]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/usb/host/xhci.c
Merge remote-tracking branches 'asoc/topic/cs35l32', 'asoc/topic/cs35l34', 'asoc...
[mirror_ubuntu-jammy-kernel.git] / drivers / usb / host / xhci.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * xHCI host controller driver
4 *
5 * Copyright (C) 2008 Intel Corp.
6 *
7 * Author: Sarah Sharp
8 * Some code borrowed from the Linux EHCI driver.
9 */
10
11 #include <linux/pci.h>
12 #include <linux/irq.h>
13 #include <linux/log2.h>
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16 #include <linux/slab.h>
17 #include <linux/dmi.h>
18 #include <linux/dma-mapping.h>
19
20 #include "xhci.h"
21 #include "xhci-trace.h"
22 #include "xhci-mtk.h"
23 #include "xhci-debugfs.h"
24
25 #define DRIVER_AUTHOR "Sarah Sharp"
26 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
27
28 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
29
30 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
31 static int link_quirk;
32 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
33 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
34
35 static unsigned int quirks;
36 module_param(quirks, uint, S_IRUGO);
37 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
38
39 /* TODO: copied from ehci-hcd.c - can this be refactored? */
40 /*
41 * xhci_handshake - spin reading hc until handshake completes or fails
42 * @ptr: address of hc register to be read
43 * @mask: bits to look at in result of read
44 * @done: value of those bits when handshake succeeds
45 * @usec: timeout in microseconds
46 *
47 * Returns negative errno, or zero on success
48 *
49 * Success happens when the "mask" bits have the specified value (hardware
50 * handshake done). There are two failure modes: "usec" have passed (major
51 * hardware flakeout), or the register reads as all-ones (hardware removed).
52 */
53 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
54 {
55 u32 result;
56
57 do {
58 result = readl(ptr);
59 if (result == ~(u32)0) /* card removed */
60 return -ENODEV;
61 result &= mask;
62 if (result == done)
63 return 0;
64 udelay(1);
65 usec--;
66 } while (usec > 0);
67 return -ETIMEDOUT;
68 }
69
70 /*
71 * Disable interrupts and begin the xHCI halting process.
72 */
73 void xhci_quiesce(struct xhci_hcd *xhci)
74 {
75 u32 halted;
76 u32 cmd;
77 u32 mask;
78
79 mask = ~(XHCI_IRQS);
80 halted = readl(&xhci->op_regs->status) & STS_HALT;
81 if (!halted)
82 mask &= ~CMD_RUN;
83
84 cmd = readl(&xhci->op_regs->command);
85 cmd &= mask;
86 writel(cmd, &xhci->op_regs->command);
87 }
88
89 /*
90 * Force HC into halt state.
91 *
92 * Disable any IRQs and clear the run/stop bit.
93 * HC will complete any current and actively pipelined transactions, and
94 * should halt within 16 ms of the run/stop bit being cleared.
95 * Read HC Halted bit in the status register to see when the HC is finished.
96 */
97 int xhci_halt(struct xhci_hcd *xhci)
98 {
99 int ret;
100 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
101 xhci_quiesce(xhci);
102
103 ret = xhci_handshake(&xhci->op_regs->status,
104 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
105 if (ret) {
106 xhci_warn(xhci, "Host halt failed, %d\n", ret);
107 return ret;
108 }
109 xhci->xhc_state |= XHCI_STATE_HALTED;
110 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
111 return ret;
112 }
113
114 /*
115 * Set the run bit and wait for the host to be running.
116 */
117 int xhci_start(struct xhci_hcd *xhci)
118 {
119 u32 temp;
120 int ret;
121
122 temp = readl(&xhci->op_regs->command);
123 temp |= (CMD_RUN);
124 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
125 temp);
126 writel(temp, &xhci->op_regs->command);
127
128 /*
129 * Wait for the HCHalted Status bit to be 0 to indicate the host is
130 * running.
131 */
132 ret = xhci_handshake(&xhci->op_regs->status,
133 STS_HALT, 0, XHCI_MAX_HALT_USEC);
134 if (ret == -ETIMEDOUT)
135 xhci_err(xhci, "Host took too long to start, "
136 "waited %u microseconds.\n",
137 XHCI_MAX_HALT_USEC);
138 if (!ret)
139 /* clear state flags. Including dying, halted or removing */
140 xhci->xhc_state = 0;
141
142 return ret;
143 }
144
145 /*
146 * Reset a halted HC.
147 *
148 * This resets pipelines, timers, counters, state machines, etc.
149 * Transactions will be terminated immediately, and operational registers
150 * will be set to their defaults.
151 */
152 int xhci_reset(struct xhci_hcd *xhci)
153 {
154 u32 command;
155 u32 state;
156 int ret, i;
157
158 state = readl(&xhci->op_regs->status);
159
160 if (state == ~(u32)0) {
161 xhci_warn(xhci, "Host not accessible, reset failed.\n");
162 return -ENODEV;
163 }
164
165 if ((state & STS_HALT) == 0) {
166 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
167 return 0;
168 }
169
170 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
171 command = readl(&xhci->op_regs->command);
172 command |= CMD_RESET;
173 writel(command, &xhci->op_regs->command);
174
175 /* Existing Intel xHCI controllers require a delay of 1 mS,
176 * after setting the CMD_RESET bit, and before accessing any
177 * HC registers. This allows the HC to complete the
178 * reset operation and be ready for HC register access.
179 * Without this delay, the subsequent HC register access,
180 * may result in a system hang very rarely.
181 */
182 if (xhci->quirks & XHCI_INTEL_HOST)
183 udelay(1000);
184
185 ret = xhci_handshake(&xhci->op_regs->command,
186 CMD_RESET, 0, 10 * 1000 * 1000);
187 if (ret)
188 return ret;
189
190 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
191 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
192
193 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
194 "Wait for controller to be ready for doorbell rings");
195 /*
196 * xHCI cannot write to any doorbells or operational registers other
197 * than status until the "Controller Not Ready" flag is cleared.
198 */
199 ret = xhci_handshake(&xhci->op_regs->status,
200 STS_CNR, 0, 10 * 1000 * 1000);
201
202 for (i = 0; i < 2; i++) {
203 xhci->bus_state[i].port_c_suspend = 0;
204 xhci->bus_state[i].suspended_ports = 0;
205 xhci->bus_state[i].resuming_ports = 0;
206 }
207
208 return ret;
209 }
210
211
212 #ifdef CONFIG_USB_PCI
213 /*
214 * Set up MSI
215 */
216 static int xhci_setup_msi(struct xhci_hcd *xhci)
217 {
218 int ret;
219 /*
220 * TODO:Check with MSI Soc for sysdev
221 */
222 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
223
224 ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
225 if (ret < 0) {
226 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
227 "failed to allocate MSI entry");
228 return ret;
229 }
230
231 ret = request_irq(pdev->irq, xhci_msi_irq,
232 0, "xhci_hcd", xhci_to_hcd(xhci));
233 if (ret) {
234 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
235 "disable MSI interrupt");
236 pci_free_irq_vectors(pdev);
237 }
238
239 return ret;
240 }
241
242 /*
243 * Set up MSI-X
244 */
245 static int xhci_setup_msix(struct xhci_hcd *xhci)
246 {
247 int i, ret = 0;
248 struct usb_hcd *hcd = xhci_to_hcd(xhci);
249 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
250
251 /*
252 * calculate number of msi-x vectors supported.
253 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
254 * with max number of interrupters based on the xhci HCSPARAMS1.
255 * - num_online_cpus: maximum msi-x vectors per CPUs core.
256 * Add additional 1 vector to ensure always available interrupt.
257 */
258 xhci->msix_count = min(num_online_cpus() + 1,
259 HCS_MAX_INTRS(xhci->hcs_params1));
260
261 ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
262 PCI_IRQ_MSIX);
263 if (ret < 0) {
264 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
265 "Failed to enable MSI-X");
266 return ret;
267 }
268
269 for (i = 0; i < xhci->msix_count; i++) {
270 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
271 "xhci_hcd", xhci_to_hcd(xhci));
272 if (ret)
273 goto disable_msix;
274 }
275
276 hcd->msix_enabled = 1;
277 return ret;
278
279 disable_msix:
280 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
281 while (--i >= 0)
282 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
283 pci_free_irq_vectors(pdev);
284 return ret;
285 }
286
287 /* Free any IRQs and disable MSI-X */
288 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
289 {
290 struct usb_hcd *hcd = xhci_to_hcd(xhci);
291 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
292
293 if (xhci->quirks & XHCI_PLAT)
294 return;
295
296 /* return if using legacy interrupt */
297 if (hcd->irq > 0)
298 return;
299
300 if (hcd->msix_enabled) {
301 int i;
302
303 for (i = 0; i < xhci->msix_count; i++)
304 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
305 } else {
306 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
307 }
308
309 pci_free_irq_vectors(pdev);
310 hcd->msix_enabled = 0;
311 }
312
313 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
314 {
315 struct usb_hcd *hcd = xhci_to_hcd(xhci);
316
317 if (hcd->msix_enabled) {
318 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
319 int i;
320
321 for (i = 0; i < xhci->msix_count; i++)
322 synchronize_irq(pci_irq_vector(pdev, i));
323 }
324 }
325
326 static int xhci_try_enable_msi(struct usb_hcd *hcd)
327 {
328 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
329 struct pci_dev *pdev;
330 int ret;
331
332 /* The xhci platform device has set up IRQs through usb_add_hcd. */
333 if (xhci->quirks & XHCI_PLAT)
334 return 0;
335
336 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
337 /*
338 * Some Fresco Logic host controllers advertise MSI, but fail to
339 * generate interrupts. Don't even try to enable MSI.
340 */
341 if (xhci->quirks & XHCI_BROKEN_MSI)
342 goto legacy_irq;
343
344 /* unregister the legacy interrupt */
345 if (hcd->irq)
346 free_irq(hcd->irq, hcd);
347 hcd->irq = 0;
348
349 ret = xhci_setup_msix(xhci);
350 if (ret)
351 /* fall back to msi*/
352 ret = xhci_setup_msi(xhci);
353
354 if (!ret) {
355 hcd->msi_enabled = 1;
356 return 0;
357 }
358
359 if (!pdev->irq) {
360 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
361 return -EINVAL;
362 }
363
364 legacy_irq:
365 if (!strlen(hcd->irq_descr))
366 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
367 hcd->driver->description, hcd->self.busnum);
368
369 /* fall back to legacy interrupt*/
370 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
371 hcd->irq_descr, hcd);
372 if (ret) {
373 xhci_err(xhci, "request interrupt %d failed\n",
374 pdev->irq);
375 return ret;
376 }
377 hcd->irq = pdev->irq;
378 return 0;
379 }
380
381 #else
382
383 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
384 {
385 return 0;
386 }
387
388 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
389 {
390 }
391
392 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
393 {
394 }
395
396 #endif
397
398 static void compliance_mode_recovery(struct timer_list *t)
399 {
400 struct xhci_hcd *xhci;
401 struct usb_hcd *hcd;
402 u32 temp;
403 int i;
404
405 xhci = from_timer(xhci, t, comp_mode_recovery_timer);
406
407 for (i = 0; i < xhci->num_usb3_ports; i++) {
408 temp = readl(xhci->usb3_ports[i]);
409 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
410 /*
411 * Compliance Mode Detected. Letting USB Core
412 * handle the Warm Reset
413 */
414 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
415 "Compliance mode detected->port %d",
416 i + 1);
417 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
418 "Attempting compliance mode recovery");
419 hcd = xhci->shared_hcd;
420
421 if (hcd->state == HC_STATE_SUSPENDED)
422 usb_hcd_resume_root_hub(hcd);
423
424 usb_hcd_poll_rh_status(hcd);
425 }
426 }
427
428 if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
429 mod_timer(&xhci->comp_mode_recovery_timer,
430 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
431 }
432
433 /*
434 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
435 * that causes ports behind that hardware to enter compliance mode sometimes.
436 * The quirk creates a timer that polls every 2 seconds the link state of
437 * each host controller's port and recovers it by issuing a Warm reset
438 * if Compliance mode is detected, otherwise the port will become "dead" (no
439 * device connections or disconnections will be detected anymore). Becasue no
440 * status event is generated when entering compliance mode (per xhci spec),
441 * this quirk is needed on systems that have the failing hardware installed.
442 */
443 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
444 {
445 xhci->port_status_u0 = 0;
446 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
447 0);
448 xhci->comp_mode_recovery_timer.expires = jiffies +
449 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
450
451 add_timer(&xhci->comp_mode_recovery_timer);
452 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
453 "Compliance mode recovery timer initialized");
454 }
455
456 /*
457 * This function identifies the systems that have installed the SN65LVPE502CP
458 * USB3.0 re-driver and that need the Compliance Mode Quirk.
459 * Systems:
460 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
461 */
462 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
463 {
464 const char *dmi_product_name, *dmi_sys_vendor;
465
466 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
467 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
468 if (!dmi_product_name || !dmi_sys_vendor)
469 return false;
470
471 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
472 return false;
473
474 if (strstr(dmi_product_name, "Z420") ||
475 strstr(dmi_product_name, "Z620") ||
476 strstr(dmi_product_name, "Z820") ||
477 strstr(dmi_product_name, "Z1 Workstation"))
478 return true;
479
480 return false;
481 }
482
483 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
484 {
485 return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
486 }
487
488
489 /*
490 * Initialize memory for HCD and xHC (one-time init).
491 *
492 * Program the PAGESIZE register, initialize the device context array, create
493 * device contexts (?), set up a command ring segment (or two?), create event
494 * ring (one for now).
495 */
496 static int xhci_init(struct usb_hcd *hcd)
497 {
498 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
499 int retval = 0;
500
501 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
502 spin_lock_init(&xhci->lock);
503 if (xhci->hci_version == 0x95 && link_quirk) {
504 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
505 "QUIRK: Not clearing Link TRB chain bits.");
506 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
507 } else {
508 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
509 "xHCI doesn't need link TRB QUIRK");
510 }
511 retval = xhci_mem_init(xhci, GFP_KERNEL);
512 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
513
514 /* Initializing Compliance Mode Recovery Data If Needed */
515 if (xhci_compliance_mode_recovery_timer_quirk_check()) {
516 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
517 compliance_mode_recovery_timer_init(xhci);
518 }
519
520 return retval;
521 }
522
523 /*-------------------------------------------------------------------------*/
524
525
526 static int xhci_run_finished(struct xhci_hcd *xhci)
527 {
528 if (xhci_start(xhci)) {
529 xhci_halt(xhci);
530 return -ENODEV;
531 }
532 xhci->shared_hcd->state = HC_STATE_RUNNING;
533 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
534
535 if (xhci->quirks & XHCI_NEC_HOST)
536 xhci_ring_cmd_db(xhci);
537
538 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
539 "Finished xhci_run for USB3 roothub");
540 return 0;
541 }
542
543 /*
544 * Start the HC after it was halted.
545 *
546 * This function is called by the USB core when the HC driver is added.
547 * Its opposite is xhci_stop().
548 *
549 * xhci_init() must be called once before this function can be called.
550 * Reset the HC, enable device slot contexts, program DCBAAP, and
551 * set command ring pointer and event ring pointer.
552 *
553 * Setup MSI-X vectors and enable interrupts.
554 */
555 int xhci_run(struct usb_hcd *hcd)
556 {
557 u32 temp;
558 u64 temp_64;
559 int ret;
560 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
561
562 /* Start the xHCI host controller running only after the USB 2.0 roothub
563 * is setup.
564 */
565
566 hcd->uses_new_polling = 1;
567 if (!usb_hcd_is_primary_hcd(hcd))
568 return xhci_run_finished(xhci);
569
570 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
571
572 ret = xhci_try_enable_msi(hcd);
573 if (ret)
574 return ret;
575
576 xhci_dbg_cmd_ptrs(xhci);
577
578 xhci_dbg(xhci, "ERST memory map follows:\n");
579 xhci_dbg_erst(xhci, &xhci->erst);
580 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
581 temp_64 &= ~ERST_PTR_MASK;
582 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
583 "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
584
585 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
586 "// Set the interrupt modulation register");
587 temp = readl(&xhci->ir_set->irq_control);
588 temp &= ~ER_IRQ_INTERVAL_MASK;
589 /*
590 * the increment interval is 8 times as much as that defined
591 * in xHCI spec on MTK's controller
592 */
593 temp |= (u32) ((xhci->quirks & XHCI_MTK_HOST) ? 20 : 160);
594 writel(temp, &xhci->ir_set->irq_control);
595
596 /* Set the HCD state before we enable the irqs */
597 temp = readl(&xhci->op_regs->command);
598 temp |= (CMD_EIE);
599 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
600 "// Enable interrupts, cmd = 0x%x.", temp);
601 writel(temp, &xhci->op_regs->command);
602
603 temp = readl(&xhci->ir_set->irq_pending);
604 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
605 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
606 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
607 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
608 xhci_print_ir_set(xhci, 0);
609
610 if (xhci->quirks & XHCI_NEC_HOST) {
611 struct xhci_command *command;
612
613 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
614 if (!command)
615 return -ENOMEM;
616
617 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
618 TRB_TYPE(TRB_NEC_GET_FW));
619 if (ret)
620 xhci_free_command(xhci, command);
621 }
622 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
623 "Finished xhci_run for USB2 roothub");
624
625 xhci_debugfs_init(xhci);
626
627 return 0;
628 }
629 EXPORT_SYMBOL_GPL(xhci_run);
630
631 /*
632 * Stop xHCI driver.
633 *
634 * This function is called by the USB core when the HC driver is removed.
635 * Its opposite is xhci_run().
636 *
637 * Disable device contexts, disable IRQs, and quiesce the HC.
638 * Reset the HC, finish any completed transactions, and cleanup memory.
639 */
640 static void xhci_stop(struct usb_hcd *hcd)
641 {
642 u32 temp;
643 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
644
645 mutex_lock(&xhci->mutex);
646
647 /* Only halt host and free memory after both hcds are removed */
648 if (!usb_hcd_is_primary_hcd(hcd)) {
649 /* usb core will free this hcd shortly, unset pointer */
650 xhci->shared_hcd = NULL;
651 mutex_unlock(&xhci->mutex);
652 return;
653 }
654
655 xhci_debugfs_exit(xhci);
656
657 spin_lock_irq(&xhci->lock);
658 xhci->xhc_state |= XHCI_STATE_HALTED;
659 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
660 xhci_halt(xhci);
661 xhci_reset(xhci);
662 spin_unlock_irq(&xhci->lock);
663
664 xhci_cleanup_msix(xhci);
665
666 /* Deleting Compliance Mode Recovery Timer */
667 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
668 (!(xhci_all_ports_seen_u0(xhci)))) {
669 del_timer_sync(&xhci->comp_mode_recovery_timer);
670 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
671 "%s: compliance mode recovery timer deleted",
672 __func__);
673 }
674
675 if (xhci->quirks & XHCI_AMD_PLL_FIX)
676 usb_amd_dev_put();
677
678 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
679 "// Disabling event ring interrupts");
680 temp = readl(&xhci->op_regs->status);
681 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
682 temp = readl(&xhci->ir_set->irq_pending);
683 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
684 xhci_print_ir_set(xhci, 0);
685
686 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
687 xhci_mem_cleanup(xhci);
688 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
689 "xhci_stop completed - status = %x",
690 readl(&xhci->op_regs->status));
691 mutex_unlock(&xhci->mutex);
692 }
693
694 /*
695 * Shutdown HC (not bus-specific)
696 *
697 * This is called when the machine is rebooting or halting. We assume that the
698 * machine will be powered off, and the HC's internal state will be reset.
