]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/usb/host/xhci.c
Merge tag 'arm-defconfig-5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[mirror_ubuntu-jammy-kernel.git] / drivers / usb / host / xhci.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * xHCI host controller driver
4 *
5 * Copyright (C) 2008 Intel Corp.
6 *
7 * Author: Sarah Sharp
8 * Some code borrowed from the Linux EHCI driver.
9 */
10
11 #include <linux/pci.h>
12 #include <linux/iopoll.h>
13 #include <linux/irq.h>
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/slab.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-mapping.h>
20
21 #include "xhci.h"
22 #include "xhci-trace.h"
23 #include "xhci-debugfs.h"
24 #include "xhci-dbgcap.h"
25
26 #define DRIVER_AUTHOR "Sarah Sharp"
27 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
28
29 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
30
31 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
32 static int link_quirk;
33 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
34 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
35
36 static unsigned long long quirks;
37 module_param(quirks, ullong, S_IRUGO);
38 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
39
40 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
41 {
42 struct xhci_segment *seg = ring->first_seg;
43
44 if (!td || !td->start_seg)
45 return false;
46 do {
47 if (seg == td->start_seg)
48 return true;
49 seg = seg->next;
50 } while (seg && seg != ring->first_seg);
51
52 return false;
53 }
54
55 /*
56 * xhci_handshake - spin reading hc until handshake completes or fails
57 * @ptr: address of hc register to be read
58 * @mask: bits to look at in result of read
59 * @done: value of those bits when handshake succeeds
60 * @usec: timeout in microseconds
61 *
62 * Returns negative errno, or zero on success
63 *
64 * Success happens when the "mask" bits have the specified value (hardware
65 * handshake done). There are two failure modes: "usec" have passed (major
66 * hardware flakeout), or the register reads as all-ones (hardware removed).
67 */
68 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
69 {
70 u32 result;
71 int ret;
72
73 ret = readl_poll_timeout_atomic(ptr, result,
74 (result & mask) == done ||
75 result == U32_MAX,
76 1, usec);
77 if (result == U32_MAX) /* card removed */
78 return -ENODEV;
79
80 return ret;
81 }
82
83 /*
84 * Disable interrupts and begin the xHCI halting process.
85 */
86 void xhci_quiesce(struct xhci_hcd *xhci)
87 {
88 u32 halted;
89 u32 cmd;
90 u32 mask;
91
92 mask = ~(XHCI_IRQS);
93 halted = readl(&xhci->op_regs->status) & STS_HALT;
94 if (!halted)
95 mask &= ~CMD_RUN;
96
97 cmd = readl(&xhci->op_regs->command);
98 cmd &= mask;
99 writel(cmd, &xhci->op_regs->command);
100 }
101
102 /*
103 * Force HC into halt state.
104 *
105 * Disable any IRQs and clear the run/stop bit.
106 * HC will complete any current and actively pipelined transactions, and
107 * should halt within 16 ms of the run/stop bit being cleared.
108 * Read HC Halted bit in the status register to see when the HC is finished.
109 */
110 int xhci_halt(struct xhci_hcd *xhci)
111 {
112 int ret;
113 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
114 xhci_quiesce(xhci);
115
116 ret = xhci_handshake(&xhci->op_regs->status,
117 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
118 if (ret) {
119 xhci_warn(xhci, "Host halt failed, %d\n", ret);
120 return ret;
121 }
122 xhci->xhc_state |= XHCI_STATE_HALTED;
123 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
124 return ret;
125 }
126
127 /*
128 * Set the run bit and wait for the host to be running.
129 */
130 int xhci_start(struct xhci_hcd *xhci)
131 {
132 u32 temp;
133 int ret;
134
135 temp = readl(&xhci->op_regs->command);
136 temp |= (CMD_RUN);
137 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
138 temp);
139 writel(temp, &xhci->op_regs->command);
140
141 /*
142 * Wait for the HCHalted Status bit to be 0 to indicate the host is
143 * running.
144 */
145 ret = xhci_handshake(&xhci->op_regs->status,
146 STS_HALT, 0, XHCI_MAX_HALT_USEC);
147 if (ret == -ETIMEDOUT)
148 xhci_err(xhci, "Host took too long to start, "
149 "waited %u microseconds.\n",
150 XHCI_MAX_HALT_USEC);
151 if (!ret)
152 /* clear state flags. Including dying, halted or removing */
153 xhci->xhc_state = 0;
154
155 return ret;
156 }
157
158 /*
159 * Reset a halted HC.
160 *
161 * This resets pipelines, timers, counters, state machines, etc.
162 * Transactions will be terminated immediately, and operational registers
163 * will be set to their defaults.
164 */
165 int xhci_reset(struct xhci_hcd *xhci)
166 {
167 u32 command;
168 u32 state;
169 int ret;
170
171 state = readl(&xhci->op_regs->status);
172
173 if (state == ~(u32)0) {
174 xhci_warn(xhci, "Host not accessible, reset failed.\n");
175 return -ENODEV;
176 }
177
178 if ((state & STS_HALT) == 0) {
179 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
180 return 0;
181 }
182
183 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
184 command = readl(&xhci->op_regs->command);
185 command |= CMD_RESET;
186 writel(command, &xhci->op_regs->command);
187
188 /* Existing Intel xHCI controllers require a delay of 1 mS,
189 * after setting the CMD_RESET bit, and before accessing any
190 * HC registers. This allows the HC to complete the
191 * reset operation and be ready for HC register access.
192 * Without this delay, the subsequent HC register access,
193 * may result in a system hang very rarely.
194 */
195 if (xhci->quirks & XHCI_INTEL_HOST)
196 udelay(1000);
197
198 ret = xhci_handshake(&xhci->op_regs->command,
199 CMD_RESET, 0, 10 * 1000 * 1000);
200 if (ret)
201 return ret;
202
203 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
204 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
205
206 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
207 "Wait for controller to be ready for doorbell rings");
208 /*
209 * xHCI cannot write to any doorbells or operational registers other
210 * than status until the "Controller Not Ready" flag is cleared.
211 */
212 ret = xhci_handshake(&xhci->op_regs->status,
213 STS_CNR, 0, 10 * 1000 * 1000);
214
215 xhci->usb2_rhub.bus_state.port_c_suspend = 0;
216 xhci->usb2_rhub.bus_state.suspended_ports = 0;
217 xhci->usb2_rhub.bus_state.resuming_ports = 0;
218 xhci->usb3_rhub.bus_state.port_c_suspend = 0;
219 xhci->usb3_rhub.bus_state.suspended_ports = 0;
220 xhci->usb3_rhub.bus_state.resuming_ports = 0;
221
222 return ret;
223 }
224
225 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
226 {
227 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
228 int err, i;
229 u64 val;
230 u32 intrs;
231
232 /*
233 * Some Renesas controllers get into a weird state if they are
234 * reset while programmed with 64bit addresses (they will preserve
235 * the top half of the address in internal, non visible
236 * registers). You end up with half the address coming from the
237 * kernel, and the other half coming from the firmware. Also,
238 * changing the programming leads to extra accesses even if the
239 * controller is supposed to be halted. The controller ends up with
240 * a fatal fault, and is then ripe for being properly reset.
241 *
242 * Special care is taken to only apply this if the device is behind
243 * an iommu. Doing anything when there is no iommu is definitely
244 * unsafe...
245 */
246 if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev))
247 return;
248
249 xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
250
251 /* Clear HSEIE so that faults do not get signaled */
252 val = readl(&xhci->op_regs->command);
253 val &= ~CMD_HSEIE;
254 writel(val, &xhci->op_regs->command);
255
256 /* Clear HSE (aka FATAL) */
257 val = readl(&xhci->op_regs->status);
258 val |= STS_FATAL;
259 writel(val, &xhci->op_regs->status);
260
261 /* Now zero the registers, and brace for impact */
262 val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
263 if (upper_32_bits(val))
264 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
265 val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
266 if (upper_32_bits(val))
267 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
268
269 intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
270 ARRAY_SIZE(xhci->run_regs->ir_set));
271
272 for (i = 0; i < intrs; i++) {
273 struct xhci_intr_reg __iomem *ir;
274
275 ir = &xhci->run_regs->ir_set[i];
276 val = xhci_read_64(xhci, &ir->erst_base);
277 if (upper_32_bits(val))
278 xhci_write_64(xhci, 0, &ir->erst_base);
279 val= xhci_read_64(xhci, &ir->erst_dequeue);
280 if (upper_32_bits(val))
281 xhci_write_64(xhci, 0, &ir->erst_dequeue);
282 }
283
284 /* Wait for the fault to appear. It will be cleared on reset */
285 err = xhci_handshake(&xhci->op_regs->status,
286 STS_FATAL, STS_FATAL,
287 XHCI_MAX_HALT_USEC);
288 if (!err)
289 xhci_info(xhci, "Fault detected\n");
290 }
291
292 #ifdef CONFIG_USB_PCI
293 /*
294 * Set up MSI
295 */
296 static int xhci_setup_msi(struct xhci_hcd *xhci)
297 {
298 int ret;
299 /*
300 * TODO:Check with MSI Soc for sysdev
301 */
302 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
303
304 ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
305 if (ret < 0) {
306 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
307 "failed to allocate MSI entry");
308 return ret;
309 }
310
311 ret = request_irq(pdev->irq, xhci_msi_irq,
312 0, "xhci_hcd", xhci_to_hcd(xhci));
313 if (ret) {
314 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
315 "disable MSI interrupt");
316 pci_free_irq_vectors(pdev);
317 }
318
319 return ret;
320 }
321
322 /*
323 * Set up MSI-X
324 */
325 static int xhci_setup_msix(struct xhci_hcd *xhci)
326 {
327 int i, ret = 0;
328 struct usb_hcd *hcd = xhci_to_hcd(xhci);
329 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
330
331 /*
332 * calculate number of msi-x vectors supported.
333 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
334 * with max number of interrupters based on the xhci HCSPARAMS1.
335 * - num_online_cpus: maximum msi-x vectors per CPUs core.
336 * Add additional 1 vector to ensure always available interrupt.
337 */
338 xhci->msix_count = min(num_online_cpus() + 1,
339 HCS_MAX_INTRS(xhci->hcs_params1));
340
341 ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
342 PCI_IRQ_MSIX);
343 if (ret < 0) {
344 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
345 "Failed to enable MSI-X");
346 return ret;
347 }
348
349 for (i = 0; i < xhci->msix_count; i++) {
350 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
351 "xhci_hcd", xhci_to_hcd(xhci));
352 if (ret)
353 goto disable_msix;
354 }
355
356 hcd->msix_enabled = 1;
357 return ret;
358
359 disable_msix:
360 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
361 while (--i >= 0)
362 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
363 pci_free_irq_vectors(pdev);
364 return ret;
365 }
366
367 /* Free any IRQs and disable MSI-X */
368 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
369 {
370 struct usb_hcd *hcd = xhci_to_hcd(xhci);
371 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
372
373 if (xhci->quirks & XHCI_PLAT)
374 return;
375
376 /* return if using legacy interrupt */
377 if (hcd->irq > 0)
378 return;
379
380 if (hcd->msix_enabled) {
381 int i;
382
383 for (i = 0; i < xhci->msix_count; i++)
384 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
385 } else {
386 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
387 }
388
389 pci_free_irq_vectors(pdev);
390 hcd->msix_enabled = 0;
391 }
392
393 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
394 {
395 struct usb_hcd *hcd = xhci_to_hcd(xhci);
396
397 if (hcd->msix_enabled) {
398 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
399 int i;
400
401 for (i = 0; i < xhci->msix_count; i++)
402 synchronize_irq(pci_irq_vector(pdev, i));
403 }
404 }
405
406 static int xhci_try_enable_msi(struct usb_hcd *hcd)
407 {
408 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
409 struct pci_dev *pdev;
410 int ret;
411
412 /* The xhci platform device has set up IRQs through usb_add_hcd. */
413 if (xhci->quirks & XHCI_PLAT)
414 return 0;
415
416 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
417 /*
418 * Some Fresco Logic host controllers advertise MSI, but fail to
419 * generate interrupts. Don't even try to enable MSI.
420 */
421 if (xhci->quirks & XHCI_BROKEN_MSI)
422 goto legacy_irq;
423
424 /* unregister the legacy interrupt */
425 if (hcd->irq)
426 free_irq(hcd->irq, hcd);
427 hcd->irq = 0;
428
429 ret = xhci_setup_msix(xhci);
430 if (ret)
431 /* fall back to msi*/
432 ret = xhci_setup_msi(xhci);
433
434 if (!ret) {
435 hcd->msi_enabled = 1;
436 return 0;
437 }
438
439 if (!pdev->irq) {
440 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
441 return -EINVAL;
442 }
443
444 legacy_irq:
445 if (!strlen(hcd->irq_descr))
446 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
447 hcd->driver->description, hcd->self.busnum);
448
449 /* fall back to legacy interrupt*/
450 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
451 hcd->irq_descr, hcd);
452 if (ret) {
453 xhci_err(xhci, "request interrupt %d failed\n",
454 pdev->irq);
455 return ret;
456 }
457 hcd->irq = pdev->irq;
458 return 0;
459 }
460
461 #else
462
463 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
464 {
465 return 0;
466 }
467
468 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
469 {
470 }
471
472 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
473 {
474 }
475
476 #endif
477
478 static void compliance_mode_recovery(struct timer_list *t)
479 {
480 struct xhci_hcd *xhci;
481 struct usb_hcd *hcd;
482 struct xhci_hub *rhub;
483 u32 temp;
484 int i;
485
486 xhci = from_timer(xhci, t, comp_mode_recovery_timer);
487 rhub = &xhci->usb3_rhub;
488
489 for (i = 0; i < rhub->num_ports; i++) {
490 temp = readl(rhub->ports[i]->addr);
491 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
492 /*
493 * Compliance Mode Detected. Letting USB Core
494 * handle the Warm Reset
495 */
496 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
497 "Compliance mode detected->port %d",
498 i + 1);
499 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
500 "Attempting compliance mode recovery");
501 hcd = xhci->shared_hcd;
502
503 if (hcd->state == HC_STATE_SUSPENDED)
504 usb_hcd_resume_root_hub(hcd);
505
506 usb_hcd_poll_rh_status(hcd);
507 }
508 }
509
510 if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
511 mod_timer(&xhci->comp_mode_recovery_timer,
512 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
513 }
514
515 /*
516 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
517 * that causes ports behind that hardware to enter compliance mode sometimes.
518 * The quirk creates a timer that polls every 2 seconds the link state of
519 * each host controller's port and recovers it by issuing a Warm reset
520 * if Compliance mode is detected, otherwise the port will become "dead" (no
521 * device connections or disconnections will be detected anymore). Becasue no
522 * status event is generated when entering compliance mode (per xhci spec),
523 * this quirk is needed on systems that have the failing hardware installed.
524 */
525 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
526 {
527 xhci->port_status_u0 = 0;
528 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
529 0);
530 xhci->comp_mode_recovery_timer.expires = jiffies +
531 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
532
533 add_timer(&xhci->comp_mode_recovery_timer);
534 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
535 "Compliance mode recovery timer initialized");
536 }
537
538 /*
539 * This function identifies the systems that have installed the SN65LVPE502CP
540 * USB3.0 re-driver and that need the Compliance Mode Quirk.
541 * Systems:
542 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
543 */
544 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
545 {
546 const char *dmi_product_name, *dmi_sys_vendor;
547
548 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
549 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
550 if (!dmi_product_name || !dmi_sys_vendor)
551 return false;
552
553 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
554 return false;
555
556 if (strstr(dmi_product_name, "Z420") ||
557 strstr(dmi_product_name, "Z620") ||
558 strstr(dmi_product_name, "Z820") ||
559 strstr(dmi_product_name, "Z1 Workstation"))
560 return true;
561
562 return false;
563 }
564
565 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
566 {
567 return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
568 }
569
570
571 /*
572 * Initialize memory for HCD and xHC (one-time init).
573 *
574 * Program the PAGESIZE register, initialize the device context array, create
575 * device contexts (?), set up a command ring segment (or two?), create event
576 * ring (one for now).
577 */
578 static int xhci_init(struct usb_hcd *hcd)
579 {
580 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
581 int retval = 0;
582
583 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
584 spin_lock_init(&xhci->lock);
585 if (xhci->hci_version == 0x95 && link_quirk) {
586 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
587 "QUIRK: Not clearing Link TRB chain bits.");
588 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
589 } else {
590 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
591 "xHCI doesn't need link TRB QUIRK");
592 }
593 retval = xhci_mem_init(xhci, GFP_KERNEL);
594 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
595
596 /* Initializing Compliance Mode Recovery Data If Needed */
597 if (xhci_compliance_mode_recovery_timer_quirk_check()) {
598 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
599 compliance_mode_recovery_timer_init(xhci);
600 }
601
602 return retval;
603 }
604
605 /*-------------------------------------------------------------------------*/
606
607
608 static int xhci_run_finished(struct xhci_hcd *xhci)
609 {
610 if (xhci_start(xhci)) {
611 xhci_halt(xhci);
612 return -ENODEV;
613 }
614 xhci->shared_hcd->state = HC_STATE_RUNNING;
615 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
616
617 if (xhci->quirks & XHCI_NEC_HOST)
618 xhci_ring_cmd_db(xhci);
619
620 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
621 "Finished xhci_run for USB3 roothub");
622 return 0;
623 }
624
625 /*
626 * Start the HC after it was halted.
627 *
628 * This function is called by the USB core when the HC driver is added.
629 * Its opposite is xhci_stop().
630 *
631 * xhci_init() must be called once before this function can be called.
632 * Reset the HC, enable device slot contexts, program DCBAAP, and
633 * set command ring pointer and event ring pointer.
634 *
635 * Setup MSI-X vectors and enable interrupts.
636 */
637 int xhci_run(struct usb_hcd *hcd)
638 {
639 u32 temp;
640 u64 temp_64;
641 int ret;
642 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
643
644 /* Start the xHCI host controller running only after the USB 2.0 roothub
645 * is setup.
646 */
647
648 hcd->uses_new_polling = 1;
649 if (!usb_hcd_is_primary_hcd(hcd))
650 return xhci_run_finished(xhci);
651
652 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
653
654 ret = xhci_try_enable_msi(hcd);
655 if (ret)
656 return ret;
657
658 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
659 temp_64 &= ~ERST_PTR_MASK;
660 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
661 "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
662
663 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
664 "// Set the interrupt modulation register");
665 temp = readl(&xhci->ir_set->irq_control);
666 temp &= ~ER_IRQ_INTERVAL_MASK;
667 temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
668 writel(temp, &xhci->ir_set->irq_control);
669
670 /* Set the HCD state before we enable the irqs */
671 temp = readl(&xhci->op_regs->command);
672 temp |= (CMD_EIE);
673 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
674 "// Enable interrupts, cmd = 0x%x.", temp);
675 writel(temp, &xhci->op_regs->command);
676
677 temp = readl(&xhci->ir_set->irq_pending);
678 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
679 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
680 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
681 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
682
683 if (xhci->quirks & XHCI_NEC_HOST) {
684 struct xhci_command *command;
685
686 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
687 if (!command)
688 return -ENOMEM;
689
690 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
691 TRB_TYPE(TRB_NEC_GET_FW));
692 if (ret)
693 xhci_free_command(xhci, command);
694 }
695 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
696 "Finished xhci_run for USB2 roothub");
697
698 xhci_dbc_init(xhci);
699
700 xhci_debugfs_init(xhci);
701
702 return 0;
703 }
704 EXPORT_SYMBOL_GPL(xhci_run);
705
706 /*
707 * Stop xHCI driver.
708 *
709 * This function is called by the USB core when the HC driver is removed.
710 * Its opposite is xhci_run().
711 *
712 * Disable device contexts, disable IRQs, and quiesce the HC.
713 * Reset the HC, finish any completed transactions, and cleanup memory.
714 */
715 static void xhci_stop(struct usb_hcd *hcd)
716 {
717 u32 temp;
718 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
719
720 mutex_lock(&xhci->mutex);
721
722 /* Only halt host and free memory after both hcds are removed */
723 if (!usb_hcd_is_primary_hcd(hcd)) {
724 mutex_unlock(&xhci->mutex);
725 return;
726 }
727
728 xhci_dbc_exit(xhci);
729
730 spin_lock_irq(&xhci->lock);
731 xhci->xhc_state |= XHCI_STATE_HALTED;
732 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
733 xhci_halt(xhci);
734 xhci_reset(xhci);
735 spin_unlock_irq(&xhci->lock);
736
737 xhci_cleanup_msix(xhci);
738
739 /* Deleting Compliance Mode Recovery Timer */
740 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
741 (!(xhci_all_ports_seen_u0(xhci)))) {
742 del_timer_sync(&xhci->comp_mode_recovery_timer);
743 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
744 "%s: compliance mode recovery timer deleted",
745 __func__);
746 }
747
748 if (xhci->quirks & XHCI_AMD_PLL_FIX)
749 usb_amd_dev_put();
750
751 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
752 "// Disabling event ring interrupts");
753 temp = readl(&xhci->op_regs->status);
754 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
755 temp = readl(&xhci->ir_set->irq_pending);
756 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
757
758 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
759 xhci_mem_cleanup(xhci);
760 xhci_debugfs_exit(xhci);
761 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
762 "xhci_stop completed - status = %x",
763 readl(&xhci->op_regs->status));
764 mutex_unlock(&xhci->mutex);
765 }
766
767 /*
768 * Shutdown HC (not bus-specific)
769 *
770 * This is called when the machine is rebooting or halting. We assume that the
771 * machine will be powered off, and the HC's internal state will be reset.
