3346 */
3347 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3348 struct xhci_virt_device *virt_dev, bool drop_control_ep)
3349 {
3350 int i;
3351 unsigned int num_dropped_eps = 0;
3352 unsigned int drop_flags = 0;
3353
3354 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3355 if (virt_dev->eps[i].ring) {
3356 drop_flags |= 1 << i;
3357 num_dropped_eps++;
3358 }
3359 }
3360 xhci->num_active_eps -= num_dropped_eps;
3361 if (num_dropped_eps)
3362 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3363 "Dropped %u ep ctxs, flags = 0x%x, "
3364 "%u now active.",
3365 num_dropped_eps, drop_flags,
3366 xhci->num_active_eps);
3367 }
3368
3369 /*
3370 * This submits a Reset Device Command, which will set the device state to 0,
3371 * set the device address to 0, and disable all the endpoints except the default
3372 * control endpoint. The USB core should come back and call
3373 * xhci_address_device(), and then re-set up the configuration. If this is
3374 * called because of a usb_reset_and_verify_device(), then the old alternate
3375 * settings will be re-installed through the normal bandwidth allocation
3376 * functions.
3377 *
3378 * Wait for the Reset Device command to finish. Remove all structures
3379 * associated with the endpoints that were disabled. Clear the input device
3380 * structure? Reset the control endpoint 0 max packet size?
3381 *
3382 * If the virt_dev to be reset does not exist or does not match the udev,
3383 * it means the device is lost, possibly due to the xHC restore error and
3384 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3385 * re-allocate the device.
3386 */
3387 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3388 struct usb_device *udev)
3389 {
3390 int ret, i;
3391 unsigned long flags;
3392 struct xhci_hcd *xhci;
3393 unsigned int slot_id;
3394 struct xhci_virt_device *virt_dev;
3395 struct xhci_command *reset_device_cmd;
3396 int last_freed_endpoint;
3397 struct xhci_slot_ctx *slot_ctx;
3398 int old_active_eps = 0;
3399
3400 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3401 if (ret <= 0)
3402 return ret;
3403 xhci = hcd_to_xhci(hcd);
3404 slot_id = udev->slot_id;
3405 virt_dev = xhci->devs[slot_id];
3406 if (!virt_dev) {
3407 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3408 "not exist. Re-allocate the device\n", slot_id);
3409 ret = xhci_alloc_dev(hcd, udev);
3410 if (ret == 1)
3411 return 0;
3412 else
3413 return -EINVAL;
3414 }
3415
3416 if (virt_dev->tt_info)
3417 old_active_eps = virt_dev->tt_info->active_eps;
3418
3419 if (virt_dev->udev != udev) {
3420 /* If the virt_dev and the udev does not match, this virt_dev
3421 * may belong to another udev.
3422 * Re-allocate the device.
3423 */
3424 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3425 "not match the udev. Re-allocate the device\n",
3426 slot_id);
3427 ret = xhci_alloc_dev(hcd, udev);
3428 if (ret == 1)
3429 return 0;
3430 else
3431 return -EINVAL;
3432 }
3433
3434 /* If device is not setup, there is no point in resetting it */
3435 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3436 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3437 SLOT_STATE_DISABLED)
3438 return 0;
3439
3440 trace_xhci_discover_or_reset_device(slot_ctx);
3441
3442 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3443 /* Allocate the command structure that holds the struct completion.
3444 * Assume we're in process context, since the normal device reset
3445 * process has to wait for the device anyway. Storage devices are
3446 * reset as part of error handling, so use GFP_NOIO instead of
3447 * GFP_KERNEL.
3448 */
3449 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3450 if (!reset_device_cmd) {
3451 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3452 return -ENOMEM;
3453 }
3454
3455 /* Attempt to submit the Reset Device command to the command ring */
3456 spin_lock_irqsave(&xhci->lock, flags);
3457
3458 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3459 if (ret) {
3460 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3461 spin_unlock_irqrestore(&xhci->lock, flags);
3462 goto command_cleanup;
3463 }
3464 xhci_ring_cmd_db(xhci);
3465 spin_unlock_irqrestore(&xhci->lock, flags);
3466
3467 /* Wait for the Reset Device command to finish */
3468 wait_for_completion(reset_device_cmd->completion);
3469
3470 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3471 * unless we tried to reset a slot ID that wasn't enabled,
3472 * or the device wasn't in the addressed or configured state.
3473 */
3474 ret = reset_device_cmd->status;
3475 switch (ret) {
3476 case COMP_COMMAND_ABORTED:
3477 case COMP_COMMAND_RING_STOPPED:
3478 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3479 ret = -ETIME;
3480 goto command_cleanup;
3481 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3482 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3483 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3484 slot_id,
3485 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3486 xhci_dbg(xhci, "Not freeing device rings.\n");
3487 /* Don't treat this as an error. May change my mind later. */
3488 ret = 0;
3489 goto command_cleanup;
3490 case COMP_SUCCESS:
3491 xhci_dbg(xhci, "Successful reset device command.\n");
3492 break;
3493 default:
3494 if (xhci_is_vendor_info_code(xhci, ret))
3495 break;
3496 xhci_warn(xhci, "Unknown completion code %u for "
3497 "reset device command.\n", ret);
3498 ret = -EINVAL;
3499 goto command_cleanup;
3500 }
3501
3502 /* Free up host controller endpoint resources */
3503 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3504 spin_lock_irqsave(&xhci->lock, flags);
3505 /* Don't delete the default control endpoint resources */
3506 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3507 spin_unlock_irqrestore(&xhci->lock, flags);
3508 }
3509
3510 /* Everything but endpoint 0 is disabled, so free the rings. */
3511 last_freed_endpoint = 1;
3512 for (i = 1; i < 31; i++) {
3513 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3514
3515 if (ep->ep_state & EP_HAS_STREAMS) {
3516 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3517 xhci_get_endpoint_address(i));
3518 xhci_free_stream_info(xhci, ep->stream_info);
3519 ep->stream_info = NULL;
3520 ep->ep_state &= ~EP_HAS_STREAMS;
3521 }
3522
3523 if (ep->ring) {
3524 xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3525 xhci_free_endpoint_ring(xhci, virt_dev, i);
3526 last_freed_endpoint = i;
3527 }
3528 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3529 xhci_drop_ep_from_interval_table(xhci,
3530 &virt_dev->eps[i].bw_info,
3531 virt_dev->bw_table,
3532 udev,
3533 &virt_dev->eps[i],
3534 virt_dev->tt_info);
3535 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3536 }
3537 /* If necessary, update the number of active TTs on this root port */
3538 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3539 ret = 0;
3540
3541 command_cleanup:
3542 xhci_free_command(xhci, reset_device_cmd);
3543 return ret;
3544 }
3545
3546 /*
3547 * At this point, the struct usb_device is about to go away, the device has
3548 * disconnected, and all traffic has been stopped and the endpoints have been
3549 * disabled. Free any HC data structures associated with that device.