699 * Don't bother to free memory.
700 *
701 * This will only ever be called with the main usb_hcd (the USB3 roothub).
702 */
703 static void xhci_shutdown(struct usb_hcd *hcd)
704 {
705 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
706
707 if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
708 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
709
710 spin_lock_irq(&xhci->lock);
711 xhci_halt(xhci);
712 /* Workaround for spurious wakeups at shutdown with HSW */
713 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
714 xhci_reset(xhci);
715 spin_unlock_irq(&xhci->lock);
716
717 xhci_cleanup_msix(xhci);
718
719 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
720 "xhci_shutdown completed - status = %x",
721 readl(&xhci->op_regs->status));
722
723 /* Yet another workaround for spurious wakeups at shutdown with HSW */
724 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
725 pci_set_power_state(to_pci_dev(hcd->self.sysdev), PCI_D3hot);
726 }
727
728 #ifdef CONFIG_PM
729 static void xhci_save_registers(struct xhci_hcd *xhci)
730 {
731 xhci->s3.command = readl(&xhci->op_regs->command);
732 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
733 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
734 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
735 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
736 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
737 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
738 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
739 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
740 }
741
742 static void xhci_restore_registers(struct xhci_hcd *xhci)
743 {
744 writel(xhci->s3.command, &xhci->op_regs->command);
745 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
746 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
747 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
748 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
749 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
750 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
751 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
752 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
753 }
754
755 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
756 {
757 u64 val_64;
758
759 /* step 2: initialize command ring buffer */
760 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
761 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
762 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
763 xhci->cmd_ring->dequeue) &
764 (u64) ~CMD_RING_RSVD_BITS) |
765 xhci->cmd_ring->cycle_state;
766 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
767 "// Setting command ring address to 0x%llx",
768 (long unsigned long) val_64);
769 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
770 }
771
772 /*
773 * The whole command ring must be cleared to zero when we suspend the host.
774 *
775 * The host doesn't save the command ring pointer in the suspend well, so we
776 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
777 * aligned, because of the reserved bits in the command ring dequeue pointer
778 * register. Therefore, we can't just set the dequeue pointer back in the
779 * middle of the ring (TRBs are 16-byte aligned).
780 */
781 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
782 {
783 struct xhci_ring *ring;
784 struct xhci_segment *seg;
785
786 ring = xhci->cmd_ring;
787 seg = ring->deq_seg;
788 do {
789 memset(seg->trbs, 0,
790 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
791 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
792 cpu_to_le32(~TRB_CYCLE);
793 seg = seg->next;
794 } while (seg != ring->deq_seg);
795
796 /* Reset the software enqueue and dequeue pointers */
797 ring->deq_seg = ring->first_seg;
798 ring->dequeue = ring->first_seg->trbs;
799 ring->enq_seg = ring->deq_seg;
800 ring->enqueue = ring->dequeue;
801
802 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
803 /*
804 * Ring is now zeroed, so the HW should look for change of ownership
805 * when the cycle bit is set to 1.
806 */
807 ring->cycle_state = 1;
808
809 /*
810 * Reset the hardware dequeue pointer.
811 * Yes, this will need to be re-written after resume, but we're paranoid
812 * and want to make sure the hardware doesn't access bogus memory
813 * because, say, the BIOS or an SMI started the host without changing
814 * the command ring pointers.
815 */
816 xhci_set_cmd_ring_deq(xhci);
817 }
818
819 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
820 {
821 int port_index;
822 __le32 __iomem **port_array;
823 unsigned long flags;
824 u32 t1, t2;
825
826 spin_lock_irqsave(&xhci->lock, flags);
827
828 /* disable usb3 ports Wake bits */
829 port_index = xhci->num_usb3_ports;
830 port_array = xhci->usb3_ports;
831 while (port_index--) {
832 t1 = readl(port_array[port_index]);
833 t1 = xhci_port_state_to_neutral(t1);
834 t2 = t1 & ~PORT_WAKE_BITS;
835 if (t1 != t2)
836 writel(t2, port_array[port_index]);
837 }
838
839 /* disable usb2 ports Wake bits */
840 port_index = xhci->num_usb2_ports;
841 port_array = xhci->usb2_ports;
842 while (port_index--) {
843 t1 = readl(port_array[port_index]);
844 t1 = xhci_port_state_to_neutral(t1);
845 t2 = t1 & ~PORT_WAKE_BITS;
846 if (t1 != t2)
847 writel(t2, port_array[port_index]);
848 }
849
850 spin_unlock_irqrestore(&xhci->lock, flags);
851 }
852
853 /*
854 * Stop HC (not bus-specific)
855 *
856 * This is called when the machine transition into S3/S4 mode.
857 *
858 */
859 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
860 {
861 int rc = 0;
862 unsigned int delay = XHCI_MAX_HALT_USEC;
863 struct usb_hcd *hcd = xhci_to_hcd(xhci);
864 u32 command;
865
866 if (!hcd->state)
867 return 0;
868
869 if (hcd->state != HC_STATE_SUSPENDED ||
870 xhci->shared_hcd->state != HC_STATE_SUSPENDED)
871 return -EINVAL;
872
873 /* Clear root port wake on bits if wakeup not allowed. */
874 if (!do_wakeup)
875 xhci_disable_port_wake_on_bits(xhci);
876
877 /* Don't poll the roothubs on bus suspend. */
878 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
879 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
880 del_timer_sync(&hcd->rh_timer);
881 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
882 del_timer_sync(&xhci->shared_hcd->rh_timer);
883
884 spin_lock_irq(&xhci->lock);
885 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
886 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
887 /* step 1: stop endpoint */
888 /* skipped assuming that port suspend has done */
889
890 /* step 2: clear Run/Stop bit */
891 command = readl(&xhci->op_regs->command);
892 command &= ~CMD_RUN;
893 writel(command, &xhci->op_regs->command);
894
895 /* Some chips from Fresco Logic need an extraordinary delay */
896 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
897
898 if (xhci_handshake(&xhci->op_regs->status,
899 STS_HALT, STS_HALT, delay)) {
900 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
901 spin_unlock_irq(&xhci->lock);
902 return -ETIMEDOUT;
903 }
904 xhci_clear_command_ring(xhci);
905
906 /* step 3: save registers */
907 xhci_save_registers(xhci);
908
909 /* step 4: set CSS flag */
910 command = readl(&xhci->op_regs->command);
911 command |= CMD_CSS;
912 writel(command, &xhci->op_regs->command);
913 if (xhci_handshake(&xhci->op_regs->status,
914 STS_SAVE, 0, 10 * 1000)) {
915 xhci_warn(xhci, "WARN: xHC save state timeout\n");
916 spin_unlock_irq(&xhci->lock);
917 return -ETIMEDOUT;
918 }
919 spin_unlock_irq(&xhci->lock);
920
921 /*
922 * Deleting Compliance Mode Recovery Timer because the xHCI Host
923 * is about to be suspended.
924 */
925 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
926 (!(xhci_all_ports_seen_u0(xhci)))) {
927 del_timer_sync(&xhci->comp_mode_recovery_timer);
928 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
929 "%s: compliance mode recovery timer deleted",
930 __func__);
931 }
932
933 /* step 5: remove core well power */
934 /* synchronize irq when using MSI-X */
935 xhci_msix_sync_irqs(xhci);
936
937 return rc;
938 }
939 EXPORT_SYMBOL_GPL(xhci_suspend);
940
941 /*
942 * start xHC (not bus-specific)
943 *
944 * This is called when the machine transition from S3/S4 mode.
945 *
946 */
947 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
948 {
949 u32 command, temp = 0, status;
950 struct usb_hcd *hcd = xhci_to_hcd(xhci);
951 struct usb_hcd *secondary_hcd;
952 int retval = 0;
953 bool comp_timer_running = false;
954
955 if (!hcd->state)
956 return 0;
957
958 /* Wait a bit if either of the roothubs need to settle from the
959 * transition into bus suspend.
960 */
961 if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
962 time_before(jiffies,
963 xhci->bus_state[1].next_statechange))
964 msleep(100);
965
966 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
967 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
968
969 spin_lock_irq(&xhci->lock);
970 if (xhci->quirks & XHCI_RESET_ON_RESUME)
971 hibernated = true;
972
973 if (!hibernated) {
974 /* step 1: restore register */
975 xhci_restore_registers(xhci);
976 /* step 2: initialize command ring buffer */
977 xhci_set_cmd_ring_deq(xhci);
978 /* step 3: restore state and start state*/
979 /* step 3: set CRS flag */
980 command = readl(&xhci->op_regs->command);
981 command |= CMD_CRS;
982 writel(command, &xhci->op_regs->command);
983 if (xhci_handshake(&xhci->op_regs->status,
984 STS_RESTORE, 0, 10 * 1000)) {
985 xhci_warn(xhci, "WARN: xHC restore state timeout\n");
986 spin_unlock_irq(&xhci->lock);
987 return -ETIMEDOUT;
988 }
989 temp = readl(&xhci->op_regs->status);
990 }
991
992 /* If restore operation fails, re-initialize the HC during resume */
993 if ((temp & STS_SRE) || hibernated) {
994
995 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
996 !(xhci_all_ports_seen_u0(xhci))) {
997 del_timer_sync(&xhci->comp_mode_recovery_timer);
998 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
999 "Compliance Mode Recovery Timer deleted!");
1000 }
1001
1002 /* Let the USB core know _both_ roothubs lost power. */
1003 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1004 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1005
1006 xhci_dbg(xhci, "Stop HCD\n");
1007 xhci_halt(xhci);
1008 xhci_reset(xhci);
1009 spin_unlock_irq(&xhci->lock);
1010 xhci_cleanup_msix(xhci);
1011
1012 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1013 temp = readl(&xhci->op_regs->status);
1014 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1015 temp = readl(&xhci->ir_set->irq_pending);
1016 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1017 xhci_print_ir_set(xhci, 0);
1018
1019 xhci_dbg(xhci, "cleaning up memory\n");
1020 xhci_mem_cleanup(xhci);
1021 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1022 readl(&xhci->op_regs->status));
1023
1024 /* USB core calls the PCI reinit and start functions twice:
1025 * first with the primary HCD, and then with the secondary HCD.
1026 * If we don't do the same, the host will never be started.
1027 */
1028 if (!usb_hcd_is_primary_hcd(hcd))
1029 secondary_hcd = hcd;
1030 else
1031 secondary_hcd = xhci->shared_hcd;
1032
1033 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1034 retval = xhci_init(hcd->primary_hcd);
1035 if (retval)
1036 return retval;
1037 comp_timer_running = true;
1038
1039 xhci_dbg(xhci, "Start the primary HCD\n");
1040 retval = xhci_run(hcd->primary_hcd);
1041 if (!retval) {
1042 xhci_dbg(xhci, "Start the secondary HCD\n");
1043 retval = xhci_run(secondary_hcd);
1044 }
1045 hcd->state = HC_STATE_SUSPENDED;
1046 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1047 goto done;
1048 }
1049
1050 /* step 4: set Run/Stop bit */
1051 command = readl(&xhci->op_regs->command);
1052 command |= CMD_RUN;
1053 writel(command, &xhci->op_regs->command);
1054 xhci_handshake(&xhci->op_regs->status, STS_HALT,
1055 0, 250 * 1000);
1056
1057 /* step 5: walk topology and initialize portsc,
1058 * portpmsc and portli
1059 */
1060 /* this is done in bus_resume */
1061
1062 /* step 6: restart each of the previously
1063 * Running endpoints by ringing their doorbells
1064 */
1065
1066 spin_unlock_irq(&xhci->lock);
1067
1068 done:
1069 if (retval == 0) {
1070 /* Resume root hubs only when have pending events. */
1071 status = readl(&xhci->op_regs->status);
1072 if (status & STS_EINT) {
1073 usb_hcd_resume_root_hub(xhci->shared_hcd);
1074 usb_hcd_resume_root_hub(hcd);
1075 }
1076 }
1077
1078 /*
1079 * If system is subject to the Quirk, Compliance Mode Timer needs to
1080 * be re-initialized Always after a system resume. Ports are subject
1081 * to suffer the Compliance Mode issue again. It doesn't matter if
1082 * ports have entered previously to U0 before system's suspension.
1083 */
1084 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1085 compliance_mode_recovery_timer_init(xhci);
1086
1087 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1088 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1089
1090 /* Re-enable port polling. */
1091 xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1092 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1093 usb_hcd_poll_rh_status(xhci->shared_hcd);
1094 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1095 usb_hcd_poll_rh_status(hcd);
1096
1097 return retval;
1098 }
1099 EXPORT_SYMBOL_GPL(xhci_resume);
1100 #endif /* CONFIG_PM */
1101
1102 /*-------------------------------------------------------------------------*/
1103
1104 /**
1105 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1106 * HCDs. Find the index for an endpoint given its descriptor. Use the return
1107 * value to right shift 1 for the bitmask.
1108 *
1109 * Index = (epnum * 2) + direction - 1,
1110 * where direction = 0 for OUT, 1 for IN.
1111 * For control endpoints, the IN index is used (OUT index is unused), so
1112 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1113 */
1114 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1115 {
1116 unsigned int index;
1117 if (usb_endpoint_xfer_control(desc))
1118 index = (unsigned int) (usb_endpoint_num(desc)*2);
1119 else
1120 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1121 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1122 return index;
1123 }
1124
1125 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1126 * address from the XHCI endpoint index.
1127 */
1128 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1129 {
1130 unsigned int number = DIV_ROUND_UP(ep_index, 2);
1131 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1132 return direction | number;
1133 }
1134
1135 /* Find the flag for this endpoint (for use in the control context). Use the
1136 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1137 * bit 1, etc.
1138 */
1139 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1140 {
1141 return 1 << (xhci_get_endpoint_index(desc) + 1);
1142 }
1143
1144 /* Find the flag for this endpoint (for use in the control context). Use the
1145 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1146 * bit 1, etc.
1147 */
1148 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1149 {
1150 return 1 << (ep_index + 1);
1151 }
1152
1153 /* Compute the last valid endpoint context index. Basically, this is the
1154 * endpoint index plus one. For slot contexts with more than valid endpoint,
1155 * we find the most significant bit set in the added contexts flags.
1156 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1157 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1158 */
1159 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1160 {
1161 return fls(added_ctxs) - 1;
1162 }
1163
1164 /* Returns 1 if the arguments are OK;
1165 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1166 */
1167 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1168 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1169 const char *func) {
1170 struct xhci_hcd *xhci;
1171 struct xhci_virt_device *virt_dev;
1172
1173 if (!hcd || (check_ep && !ep) || !udev) {
1174 pr_debug("xHCI %s called with invalid args\n", func);
1175 return -EINVAL;
1176 }
1177 if (!udev->parent) {
1178 pr_debug("xHCI %s called for root hub\n", func);
1179 return 0;
1180 }
1181
1182 xhci = hcd_to_xhci(hcd);
1183 if (check_virt_dev) {
1184 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1185 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1186 func);
1187 return -EINVAL;
1188 }
1189
1190 virt_dev = xhci->devs[udev->slot_id];
1191 if (virt_dev->udev != udev) {
1192 xhci_dbg(xhci, "xHCI %s called with udev and "
1193 "virt_dev does not match\n", func);
1194 return -EINVAL;
1195 }
1196 }
1197
1198 if (xhci->xhc_state & XHCI_STATE_HALTED)
1199 return -ENODEV;
1200
1201 return 1;
1202 }
1203
1204 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1205 struct usb_device *udev, struct xhci_command *command,
1206 bool ctx_change, bool must_succeed);
1207
1208 /*
1209 * Full speed devices may have a max packet size greater than 8 bytes, but the
1210 * USB core doesn't know that until it reads the first 8 bytes of the
1211 * descriptor. If the usb_device's max packet size changes after that point,
1212 * we need to issue an evaluate context command and wait on it.
1213 */
1214 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1215 unsigned int ep_index, struct urb *urb)
1216 {
1217 struct xhci_container_ctx *out_ctx;
1218 struct xhci_input_control_ctx *ctrl_ctx;
1219 struct xhci_ep_ctx *ep_ctx;
1220 struct xhci_command *command;
1221 int max_packet_size;
1222 int hw_max_packet_size;
1223 int ret = 0;
1224
1225 out_ctx = xhci->devs[slot_id]->out_ctx;
1226 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1227 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1228 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1229 if (hw_max_packet_size != max_packet_size) {
1230 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1231 "Max Packet Size for ep 0 changed.");
1232 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1233 "Max packet size in usb_device = %d",
1234 max_packet_size);
1235 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1236 "Max packet size in xHCI HW = %d",
1237 hw_max_packet_size);
1238 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1239 "Issuing evaluate context command.");
1240
1241 /* Set up the input context flags for the command */
1242 /* FIXME: This won't work if a non-default control endpoint
1243 * changes max packet sizes.
1244 */
1245
1246 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
1247 if (!command)
1248 return -ENOMEM;
1249
1250 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1251 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1252 if (!ctrl_ctx) {
1253 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1254 __func__);
1255 ret = -ENOMEM;
1256 goto command_cleanup;
1257 }
1258 /* Set up the modified control endpoint 0 */
1259 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1260 xhci->devs[slot_id]->out_ctx, ep_index);
1261
1262 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1263 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1264 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1265
1266 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1267 ctrl_ctx->drop_flags = 0;
1268
1269 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1270 true, false);
1271
1272 /* Clean up the input context for later use by bandwidth
1273 * functions.