772 * Don't bother to free memory.
773 *
774 * This will only ever be called with the main usb_hcd (the USB3 roothub).
775 */
776 void xhci_shutdown(struct usb_hcd *hcd)
777 {
778 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
779
780 if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
781 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
782
783 spin_lock_irq(&xhci->lock);
784 xhci_halt(xhci);
785 /* Workaround for spurious wakeups at shutdown with HSW */
786 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
787 xhci_reset(xhci);
788 spin_unlock_irq(&xhci->lock);
789
790 xhci_cleanup_msix(xhci);
791
792 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
793 "xhci_shutdown completed - status = %x",
794 readl(&xhci->op_regs->status));
795 }
796 EXPORT_SYMBOL_GPL(xhci_shutdown);
797
798 #ifdef CONFIG_PM
799 static void xhci_save_registers(struct xhci_hcd *xhci)
800 {
801 xhci->s3.command = readl(&xhci->op_regs->command);
802 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
803 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
804 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
805 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
806 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
807 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
808 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
809 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
810 }
811
812 static void xhci_restore_registers(struct xhci_hcd *xhci)
813 {
814 writel(xhci->s3.command, &xhci->op_regs->command);
815 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
816 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
817 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
818 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
819 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
820 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
821 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
822 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
823 }
824
825 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
826 {
827 u64 val_64;
828
829 /* step 2: initialize command ring buffer */
830 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
831 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
832 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
833 xhci->cmd_ring->dequeue) &
834 (u64) ~CMD_RING_RSVD_BITS) |
835 xhci->cmd_ring->cycle_state;
836 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
837 "// Setting command ring address to 0x%llx",
838 (long unsigned long) val_64);
839 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
840 }
841
842 /*
843 * The whole command ring must be cleared to zero when we suspend the host.
844 *
845 * The host doesn't save the command ring pointer in the suspend well, so we
846 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
847 * aligned, because of the reserved bits in the command ring dequeue pointer
848 * register. Therefore, we can't just set the dequeue pointer back in the
849 * middle of the ring (TRBs are 16-byte aligned).
850 */
851 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
852 {
853 struct xhci_ring *ring;
854 struct xhci_segment *seg;
855
856 ring = xhci->cmd_ring;
857 seg = ring->deq_seg;
858 do {
859 memset(seg->trbs, 0,
860 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
861 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
862 cpu_to_le32(~TRB_CYCLE);
863 seg = seg->next;
864 } while (seg != ring->deq_seg);
865
866 /* Reset the software enqueue and dequeue pointers */
867 ring->deq_seg = ring->first_seg;
868 ring->dequeue = ring->first_seg->trbs;
869 ring->enq_seg = ring->deq_seg;
870 ring->enqueue = ring->dequeue;
871
872 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
873 /*
874 * Ring is now zeroed, so the HW should look for change of ownership
875 * when the cycle bit is set to 1.
876 */
877 ring->cycle_state = 1;
878
879 /*
880 * Reset the hardware dequeue pointer.
881 * Yes, this will need to be re-written after resume, but we're paranoid
882 * and want to make sure the hardware doesn't access bogus memory
883 * because, say, the BIOS or an SMI started the host without changing
884 * the command ring pointers.
885 */
886 xhci_set_cmd_ring_deq(xhci);
887 }
888
889 /*
890 * Disable port wake bits if do_wakeup is not set.
891 *
892 * Also clear a possible internal port wake state left hanging for ports that
893 * detected termination but never successfully enumerated (trained to 0U).
894 * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
895 * at enumeration clears this wake, force one here as well for unconnected ports
896 */
897
898 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
899 struct xhci_hub *rhub,
900 bool do_wakeup)
901 {
902 unsigned long flags;
903 u32 t1, t2, portsc;
904 int i;
905
906 spin_lock_irqsave(&xhci->lock, flags);
907
908 for (i = 0; i < rhub->num_ports; i++) {
909 portsc = readl(rhub->ports[i]->addr);
910 t1 = xhci_port_state_to_neutral(portsc);
911 t2 = t1;
912
913 /* clear wake bits if do_wake is not set */
914 if (!do_wakeup)
915 t2 &= ~PORT_WAKE_BITS;
916
917 /* Don't touch csc bit if connected or connect change is set */
918 if (!(portsc & (PORT_CSC | PORT_CONNECT)))
919 t2 |= PORT_CSC;
920
921 if (t1 != t2) {
922 writel(t2, rhub->ports[i]->addr);
923 xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
924 rhub->hcd->self.busnum, i + 1, portsc, t2);
925 }
926 }
927 spin_unlock_irqrestore(&xhci->lock, flags);
928 }
929
930 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
931 {
932 struct xhci_port **ports;
933 int port_index;
934 u32 status;
935 u32 portsc;
936
937 status = readl(&xhci->op_regs->status);
938 if (status & STS_EINT)
939 return true;
940 /*
941 * Checking STS_EINT is not enough as there is a lag between a change
942 * bit being set and the Port Status Change Event that it generated
943 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
944 */
945
946 port_index = xhci->usb2_rhub.num_ports;
947 ports = xhci->usb2_rhub.ports;
948 while (port_index--) {
949 portsc = readl(ports[port_index]->addr);
950 if (portsc & PORT_CHANGE_MASK ||
951 (portsc & PORT_PLS_MASK) == XDEV_RESUME)
952 return true;
953 }
954 port_index = xhci->usb3_rhub.num_ports;
955 ports = xhci->usb3_rhub.ports;
956 while (port_index--) {
957 portsc = readl(ports[port_index]->addr);
958 if (portsc & PORT_CHANGE_MASK ||
959 (portsc & PORT_PLS_MASK) == XDEV_RESUME)
960 return true;
961 }
962 return false;
963 }
964
965 /*
966 * Stop HC (not bus-specific)
967 *
968 * This is called when the machine transition into S3/S4 mode.
969 *
970 */
971 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
972 {
973 int rc = 0;
974 unsigned int delay = XHCI_MAX_HALT_USEC * 2;
975 struct usb_hcd *hcd = xhci_to_hcd(xhci);
976 u32 command;
977 u32 res;
978
979 if (!hcd->state)
980 return 0;
981
982 if (hcd->state != HC_STATE_SUSPENDED ||
983 xhci->shared_hcd->state != HC_STATE_SUSPENDED)
984 return -EINVAL;
985
986 /* Clear root port wake on bits if wakeup not allowed. */
987 xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
988 xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
989
990 if (!HCD_HW_ACCESSIBLE(hcd))
991 return 0;
992
993 xhci_dbc_suspend(xhci);
994
995 /* Don't poll the roothubs on bus suspend. */
996 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
997 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
998 del_timer_sync(&hcd->rh_timer);
999 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1000 del_timer_sync(&xhci->shared_hcd->rh_timer);
1001
1002 if (xhci->quirks & XHCI_SUSPEND_DELAY)
1003 usleep_range(1000, 1500);
1004
1005 spin_lock_irq(&xhci->lock);
1006 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1007 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1008 /* step 1: stop endpoint */
1009 /* skipped assuming that port suspend has done */
1010
1011 /* step 2: clear Run/Stop bit */
1012 command = readl(&xhci->op_regs->command);
1013 command &= ~CMD_RUN;
1014 writel(command, &xhci->op_regs->command);
1015
1016 /* Some chips from Fresco Logic need an extraordinary delay */
1017 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1018
1019 if (xhci_handshake(&xhci->op_regs->status,
1020 STS_HALT, STS_HALT, delay)) {
1021 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1022 spin_unlock_irq(&xhci->lock);
1023 return -ETIMEDOUT;
1024 }
1025 xhci_clear_command_ring(xhci);
1026
1027 /* step 3: save registers */
1028 xhci_save_registers(xhci);
1029
1030 /* step 4: set CSS flag */
1031 command = readl(&xhci->op_regs->command);
1032 command |= CMD_CSS;
1033 writel(command, &xhci->op_regs->command);
1034 xhci->broken_suspend = 0;
1035 if (xhci_handshake(&xhci->op_regs->status,
1036 STS_SAVE, 0, 20 * 1000)) {
1037 /*
1038 * AMD SNPS xHC 3.0 occasionally does not clear the
1039 * SSS bit of USBSTS and when driver tries to poll
1040 * to see if the xHC clears BIT(8) which never happens
1041 * and driver assumes that controller is not responding
1042 * and times out. To workaround this, its good to check
1043 * if SRE and HCE bits are not set (as per xhci
1044 * Section 5.4.2) and bypass the timeout.
1045 */
1046 res = readl(&xhci->op_regs->status);
1047 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1048 (((res & STS_SRE) == 0) &&
1049 ((res & STS_HCE) == 0))) {
1050 xhci->broken_suspend = 1;
1051 } else {
1052 xhci_warn(xhci, "WARN: xHC save state timeout\n");
1053 spin_unlock_irq(&xhci->lock);
1054 return -ETIMEDOUT;
1055 }
1056 }
1057 spin_unlock_irq(&xhci->lock);
1058
1059 /*
1060 * Deleting Compliance Mode Recovery Timer because the xHCI Host
1061 * is about to be suspended.
1062 */
1063 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1064 (!(xhci_all_ports_seen_u0(xhci)))) {
1065 del_timer_sync(&xhci->comp_mode_recovery_timer);
1066 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1067 "%s: compliance mode recovery timer deleted",
1068 __func__);
1069 }
1070
1071 /* step 5: remove core well power */
1072 /* synchronize irq when using MSI-X */
1073 xhci_msix_sync_irqs(xhci);
1074
1075 return rc;
1076 }
1077 EXPORT_SYMBOL_GPL(xhci_suspend);
1078
1079 /*
1080 * start xHC (not bus-specific)
1081 *
1082 * This is called when the machine transition from S3/S4 mode.
1083 *
1084 */
1085 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1086 {
1087 u32 command, temp = 0;
1088 struct usb_hcd *hcd = xhci_to_hcd(xhci);
1089 struct usb_hcd *secondary_hcd;
1090 int retval = 0;
1091 bool comp_timer_running = false;
1092 bool pending_portevent = false;
1093
1094 if (!hcd->state)
1095 return 0;
1096
1097 /* Wait a bit if either of the roothubs need to settle from the
1098 * transition into bus suspend.
1099 */
1100
1101 if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1102 time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1103 msleep(100);
1104
1105 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1106 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1107
1108 spin_lock_irq(&xhci->lock);
1109 if ((xhci->quirks & XHCI_RESET_ON_RESUME) || xhci->broken_suspend)
1110 hibernated = true;
1111
1112 if (!hibernated) {
1113 /*
1114 * Some controllers might lose power during suspend, so wait
1115 * for controller not ready bit to clear, just as in xHC init.
1116 */
1117 retval = xhci_handshake(&xhci->op_regs->status,
1118 STS_CNR, 0, 10 * 1000 * 1000);
1119 if (retval) {
1120 xhci_warn(xhci, "Controller not ready at resume %d\n",
1121 retval);
1122 spin_unlock_irq(&xhci->lock);
1123 return retval;
1124 }
1125 /* step 1: restore register */
1126 xhci_restore_registers(xhci);
1127 /* step 2: initialize command ring buffer */
1128 xhci_set_cmd_ring_deq(xhci);
1129 /* step 3: restore state and start state*/
1130 /* step 3: set CRS flag */
1131 command = readl(&xhci->op_regs->command);
1132 command |= CMD_CRS;
1133 writel(command, &xhci->op_regs->command);
1134 /*
1135 * Some controllers take up to 55+ ms to complete the controller
1136 * restore so setting the timeout to 100ms. Xhci specification
1137 * doesn't mention any timeout value.
1138 */
1139 if (xhci_handshake(&xhci->op_regs->status,
1140 STS_RESTORE, 0, 100 * 1000)) {
1141 xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1142 spin_unlock_irq(&xhci->lock);
1143 return -ETIMEDOUT;
1144 }
1145 temp = readl(&xhci->op_regs->status);
1146 }
1147
1148 /* If restore operation fails, re-initialize the HC during resume */
1149 if ((temp & STS_SRE) || hibernated) {
1150
1151 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1152 !(xhci_all_ports_seen_u0(xhci))) {
1153 del_timer_sync(&xhci->comp_mode_recovery_timer);
1154 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1155 "Compliance Mode Recovery Timer deleted!");
1156 }
1157
1158 /* Let the USB core know _both_ roothubs lost power. */
1159 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1160 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1161
1162 xhci_dbg(xhci, "Stop HCD\n");
1163 xhci_halt(xhci);
1164 xhci_zero_64b_regs(xhci);
1165 retval = xhci_reset(xhci);
1166 spin_unlock_irq(&xhci->lock);
1167 if (retval)
1168 return retval;
1169 xhci_cleanup_msix(xhci);
1170
1171 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1172 temp = readl(&xhci->op_regs->status);
1173 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1174 temp = readl(&xhci->ir_set->irq_pending);
1175 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1176
1177 xhci_dbg(xhci, "cleaning up memory\n");
1178 xhci_mem_cleanup(xhci);
1179 xhci_debugfs_exit(xhci);
1180 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1181 readl(&xhci->op_regs->status));
1182
1183 /* USB core calls the PCI reinit and start functions twice:
1184 * first with the primary HCD, and then with the secondary HCD.
1185 * If we don't do the same, the host will never be started.
1186 */
1187 if (!usb_hcd_is_primary_hcd(hcd))
1188 secondary_hcd = hcd;
1189 else
1190 secondary_hcd = xhci->shared_hcd;
1191
1192 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1193 retval = xhci_init(hcd->primary_hcd);
1194 if (retval)
1195 return retval;
1196 comp_timer_running = true;
1197
1198 xhci_dbg(xhci, "Start the primary HCD\n");
1199 retval = xhci_run(hcd->primary_hcd);
1200 if (!retval) {
1201 xhci_dbg(xhci, "Start the secondary HCD\n");
1202 retval = xhci_run(secondary_hcd);
1203 }
1204 hcd->state = HC_STATE_SUSPENDED;
1205 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1206 goto done;
1207 }
1208
1209 /* step 4: set Run/Stop bit */
1210 command = readl(&xhci->op_regs->command);
1211 command |= CMD_RUN;
1212 writel(command, &xhci->op_regs->command);
1213 xhci_handshake(&xhci->op_regs->status, STS_HALT,
1214 0, 250 * 1000);
1215
1216 /* step 5: walk topology and initialize portsc,
1217 * portpmsc and portli
1218 */
1219 /* this is done in bus_resume */
1220
1221 /* step 6: restart each of the previously
1222 * Running endpoints by ringing their doorbells
1223 */
1224
1225 spin_unlock_irq(&xhci->lock);
1226
1227 xhci_dbc_resume(xhci);
1228
1229 done:
1230 if (retval == 0) {
1231 /*
1232 * Resume roothubs only if there are pending events.
1233 * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1234 * the first wake signalling failed, give it that chance.
1235 */
1236 pending_portevent = xhci_pending_portevent(xhci);
1237 if (!pending_portevent) {
1238 msleep(120);
1239 pending_portevent = xhci_pending_portevent(xhci);
1240 }
1241
1242 if (pending_portevent) {
1243 usb_hcd_resume_root_hub(xhci->shared_hcd);
1244 usb_hcd_resume_root_hub(hcd);
1245 }
1246 }
1247 /*
1248 * If system is subject to the Quirk, Compliance Mode Timer needs to
1249 * be re-initialized Always after a system resume. Ports are subject
1250 * to suffer the Compliance Mode issue again. It doesn't matter if
1251 * ports have entered previously to U0 before system's suspension.
1252 */
1253 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1254 compliance_mode_recovery_timer_init(xhci);
1255
1256 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1257 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1258
1259 /* Re-enable port polling. */
1260 xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1261 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1262 usb_hcd_poll_rh_status(xhci->shared_hcd);
1263 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1264 usb_hcd_poll_rh_status(hcd);
1265
1266 return retval;
1267 }
1268 EXPORT_SYMBOL_GPL(xhci_resume);
1269 #endif /* CONFIG_PM */
1270
1271 /*-------------------------------------------------------------------------*/
1272
1273 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1274 {
1275 void *temp;
1276 int ret = 0;
1277 unsigned int buf_len;
1278 enum dma_data_direction dir;
1279
1280 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1281 buf_len = urb->transfer_buffer_length;
1282
1283 temp = kzalloc_node(buf_len, GFP_ATOMIC,
1284 dev_to_node(hcd->self.sysdev));
1285
1286 if (usb_urb_dir_out(urb))
1287 sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1288 temp, buf_len, 0);
1289
1290 urb->transfer_buffer = temp;
1291 urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1292 urb->transfer_buffer,
1293 urb->transfer_buffer_length,
1294 dir);
1295
1296 if (dma_mapping_error(hcd->self.sysdev,
1297 urb->transfer_dma)) {
1298 ret = -EAGAIN;
1299 kfree(temp);
1300 } else {
1301 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1302 }
1303
1304 return ret;
1305 }
1306
1307 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1308 struct urb *urb)
1309 {
1310 bool ret = false;
1311 unsigned int i;
1312 unsigned int len = 0;
1313 unsigned int trb_size;
1314 unsigned int max_pkt;
1315 struct scatterlist *sg;
1316 struct scatterlist *tail_sg;
1317
1318 tail_sg = urb->sg;
1319 max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1320
1321 if (!urb->num_sgs)
1322 return ret;
1323
1324 if (urb->dev->speed >= USB_SPEED_SUPER)
1325 trb_size = TRB_CACHE_SIZE_SS;
1326 else
1327 trb_size = TRB_CACHE_SIZE_HS;
1328
1329 if (urb->transfer_buffer_length != 0 &&
1330 !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1331 for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1332 len = len + sg->length;
1333 if (i > trb_size - 2) {
1334 len = len - tail_sg->length;
1335 if (len < max_pkt) {
1336 ret = true;
1337 break;
1338 }
1339
1340 tail_sg = sg_next(tail_sg);
1341 }
1342 }
1343 }
1344 return ret;
1345 }
1346
1347 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1348 {
1349 unsigned int len;
1350 unsigned int buf_len;
1351 enum dma_data_direction dir;
1352
1353 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1354
1355 buf_len = urb->transfer_buffer_length;
1356
1357 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1358 (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1359 dma_unmap_single(hcd->self.sysdev,
1360 urb->transfer_dma,
1361 urb->transfer_buffer_length,
1362 dir);
1363
1364 if (usb_urb_dir_in(urb))
1365 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1366 urb->transfer_buffer,
1367 buf_len,
1368 0);
1369
1370 urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1371 kfree(urb->transfer_buffer);
1372 urb->transfer_buffer = NULL;
1373 }
1374
1375 /*
1376 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1377 * we'll copy the actual data into the TRB address register. This is limited to
1378 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1379 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1380 */
1381 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1382 gfp_t mem_flags)
1383 {
1384 struct xhci_hcd *xhci;
1385
1386 xhci = hcd_to_xhci(hcd);
1387
1388 if (xhci_urb_suitable_for_idt(urb))
1389 return 0;
1390
1391 if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1392 if (xhci_urb_temp_buffer_required(hcd, urb))
1393 return xhci_map_temp_buffer(hcd, urb);
1394 }
1395 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1396 }
1397
1398 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1399 {
1400 struct xhci_hcd *xhci;
1401 bool unmap_temp_buf = false;
1402
1403 xhci = hcd_to_xhci(hcd);
1404
1405 if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1406 unmap_temp_buf = true;
1407
1408 if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1409 xhci_unmap_temp_buf(hcd, urb);
1410 else
1411 usb_hcd_unmap_urb_for_dma(hcd, urb);
1412 }
1413
1414 /**
1415 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1416 * HCDs. Find the index for an endpoint given its descriptor. Use the return
1417 * value to right shift 1 for the bitmask.
1418 *
1419 * Index = (epnum * 2) + direction - 1,
1420 * where direction = 0 for OUT, 1 for IN.
1421 * For control endpoints, the IN index is used (OUT index is unused), so
1422 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1423 */
1424 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1425 {
1426 unsigned int index;
1427 if (usb_endpoint_xfer_control(desc))
1428 index = (unsigned int) (usb_endpoint_num(desc)*2);
1429 else
1430 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1431 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1432 return index;
1433 }
1434 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1435
1436 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1437 * address from the XHCI endpoint index.
1438 */
1439 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1440 {
1441 unsigned int number = DIV_ROUND_UP(ep_index, 2);
1442 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1443 return direction | number;
1444 }
1445
1446 /* Find the flag for this endpoint (for use in the control context). Use the
1447 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1448 * bit 1, etc.
1449 */
1450 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1451 {
1452 return 1 << (xhci_get_endpoint_index(desc) + 1);
1453 }
1454
1455 /* Compute the last valid endpoint context index. Basically, this is the
1456 * endpoint index plus one. For slot contexts with more than valid endpoint,
1457 * we find the most significant bit set in the added contexts flags.