3550 */
3551 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3552 {
3553 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3554 struct xhci_virt_device *virt_dev;
3555 struct xhci_slot_ctx *slot_ctx;
3556 int i, ret;
3557
3558 #ifndef CONFIG_USB_DEFAULT_PERSIST
3559 /*
3560 * We called pm_runtime_get_noresume when the device was attached.
3561 * Decrement the counter here to allow controller to runtime suspend
3562 * if no devices remain.
3563 */
3564 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3565 pm_runtime_put_noidle(hcd->self.controller);
3566 #endif
3567
3568 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3569 /* If the host is halted due to driver unload, we still need to free the
3570 * device.
3571 */
3572 if (ret <= 0 && ret != -ENODEV)
3573 return;
3574
3575 virt_dev = xhci->devs[udev->slot_id];
3576 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3577 trace_xhci_free_dev(slot_ctx);
3578
3579 /* Stop any wayward timer functions (which may grab the lock) */
3580 for (i = 0; i < 31; i++) {
3581 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3582 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3583 }
3584 xhci_debugfs_remove_slot(xhci, udev->slot_id);
3585 virt_dev->udev = NULL;
3586 ret = xhci_disable_slot(xhci, udev->slot_id);
3587 if (ret)
3588 xhci_free_virt_device(xhci, udev->slot_id);
3589 }
3590
3591 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3592 {
3593 struct xhci_command *command;
3594 unsigned long flags;
3595 u32 state;
3596 int ret = 0;
3597
3598 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3599 if (!command)
3600 return -ENOMEM;
3601
3602 spin_lock_irqsave(&xhci->lock, flags);
3603 /* Don't disable the slot if the host controller is dead. */
3604 state = readl(&xhci->op_regs->status);
3605 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3606 (xhci->xhc_state & XHCI_STATE_HALTED)) {
3607 spin_unlock_irqrestore(&xhci->lock, flags);
3608 kfree(command);
3609 return -ENODEV;
3610 }
3611
3612 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3613 slot_id);
3614 if (ret) {
3615 spin_unlock_irqrestore(&xhci->lock, flags);
3616 kfree(command);
3617 return ret;
3618 }
3619 xhci_ring_cmd_db(xhci);
3620 spin_unlock_irqrestore(&xhci->lock, flags);
3621 return ret;
3622 }
3623
3624 /*
3625 * Checks if we have enough host controller resources for the default control
3626 * endpoint.
3627 *
3628 * Must be called with xhci->lock held.
3629 */
3630 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3631 {
3632 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3633 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3634 "Not enough ep ctxs: "
3635 "%u active, need to add 1, limit is %u.",
3636 xhci->num_active_eps, xhci->limit_active_eps);
3637 return -ENOMEM;
3638 }
3639 xhci->num_active_eps += 1;
3640 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3641 "Adding 1 ep ctx, %u now active.",
3642 xhci->num_active_eps);
3643 return 0;
3644 }
3645
3646
3647 /*
3648 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3649 * timed out, or allocating memory failed. Returns 1 on success.
3650 */
3651 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3652 {
3653 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3654 struct xhci_virt_device *vdev;
3655 struct xhci_slot_ctx *slot_ctx;
3656 unsigned long flags;
3657 int ret, slot_id;
3658 struct xhci_command *command;
3659
3660 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
3661 if (!command)
3662 return 0;
3663
3664 spin_lock_irqsave(&xhci->lock, flags);
3665 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3666 if (ret) {
3667 spin_unlock_irqrestore(&xhci->lock, flags);
3668 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3669 xhci_free_command(xhci, command);
3670 return 0;
3671 }
3672 xhci_ring_cmd_db(xhci);
3673 spin_unlock_irqrestore(&xhci->lock, flags);
3674
3675 wait_for_completion(command->completion);
3676 slot_id = command->slot_id;
3677
3678 if (!slot_id || command->status != COMP_SUCCESS) {
3679 xhci_err(xhci, "Error while assigning device slot ID\n");
3680 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3681 HCS_MAX_SLOTS(
3682 readl(&xhci->cap_regs->hcs_params1)));
3683 xhci_free_command(xhci, command);
3684 return 0;
3685 }
3686
3687 xhci_free_command(xhci, command);
3688
3689 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3690 spin_lock_irqsave(&xhci->lock, flags);
3691 ret = xhci_reserve_host_control_ep_resources(xhci);
3692 if (ret) {
3693 spin_unlock_irqrestore(&xhci->lock, flags);
3694 xhci_warn(xhci, "Not enough host resources, "
3695 "active endpoint contexts = %u\n",
3696 xhci->num_active_eps);
3697 goto disable_slot;
3698 }
3699 spin_unlock_irqrestore(&xhci->lock, flags);
3700 }
3701 /* Use GFP_NOIO, since this function can be called from
3702 * xhci_discover_or_reset_device(), which may be called as part of
3703 * mass storage driver error handling.
3704 */
3705 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3706 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3707 goto disable_slot;
3708 }
3709 vdev = xhci->devs[slot_id];
3710 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
3711 trace_xhci_alloc_dev(slot_ctx);
3712
3713 udev->slot_id = slot_id;
3714
3715 xhci_debugfs_create_slot(xhci, slot_id);
3716
3717 #ifndef CONFIG_USB_DEFAULT_PERSIST
3718 /*
3719 * If resetting upon resume, we can't put the controller into runtime
3720 * suspend if there is a device attached.
3721 */
3722 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3723 pm_runtime_get_noresume(hcd->self.controller);
3724 #endif
3725
3726 /* Is this a LS or FS device under a HS hub? */
3727 /* Hub or peripherial? */
3728 return 1;
3729
3730 disable_slot:
3731 ret = xhci_disable_slot(xhci, udev->slot_id);
3732 if (ret)
3733 xhci_free_virt_device(xhci, udev->slot_id);
3734
3735 return 0;
3736 }
3737
3738 /*
3739 * Issue an Address Device command and optionally send a corresponding
3740 * SetAddress request to the device.