1274 */
1275 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1276 command_cleanup:
1277 kfree(command->completion);
1278 kfree(command);
1279 }
1280 return ret;
1281 }
1282
1283 /*
1284 * non-error returns are a promise to giveback() the urb later
1285 * we drop ownership so next owner (or urb unlink) can get it
1286 */
1287 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1288 {
1289 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1290 unsigned long flags;
1291 int ret = 0;
1292 unsigned int slot_id, ep_index, ep_state;
1293 struct urb_priv *urb_priv;
1294 int num_tds;
1295
1296 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1297 true, true, __func__) <= 0)
1298 return -EINVAL;
1299
1300 slot_id = urb->dev->slot_id;
1301 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1302
1303 if (!HCD_HW_ACCESSIBLE(hcd)) {
1304 if (!in_interrupt())
1305 xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1306 return -ESHUTDOWN;
1307 }
1308
1309 if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1310 num_tds = urb->number_of_packets;
1311 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1312 urb->transfer_buffer_length > 0 &&
1313 urb->transfer_flags & URB_ZERO_PACKET &&
1314 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1315 num_tds = 2;
1316 else
1317 num_tds = 1;
1318
1319 urb_priv = kzalloc(sizeof(struct urb_priv) +
1320 num_tds * sizeof(struct xhci_td), mem_flags);
1321 if (!urb_priv)
1322 return -ENOMEM;
1323
1324 urb_priv->num_tds = num_tds;
1325 urb_priv->num_tds_done = 0;
1326 urb->hcpriv = urb_priv;
1327
1328 trace_xhci_urb_enqueue(urb);
1329
1330 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1331 /* Check to see if the max packet size for the default control
1332 * endpoint changed during FS device enumeration
1333 */
1334 if (urb->dev->speed == USB_SPEED_FULL) {
1335 ret = xhci_check_maxpacket(xhci, slot_id,
1336 ep_index, urb);
1337 if (ret < 0) {
1338 xhci_urb_free_priv(urb_priv);
1339 urb->hcpriv = NULL;
1340 return ret;
1341 }
1342 }
1343 }
1344
1345 spin_lock_irqsave(&xhci->lock, flags);
1346
1347 if (xhci->xhc_state & XHCI_STATE_DYING) {
1348 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1349 urb->ep->desc.bEndpointAddress, urb);
1350 ret = -ESHUTDOWN;
1351 goto free_priv;
1352 }
1353
1354 switch (usb_endpoint_type(&urb->ep->desc)) {
1355
1356 case USB_ENDPOINT_XFER_CONTROL:
1357 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1358 slot_id, ep_index);
1359 break;
1360 case USB_ENDPOINT_XFER_BULK:
1361 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
1362 if (ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1363 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1364 ep_state);
1365 ret = -EINVAL;
1366 break;
1367 }
1368 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1369 slot_id, ep_index);
1370 break;
1371
1372
1373 case USB_ENDPOINT_XFER_INT:
1374 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1375 slot_id, ep_index);
1376 break;
1377
1378 case USB_ENDPOINT_XFER_ISOC:
1379 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1380 slot_id, ep_index);
1381 }
1382
1383 if (ret) {
1384 free_priv:
1385 xhci_urb_free_priv(urb_priv);
1386 urb->hcpriv = NULL;
1387 }
1388 spin_unlock_irqrestore(&xhci->lock, flags);
1389 return ret;
1390 }
1391
1392 /*
1393 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1394 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1395 * should pick up where it left off in the TD, unless a Set Transfer Ring
1396 * Dequeue Pointer is issued.
1397 *
1398 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1399 * the ring. Since the ring is a contiguous structure, they can't be physically
1400 * removed. Instead, there are two options:
1401 *
1402 * 1) If the HC is in the middle of processing the URB to be canceled, we
1403 * simply move the ring's dequeue pointer past those TRBs using the Set
1404 * Transfer Ring Dequeue Pointer command. This will be the common case,
1405 * when drivers timeout on the last submitted URB and attempt to cancel.
1406 *
1407 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1408 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1409 * HC will need to invalidate the any TRBs it has cached after the stop
1410 * endpoint command, as noted in the xHCI 0.95 errata.
1411 *
1412 * 3) The TD may have completed by the time the Stop Endpoint Command
1413 * completes, so software needs to handle that case too.
1414 *
1415 * This function should protect against the TD enqueueing code ringing the
1416 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1417 * It also needs to account for multiple cancellations on happening at the same
1418 * time for the same endpoint.
1419 *
1420 * Note that this function can be called in any context, or so says
1421 * usb_hcd_unlink_urb()
1422 */
1423 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1424 {
1425 unsigned long flags;
1426 int ret, i;
1427 u32 temp;
1428 struct xhci_hcd *xhci;
1429 struct urb_priv *urb_priv;
1430 struct xhci_td *td;
1431 unsigned int ep_index;
1432 struct xhci_ring *ep_ring;
1433 struct xhci_virt_ep *ep;
1434 struct xhci_command *command;
1435 struct xhci_virt_device *vdev;
1436
1437 xhci = hcd_to_xhci(hcd);
1438 spin_lock_irqsave(&xhci->lock, flags);
1439
1440 trace_xhci_urb_dequeue(urb);
1441
1442 /* Make sure the URB hasn't completed or been unlinked already */
1443 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1444 if (ret)
1445 goto done;
1446
1447 /* give back URB now if we can't queue it for cancel */
1448 vdev = xhci->devs[urb->dev->slot_id];
1449 urb_priv = urb->hcpriv;
1450 if (!vdev || !urb_priv)
1451 goto err_giveback;
1452
1453 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1454 ep = &vdev->eps[ep_index];
1455 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1456 if (!ep || !ep_ring)
1457 goto err_giveback;
1458
1459 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1460 temp = readl(&xhci->op_regs->status);
1461 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1462 xhci_hc_died(xhci);
1463 goto done;
1464 }
1465
1466 if (xhci->xhc_state & XHCI_STATE_HALTED) {
1467 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1468 "HC halted, freeing TD manually.");
1469 for (i = urb_priv->num_tds_done;
1470 i < urb_priv->num_tds;
1471 i++) {
1472 td = &urb_priv->td[i];
1473 if (!list_empty(&td->td_list))
1474 list_del_init(&td->td_list);
1475 if (!list_empty(&td->cancelled_td_list))
1476 list_del_init(&td->cancelled_td_list);
1477 }
1478 goto err_giveback;
1479 }
1480
1481 i = urb_priv->num_tds_done;
1482 if (i < urb_priv->num_tds)
1483 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1484 "Cancel URB %p, dev %s, ep 0x%x, "
1485 "starting at offset 0x%llx",
1486 urb, urb->dev->devpath,
1487 urb->ep->desc.bEndpointAddress,
1488 (unsigned long long) xhci_trb_virt_to_dma(
1489 urb_priv->td[i].start_seg,
1490 urb_priv->td[i].first_trb));
1491
1492 for (; i < urb_priv->num_tds; i++) {
1493 td = &urb_priv->td[i];
1494 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1495 }
1496
1497 /* Queue a stop endpoint command, but only if this is
1498 * the first cancellation to be handled.
1499 */
1500 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1501 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1502 if (!command) {
1503 ret = -ENOMEM;
1504 goto done;
1505 }
1506 ep->ep_state |= EP_STOP_CMD_PENDING;
1507 ep->stop_cmd_timer.expires = jiffies +
1508 XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1509 add_timer(&ep->stop_cmd_timer);
1510 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1511 ep_index, 0);
1512 xhci_ring_cmd_db(xhci);
1513 }
1514 done:
1515 spin_unlock_irqrestore(&xhci->lock, flags);
1516 return ret;
1517
1518 err_giveback:
1519 if (urb_priv)
1520 xhci_urb_free_priv(urb_priv);
1521 usb_hcd_unlink_urb_from_ep(hcd, urb);
1522 spin_unlock_irqrestore(&xhci->lock, flags);
1523 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1524 return ret;
1525 }
1526
1527 /* Drop an endpoint from a new bandwidth configuration for this device.
1528 * Only one call to this function is allowed per endpoint before
1529 * check_bandwidth() or reset_bandwidth() must be called.
1530 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1531 * add the endpoint to the schedule with possibly new parameters denoted by a
1532 * different endpoint descriptor in usb_host_endpoint.
1533 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1534 * not allowed.
1535 *
1536 * The USB core will not allow URBs to be queued to an endpoint that is being
1537 * disabled, so there's no need for mutual exclusion to protect
1538 * the xhci->devs[slot_id] structure.
1539 */
1540 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1541 struct usb_host_endpoint *ep)
1542 {
1543 struct xhci_hcd *xhci;
1544 struct xhci_container_ctx *in_ctx, *out_ctx;
1545 struct xhci_input_control_ctx *ctrl_ctx;
1546 unsigned int ep_index;
1547 struct xhci_ep_ctx *ep_ctx;
1548 u32 drop_flag;
1549 u32 new_add_flags, new_drop_flags;
1550 int ret;
1551
1552 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1553 if (ret <= 0)
1554 return ret;
1555 xhci = hcd_to_xhci(hcd);
1556 if (xhci->xhc_state & XHCI_STATE_DYING)
1557 return -ENODEV;
1558
1559 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1560 drop_flag = xhci_get_endpoint_flag(&ep->desc);
1561 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1562 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1563 __func__, drop_flag);
1564 return 0;
1565 }
1566
1567 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1568 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1569 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1570 if (!ctrl_ctx) {
1571 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1572 __func__);
1573 return 0;
1574 }
1575
1576 ep_index = xhci_get_endpoint_index(&ep->desc);
1577 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1578 /* If the HC already knows the endpoint is disabled,
1579 * or the HCD has noted it is disabled, ignore this request
1580 */
1581 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1582 le32_to_cpu(ctrl_ctx->drop_flags) &
1583 xhci_get_endpoint_flag(&ep->desc)) {
1584 /* Do not warn when called after a usb_device_reset */
1585 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1586 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1587 __func__, ep);
1588 return 0;
1589 }
1590
1591 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1592 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1593
1594 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1595 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1596
1597 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1598
1599 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1600
1601 if (xhci->quirks & XHCI_MTK_HOST)
1602 xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1603
1604 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1605 (unsigned int) ep->desc.bEndpointAddress,
1606 udev->slot_id,
1607 (unsigned int) new_drop_flags,
1608 (unsigned int) new_add_flags);
1609 return 0;
1610 }
1611
1612 /* Add an endpoint to a new possible bandwidth configuration for this device.
1613 * Only one call to this function is allowed per endpoint before
1614 * check_bandwidth() or reset_bandwidth() must be called.
1615 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1616 * add the endpoint to the schedule with possibly new parameters denoted by a
1617 * different endpoint descriptor in usb_host_endpoint.
1618 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1619 * not allowed.
1620 *
1621 * The USB core will not allow URBs to be queued to an endpoint until the
1622 * configuration or alt setting is installed in the device, so there's no need
1623 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1624 */
1625 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1626 struct usb_host_endpoint *ep)
1627 {
1628 struct xhci_hcd *xhci;
1629 struct xhci_container_ctx *in_ctx;
1630 unsigned int ep_index;
1631 struct xhci_input_control_ctx *ctrl_ctx;
1632 u32 added_ctxs;
1633 u32 new_add_flags, new_drop_flags;
1634 struct xhci_virt_device *virt_dev;
1635 int ret = 0;
1636
1637 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1638 if (ret <= 0) {
1639 /* So we won't queue a reset ep command for a root hub */
1640 ep->hcpriv = NULL;
1641 return ret;
1642 }
1643 xhci = hcd_to_xhci(hcd);
1644 if (xhci->xhc_state & XHCI_STATE_DYING)
1645 return -ENODEV;
1646
1647 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1648 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1649 /* FIXME when we have to issue an evaluate endpoint command to
1650 * deal with ep0 max packet size changing once we get the
1651 * descriptors
1652 */
1653 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1654 __func__, added_ctxs);
1655 return 0;
1656 }
1657
1658 virt_dev = xhci->devs[udev->slot_id];
1659 in_ctx = virt_dev->in_ctx;
1660 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1661 if (!ctrl_ctx) {
1662 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1663 __func__);
1664 return 0;
1665 }
1666
1667 ep_index = xhci_get_endpoint_index(&ep->desc);
1668 /* If this endpoint is already in use, and the upper layers are trying
1669 * to add it again without dropping it, reject the addition.
1670 */
1671 if (virt_dev->eps[ep_index].ring &&
1672 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1673 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1674 "without dropping it.\n",
1675 (unsigned int) ep->desc.bEndpointAddress);
1676 return -EINVAL;
1677 }
1678
1679 /* If the HCD has already noted the endpoint is enabled,
1680 * ignore this request.
1681 */
1682 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1683 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1684 __func__, ep);
1685 return 0;
1686 }
1687
1688 /*
1689 * Configuration and alternate setting changes must be done in
1690 * process context, not interrupt context (or so documenation
1691 * for usb_set_interface() and usb_set_configuration() claim).
1692 */
1693 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1694 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1695 __func__, ep->desc.bEndpointAddress);
1696 return -ENOMEM;
1697 }
1698
1699 if (xhci->quirks & XHCI_MTK_HOST) {
1700 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1701 if (ret < 0) {
1702 xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring);
1703 virt_dev->eps[ep_index].new_ring = NULL;
1704 return ret;
1705 }
1706 }
1707
1708 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1709 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1710
1711 /* If xhci_endpoint_disable() was called for this endpoint, but the
1712 * xHC hasn't been notified yet through the check_bandwidth() call,
1713 * this re-adds a new state for the endpoint from the new endpoint
1714 * descriptors. We must drop and re-add this endpoint, so we leave the
1715 * drop flags alone.
1716 */
1717 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1718
1719 /* Store the usb_device pointer for later use */
1720 ep->hcpriv = udev;
1721
1722 xhci_debugfs_create_endpoint(xhci, virt_dev, ep_index);
1723
1724 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1725 (unsigned int) ep->desc.bEndpointAddress,
1726 udev->slot_id,
1727 (unsigned int) new_drop_flags,
1728 (unsigned int) new_add_flags);
1729 return 0;
1730 }
1731
1732 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1733 {
1734 struct xhci_input_control_ctx *ctrl_ctx;
1735 struct xhci_ep_ctx *ep_ctx;
1736 struct xhci_slot_ctx *slot_ctx;
1737 int i;
1738
1739 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1740 if (!ctrl_ctx) {
1741 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1742 __func__);
1743 return;
1744 }
1745
1746 /* When a device's add flag and drop flag are zero, any subsequent
1747 * configure endpoint command will leave that endpoint's state
1748 * untouched. Make sure we don't leave any old state in the input
1749 * endpoint contexts.
1750 */
1751 ctrl_ctx->drop_flags = 0;
1752 ctrl_ctx->add_flags = 0;
1753 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1754 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1755 /* Endpoint 0 is always valid */
1756 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1757 for (i = 1; i < 31; i++) {
1758 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1759 ep_ctx->ep_info = 0;
1760 ep_ctx->ep_info2 = 0;
1761 ep_ctx->deq = 0;
1762 ep_ctx->tx_info = 0;
1763 }
1764 }
1765
1766 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1767 struct usb_device *udev, u32 *cmd_status)
1768 {
1769 int ret;
1770
1771 switch (*cmd_status) {
1772 case COMP_COMMAND_ABORTED:
1773 case COMP_COMMAND_RING_STOPPED:
1774 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1775 ret = -ETIME;
1776 break;
1777 case COMP_RESOURCE_ERROR:
1778 dev_warn(&udev->dev,
1779 "Not enough host controller resources for new device state.\n");
1780 ret = -ENOMEM;
1781 /* FIXME: can we allocate more resources for the HC? */
1782 break;
1783 case COMP_BANDWIDTH_ERROR:
1784 case COMP_SECONDARY_BANDWIDTH_ERROR:
1785 dev_warn(&udev->dev,
1786 "Not enough bandwidth for new device state.\n");
1787 ret = -ENOSPC;
1788 /* FIXME: can we go back to the old state? */
1789 break;
1790 case COMP_TRB_ERROR:
1791 /* the HCD set up something wrong */
1792 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1793 "add flag = 1, "
1794 "and endpoint is not disabled.\n");
1795 ret = -EINVAL;
1796 break;
1797 case COMP_INCOMPATIBLE_DEVICE_ERROR:
1798 dev_warn(&udev->dev,
1799 "ERROR: Incompatible device for endpoint configure command.\n");
1800 ret = -ENODEV;
1801 break;
1802 case COMP_SUCCESS:
1803 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1804 "Successful Endpoint Configure command");
1805 ret = 0;
1806 break;
1807 default:
1808 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1809 *cmd_status);
1810 ret = -EINVAL;
1811 break;
1812 }
1813 return ret;
1814 }
1815
1816 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1817 struct usb_device *udev, u32 *cmd_status)
1818 {
1819 int ret;
1820
1821 switch (*cmd_status) {
1822 case COMP_COMMAND_ABORTED:
1823 case COMP_COMMAND_RING_STOPPED:
1824 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1825 ret = -ETIME;
1826 break;
1827 case COMP_PARAMETER_ERROR:
1828 dev_warn(&udev->dev,
1829 "WARN: xHCI driver setup invalid evaluate context command.\n");
1830 ret = -EINVAL;
1831 break;
1832 case COMP_SLOT_NOT_ENABLED_ERROR:
1833 dev_warn(&udev->dev,
1834 "WARN: slot not enabled for evaluate context command.\n");
1835 ret = -EINVAL;
1836 break;
1837 case COMP_CONTEXT_STATE_ERROR:
1838 dev_warn(&udev->dev,
1839 "WARN: invalid context state for evaluate context command.\n");
1840 ret = -EINVAL;
1841 break;
1842 case COMP_INCOMPATIBLE_DEVICE_ERROR:
1843 dev_warn(&udev->dev,
1844 "ERROR: Incompatible device for evaluate context command.\n");
1845 ret = -ENODEV;
1846 break;
1847 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
1848 /* Max Exit Latency too large error */
1849 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1850 ret = -EINVAL;
1851 break;
1852 case COMP_SUCCESS:
1853 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1854 "Successful evaluate context command");
1855 ret = 0;
1856 break;
1857 default:
1858 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1859 *cmd_status);
1860 ret = -EINVAL;
1861 break;
1862 }
1863 return ret;
1864 }
1865
1866 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1867 struct xhci_input_control_ctx *ctrl_ctx)
1868 {
1869 u32 valid_add_flags;
1870 u32 valid_drop_flags;
1871
1872 /* Ignore the slot flag (bit 0), and the default control endpoint flag
1873 * (bit 1). The default control endpoint is added during the Address
1874 * Device command and is never removed until the slot is disabled.
1875 */
1876 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1877 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1878
1879 /* Use hweight32 to count the number of ones in the add flags, or
1880 * number of endpoints added. Don't count endpoints that are changed
1881 * (both added and dropped).
1882 */
1883 return hweight32(valid_add_flags) -
1884 hweight32(valid_add_flags & valid_drop_flags);
1885 }
1886
1887 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1888 struct xhci_input_control_ctx *ctrl_ctx)
1889 {
1890 u32 valid_add_flags;
1891 u32 valid_drop_flags;
1892
1893 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1894 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1895
1896 return hweight32(valid_drop_flags) -
1897 hweight32(valid_add_flags & valid_drop_flags);
1898 }
1899
1900 /*
1901 * We need to reserve the new number of endpoints before the configure endpoint
1902 * command completes. We can't subtract the dropped endpoints from the number
1903 * of active endpoints until the command completes because we can oversubscribe
1904 * the host in this case:
1905 *
1906 * - the first configure endpoint command drops more endpoints than it adds
1907 * - a second configure endpoint command that adds more endpoints is queued
1908 * - the first configure endpoint command fails, so the config is unchanged
1909 * - the second command may succeed, even though there isn't enough resources
1910 *
1911 * Must be called with xhci->lock held.