1458 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1459 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1460 */
1461 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1462 {
1463 return fls(added_ctxs) - 1;
1464 }
1465
1466 /* Returns 1 if the arguments are OK;
1467 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1468 */
1469 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1470 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1471 const char *func) {
1472 struct xhci_hcd *xhci;
1473 struct xhci_virt_device *virt_dev;
1474
1475 if (!hcd || (check_ep && !ep) || !udev) {
1476 pr_debug("xHCI %s called with invalid args\n", func);
1477 return -EINVAL;
1478 }
1479 if (!udev->parent) {
1480 pr_debug("xHCI %s called for root hub\n", func);
1481 return 0;
1482 }
1483
1484 xhci = hcd_to_xhci(hcd);
1485 if (check_virt_dev) {
1486 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1487 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1488 func);
1489 return -EINVAL;
1490 }
1491
1492 virt_dev = xhci->devs[udev->slot_id];
1493 if (virt_dev->udev != udev) {
1494 xhci_dbg(xhci, "xHCI %s called with udev and "
1495 "virt_dev does not match\n", func);
1496 return -EINVAL;
1497 }
1498 }
1499
1500 if (xhci->xhc_state & XHCI_STATE_HALTED)
1501 return -ENODEV;
1502
1503 return 1;
1504 }
1505
1506 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1507 struct usb_device *udev, struct xhci_command *command,
1508 bool ctx_change, bool must_succeed);
1509
1510 /*
1511 * Full speed devices may have a max packet size greater than 8 bytes, but the
1512 * USB core doesn't know that until it reads the first 8 bytes of the
1513 * descriptor. If the usb_device's max packet size changes after that point,
1514 * we need to issue an evaluate context command and wait on it.
1515 */
1516 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1517 unsigned int ep_index, struct urb *urb)
1518 {
1519 struct xhci_container_ctx *out_ctx;
1520 struct xhci_input_control_ctx *ctrl_ctx;
1521 struct xhci_ep_ctx *ep_ctx;
1522 struct xhci_command *command;
1523 int max_packet_size;
1524 int hw_max_packet_size;
1525 int ret = 0;
1526
1527 out_ctx = xhci->devs[slot_id]->out_ctx;
1528 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1529 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1530 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1531 if (hw_max_packet_size != max_packet_size) {
1532 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1533 "Max Packet Size for ep 0 changed.");
1534 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1535 "Max packet size in usb_device = %d",
1536 max_packet_size);
1537 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1538 "Max packet size in xHCI HW = %d",
1539 hw_max_packet_size);
1540 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1541 "Issuing evaluate context command.");
1542
1543 /* Set up the input context flags for the command */
1544 /* FIXME: This won't work if a non-default control endpoint
1545 * changes max packet sizes.
1546 */
1547
1548 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
1549 if (!command)
1550 return -ENOMEM;
1551
1552 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1553 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1554 if (!ctrl_ctx) {
1555 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1556 __func__);
1557 ret = -ENOMEM;
1558 goto command_cleanup;
1559 }
1560 /* Set up the modified control endpoint 0 */
1561 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1562 xhci->devs[slot_id]->out_ctx, ep_index);
1563
1564 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1565 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1566 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1567 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1568
1569 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1570 ctrl_ctx->drop_flags = 0;
1571
1572 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1573 true, false);
1574
1575 /* Clean up the input context for later use by bandwidth
1576 * functions.
1577 */
1578 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1579 command_cleanup:
1580 kfree(command->completion);
1581 kfree(command);
1582 }
1583 return ret;
1584 }
1585
1586 /*
1587 * non-error returns are a promise to giveback() the urb later
1588 * we drop ownership so next owner (or urb unlink) can get it
1589 */
1590 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1591 {
1592 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1593 unsigned long flags;
1594 int ret = 0;
1595 unsigned int slot_id, ep_index;
1596 unsigned int *ep_state;
1597 struct urb_priv *urb_priv;
1598 int num_tds;
1599
1600 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1601 true, true, __func__) <= 0)
1602 return -EINVAL;
1603
1604 slot_id = urb->dev->slot_id;
1605 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1606 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1607
1608 if (!HCD_HW_ACCESSIBLE(hcd))
1609 return -ESHUTDOWN;
1610
1611 if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1612 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1613 return -ENODEV;
1614 }
1615
1616 if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1617 num_tds = urb->number_of_packets;
1618 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1619 urb->transfer_buffer_length > 0 &&
1620 urb->transfer_flags & URB_ZERO_PACKET &&
1621 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1622 num_tds = 2;
1623 else
1624 num_tds = 1;
1625
1626 urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1627 if (!urb_priv)
1628 return -ENOMEM;
1629
1630 urb_priv->num_tds = num_tds;
1631 urb_priv->num_tds_done = 0;
1632 urb->hcpriv = urb_priv;
1633
1634 trace_xhci_urb_enqueue(urb);
1635
1636 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1637 /* Check to see if the max packet size for the default control
1638 * endpoint changed during FS device enumeration
1639 */
1640 if (urb->dev->speed == USB_SPEED_FULL) {
1641 ret = xhci_check_maxpacket(xhci, slot_id,
1642 ep_index, urb);
1643 if (ret < 0) {
1644 xhci_urb_free_priv(urb_priv);
1645 urb->hcpriv = NULL;
1646 return ret;
1647 }
1648 }
1649 }
1650
1651 spin_lock_irqsave(&xhci->lock, flags);
1652
1653 if (xhci->xhc_state & XHCI_STATE_DYING) {
1654 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1655 urb->ep->desc.bEndpointAddress, urb);
1656 ret = -ESHUTDOWN;
1657 goto free_priv;
1658 }
1659 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1660 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1661 *ep_state);
1662 ret = -EINVAL;
1663 goto free_priv;
1664 }
1665 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1666 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1667 ret = -EINVAL;
1668 goto free_priv;
1669 }
1670
1671 switch (usb_endpoint_type(&urb->ep->desc)) {
1672
1673 case USB_ENDPOINT_XFER_CONTROL:
1674 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1675 slot_id, ep_index);
1676 break;
1677 case USB_ENDPOINT_XFER_BULK:
1678 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1679 slot_id, ep_index);
1680 break;
1681 case USB_ENDPOINT_XFER_INT:
1682 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1683 slot_id, ep_index);
1684 break;
1685 case USB_ENDPOINT_XFER_ISOC:
1686 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1687 slot_id, ep_index);
1688 }
1689
1690 if (ret) {
1691 free_priv:
1692 xhci_urb_free_priv(urb_priv);
1693 urb->hcpriv = NULL;
1694 }
1695 spin_unlock_irqrestore(&xhci->lock, flags);
1696 return ret;
1697 }
1698
1699 /*
1700 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1701 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1702 * should pick up where it left off in the TD, unless a Set Transfer Ring
1703 * Dequeue Pointer is issued.
1704 *
1705 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1706 * the ring. Since the ring is a contiguous structure, they can't be physically
1707 * removed. Instead, there are two options:
1708 *
1709 * 1) If the HC is in the middle of processing the URB to be canceled, we
1710 * simply move the ring's dequeue pointer past those TRBs using the Set
1711 * Transfer Ring Dequeue Pointer command. This will be the common case,
1712 * when drivers timeout on the last submitted URB and attempt to cancel.
1713 *
1714 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1715 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1716 * HC will need to invalidate the any TRBs it has cached after the stop
1717 * endpoint command, as noted in the xHCI 0.95 errata.
1718 *
1719 * 3) The TD may have completed by the time the Stop Endpoint Command
1720 * completes, so software needs to handle that case too.
1721 *
1722 * This function should protect against the TD enqueueing code ringing the
1723 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1724 * It also needs to account for multiple cancellations on happening at the same
1725 * time for the same endpoint.
1726 *
1727 * Note that this function can be called in any context, or so says
1728 * usb_hcd_unlink_urb()
1729 */
1730 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1731 {
1732 unsigned long flags;
1733 int ret, i;
1734 u32 temp;
1735 struct xhci_hcd *xhci;
1736 struct urb_priv *urb_priv;
1737 struct xhci_td *td;
1738 unsigned int ep_index;
1739 struct xhci_ring *ep_ring;
1740 struct xhci_virt_ep *ep;
1741 struct xhci_command *command;
1742 struct xhci_virt_device *vdev;
1743
1744 xhci = hcd_to_xhci(hcd);
1745 spin_lock_irqsave(&xhci->lock, flags);
1746
1747 trace_xhci_urb_dequeue(urb);
1748
1749 /* Make sure the URB hasn't completed or been unlinked already */
1750 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1751 if (ret)
1752 goto done;
1753
1754 /* give back URB now if we can't queue it for cancel */
1755 vdev = xhci->devs[urb->dev->slot_id];
1756 urb_priv = urb->hcpriv;
1757 if (!vdev || !urb_priv)
1758 goto err_giveback;
1759
1760 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1761 ep = &vdev->eps[ep_index];
1762 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1763 if (!ep || !ep_ring)
1764 goto err_giveback;
1765
1766 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1767 temp = readl(&xhci->op_regs->status);
1768 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1769 xhci_hc_died(xhci);
1770 goto done;
1771 }
1772
1773 /*
1774 * check ring is not re-allocated since URB was enqueued. If it is, then
1775 * make sure none of the ring related pointers in this URB private data
1776 * are touched, such as td_list, otherwise we overwrite freed data
1777 */
1778 if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1779 xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1780 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1781 td = &urb_priv->td[i];
1782 if (!list_empty(&td->cancelled_td_list))
1783 list_del_init(&td->cancelled_td_list);
1784 }
1785 goto err_giveback;
1786 }
1787
1788 if (xhci->xhc_state & XHCI_STATE_HALTED) {
1789 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1790 "HC halted, freeing TD manually.");
1791 for (i = urb_priv->num_tds_done;
1792 i < urb_priv->num_tds;
1793 i++) {
1794 td = &urb_priv->td[i];
1795 if (!list_empty(&td->td_list))
1796 list_del_init(&td->td_list);
1797 if (!list_empty(&td->cancelled_td_list))
1798 list_del_init(&td->cancelled_td_list);
1799 }
1800 goto err_giveback;
1801 }
1802
1803 i = urb_priv->num_tds_done;
1804 if (i < urb_priv->num_tds)
1805 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1806 "Cancel URB %p, dev %s, ep 0x%x, "
1807 "starting at offset 0x%llx",
1808 urb, urb->dev->devpath,
1809 urb->ep->desc.bEndpointAddress,
1810 (unsigned long long) xhci_trb_virt_to_dma(
1811 urb_priv->td[i].start_seg,
1812 urb_priv->td[i].first_trb));
1813
1814 for (; i < urb_priv->num_tds; i++) {
1815 td = &urb_priv->td[i];
1816 /* TD can already be on cancelled list if ep halted on it */
1817 if (list_empty(&td->cancelled_td_list)) {
1818 td->cancel_status = TD_DIRTY;
1819 list_add_tail(&td->cancelled_td_list,
1820 &ep->cancelled_td_list);
1821 }
1822 }
1823
1824 /* Queue a stop endpoint command, but only if this is
1825 * the first cancellation to be handled.
1826 */
1827 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1828 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1829 if (!command) {
1830 ret = -ENOMEM;
1831 goto done;
1832 }
1833 ep->ep_state |= EP_STOP_CMD_PENDING;
1834 ep->stop_cmd_timer.expires = jiffies +
1835 XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1836 add_timer(&ep->stop_cmd_timer);
1837 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1838 ep_index, 0);
1839 xhci_ring_cmd_db(xhci);
1840 }
1841 done:
1842 spin_unlock_irqrestore(&xhci->lock, flags);
1843 return ret;
1844
1845 err_giveback:
1846 if (urb_priv)
1847 xhci_urb_free_priv(urb_priv);
1848 usb_hcd_unlink_urb_from_ep(hcd, urb);
1849 spin_unlock_irqrestore(&xhci->lock, flags);
1850 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1851 return ret;
1852 }
1853
1854 /* Drop an endpoint from a new bandwidth configuration for this device.
1855 * Only one call to this function is allowed per endpoint before
1856 * check_bandwidth() or reset_bandwidth() must be called.
1857 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1858 * add the endpoint to the schedule with possibly new parameters denoted by a
1859 * different endpoint descriptor in usb_host_endpoint.
1860 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1861 * not allowed.
1862 *
1863 * The USB core will not allow URBs to be queued to an endpoint that is being
1864 * disabled, so there's no need for mutual exclusion to protect
1865 * the xhci->devs[slot_id] structure.
1866 */
1867 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1868 struct usb_host_endpoint *ep)
1869 {
1870 struct xhci_hcd *xhci;
1871 struct xhci_container_ctx *in_ctx, *out_ctx;
1872 struct xhci_input_control_ctx *ctrl_ctx;
1873 unsigned int ep_index;
1874 struct xhci_ep_ctx *ep_ctx;
1875 u32 drop_flag;
1876 u32 new_add_flags, new_drop_flags;
1877 int ret;
1878
1879 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1880 if (ret <= 0)
1881 return ret;
1882 xhci = hcd_to_xhci(hcd);
1883 if (xhci->xhc_state & XHCI_STATE_DYING)
1884 return -ENODEV;
1885
1886 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1887 drop_flag = xhci_get_endpoint_flag(&ep->desc);
1888 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1889 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1890 __func__, drop_flag);
1891 return 0;
1892 }
1893
1894 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1895 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1896 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1897 if (!ctrl_ctx) {
1898 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1899 __func__);
1900 return 0;
1901 }
1902
1903 ep_index = xhci_get_endpoint_index(&ep->desc);
1904 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1905 /* If the HC already knows the endpoint is disabled,
1906 * or the HCD has noted it is disabled, ignore this request
1907 */
1908 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1909 le32_to_cpu(ctrl_ctx->drop_flags) &
1910 xhci_get_endpoint_flag(&ep->desc)) {
1911 /* Do not warn when called after a usb_device_reset */
1912 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1913 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1914 __func__, ep);
1915 return 0;
1916 }
1917
1918 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1919 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1920
1921 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1922 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1923
1924 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1925
1926 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1927
1928 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1929 (unsigned int) ep->desc.bEndpointAddress,
1930 udev->slot_id,
1931 (unsigned int) new_drop_flags,
1932 (unsigned int) new_add_flags);
1933 return 0;
1934 }
1935 EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
1936
1937 /* Add an endpoint to a new possible bandwidth configuration for this device.
1938 * Only one call to this function is allowed per endpoint before
1939 * check_bandwidth() or reset_bandwidth() must be called.
1940 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1941 * add the endpoint to the schedule with possibly new parameters denoted by a
1942 * different endpoint descriptor in usb_host_endpoint.
1943 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1944 * not allowed.
1945 *
1946 * The USB core will not allow URBs to be queued to an endpoint until the
1947 * configuration or alt setting is installed in the device, so there's no need
1948 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1949 */
1950 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1951 struct usb_host_endpoint *ep)
1952 {
1953 struct xhci_hcd *xhci;
1954 struct xhci_container_ctx *in_ctx;
1955 unsigned int ep_index;
1956 struct xhci_input_control_ctx *ctrl_ctx;
1957 struct xhci_ep_ctx *ep_ctx;
1958 u32 added_ctxs;
1959 u32 new_add_flags, new_drop_flags;
1960 struct xhci_virt_device *virt_dev;
1961 int ret = 0;
1962
1963 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1964 if (ret <= 0) {
1965 /* So we won't queue a reset ep command for a root hub */
1966 ep->hcpriv = NULL;
1967 return ret;
1968 }
1969 xhci = hcd_to_xhci(hcd);
1970 if (xhci->xhc_state & XHCI_STATE_DYING)
1971 return -ENODEV;
1972
1973 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1974 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1975 /* FIXME when we have to issue an evaluate endpoint command to
1976 * deal with ep0 max packet size changing once we get the
1977 * descriptors
1978 */
1979 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1980 __func__, added_ctxs);
1981 return 0;
1982 }
1983
1984 virt_dev = xhci->devs[udev->slot_id];
1985 in_ctx = virt_dev->in_ctx;
1986 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1987 if (!ctrl_ctx) {
1988 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1989 __func__);
1990 return 0;
1991 }
1992
1993 ep_index = xhci_get_endpoint_index(&ep->desc);
1994 /* If this endpoint is already in use, and the upper layers are trying
1995 * to add it again without dropping it, reject the addition.
1996 */
1997 if (virt_dev->eps[ep_index].ring &&
1998 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1999 xhci_warn(xhci, "Trying to add endpoint 0x%x "
2000 "without dropping it.\n",
2001 (unsigned int) ep->desc.bEndpointAddress);
2002 return -EINVAL;
2003 }
2004
2005 /* If the HCD has already noted the endpoint is enabled,
2006 * ignore this request.
2007 */
2008 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
2009 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
2010 __func__, ep);
2011 return 0;
2012 }
2013
2014 /*
2015 * Configuration and alternate setting changes must be done in
2016 * process context, not interrupt context (or so documenation
2017 * for usb_set_interface() and usb_set_configuration() claim).
2018 */
2019 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
2020 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
2021 __func__, ep->desc.bEndpointAddress);
2022 return -ENOMEM;
2023 }
2024
2025 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
2026 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
2027
2028 /* If xhci_endpoint_disable() was called for this endpoint, but the
2029 * xHC hasn't been notified yet through the check_bandwidth() call,
2030 * this re-adds a new state for the endpoint from the new endpoint
2031 * descriptors. We must drop and re-add this endpoint, so we leave the
2032 * drop flags alone.
2033 */
2034 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
2035
2036 /* Store the usb_device pointer for later use */
2037 ep->hcpriv = udev;
2038
2039 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
2040 trace_xhci_add_endpoint(ep_ctx);
2041
2042 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
2043 (unsigned int) ep->desc.bEndpointAddress,
2044 udev->slot_id,
2045 (unsigned int) new_drop_flags,
2046 (unsigned int) new_add_flags);
2047 return 0;
2048 }
2049 EXPORT_SYMBOL_GPL(xhci_add_endpoint);
2050
2051 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
2052 {
2053 struct xhci_input_control_ctx *ctrl_ctx;
2054 struct xhci_ep_ctx *ep_ctx;
2055 struct xhci_slot_ctx *slot_ctx;
2056 int i;
2057
2058 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
2059 if (!ctrl_ctx) {
2060 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2061 __func__);
2062 return;
2063 }
2064
2065 /* When a device's add flag and drop flag are zero, any subsequent
2066 * configure endpoint command will leave that endpoint's state
2067 * untouched. Make sure we don't leave any old state in the input
2068 * endpoint contexts.
2069 */
2070 ctrl_ctx->drop_flags = 0;
2071 ctrl_ctx->add_flags = 0;
2072 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2073 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2074 /* Endpoint 0 is always valid */
2075 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2076 for (i = 1; i < 31; i++) {
2077 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
2078 ep_ctx->ep_info = 0;
2079 ep_ctx->ep_info2 = 0;
2080 ep_ctx->deq = 0;
2081 ep_ctx->tx_info = 0;
2082 }
2083 }
2084
2085 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2086 struct usb_device *udev, u32 *cmd_status)
2087 {
2088 int ret;
2089
2090 switch (*cmd_status) {
2091 case COMP_COMMAND_ABORTED:
2092 case COMP_COMMAND_RING_STOPPED:
2093 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2094 ret = -ETIME;
2095 break;
2096 case COMP_RESOURCE_ERROR:
2097 dev_warn(&udev->dev,
2098 "Not enough host controller resources for new device state.\n");
2099 ret = -ENOMEM;
2100 /* FIXME: can we allocate more resources for the HC? */
2101 break;
2102 case COMP_BANDWIDTH_ERROR:
2103 case COMP_SECONDARY_BANDWIDTH_ERROR:
2104 dev_warn(&udev->dev,
2105 "Not enough bandwidth for new device state.\n");
2106 ret = -ENOSPC;
2107 /* FIXME: can we go back to the old state? */
2108 break;
2109 case COMP_TRB_ERROR:
2110 /* the HCD set up something wrong */
2111 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2112 "add flag = 1, "
2113 "and endpoint is not disabled.\n");
2114 ret = -EINVAL;
2115 break;
2116 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2117 dev_warn(&udev->dev,
2118 "ERROR: Incompatible device for endpoint configure command.\n");
2119 ret = -ENODEV;
2120 break;
2121 case COMP_SUCCESS:
2122 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2123 "Successful Endpoint Configure command");
2124 ret = 0;
2125 break;
2126 default:
2127 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2128 *cmd_status);
2129 ret = -EINVAL;
2130 break;
2131 }
2132 return ret;
2133 }
2134
2135 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2136 struct usb_device *udev, u32 *cmd_status)
2137 {
2138 int ret;
2139
2140 switch (*cmd_status) {
2141 case COMP_COMMAND_ABORTED:
2142 case COMP_COMMAND_RING_STOPPED:
2143 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2144 ret = -ETIME;
2145 break;
2146 case COMP_PARAMETER_ERROR:
2147 dev_warn(&udev->dev,
2148 "WARN: xHCI driver setup invalid evaluate context command.\n");
2149 ret = -EINVAL;
2150 break;
2151 case COMP_SLOT_NOT_ENABLED_ERROR:
2152 dev_warn(&udev->dev,
2153 "WARN: slot not enabled for evaluate context command.\n");
2154 ret = -EINVAL;
2155 break;
2156 case COMP_CONTEXT_STATE_ERROR:
2157 dev_warn(&udev->dev,
2158 "WARN: invalid context state for evaluate context command.\n");
2159 ret = -EINVAL;
2160 break;
2161 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2162 dev_warn(&udev->dev,
2163 "ERROR: Incompatible device for evaluate context command.\n");
2164 ret = -ENODEV;
2165 break;
2166 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2167 /* Max Exit Latency too large error */
2168 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2169 ret = -EINVAL;
2170 break;
2171 case COMP_SUCCESS:
2172 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2173 "Successful evaluate context command");
2174 ret = 0;
2175 break;
2176 default:
2177 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2178 *cmd_status);
2179 ret = -EINVAL;
2180 break;
2181 }
2182 return ret;
2183 }
2184
2185 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2186 struct xhci_input_control_ctx *ctrl_ctx)
2187 {
2188 u32 valid_add_flags;
2189 u32 valid_drop_flags;
2190
2191 /* Ignore the slot flag (bit 0), and the default control endpoint flag
2192 * (bit 1). The default control endpoint is added during the Address
2193 * Device command and is never removed until the slot is disabled.