3741 */
3742 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3743 enum xhci_setup_dev setup)
3744 {
3745 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3746 unsigned long flags;
3747 struct xhci_virt_device *virt_dev;
3748 int ret = 0;
3749 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3750 struct xhci_slot_ctx *slot_ctx;
3751 struct xhci_input_control_ctx *ctrl_ctx;
3752 u64 temp_64;
3753 struct xhci_command *command = NULL;
3754
3755 mutex_lock(&xhci->mutex);
3756
3757 if (xhci->xhc_state) { /* dying, removing or halted */
3758 ret = -ESHUTDOWN;
3759 goto out;
3760 }
3761
3762 if (!udev->slot_id) {
3763 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3764 "Bad Slot ID %d", udev->slot_id);
3765 ret = -EINVAL;
3766 goto out;
3767 }
3768
3769 virt_dev = xhci->devs[udev->slot_id];
3770
3771 if (WARN_ON(!virt_dev)) {
3772 /*
3773 * In plug/unplug torture test with an NEC controller,
3774 * a zero-dereference was observed once due to virt_dev = 0.
3775 * Print useful debug rather than crash if it is observed again!
3776 */
3777 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3778 udev->slot_id);
3779 ret = -EINVAL;
3780 goto out;
3781 }
3782 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3783 trace_xhci_setup_device_slot(slot_ctx);
3784
3785 if (setup == SETUP_CONTEXT_ONLY) {
3786 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3787 SLOT_STATE_DEFAULT) {
3788 xhci_dbg(xhci, "Slot already in default state\n");
3789 goto out;
3790 }
3791 }
3792
3793 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
3794 if (!command) {
3795 ret = -ENOMEM;
3796 goto out;
3797 }
3798
3799 command->in_ctx = virt_dev->in_ctx;
3800
3801 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3802 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3803 if (!ctrl_ctx) {
3804 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3805 __func__);
3806 ret = -EINVAL;
3807 goto out;
3808 }
3809 /*
3810 * If this is the first Set Address since device plug-in or
3811 * virt_device realloaction after a resume with an xHCI power loss,
3812 * then set up the slot context.
3813 */
3814 if (!slot_ctx->dev_info)
3815 xhci_setup_addressable_virt_dev(xhci, udev);
3816 /* Otherwise, update the control endpoint ring enqueue pointer. */
3817 else
3818 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3819 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3820 ctrl_ctx->drop_flags = 0;
3821
3822 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3823 le32_to_cpu(slot_ctx->dev_info) >> 27);
3824
3825 spin_lock_irqsave(&xhci->lock, flags);
3826 trace_xhci_setup_device(virt_dev);
3827 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3828 udev->slot_id, setup);
3829 if (ret) {
3830 spin_unlock_irqrestore(&xhci->lock, flags);
3831 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3832 "FIXME: allocate a command ring segment");
3833 goto out;
3834 }
3835 xhci_ring_cmd_db(xhci);
3836 spin_unlock_irqrestore(&xhci->lock, flags);
3837
3838 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3839 wait_for_completion(command->completion);
3840
3841 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3842 * the SetAddress() "recovery interval" required by USB and aborting the
3843 * command on a timeout.
3844 */
3845 switch (command->status) {
3846 case COMP_COMMAND_ABORTED:
3847 case COMP_COMMAND_RING_STOPPED:
3848 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3849 ret = -ETIME;
3850 break;
3851 case COMP_CONTEXT_STATE_ERROR:
3852 case COMP_SLOT_NOT_ENABLED_ERROR:
3853 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3854 act, udev->slot_id);
3855 ret = -EINVAL;
3856 break;
3857 case COMP_USB_TRANSACTION_ERROR:
3858 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3859
3860 mutex_unlock(&xhci->mutex);
3861 ret = xhci_disable_slot(xhci, udev->slot_id);
3862 if (!ret)
3863 xhci_alloc_dev(hcd, udev);
3864 kfree(command->completion);
3865 kfree(command);
3866 return -EPROTO;
3867 case COMP_INCOMPATIBLE_DEVICE_ERROR:
3868 dev_warn(&udev->dev,
3869 "ERROR: Incompatible device for setup %s command\n", act);
3870 ret = -ENODEV;
3871 break;
3872 case COMP_SUCCESS:
3873 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3874 "Successful setup %s command", act);
3875 break;
3876 default:
3877 xhci_err(xhci,
3878 "ERROR: unexpected setup %s command completion code 0x%x.\n",
3879 act, command->status);
3880 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3881 ret = -EINVAL;
3882 break;
3883 }
3884 if (ret)
3885 goto out;
3886 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3887 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3888 "Op regs DCBAA ptr = %#016llx", temp_64);
3889 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3890 "Slot ID %d dcbaa entry @%p = %#016llx",
3891 udev->slot_id,
3892 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3893 (unsigned long long)
3894 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3895 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3896 "Output Context DMA address = %#08llx",
3897 (unsigned long long)virt_dev->out_ctx->dma);
3898 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3899 le32_to_cpu(slot_ctx->dev_info) >> 27);
3900 /*
3901 * USB core uses address 1 for the roothubs, so we add one to the
3902 * address given back to us by the HC.
3903 */
3904 trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3905 le32_to_cpu(slot_ctx->dev_info) >> 27);
3906 /* Zero the input context control for later use */
3907 ctrl_ctx->add_flags = 0;
3908 ctrl_ctx->drop_flags = 0;
3909
3910 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3911 "Internal device address = %d",
3912 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3913 out:
3914 mutex_unlock(&xhci->mutex);
3915 if (command) {
3916 kfree(command->completion);
3917 kfree(command);
3918 }
3919 return ret;
3920 }
3921
3922 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3923 {
3924 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3925 }
3926
3927 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3928 {
3929 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3930 }
3931
3932 /*
3933 * Transfer the port index into real index in the HW port status
3934 * registers. Caculate offset between the port's PORTSC register
3935 * and port status base. Divide the number of per port register
3936 * to get the real index. The raw port number bases 1.