1912 */
1913 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1914 struct xhci_input_control_ctx *ctrl_ctx)
1915 {
1916 u32 added_eps;
1917
1918 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1919 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1920 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1921 "Not enough ep ctxs: "
1922 "%u active, need to add %u, limit is %u.",
1923 xhci->num_active_eps, added_eps,
1924 xhci->limit_active_eps);
1925 return -ENOMEM;
1926 }
1927 xhci->num_active_eps += added_eps;
1928 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1929 "Adding %u ep ctxs, %u now active.", added_eps,
1930 xhci->num_active_eps);
1931 return 0;
1932 }
1933
1934 /*
1935 * The configure endpoint was failed by the xHC for some other reason, so we
1936 * need to revert the resources that failed configuration would have used.
1937 *
1938 * Must be called with xhci->lock held.
1939 */
1940 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1941 struct xhci_input_control_ctx *ctrl_ctx)
1942 {
1943 u32 num_failed_eps;
1944
1945 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1946 xhci->num_active_eps -= num_failed_eps;
1947 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1948 "Removing %u failed ep ctxs, %u now active.",
1949 num_failed_eps,
1950 xhci->num_active_eps);
1951 }
1952
1953 /*
1954 * Now that the command has completed, clean up the active endpoint count by
1955 * subtracting out the endpoints that were dropped (but not changed).
1956 *
1957 * Must be called with xhci->lock held.
1958 */
1959 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1960 struct xhci_input_control_ctx *ctrl_ctx)
1961 {
1962 u32 num_dropped_eps;
1963
1964 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
1965 xhci->num_active_eps -= num_dropped_eps;
1966 if (num_dropped_eps)
1967 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1968 "Removing %u dropped ep ctxs, %u now active.",
1969 num_dropped_eps,
1970 xhci->num_active_eps);
1971 }
1972
1973 static unsigned int xhci_get_block_size(struct usb_device *udev)
1974 {
1975 switch (udev->speed) {
1976 case USB_SPEED_LOW:
1977 case USB_SPEED_FULL:
1978 return FS_BLOCK;
1979 case USB_SPEED_HIGH:
1980 return HS_BLOCK;
1981 case USB_SPEED_SUPER:
1982 case USB_SPEED_SUPER_PLUS:
1983 return SS_BLOCK;
1984 case USB_SPEED_UNKNOWN:
1985 case USB_SPEED_WIRELESS:
1986 default:
1987 /* Should never happen */
1988 return 1;
1989 }
1990 }
1991
1992 static unsigned int
1993 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
1994 {
1995 if (interval_bw->overhead[LS_OVERHEAD_TYPE])
1996 return LS_OVERHEAD;
1997 if (interval_bw->overhead[FS_OVERHEAD_TYPE])
1998 return FS_OVERHEAD;
1999 return HS_OVERHEAD;
2000 }
2001
2002 /* If we are changing a LS/FS device under a HS hub,
2003 * make sure (if we are activating a new TT) that the HS bus has enough
2004 * bandwidth for this new TT.
2005 */
2006 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2007 struct xhci_virt_device *virt_dev,
2008 int old_active_eps)
2009 {
2010 struct xhci_interval_bw_table *bw_table;
2011 struct xhci_tt_bw_info *tt_info;
2012
2013 /* Find the bandwidth table for the root port this TT is attached to. */
2014 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2015 tt_info = virt_dev->tt_info;
2016 /* If this TT already had active endpoints, the bandwidth for this TT
2017 * has already been added. Removing all periodic endpoints (and thus
2018 * making the TT enactive) will only decrease the bandwidth used.
2019 */
2020 if (old_active_eps)
2021 return 0;
2022 if (old_active_eps == 0 && tt_info->active_eps != 0) {
2023 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2024 return -ENOMEM;
2025 return 0;
2026 }
2027 /* Not sure why we would have no new active endpoints...
2028 *
2029 * Maybe because of an Evaluate Context change for a hub update or a
2030 * control endpoint 0 max packet size change?
2031 * FIXME: skip the bandwidth calculation in that case.
2032 */
2033 return 0;
2034 }
2035
2036 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2037 struct xhci_virt_device *virt_dev)
2038 {
2039 unsigned int bw_reserved;
2040
2041 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2042 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2043 return -ENOMEM;
2044
2045 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2046 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2047 return -ENOMEM;
2048
2049 return 0;
2050 }
2051
2052 /*
2053 * This algorithm is a very conservative estimate of the worst-case scheduling
2054 * scenario for any one interval. The hardware dynamically schedules the
2055 * packets, so we can't tell which microframe could be the limiting factor in
2056 * the bandwidth scheduling. This only takes into account periodic endpoints.
2057 *
2058 * Obviously, we can't solve an NP complete problem to find the minimum worst
2059 * case scenario. Instead, we come up with an estimate that is no less than
2060 * the worst case bandwidth used for any one microframe, but may be an
2061 * over-estimate.
2062 *
2063 * We walk the requirements for each endpoint by interval, starting with the
2064 * smallest interval, and place packets in the schedule where there is only one
2065 * possible way to schedule packets for that interval. In order to simplify
2066 * this algorithm, we record the largest max packet size for each interval, and
2067 * assume all packets will be that size.
2068 *
2069 * For interval 0, we obviously must schedule all packets for each interval.
2070 * The bandwidth for interval 0 is just the amount of data to be transmitted
2071 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2072 * the number of packets).
2073 *
2074 * For interval 1, we have two possible microframes to schedule those packets
2075 * in. For this algorithm, if we can schedule the same number of packets for
2076 * each possible scheduling opportunity (each microframe), we will do so. The
2077 * remaining number of packets will be saved to be transmitted in the gaps in
2078 * the next interval's scheduling sequence.
2079 *
2080 * As we move those remaining packets to be scheduled with interval 2 packets,
2081 * we have to double the number of remaining packets to transmit. This is
2082 * because the intervals are actually powers of 2, and we would be transmitting
2083 * the previous interval's packets twice in this interval. We also have to be
2084 * sure that when we look at the largest max packet size for this interval, we
2085 * also look at the largest max packet size for the remaining packets and take
2086 * the greater of the two.
2087 *
2088 * The algorithm continues to evenly distribute packets in each scheduling
2089 * opportunity, and push the remaining packets out, until we get to the last
2090 * interval. Then those packets and their associated overhead are just added
2091 * to the bandwidth used.
2092 */
2093 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2094 struct xhci_virt_device *virt_dev,
2095 int old_active_eps)
2096 {
2097 unsigned int bw_reserved;
2098 unsigned int max_bandwidth;
2099 unsigned int bw_used;
2100 unsigned int block_size;
2101 struct xhci_interval_bw_table *bw_table;
2102 unsigned int packet_size = 0;
2103 unsigned int overhead = 0;
2104 unsigned int packets_transmitted = 0;
2105 unsigned int packets_remaining = 0;
2106 unsigned int i;
2107
2108 if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2109 return xhci_check_ss_bw(xhci, virt_dev);
2110
2111 if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2112 max_bandwidth = HS_BW_LIMIT;
2113 /* Convert percent of bus BW reserved to blocks reserved */
2114 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2115 } else {
2116 max_bandwidth = FS_BW_LIMIT;
2117 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2118 }
2119
2120 bw_table = virt_dev->bw_table;
2121 /* We need to translate the max packet size and max ESIT payloads into
2122 * the units the hardware uses.
2123 */
2124 block_size = xhci_get_block_size(virt_dev->udev);
2125
2126 /* If we are manipulating a LS/FS device under a HS hub, double check
2127 * that the HS bus has enough bandwidth if we are activing a new TT.
2128 */
2129 if (virt_dev->tt_info) {
2130 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2131 "Recalculating BW for rootport %u",
2132 virt_dev->real_port);
2133 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2134 xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2135 "newly activated TT.\n");
2136 return -ENOMEM;
2137 }
2138 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2139 "Recalculating BW for TT slot %u port %u",
2140 virt_dev->tt_info->slot_id,
2141 virt_dev->tt_info->ttport);
2142 } else {
2143 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2144 "Recalculating BW for rootport %u",
2145 virt_dev->real_port);
2146 }
2147
2148 /* Add in how much bandwidth will be used for interval zero, or the
2149 * rounded max ESIT payload + number of packets * largest overhead.
2150 */
2151 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2152 bw_table->interval_bw[0].num_packets *
2153 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2154
2155 for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2156 unsigned int bw_added;
2157 unsigned int largest_mps;
2158 unsigned int interval_overhead;
2159
2160 /*
2161 * How many packets could we transmit in this interval?
2162 * If packets didn't fit in the previous interval, we will need
2163 * to transmit that many packets twice within this interval.
2164 */
2165 packets_remaining = 2 * packets_remaining +
2166 bw_table->interval_bw[i].num_packets;
2167
2168 /* Find the largest max packet size of this or the previous
2169 * interval.
2170 */
2171 if (list_empty(&bw_table->interval_bw[i].endpoints))
2172 largest_mps = 0;
2173 else {
2174 struct xhci_virt_ep *virt_ep;
2175 struct list_head *ep_entry;
2176
2177 ep_entry = bw_table->interval_bw[i].endpoints.next;
2178 virt_ep = list_entry(ep_entry,
2179 struct xhci_virt_ep, bw_endpoint_list);
2180 /* Convert to blocks, rounding up */
2181 largest_mps = DIV_ROUND_UP(
2182 virt_ep->bw_info.max_packet_size,
2183 block_size);
2184 }
2185 if (largest_mps > packet_size)
2186 packet_size = largest_mps;
2187
2188 /* Use the larger overhead of this or the previous interval. */
2189 interval_overhead = xhci_get_largest_overhead(
2190 &bw_table->interval_bw[i]);
2191 if (interval_overhead > overhead)
2192 overhead = interval_overhead;
2193
2194 /* How many packets can we evenly distribute across
2195 * (1 << (i + 1)) possible scheduling opportunities?
2196 */
2197 packets_transmitted = packets_remaining >> (i + 1);
2198
2199 /* Add in the bandwidth used for those scheduled packets */
2200 bw_added = packets_transmitted * (overhead + packet_size);
2201
2202 /* How many packets do we have remaining to transmit? */
2203 packets_remaining = packets_remaining % (1 << (i + 1));
2204
2205 /* What largest max packet size should those packets have? */
2206 /* If we've transmitted all packets, don't carry over the
2207 * largest packet size.
2208 */
2209 if (packets_remaining == 0) {
2210 packet_size = 0;
2211 overhead = 0;
2212 } else if (packets_transmitted > 0) {
2213 /* Otherwise if we do have remaining packets, and we've
2214 * scheduled some packets in this interval, take the
2215 * largest max packet size from endpoints with this
2216 * interval.
2217 */
2218 packet_size = largest_mps;
2219 overhead = interval_overhead;
2220 }
2221 /* Otherwise carry over packet_size and overhead from the last
2222 * time we had a remainder.
2223 */
2224 bw_used += bw_added;
2225 if (bw_used > max_bandwidth) {
2226 xhci_warn(xhci, "Not enough bandwidth. "
2227 "Proposed: %u, Max: %u\n",
2228 bw_used, max_bandwidth);
2229 return -ENOMEM;
2230 }
2231 }
2232 /*
2233 * Ok, we know we have some packets left over after even-handedly
2234 * scheduling interval 15. We don't know which microframes they will
2235 * fit into, so we over-schedule and say they will be scheduled every
2236 * microframe.
2237 */
2238 if (packets_remaining > 0)
2239 bw_used += overhead + packet_size;
2240
2241 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2242 unsigned int port_index = virt_dev->real_port - 1;
2243
2244 /* OK, we're manipulating a HS device attached to a
2245 * root port bandwidth domain. Include the number of active TTs
2246 * in the bandwidth used.
2247 */
2248 bw_used += TT_HS_OVERHEAD *
2249 xhci->rh_bw[port_index].num_active_tts;
2250 }
2251
2252 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2253 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2254 "Available: %u " "percent",
2255 bw_used, max_bandwidth, bw_reserved,
2256 (max_bandwidth - bw_used - bw_reserved) * 100 /
2257 max_bandwidth);
2258
2259 bw_used += bw_reserved;
2260 if (bw_used > max_bandwidth) {
2261 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2262 bw_used, max_bandwidth);
2263 return -ENOMEM;
2264 }
2265
2266 bw_table->bw_used = bw_used;
2267 return 0;
2268 }
2269
2270 static bool xhci_is_async_ep(unsigned int ep_type)
2271 {
2272 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2273 ep_type != ISOC_IN_EP &&
2274 ep_type != INT_IN_EP);
2275 }
2276
2277 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2278 {
2279 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2280 }
2281
2282 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2283 {
2284 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2285
2286 if (ep_bw->ep_interval == 0)
2287 return SS_OVERHEAD_BURST +
2288 (ep_bw->mult * ep_bw->num_packets *
2289 (SS_OVERHEAD + mps));
2290 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2291 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2292 1 << ep_bw->ep_interval);
2293
2294 }
2295
2296 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2297 struct xhci_bw_info *ep_bw,
2298 struct xhci_interval_bw_table *bw_table,
2299 struct usb_device *udev,
2300 struct xhci_virt_ep *virt_ep,
2301 struct xhci_tt_bw_info *tt_info)
2302 {
2303 struct xhci_interval_bw *interval_bw;
2304 int normalized_interval;
2305
2306 if (xhci_is_async_ep(ep_bw->type))
2307 return;
2308
2309 if (udev->speed >= USB_SPEED_SUPER) {
2310 if (xhci_is_sync_in_ep(ep_bw->type))
2311 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2312 xhci_get_ss_bw_consumed(ep_bw);
2313 else
2314 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2315 xhci_get_ss_bw_consumed(ep_bw);
2316 return;
2317 }
2318
2319 /* SuperSpeed endpoints never get added to intervals in the table, so
2320 * this check is only valid for HS/FS/LS devices.
2321 */
2322 if (list_empty(&virt_ep->bw_endpoint_list))
2323 return;
2324 /* For LS/FS devices, we need to translate the interval expressed in
2325 * microframes to frames.
2326 */
2327 if (udev->speed == USB_SPEED_HIGH)
2328 normalized_interval = ep_bw->ep_interval;
2329 else
2330 normalized_interval = ep_bw->ep_interval - 3;
2331
2332 if (normalized_interval == 0)
2333 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2334 interval_bw = &bw_table->interval_bw[normalized_interval];
2335 interval_bw->num_packets -= ep_bw->num_packets;
2336 switch (udev->speed) {
2337 case USB_SPEED_LOW:
2338 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2339 break;
2340 case USB_SPEED_FULL:
2341 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2342 break;
2343 case USB_SPEED_HIGH:
2344 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2345 break;
2346 case USB_SPEED_SUPER:
2347 case USB_SPEED_SUPER_PLUS:
2348 case USB_SPEED_UNKNOWN:
2349 case USB_SPEED_WIRELESS:
2350 /* Should never happen because only LS/FS/HS endpoints will get
2351 * added to the endpoint list.
2352 */
2353 return;
2354 }
2355 if (tt_info)
2356 tt_info->active_eps -= 1;
2357 list_del_init(&virt_ep->bw_endpoint_list);
2358 }
2359
2360 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2361 struct xhci_bw_info *ep_bw,
2362 struct xhci_interval_bw_table *bw_table,
2363 struct usb_device *udev,
2364 struct xhci_virt_ep *virt_ep,
2365 struct xhci_tt_bw_info *tt_info)
2366 {
2367 struct xhci_interval_bw *interval_bw;
2368 struct xhci_virt_ep *smaller_ep;
2369 int normalized_interval;
2370
2371 if (xhci_is_async_ep(ep_bw->type))
2372 return;
2373
2374 if (udev->speed == USB_SPEED_SUPER) {
2375 if (xhci_is_sync_in_ep(ep_bw->type))
2376 xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2377 xhci_get_ss_bw_consumed(ep_bw);
2378 else
2379 xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2380 xhci_get_ss_bw_consumed(ep_bw);
2381 return;
2382 }
2383
2384 /* For LS/FS devices, we need to translate the interval expressed in
2385 * microframes to frames.
2386 */
2387 if (udev->speed == USB_SPEED_HIGH)
2388 normalized_interval = ep_bw->ep_interval;
2389 else
2390 normalized_interval = ep_bw->ep_interval - 3;
2391
2392 if (normalized_interval == 0)
2393 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2394 interval_bw = &bw_table->interval_bw[normalized_interval];
2395 interval_bw->num_packets += ep_bw->num_packets;
2396 switch (udev->speed) {
2397 case USB_SPEED_LOW:
2398 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2399 break;
2400 case USB_SPEED_FULL:
2401 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2402 break;
2403 case USB_SPEED_HIGH:
2404 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2405 break;
2406 case USB_SPEED_SUPER:
2407 case USB_SPEED_SUPER_PLUS:
2408 case USB_SPEED_UNKNOWN:
2409 case USB_SPEED_WIRELESS:
2410 /* Should never happen because only LS/FS/HS endpoints will get
2411 * added to the endpoint list.
2412 */
2413 return;
2414 }
2415
2416 if (tt_info)
2417 tt_info->active_eps += 1;
2418 /* Insert the endpoint into the list, largest max packet size first. */
2419 list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2420 bw_endpoint_list) {
2421 if (ep_bw->max_packet_size >=
2422 smaller_ep->bw_info.max_packet_size) {
2423 /* Add the new ep before the smaller endpoint */
2424 list_add_tail(&virt_ep->bw_endpoint_list,
2425 &smaller_ep->bw_endpoint_list);
2426 return;
2427 }
2428 }
2429 /* Add the new endpoint at the end of the list. */
2430 list_add_tail(&virt_ep->bw_endpoint_list,
2431 &interval_bw->endpoints);
2432 }
2433
2434 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2435 struct xhci_virt_device *virt_dev,
2436 int old_active_eps)
2437 {
2438 struct xhci_root_port_bw_info *rh_bw_info;
2439 if (!virt_dev->tt_info)
2440 return;
2441
2442 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2443 if (old_active_eps == 0 &&
2444 virt_dev->tt_info->active_eps != 0) {
2445 rh_bw_info->num_active_tts += 1;
2446 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2447 } else if (old_active_eps != 0 &&
2448 virt_dev->tt_info->active_eps == 0) {
2449 rh_bw_info->num_active_tts -= 1;
2450 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2451 }
2452 }
2453
2454 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2455 struct xhci_virt_device *virt_dev,
2456 struct xhci_container_ctx *in_ctx)
2457 {
2458 struct xhci_bw_info ep_bw_info[31];
2459 int i;
2460 struct xhci_input_control_ctx *ctrl_ctx;
2461 int old_active_eps = 0;
2462
2463 if (virt_dev->tt_info)
2464 old_active_eps = virt_dev->tt_info->active_eps;
2465
2466 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2467 if (!ctrl_ctx) {
2468 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2469 __func__);
2470 return -ENOMEM;
2471 }
2472
2473 for (i = 0; i < 31; i++) {
2474 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2475 continue;
2476
2477 /* Make a copy of the BW info in case we need to revert this */
2478 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2479 sizeof(ep_bw_info[i]));
2480 /* Drop the endpoint from the interval table if the endpoint is
2481 * being dropped or changed.