2194 */
2195 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2196 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2197
2198 /* Use hweight32 to count the number of ones in the add flags, or
2199 * number of endpoints added. Don't count endpoints that are changed
2200 * (both added and dropped).
2201 */
2202 return hweight32(valid_add_flags) -
2203 hweight32(valid_add_flags & valid_drop_flags);
2204 }
2205
2206 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2207 struct xhci_input_control_ctx *ctrl_ctx)
2208 {
2209 u32 valid_add_flags;
2210 u32 valid_drop_flags;
2211
2212 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2213 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2214
2215 return hweight32(valid_drop_flags) -
2216 hweight32(valid_add_flags & valid_drop_flags);
2217 }
2218
2219 /*
2220 * We need to reserve the new number of endpoints before the configure endpoint
2221 * command completes. We can't subtract the dropped endpoints from the number
2222 * of active endpoints until the command completes because we can oversubscribe
2223 * the host in this case:
2224 *
2225 * - the first configure endpoint command drops more endpoints than it adds
2226 * - a second configure endpoint command that adds more endpoints is queued
2227 * - the first configure endpoint command fails, so the config is unchanged
2228 * - the second command may succeed, even though there isn't enough resources
2229 *
2230 * Must be called with xhci->lock held.
2231 */
2232 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2233 struct xhci_input_control_ctx *ctrl_ctx)
2234 {
2235 u32 added_eps;
2236
2237 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2238 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2239 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2240 "Not enough ep ctxs: "
2241 "%u active, need to add %u, limit is %u.",
2242 xhci->num_active_eps, added_eps,
2243 xhci->limit_active_eps);
2244 return -ENOMEM;
2245 }
2246 xhci->num_active_eps += added_eps;
2247 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2248 "Adding %u ep ctxs, %u now active.", added_eps,
2249 xhci->num_active_eps);
2250 return 0;
2251 }
2252
2253 /*
2254 * The configure endpoint was failed by the xHC for some other reason, so we
2255 * need to revert the resources that failed configuration would have used.
2256 *
2257 * Must be called with xhci->lock held.
2258 */
2259 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2260 struct xhci_input_control_ctx *ctrl_ctx)
2261 {
2262 u32 num_failed_eps;
2263
2264 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2265 xhci->num_active_eps -= num_failed_eps;
2266 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2267 "Removing %u failed ep ctxs, %u now active.",
2268 num_failed_eps,
2269 xhci->num_active_eps);
2270 }
2271
2272 /*
2273 * Now that the command has completed, clean up the active endpoint count by
2274 * subtracting out the endpoints that were dropped (but not changed).
2275 *
2276 * Must be called with xhci->lock held.
2277 */
2278 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2279 struct xhci_input_control_ctx *ctrl_ctx)
2280 {
2281 u32 num_dropped_eps;
2282
2283 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2284 xhci->num_active_eps -= num_dropped_eps;
2285 if (num_dropped_eps)
2286 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2287 "Removing %u dropped ep ctxs, %u now active.",
2288 num_dropped_eps,
2289 xhci->num_active_eps);
2290 }
2291
2292 static unsigned int xhci_get_block_size(struct usb_device *udev)
2293 {
2294 switch (udev->speed) {
2295 case USB_SPEED_LOW:
2296 case USB_SPEED_FULL:
2297 return FS_BLOCK;
2298 case USB_SPEED_HIGH:
2299 return HS_BLOCK;
2300 case USB_SPEED_SUPER:
2301 case USB_SPEED_SUPER_PLUS:
2302 return SS_BLOCK;
2303 case USB_SPEED_UNKNOWN:
2304 case USB_SPEED_WIRELESS:
2305 default:
2306 /* Should never happen */
2307 return 1;
2308 }
2309 }
2310
2311 static unsigned int
2312 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2313 {
2314 if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2315 return LS_OVERHEAD;
2316 if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2317 return FS_OVERHEAD;
2318 return HS_OVERHEAD;
2319 }
2320
2321 /* If we are changing a LS/FS device under a HS hub,
2322 * make sure (if we are activating a new TT) that the HS bus has enough
2323 * bandwidth for this new TT.
2324 */
2325 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2326 struct xhci_virt_device *virt_dev,
2327 int old_active_eps)
2328 {
2329 struct xhci_interval_bw_table *bw_table;
2330 struct xhci_tt_bw_info *tt_info;
2331
2332 /* Find the bandwidth table for the root port this TT is attached to. */
2333 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2334 tt_info = virt_dev->tt_info;
2335 /* If this TT already had active endpoints, the bandwidth for this TT
2336 * has already been added. Removing all periodic endpoints (and thus
2337 * making the TT enactive) will only decrease the bandwidth used.
2338 */
2339 if (old_active_eps)
2340 return 0;
2341 if (old_active_eps == 0 && tt_info->active_eps != 0) {
2342 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2343 return -ENOMEM;
2344 return 0;
2345 }
2346 /* Not sure why we would have no new active endpoints...
2347 *
2348 * Maybe because of an Evaluate Context change for a hub update or a
2349 * control endpoint 0 max packet size change?
2350 * FIXME: skip the bandwidth calculation in that case.
2351 */
2352 return 0;
2353 }
2354
2355 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2356 struct xhci_virt_device *virt_dev)
2357 {
2358 unsigned int bw_reserved;
2359
2360 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2361 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2362 return -ENOMEM;
2363
2364 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2365 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2366 return -ENOMEM;
2367
2368 return 0;
2369 }
2370
2371 /*
2372 * This algorithm is a very conservative estimate of the worst-case scheduling
2373 * scenario for any one interval. The hardware dynamically schedules the
2374 * packets, so we can't tell which microframe could be the limiting factor in
2375 * the bandwidth scheduling. This only takes into account periodic endpoints.
2376 *
2377 * Obviously, we can't solve an NP complete problem to find the minimum worst
2378 * case scenario. Instead, we come up with an estimate that is no less than
2379 * the worst case bandwidth used for any one microframe, but may be an
2380 * over-estimate.
2381 *
2382 * We walk the requirements for each endpoint by interval, starting with the
2383 * smallest interval, and place packets in the schedule where there is only one
2384 * possible way to schedule packets for that interval. In order to simplify
2385 * this algorithm, we record the largest max packet size for each interval, and
2386 * assume all packets will be that size.
2387 *
2388 * For interval 0, we obviously must schedule all packets for each interval.
2389 * The bandwidth for interval 0 is just the amount of data to be transmitted
2390 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2391 * the number of packets).
2392 *
2393 * For interval 1, we have two possible microframes to schedule those packets
2394 * in. For this algorithm, if we can schedule the same number of packets for
2395 * each possible scheduling opportunity (each microframe), we will do so. The
2396 * remaining number of packets will be saved to be transmitted in the gaps in
2397 * the next interval's scheduling sequence.
2398 *
2399 * As we move those remaining packets to be scheduled with interval 2 packets,
2400 * we have to double the number of remaining packets to transmit. This is
2401 * because the intervals are actually powers of 2, and we would be transmitting
2402 * the previous interval's packets twice in this interval. We also have to be
2403 * sure that when we look at the largest max packet size for this interval, we
2404 * also look at the largest max packet size for the remaining packets and take
2405 * the greater of the two.
2406 *
2407 * The algorithm continues to evenly distribute packets in each scheduling
2408 * opportunity, and push the remaining packets out, until we get to the last
2409 * interval. Then those packets and their associated overhead are just added
2410 * to the bandwidth used.
2411 */
2412 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2413 struct xhci_virt_device *virt_dev,
2414 int old_active_eps)
2415 {
2416 unsigned int bw_reserved;
2417 unsigned int max_bandwidth;
2418 unsigned int bw_used;
2419 unsigned int block_size;
2420 struct xhci_interval_bw_table *bw_table;
2421 unsigned int packet_size = 0;
2422 unsigned int overhead = 0;
2423 unsigned int packets_transmitted = 0;
2424 unsigned int packets_remaining = 0;
2425 unsigned int i;
2426
2427 if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2428 return xhci_check_ss_bw(xhci, virt_dev);
2429
2430 if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2431 max_bandwidth = HS_BW_LIMIT;
2432 /* Convert percent of bus BW reserved to blocks reserved */
2433 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2434 } else {
2435 max_bandwidth = FS_BW_LIMIT;
2436 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2437 }
2438
2439 bw_table = virt_dev->bw_table;
2440 /* We need to translate the max packet size and max ESIT payloads into
2441 * the units the hardware uses.
2442 */
2443 block_size = xhci_get_block_size(virt_dev->udev);
2444
2445 /* If we are manipulating a LS/FS device under a HS hub, double check
2446 * that the HS bus has enough bandwidth if we are activing a new TT.
2447 */
2448 if (virt_dev->tt_info) {
2449 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2450 "Recalculating BW for rootport %u",
2451 virt_dev->real_port);
2452 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2453 xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2454 "newly activated TT.\n");
2455 return -ENOMEM;
2456 }
2457 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2458 "Recalculating BW for TT slot %u port %u",
2459 virt_dev->tt_info->slot_id,
2460 virt_dev->tt_info->ttport);
2461 } else {
2462 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2463 "Recalculating BW for rootport %u",
2464 virt_dev->real_port);
2465 }
2466
2467 /* Add in how much bandwidth will be used for interval zero, or the
2468 * rounded max ESIT payload + number of packets * largest overhead.
2469 */
2470 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2471 bw_table->interval_bw[0].num_packets *
2472 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2473
2474 for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2475 unsigned int bw_added;
2476 unsigned int largest_mps;
2477 unsigned int interval_overhead;
2478
2479 /*
2480 * How many packets could we transmit in this interval?
2481 * If packets didn't fit in the previous interval, we will need
2482 * to transmit that many packets twice within this interval.
2483 */
2484 packets_remaining = 2 * packets_remaining +
2485 bw_table->interval_bw[i].num_packets;
2486
2487 /* Find the largest max packet size of this or the previous
2488 * interval.
2489 */
2490 if (list_empty(&bw_table->interval_bw[i].endpoints))
2491 largest_mps = 0;
2492 else {
2493 struct xhci_virt_ep *virt_ep;
2494 struct list_head *ep_entry;
2495
2496 ep_entry = bw_table->interval_bw[i].endpoints.next;
2497 virt_ep = list_entry(ep_entry,
2498 struct xhci_virt_ep, bw_endpoint_list);
2499 /* Convert to blocks, rounding up */
2500 largest_mps = DIV_ROUND_UP(
2501 virt_ep->bw_info.max_packet_size,
2502 block_size);
2503 }
2504 if (largest_mps > packet_size)
2505 packet_size = largest_mps;
2506
2507 /* Use the larger overhead of this or the previous interval. */
2508 interval_overhead = xhci_get_largest_overhead(
2509 &bw_table->interval_bw[i]);
2510 if (interval_overhead > overhead)
2511 overhead = interval_overhead;
2512
2513 /* How many packets can we evenly distribute across
2514 * (1 << (i + 1)) possible scheduling opportunities?
2515 */
2516 packets_transmitted = packets_remaining >> (i + 1);
2517
2518 /* Add in the bandwidth used for those scheduled packets */
2519 bw_added = packets_transmitted * (overhead + packet_size);
2520
2521 /* How many packets do we have remaining to transmit? */
2522 packets_remaining = packets_remaining % (1 << (i + 1));
2523
2524 /* What largest max packet size should those packets have? */
2525 /* If we've transmitted all packets, don't carry over the
2526 * largest packet size.
2527 */
2528 if (packets_remaining == 0) {
2529 packet_size = 0;
2530 overhead = 0;
2531 } else if (packets_transmitted > 0) {
2532 /* Otherwise if we do have remaining packets, and we've
2533 * scheduled some packets in this interval, take the
2534 * largest max packet size from endpoints with this
2535 * interval.
2536 */
2537 packet_size = largest_mps;
2538 overhead = interval_overhead;
2539 }
2540 /* Otherwise carry over packet_size and overhead from the last
2541 * time we had a remainder.
2542 */
2543 bw_used += bw_added;
2544 if (bw_used > max_bandwidth) {
2545 xhci_warn(xhci, "Not enough bandwidth. "
2546 "Proposed: %u, Max: %u\n",
2547 bw_used, max_bandwidth);
2548 return -ENOMEM;
2549 }
2550 }
2551 /*
2552 * Ok, we know we have some packets left over after even-handedly
2553 * scheduling interval 15. We don't know which microframes they will
2554 * fit into, so we over-schedule and say they will be scheduled every
2555 * microframe.
2556 */
2557 if (packets_remaining > 0)
2558 bw_used += overhead + packet_size;
2559
2560 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2561 unsigned int port_index = virt_dev->real_port - 1;
2562
2563 /* OK, we're manipulating a HS device attached to a
2564 * root port bandwidth domain. Include the number of active TTs
2565 * in the bandwidth used.
2566 */
2567 bw_used += TT_HS_OVERHEAD *
2568 xhci->rh_bw[port_index].num_active_tts;
2569 }
2570
2571 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2572 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2573 "Available: %u " "percent",
2574 bw_used, max_bandwidth, bw_reserved,
2575 (max_bandwidth - bw_used - bw_reserved) * 100 /
2576 max_bandwidth);
2577
2578 bw_used += bw_reserved;
2579 if (bw_used > max_bandwidth) {
2580 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2581 bw_used, max_bandwidth);
2582 return -ENOMEM;
2583 }
2584
2585 bw_table->bw_used = bw_used;
2586 return 0;
2587 }
2588
2589 static bool xhci_is_async_ep(unsigned int ep_type)
2590 {
2591 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2592 ep_type != ISOC_IN_EP &&
2593 ep_type != INT_IN_EP);
2594 }
2595
2596 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2597 {
2598 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2599 }
2600
2601 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2602 {
2603 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2604
2605 if (ep_bw->ep_interval == 0)
2606 return SS_OVERHEAD_BURST +
2607 (ep_bw->mult * ep_bw->num_packets *
2608 (SS_OVERHEAD + mps));
2609 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2610 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2611 1 << ep_bw->ep_interval);
2612
2613 }
2614
2615 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2616 struct xhci_bw_info *ep_bw,
2617 struct xhci_interval_bw_table *bw_table,
2618 struct usb_device *udev,
2619 struct xhci_virt_ep *virt_ep,
2620 struct xhci_tt_bw_info *tt_info)
2621 {
2622 struct xhci_interval_bw *interval_bw;
2623 int normalized_interval;
2624
2625 if (xhci_is_async_ep(ep_bw->type))
2626 return;
2627
2628 if (udev->speed >= USB_SPEED_SUPER) {
2629 if (xhci_is_sync_in_ep(ep_bw->type))
2630 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2631 xhci_get_ss_bw_consumed(ep_bw);
2632 else
2633 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2634 xhci_get_ss_bw_consumed(ep_bw);
2635 return;
2636 }
2637
2638 /* SuperSpeed endpoints never get added to intervals in the table, so
2639 * this check is only valid for HS/FS/LS devices.
2640 */
2641 if (list_empty(&virt_ep->bw_endpoint_list))
2642 return;
2643 /* For LS/FS devices, we need to translate the interval expressed in
2644 * microframes to frames.
2645 */
2646 if (udev->speed == USB_SPEED_HIGH)
2647 normalized_interval = ep_bw->ep_interval;
2648 else
2649 normalized_interval = ep_bw->ep_interval - 3;
2650
2651 if (normalized_interval == 0)
2652 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2653 interval_bw = &bw_table->interval_bw[normalized_interval];
2654 interval_bw->num_packets -= ep_bw->num_packets;
2655 switch (udev->speed) {
2656 case USB_SPEED_LOW:
2657 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2658 break;
2659 case USB_SPEED_FULL:
2660 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2661 break;
2662 case USB_SPEED_HIGH:
2663 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2664 break;
2665 case USB_SPEED_SUPER:
2666 case USB_SPEED_SUPER_PLUS:
2667 case USB_SPEED_UNKNOWN:
2668 case USB_SPEED_WIRELESS:
2669 /* Should never happen because only LS/FS/HS endpoints will get
2670 * added to the endpoint list.
2671 */
2672 return;
2673 }
2674 if (tt_info)
2675 tt_info->active_eps -= 1;
2676 list_del_init(&virt_ep->bw_endpoint_list);
2677 }
2678
2679 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2680 struct xhci_bw_info *ep_bw,
2681 struct xhci_interval_bw_table *bw_table,
2682 struct usb_device *udev,
2683 struct xhci_virt_ep *virt_ep,
2684 struct xhci_tt_bw_info *tt_info)
2685 {
2686 struct xhci_interval_bw *interval_bw;
2687 struct xhci_virt_ep *smaller_ep;
2688 int normalized_interval;
2689
2690 if (xhci_is_async_ep(ep_bw->type))
2691 return;
2692
2693 if (udev->speed == USB_SPEED_SUPER) {
2694 if (xhci_is_sync_in_ep(ep_bw->type))
2695 xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2696 xhci_get_ss_bw_consumed(ep_bw);
2697 else
2698 xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2699 xhci_get_ss_bw_consumed(ep_bw);
2700 return;
2701 }
2702
2703 /* For LS/FS devices, we need to translate the interval expressed in
2704 * microframes to frames.
2705 */
2706 if (udev->speed == USB_SPEED_HIGH)
2707 normalized_interval = ep_bw->ep_interval;
2708 else
2709 normalized_interval = ep_bw->ep_interval - 3;
2710
2711 if (normalized_interval == 0)
2712 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2713 interval_bw = &bw_table->interval_bw[normalized_interval];
2714 interval_bw->num_packets += ep_bw->num_packets;
2715 switch (udev->speed) {
2716 case USB_SPEED_LOW:
2717 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2718 break;
2719 case USB_SPEED_FULL:
2720 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2721 break;
2722 case USB_SPEED_HIGH:
2723 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2724 break;
2725 case USB_SPEED_SUPER:
2726 case USB_SPEED_SUPER_PLUS:
2727 case USB_SPEED_UNKNOWN:
2728 case USB_SPEED_WIRELESS:
2729 /* Should never happen because only LS/FS/HS endpoints will get
2730 * added to the endpoint list.
2731 */
2732 return;
2733 }
2734
2735 if (tt_info)
2736 tt_info->active_eps += 1;
2737 /* Insert the endpoint into the list, largest max packet size first. */
2738 list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2739 bw_endpoint_list) {
2740 if (ep_bw->max_packet_size >=
2741 smaller_ep->bw_info.max_packet_size) {
2742 /* Add the new ep before the smaller endpoint */
2743 list_add_tail(&virt_ep->bw_endpoint_list,
2744 &smaller_ep->bw_endpoint_list);
2745 return;
2746 }
2747 }
2748 /* Add the new endpoint at the end of the list. */
2749 list_add_tail(&virt_ep->bw_endpoint_list,
2750 &interval_bw->endpoints);
2751 }
2752
2753 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2754 struct xhci_virt_device *virt_dev,
2755 int old_active_eps)
2756 {
2757 struct xhci_root_port_bw_info *rh_bw_info;
2758 if (!virt_dev->tt_info)
2759 return;
2760
2761 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2762 if (old_active_eps == 0 &&
2763 virt_dev->tt_info->active_eps != 0) {
2764 rh_bw_info->num_active_tts += 1;
2765 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2766 } else if (old_active_eps != 0 &&
2767 virt_dev->tt_info->active_eps == 0) {
2768 rh_bw_info->num_active_tts -= 1;
2769 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2770 }
2771 }
2772
2773 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2774 struct xhci_virt_device *virt_dev,
2775 struct xhci_container_ctx *in_ctx)
2776 {
2777 struct xhci_bw_info ep_bw_info[31];
2778 int i;
2779 struct xhci_input_control_ctx *ctrl_ctx;
2780 int old_active_eps = 0;
2781
2782 if (virt_dev->tt_info)
2783 old_active_eps = virt_dev->tt_info->active_eps;
2784
2785 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2786 if (!ctrl_ctx) {
2787 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2788 __func__);
2789 return -ENOMEM;
2790 }
2791
2792 for (i = 0; i < 31; i++) {
2793 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2794 continue;
2795
2796 /* Make a copy of the BW info in case we need to revert this */
2797 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2798 sizeof(ep_bw_info[i]));
2799 /* Drop the endpoint from the interval table if the endpoint is
2800 * being dropped or changed.