3937 */
3938 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3939 {
3940 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3941 __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3942 __le32 __iomem *addr;
3943 int raw_port;
3944
3945 if (hcd->speed < HCD_USB3)
3946 addr = xhci->usb2_ports[port1 - 1];
3947 else
3948 addr = xhci->usb3_ports[port1 - 1];
3949
3950 raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3951 return raw_port;
3952 }
3953
3954 /*
3955 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3956 * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
3957 */
3958 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3959 struct usb_device *udev, u16 max_exit_latency)
3960 {
3961 struct xhci_virt_device *virt_dev;
3962 struct xhci_command *command;
3963 struct xhci_input_control_ctx *ctrl_ctx;
3964 struct xhci_slot_ctx *slot_ctx;
3965 unsigned long flags;
3966 int ret;
3967
3968 spin_lock_irqsave(&xhci->lock, flags);
3969
3970 virt_dev = xhci->devs[udev->slot_id];
3971
3972 /*
3973 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
3974 * xHC was re-initialized. Exit latency will be set later after
3975 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
3976 */
3977
3978 if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
3979 spin_unlock_irqrestore(&xhci->lock, flags);
3980 return 0;
3981 }
3982
3983 /* Attempt to issue an Evaluate Context command to change the MEL. */
3984 command = xhci->lpm_command;
3985 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3986 if (!ctrl_ctx) {
3987 spin_unlock_irqrestore(&xhci->lock, flags);
3988 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3989 __func__);
3990 return -ENOMEM;
3991 }
3992
3993 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
3994 spin_unlock_irqrestore(&xhci->lock, flags);
3995
3996 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3997 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
3998 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
3999 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4000 slot_ctx->dev_state = 0;
4001
4002 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4003 "Set up evaluate context for LPM MEL change.");
4004
4005 /* Issue and wait for the evaluate context command. */
4006 ret = xhci_configure_endpoint(xhci, udev, command,
4007 true, true);
4008
4009 if (!ret) {
4010 spin_lock_irqsave(&xhci->lock, flags);
4011 virt_dev->current_mel = max_exit_latency;
4012 spin_unlock_irqrestore(&xhci->lock, flags);
4013 }
4014 return ret;
4015 }
4016
4017 #ifdef CONFIG_PM
4018
4019 /* BESL to HIRD Encoding array for USB2 LPM */
4020 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4021 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4022
4023 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4024 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4025 struct usb_device *udev)
4026 {
4027 int u2del, besl, besl_host;
4028 int besl_device = 0;
4029 u32 field;
4030
4031 u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4032 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4033
4034 if (field & USB_BESL_SUPPORT) {
4035 for (besl_host = 0; besl_host < 16; besl_host++) {
4036 if (xhci_besl_encoding[besl_host] >= u2del)
4037 break;
4038 }
4039 /* Use baseline BESL value as default */
4040 if (field & USB_BESL_BASELINE_VALID)
4041 besl_device = USB_GET_BESL_BASELINE(field);
4042 else if (field & USB_BESL_DEEP_VALID)
4043 besl_device = USB_GET_BESL_DEEP(field);
4044 } else {
4045 if (u2del <= 50)
4046 besl_host = 0;
4047 else
4048 besl_host = (u2del - 51) / 75 + 1;
4049 }
4050
4051 besl = besl_host + besl_device;
4052 if (besl > 15)
4053 besl = 15;
4054
4055 return besl;
4056 }
4057
4058 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4059 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4060 {
4061 u32 field;
4062 int l1;
4063 int besld = 0;
4064 int hirdm = 0;
4065
4066 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4067
4068 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4069 l1 = udev->l1_params.timeout / 256;
4070
4071 /* device has preferred BESLD */
4072 if (field & USB_BESL_DEEP_VALID) {
4073 besld = USB_GET_BESL_DEEP(field);
4074 hirdm = 1;
4075 }
4076
4077 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4078 }
4079
4080 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4081 struct usb_device *udev, int enable)
4082 {
4083 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4084 __le32 __iomem **port_array;
4085 __le32 __iomem *pm_addr, *hlpm_addr;
4086 u32 pm_val, hlpm_val, field;
4087 unsigned int port_num;
4088 unsigned long flags;
4089 int hird, exit_latency;
4090 int ret;
4091
4092 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4093 !udev->lpm_capable)
4094 return -EPERM;
4095
4096 if (!udev->parent || udev->parent->parent ||
4097 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4098 return -EPERM;
4099
4100 if (udev->usb2_hw_lpm_capable != 1)
4101 return -EPERM;
4102
4103 spin_lock_irqsave(&xhci->lock, flags);
4104
4105 port_array = xhci->usb2_ports;
4106 port_num = udev->portnum - 1;
4107 pm_addr = port_array[port_num] + PORTPMSC;
4108 pm_val = readl(pm_addr);
4109 hlpm_addr = port_array[port_num] + PORTHLPMC;
4110 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4111
4112 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4113 enable ? "enable" : "disable", port_num + 1);
4114
4115 if (enable && !(xhci->quirks & XHCI_HW_LPM_DISABLE)) {
4116 /* Host supports BESL timeout instead of HIRD */
4117 if (udev->usb2_hw_lpm_besl_capable) {
4118 /* if device doesn't have a preferred BESL value use a
4119 * default one which works with mixed HIRD and BESL
4120 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4121 */
4122 if ((field & USB_BESL_SUPPORT) &&
4123 (field & USB_BESL_BASELINE_VALID))
4124 hird = USB_GET_BESL_BASELINE(field);
4125 else
4126 hird = udev->l1_params.besl;
4127
4128 exit_latency = xhci_besl_encoding[hird];
4129 spin_unlock_irqrestore(&xhci->lock, flags);
4130
4131 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4132 * input context for link powermanagement evaluate
4133 * context commands. It is protected by hcd->bandwidth
4134 * mutex and is shared by all devices. We need to set
4135 * the max ext latency in USB 2 BESL LPM as well, so
4136 * use the same mutex and xhci_change_max_exit_latency()
4137 */
4138 mutex_lock(hcd->bandwidth_mutex);
4139 ret = xhci_change_max_exit_latency(xhci, udev,
4140 exit_latency);
4141 mutex_unlock(hcd->bandwidth_mutex);
4142
4143 if (ret < 0)
4144 return ret;
4145 spin_lock_irqsave(&xhci->lock, flags);
4146
4147 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4148 writel(hlpm_val, hlpm_addr);
4149 /* flush write */
4150 readl(hlpm_addr);
4151 } else {
4152 hird = xhci_calculate_hird_besl(xhci, udev);
4153 }
4154
4155 pm_val &= ~PORT_HIRD_MASK;
4156 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4157 writel(pm_val, pm_addr);
4158 pm_val = readl(pm_addr);
4159 pm_val |= PORT_HLE;
4160 writel(pm_val, pm_addr);
4161 /* flush write */
4162 readl(pm_addr);
4163 } else {
4164 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4165 writel(pm_val, pm_addr);
4166 /* flush write */
4167 readl(pm_addr);
4168 if (udev->usb2_hw_lpm_besl_capable) {
4169 spin_unlock_irqrestore(&xhci->lock, flags);
4170 mutex_lock(hcd->bandwidth_mutex);
4171 xhci_change_max_exit_latency(xhci, udev, 0);
4172 mutex_unlock(hcd->bandwidth_mutex);
4173 return 0;
4174 }
4175 }
4176
4177 spin_unlock_irqrestore(&xhci->lock, flags);
4178 return 0;
4179 }
4180
4181 /* check if a usb2 port supports a given extened capability protocol
4182 * only USB2 ports extended protocol capability values are cached.