2482 */
2483 if (EP_IS_DROPPED(ctrl_ctx, i))
2484 xhci_drop_ep_from_interval_table(xhci,
2485 &virt_dev->eps[i].bw_info,
2486 virt_dev->bw_table,
2487 virt_dev->udev,
2488 &virt_dev->eps[i],
2489 virt_dev->tt_info);
2490 }
2491 /* Overwrite the information stored in the endpoints' bw_info */
2492 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2493 for (i = 0; i < 31; i++) {
2494 /* Add any changed or added endpoints to the interval table */
2495 if (EP_IS_ADDED(ctrl_ctx, i))
2496 xhci_add_ep_to_interval_table(xhci,
2497 &virt_dev->eps[i].bw_info,
2498 virt_dev->bw_table,
2499 virt_dev->udev,
2500 &virt_dev->eps[i],
2501 virt_dev->tt_info);
2502 }
2503
2504 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2505 /* Ok, this fits in the bandwidth we have.
2506 * Update the number of active TTs.
2507 */
2508 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2509 return 0;
2510 }
2511
2512 /* We don't have enough bandwidth for this, revert the stored info. */
2513 for (i = 0; i < 31; i++) {
2514 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2515 continue;
2516
2517 /* Drop the new copies of any added or changed endpoints from
2518 * the interval table.
2519 */
2520 if (EP_IS_ADDED(ctrl_ctx, i)) {
2521 xhci_drop_ep_from_interval_table(xhci,
2522 &virt_dev->eps[i].bw_info,
2523 virt_dev->bw_table,
2524 virt_dev->udev,
2525 &virt_dev->eps[i],
2526 virt_dev->tt_info);
2527 }
2528 /* Revert the endpoint back to its old information */
2529 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2530 sizeof(ep_bw_info[i]));
2531 /* Add any changed or dropped endpoints back into the table */
2532 if (EP_IS_DROPPED(ctrl_ctx, i))
2533 xhci_add_ep_to_interval_table(xhci,
2534 &virt_dev->eps[i].bw_info,
2535 virt_dev->bw_table,
2536 virt_dev->udev,
2537 &virt_dev->eps[i],
2538 virt_dev->tt_info);
2539 }
2540 return -ENOMEM;
2541 }
2542
2543
2544 /* Issue a configure endpoint command or evaluate context command
2545 * and wait for it to finish.
2546 */
2547 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2548 struct usb_device *udev,
2549 struct xhci_command *command,
2550 bool ctx_change, bool must_succeed)
2551 {
2552 int ret;
2553 unsigned long flags;
2554 struct xhci_input_control_ctx *ctrl_ctx;
2555 struct xhci_virt_device *virt_dev;
2556 struct xhci_slot_ctx *slot_ctx;
2557
2558 if (!command)
2559 return -EINVAL;
2560
2561 spin_lock_irqsave(&xhci->lock, flags);
2562
2563 if (xhci->xhc_state & XHCI_STATE_DYING) {
2564 spin_unlock_irqrestore(&xhci->lock, flags);
2565 return -ESHUTDOWN;
2566 }
2567
2568 virt_dev = xhci->devs[udev->slot_id];
2569
2570 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2571 if (!ctrl_ctx) {
2572 spin_unlock_irqrestore(&xhci->lock, flags);
2573 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2574 __func__);
2575 return -ENOMEM;
2576 }
2577
2578 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2579 xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2580 spin_unlock_irqrestore(&xhci->lock, flags);
2581 xhci_warn(xhci, "Not enough host resources, "
2582 "active endpoint contexts = %u\n",
2583 xhci->num_active_eps);
2584 return -ENOMEM;
2585 }
2586 if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2587 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2588 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2589 xhci_free_host_resources(xhci, ctrl_ctx);
2590 spin_unlock_irqrestore(&xhci->lock, flags);
2591 xhci_warn(xhci, "Not enough bandwidth\n");
2592 return -ENOMEM;
2593 }
2594
2595 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2596 trace_xhci_configure_endpoint(slot_ctx);
2597
2598 if (!ctx_change)
2599 ret = xhci_queue_configure_endpoint(xhci, command,
2600 command->in_ctx->dma,
2601 udev->slot_id, must_succeed);
2602 else
2603 ret = xhci_queue_evaluate_context(xhci, command,
2604 command->in_ctx->dma,
2605 udev->slot_id, must_succeed);
2606 if (ret < 0) {
2607 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2608 xhci_free_host_resources(xhci, ctrl_ctx);
2609 spin_unlock_irqrestore(&xhci->lock, flags);
2610 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2611 "FIXME allocate a new ring segment");
2612 return -ENOMEM;
2613 }
2614 xhci_ring_cmd_db(xhci);
2615 spin_unlock_irqrestore(&xhci->lock, flags);
2616
2617 /* Wait for the configure endpoint command to complete */
2618 wait_for_completion(command->completion);
2619
2620 if (!ctx_change)
2621 ret = xhci_configure_endpoint_result(xhci, udev,
2622 &command->status);
2623 else
2624 ret = xhci_evaluate_context_result(xhci, udev,
2625 &command->status);
2626
2627 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2628 spin_lock_irqsave(&xhci->lock, flags);
2629 /* If the command failed, remove the reserved resources.
2630 * Otherwise, clean up the estimate to include dropped eps.
2631 */
2632 if (ret)
2633 xhci_free_host_resources(xhci, ctrl_ctx);
2634 else
2635 xhci_finish_resource_reservation(xhci, ctrl_ctx);
2636 spin_unlock_irqrestore(&xhci->lock, flags);
2637 }
2638 return ret;
2639 }
2640
2641 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2642 struct xhci_virt_device *vdev, int i)
2643 {
2644 struct xhci_virt_ep *ep = &vdev->eps[i];
2645
2646 if (ep->ep_state & EP_HAS_STREAMS) {
2647 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2648 xhci_get_endpoint_address(i));
2649 xhci_free_stream_info(xhci, ep->stream_info);
2650 ep->stream_info = NULL;
2651 ep->ep_state &= ~EP_HAS_STREAMS;
2652 }
2653 }
2654
2655 /* Called after one or more calls to xhci_add_endpoint() or
2656 * xhci_drop_endpoint(). If this call fails, the USB core is expected
2657 * to call xhci_reset_bandwidth().
2658 *
2659 * Since we are in the middle of changing either configuration or
2660 * installing a new alt setting, the USB core won't allow URBs to be
2661 * enqueued for any endpoint on the old config or interface. Nothing
2662 * else should be touching the xhci->devs[slot_id] structure, so we
2663 * don't need to take the xhci->lock for manipulating that.
2664 */
2665 static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2666 {
2667 int i;
2668 int ret = 0;
2669 struct xhci_hcd *xhci;
2670 struct xhci_virt_device *virt_dev;
2671 struct xhci_input_control_ctx *ctrl_ctx;
2672 struct xhci_slot_ctx *slot_ctx;
2673 struct xhci_command *command;
2674
2675 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2676 if (ret <= 0)
2677 return ret;
2678 xhci = hcd_to_xhci(hcd);
2679 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2680 (xhci->xhc_state & XHCI_STATE_REMOVING))
2681 return -ENODEV;
2682
2683 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2684 virt_dev = xhci->devs[udev->slot_id];
2685
2686 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2687 if (!command)
2688 return -ENOMEM;
2689
2690 command->in_ctx = virt_dev->in_ctx;
2691
2692 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2693 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2694 if (!ctrl_ctx) {
2695 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2696 __func__);
2697 ret = -ENOMEM;
2698 goto command_cleanup;
2699 }
2700 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2701 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2702 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2703
2704 /* Don't issue the command if there's no endpoints to update. */
2705 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2706 ctrl_ctx->drop_flags == 0) {
2707 ret = 0;
2708 goto command_cleanup;
2709 }
2710 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2711 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2712 for (i = 31; i >= 1; i--) {
2713 __le32 le32 = cpu_to_le32(BIT(i));
2714
2715 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2716 || (ctrl_ctx->add_flags & le32) || i == 1) {
2717 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2718 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2719 break;
2720 }
2721 }
2722
2723 ret = xhci_configure_endpoint(xhci, udev, command,
2724 false, false);
2725 if (ret)
2726 /* Callee should call reset_bandwidth() */
2727 goto command_cleanup;
2728
2729 /* Free any rings that were dropped, but not changed. */
2730 for (i = 1; i < 31; i++) {
2731 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2732 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2733 xhci_free_endpoint_ring(xhci, virt_dev, i);
2734 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2735 }
2736 }
2737 xhci_zero_in_ctx(xhci, virt_dev);
2738 /*
2739 * Install any rings for completely new endpoints or changed endpoints,
2740 * and free any old rings from changed endpoints.
2741 */
2742 for (i = 1; i < 31; i++) {
2743 if (!virt_dev->eps[i].new_ring)
2744 continue;
2745 /* Only free the old ring if it exists.
2746 * It may not if this is the first add of an endpoint.
2747 */
2748 if (virt_dev->eps[i].ring) {
2749 xhci_free_endpoint_ring(xhci, virt_dev, i);
2750 }
2751 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2752 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2753 virt_dev->eps[i].new_ring = NULL;
2754 }
2755 command_cleanup:
2756 kfree(command->completion);
2757 kfree(command);
2758
2759 return ret;
2760 }
2761
2762 static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2763 {
2764 struct xhci_hcd *xhci;
2765 struct xhci_virt_device *virt_dev;
2766 int i, ret;
2767
2768 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2769 if (ret <= 0)
2770 return;
2771 xhci = hcd_to_xhci(hcd);
2772
2773 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2774 virt_dev = xhci->devs[udev->slot_id];
2775 /* Free any rings allocated for added endpoints */
2776 for (i = 0; i < 31; i++) {
2777 if (virt_dev->eps[i].new_ring) {
2778 xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
2779 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2780 virt_dev->eps[i].new_ring = NULL;
2781 }
2782 }
2783 xhci_zero_in_ctx(xhci, virt_dev);
2784 }
2785
2786 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2787 struct xhci_container_ctx *in_ctx,
2788 struct xhci_container_ctx *out_ctx,
2789 struct xhci_input_control_ctx *ctrl_ctx,
2790 u32 add_flags, u32 drop_flags)
2791 {
2792 ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2793 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2794 xhci_slot_copy(xhci, in_ctx, out_ctx);
2795 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2796 }
2797
2798 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2799 unsigned int slot_id, unsigned int ep_index,
2800 struct xhci_dequeue_state *deq_state)
2801 {
2802 struct xhci_input_control_ctx *ctrl_ctx;
2803 struct xhci_container_ctx *in_ctx;
2804 struct xhci_ep_ctx *ep_ctx;
2805 u32 added_ctxs;
2806 dma_addr_t addr;
2807
2808 in_ctx = xhci->devs[slot_id]->in_ctx;
2809 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2810 if (!ctrl_ctx) {
2811 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2812 __func__);
2813 return;
2814 }
2815
2816 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2817 xhci->devs[slot_id]->out_ctx, ep_index);
2818 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2819 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2820 deq_state->new_deq_ptr);
2821 if (addr == 0) {
2822 xhci_warn(xhci, "WARN Cannot submit config ep after "
2823 "reset ep command\n");
2824 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2825 deq_state->new_deq_seg,
2826 deq_state->new_deq_ptr);
2827 return;
2828 }
2829 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2830
2831 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2832 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2833 xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2834 added_ctxs, added_ctxs);
2835 }
2836
2837 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int ep_index,
2838 unsigned int stream_id, struct xhci_td *td)
2839 {
2840 struct xhci_dequeue_state deq_state;
2841 struct xhci_virt_ep *ep;
2842 struct usb_device *udev = td->urb->dev;
2843
2844 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2845 "Cleaning up stalled endpoint ring");
2846 ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2847 /* We need to move the HW's dequeue pointer past this TD,
2848 * or it will attempt to resend it on the next doorbell ring.
2849 */
2850 xhci_find_new_dequeue_state(xhci, udev->slot_id,
2851 ep_index, stream_id, td, &deq_state);
2852
2853 if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2854 return;
2855
2856 /* HW with the reset endpoint quirk will use the saved dequeue state to
2857 * issue a configure endpoint command later.
2858 */
2859 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2860 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2861 "Queueing new dequeue state");
2862 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2863 ep_index, &deq_state);
2864 } else {
2865 /* Better hope no one uses the input context between now and the
2866 * reset endpoint completion!
2867 * XXX: No idea how this hardware will react when stream rings
2868 * are enabled.
2869 */
2870 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2871 "Setting up input context for "
2872 "configure endpoint command");
2873 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2874 ep_index, &deq_state);
2875 }
2876 }
2877
2878 /* Called when clearing halted device. The core should have sent the control
2879 * message to clear the device halt condition. The host side of the halt should
2880 * already be cleared with a reset endpoint command issued when the STALL tx
2881 * event was received.
2882 *
2883 * Context: in_interrupt
2884 */
2885
2886 static void xhci_endpoint_reset(struct usb_hcd *hcd,
2887 struct usb_host_endpoint *ep)
2888 {
2889 struct xhci_hcd *xhci;
2890
2891 xhci = hcd_to_xhci(hcd);
2892
2893 /*
2894 * We might need to implement the config ep cmd in xhci 4.8.1 note:
2895 * The Reset Endpoint Command may only be issued to endpoints in the
2896 * Halted state. If software wishes reset the Data Toggle or Sequence
2897 * Number of an endpoint that isn't in the Halted state, then software
2898 * may issue a Configure Endpoint Command with the Drop and Add bits set
2899 * for the target endpoint. that is in the Stopped state.
2900 */
2901
2902 /* For now just print debug to follow the situation */
2903 xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
2904 ep->desc.bEndpointAddress);
2905 }
2906
2907 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2908 struct usb_device *udev, struct usb_host_endpoint *ep,
2909 unsigned int slot_id)
2910 {
2911 int ret;
2912 unsigned int ep_index;
2913 unsigned int ep_state;
2914
2915 if (!ep)
2916 return -EINVAL;
2917 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2918 if (ret <= 0)
2919 return -EINVAL;
2920 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
2921 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2922 " descriptor for ep 0x%x does not support streams\n",
2923 ep->desc.bEndpointAddress);
2924 return -EINVAL;
2925 }
2926
2927 ep_index = xhci_get_endpoint_index(&ep->desc);
2928 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2929 if (ep_state & EP_HAS_STREAMS ||
2930 ep_state & EP_GETTING_STREAMS) {
2931 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2932 "already has streams set up.\n",
2933 ep->desc.bEndpointAddress);
2934 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2935 "dynamic stream context array reallocation.\n");
2936 return -EINVAL;
2937 }
2938 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2939 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2940 "endpoint 0x%x; URBs are pending.\n",
2941 ep->desc.bEndpointAddress);
2942 return -EINVAL;
2943 }
2944 return 0;
2945 }
2946
2947 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2948 unsigned int *num_streams, unsigned int *num_stream_ctxs)
2949 {
2950 unsigned int max_streams;
2951
2952 /* The stream context array size must be a power of two */
2953 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
2954 /*
2955 * Find out how many primary stream array entries the host controller
2956 * supports. Later we may use secondary stream arrays (similar to 2nd
2957 * level page entries), but that's an optional feature for xHCI host
2958 * controllers. xHCs must support at least 4 stream IDs.
2959 */
2960 max_streams = HCC_MAX_PSA(xhci->hcc_params);
2961 if (*num_stream_ctxs > max_streams) {
2962 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2963 max_streams);
2964 *num_stream_ctxs = max_streams;
2965 *num_streams = max_streams;
2966 }
2967 }
2968
2969 /* Returns an error code if one of the endpoint already has streams.
2970 * This does not change any data structures, it only checks and gathers
2971 * information.
2972 */
2973 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2974 struct usb_device *udev,
2975 struct usb_host_endpoint **eps, unsigned int num_eps,
2976 unsigned int *num_streams, u32 *changed_ep_bitmask)
2977 {
2978 unsigned int max_streams;
2979 unsigned int endpoint_flag;
2980 int i;
2981 int ret;
2982
2983 for (i = 0; i < num_eps; i++) {
2984 ret = xhci_check_streams_endpoint(xhci, udev,
2985 eps[i], udev->slot_id);
2986 if (ret < 0)
2987 return ret;
2988
2989 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
2990 if (max_streams < (*num_streams - 1)) {
2991 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
2992 eps[i]->desc.bEndpointAddress,
2993 max_streams);
2994 *num_streams = max_streams+1;
2995 }
2996
2997 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
2998 if (*changed_ep_bitmask & endpoint_flag)
2999 return -EINVAL;
3000 *changed_ep_bitmask |= endpoint_flag;
3001 }
3002 return 0;
3003 }
3004
3005 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3006 struct usb_device *udev,
3007 struct usb_host_endpoint **eps, unsigned int num_eps)
3008 {
3009 u32 changed_ep_bitmask = 0;
3010 unsigned int slot_id;
3011 unsigned int ep_index;
3012 unsigned int ep_state;
3013 int i;
3014
3015 slot_id = udev->slot_id;
3016 if (!xhci->devs[slot_id])
3017 return 0;
3018
3019 for (i = 0; i < num_eps; i++) {
3020 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3021 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3022 /* Are streams already being freed for the endpoint? */
3023 if (ep_state & EP_GETTING_NO_STREAMS) {
3024 xhci_warn(xhci, "WARN Can't disable streams for "
3025 "endpoint 0x%x, "
3026 "streams are being disabled already\n",
3027 eps[i]->desc.bEndpointAddress);
3028 return 0;
3029 }
3030 /* Are there actually any streams to free? */
3031 if (!(ep_state & EP_HAS_STREAMS) &&
3032 !(ep_state & EP_GETTING_STREAMS)) {
3033 xhci_warn(xhci, "WARN Can't disable streams for "
3034 "endpoint 0x%x, "
3035 "streams are already disabled!\n",
3036 eps[i]->desc.bEndpointAddress);
3037 xhci_warn(xhci, "WARN xhci_free_streams() called "
3038 "with non-streams endpoint\n");
3039 return 0;
3040 }
3041 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3042 }
3043 return changed_ep_bitmask;
3044 }
3045
3046 /*
3047 * The USB device drivers use this function (through the HCD interface in USB
3048 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
3049 * coordinate mass storage command queueing across multiple endpoints (basically
3050 * a stream ID == a task ID).
3051 *
3052 * Setting up streams involves allocating the same size stream context array
3053 * for each endpoint and issuing a configure endpoint command for all endpoints.
3054 *
3055 * Don't allow the call to succeed if one endpoint only supports one stream
3056 * (which means it doesn't support streams at all).
3057 *
3058 * Drivers may get less stream IDs than they asked for, if the host controller
3059 * hardware or endpoints claim they can't support the number of requested
3060 * stream IDs.
3061 */
3062 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3063 struct usb_host_endpoint **eps, unsigned int num_eps,
3064 unsigned int num_streams, gfp_t mem_flags)
3065 {
3066 int i, ret;
3067 struct xhci_hcd *xhci;
3068 struct xhci_virt_device *vdev;
3069 struct xhci_command *config_cmd;
3070 struct xhci_input_control_ctx *ctrl_ctx;
3071 unsigned int ep_index;
3072 unsigned int num_stream_ctxs;
3073 unsigned int max_packet;
3074 unsigned long flags;
3075 u32 changed_ep_bitmask = 0;
3076
3077 if (!eps)
3078 return -EINVAL;
3079
3080 /* Add one to the number of streams requested to account for
3081 * stream 0 that is reserved for xHCI usage.