2801 */
2802 if (EP_IS_DROPPED(ctrl_ctx, i))
2803 xhci_drop_ep_from_interval_table(xhci,
2804 &virt_dev->eps[i].bw_info,
2805 virt_dev->bw_table,
2806 virt_dev->udev,
2807 &virt_dev->eps[i],
2808 virt_dev->tt_info);
2809 }
2810 /* Overwrite the information stored in the endpoints' bw_info */
2811 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2812 for (i = 0; i < 31; i++) {
2813 /* Add any changed or added endpoints to the interval table */
2814 if (EP_IS_ADDED(ctrl_ctx, i))
2815 xhci_add_ep_to_interval_table(xhci,
2816 &virt_dev->eps[i].bw_info,
2817 virt_dev->bw_table,
2818 virt_dev->udev,
2819 &virt_dev->eps[i],
2820 virt_dev->tt_info);
2821 }
2822
2823 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2824 /* Ok, this fits in the bandwidth we have.
2825 * Update the number of active TTs.
2826 */
2827 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2828 return 0;
2829 }
2830
2831 /* We don't have enough bandwidth for this, revert the stored info. */
2832 for (i = 0; i < 31; i++) {
2833 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2834 continue;
2835
2836 /* Drop the new copies of any added or changed endpoints from
2837 * the interval table.
2838 */
2839 if (EP_IS_ADDED(ctrl_ctx, i)) {
2840 xhci_drop_ep_from_interval_table(xhci,
2841 &virt_dev->eps[i].bw_info,
2842 virt_dev->bw_table,
2843 virt_dev->udev,
2844 &virt_dev->eps[i],
2845 virt_dev->tt_info);
2846 }
2847 /* Revert the endpoint back to its old information */
2848 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2849 sizeof(ep_bw_info[i]));
2850 /* Add any changed or dropped endpoints back into the table */
2851 if (EP_IS_DROPPED(ctrl_ctx, i))
2852 xhci_add_ep_to_interval_table(xhci,
2853 &virt_dev->eps[i].bw_info,
2854 virt_dev->bw_table,
2855 virt_dev->udev,
2856 &virt_dev->eps[i],
2857 virt_dev->tt_info);
2858 }
2859 return -ENOMEM;
2860 }
2861
2862
2863 /* Issue a configure endpoint command or evaluate context command
2864 * and wait for it to finish.
2865 */
2866 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2867 struct usb_device *udev,
2868 struct xhci_command *command,
2869 bool ctx_change, bool must_succeed)
2870 {
2871 int ret;
2872 unsigned long flags;
2873 struct xhci_input_control_ctx *ctrl_ctx;
2874 struct xhci_virt_device *virt_dev;
2875 struct xhci_slot_ctx *slot_ctx;
2876
2877 if (!command)
2878 return -EINVAL;
2879
2880 spin_lock_irqsave(&xhci->lock, flags);
2881
2882 if (xhci->xhc_state & XHCI_STATE_DYING) {
2883 spin_unlock_irqrestore(&xhci->lock, flags);
2884 return -ESHUTDOWN;
2885 }
2886
2887 virt_dev = xhci->devs[udev->slot_id];
2888
2889 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2890 if (!ctrl_ctx) {
2891 spin_unlock_irqrestore(&xhci->lock, flags);
2892 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2893 __func__);
2894 return -ENOMEM;
2895 }
2896
2897 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2898 xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2899 spin_unlock_irqrestore(&xhci->lock, flags);
2900 xhci_warn(xhci, "Not enough host resources, "
2901 "active endpoint contexts = %u\n",
2902 xhci->num_active_eps);
2903 return -ENOMEM;
2904 }
2905 if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2906 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2907 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2908 xhci_free_host_resources(xhci, ctrl_ctx);
2909 spin_unlock_irqrestore(&xhci->lock, flags);
2910 xhci_warn(xhci, "Not enough bandwidth\n");
2911 return -ENOMEM;
2912 }
2913
2914 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2915
2916 trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2917 trace_xhci_configure_endpoint(slot_ctx);
2918
2919 if (!ctx_change)
2920 ret = xhci_queue_configure_endpoint(xhci, command,
2921 command->in_ctx->dma,
2922 udev->slot_id, must_succeed);
2923 else
2924 ret = xhci_queue_evaluate_context(xhci, command,
2925 command->in_ctx->dma,
2926 udev->slot_id, must_succeed);
2927 if (ret < 0) {
2928 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2929 xhci_free_host_resources(xhci, ctrl_ctx);
2930 spin_unlock_irqrestore(&xhci->lock, flags);
2931 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2932 "FIXME allocate a new ring segment");
2933 return -ENOMEM;
2934 }
2935 xhci_ring_cmd_db(xhci);
2936 spin_unlock_irqrestore(&xhci->lock, flags);
2937
2938 /* Wait for the configure endpoint command to complete */
2939 wait_for_completion(command->completion);
2940
2941 if (!ctx_change)
2942 ret = xhci_configure_endpoint_result(xhci, udev,
2943 &command->status);
2944 else
2945 ret = xhci_evaluate_context_result(xhci, udev,
2946 &command->status);
2947
2948 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2949 spin_lock_irqsave(&xhci->lock, flags);
2950 /* If the command failed, remove the reserved resources.
2951 * Otherwise, clean up the estimate to include dropped eps.
2952 */
2953 if (ret)
2954 xhci_free_host_resources(xhci, ctrl_ctx);
2955 else
2956 xhci_finish_resource_reservation(xhci, ctrl_ctx);
2957 spin_unlock_irqrestore(&xhci->lock, flags);
2958 }
2959 return ret;
2960 }
2961
2962 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2963 struct xhci_virt_device *vdev, int i)
2964 {
2965 struct xhci_virt_ep *ep = &vdev->eps[i];
2966
2967 if (ep->ep_state & EP_HAS_STREAMS) {
2968 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2969 xhci_get_endpoint_address(i));
2970 xhci_free_stream_info(xhci, ep->stream_info);
2971 ep->stream_info = NULL;
2972 ep->ep_state &= ~EP_HAS_STREAMS;
2973 }
2974 }
2975
2976 /* Called after one or more calls to xhci_add_endpoint() or
2977 * xhci_drop_endpoint(). If this call fails, the USB core is expected
2978 * to call xhci_reset_bandwidth().
2979 *
2980 * Since we are in the middle of changing either configuration or
2981 * installing a new alt setting, the USB core won't allow URBs to be
2982 * enqueued for any endpoint on the old config or interface. Nothing
2983 * else should be touching the xhci->devs[slot_id] structure, so we
2984 * don't need to take the xhci->lock for manipulating that.
2985 */
2986 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2987 {
2988 int i;
2989 int ret = 0;
2990 struct xhci_hcd *xhci;
2991 struct xhci_virt_device *virt_dev;
2992 struct xhci_input_control_ctx *ctrl_ctx;
2993 struct xhci_slot_ctx *slot_ctx;
2994 struct xhci_command *command;
2995
2996 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2997 if (ret <= 0)
2998 return ret;
2999 xhci = hcd_to_xhci(hcd);
3000 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
3001 (xhci->xhc_state & XHCI_STATE_REMOVING))
3002 return -ENODEV;
3003
3004 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3005 virt_dev = xhci->devs[udev->slot_id];
3006
3007 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3008 if (!command)
3009 return -ENOMEM;
3010
3011 command->in_ctx = virt_dev->in_ctx;
3012
3013 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
3014 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3015 if (!ctrl_ctx) {
3016 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3017 __func__);
3018 ret = -ENOMEM;
3019 goto command_cleanup;
3020 }
3021 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3022 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
3023 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
3024
3025 /* Don't issue the command if there's no endpoints to update. */
3026 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
3027 ctrl_ctx->drop_flags == 0) {
3028 ret = 0;
3029 goto command_cleanup;
3030 }
3031 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
3032 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3033 for (i = 31; i >= 1; i--) {
3034 __le32 le32 = cpu_to_le32(BIT(i));
3035
3036 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
3037 || (ctrl_ctx->add_flags & le32) || i == 1) {
3038 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
3039 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
3040 break;
3041 }
3042 }
3043
3044 ret = xhci_configure_endpoint(xhci, udev, command,
3045 false, false);
3046 if (ret)
3047 /* Callee should call reset_bandwidth() */
3048 goto command_cleanup;
3049
3050 /* Free any rings that were dropped, but not changed. */
3051 for (i = 1; i < 31; i++) {
3052 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
3053 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
3054 xhci_free_endpoint_ring(xhci, virt_dev, i);
3055 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3056 }
3057 }
3058 xhci_zero_in_ctx(xhci, virt_dev);
3059 /*
3060 * Install any rings for completely new endpoints or changed endpoints,
3061 * and free any old rings from changed endpoints.
3062 */
3063 for (i = 1; i < 31; i++) {
3064 if (!virt_dev->eps[i].new_ring)
3065 continue;
3066 /* Only free the old ring if it exists.
3067 * It may not if this is the first add of an endpoint.
3068 */
3069 if (virt_dev->eps[i].ring) {
3070 xhci_free_endpoint_ring(xhci, virt_dev, i);
3071 }
3072 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3073 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
3074 virt_dev->eps[i].new_ring = NULL;
3075 xhci_debugfs_create_endpoint(xhci, virt_dev, i);
3076 }
3077 command_cleanup:
3078 kfree(command->completion);
3079 kfree(command);
3080
3081 return ret;
3082 }
3083 EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
3084
3085 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3086 {
3087 struct xhci_hcd *xhci;
3088 struct xhci_virt_device *virt_dev;
3089 int i, ret;
3090
3091 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3092 if (ret <= 0)
3093 return;
3094 xhci = hcd_to_xhci(hcd);
3095
3096 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3097 virt_dev = xhci->devs[udev->slot_id];
3098 /* Free any rings allocated for added endpoints */
3099 for (i = 0; i < 31; i++) {
3100 if (virt_dev->eps[i].new_ring) {
3101 xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3102 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3103 virt_dev->eps[i].new_ring = NULL;
3104 }
3105 }
3106 xhci_zero_in_ctx(xhci, virt_dev);
3107 }
3108 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3109
3110 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3111 struct xhci_container_ctx *in_ctx,
3112 struct xhci_container_ctx *out_ctx,
3113 struct xhci_input_control_ctx *ctrl_ctx,
3114 u32 add_flags, u32 drop_flags)
3115 {
3116 ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3117 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3118 xhci_slot_copy(xhci, in_ctx, out_ctx);
3119 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3120 }
3121
3122 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3123 struct usb_host_endpoint *host_ep)
3124 {
3125 struct xhci_hcd *xhci;
3126 struct xhci_virt_device *vdev;
3127 struct xhci_virt_ep *ep;
3128 struct usb_device *udev;
3129 unsigned long flags;
3130 unsigned int ep_index;
3131
3132 xhci = hcd_to_xhci(hcd);
3133 rescan:
3134 spin_lock_irqsave(&xhci->lock, flags);
3135
3136 udev = (struct usb_device *)host_ep->hcpriv;
3137 if (!udev || !udev->slot_id)
3138 goto done;
3139
3140 vdev = xhci->devs[udev->slot_id];
3141 if (!vdev)
3142 goto done;
3143
3144 ep_index = xhci_get_endpoint_index(&host_ep->desc);
3145 ep = &vdev->eps[ep_index];
3146 if (!ep)
3147 goto done;
3148
3149 /* wait for hub_tt_work to finish clearing hub TT */
3150 if (ep->ep_state & EP_CLEARING_TT) {
3151 spin_unlock_irqrestore(&xhci->lock, flags);
3152 schedule_timeout_uninterruptible(1);
3153 goto rescan;
3154 }
3155
3156 if (ep->ep_state)
3157 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3158 ep->ep_state);
3159 done:
3160 host_ep->hcpriv = NULL;
3161 spin_unlock_irqrestore(&xhci->lock, flags);
3162 }
3163
3164 /*
3165 * Called after usb core issues a clear halt control message.
3166 * The host side of the halt should already be cleared by a reset endpoint
3167 * command issued when the STALL event was received.
3168 *
3169 * The reset endpoint command may only be issued to endpoints in the halted
3170 * state. For software that wishes to reset the data toggle or sequence number
3171 * of an endpoint that isn't in the halted state this function will issue a
3172 * configure endpoint command with the Drop and Add bits set for the target
3173 * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3174 */
3175
3176 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3177 struct usb_host_endpoint *host_ep)
3178 {
3179 struct xhci_hcd *xhci;
3180 struct usb_device *udev;
3181 struct xhci_virt_device *vdev;
3182 struct xhci_virt_ep *ep;
3183 struct xhci_input_control_ctx *ctrl_ctx;
3184 struct xhci_command *stop_cmd, *cfg_cmd;
3185 unsigned int ep_index;
3186 unsigned long flags;
3187 u32 ep_flag;
3188 int err;
3189
3190 xhci = hcd_to_xhci(hcd);
3191 if (!host_ep->hcpriv)
3192 return;
3193 udev = (struct usb_device *) host_ep->hcpriv;
3194 vdev = xhci->devs[udev->slot_id];
3195
3196 /*
3197 * vdev may be lost due to xHC restore error and re-initialization
3198 * during S3/S4 resume. A new vdev will be allocated later by
3199 * xhci_discover_or_reset_device()
3200 */
3201 if (!udev->slot_id || !vdev)
3202 return;
3203 ep_index = xhci_get_endpoint_index(&host_ep->desc);
3204 ep = &vdev->eps[ep_index];
3205 if (!ep)
3206 return;
3207
3208 /* Bail out if toggle is already being cleared by a endpoint reset */
3209 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3210 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3211 return;
3212 }
3213 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3214 if (usb_endpoint_xfer_control(&host_ep->desc) ||
3215 usb_endpoint_xfer_isoc(&host_ep->desc))
3216 return;
3217
3218 ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3219
3220 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3221 return;
3222
3223 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3224 if (!stop_cmd)
3225 return;
3226
3227 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3228 if (!cfg_cmd)
3229 goto cleanup;
3230
3231 spin_lock_irqsave(&xhci->lock, flags);
3232
3233 /* block queuing new trbs and ringing ep doorbell */
3234 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3235
3236 /*
3237 * Make sure endpoint ring is empty before resetting the toggle/seq.
3238 * Driver is required to synchronously cancel all transfer request.
3239 * Stop the endpoint to force xHC to update the output context
3240 */
3241
3242 if (!list_empty(&ep->ring->td_list)) {
3243 dev_err(&udev->dev, "EP not empty, refuse reset\n");
3244 spin_unlock_irqrestore(&xhci->lock, flags);
3245 xhci_free_command(xhci, cfg_cmd);
3246 goto cleanup;
3247 }
3248
3249 err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3250 ep_index, 0);
3251 if (err < 0) {
3252 spin_unlock_irqrestore(&xhci->lock, flags);
3253 xhci_free_command(xhci, cfg_cmd);
3254 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3255 __func__, err);
3256 goto cleanup;
3257 }
3258
3259 xhci_ring_cmd_db(xhci);
3260 spin_unlock_irqrestore(&xhci->lock, flags);
3261
3262 wait_for_completion(stop_cmd->completion);
3263
3264 spin_lock_irqsave(&xhci->lock, flags);
3265
3266 /* config ep command clears toggle if add and drop ep flags are set */
3267 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3268 if (!ctrl_ctx) {
3269 spin_unlock_irqrestore(&xhci->lock, flags);
3270 xhci_free_command(xhci, cfg_cmd);
3271 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3272 __func__);
3273 goto cleanup;
3274 }
3275
3276 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3277 ctrl_ctx, ep_flag, ep_flag);
3278 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3279
3280 err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3281 udev->slot_id, false);
3282 if (err < 0) {
3283 spin_unlock_irqrestore(&xhci->lock, flags);
3284 xhci_free_command(xhci, cfg_cmd);
3285 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3286 __func__, err);
3287 goto cleanup;
3288 }
3289
3290 xhci_ring_cmd_db(xhci);
3291 spin_unlock_irqrestore(&xhci->lock, flags);
3292
3293 wait_for_completion(cfg_cmd->completion);
3294
3295 xhci_free_command(xhci, cfg_cmd);
3296 cleanup:
3297 xhci_free_command(xhci, stop_cmd);
3298 if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3299 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3300 }
3301
3302 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3303 struct usb_device *udev, struct usb_host_endpoint *ep,
3304 unsigned int slot_id)
3305 {
3306 int ret;
3307 unsigned int ep_index;
3308 unsigned int ep_state;
3309
3310 if (!ep)
3311 return -EINVAL;
3312 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3313 if (ret <= 0)
3314 return -EINVAL;
3315 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3316 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3317 " descriptor for ep 0x%x does not support streams\n",
3318 ep->desc.bEndpointAddress);
3319 return -EINVAL;
3320 }
3321
3322 ep_index = xhci_get_endpoint_index(&ep->desc);
3323 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3324 if (ep_state & EP_HAS_STREAMS ||
3325 ep_state & EP_GETTING_STREAMS) {
3326 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3327 "already has streams set up.\n",
3328 ep->desc.bEndpointAddress);
3329 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3330 "dynamic stream context array reallocation.\n");
3331 return -EINVAL;
3332 }
3333 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3334 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3335 "endpoint 0x%x; URBs are pending.\n",
3336 ep->desc.bEndpointAddress);
3337 return -EINVAL;
3338 }
3339 return 0;
3340 }
3341
3342 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3343 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3344 {
3345 unsigned int max_streams;
3346
3347 /* The stream context array size must be a power of two */
3348 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3349 /*
3350 * Find out how many primary stream array entries the host controller
3351 * supports. Later we may use secondary stream arrays (similar to 2nd
3352 * level page entries), but that's an optional feature for xHCI host
3353 * controllers. xHCs must support at least 4 stream IDs.
3354 */
3355 max_streams = HCC_MAX_PSA(xhci->hcc_params);
3356 if (*num_stream_ctxs > max_streams) {
3357 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3358 max_streams);
3359 *num_stream_ctxs = max_streams;
3360 *num_streams = max_streams;
3361 }
3362 }
3363
3364 /* Returns an error code if one of the endpoint already has streams.
3365 * This does not change any data structures, it only checks and gathers
3366 * information.
3367 */
3368 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3369 struct usb_device *udev,
3370 struct usb_host_endpoint **eps, unsigned int num_eps,
3371 unsigned int *num_streams, u32 *changed_ep_bitmask)
3372 {
3373 unsigned int max_streams;
3374 unsigned int endpoint_flag;
3375 int i;
3376 int ret;
3377
3378 for (i = 0; i < num_eps; i++) {
3379 ret = xhci_check_streams_endpoint(xhci, udev,
3380 eps[i], udev->slot_id);
3381 if (ret < 0)
3382 return ret;
3383
3384 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3385 if (max_streams < (*num_streams - 1)) {
3386 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3387 eps[i]->desc.bEndpointAddress,
3388 max_streams);
3389 *num_streams = max_streams+1;
3390 }
3391
3392 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3393 if (*changed_ep_bitmask & endpoint_flag)
3394 return -EINVAL;
3395 *changed_ep_bitmask |= endpoint_flag;
3396 }
3397 return 0;
3398 }
3399
3400 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3401 struct usb_device *udev,
3402 struct usb_host_endpoint **eps, unsigned int num_eps)
3403 {
3404 u32 changed_ep_bitmask = 0;
3405 unsigned int slot_id;
3406 unsigned int ep_index;
3407 unsigned int ep_state;
3408 int i;
3409
3410 slot_id = udev->slot_id;
3411 if (!xhci->devs[slot_id])
3412 return 0;
3413
3414 for (i = 0; i < num_eps; i++) {
3415 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3416 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3417 /* Are streams already being freed for the endpoint? */
3418 if (ep_state & EP_GETTING_NO_STREAMS) {
3419 xhci_warn(xhci, "WARN Can't disable streams for "
3420 "endpoint 0x%x, "
3421 "streams are being disabled already\n",
3422 eps[i]->desc.bEndpointAddress);
3423 return 0;
3424 }
3425 /* Are there actually any streams to free? */
3426 if (!(ep_state & EP_HAS_STREAMS) &&
3427 !(ep_state & EP_GETTING_STREAMS)) {
3428 xhci_warn(xhci, "WARN Can't disable streams for "
3429 "endpoint 0x%x, "
3430 "streams are already disabled!\n",
3431 eps[i]->desc.bEndpointAddress);
3432 xhci_warn(xhci, "WARN xhci_free_streams() called "
3433 "with non-streams endpoint\n");
3434 return 0;
3435 }
3436 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3437 }
3438 return changed_ep_bitmask;
3439 }
3440
3441 /*
3442 * The USB device drivers use this function (through the HCD interface in USB
3443 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
3444 * coordinate mass storage command queueing across multiple endpoints (basically
3445 * a stream ID == a task ID).
3446 *
3447 * Setting up streams involves allocating the same size stream context array
3448 * for each endpoint and issuing a configure endpoint command for all endpoints.