4183 * Return 1 if capability is supported
4184 */
4185 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4186 unsigned capability)
4187 {
4188 u32 port_offset, port_count;
4189 int i;
4190
4191 for (i = 0; i < xhci->num_ext_caps; i++) {
4192 if (xhci->ext_caps[i] & capability) {
4193 /* port offsets starts at 1 */
4194 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4195 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4196 if (port >= port_offset &&
4197 port < port_offset + port_count)
4198 return 1;
4199 }
4200 }
4201 return 0;
4202 }
4203
4204 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4205 {
4206 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4207 int portnum = udev->portnum - 1;
4208
4209 if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4210 !udev->lpm_capable)
4211 return 0;
4212
4213 /* we only support lpm for non-hub device connected to root hub yet */
4214 if (!udev->parent || udev->parent->parent ||
4215 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4216 return 0;
4217
4218 if (xhci->hw_lpm_support == 1 &&
4219 xhci_check_usb2_port_capability(
4220 xhci, portnum, XHCI_HLC)) {
4221 udev->usb2_hw_lpm_capable = 1;
4222 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4223 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4224 if (xhci_check_usb2_port_capability(xhci, portnum,
4225 XHCI_BLC))
4226 udev->usb2_hw_lpm_besl_capable = 1;
4227 }
4228
4229 return 0;
4230 }
4231
4232 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4233
4234 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4235 static unsigned long long xhci_service_interval_to_ns(
4236 struct usb_endpoint_descriptor *desc)
4237 {
4238 return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4239 }
4240
4241 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4242 enum usb3_link_state state)
4243 {
4244 unsigned long long sel;
4245 unsigned long long pel;
4246 unsigned int max_sel_pel;
4247 char *state_name;
4248
4249 switch (state) {
4250 case USB3_LPM_U1:
4251 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4252 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4253 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4254 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4255 state_name = "U1";
4256 break;
4257 case USB3_LPM_U2:
4258 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4259 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4260 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4261 state_name = "U2";
4262 break;
4263 default:
4264 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4265 __func__);
4266 return USB3_LPM_DISABLED;
4267 }
4268
4269 if (sel <= max_sel_pel && pel <= max_sel_pel)
4270 return USB3_LPM_DEVICE_INITIATED;
4271
4272 if (sel > max_sel_pel)
4273 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4274 "due to long SEL %llu ms\n",
4275 state_name, sel);
4276 else
4277 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4278 "due to long PEL %llu ms\n",
4279 state_name, pel);
4280 return USB3_LPM_DISABLED;
4281 }
4282
4283 /* The U1 timeout should be the maximum of the following values:
4284 * - For control endpoints, U1 system exit latency (SEL) * 3
4285 * - For bulk endpoints, U1 SEL * 5
4286 * - For interrupt endpoints:
4287 * - Notification EPs, U1 SEL * 3
4288 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4289 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4290 */
4291 static unsigned long long xhci_calculate_intel_u1_timeout(
4292 struct usb_device *udev,
4293 struct usb_endpoint_descriptor *desc)
4294 {
4295 unsigned long long timeout_ns;
4296 int ep_type;
4297 int intr_type;
4298
4299 ep_type = usb_endpoint_type(desc);
4300 switch (ep_type) {
4301 case USB_ENDPOINT_XFER_CONTROL:
4302 timeout_ns = udev->u1_params.sel * 3;
4303 break;
4304 case USB_ENDPOINT_XFER_BULK:
4305 timeout_ns = udev->u1_params.sel * 5;
4306 break;
4307 case USB_ENDPOINT_XFER_INT:
4308 intr_type = usb_endpoint_interrupt_type(desc);
4309 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4310 timeout_ns = udev->u1_params.sel * 3;
4311 break;
4312 }
4313 /* Otherwise the calculation is the same as isoc eps */
4314 /* fall through */
4315 case USB_ENDPOINT_XFER_ISOC:
4316 timeout_ns = xhci_service_interval_to_ns(desc);
4317 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4318 if (timeout_ns < udev->u1_params.sel * 2)
4319 timeout_ns = udev->u1_params.sel * 2;
4320 break;
4321 default:
4322 return 0;
4323 }
4324
4325 return timeout_ns;
4326 }
4327
4328 /* Returns the hub-encoded U1 timeout value. */
4329 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4330 struct usb_device *udev,
4331 struct usb_endpoint_descriptor *desc)
4332 {
4333 unsigned long long timeout_ns;
4334
4335 if (xhci->quirks & XHCI_INTEL_HOST)
4336 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4337 else
4338 timeout_ns = udev->u1_params.sel;
4339
4340 /* The U1 timeout is encoded in 1us intervals.
4341 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4342 */
4343 if (timeout_ns == USB3_LPM_DISABLED)
4344 timeout_ns = 1;
4345 else
4346 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4347
4348 /* If the necessary timeout value is bigger than what we can set in the
4349 * USB 3.0 hub, we have to disable hub-initiated U1.
4350 */
4351 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4352 return timeout_ns;
4353 dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4354 "due to long timeout %llu ms\n", timeout_ns);
4355 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4356 }
4357
4358 /* The U2 timeout should be the maximum of:
4359 * - 10 ms (to avoid the bandwidth impact on the scheduler)
4360 * - largest bInterval of any active periodic endpoint (to avoid going
4361 * into lower power link states between intervals).
4362 * - the U2 Exit Latency of the device
4363 */
4364 static unsigned long long xhci_calculate_intel_u2_timeout(
4365 struct usb_device *udev,
4366 struct usb_endpoint_descriptor *desc)
4367 {
4368 unsigned long long timeout_ns;
4369 unsigned long long u2_del_ns;
4370
4371 timeout_ns = 10 * 1000 * 1000;
4372
4373 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4374 (xhci_service_interval_to_ns(desc) > timeout_ns))
4375 timeout_ns = xhci_service_interval_to_ns(desc);
4376
4377 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4378 if (u2_del_ns > timeout_ns)
4379 timeout_ns = u2_del_ns;
4380
4381 return timeout_ns;
4382 }
4383
4384 /* Returns the hub-encoded U2 timeout value. */
4385 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4386 struct usb_device *udev,
4387 struct usb_endpoint_descriptor *desc)
4388 {
4389 unsigned long long timeout_ns;
4390
4391 if (xhci->quirks & XHCI_INTEL_HOST)
4392 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4393 else
4394 timeout_ns = udev->u2_params.sel;
4395
4396 /* The U2 timeout is encoded in 256us intervals */
4397 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4398 /* If the necessary timeout value is bigger than what we can set in the
4399 * USB 3.0 hub, we have to disable hub-initiated U2.