3082 */
3083 num_streams += 1;
3084 xhci = hcd_to_xhci(hcd);
3085 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3086 num_streams);
3087
3088 /* MaxPSASize value 0 (2 streams) means streams are not supported */
3089 if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3090 HCC_MAX_PSA(xhci->hcc_params) < 4) {
3091 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3092 return -ENOSYS;
3093 }
3094
3095 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3096 if (!config_cmd)
3097 return -ENOMEM;
3098
3099 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3100 if (!ctrl_ctx) {
3101 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3102 __func__);
3103 xhci_free_command(xhci, config_cmd);
3104 return -ENOMEM;
3105 }
3106
3107 /* Check to make sure all endpoints are not already configured for
3108 * streams. While we're at it, find the maximum number of streams that
3109 * all the endpoints will support and check for duplicate endpoints.
3110 */
3111 spin_lock_irqsave(&xhci->lock, flags);
3112 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3113 num_eps, &num_streams, &changed_ep_bitmask);
3114 if (ret < 0) {
3115 xhci_free_command(xhci, config_cmd);
3116 spin_unlock_irqrestore(&xhci->lock, flags);
3117 return ret;
3118 }
3119 if (num_streams <= 1) {
3120 xhci_warn(xhci, "WARN: endpoints can't handle "
3121 "more than one stream.\n");
3122 xhci_free_command(xhci, config_cmd);
3123 spin_unlock_irqrestore(&xhci->lock, flags);
3124 return -EINVAL;
3125 }
3126 vdev = xhci->devs[udev->slot_id];
3127 /* Mark each endpoint as being in transition, so
3128 * xhci_urb_enqueue() will reject all URBs.
3129 */
3130 for (i = 0; i < num_eps; i++) {
3131 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3132 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3133 }
3134 spin_unlock_irqrestore(&xhci->lock, flags);
3135
3136 /* Setup internal data structures and allocate HW data structures for
3137 * streams (but don't install the HW structures in the input context
3138 * until we're sure all memory allocation succeeded).
3139 */
3140 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3141 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3142 num_stream_ctxs, num_streams);
3143
3144 for (i = 0; i < num_eps; i++) {
3145 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3146 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3147 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3148 num_stream_ctxs,
3149 num_streams,
3150 max_packet, mem_flags);
3151 if (!vdev->eps[ep_index].stream_info)
3152 goto cleanup;
3153 /* Set maxPstreams in endpoint context and update deq ptr to
3154 * point to stream context array. FIXME
3155 */
3156 }
3157
3158 /* Set up the input context for a configure endpoint command. */
3159 for (i = 0; i < num_eps; i++) {
3160 struct xhci_ep_ctx *ep_ctx;
3161
3162 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3163 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3164
3165 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3166 vdev->out_ctx, ep_index);
3167 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3168 vdev->eps[ep_index].stream_info);
3169 }
3170 /* Tell the HW to drop its old copy of the endpoint context info
3171 * and add the updated copy from the input context.
3172 */
3173 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3174 vdev->out_ctx, ctrl_ctx,
3175 changed_ep_bitmask, changed_ep_bitmask);
3176
3177 /* Issue and wait for the configure endpoint command */
3178 ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3179 false, false);
3180
3181 /* xHC rejected the configure endpoint command for some reason, so we
3182 * leave the old ring intact and free our internal streams data
3183 * structure.
3184 */
3185 if (ret < 0)
3186 goto cleanup;
3187
3188 spin_lock_irqsave(&xhci->lock, flags);
3189 for (i = 0; i < num_eps; i++) {
3190 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3191 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3192 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3193 udev->slot_id, ep_index);
3194 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3195 }
3196 xhci_free_command(xhci, config_cmd);
3197 spin_unlock_irqrestore(&xhci->lock, flags);
3198
3199 /* Subtract 1 for stream 0, which drivers can't use */
3200 return num_streams - 1;
3201
3202 cleanup:
3203 /* If it didn't work, free the streams! */
3204 for (i = 0; i < num_eps; i++) {
3205 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3206 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3207 vdev->eps[ep_index].stream_info = NULL;
3208 /* FIXME Unset maxPstreams in endpoint context and
3209 * update deq ptr to point to normal string ring.
3210 */
3211 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3212 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3213 xhci_endpoint_zero(xhci, vdev, eps[i]);
3214 }
3215 xhci_free_command(xhci, config_cmd);
3216 return -ENOMEM;
3217 }
3218
3219 /* Transition the endpoint from using streams to being a "normal" endpoint
3220 * without streams.
3221 *
3222 * Modify the endpoint context state, submit a configure endpoint command,
3223 * and free all endpoint rings for streams if that completes successfully.
3224 */
3225 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3226 struct usb_host_endpoint **eps, unsigned int num_eps,
3227 gfp_t mem_flags)
3228 {
3229 int i, ret;
3230 struct xhci_hcd *xhci;
3231 struct xhci_virt_device *vdev;
3232 struct xhci_command *command;
3233 struct xhci_input_control_ctx *ctrl_ctx;
3234 unsigned int ep_index;
3235 unsigned long flags;
3236 u32 changed_ep_bitmask;
3237
3238 xhci = hcd_to_xhci(hcd);
3239 vdev = xhci->devs[udev->slot_id];
3240
3241 /* Set up a configure endpoint command to remove the streams rings */
3242 spin_lock_irqsave(&xhci->lock, flags);
3243 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3244 udev, eps, num_eps);
3245 if (changed_ep_bitmask == 0) {
3246 spin_unlock_irqrestore(&xhci->lock, flags);
3247 return -EINVAL;
3248 }
3249
3250 /* Use the xhci_command structure from the first endpoint. We may have
3251 * allocated too many, but the driver may call xhci_free_streams() for
3252 * each endpoint it grouped into one call to xhci_alloc_streams().
3253 */
3254 ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3255 command = vdev->eps[ep_index].stream_info->free_streams_command;
3256 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3257 if (!ctrl_ctx) {
3258 spin_unlock_irqrestore(&xhci->lock, flags);
3259 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3260 __func__);
3261 return -EINVAL;
3262 }
3263
3264 for (i = 0; i < num_eps; i++) {
3265 struct xhci_ep_ctx *ep_ctx;
3266
3267 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3268 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3269 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3270 EP_GETTING_NO_STREAMS;
3271
3272 xhci_endpoint_copy(xhci, command->in_ctx,
3273 vdev->out_ctx, ep_index);
3274 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3275 &vdev->eps[ep_index]);
3276 }
3277 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3278 vdev->out_ctx, ctrl_ctx,
3279 changed_ep_bitmask, changed_ep_bitmask);
3280 spin_unlock_irqrestore(&xhci->lock, flags);
3281
3282 /* Issue and wait for the configure endpoint command,
3283 * which must succeed.
3284 */
3285 ret = xhci_configure_endpoint(xhci, udev, command,
3286 false, true);
3287
3288 /* xHC rejected the configure endpoint command for some reason, so we
3289 * leave the streams rings intact.
3290 */
3291 if (ret < 0)
3292 return ret;
3293
3294 spin_lock_irqsave(&xhci->lock, flags);
3295 for (i = 0; i < num_eps; i++) {
3296 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3297 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3298 vdev->eps[ep_index].stream_info = NULL;
3299 /* FIXME Unset maxPstreams in endpoint context and
3300 * update deq ptr to point to normal string ring.
3301 */
3302 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3303 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3304 }
3305 spin_unlock_irqrestore(&xhci->lock, flags);
3306
3307 return 0;
3308 }
3309
3310 /*
3311 * Deletes endpoint resources for endpoints that were active before a Reset
3312 * Device command, or a Disable Slot command. The Reset Device command leaves
3313 * the control endpoint intact, whereas the Disable Slot command deletes it.
3314 *
3315 * Must be called with xhci->lock held.
3316 */
3317 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3318 struct xhci_virt_device *virt_dev, bool drop_control_ep)
3319 {
3320 int i;
3321 unsigned int num_dropped_eps = 0;
3322 unsigned int drop_flags = 0;
3323
3324 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3325 if (virt_dev->eps[i].ring) {
3326 drop_flags |= 1 << i;
3327 num_dropped_eps++;
3328 }
3329 }
3330 xhci->num_active_eps -= num_dropped_eps;
3331 if (num_dropped_eps)
3332 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3333 "Dropped %u ep ctxs, flags = 0x%x, "
3334 "%u now active.",
3335 num_dropped_eps, drop_flags,
3336 xhci->num_active_eps);
3337 }
3338
3339 /*
3340 * This submits a Reset Device Command, which will set the device state to 0,
3341 * set the device address to 0, and disable all the endpoints except the default
3342 * control endpoint. The USB core should come back and call
3343 * xhci_address_device(), and then re-set up the configuration. If this is
3344 * called because of a usb_reset_and_verify_device(), then the old alternate
3345 * settings will be re-installed through the normal bandwidth allocation
3346 * functions.
3347 *
3348 * Wait for the Reset Device command to finish. Remove all structures
3349 * associated with the endpoints that were disabled. Clear the input device
3350 * structure? Reset the control endpoint 0 max packet size?
3351 *
3352 * If the virt_dev to be reset does not exist or does not match the udev,
3353 * it means the device is lost, possibly due to the xHC restore error and
3354 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3355 * re-allocate the device.
3356 */
3357 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3358 struct usb_device *udev)
3359 {
3360 int ret, i;
3361 unsigned long flags;
3362 struct xhci_hcd *xhci;
3363 unsigned int slot_id;
3364 struct xhci_virt_device *virt_dev;
3365 struct xhci_command *reset_device_cmd;
3366 int last_freed_endpoint;
3367 struct xhci_slot_ctx *slot_ctx;
3368 int old_active_eps = 0;
3369
3370 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3371 if (ret <= 0)
3372 return ret;
3373 xhci = hcd_to_xhci(hcd);
3374 slot_id = udev->slot_id;
3375 virt_dev = xhci->devs[slot_id];
3376 if (!virt_dev) {
3377 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3378 "not exist. Re-allocate the device\n", slot_id);
3379 ret = xhci_alloc_dev(hcd, udev);
3380 if (ret == 1)
3381 return 0;
3382 else
3383 return -EINVAL;
3384 }
3385
3386 if (virt_dev->tt_info)
3387 old_active_eps = virt_dev->tt_info->active_eps;
3388
3389 if (virt_dev->udev != udev) {
3390 /* If the virt_dev and the udev does not match, this virt_dev
3391 * may belong to another udev.
3392 * Re-allocate the device.
3393 */
3394 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3395 "not match the udev. Re-allocate the device\n",
3396 slot_id);
3397 ret = xhci_alloc_dev(hcd, udev);
3398 if (ret == 1)
3399 return 0;
3400 else
3401 return -EINVAL;
3402 }
3403
3404 /* If device is not setup, there is no point in resetting it */
3405 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3406 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3407 SLOT_STATE_DISABLED)
3408 return 0;
3409
3410 trace_xhci_discover_or_reset_device(slot_ctx);
3411
3412 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3413 /* Allocate the command structure that holds the struct completion.
3414 * Assume we're in process context, since the normal device reset
3415 * process has to wait for the device anyway. Storage devices are
3416 * reset as part of error handling, so use GFP_NOIO instead of
3417 * GFP_KERNEL.
3418 */
3419 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3420 if (!reset_device_cmd) {
3421 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3422 return -ENOMEM;
3423 }
3424
3425 /* Attempt to submit the Reset Device command to the command ring */
3426 spin_lock_irqsave(&xhci->lock, flags);
3427
3428 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3429 if (ret) {
3430 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3431 spin_unlock_irqrestore(&xhci->lock, flags);
3432 goto command_cleanup;
3433 }
3434 xhci_ring_cmd_db(xhci);
3435 spin_unlock_irqrestore(&xhci->lock, flags);
3436
3437 /* Wait for the Reset Device command to finish */
3438 wait_for_completion(reset_device_cmd->completion);
3439
3440 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3441 * unless we tried to reset a slot ID that wasn't enabled,
3442 * or the device wasn't in the addressed or configured state.
3443 */
3444 ret = reset_device_cmd->status;
3445 switch (ret) {
3446 case COMP_COMMAND_ABORTED:
3447 case COMP_COMMAND_RING_STOPPED:
3448 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3449 ret = -ETIME;
3450 goto command_cleanup;
3451 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3452 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3453 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3454 slot_id,
3455 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3456 xhci_dbg(xhci, "Not freeing device rings.\n");
3457 /* Don't treat this as an error. May change my mind later. */
3458 ret = 0;
3459 goto command_cleanup;
3460 case COMP_SUCCESS:
3461 xhci_dbg(xhci, "Successful reset device command.\n");
3462 break;
3463 default:
3464 if (xhci_is_vendor_info_code(xhci, ret))
3465 break;
3466 xhci_warn(xhci, "Unknown completion code %u for "
3467 "reset device command.\n", ret);
3468 ret = -EINVAL;
3469 goto command_cleanup;
3470 }
3471
3472 /* Free up host controller endpoint resources */
3473 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3474 spin_lock_irqsave(&xhci->lock, flags);
3475 /* Don't delete the default control endpoint resources */
3476 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3477 spin_unlock_irqrestore(&xhci->lock, flags);
3478 }
3479
3480 /* Everything but endpoint 0 is disabled, so free the rings. */
3481 last_freed_endpoint = 1;
3482 for (i = 1; i < 31; i++) {
3483 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3484
3485 if (ep->ep_state & EP_HAS_STREAMS) {
3486 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3487 xhci_get_endpoint_address(i));
3488 xhci_free_stream_info(xhci, ep->stream_info);
3489 ep->stream_info = NULL;
3490 ep->ep_state &= ~EP_HAS_STREAMS;
3491 }
3492
3493 if (ep->ring) {
3494 xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3495 xhci_free_endpoint_ring(xhci, virt_dev, i);
3496 last_freed_endpoint = i;
3497 }
3498 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3499 xhci_drop_ep_from_interval_table(xhci,
3500 &virt_dev->eps[i].bw_info,
3501 virt_dev->bw_table,
3502 udev,
3503 &virt_dev->eps[i],
3504 virt_dev->tt_info);
3505 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3506 }
3507 /* If necessary, update the number of active TTs on this root port */
3508 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3509 ret = 0;
3510
3511 command_cleanup:
3512 xhci_free_command(xhci, reset_device_cmd);
3513 return ret;
3514 }
3515
3516 /*
3517 * At this point, the struct usb_device is about to go away, the device has
3518 * disconnected, and all traffic has been stopped and the endpoints have been
3519 * disabled. Free any HC data structures associated with that device.
3520 */
3521 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3522 {
3523 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3524 struct xhci_virt_device *virt_dev;
3525 struct xhci_slot_ctx *slot_ctx;
3526 int i, ret;
3527
3528 #ifndef CONFIG_USB_DEFAULT_PERSIST
3529 /*
3530 * We called pm_runtime_get_noresume when the device was attached.
3531 * Decrement the counter here to allow controller to runtime suspend
3532 * if no devices remain.
3533 */
3534 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3535 pm_runtime_put_noidle(hcd->self.controller);
3536 #endif
3537
3538 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3539 /* If the host is halted due to driver unload, we still need to free the
3540 * device.
3541 */
3542 if (ret <= 0 && ret != -ENODEV)
3543 return;
3544
3545 virt_dev = xhci->devs[udev->slot_id];
3546 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3547 trace_xhci_free_dev(slot_ctx);
3548
3549 /* Stop any wayward timer functions (which may grab the lock) */
3550 for (i = 0; i < 31; i++) {
3551 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3552 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3553 }
3554
3555 ret = xhci_disable_slot(xhci, udev->slot_id);
3556 if (ret) {
3557 xhci_debugfs_remove_slot(xhci, udev->slot_id);
3558 xhci_free_virt_device(xhci, udev->slot_id);
3559 }
3560 }
3561
3562 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3563 {
3564 struct xhci_command *command;
3565 unsigned long flags;
3566 u32 state;
3567 int ret = 0;
3568
3569 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3570 if (!command)
3571 return -ENOMEM;
3572
3573 spin_lock_irqsave(&xhci->lock, flags);
3574 /* Don't disable the slot if the host controller is dead. */
3575 state = readl(&xhci->op_regs->status);
3576 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3577 (xhci->xhc_state & XHCI_STATE_HALTED)) {
3578 spin_unlock_irqrestore(&xhci->lock, flags);
3579 kfree(command);
3580 return -ENODEV;
3581 }
3582
3583 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3584 slot_id);
3585 if (ret) {
3586 spin_unlock_irqrestore(&xhci->lock, flags);
3587 kfree(command);
3588 return ret;
3589 }
3590 xhci_ring_cmd_db(xhci);
3591 spin_unlock_irqrestore(&xhci->lock, flags);
3592 return ret;
3593 }
3594
3595 /*
3596 * Checks if we have enough host controller resources for the default control
3597 * endpoint.
3598 *
3599 * Must be called with xhci->lock held.
3600 */
3601 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3602 {
3603 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3604 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3605 "Not enough ep ctxs: "
3606 "%u active, need to add 1, limit is %u.",
3607 xhci->num_active_eps, xhci->limit_active_eps);
3608 return -ENOMEM;
3609 }
3610 xhci->num_active_eps += 1;
3611 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3612 "Adding 1 ep ctx, %u now active.",
3613 xhci->num_active_eps);
3614 return 0;
3615 }
3616
3617
3618 /*
3619 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3620 * timed out, or allocating memory failed. Returns 1 on success.
3621 */
3622 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3623 {
3624 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3625 struct xhci_virt_device *vdev;
3626 struct xhci_slot_ctx *slot_ctx;
3627 unsigned long flags;
3628 int ret, slot_id;
3629 struct xhci_command *command;
3630
3631 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
3632 if (!command)
3633 return 0;
3634
3635 spin_lock_irqsave(&xhci->lock, flags);
3636 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3637 if (ret) {
3638 spin_unlock_irqrestore(&xhci->lock, flags);
3639 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3640 xhci_free_command(xhci, command);
3641 return 0;
3642 }
3643 xhci_ring_cmd_db(xhci);
3644 spin_unlock_irqrestore(&xhci->lock, flags);
3645
3646 wait_for_completion(command->completion);
3647 slot_id = command->slot_id;
3648
3649 if (!slot_id || command->status != COMP_SUCCESS) {
3650 xhci_err(xhci, "Error while assigning device slot ID\n");
3651 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3652 HCS_MAX_SLOTS(
3653 readl(&xhci->cap_regs->hcs_params1)));
3654 xhci_free_command(xhci, command);
3655 return 0;
3656 }
3657
3658 xhci_free_command(xhci, command);
3659
3660 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3661 spin_lock_irqsave(&xhci->lock, flags);
3662 ret = xhci_reserve_host_control_ep_resources(xhci);
3663 if (ret) {
3664 spin_unlock_irqrestore(&xhci->lock, flags);
3665 xhci_warn(xhci, "Not enough host resources, "
3666 "active endpoint contexts = %u\n",
3667 xhci->num_active_eps);
3668 goto disable_slot;
3669 }
3670 spin_unlock_irqrestore(&xhci->lock, flags);
3671 }
3672 /* Use GFP_NOIO, since this function can be called from
3673 * xhci_discover_or_reset_device(), which may be called as part of
3674 * mass storage driver error handling.