3449 *
3450 * Don't allow the call to succeed if one endpoint only supports one stream
3451 * (which means it doesn't support streams at all).
3452 *
3453 * Drivers may get less stream IDs than they asked for, if the host controller
3454 * hardware or endpoints claim they can't support the number of requested
3455 * stream IDs.
3456 */
3457 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3458 struct usb_host_endpoint **eps, unsigned int num_eps,
3459 unsigned int num_streams, gfp_t mem_flags)
3460 {
3461 int i, ret;
3462 struct xhci_hcd *xhci;
3463 struct xhci_virt_device *vdev;
3464 struct xhci_command *config_cmd;
3465 struct xhci_input_control_ctx *ctrl_ctx;
3466 unsigned int ep_index;
3467 unsigned int num_stream_ctxs;
3468 unsigned int max_packet;
3469 unsigned long flags;
3470 u32 changed_ep_bitmask = 0;
3471
3472 if (!eps)
3473 return -EINVAL;
3474
3475 /* Add one to the number of streams requested to account for
3476 * stream 0 that is reserved for xHCI usage.
3477 */
3478 num_streams += 1;
3479 xhci = hcd_to_xhci(hcd);
3480 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3481 num_streams);
3482
3483 /* MaxPSASize value 0 (2 streams) means streams are not supported */
3484 if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3485 HCC_MAX_PSA(xhci->hcc_params) < 4) {
3486 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3487 return -ENOSYS;
3488 }
3489
3490 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3491 if (!config_cmd)
3492 return -ENOMEM;
3493
3494 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3495 if (!ctrl_ctx) {
3496 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3497 __func__);
3498 xhci_free_command(xhci, config_cmd);
3499 return -ENOMEM;
3500 }
3501
3502 /* Check to make sure all endpoints are not already configured for
3503 * streams. While we're at it, find the maximum number of streams that
3504 * all the endpoints will support and check for duplicate endpoints.
3505 */
3506 spin_lock_irqsave(&xhci->lock, flags);
3507 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3508 num_eps, &num_streams, &changed_ep_bitmask);
3509 if (ret < 0) {
3510 xhci_free_command(xhci, config_cmd);
3511 spin_unlock_irqrestore(&xhci->lock, flags);
3512 return ret;
3513 }
3514 if (num_streams <= 1) {
3515 xhci_warn(xhci, "WARN: endpoints can't handle "
3516 "more than one stream.\n");
3517 xhci_free_command(xhci, config_cmd);
3518 spin_unlock_irqrestore(&xhci->lock, flags);
3519 return -EINVAL;
3520 }
3521 vdev = xhci->devs[udev->slot_id];
3522 /* Mark each endpoint as being in transition, so
3523 * xhci_urb_enqueue() will reject all URBs.
3524 */
3525 for (i = 0; i < num_eps; i++) {
3526 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3527 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3528 }
3529 spin_unlock_irqrestore(&xhci->lock, flags);
3530
3531 /* Setup internal data structures and allocate HW data structures for
3532 * streams (but don't install the HW structures in the input context
3533 * until we're sure all memory allocation succeeded).
3534 */
3535 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3536 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3537 num_stream_ctxs, num_streams);
3538
3539 for (i = 0; i < num_eps; i++) {
3540 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3541 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3542 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3543 num_stream_ctxs,
3544 num_streams,
3545 max_packet, mem_flags);
3546 if (!vdev->eps[ep_index].stream_info)
3547 goto cleanup;
3548 /* Set maxPstreams in endpoint context and update deq ptr to
3549 * point to stream context array. FIXME
3550 */
3551 }
3552
3553 /* Set up the input context for a configure endpoint command. */
3554 for (i = 0; i < num_eps; i++) {
3555 struct xhci_ep_ctx *ep_ctx;
3556
3557 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3558 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3559
3560 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3561 vdev->out_ctx, ep_index);
3562 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3563 vdev->eps[ep_index].stream_info);
3564 }
3565 /* Tell the HW to drop its old copy of the endpoint context info
3566 * and add the updated copy from the input context.
3567 */
3568 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3569 vdev->out_ctx, ctrl_ctx,
3570 changed_ep_bitmask, changed_ep_bitmask);
3571
3572 /* Issue and wait for the configure endpoint command */
3573 ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3574 false, false);
3575
3576 /* xHC rejected the configure endpoint command for some reason, so we
3577 * leave the old ring intact and free our internal streams data
3578 * structure.
3579 */
3580 if (ret < 0)
3581 goto cleanup;
3582
3583 spin_lock_irqsave(&xhci->lock, flags);
3584 for (i = 0; i < num_eps; i++) {
3585 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3586 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3587 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3588 udev->slot_id, ep_index);
3589 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3590 }
3591 xhci_free_command(xhci, config_cmd);
3592 spin_unlock_irqrestore(&xhci->lock, flags);
3593
3594 for (i = 0; i < num_eps; i++) {
3595 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3596 xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3597 }
3598 /* Subtract 1 for stream 0, which drivers can't use */
3599 return num_streams - 1;
3600
3601 cleanup:
3602 /* If it didn't work, free the streams! */
3603 for (i = 0; i < num_eps; i++) {
3604 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3605 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3606 vdev->eps[ep_index].stream_info = NULL;
3607 /* FIXME Unset maxPstreams in endpoint context and
3608 * update deq ptr to point to normal string ring.
3609 */
3610 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3611 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3612 xhci_endpoint_zero(xhci, vdev, eps[i]);
3613 }
3614 xhci_free_command(xhci, config_cmd);
3615 return -ENOMEM;
3616 }
3617
3618 /* Transition the endpoint from using streams to being a "normal" endpoint
3619 * without streams.
3620 *
3621 * Modify the endpoint context state, submit a configure endpoint command,
3622 * and free all endpoint rings for streams if that completes successfully.
3623 */
3624 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3625 struct usb_host_endpoint **eps, unsigned int num_eps,
3626 gfp_t mem_flags)
3627 {
3628 int i, ret;
3629 struct xhci_hcd *xhci;
3630 struct xhci_virt_device *vdev;
3631 struct xhci_command *command;
3632 struct xhci_input_control_ctx *ctrl_ctx;
3633 unsigned int ep_index;
3634 unsigned long flags;
3635 u32 changed_ep_bitmask;
3636
3637 xhci = hcd_to_xhci(hcd);
3638 vdev = xhci->devs[udev->slot_id];
3639
3640 /* Set up a configure endpoint command to remove the streams rings */
3641 spin_lock_irqsave(&xhci->lock, flags);
3642 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3643 udev, eps, num_eps);
3644 if (changed_ep_bitmask == 0) {
3645 spin_unlock_irqrestore(&xhci->lock, flags);
3646 return -EINVAL;
3647 }
3648
3649 /* Use the xhci_command structure from the first endpoint. We may have
3650 * allocated too many, but the driver may call xhci_free_streams() for
3651 * each endpoint it grouped into one call to xhci_alloc_streams().
3652 */
3653 ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3654 command = vdev->eps[ep_index].stream_info->free_streams_command;
3655 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3656 if (!ctrl_ctx) {
3657 spin_unlock_irqrestore(&xhci->lock, flags);
3658 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3659 __func__);
3660 return -EINVAL;
3661 }
3662
3663 for (i = 0; i < num_eps; i++) {
3664 struct xhci_ep_ctx *ep_ctx;
3665
3666 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3667 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3668 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3669 EP_GETTING_NO_STREAMS;
3670
3671 xhci_endpoint_copy(xhci, command->in_ctx,
3672 vdev->out_ctx, ep_index);
3673 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3674 &vdev->eps[ep_index]);
3675 }
3676 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3677 vdev->out_ctx, ctrl_ctx,
3678 changed_ep_bitmask, changed_ep_bitmask);
3679 spin_unlock_irqrestore(&xhci->lock, flags);
3680
3681 /* Issue and wait for the configure endpoint command,
3682 * which must succeed.
3683 */
3684 ret = xhci_configure_endpoint(xhci, udev, command,
3685 false, true);
3686
3687 /* xHC rejected the configure endpoint command for some reason, so we
3688 * leave the streams rings intact.
3689 */
3690 if (ret < 0)
3691 return ret;
3692
3693 spin_lock_irqsave(&xhci->lock, flags);
3694 for (i = 0; i < num_eps; i++) {
3695 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3696 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3697 vdev->eps[ep_index].stream_info = NULL;
3698 /* FIXME Unset maxPstreams in endpoint context and
3699 * update deq ptr to point to normal string ring.
3700 */
3701 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3702 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3703 }
3704 spin_unlock_irqrestore(&xhci->lock, flags);
3705
3706 return 0;
3707 }
3708
3709 /*
3710 * Deletes endpoint resources for endpoints that were active before a Reset
3711 * Device command, or a Disable Slot command. The Reset Device command leaves
3712 * the control endpoint intact, whereas the Disable Slot command deletes it.
3713 *
3714 * Must be called with xhci->lock held.
3715 */
3716 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3717 struct xhci_virt_device *virt_dev, bool drop_control_ep)
3718 {
3719 int i;
3720 unsigned int num_dropped_eps = 0;
3721 unsigned int drop_flags = 0;
3722
3723 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3724 if (virt_dev->eps[i].ring) {
3725 drop_flags |= 1 << i;
3726 num_dropped_eps++;
3727 }
3728 }
3729 xhci->num_active_eps -= num_dropped_eps;
3730 if (num_dropped_eps)
3731 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3732 "Dropped %u ep ctxs, flags = 0x%x, "
3733 "%u now active.",
3734 num_dropped_eps, drop_flags,
3735 xhci->num_active_eps);
3736 }
3737
3738 /*
3739 * This submits a Reset Device Command, which will set the device state to 0,
3740 * set the device address to 0, and disable all the endpoints except the default
3741 * control endpoint. The USB core should come back and call
3742 * xhci_address_device(), and then re-set up the configuration. If this is
3743 * called because of a usb_reset_and_verify_device(), then the old alternate
3744 * settings will be re-installed through the normal bandwidth allocation
3745 * functions.
3746 *
3747 * Wait for the Reset Device command to finish. Remove all structures
3748 * associated with the endpoints that were disabled. Clear the input device
3749 * structure? Reset the control endpoint 0 max packet size?
3750 *
3751 * If the virt_dev to be reset does not exist or does not match the udev,
3752 * it means the device is lost, possibly due to the xHC restore error and
3753 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3754 * re-allocate the device.
3755 */
3756 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3757 struct usb_device *udev)
3758 {
3759 int ret, i;
3760 unsigned long flags;
3761 struct xhci_hcd *xhci;
3762 unsigned int slot_id;
3763 struct xhci_virt_device *virt_dev;
3764 struct xhci_command *reset_device_cmd;
3765 struct xhci_slot_ctx *slot_ctx;
3766 int old_active_eps = 0;
3767
3768 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3769 if (ret <= 0)
3770 return ret;
3771 xhci = hcd_to_xhci(hcd);
3772 slot_id = udev->slot_id;
3773 virt_dev = xhci->devs[slot_id];
3774 if (!virt_dev) {
3775 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3776 "not exist. Re-allocate the device\n", slot_id);
3777 ret = xhci_alloc_dev(hcd, udev);
3778 if (ret == 1)
3779 return 0;
3780 else
3781 return -EINVAL;
3782 }
3783
3784 if (virt_dev->tt_info)
3785 old_active_eps = virt_dev->tt_info->active_eps;
3786
3787 if (virt_dev->udev != udev) {
3788 /* If the virt_dev and the udev does not match, this virt_dev
3789 * may belong to another udev.
3790 * Re-allocate the device.
3791 */
3792 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3793 "not match the udev. Re-allocate the device\n",
3794 slot_id);
3795 ret = xhci_alloc_dev(hcd, udev);
3796 if (ret == 1)
3797 return 0;
3798 else
3799 return -EINVAL;
3800 }
3801
3802 /* If device is not setup, there is no point in resetting it */
3803 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3804 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3805 SLOT_STATE_DISABLED)
3806 return 0;
3807
3808 trace_xhci_discover_or_reset_device(slot_ctx);
3809
3810 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3811 /* Allocate the command structure that holds the struct completion.
3812 * Assume we're in process context, since the normal device reset
3813 * process has to wait for the device anyway. Storage devices are
3814 * reset as part of error handling, so use GFP_NOIO instead of
3815 * GFP_KERNEL.
3816 */
3817 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3818 if (!reset_device_cmd) {
3819 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3820 return -ENOMEM;
3821 }
3822
3823 /* Attempt to submit the Reset Device command to the command ring */
3824 spin_lock_irqsave(&xhci->lock, flags);
3825
3826 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3827 if (ret) {
3828 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3829 spin_unlock_irqrestore(&xhci->lock, flags);
3830 goto command_cleanup;
3831 }
3832 xhci_ring_cmd_db(xhci);
3833 spin_unlock_irqrestore(&xhci->lock, flags);
3834
3835 /* Wait for the Reset Device command to finish */
3836 wait_for_completion(reset_device_cmd->completion);
3837
3838 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3839 * unless we tried to reset a slot ID that wasn't enabled,
3840 * or the device wasn't in the addressed or configured state.
3841 */
3842 ret = reset_device_cmd->status;
3843 switch (ret) {
3844 case COMP_COMMAND_ABORTED:
3845 case COMP_COMMAND_RING_STOPPED:
3846 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3847 ret = -ETIME;
3848 goto command_cleanup;
3849 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3850 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3851 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3852 slot_id,
3853 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3854 xhci_dbg(xhci, "Not freeing device rings.\n");
3855 /* Don't treat this as an error. May change my mind later. */
3856 ret = 0;
3857 goto command_cleanup;
3858 case COMP_SUCCESS:
3859 xhci_dbg(xhci, "Successful reset device command.\n");
3860 break;
3861 default:
3862 if (xhci_is_vendor_info_code(xhci, ret))
3863 break;
3864 xhci_warn(xhci, "Unknown completion code %u for "
3865 "reset device command.\n", ret);
3866 ret = -EINVAL;
3867 goto command_cleanup;
3868 }
3869
3870 /* Free up host controller endpoint resources */
3871 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3872 spin_lock_irqsave(&xhci->lock, flags);
3873 /* Don't delete the default control endpoint resources */
3874 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3875 spin_unlock_irqrestore(&xhci->lock, flags);
3876 }
3877
3878 /* Everything but endpoint 0 is disabled, so free the rings. */
3879 for (i = 1; i < 31; i++) {
3880 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3881
3882 if (ep->ep_state & EP_HAS_STREAMS) {
3883 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3884 xhci_get_endpoint_address(i));
3885 xhci_free_stream_info(xhci, ep->stream_info);
3886 ep->stream_info = NULL;
3887 ep->ep_state &= ~EP_HAS_STREAMS;
3888 }
3889
3890 if (ep->ring) {
3891 xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3892 xhci_free_endpoint_ring(xhci, virt_dev, i);
3893 }
3894 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3895 xhci_drop_ep_from_interval_table(xhci,
3896 &virt_dev->eps[i].bw_info,
3897 virt_dev->bw_table,
3898 udev,
3899 &virt_dev->eps[i],
3900 virt_dev->tt_info);
3901 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3902 }
3903 /* If necessary, update the number of active TTs on this root port */
3904 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3905 virt_dev->flags = 0;
3906 ret = 0;
3907
3908 command_cleanup:
3909 xhci_free_command(xhci, reset_device_cmd);
3910 return ret;
3911 }
3912
3913 /*
3914 * At this point, the struct usb_device is about to go away, the device has
3915 * disconnected, and all traffic has been stopped and the endpoints have been
3916 * disabled. Free any HC data structures associated with that device.
3917 */
3918 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3919 {
3920 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3921 struct xhci_virt_device *virt_dev;
3922 struct xhci_slot_ctx *slot_ctx;
3923 int i, ret;
3924
3925 #ifndef CONFIG_USB_DEFAULT_PERSIST
3926 /*
3927 * We called pm_runtime_get_noresume when the device was attached.
3928 * Decrement the counter here to allow controller to runtime suspend
3929 * if no devices remain.
3930 */
3931 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3932 pm_runtime_put_noidle(hcd->self.controller);
3933 #endif
3934
3935 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3936 /* If the host is halted due to driver unload, we still need to free the
3937 * device.
3938 */
3939 if (ret <= 0 && ret != -ENODEV)
3940 return;
3941
3942 virt_dev = xhci->devs[udev->slot_id];
3943 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3944 trace_xhci_free_dev(slot_ctx);
3945
3946 /* Stop any wayward timer functions (which may grab the lock) */
3947 for (i = 0; i < 31; i++) {
3948 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3949 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3950 }
3951 virt_dev->udev = NULL;
3952 ret = xhci_disable_slot(xhci, udev->slot_id);
3953 if (ret)
3954 xhci_free_virt_device(xhci, udev->slot_id);
3955 }
3956
3957 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3958 {
3959 struct xhci_command *command;
3960 unsigned long flags;
3961 u32 state;
3962 int ret = 0;
3963
3964 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
3965 if (!command)
3966 return -ENOMEM;
3967
3968 xhci_debugfs_remove_slot(xhci, slot_id);
3969
3970 spin_lock_irqsave(&xhci->lock, flags);
3971 /* Don't disable the slot if the host controller is dead. */
3972 state = readl(&xhci->op_regs->status);
3973 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3974 (xhci->xhc_state & XHCI_STATE_HALTED)) {
3975 spin_unlock_irqrestore(&xhci->lock, flags);
3976 kfree(command);
3977 return -ENODEV;
3978 }
3979
3980 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3981 slot_id);
3982 if (ret) {
3983 spin_unlock_irqrestore(&xhci->lock, flags);
3984 kfree(command);
3985 return ret;
3986 }
3987 xhci_ring_cmd_db(xhci);
3988 spin_unlock_irqrestore(&xhci->lock, flags);
3989 return ret;
3990 }
3991
3992 /*
3993 * Checks if we have enough host controller resources for the default control
3994 * endpoint.
3995 *
3996 * Must be called with xhci->lock held.
3997 */
3998 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3999 {
4000 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
4001 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4002 "Not enough ep ctxs: "
4003 "%u active, need to add 1, limit is %u.",
4004 xhci->num_active_eps, xhci->limit_active_eps);
4005 return -ENOMEM;
4006 }
4007 xhci->num_active_eps += 1;
4008 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4009 "Adding 1 ep ctx, %u now active.",
4010 xhci->num_active_eps);
4011 return 0;
4012 }
4013
4014
4015 /*
4016 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
4017 * timed out, or allocating memory failed. Returns 1 on success.
4018 */
4019 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
4020 {
4021 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4022 struct xhci_virt_device *vdev;
4023 struct xhci_slot_ctx *slot_ctx;
4024 unsigned long flags;
4025 int ret, slot_id;
4026 struct xhci_command *command;
4027
4028 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4029 if (!command)
4030 return 0;
4031
4032 spin_lock_irqsave(&xhci->lock, flags);
4033 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
4034 if (ret) {
4035 spin_unlock_irqrestore(&xhci->lock, flags);
4036 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
4037 xhci_free_command(xhci, command);
4038 return 0;
4039 }
4040 xhci_ring_cmd_db(xhci);
4041 spin_unlock_irqrestore(&xhci->lock, flags);
4042
4043 wait_for_completion(command->completion);
4044 slot_id = command->slot_id;
4045
4046 if (!slot_id || command->status != COMP_SUCCESS) {
4047 xhci_err(xhci, "Error while assigning device slot ID\n");
4048 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4049 HCS_MAX_SLOTS(
4050 readl(&xhci->cap_regs->hcs_params1)));
4051 xhci_free_command(xhci, command);
4052 return 0;
4053 }
4054
4055 xhci_free_command(xhci, command);
4056
4057 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4058 spin_lock_irqsave(&xhci->lock, flags);
4059 ret = xhci_reserve_host_control_ep_resources(xhci);
4060 if (ret) {
4061 spin_unlock_irqrestore(&xhci->lock, flags);
4062 xhci_warn(xhci, "Not enough host resources, "
4063 "active endpoint contexts = %u\n",
4064 xhci->num_active_eps);
4065 goto disable_slot;
4066 }
4067 spin_unlock_irqrestore(&xhci->lock, flags);
4068 }
4069 /* Use GFP_NOIO, since this function can be called from
4070 * xhci_discover_or_reset_device(), which may be called as part of
4071 * mass storage driver error handling.
4072 */
4073 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4074 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4075 goto disable_slot;
4076 }
4077 vdev = xhci->devs[slot_id];
4078 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4079 trace_xhci_alloc_dev(slot_ctx);
4080
4081 udev->slot_id = slot_id;
4082
4083 xhci_debugfs_create_slot(xhci, slot_id);
4084
4085 #ifndef CONFIG_USB_DEFAULT_PERSIST
4086 /*
4087 * If resetting upon resume, we can't put the controller into runtime
4088 * suspend if there is a device attached.