4400 */
4401 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4402 return timeout_ns;
4403 dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4404 "due to long timeout %llu ms\n", timeout_ns);
4405 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4406 }
4407
4408 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4409 struct usb_device *udev,
4410 struct usb_endpoint_descriptor *desc,
4411 enum usb3_link_state state,
4412 u16 *timeout)
4413 {
4414 if (state == USB3_LPM_U1)
4415 return xhci_calculate_u1_timeout(xhci, udev, desc);
4416 else if (state == USB3_LPM_U2)
4417 return xhci_calculate_u2_timeout(xhci, udev, desc);
4418
4419 return USB3_LPM_DISABLED;
4420 }
4421
4422 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4423 struct usb_device *udev,
4424 struct usb_endpoint_descriptor *desc,
4425 enum usb3_link_state state,
4426 u16 *timeout)
4427 {
4428 u16 alt_timeout;
4429
4430 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4431 desc, state, timeout);
4432
4433 /* If we found we can't enable hub-initiated LPM, or
4434 * the U1 or U2 exit latency was too high to allow
4435 * device-initiated LPM as well, just stop searching.
4436 */
4437 if (alt_timeout == USB3_LPM_DISABLED ||
4438 alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4439 *timeout = alt_timeout;
4440 return -E2BIG;
4441 }
4442 if (alt_timeout > *timeout)
4443 *timeout = alt_timeout;
4444 return 0;
4445 }
4446
4447 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4448 struct usb_device *udev,
4449 struct usb_host_interface *alt,
4450 enum usb3_link_state state,
4451 u16 *timeout)
4452 {
4453 int j;
4454
4455 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4456 if (xhci_update_timeout_for_endpoint(xhci, udev,
4457 &alt->endpoint[j].desc, state, timeout))
4458 return -E2BIG;
4459 continue;
4460 }
4461 return 0;
4462 }
4463
4464 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4465 enum usb3_link_state state)
4466 {
4467 struct usb_device *parent;
4468 unsigned int num_hubs;
4469
4470 if (state == USB3_LPM_U2)
4471 return 0;
4472
4473 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4474 for (parent = udev->parent, num_hubs = 0; parent->parent;
4475 parent = parent->parent)
4476 num_hubs++;
4477
4478 if (num_hubs < 2)
4479 return 0;
4480
4481 dev_dbg(&udev->dev, "Disabling U1 link state for device"
4482 " below second-tier hub.\n");
4483 dev_dbg(&udev->dev, "Plug device into first-tier hub "
4484 "to decrease power consumption.\n");
4485 return -E2BIG;
4486 }
4487
4488 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4489 struct usb_device *udev,
4490 enum usb3_link_state state)
4491 {
4492 if (xhci->quirks & XHCI_INTEL_HOST)
4493 return xhci_check_intel_tier_policy(udev, state);
4494 else
4495 return 0;
4496 }
4497
4498 /* Returns the U1 or U2 timeout that should be enabled.
4499 * If the tier check or timeout setting functions return with a non-zero exit
4500 * code, that means the timeout value has been finalized and we shouldn't look
4501 * at any more endpoints.
4502 */
4503 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4504 struct usb_device *udev, enum usb3_link_state state)
4505 {
4506 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4507 struct usb_host_config *config;
4508 char *state_name;
4509 int i;
4510 u16 timeout = USB3_LPM_DISABLED;
4511
4512 if (state == USB3_LPM_U1)
4513 state_name = "U1";
4514 else if (state == USB3_LPM_U2)
4515 state_name = "U2";
4516 else {
4517 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4518 state);
4519 return timeout;
4520 }
4521
4522 if (xhci_check_tier_policy(xhci, udev, state) < 0)
4523 return timeout;
4524
4525 /* Gather some information about the currently installed configuration
4526 * and alternate interface settings.
4527 */
4528 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4529 state, &timeout))
4530 return timeout;
4531
4532 config = udev->actconfig;
4533 if (!config)
4534 return timeout;
4535
4536 for (i = 0; i < config->desc.bNumInterfaces; i++) {
4537 struct usb_driver *driver;
4538 struct usb_interface *intf = config->interface[i];
4539
4540 if (!intf)
4541 continue;
4542
4543 /* Check if any currently bound drivers want hub-initiated LPM
4544 * disabled.
4545 */
4546 if (intf->dev.driver) {
4547 driver = to_usb_driver(intf->dev.driver);
4548 if (driver && driver->disable_hub_initiated_lpm) {
4549 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4550 "at request of driver %s\n",
4551 state_name, driver->name);
4552 return xhci_get_timeout_no_hub_lpm(udev, state);
4553 }
4554 }
4555
4556 /* Not sure how this could happen... */
4557 if (!intf->cur_altsetting)
4558 continue;
4559
4560 if (xhci_update_timeout_for_interface(xhci, udev,
4561 intf->cur_altsetting,
4562 state, &timeout))
4563 return timeout;
4564 }
4565 return timeout;
4566 }
4567
4568 static int calculate_max_exit_latency(struct usb_device *udev,
4569 enum usb3_link_state state_changed,
4570 u16 hub_encoded_timeout)
4571 {
4572 unsigned long long u1_mel_us = 0;
4573 unsigned long long u2_mel_us = 0;
4574 unsigned long long mel_us = 0;
4575 bool disabling_u1;
4576 bool disabling_u2;
4577 bool enabling_u1;
4578 bool enabling_u2;
4579
4580 disabling_u1 = (state_changed == USB3_LPM_U1 &&
4581 hub_encoded_timeout == USB3_LPM_DISABLED);
4582 disabling_u2 = (state_changed == USB3_LPM_U2 &&
4583 hub_encoded_timeout == USB3_LPM_DISABLED);
4584
4585 enabling_u1 = (state_changed == USB3_LPM_U1 &&
4586 hub_encoded_timeout != USB3_LPM_DISABLED);
4587 enabling_u2 = (state_changed == USB3_LPM_U2 &&
4588 hub_encoded_timeout != USB3_LPM_DISABLED);
4589
4590 /* If U1 was already enabled and we're not disabling it,
4591 * or we're going to enable U1, account for the U1 max exit latency.
4592 */
4593 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4594 enabling_u1)
4595 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4596 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4597 enabling_u2)
4598 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4599
4600 if (u1_mel_us > u2_mel_us)
4601 mel_us = u1_mel_us;
4602 else
4603 mel_us = u2_mel_us;
4604 /* xHCI host controller max exit latency field is only 16 bits wide. */
4605 if (mel_us > MAX_EXIT) {
4606 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4607 "is too big.\n", mel_us);
4608 return -E2BIG;
4609 }
4610 return mel_us;
4611 }
4612
4613 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4614 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4615 struct usb_device *udev, enum usb3_link_state state)
4616 {
4617 struct xhci_hcd *xhci;
4618 u16 hub_encoded_timeout;
4619 int mel;
4620 int ret;
4621
4622 xhci = hcd_to_xhci(hcd);
4623 /* The LPM timeout values are pretty host-controller specific, so don't
4624 * enable hub-initiated timeouts unless the vendor has provided
4625 * information about their timeout algorithm.