3675 */
3676 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3677 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3678 goto disable_slot;
3679 }
3680 vdev = xhci->devs[slot_id];
3681 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
3682 trace_xhci_alloc_dev(slot_ctx);
3683
3684 udev->slot_id = slot_id;
3685
3686 xhci_debugfs_create_slot(xhci, slot_id);
3687
3688 #ifndef CONFIG_USB_DEFAULT_PERSIST
3689 /*
3690 * If resetting upon resume, we can't put the controller into runtime
3691 * suspend if there is a device attached.
3692 */
3693 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3694 pm_runtime_get_noresume(hcd->self.controller);
3695 #endif
3696
3697 /* Is this a LS or FS device under a HS hub? */
3698 /* Hub or peripherial? */
3699 return 1;
3700
3701 disable_slot:
3702 ret = xhci_disable_slot(xhci, udev->slot_id);
3703 if (ret)
3704 xhci_free_virt_device(xhci, udev->slot_id);
3705
3706 return 0;
3707 }
3708
3709 /*
3710 * Issue an Address Device command and optionally send a corresponding
3711 * SetAddress request to the device.
3712 */
3713 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3714 enum xhci_setup_dev setup)
3715 {
3716 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3717 unsigned long flags;
3718 struct xhci_virt_device *virt_dev;
3719 int ret = 0;
3720 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3721 struct xhci_slot_ctx *slot_ctx;
3722 struct xhci_input_control_ctx *ctrl_ctx;
3723 u64 temp_64;
3724 struct xhci_command *command = NULL;
3725
3726 mutex_lock(&xhci->mutex);
3727
3728 if (xhci->xhc_state) { /* dying, removing or halted */
3729 ret = -ESHUTDOWN;
3730 goto out;
3731 }
3732
3733 if (!udev->slot_id) {
3734 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3735 "Bad Slot ID %d", udev->slot_id);
3736 ret = -EINVAL;
3737 goto out;
3738 }
3739
3740 virt_dev = xhci->devs[udev->slot_id];
3741
3742 if (WARN_ON(!virt_dev)) {
3743 /*
3744 * In plug/unplug torture test with an NEC controller,
3745 * a zero-dereference was observed once due to virt_dev = 0.
3746 * Print useful debug rather than crash if it is observed again!
3747 */
3748 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3749 udev->slot_id);
3750 ret = -EINVAL;
3751 goto out;
3752 }
3753 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3754 trace_xhci_setup_device_slot(slot_ctx);
3755
3756 if (setup == SETUP_CONTEXT_ONLY) {
3757 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3758 SLOT_STATE_DEFAULT) {
3759 xhci_dbg(xhci, "Slot already in default state\n");
3760 goto out;
3761 }
3762 }
3763
3764 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
3765 if (!command) {
3766 ret = -ENOMEM;
3767 goto out;
3768 }
3769
3770 command->in_ctx = virt_dev->in_ctx;
3771
3772 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3773 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3774 if (!ctrl_ctx) {
3775 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3776 __func__);
3777 ret = -EINVAL;
3778 goto out;
3779 }
3780 /*
3781 * If this is the first Set Address since device plug-in or
3782 * virt_device realloaction after a resume with an xHCI power loss,
3783 * then set up the slot context.
3784 */
3785 if (!slot_ctx->dev_info)
3786 xhci_setup_addressable_virt_dev(xhci, udev);
3787 /* Otherwise, update the control endpoint ring enqueue pointer. */
3788 else
3789 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3790 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3791 ctrl_ctx->drop_flags = 0;
3792
3793 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3794 le32_to_cpu(slot_ctx->dev_info) >> 27);
3795
3796 spin_lock_irqsave(&xhci->lock, flags);
3797 trace_xhci_setup_device(virt_dev);
3798 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3799 udev->slot_id, setup);
3800 if (ret) {
3801 spin_unlock_irqrestore(&xhci->lock, flags);
3802 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3803 "FIXME: allocate a command ring segment");
3804 goto out;
3805 }
3806 xhci_ring_cmd_db(xhci);
3807 spin_unlock_irqrestore(&xhci->lock, flags);
3808
3809 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3810 wait_for_completion(command->completion);
3811
3812 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3813 * the SetAddress() "recovery interval" required by USB and aborting the
3814 * command on a timeout.
3815 */
3816 switch (command->status) {
3817 case COMP_COMMAND_ABORTED:
3818 case COMP_COMMAND_RING_STOPPED:
3819 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3820 ret = -ETIME;
3821 break;
3822 case COMP_CONTEXT_STATE_ERROR:
3823 case COMP_SLOT_NOT_ENABLED_ERROR:
3824 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3825 act, udev->slot_id);
3826 ret = -EINVAL;
3827 break;
3828 case COMP_USB_TRANSACTION_ERROR:
3829 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3830
3831 mutex_unlock(&xhci->mutex);
3832 ret = xhci_disable_slot(xhci, udev->slot_id);
3833 if (!ret)
3834 xhci_alloc_dev(hcd, udev);
3835 kfree(command->completion);
3836 kfree(command);
3837 return -EPROTO;
3838 case COMP_INCOMPATIBLE_DEVICE_ERROR:
3839 dev_warn(&udev->dev,
3840 "ERROR: Incompatible device for setup %s command\n", act);
3841 ret = -ENODEV;
3842 break;
3843 case COMP_SUCCESS:
3844 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3845 "Successful setup %s command", act);
3846 break;
3847 default:
3848 xhci_err(xhci,
3849 "ERROR: unexpected setup %s command completion code 0x%x.\n",
3850 act, command->status);
3851 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3852 ret = -EINVAL;
3853 break;
3854 }
3855 if (ret)
3856 goto out;
3857 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3858 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3859 "Op regs DCBAA ptr = %#016llx", temp_64);
3860 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3861 "Slot ID %d dcbaa entry @%p = %#016llx",
3862 udev->slot_id,
3863 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3864 (unsigned long long)
3865 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3866 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3867 "Output Context DMA address = %#08llx",
3868 (unsigned long long)virt_dev->out_ctx->dma);
3869 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3870 le32_to_cpu(slot_ctx->dev_info) >> 27);
3871 /*
3872 * USB core uses address 1 for the roothubs, so we add one to the
3873 * address given back to us by the HC.
3874 */
3875 trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3876 le32_to_cpu(slot_ctx->dev_info) >> 27);
3877 /* Zero the input context control for later use */
3878 ctrl_ctx->add_flags = 0;
3879 ctrl_ctx->drop_flags = 0;
3880
3881 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3882 "Internal device address = %d",
3883 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3884 out:
3885 mutex_unlock(&xhci->mutex);
3886 if (command) {
3887 kfree(command->completion);
3888 kfree(command);
3889 }
3890 return ret;
3891 }
3892
3893 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3894 {
3895 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3896 }
3897
3898 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3899 {
3900 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3901 }
3902
3903 /*
3904 * Transfer the port index into real index in the HW port status
3905 * registers. Caculate offset between the port's PORTSC register
3906 * and port status base. Divide the number of per port register
3907 * to get the real index. The raw port number bases 1.
3908 */
3909 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3910 {
3911 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3912 __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3913 __le32 __iomem *addr;
3914 int raw_port;
3915
3916 if (hcd->speed < HCD_USB3)
3917 addr = xhci->usb2_ports[port1 - 1];
3918 else
3919 addr = xhci->usb3_ports[port1 - 1];
3920
3921 raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3922 return raw_port;
3923 }
3924
3925 /*
3926 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3927 * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
3928 */
3929 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3930 struct usb_device *udev, u16 max_exit_latency)
3931 {
3932 struct xhci_virt_device *virt_dev;
3933 struct xhci_command *command;
3934 struct xhci_input_control_ctx *ctrl_ctx;
3935 struct xhci_slot_ctx *slot_ctx;
3936 unsigned long flags;
3937 int ret;
3938
3939 spin_lock_irqsave(&xhci->lock, flags);
3940
3941 virt_dev = xhci->devs[udev->slot_id];
3942
3943 /*
3944 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
3945 * xHC was re-initialized. Exit latency will be set later after
3946 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
3947 */
3948
3949 if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
3950 spin_unlock_irqrestore(&xhci->lock, flags);
3951 return 0;
3952 }
3953
3954 /* Attempt to issue an Evaluate Context command to change the MEL. */
3955 command = xhci->lpm_command;
3956 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3957 if (!ctrl_ctx) {
3958 spin_unlock_irqrestore(&xhci->lock, flags);
3959 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3960 __func__);
3961 return -ENOMEM;
3962 }
3963
3964 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
3965 spin_unlock_irqrestore(&xhci->lock, flags);
3966
3967 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3968 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
3969 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
3970 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
3971 slot_ctx->dev_state = 0;
3972
3973 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
3974 "Set up evaluate context for LPM MEL change.");
3975
3976 /* Issue and wait for the evaluate context command. */
3977 ret = xhci_configure_endpoint(xhci, udev, command,
3978 true, true);
3979
3980 if (!ret) {
3981 spin_lock_irqsave(&xhci->lock, flags);
3982 virt_dev->current_mel = max_exit_latency;
3983 spin_unlock_irqrestore(&xhci->lock, flags);
3984 }
3985 return ret;
3986 }
3987
3988 #ifdef CONFIG_PM
3989
3990 /* BESL to HIRD Encoding array for USB2 LPM */
3991 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3992 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3993
3994 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
3995 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
3996 struct usb_device *udev)
3997 {
3998 int u2del, besl, besl_host;
3999 int besl_device = 0;
4000 u32 field;
4001
4002 u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4003 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4004
4005 if (field & USB_BESL_SUPPORT) {
4006 for (besl_host = 0; besl_host < 16; besl_host++) {
4007 if (xhci_besl_encoding[besl_host] >= u2del)
4008 break;
4009 }
4010 /* Use baseline BESL value as default */
4011 if (field & USB_BESL_BASELINE_VALID)
4012 besl_device = USB_GET_BESL_BASELINE(field);
4013 else if (field & USB_BESL_DEEP_VALID)
4014 besl_device = USB_GET_BESL_DEEP(field);
4015 } else {
4016 if (u2del <= 50)
4017 besl_host = 0;
4018 else
4019 besl_host = (u2del - 51) / 75 + 1;
4020 }
4021
4022 besl = besl_host + besl_device;
4023 if (besl > 15)
4024 besl = 15;
4025
4026 return besl;
4027 }
4028
4029 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4030 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4031 {
4032 u32 field;
4033 int l1;
4034 int besld = 0;
4035 int hirdm = 0;
4036
4037 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4038
4039 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4040 l1 = udev->l1_params.timeout / 256;
4041
4042 /* device has preferred BESLD */
4043 if (field & USB_BESL_DEEP_VALID) {
4044 besld = USB_GET_BESL_DEEP(field);
4045 hirdm = 1;
4046 }
4047
4048 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4049 }
4050
4051 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4052 struct usb_device *udev, int enable)
4053 {
4054 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4055 __le32 __iomem **port_array;
4056 __le32 __iomem *pm_addr, *hlpm_addr;
4057 u32 pm_val, hlpm_val, field;
4058 unsigned int port_num;
4059 unsigned long flags;
4060 int hird, exit_latency;
4061 int ret;
4062
4063 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4064 !udev->lpm_capable)
4065 return -EPERM;
4066
4067 if (!udev->parent || udev->parent->parent ||
4068 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4069 return -EPERM;
4070
4071 if (udev->usb2_hw_lpm_capable != 1)
4072 return -EPERM;
4073
4074 spin_lock_irqsave(&xhci->lock, flags);
4075
4076 port_array = xhci->usb2_ports;
4077 port_num = udev->portnum - 1;
4078 pm_addr = port_array[port_num] + PORTPMSC;
4079 pm_val = readl(pm_addr);
4080 hlpm_addr = port_array[port_num] + PORTHLPMC;
4081 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4082
4083 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4084 enable ? "enable" : "disable", port_num + 1);
4085
4086 if (enable && !(xhci->quirks & XHCI_HW_LPM_DISABLE)) {
4087 /* Host supports BESL timeout instead of HIRD */
4088 if (udev->usb2_hw_lpm_besl_capable) {
4089 /* if device doesn't have a preferred BESL value use a
4090 * default one which works with mixed HIRD and BESL
4091 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4092 */
4093 if ((field & USB_BESL_SUPPORT) &&
4094 (field & USB_BESL_BASELINE_VALID))
4095 hird = USB_GET_BESL_BASELINE(field);
4096 else
4097 hird = udev->l1_params.besl;
4098
4099 exit_latency = xhci_besl_encoding[hird];
4100 spin_unlock_irqrestore(&xhci->lock, flags);
4101
4102 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4103 * input context for link powermanagement evaluate
4104 * context commands. It is protected by hcd->bandwidth
4105 * mutex and is shared by all devices. We need to set
4106 * the max ext latency in USB 2 BESL LPM as well, so
4107 * use the same mutex and xhci_change_max_exit_latency()
4108 */
4109 mutex_lock(hcd->bandwidth_mutex);
4110 ret = xhci_change_max_exit_latency(xhci, udev,
4111 exit_latency);
4112 mutex_unlock(hcd->bandwidth_mutex);
4113
4114 if (ret < 0)
4115 return ret;
4116 spin_lock_irqsave(&xhci->lock, flags);
4117
4118 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4119 writel(hlpm_val, hlpm_addr);
4120 /* flush write */
4121 readl(hlpm_addr);
4122 } else {
4123 hird = xhci_calculate_hird_besl(xhci, udev);
4124 }
4125
4126 pm_val &= ~PORT_HIRD_MASK;
4127 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4128 writel(pm_val, pm_addr);
4129 pm_val = readl(pm_addr);
4130 pm_val |= PORT_HLE;
4131 writel(pm_val, pm_addr);
4132 /* flush write */
4133 readl(pm_addr);
4134 } else {
4135 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4136 writel(pm_val, pm_addr);
4137 /* flush write */
4138 readl(pm_addr);
4139 if (udev->usb2_hw_lpm_besl_capable) {
4140 spin_unlock_irqrestore(&xhci->lock, flags);
4141 mutex_lock(hcd->bandwidth_mutex);
4142 xhci_change_max_exit_latency(xhci, udev, 0);
4143 mutex_unlock(hcd->bandwidth_mutex);
4144 return 0;
4145 }
4146 }
4147
4148 spin_unlock_irqrestore(&xhci->lock, flags);
4149 return 0;
4150 }
4151
4152 /* check if a usb2 port supports a given extened capability protocol
4153 * only USB2 ports extended protocol capability values are cached.
4154 * Return 1 if capability is supported
4155 */
4156 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4157 unsigned capability)
4158 {
4159 u32 port_offset, port_count;
4160 int i;
4161
4162 for (i = 0; i < xhci->num_ext_caps; i++) {
4163 if (xhci->ext_caps[i] & capability) {
4164 /* port offsets starts at 1 */
4165 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4166 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4167 if (port >= port_offset &&
4168 port < port_offset + port_count)
4169 return 1;
4170 }
4171 }
4172 return 0;
4173 }
4174
4175 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4176 {
4177 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4178 int portnum = udev->portnum - 1;
4179
4180 if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4181 !udev->lpm_capable)
4182 return 0;
4183
4184 /* we only support lpm for non-hub device connected to root hub yet */
4185 if (!udev->parent || udev->parent->parent ||
4186 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4187 return 0;
4188
4189 if (xhci->hw_lpm_support == 1 &&
4190 xhci_check_usb2_port_capability(
4191 xhci, portnum, XHCI_HLC)) {
4192 udev->usb2_hw_lpm_capable = 1;
4193 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4194 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4195 if (xhci_check_usb2_port_capability(xhci, portnum,
4196 XHCI_BLC))
4197 udev->usb2_hw_lpm_besl_capable = 1;
4198 }
4199
4200 return 0;
4201 }
4202
4203 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4204
4205 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4206 static unsigned long long xhci_service_interval_to_ns(
4207 struct usb_endpoint_descriptor *desc)
4208 {
4209 return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4210 }
4211
4212 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4213 enum usb3_link_state state)
4214 {
4215 unsigned long long sel;
4216 unsigned long long pel;
4217 unsigned int max_sel_pel;
4218 char *state_name;
4219
4220 switch (state) {
4221 case USB3_LPM_U1:
4222 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4223 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4224 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4225 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4226 state_name = "U1";
4227 break;
4228 case USB3_LPM_U2:
4229 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4230 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4231 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4232 state_name = "U2";
4233 break;
4234 default:
4235 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4236 __func__);
4237 return USB3_LPM_DISABLED;
4238 }
4239
4240 if (sel <= max_sel_pel && pel <= max_sel_pel)
4241 return USB3_LPM_DEVICE_INITIATED;
4242
4243 if (sel > max_sel_pel)
4244 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4245 "due to long SEL %llu ms\n",
4246 state_name, sel);
4247 else
4248 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4249 "due to long PEL %llu ms\n",
4250 state_name, pel);
4251 return USB3_LPM_DISABLED;
4252 }
4253
4254 /* The U1 timeout should be the maximum of the following values:
4255 * - For control endpoints, U1 system exit latency (SEL) * 3
4256 * - For bulk endpoints, U1 SEL * 5
4257 * - For interrupt endpoints:
4258 * - Notification EPs, U1 SEL * 3
4259 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4260 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4261 */
4262 static unsigned long long xhci_calculate_intel_u1_timeout(
4263 struct usb_device *udev,
4264 struct usb_endpoint_descriptor *desc)
4265 {
4266 unsigned long long timeout_ns;
4267 int ep_type;
4268 int intr_type;
4269
4270 ep_type = usb_endpoint_type(desc);
4271 switch (ep_type) {
4272 case USB_ENDPOINT_XFER_CONTROL:
4273 timeout_ns = udev->u1_params.sel * 3;
4274 break;
4275 case USB_ENDPOINT_XFER_BULK:
4276 timeout_ns = udev->u1_params.sel * 5;
4277 break;
4278 case USB_ENDPOINT_XFER_INT:
4279 intr_type = usb_endpoint_interrupt_type(desc);
4280 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4281 timeout_ns = udev->u1_params.sel * 3;
4282 break;
4283 }
4284 /* Otherwise the calculation is the same as isoc eps */
4285 /* fall through */
4286 case USB_ENDPOINT_XFER_ISOC:
4287 timeout_ns = xhci_service_interval_to_ns(desc);
4288 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4289 if (timeout_ns < udev->u1_params.sel * 2)
4290 timeout_ns = udev->u1_params.sel * 2;
4291 break;
4292 default:
4293 return 0;
4294 }
4295
4296 return timeout_ns;
4297 }
4298
4299 /* Returns the hub-encoded U1 timeout value. */
4300 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4301 struct usb_device *udev,
4302 struct usb_endpoint_descriptor *desc)
4303 {
4304 unsigned long long timeout_ns;
4305
4306 if (xhci->quirks & XHCI_INTEL_HOST)
4307 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4308 else
4309 timeout_ns = udev->u1_params.sel;
4310
4311 /* The U1 timeout is encoded in 1us intervals.