4089 */
4090 if (xhci->quirks & XHCI_RESET_ON_RESUME)
4091 pm_runtime_get_noresume(hcd->self.controller);
4092 #endif
4093
4094 /* Is this a LS or FS device under a HS hub? */
4095 /* Hub or peripherial? */
4096 return 1;
4097
4098 disable_slot:
4099 ret = xhci_disable_slot(xhci, udev->slot_id);
4100 if (ret)
4101 xhci_free_virt_device(xhci, udev->slot_id);
4102
4103 return 0;
4104 }
4105
4106 /*
4107 * Issue an Address Device command and optionally send a corresponding
4108 * SetAddress request to the device.
4109 */
4110 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4111 enum xhci_setup_dev setup)
4112 {
4113 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4114 unsigned long flags;
4115 struct xhci_virt_device *virt_dev;
4116 int ret = 0;
4117 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4118 struct xhci_slot_ctx *slot_ctx;
4119 struct xhci_input_control_ctx *ctrl_ctx;
4120 u64 temp_64;
4121 struct xhci_command *command = NULL;
4122
4123 mutex_lock(&xhci->mutex);
4124
4125 if (xhci->xhc_state) { /* dying, removing or halted */
4126 ret = -ESHUTDOWN;
4127 goto out;
4128 }
4129
4130 if (!udev->slot_id) {
4131 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4132 "Bad Slot ID %d", udev->slot_id);
4133 ret = -EINVAL;
4134 goto out;
4135 }
4136
4137 virt_dev = xhci->devs[udev->slot_id];
4138
4139 if (WARN_ON(!virt_dev)) {
4140 /*
4141 * In plug/unplug torture test with an NEC controller,
4142 * a zero-dereference was observed once due to virt_dev = 0.
4143 * Print useful debug rather than crash if it is observed again!
4144 */
4145 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4146 udev->slot_id);
4147 ret = -EINVAL;
4148 goto out;
4149 }
4150 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4151 trace_xhci_setup_device_slot(slot_ctx);
4152
4153 if (setup == SETUP_CONTEXT_ONLY) {
4154 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4155 SLOT_STATE_DEFAULT) {
4156 xhci_dbg(xhci, "Slot already in default state\n");
4157 goto out;
4158 }
4159 }
4160
4161 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4162 if (!command) {
4163 ret = -ENOMEM;
4164 goto out;
4165 }
4166
4167 command->in_ctx = virt_dev->in_ctx;
4168
4169 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4170 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4171 if (!ctrl_ctx) {
4172 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4173 __func__);
4174 ret = -EINVAL;
4175 goto out;
4176 }
4177 /*
4178 * If this is the first Set Address since device plug-in or
4179 * virt_device realloaction after a resume with an xHCI power loss,
4180 * then set up the slot context.
4181 */
4182 if (!slot_ctx->dev_info)
4183 xhci_setup_addressable_virt_dev(xhci, udev);
4184 /* Otherwise, update the control endpoint ring enqueue pointer. */
4185 else
4186 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4187 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4188 ctrl_ctx->drop_flags = 0;
4189
4190 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4191 le32_to_cpu(slot_ctx->dev_info) >> 27);
4192
4193 trace_xhci_address_ctrl_ctx(ctrl_ctx);
4194 spin_lock_irqsave(&xhci->lock, flags);
4195 trace_xhci_setup_device(virt_dev);
4196 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4197 udev->slot_id, setup);
4198 if (ret) {
4199 spin_unlock_irqrestore(&xhci->lock, flags);
4200 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4201 "FIXME: allocate a command ring segment");
4202 goto out;
4203 }
4204 xhci_ring_cmd_db(xhci);
4205 spin_unlock_irqrestore(&xhci->lock, flags);
4206
4207 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4208 wait_for_completion(command->completion);
4209
4210 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
4211 * the SetAddress() "recovery interval" required by USB and aborting the
4212 * command on a timeout.
4213 */
4214 switch (command->status) {
4215 case COMP_COMMAND_ABORTED:
4216 case COMP_COMMAND_RING_STOPPED:
4217 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4218 ret = -ETIME;
4219 break;
4220 case COMP_CONTEXT_STATE_ERROR:
4221 case COMP_SLOT_NOT_ENABLED_ERROR:
4222 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4223 act, udev->slot_id);
4224 ret = -EINVAL;
4225 break;
4226 case COMP_USB_TRANSACTION_ERROR:
4227 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4228
4229 mutex_unlock(&xhci->mutex);
4230 ret = xhci_disable_slot(xhci, udev->slot_id);
4231 if (!ret)
4232 xhci_alloc_dev(hcd, udev);
4233 kfree(command->completion);
4234 kfree(command);
4235 return -EPROTO;
4236 case COMP_INCOMPATIBLE_DEVICE_ERROR:
4237 dev_warn(&udev->dev,
4238 "ERROR: Incompatible device for setup %s command\n", act);
4239 ret = -ENODEV;
4240 break;
4241 case COMP_SUCCESS:
4242 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4243 "Successful setup %s command", act);
4244 break;
4245 default:
4246 xhci_err(xhci,
4247 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4248 act, command->status);
4249 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4250 ret = -EINVAL;
4251 break;
4252 }
4253 if (ret)
4254 goto out;
4255 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4256 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4257 "Op regs DCBAA ptr = %#016llx", temp_64);
4258 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4259 "Slot ID %d dcbaa entry @%p = %#016llx",
4260 udev->slot_id,
4261 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4262 (unsigned long long)
4263 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4264 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4265 "Output Context DMA address = %#08llx",
4266 (unsigned long long)virt_dev->out_ctx->dma);
4267 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4268 le32_to_cpu(slot_ctx->dev_info) >> 27);
4269 /*
4270 * USB core uses address 1 for the roothubs, so we add one to the
4271 * address given back to us by the HC.
4272 */
4273 trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4274 le32_to_cpu(slot_ctx->dev_info) >> 27);
4275 /* Zero the input context control for later use */
4276 ctrl_ctx->add_flags = 0;
4277 ctrl_ctx->drop_flags = 0;
4278 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4279 udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4280
4281 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4282 "Internal device address = %d",
4283 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4284 out:
4285 mutex_unlock(&xhci->mutex);
4286 if (command) {
4287 kfree(command->completion);
4288 kfree(command);
4289 }
4290 return ret;
4291 }
4292
4293 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4294 {
4295 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4296 }
4297
4298 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4299 {
4300 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4301 }
4302
4303 /*
4304 * Transfer the port index into real index in the HW port status
4305 * registers. Caculate offset between the port's PORTSC register
4306 * and port status base. Divide the number of per port register
4307 * to get the real index. The raw port number bases 1.
4308 */
4309 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4310 {
4311 struct xhci_hub *rhub;
4312
4313 rhub = xhci_get_rhub(hcd);
4314 return rhub->ports[port1 - 1]->hw_portnum + 1;
4315 }
4316
4317 /*
4318 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4319 * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
4320 */
4321 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4322 struct usb_device *udev, u16 max_exit_latency)
4323 {
4324 struct xhci_virt_device *virt_dev;
4325 struct xhci_command *command;
4326 struct xhci_input_control_ctx *ctrl_ctx;
4327 struct xhci_slot_ctx *slot_ctx;
4328 unsigned long flags;
4329 int ret;
4330
4331 spin_lock_irqsave(&xhci->lock, flags);
4332
4333 virt_dev = xhci->devs[udev->slot_id];
4334
4335 /*
4336 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4337 * xHC was re-initialized. Exit latency will be set later after
4338 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4339 */
4340
4341 if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4342 spin_unlock_irqrestore(&xhci->lock, flags);
4343 return 0;
4344 }
4345
4346 /* Attempt to issue an Evaluate Context command to change the MEL. */
4347 command = xhci->lpm_command;
4348 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4349 if (!ctrl_ctx) {
4350 spin_unlock_irqrestore(&xhci->lock, flags);
4351 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4352 __func__);
4353 return -ENOMEM;
4354 }
4355
4356 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4357 spin_unlock_irqrestore(&xhci->lock, flags);
4358
4359 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4360 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4361 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4362 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4363 slot_ctx->dev_state = 0;
4364
4365 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4366 "Set up evaluate context for LPM MEL change.");
4367
4368 /* Issue and wait for the evaluate context command. */
4369 ret = xhci_configure_endpoint(xhci, udev, command,
4370 true, true);
4371
4372 if (!ret) {
4373 spin_lock_irqsave(&xhci->lock, flags);
4374 virt_dev->current_mel = max_exit_latency;
4375 spin_unlock_irqrestore(&xhci->lock, flags);
4376 }
4377 return ret;
4378 }
4379
4380 #ifdef CONFIG_PM
4381
4382 /* BESL to HIRD Encoding array for USB2 LPM */
4383 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4384 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4385
4386 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4387 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4388 struct usb_device *udev)
4389 {
4390 int u2del, besl, besl_host;
4391 int besl_device = 0;
4392 u32 field;
4393
4394 u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4395 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4396
4397 if (field & USB_BESL_SUPPORT) {
4398 for (besl_host = 0; besl_host < 16; besl_host++) {
4399 if (xhci_besl_encoding[besl_host] >= u2del)
4400 break;
4401 }
4402 /* Use baseline BESL value as default */
4403 if (field & USB_BESL_BASELINE_VALID)
4404 besl_device = USB_GET_BESL_BASELINE(field);
4405 else if (field & USB_BESL_DEEP_VALID)
4406 besl_device = USB_GET_BESL_DEEP(field);
4407 } else {
4408 if (u2del <= 50)
4409 besl_host = 0;
4410 else
4411 besl_host = (u2del - 51) / 75 + 1;
4412 }
4413
4414 besl = besl_host + besl_device;
4415 if (besl > 15)
4416 besl = 15;
4417
4418 return besl;
4419 }
4420
4421 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4422 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4423 {
4424 u32 field;
4425 int l1;
4426 int besld = 0;
4427 int hirdm = 0;
4428
4429 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4430
4431 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4432 l1 = udev->l1_params.timeout / 256;
4433
4434 /* device has preferred BESLD */
4435 if (field & USB_BESL_DEEP_VALID) {
4436 besld = USB_GET_BESL_DEEP(field);
4437 hirdm = 1;
4438 }
4439
4440 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4441 }
4442
4443 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4444 struct usb_device *udev, int enable)
4445 {
4446 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4447 struct xhci_port **ports;
4448 __le32 __iomem *pm_addr, *hlpm_addr;
4449 u32 pm_val, hlpm_val, field;
4450 unsigned int port_num;
4451 unsigned long flags;
4452 int hird, exit_latency;
4453 int ret;
4454
4455 if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4456 return -EPERM;
4457
4458 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4459 !udev->lpm_capable)
4460 return -EPERM;
4461
4462 if (!udev->parent || udev->parent->parent ||
4463 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4464 return -EPERM;
4465
4466 if (udev->usb2_hw_lpm_capable != 1)
4467 return -EPERM;
4468
4469 spin_lock_irqsave(&xhci->lock, flags);
4470
4471 ports = xhci->usb2_rhub.ports;
4472 port_num = udev->portnum - 1;
4473 pm_addr = ports[port_num]->addr + PORTPMSC;
4474 pm_val = readl(pm_addr);
4475 hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4476
4477 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4478 enable ? "enable" : "disable", port_num + 1);
4479
4480 if (enable) {
4481 /* Host supports BESL timeout instead of HIRD */
4482 if (udev->usb2_hw_lpm_besl_capable) {
4483 /* if device doesn't have a preferred BESL value use a
4484 * default one which works with mixed HIRD and BESL
4485 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4486 */
4487 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4488 if ((field & USB_BESL_SUPPORT) &&
4489 (field & USB_BESL_BASELINE_VALID))
4490 hird = USB_GET_BESL_BASELINE(field);
4491 else
4492 hird = udev->l1_params.besl;
4493
4494 exit_latency = xhci_besl_encoding[hird];
4495 spin_unlock_irqrestore(&xhci->lock, flags);
4496
4497 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4498 * input context for link powermanagement evaluate
4499 * context commands. It is protected by hcd->bandwidth
4500 * mutex and is shared by all devices. We need to set
4501 * the max ext latency in USB 2 BESL LPM as well, so
4502 * use the same mutex and xhci_change_max_exit_latency()
4503 */
4504 mutex_lock(hcd->bandwidth_mutex);
4505 ret = xhci_change_max_exit_latency(xhci, udev,
4506 exit_latency);
4507 mutex_unlock(hcd->bandwidth_mutex);
4508
4509 if (ret < 0)
4510 return ret;
4511 spin_lock_irqsave(&xhci->lock, flags);
4512
4513 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4514 writel(hlpm_val, hlpm_addr);
4515 /* flush write */
4516 readl(hlpm_addr);
4517 } else {
4518 hird = xhci_calculate_hird_besl(xhci, udev);
4519 }
4520
4521 pm_val &= ~PORT_HIRD_MASK;
4522 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4523 writel(pm_val, pm_addr);
4524 pm_val = readl(pm_addr);
4525 pm_val |= PORT_HLE;
4526 writel(pm_val, pm_addr);
4527 /* flush write */
4528 readl(pm_addr);
4529 } else {
4530 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4531 writel(pm_val, pm_addr);
4532 /* flush write */
4533 readl(pm_addr);
4534 if (udev->usb2_hw_lpm_besl_capable) {
4535 spin_unlock_irqrestore(&xhci->lock, flags);
4536 mutex_lock(hcd->bandwidth_mutex);
4537 xhci_change_max_exit_latency(xhci, udev, 0);
4538 mutex_unlock(hcd->bandwidth_mutex);
4539 readl_poll_timeout(ports[port_num]->addr, pm_val,
4540 (pm_val & PORT_PLS_MASK) == XDEV_U0,
4541 100, 10000);
4542 return 0;
4543 }
4544 }
4545
4546 spin_unlock_irqrestore(&xhci->lock, flags);
4547 return 0;
4548 }
4549
4550 /* check if a usb2 port supports a given extened capability protocol
4551 * only USB2 ports extended protocol capability values are cached.
4552 * Return 1 if capability is supported
4553 */
4554 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4555 unsigned capability)
4556 {
4557 u32 port_offset, port_count;
4558 int i;
4559
4560 for (i = 0; i < xhci->num_ext_caps; i++) {
4561 if (xhci->ext_caps[i] & capability) {
4562 /* port offsets starts at 1 */
4563 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4564 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4565 if (port >= port_offset &&
4566 port < port_offset + port_count)
4567 return 1;
4568 }
4569 }
4570 return 0;
4571 }
4572
4573 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4574 {
4575 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4576 int portnum = udev->portnum - 1;
4577
4578 if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4579 return 0;
4580
4581 /* we only support lpm for non-hub device connected to root hub yet */
4582 if (!udev->parent || udev->parent->parent ||
4583 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4584 return 0;
4585
4586 if (xhci->hw_lpm_support == 1 &&
4587 xhci_check_usb2_port_capability(
4588 xhci, portnum, XHCI_HLC)) {
4589 udev->usb2_hw_lpm_capable = 1;
4590 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4591 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4592 if (xhci_check_usb2_port_capability(xhci, portnum,
4593 XHCI_BLC))
4594 udev->usb2_hw_lpm_besl_capable = 1;
4595 }
4596
4597 return 0;
4598 }
4599
4600 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4601
4602 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4603 static unsigned long long xhci_service_interval_to_ns(
4604 struct usb_endpoint_descriptor *desc)
4605 {
4606 return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4607 }
4608
4609 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4610 enum usb3_link_state state)
4611 {
4612 unsigned long long sel;
4613 unsigned long long pel;
4614 unsigned int max_sel_pel;
4615 char *state_name;
4616
4617 switch (state) {
4618 case USB3_LPM_U1:
4619 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4620 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4621 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4622 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4623 state_name = "U1";
4624 break;
4625 case USB3_LPM_U2:
4626 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4627 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4628 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4629 state_name = "U2";
4630 break;
4631 default:
4632 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4633 __func__);
4634 return USB3_LPM_DISABLED;
4635 }
4636
4637 if (sel <= max_sel_pel && pel <= max_sel_pel)
4638 return USB3_LPM_DEVICE_INITIATED;
4639
4640 if (sel > max_sel_pel)
4641 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4642 "due to long SEL %llu ms\n",
4643 state_name, sel);
4644 else
4645 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4646 "due to long PEL %llu ms\n",
4647 state_name, pel);
4648 return USB3_LPM_DISABLED;
4649 }
4650
4651 /* The U1 timeout should be the maximum of the following values:
4652 * - For control endpoints, U1 system exit latency (SEL) * 3
4653 * - For bulk endpoints, U1 SEL * 5
4654 * - For interrupt endpoints:
4655 * - Notification EPs, U1 SEL * 3
4656 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4657 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4658 */
4659 static unsigned long long xhci_calculate_intel_u1_timeout(
4660 struct usb_device *udev,
4661 struct usb_endpoint_descriptor *desc)
4662 {
4663 unsigned long long timeout_ns;
4664 int ep_type;
4665 int intr_type;
4666
4667 ep_type = usb_endpoint_type(desc);
4668 switch (ep_type) {
4669 case USB_ENDPOINT_XFER_CONTROL:
4670 timeout_ns = udev->u1_params.sel * 3;
4671 break;
4672 case USB_ENDPOINT_XFER_BULK:
4673 timeout_ns = udev->u1_params.sel * 5;
4674 break;
4675 case USB_ENDPOINT_XFER_INT:
4676 intr_type = usb_endpoint_interrupt_type(desc);
4677 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4678 timeout_ns = udev->u1_params.sel * 3;
4679 break;
4680 }
4681 /* Otherwise the calculation is the same as isoc eps */
4682 fallthrough;
4683 case USB_ENDPOINT_XFER_ISOC:
4684 timeout_ns = xhci_service_interval_to_ns(desc);
4685 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4686 if (timeout_ns < udev->u1_params.sel * 2)
4687 timeout_ns = udev->u1_params.sel * 2;
4688 break;
4689 default:
4690 return 0;
4691 }
4692
4693 return timeout_ns;
4694 }
4695
4696 /* Returns the hub-encoded U1 timeout value. */
4697 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4698 struct usb_device *udev,
4699 struct usb_endpoint_descriptor *desc)
4700 {
4701 unsigned long long timeout_ns;
4702
4703 if (xhci->quirks & XHCI_INTEL_HOST)
4704 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4705 else
4706 timeout_ns = udev->u1_params.sel;
4707
4708 /* Prevent U1 if service interval is shorter than U1 exit latency */
4709 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4710 if (xhci_service_interval_to_ns(desc) <= timeout_ns) {
4711 dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4712 return USB3_LPM_DISABLED;
4713 }
4714 }
4715
4716 /* The U1 timeout is encoded in 1us intervals.
4717 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4718 */
4719 if (timeout_ns == USB3_LPM_DISABLED)
4720 timeout_ns = 1;
4721 else
4722 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4723
4724 /* If the necessary timeout value is bigger than what we can set in the
4725 * USB 3.0 hub, we have to disable hub-initiated U1.
4726 */
4727 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4728 return timeout_ns;
4729 dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4730 "due to long timeout %llu ms\n", timeout_ns);
4731 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4732 }
4733
4734 /* The U2 timeout should be the maximum of:
4735 * - 10 ms (to avoid the bandwidth impact on the scheduler)
4736 * - largest bInterval of any active periodic endpoint (to avoid going
4737 * into lower power link states between intervals).
4738 * - the U2 Exit Latency of the device
4739 */
4740 static unsigned long long xhci_calculate_intel_u2_timeout(
4741 struct usb_device *udev,
4742 struct usb_endpoint_descriptor *desc)
4743 {
4744 unsigned long long timeout_ns;
4745 unsigned long long u2_del_ns;
4746
4747 timeout_ns = 10 * 1000 * 1000;
4748
4749 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4750 (xhci_service_interval_to_ns(desc) > timeout_ns))
4751 timeout_ns = xhci_service_interval_to_ns(desc);
4752
4753 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4754 if (u2_del_ns > timeout_ns)
4755 timeout_ns = u2_del_ns;
4756
4757 return timeout_ns;
4758 }
4759
4760 /* Returns the hub-encoded U2 timeout value. */
4761 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4762 struct usb_device *udev,
4763 struct usb_endpoint_descriptor *desc)
4764 {
4765 unsigned long long timeout_ns;
4766
4767 if (xhci->quirks & XHCI_INTEL_HOST)
4768 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4769 else
4770 timeout_ns = udev->u2_params.sel;
4771
4772 /* Prevent U2 if service interval is shorter than U2 exit latency */
4773 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4774 if (xhci_service_interval_to_ns(desc) <= timeout_ns) {
4775 dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4776 return USB3_LPM_DISABLED;
4777 }
4778 }
4779
4780 /* The U2 timeout is encoded in 256us intervals */
4781 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4782 /* If the necessary timeout value is bigger than what we can set in the
4783 * USB 3.0 hub, we have to disable hub-initiated U2.
4784 */
4785 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4786 return timeout_ns;
4787 dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4788 "due to long timeout %llu ms\n", timeout_ns);
4789 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4790 }
4791
4792 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4793 struct usb_device *udev,
4794 struct usb_endpoint_descriptor *desc,
4795 enum usb3_link_state state,
4796 u16 *timeout)
4797 {
4798 if (state == USB3_LPM_U1)
4799 return xhci_calculate_u1_timeout(xhci, udev, desc);
4800 else if (state == USB3_LPM_U2)
4801 return xhci_calculate_u2_timeout(xhci, udev, desc);
4802
4803 return USB3_LPM_DISABLED;
4804 }
4805
4806 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4807 struct usb_device *udev,
4808 struct usb_endpoint_descriptor *desc,
4809 enum usb3_link_state state,
4810 u16 *timeout)
4811 {
4812 u16 alt_timeout;
4813
4814 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4815 desc, state, timeout);
4816
4817 /* If we found we can't enable hub-initiated LPM, and
4818 * the U1 or U2 exit latency was too high to allow
4819 * device-initiated LPM as well, then we will disable LPM
4820 * for this device, so stop searching any further.