4626 */
4627 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4628 !xhci->devs[udev->slot_id])
4629 return USB3_LPM_DISABLED;
4630
4631 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4632 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4633 if (mel < 0) {
4634 /* Max Exit Latency is too big, disable LPM. */
4635 hub_encoded_timeout = USB3_LPM_DISABLED;
4636 mel = 0;
4637 }
4638
4639 ret = xhci_change_max_exit_latency(xhci, udev, mel);
4640 if (ret)
4641 return ret;
4642 return hub_encoded_timeout;
4643 }
4644
4645 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4646 struct usb_device *udev, enum usb3_link_state state)
4647 {
4648 struct xhci_hcd *xhci;
4649 u16 mel;
4650
4651 xhci = hcd_to_xhci(hcd);
4652 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4653 !xhci->devs[udev->slot_id])
4654 return 0;
4655
4656 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4657 return xhci_change_max_exit_latency(xhci, udev, mel);
4658 }
4659 #else /* CONFIG_PM */
4660
4661 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4662 struct usb_device *udev, int enable)
4663 {
4664 return 0;
4665 }
4666
4667 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4668 {
4669 return 0;
4670 }
4671
4672 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4673 struct usb_device *udev, enum usb3_link_state state)
4674 {
4675 return USB3_LPM_DISABLED;
4676 }
4677
4678 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4679 struct usb_device *udev, enum usb3_link_state state)
4680 {
4681 return 0;
4682 }
4683 #endif /* CONFIG_PM */
4684
4685 /*-------------------------------------------------------------------------*/
4686
4687 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4688 * internal data structures for the device.
4689 */
4690 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4691 struct usb_tt *tt, gfp_t mem_flags)
4692 {
4693 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4694 struct xhci_virt_device *vdev;
4695 struct xhci_command *config_cmd;
4696 struct xhci_input_control_ctx *ctrl_ctx;
4697 struct xhci_slot_ctx *slot_ctx;
4698 unsigned long flags;
4699 unsigned think_time;
4700 int ret;
4701
4702 /* Ignore root hubs */
4703 if (!hdev->parent)
4704 return 0;
4705
4706 vdev = xhci->devs[hdev->slot_id];
4707 if (!vdev) {
4708 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4709 return -EINVAL;
4710 }
4711
4712 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4713 if (!config_cmd)
4714 return -ENOMEM;
4715
4716 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4717 if (!ctrl_ctx) {
4718 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4719 __func__);
4720 xhci_free_command(xhci, config_cmd);
4721 return -ENOMEM;
4722 }
4723
4724 spin_lock_irqsave(&xhci->lock, flags);
4725 if (hdev->speed == USB_SPEED_HIGH &&
4726 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4727 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4728 xhci_free_command(xhci, config_cmd);
4729 spin_unlock_irqrestore(&xhci->lock, flags);
4730 return -ENOMEM;
4731 }
4732
4733 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4734 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4735 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4736 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4737 /*
4738 * refer to section 6.2.2: MTT should be 0 for full speed hub,
4739 * but it may be already set to 1 when setup an xHCI virtual
4740 * device, so clear it anyway.
4741 */
4742 if (tt->multi)
4743 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4744 else if (hdev->speed == USB_SPEED_FULL)
4745 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4746
4747 if (xhci->hci_version > 0x95) {
4748 xhci_dbg(xhci, "xHCI version %x needs hub "
4749 "TT think time and number of ports\n",
4750 (unsigned int) xhci->hci_version);
4751 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4752 /* Set TT think time - convert from ns to FS bit times.
4753 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4754 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4755 *
4756 * xHCI 1.0: this field shall be 0 if the device is not a
4757 * High-spped hub.
4758 */
4759 think_time = tt->think_time;
4760 if (think_time != 0)
4761 think_time = (think_time / 666) - 1;
4762 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4763 slot_ctx->tt_info |=
4764 cpu_to_le32(TT_THINK_TIME(think_time));
4765 } else {
4766 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4767 "TT think time or number of ports\n",
4768 (unsigned int) xhci->hci_version);
4769 }
4770 slot_ctx->dev_state = 0;
4771 spin_unlock_irqrestore(&xhci->lock, flags);
4772
4773 xhci_dbg(xhci, "Set up %s for hub device.\n",
4774 (xhci->hci_version > 0x95) ?
4775 "configure endpoint" : "evaluate context");
4776
4777 /* Issue and wait for the configure endpoint or
4778 * evaluate context command.
4779 */
4780 if (xhci->hci_version > 0x95)
4781 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4782 false, false);
4783 else
4784 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4785 true, false);
4786
4787 xhci_free_command(xhci, config_cmd);
4788 return ret;
4789 }
4790
4791 static int xhci_get_frame(struct usb_hcd *hcd)
4792 {
4793 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4794 /* EHCI mods by the periodic size. Why? */
4795 return readl(&xhci->run_regs->microframe_index) >> 3;
4796 }
4797
4798 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4799 {
4800 struct xhci_hcd *xhci;
4801 /*
4802 * TODO: Check with DWC3 clients for sysdev according to
4803 * quirks
4804 */
4805 struct device *dev = hcd->self.sysdev;
4806 unsigned int minor_rev;
4807 int retval;
4808
4809 /* Accept arbitrarily long scatter-gather lists */
4810 hcd->self.sg_tablesize = ~0;
4811
4812 /* support to build packet from discontinuous buffers */
4813 hcd->self.no_sg_constraint = 1;
4814
4815 /* XHCI controllers don't stop the ep queue on short packets :| */
4816 hcd->self.no_stop_on_short = 1;
4817
4818 xhci = hcd_to_xhci(hcd);
4819
4820 if (usb_hcd_is_primary_hcd(hcd)) {
4821 xhci->main_hcd = hcd;
4822 /* Mark the first roothub as being USB 2.0.
4823 * The xHCI driver will register the USB 3.0 roothub.
4824 */
4825 hcd->speed = HCD_USB2;
4826 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4827 /*
4828 * USB 2.0 roothub under xHCI has an integrated TT,
4829 * (rate matching hub) as opposed to having an OHCI/UHCI
4830 * companion controller.
4831 */
4832 hcd->has_tt = 1;
4833 } else {
4834 /*
4835 * Some 3.1 hosts return sbrn 0x30, use xhci supported protocol
4836 * minor revision instead of sbrn
4837 */
4838 minor_rev = xhci->usb3_rhub.min_rev;
4839 if (minor_rev) {
4840 hcd->speed = HCD_USB31;
4841 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
4842 }
4843 xhci_info(xhci, "Host supports USB 3.%x %s SuperSpeed\n",
4844 minor_rev,
4845 minor_rev ? "Enhanced" : "");
4846
4847 /* xHCI private pointer was set in xhci_pci_probe for the second
4848 * registered roothub.
4849 */
4850 return 0;
4851 }
4852
4853 mutex_init(&xhci->mutex);
4854 xhci->cap_regs = hcd->regs;
4855 xhci->op_regs = hcd->regs +
4856 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4857 xhci->run_regs = hcd->regs +
4858 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4859 /* Cache read-only capability registers */
4860 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4861 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4862 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4863 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4864 xhci->hci_version = HC_VERSION(xhci->hcc_params);
4865 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4866 if (xhci->hci_version > 0x100)
4867 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
4868 xhci_print_registers(xhci);
4869
4870 xhci->quirks |= quirks;
4871
4872 get_quirks(dev, xhci);
4873
4874 /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4875 * success event after a short transfer. This quirk will ignore such
4876 * spurious event.
4877 */
4878 if (xhci->hci_version > 0x96)
4879 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4880
4881 /* Make sure the HC is halted. */
4882 retval = xhci_halt(xhci);
4883 if (retval)
4884 return retval;
4885
4886 xhci_dbg(xhci, "Resetting HCD\n");
4887 /* Reset the internal HC memory state and registers. */
4888 retval = xhci_reset(xhci);
4889 if (retval)
4890 return retval;
4891 xhci_dbg(xhci, "Reset complete\n");
4892
4893 /*
4894 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
4895 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
4896 * address memory pointers actually. So, this driver clears the AC64
4897 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
4898 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
4899 */
4900 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
4901 xhci->hcc_params &= ~BIT(0);
4902
4903 /* Set dma_mask and coherent_dma_mask to 64-bits,
4904 * if xHC supports 64-bit addressing */
4905 if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4906 !dma_set_mask(dev, DMA_BIT_MASK(64))) {
4907 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4908 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4909 } else {
4910 /*
4911 * This is to avoid error in cases where a 32-bit USB
4912 * controller is used on a 64-bit capable system.
4913 */
4914 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
4915 if (retval)
4916 return retval;
4917 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
4918 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
4919 }
4920
4921 xhci_dbg(xhci, "Calling HCD init\n");
4922 /* Initialize HCD and host controller data structures. */
4923 retval = xhci_init(hcd);
4924 if (retval)
4925 return retval;
4926 xhci_dbg(xhci, "Called HCD init\n");
4927
4928 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
4929 xhci->hcc_params, xhci->hci_version, xhci->quirks);
4930
4931 return 0;
4932 }
4933 EXPORT_SYMBOL_GPL(xhci_gen_setup);
4934
4935 static const struct hc_driver xhci_hc_driver = {
4936 .description = "xhci-hcd",
4937 .product_desc = "xHCI Host Controller",
4938 .hcd_priv_size = sizeof(struct xhci_hcd),
4939
4940 /*
4941 * generic hardware linkage
4942 */
4943 .irq = xhci_irq,
4944 .flags = HCD_MEMORY | HCD_USB3 | HCD_SHARED,
4945
4946 /*
4947 * basic lifecycle operations
4948 */
4949 .reset = NULL, /* set in xhci_init_driver() */
4950 .start = xhci_run,
4951 .stop = xhci_stop,
4952 .shutdown = xhci_shutdown,
4953
4954 /*
4955 * managing i/o requests and associated device resources
4956 */
4957 .urb_enqueue = xhci_urb_enqueue,
4958 .urb_dequeue = xhci_urb_dequeue,
4959 .alloc_dev = xhci_alloc_dev,
4960 .free_dev = xhci_free_dev,
4961 .alloc_streams = xhci_alloc_streams,
4962 .free_streams = xhci_free_streams,
4963 .add_endpoint = xhci_add_endpoint,
4964 .drop_endpoint = xhci_drop_endpoint,
4965 .endpoint_reset = xhci_endpoint_reset,
4966 .check_bandwidth = xhci_check_bandwidth,
4967 .reset_bandwidth = xhci_reset_bandwidth,
4968 .address_device = xhci_address_device,
4969 .enable_device = xhci_enable_device,
4970 .update_hub_device = xhci_update_hub_device,
4971 .reset_device = xhci_discover_or_reset_device,
4972
4973 /*
4974 * scheduling support
4975 */
4976 .get_frame_number = xhci_get_frame,
4977
4978 /*
4979 * root hub support
4980 */
4981 .hub_control = xhci_hub_control,
4982 .hub_status_data = xhci_hub_status_data,
4983 .bus_suspend = xhci_bus_suspend,
4984 .bus_resume = xhci_bus_resume,
4985
4986 /*
4987 * call back when device connected and addressed
4988 */
4989 .update_device = xhci_update_device,
4990 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm,
4991 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout,
4992 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout,
4993 .find_raw_port_number = xhci_find_raw_port_number,
4994 };
4995
4996 void xhci_init_driver(struct hc_driver *drv,
4997 const struct xhci_driver_overrides *over)
4998 {
4999 BUG_ON(!over);
5000
5001 /* Copy the generic table to drv then apply the overrides */
5002 *drv = xhci_hc_driver;
5003
5004 if (over) {
5005 drv->hcd_priv_size += over->extra_priv_size;
5006 if (over->reset)
5007 drv->reset = over->reset;
5008 if (over->start)
5009 drv->start = over->start;
5010 }
5011 }
5012 EXPORT_SYMBOL_GPL(xhci_init_driver);
5013
5014 MODULE_DESCRIPTION(DRIVER_DESC);
5015 MODULE_AUTHOR(DRIVER_AUTHOR);
5016 MODULE_LICENSE("GPL");
5017
5018 static int __init xhci_hcd_init(void)
5019 {
5020 /*
5021 * Check the compiler generated sizes of structures that must be laid
5022 * out in specific ways for hardware access.
5023 */
5024 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5025 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5026 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5027 /* xhci_device_control has eight fields, and also
5028 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5029 */
5030 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5031 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5032 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5033 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5034 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5035 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5036 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5037
5038 if (usb_disabled())
5039 return -ENODEV;
5040
5041 xhci_debugfs_create_root();
5042
5043 return 0;
5044 }
5045
5046 /*
5047 * If an init function is provided, an exit function must also be provided
5048 * to allow module unload.
5049 */
5050 static void __exit xhci_hcd_fini(void)
5051 {
5052 xhci_debugfs_remove_root();
5053 }
5054
5055 module_init(xhci_hcd_init);
5056 module_exit(xhci_hcd_fini);