4821 */
4822 if (alt_timeout == USB3_LPM_DISABLED) {
4823 *timeout = alt_timeout;
4824 return -E2BIG;
4825 }
4826 if (alt_timeout > *timeout)
4827 *timeout = alt_timeout;
4828 return 0;
4829 }
4830
4831 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4832 struct usb_device *udev,
4833 struct usb_host_interface *alt,
4834 enum usb3_link_state state,
4835 u16 *timeout)
4836 {
4837 int j;
4838
4839 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4840 if (xhci_update_timeout_for_endpoint(xhci, udev,
4841 &alt->endpoint[j].desc, state, timeout))
4842 return -E2BIG;
4843 continue;
4844 }
4845 return 0;
4846 }
4847
4848 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4849 enum usb3_link_state state)
4850 {
4851 struct usb_device *parent;
4852 unsigned int num_hubs;
4853
4854 if (state == USB3_LPM_U2)
4855 return 0;
4856
4857 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4858 for (parent = udev->parent, num_hubs = 0; parent->parent;
4859 parent = parent->parent)
4860 num_hubs++;
4861
4862 if (num_hubs < 2)
4863 return 0;
4864
4865 dev_dbg(&udev->dev, "Disabling U1 link state for device"
4866 " below second-tier hub.\n");
4867 dev_dbg(&udev->dev, "Plug device into first-tier hub "
4868 "to decrease power consumption.\n");
4869 return -E2BIG;
4870 }
4871
4872 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4873 struct usb_device *udev,
4874 enum usb3_link_state state)
4875 {
4876 if (xhci->quirks & XHCI_INTEL_HOST)
4877 return xhci_check_intel_tier_policy(udev, state);
4878 else
4879 return 0;
4880 }
4881
4882 /* Returns the U1 or U2 timeout that should be enabled.
4883 * If the tier check or timeout setting functions return with a non-zero exit
4884 * code, that means the timeout value has been finalized and we shouldn't look
4885 * at any more endpoints.
4886 */
4887 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4888 struct usb_device *udev, enum usb3_link_state state)
4889 {
4890 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4891 struct usb_host_config *config;
4892 char *state_name;
4893 int i;
4894 u16 timeout = USB3_LPM_DISABLED;
4895
4896 if (state == USB3_LPM_U1)
4897 state_name = "U1";
4898 else if (state == USB3_LPM_U2)
4899 state_name = "U2";
4900 else {
4901 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4902 state);
4903 return timeout;
4904 }
4905
4906 if (xhci_check_tier_policy(xhci, udev, state) < 0)
4907 return timeout;
4908
4909 /* Gather some information about the currently installed configuration
4910 * and alternate interface settings.
4911 */
4912 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4913 state, &timeout))
4914 return timeout;
4915
4916 config = udev->actconfig;
4917 if (!config)
4918 return timeout;
4919
4920 for (i = 0; i < config->desc.bNumInterfaces; i++) {
4921 struct usb_driver *driver;
4922 struct usb_interface *intf = config->interface[i];
4923
4924 if (!intf)
4925 continue;
4926
4927 /* Check if any currently bound drivers want hub-initiated LPM
4928 * disabled.
4929 */
4930 if (intf->dev.driver) {
4931 driver = to_usb_driver(intf->dev.driver);
4932 if (driver && driver->disable_hub_initiated_lpm) {
4933 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4934 state_name, driver->name);
4935 timeout = xhci_get_timeout_no_hub_lpm(udev,
4936 state);
4937 if (timeout == USB3_LPM_DISABLED)
4938 return timeout;
4939 }
4940 }
4941
4942 /* Not sure how this could happen... */
4943 if (!intf->cur_altsetting)
4944 continue;
4945
4946 if (xhci_update_timeout_for_interface(xhci, udev,
4947 intf->cur_altsetting,
4948 state, &timeout))
4949 return timeout;
4950 }
4951 return timeout;
4952 }
4953
4954 static int calculate_max_exit_latency(struct usb_device *udev,
4955 enum usb3_link_state state_changed,
4956 u16 hub_encoded_timeout)
4957 {
4958 unsigned long long u1_mel_us = 0;
4959 unsigned long long u2_mel_us = 0;
4960 unsigned long long mel_us = 0;
4961 bool disabling_u1;
4962 bool disabling_u2;
4963 bool enabling_u1;
4964 bool enabling_u2;
4965
4966 disabling_u1 = (state_changed == USB3_LPM_U1 &&
4967 hub_encoded_timeout == USB3_LPM_DISABLED);
4968 disabling_u2 = (state_changed == USB3_LPM_U2 &&
4969 hub_encoded_timeout == USB3_LPM_DISABLED);
4970
4971 enabling_u1 = (state_changed == USB3_LPM_U1 &&
4972 hub_encoded_timeout != USB3_LPM_DISABLED);
4973 enabling_u2 = (state_changed == USB3_LPM_U2 &&
4974 hub_encoded_timeout != USB3_LPM_DISABLED);
4975
4976 /* If U1 was already enabled and we're not disabling it,
4977 * or we're going to enable U1, account for the U1 max exit latency.
4978 */
4979 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4980 enabling_u1)
4981 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4982 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4983 enabling_u2)
4984 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4985
4986 if (u1_mel_us > u2_mel_us)
4987 mel_us = u1_mel_us;
4988 else
4989 mel_us = u2_mel_us;
4990 /* xHCI host controller max exit latency field is only 16 bits wide. */
4991 if (mel_us > MAX_EXIT) {
4992 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4993 "is too big.\n", mel_us);
4994 return -E2BIG;
4995 }
4996 return mel_us;
4997 }
4998
4999 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
5000 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5001 struct usb_device *udev, enum usb3_link_state state)
5002 {
5003 struct xhci_hcd *xhci;
5004 u16 hub_encoded_timeout;
5005 int mel;
5006 int ret;
5007
5008 xhci = hcd_to_xhci(hcd);
5009 /* The LPM timeout values are pretty host-controller specific, so don't
5010 * enable hub-initiated timeouts unless the vendor has provided
5011 * information about their timeout algorithm.
5012 */
5013 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5014 !xhci->devs[udev->slot_id])
5015 return USB3_LPM_DISABLED;
5016
5017 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
5018 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
5019 if (mel < 0) {
5020 /* Max Exit Latency is too big, disable LPM. */
5021 hub_encoded_timeout = USB3_LPM_DISABLED;
5022 mel = 0;
5023 }
5024
5025 ret = xhci_change_max_exit_latency(xhci, udev, mel);
5026 if (ret)
5027 return ret;
5028 return hub_encoded_timeout;
5029 }
5030
5031 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5032 struct usb_device *udev, enum usb3_link_state state)
5033 {
5034 struct xhci_hcd *xhci;
5035 u16 mel;
5036
5037 xhci = hcd_to_xhci(hcd);
5038 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5039 !xhci->devs[udev->slot_id])
5040 return 0;
5041
5042 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
5043 return xhci_change_max_exit_latency(xhci, udev, mel);
5044 }
5045 #else /* CONFIG_PM */
5046
5047 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
5048 struct usb_device *udev, int enable)
5049 {
5050 return 0;
5051 }
5052
5053 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5054 {
5055 return 0;
5056 }
5057
5058 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5059 struct usb_device *udev, enum usb3_link_state state)
5060 {
5061 return USB3_LPM_DISABLED;
5062 }
5063
5064 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5065 struct usb_device *udev, enum usb3_link_state state)
5066 {
5067 return 0;
5068 }
5069 #endif /* CONFIG_PM */
5070
5071 /*-------------------------------------------------------------------------*/
5072
5073 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5074 * internal data structures for the device.
5075 */
5076 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5077 struct usb_tt *tt, gfp_t mem_flags)
5078 {
5079 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5080 struct xhci_virt_device *vdev;
5081 struct xhci_command *config_cmd;
5082 struct xhci_input_control_ctx *ctrl_ctx;
5083 struct xhci_slot_ctx *slot_ctx;
5084 unsigned long flags;
5085 unsigned think_time;
5086 int ret;
5087
5088 /* Ignore root hubs */
5089 if (!hdev->parent)
5090 return 0;
5091
5092 vdev = xhci->devs[hdev->slot_id];
5093 if (!vdev) {
5094 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5095 return -EINVAL;
5096 }
5097
5098 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5099 if (!config_cmd)
5100 return -ENOMEM;
5101
5102 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5103 if (!ctrl_ctx) {
5104 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5105 __func__);
5106 xhci_free_command(xhci, config_cmd);
5107 return -ENOMEM;
5108 }
5109
5110 spin_lock_irqsave(&xhci->lock, flags);
5111 if (hdev->speed == USB_SPEED_HIGH &&
5112 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5113 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5114 xhci_free_command(xhci, config_cmd);
5115 spin_unlock_irqrestore(&xhci->lock, flags);
5116 return -ENOMEM;
5117 }
5118
5119 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5120 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5121 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5122 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5123 /*
5124 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5125 * but it may be already set to 1 when setup an xHCI virtual
5126 * device, so clear it anyway.
5127 */
5128 if (tt->multi)
5129 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5130 else if (hdev->speed == USB_SPEED_FULL)
5131 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5132
5133 if (xhci->hci_version > 0x95) {
5134 xhci_dbg(xhci, "xHCI version %x needs hub "
5135 "TT think time and number of ports\n",
5136 (unsigned int) xhci->hci_version);
5137 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5138 /* Set TT think time - convert from ns to FS bit times.
5139 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5140 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5141 *
5142 * xHCI 1.0: this field shall be 0 if the device is not a
5143 * High-spped hub.
5144 */
5145 think_time = tt->think_time;
5146 if (think_time != 0)
5147 think_time = (think_time / 666) - 1;
5148 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5149 slot_ctx->tt_info |=
5150 cpu_to_le32(TT_THINK_TIME(think_time));
5151 } else {
5152 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5153 "TT think time or number of ports\n",
5154 (unsigned int) xhci->hci_version);
5155 }
5156 slot_ctx->dev_state = 0;
5157 spin_unlock_irqrestore(&xhci->lock, flags);
5158
5159 xhci_dbg(xhci, "Set up %s for hub device.\n",
5160 (xhci->hci_version > 0x95) ?
5161 "configure endpoint" : "evaluate context");
5162
5163 /* Issue and wait for the configure endpoint or
5164 * evaluate context command.
5165 */
5166 if (xhci->hci_version > 0x95)
5167 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5168 false, false);
5169 else
5170 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5171 true, false);
5172
5173 xhci_free_command(xhci, config_cmd);
5174 return ret;
5175 }
5176
5177 static int xhci_get_frame(struct usb_hcd *hcd)
5178 {
5179 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5180 /* EHCI mods by the periodic size. Why? */
5181 return readl(&xhci->run_regs->microframe_index) >> 3;
5182 }
5183
5184 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5185 {
5186 struct xhci_hcd *xhci;
5187 /*
5188 * TODO: Check with DWC3 clients for sysdev according to
5189 * quirks
5190 */
5191 struct device *dev = hcd->self.sysdev;
5192 unsigned int minor_rev;
5193 int retval;
5194
5195 /* Accept arbitrarily long scatter-gather lists */
5196 hcd->self.sg_tablesize = ~0;
5197
5198 /* support to build packet from discontinuous buffers */
5199 hcd->self.no_sg_constraint = 1;
5200
5201 /* XHCI controllers don't stop the ep queue on short packets :| */
5202 hcd->self.no_stop_on_short = 1;
5203
5204 xhci = hcd_to_xhci(hcd);
5205
5206 if (usb_hcd_is_primary_hcd(hcd)) {
5207 xhci->main_hcd = hcd;
5208 xhci->usb2_rhub.hcd = hcd;
5209 /* Mark the first roothub as being USB 2.0.
5210 * The xHCI driver will register the USB 3.0 roothub.
5211 */
5212 hcd->speed = HCD_USB2;
5213 hcd->self.root_hub->speed = USB_SPEED_HIGH;
5214 /*
5215 * USB 2.0 roothub under xHCI has an integrated TT,
5216 * (rate matching hub) as opposed to having an OHCI/UHCI
5217 * companion controller.
5218 */
5219 hcd->has_tt = 1;
5220 } else {
5221 /*
5222 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5223 * should return 0x31 for sbrn, or that the minor revision
5224 * is a two digit BCD containig minor and sub-minor numbers.
5225 * This was later clarified in xHCI 1.2.
5226 *
5227 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5228 * minor revision set to 0x1 instead of 0x10.
5229 */
5230 if (xhci->usb3_rhub.min_rev == 0x1)
5231 minor_rev = 1;
5232 else
5233 minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5234
5235 switch (minor_rev) {
5236 case 2:
5237 hcd->speed = HCD_USB32;
5238 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5239 hcd->self.root_hub->rx_lanes = 2;
5240 hcd->self.root_hub->tx_lanes = 2;
5241 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2;
5242 break;
5243 case 1:
5244 hcd->speed = HCD_USB31;
5245 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5246 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1;
5247 break;
5248 }
5249 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5250 minor_rev,
5251 minor_rev ? "Enhanced " : "");
5252
5253 xhci->usb3_rhub.hcd = hcd;
5254 /* xHCI private pointer was set in xhci_pci_probe for the second
5255 * registered roothub.
5256 */
5257 return 0;
5258 }
5259
5260 mutex_init(&xhci->mutex);
5261 xhci->cap_regs = hcd->regs;
5262 xhci->op_regs = hcd->regs +
5263 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5264 xhci->run_regs = hcd->regs +
5265 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5266 /* Cache read-only capability registers */
5267 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5268 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5269 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5270 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
5271 xhci->hci_version = HC_VERSION(xhci->hcc_params);
5272 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5273 if (xhci->hci_version > 0x100)
5274 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5275
5276 xhci->quirks |= quirks;
5277
5278 get_quirks(dev, xhci);
5279
5280 /* In xhci controllers which follow xhci 1.0 spec gives a spurious
5281 * success event after a short transfer. This quirk will ignore such
5282 * spurious event.
5283 */
5284 if (xhci->hci_version > 0x96)
5285 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5286
5287 /* Make sure the HC is halted. */
5288 retval = xhci_halt(xhci);
5289 if (retval)
5290 return retval;
5291
5292 xhci_zero_64b_regs(xhci);
5293
5294 xhci_dbg(xhci, "Resetting HCD\n");
5295 /* Reset the internal HC memory state and registers. */
5296 retval = xhci_reset(xhci);
5297 if (retval)
5298 return retval;
5299 xhci_dbg(xhci, "Reset complete\n");
5300
5301 /*
5302 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5303 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5304 * address memory pointers actually. So, this driver clears the AC64
5305 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5306 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5307 */
5308 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5309 xhci->hcc_params &= ~BIT(0);
5310
5311 /* Set dma_mask and coherent_dma_mask to 64-bits,
5312 * if xHC supports 64-bit addressing */
5313 if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5314 !dma_set_mask(dev, DMA_BIT_MASK(64))) {
5315 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5316 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5317 } else {
5318 /*
5319 * This is to avoid error in cases where a 32-bit USB
5320 * controller is used on a 64-bit capable system.
5321 */
5322 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5323 if (retval)
5324 return retval;
5325 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5326 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5327 }
5328
5329 xhci_dbg(xhci, "Calling HCD init\n");
5330 /* Initialize HCD and host controller data structures. */
5331 retval = xhci_init(hcd);
5332 if (retval)
5333 return retval;
5334 xhci_dbg(xhci, "Called HCD init\n");
5335
5336 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5337 xhci->hcc_params, xhci->hci_version, xhci->quirks);
5338
5339 return 0;
5340 }
5341 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5342
5343 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5344 struct usb_host_endpoint *ep)
5345 {
5346 struct xhci_hcd *xhci;
5347 struct usb_device *udev;
5348 unsigned int slot_id;
5349 unsigned int ep_index;
5350 unsigned long flags;
5351
5352 xhci = hcd_to_xhci(hcd);
5353
5354 spin_lock_irqsave(&xhci->lock, flags);
5355 udev = (struct usb_device *)ep->hcpriv;
5356 slot_id = udev->slot_id;
5357 ep_index = xhci_get_endpoint_index(&ep->desc);
5358
5359 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5360 xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5361 spin_unlock_irqrestore(&xhci->lock, flags);
5362 }
5363
5364 static const struct hc_driver xhci_hc_driver = {
5365 .description = "xhci-hcd",
5366 .product_desc = "xHCI Host Controller",
5367 .hcd_priv_size = sizeof(struct xhci_hcd),
5368
5369 /*
5370 * generic hardware linkage
5371 */
5372 .irq = xhci_irq,
5373 .flags = HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5374 HCD_BH,
5375
5376 /*
5377 * basic lifecycle operations
5378 */
5379 .reset = NULL, /* set in xhci_init_driver() */
5380 .start = xhci_run,
5381 .stop = xhci_stop,
5382 .shutdown = xhci_shutdown,
5383
5384 /*
5385 * managing i/o requests and associated device resources
5386 */
5387 .map_urb_for_dma = xhci_map_urb_for_dma,
5388 .unmap_urb_for_dma = xhci_unmap_urb_for_dma,
5389 .urb_enqueue = xhci_urb_enqueue,
5390 .urb_dequeue = xhci_urb_dequeue,
5391 .alloc_dev = xhci_alloc_dev,
5392 .free_dev = xhci_free_dev,
5393 .alloc_streams = xhci_alloc_streams,
5394 .free_streams = xhci_free_streams,
5395 .add_endpoint = xhci_add_endpoint,
5396 .drop_endpoint = xhci_drop_endpoint,
5397 .endpoint_disable = xhci_endpoint_disable,
5398 .endpoint_reset = xhci_endpoint_reset,
5399 .check_bandwidth = xhci_check_bandwidth,
5400 .reset_bandwidth = xhci_reset_bandwidth,
5401 .address_device = xhci_address_device,
5402 .enable_device = xhci_enable_device,
5403 .update_hub_device = xhci_update_hub_device,
5404 .reset_device = xhci_discover_or_reset_device,
5405
5406 /*
5407 * scheduling support
5408 */
5409 .get_frame_number = xhci_get_frame,
5410
5411 /*
5412 * root hub support
5413 */
5414 .hub_control = xhci_hub_control,
5415 .hub_status_data = xhci_hub_status_data,
5416 .bus_suspend = xhci_bus_suspend,
5417 .bus_resume = xhci_bus_resume,
5418 .get_resuming_ports = xhci_get_resuming_ports,
5419
5420 /*
5421 * call back when device connected and addressed
5422 */
5423 .update_device = xhci_update_device,
5424 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm,
5425 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout,
5426 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout,
5427 .find_raw_port_number = xhci_find_raw_port_number,
5428 .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5429 };
5430
5431 void xhci_init_driver(struct hc_driver *drv,
5432 const struct xhci_driver_overrides *over)
5433 {
5434 BUG_ON(!over);
5435
5436 /* Copy the generic table to drv then apply the overrides */
5437 *drv = xhci_hc_driver;
5438
5439 if (over) {
5440 drv->hcd_priv_size += over->extra_priv_size;
5441 if (over->reset)
5442 drv->reset = over->reset;
5443 if (over->start)
5444 drv->start = over->start;
5445 if (over->add_endpoint)
5446 drv->add_endpoint = over->add_endpoint;
5447 if (over->drop_endpoint)
5448 drv->drop_endpoint = over->drop_endpoint;
5449 if (over->check_bandwidth)
5450 drv->check_bandwidth = over->check_bandwidth;
5451 if (over->reset_bandwidth)
5452 drv->reset_bandwidth = over->reset_bandwidth;
5453 }
5454 }
5455 EXPORT_SYMBOL_GPL(xhci_init_driver);
5456
5457 MODULE_DESCRIPTION(DRIVER_DESC);
5458 MODULE_AUTHOR(DRIVER_AUTHOR);
5459 MODULE_LICENSE("GPL");
5460
5461 static int __init xhci_hcd_init(void)
5462 {
5463 /*
5464 * Check the compiler generated sizes of structures that must be laid
5465 * out in specific ways for hardware access.
5466 */
5467 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5468 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5469 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5470 /* xhci_device_control has eight fields, and also
5471 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5472 */
5473 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5474 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5475 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5476 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5477 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5478 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5479 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5480
5481 if (usb_disabled())
5482 return -ENODEV;
5483
5484 xhci_debugfs_create_root();
5485
5486 return 0;
5487 }
5488
5489 /*
5490 * If an init function is provided, an exit function must also be provided
5491 * to allow module unload.
5492 */
5493 static void __exit xhci_hcd_fini(void)
5494 {
5495 xhci_debugfs_remove_root();
5496 }
5497
5498 module_init(xhci_hcd_init);
5499 module_exit(xhci_hcd_fini);