4312 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4313 */
4314 if (timeout_ns == USB3_LPM_DISABLED)
4315 timeout_ns = 1;
4316 else
4317 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4318
4319 /* If the necessary timeout value is bigger than what we can set in the
4320 * USB 3.0 hub, we have to disable hub-initiated U1.
4321 */
4322 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4323 return timeout_ns;
4324 dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4325 "due to long timeout %llu ms\n", timeout_ns);
4326 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4327 }
4328
4329 /* The U2 timeout should be the maximum of:
4330 * - 10 ms (to avoid the bandwidth impact on the scheduler)
4331 * - largest bInterval of any active periodic endpoint (to avoid going
4332 * into lower power link states between intervals).
4333 * - the U2 Exit Latency of the device
4334 */
4335 static unsigned long long xhci_calculate_intel_u2_timeout(
4336 struct usb_device *udev,
4337 struct usb_endpoint_descriptor *desc)
4338 {
4339 unsigned long long timeout_ns;
4340 unsigned long long u2_del_ns;
4341
4342 timeout_ns = 10 * 1000 * 1000;
4343
4344 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4345 (xhci_service_interval_to_ns(desc) > timeout_ns))
4346 timeout_ns = xhci_service_interval_to_ns(desc);
4347
4348 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4349 if (u2_del_ns > timeout_ns)
4350 timeout_ns = u2_del_ns;
4351
4352 return timeout_ns;
4353 }
4354
4355 /* Returns the hub-encoded U2 timeout value. */
4356 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4357 struct usb_device *udev,
4358 struct usb_endpoint_descriptor *desc)
4359 {
4360 unsigned long long timeout_ns;
4361
4362 if (xhci->quirks & XHCI_INTEL_HOST)
4363 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4364 else
4365 timeout_ns = udev->u2_params.sel;
4366
4367 /* The U2 timeout is encoded in 256us intervals */
4368 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4369 /* If the necessary timeout value is bigger than what we can set in the
4370 * USB 3.0 hub, we have to disable hub-initiated U2.
4371 */
4372 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4373 return timeout_ns;
4374 dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4375 "due to long timeout %llu ms\n", timeout_ns);
4376 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4377 }
4378
4379 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4380 struct usb_device *udev,
4381 struct usb_endpoint_descriptor *desc,
4382 enum usb3_link_state state,
4383 u16 *timeout)
4384 {
4385 if (state == USB3_LPM_U1)
4386 return xhci_calculate_u1_timeout(xhci, udev, desc);
4387 else if (state == USB3_LPM_U2)
4388 return xhci_calculate_u2_timeout(xhci, udev, desc);
4389
4390 return USB3_LPM_DISABLED;
4391 }
4392
4393 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4394 struct usb_device *udev,
4395 struct usb_endpoint_descriptor *desc,
4396 enum usb3_link_state state,
4397 u16 *timeout)
4398 {
4399 u16 alt_timeout;
4400
4401 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4402 desc, state, timeout);
4403
4404 /* If we found we can't enable hub-initiated LPM, or
4405 * the U1 or U2 exit latency was too high to allow
4406 * device-initiated LPM as well, just stop searching.
4407 */
4408 if (alt_timeout == USB3_LPM_DISABLED ||
4409 alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4410 *timeout = alt_timeout;
4411 return -E2BIG;
4412 }
4413 if (alt_timeout > *timeout)
4414 *timeout = alt_timeout;
4415 return 0;
4416 }
4417
4418 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4419 struct usb_device *udev,
4420 struct usb_host_interface *alt,
4421 enum usb3_link_state state,
4422 u16 *timeout)
4423 {
4424 int j;
4425
4426 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4427 if (xhci_update_timeout_for_endpoint(xhci, udev,
4428 &alt->endpoint[j].desc, state, timeout))
4429 return -E2BIG;
4430 continue;
4431 }
4432 return 0;
4433 }
4434
4435 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4436 enum usb3_link_state state)
4437 {
4438 struct usb_device *parent;
4439 unsigned int num_hubs;
4440
4441 if (state == USB3_LPM_U2)
4442 return 0;
4443
4444 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4445 for (parent = udev->parent, num_hubs = 0; parent->parent;
4446 parent = parent->parent)
4447 num_hubs++;
4448
4449 if (num_hubs < 2)
4450 return 0;
4451
4452 dev_dbg(&udev->dev, "Disabling U1 link state for device"
4453 " below second-tier hub.\n");
4454 dev_dbg(&udev->dev, "Plug device into first-tier hub "
4455 "to decrease power consumption.\n");
4456 return -E2BIG;
4457 }
4458
4459 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4460 struct usb_device *udev,
4461 enum usb3_link_state state)
4462 {
4463 if (xhci->quirks & XHCI_INTEL_HOST)
4464 return xhci_check_intel_tier_policy(udev, state);
4465 else
4466 return 0;
4467 }
4468
4469 /* Returns the U1 or U2 timeout that should be enabled.
4470 * If the tier check or timeout setting functions return with a non-zero exit
4471 * code, that means the timeout value has been finalized and we shouldn't look
4472 * at any more endpoints.
4473 */
4474 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4475 struct usb_device *udev, enum usb3_link_state state)
4476 {
4477 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4478 struct usb_host_config *config;
4479 char *state_name;
4480 int i;
4481 u16 timeout = USB3_LPM_DISABLED;
4482
4483 if (state == USB3_LPM_U1)
4484 state_name = "U1";
4485 else if (state == USB3_LPM_U2)
4486 state_name = "U2";
4487 else {
4488 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4489 state);
4490 return timeout;
4491 }
4492
4493 if (xhci_check_tier_policy(xhci, udev, state) < 0)
4494 return timeout;
4495
4496 /* Gather some information about the currently installed configuration
4497 * and alternate interface settings.
4498 */
4499 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4500 state, &timeout))
4501 return timeout;
4502
4503 config = udev->actconfig;
4504 if (!config)
4505 return timeout;
4506
4507 for (i = 0; i < config->desc.bNumInterfaces; i++) {
4508 struct usb_driver *driver;
4509 struct usb_interface *intf = config->interface[i];
4510
4511 if (!intf)
4512 continue;
4513
4514 /* Check if any currently bound drivers want hub-initiated LPM
4515 * disabled.
4516 */
4517 if (intf->dev.driver) {
4518 driver = to_usb_driver(intf->dev.driver);
4519 if (driver && driver->disable_hub_initiated_lpm) {
4520 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4521 "at request of driver %s\n",
4522 state_name, driver->name);
4523 return xhci_get_timeout_no_hub_lpm(udev, state);
4524 }
4525 }
4526
4527 /* Not sure how this could happen... */
4528 if (!intf->cur_altsetting)
4529 continue;
4530
4531 if (xhci_update_timeout_for_interface(xhci, udev,
4532 intf->cur_altsetting,
4533 state, &timeout))
4534 return timeout;
4535 }
4536 return timeout;
4537 }
4538
4539 static int calculate_max_exit_latency(struct usb_device *udev,
4540 enum usb3_link_state state_changed,
4541 u16 hub_encoded_timeout)
4542 {
4543 unsigned long long u1_mel_us = 0;
4544 unsigned long long u2_mel_us = 0;
4545 unsigned long long mel_us = 0;
4546 bool disabling_u1;
4547 bool disabling_u2;
4548 bool enabling_u1;
4549 bool enabling_u2;
4550
4551 disabling_u1 = (state_changed == USB3_LPM_U1 &&
4552 hub_encoded_timeout == USB3_LPM_DISABLED);
4553 disabling_u2 = (state_changed == USB3_LPM_U2 &&
4554 hub_encoded_timeout == USB3_LPM_DISABLED);
4555
4556 enabling_u1 = (state_changed == USB3_LPM_U1 &&
4557 hub_encoded_timeout != USB3_LPM_DISABLED);
4558 enabling_u2 = (state_changed == USB3_LPM_U2 &&
4559 hub_encoded_timeout != USB3_LPM_DISABLED);
4560
4561 /* If U1 was already enabled and we're not disabling it,
4562 * or we're going to enable U1, account for the U1 max exit latency.
4563 */
4564 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4565 enabling_u1)
4566 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4567 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4568 enabling_u2)
4569 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4570
4571 if (u1_mel_us > u2_mel_us)
4572 mel_us = u1_mel_us;
4573 else
4574 mel_us = u2_mel_us;
4575 /* xHCI host controller max exit latency field is only 16 bits wide. */
4576 if (mel_us > MAX_EXIT) {
4577 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4578 "is too big.\n", mel_us);
4579 return -E2BIG;
4580 }
4581 return mel_us;
4582 }
4583
4584 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4585 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4586 struct usb_device *udev, enum usb3_link_state state)
4587 {
4588 struct xhci_hcd *xhci;
4589 u16 hub_encoded_timeout;
4590 int mel;
4591 int ret;
4592
4593 xhci = hcd_to_xhci(hcd);
4594 /* The LPM timeout values are pretty host-controller specific, so don't
4595 * enable hub-initiated timeouts unless the vendor has provided
4596 * information about their timeout algorithm.
4597 */
4598 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4599 !xhci->devs[udev->slot_id])
4600 return USB3_LPM_DISABLED;
4601
4602 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4603 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4604 if (mel < 0) {
4605 /* Max Exit Latency is too big, disable LPM. */
4606 hub_encoded_timeout = USB3_LPM_DISABLED;
4607 mel = 0;
4608 }
4609
4610 ret = xhci_change_max_exit_latency(xhci, udev, mel);
4611 if (ret)
4612 return ret;
4613 return hub_encoded_timeout;
4614 }
4615
4616 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4617 struct usb_device *udev, enum usb3_link_state state)
4618 {
4619 struct xhci_hcd *xhci;
4620 u16 mel;
4621
4622 xhci = hcd_to_xhci(hcd);
4623 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4624 !xhci->devs[udev->slot_id])
4625 return 0;
4626
4627 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4628 return xhci_change_max_exit_latency(xhci, udev, mel);
4629 }
4630 #else /* CONFIG_PM */
4631
4632 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4633 struct usb_device *udev, int enable)
4634 {
4635 return 0;
4636 }
4637
4638 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4639 {
4640 return 0;
4641 }
4642
4643 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4644 struct usb_device *udev, enum usb3_link_state state)
4645 {
4646 return USB3_LPM_DISABLED;
4647 }
4648
4649 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4650 struct usb_device *udev, enum usb3_link_state state)
4651 {
4652 return 0;
4653 }
4654 #endif /* CONFIG_PM */
4655
4656 /*-------------------------------------------------------------------------*/
4657
4658 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4659 * internal data structures for the device.
4660 */
4661 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4662 struct usb_tt *tt, gfp_t mem_flags)
4663 {
4664 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4665 struct xhci_virt_device *vdev;
4666 struct xhci_command *config_cmd;
4667 struct xhci_input_control_ctx *ctrl_ctx;
4668 struct xhci_slot_ctx *slot_ctx;
4669 unsigned long flags;
4670 unsigned think_time;
4671 int ret;
4672
4673 /* Ignore root hubs */
4674 if (!hdev->parent)
4675 return 0;
4676
4677 vdev = xhci->devs[hdev->slot_id];
4678 if (!vdev) {
4679 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4680 return -EINVAL;
4681 }
4682
4683 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4684 if (!config_cmd)
4685 return -ENOMEM;
4686
4687 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4688 if (!ctrl_ctx) {
4689 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4690 __func__);
4691 xhci_free_command(xhci, config_cmd);
4692 return -ENOMEM;
4693 }
4694
4695 spin_lock_irqsave(&xhci->lock, flags);
4696 if (hdev->speed == USB_SPEED_HIGH &&
4697 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4698 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4699 xhci_free_command(xhci, config_cmd);
4700 spin_unlock_irqrestore(&xhci->lock, flags);
4701 return -ENOMEM;
4702 }
4703
4704 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4705 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4706 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4707 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4708 /*
4709 * refer to section 6.2.2: MTT should be 0 for full speed hub,
4710 * but it may be already set to 1 when setup an xHCI virtual
4711 * device, so clear it anyway.
4712 */
4713 if (tt->multi)
4714 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4715 else if (hdev->speed == USB_SPEED_FULL)
4716 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4717
4718 if (xhci->hci_version > 0x95) {
4719 xhci_dbg(xhci, "xHCI version %x needs hub "
4720 "TT think time and number of ports\n",
4721 (unsigned int) xhci->hci_version);
4722 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4723 /* Set TT think time - convert from ns to FS bit times.
4724 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4725 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4726 *
4727 * xHCI 1.0: this field shall be 0 if the device is not a
4728 * High-spped hub.
4729 */
4730 think_time = tt->think_time;
4731 if (think_time != 0)
4732 think_time = (think_time / 666) - 1;
4733 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4734 slot_ctx->tt_info |=
4735 cpu_to_le32(TT_THINK_TIME(think_time));
4736 } else {
4737 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4738 "TT think time or number of ports\n",
4739 (unsigned int) xhci->hci_version);
4740 }
4741 slot_ctx->dev_state = 0;
4742 spin_unlock_irqrestore(&xhci->lock, flags);
4743
4744 xhci_dbg(xhci, "Set up %s for hub device.\n",
4745 (xhci->hci_version > 0x95) ?
4746 "configure endpoint" : "evaluate context");
4747
4748 /* Issue and wait for the configure endpoint or
4749 * evaluate context command.
4750 */
4751 if (xhci->hci_version > 0x95)
4752 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4753 false, false);
4754 else
4755 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4756 true, false);
4757
4758 xhci_free_command(xhci, config_cmd);
4759 return ret;
4760 }
4761
4762 static int xhci_get_frame(struct usb_hcd *hcd)
4763 {
4764 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4765 /* EHCI mods by the periodic size. Why? */
4766 return readl(&xhci->run_regs->microframe_index) >> 3;
4767 }
4768
4769 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4770 {
4771 struct xhci_hcd *xhci;
4772 /*
4773 * TODO: Check with DWC3 clients for sysdev according to
4774 * quirks
4775 */
4776 struct device *dev = hcd->self.sysdev;
4777 int retval;
4778
4779 /* Accept arbitrarily long scatter-gather lists */
4780 hcd->self.sg_tablesize = ~0;
4781
4782 /* support to build packet from discontinuous buffers */
4783 hcd->self.no_sg_constraint = 1;
4784
4785 /* XHCI controllers don't stop the ep queue on short packets :| */
4786 hcd->self.no_stop_on_short = 1;
4787
4788 xhci = hcd_to_xhci(hcd);
4789
4790 if (usb_hcd_is_primary_hcd(hcd)) {
4791 xhci->main_hcd = hcd;
4792 /* Mark the first roothub as being USB 2.0.
4793 * The xHCI driver will register the USB 3.0 roothub.
4794 */
4795 hcd->speed = HCD_USB2;
4796 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4797 /*
4798 * USB 2.0 roothub under xHCI has an integrated TT,
4799 * (rate matching hub) as opposed to having an OHCI/UHCI
4800 * companion controller.
4801 */
4802 hcd->has_tt = 1;
4803 } else {
4804 /* Some 3.1 hosts return sbrn 0x30, can't rely on sbrn alone */
4805 if (xhci->sbrn == 0x31 || xhci->usb3_rhub.min_rev >= 1) {
4806 xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n");
4807 hcd->speed = HCD_USB31;
4808 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
4809 }
4810 /* xHCI private pointer was set in xhci_pci_probe for the second
4811 * registered roothub.
4812 */
4813 return 0;
4814 }
4815
4816 mutex_init(&xhci->mutex);
4817 xhci->cap_regs = hcd->regs;
4818 xhci->op_regs = hcd->regs +
4819 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4820 xhci->run_regs = hcd->regs +
4821 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4822 /* Cache read-only capability registers */
4823 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4824 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4825 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4826 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4827 xhci->hci_version = HC_VERSION(xhci->hcc_params);
4828 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4829 if (xhci->hci_version > 0x100)
4830 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
4831 xhci_print_registers(xhci);
4832
4833 xhci->quirks |= quirks;
4834
4835 get_quirks(dev, xhci);
4836
4837 /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4838 * success event after a short transfer. This quirk will ignore such
4839 * spurious event.
4840 */
4841 if (xhci->hci_version > 0x96)
4842 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4843
4844 /* Make sure the HC is halted. */
4845 retval = xhci_halt(xhci);
4846 if (retval)
4847 return retval;
4848
4849 xhci_dbg(xhci, "Resetting HCD\n");
4850 /* Reset the internal HC memory state and registers. */
4851 retval = xhci_reset(xhci);
4852 if (retval)
4853 return retval;
4854 xhci_dbg(xhci, "Reset complete\n");
4855
4856 /*
4857 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
4858 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
4859 * address memory pointers actually. So, this driver clears the AC64
4860 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
4861 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
4862 */
4863 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
4864 xhci->hcc_params &= ~BIT(0);
4865
4866 /* Set dma_mask and coherent_dma_mask to 64-bits,
4867 * if xHC supports 64-bit addressing */
4868 if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4869 !dma_set_mask(dev, DMA_BIT_MASK(64))) {
4870 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4871 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4872 } else {
4873 /*
4874 * This is to avoid error in cases where a 32-bit USB
4875 * controller is used on a 64-bit capable system.
4876 */
4877 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
4878 if (retval)
4879 return retval;
4880 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
4881 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
4882 }
4883
4884 xhci_dbg(xhci, "Calling HCD init\n");
4885 /* Initialize HCD and host controller data structures. */
4886 retval = xhci_init(hcd);
4887 if (retval)
4888 return retval;
4889 xhci_dbg(xhci, "Called HCD init\n");
4890
4891 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
4892 xhci->hcc_params, xhci->hci_version, xhci->quirks);
4893
4894 return 0;
4895 }
4896 EXPORT_SYMBOL_GPL(xhci_gen_setup);
4897
4898 static const struct hc_driver xhci_hc_driver = {
4899 .description = "xhci-hcd",
4900 .product_desc = "xHCI Host Controller",
4901 .hcd_priv_size = sizeof(struct xhci_hcd),
4902
4903 /*
4904 * generic hardware linkage
4905 */
4906 .irq = xhci_irq,
4907 .flags = HCD_MEMORY | HCD_USB3 | HCD_SHARED,
4908
4909 /*
4910 * basic lifecycle operations
4911 */
4912 .reset = NULL, /* set in xhci_init_driver() */
4913 .start = xhci_run,
4914 .stop = xhci_stop,
4915 .shutdown = xhci_shutdown,
4916
4917 /*
4918 * managing i/o requests and associated device resources
4919 */
4920 .urb_enqueue = xhci_urb_enqueue,
4921 .urb_dequeue = xhci_urb_dequeue,
4922 .alloc_dev = xhci_alloc_dev,
4923 .free_dev = xhci_free_dev,
4924 .alloc_streams = xhci_alloc_streams,
4925 .free_streams = xhci_free_streams,
4926 .add_endpoint = xhci_add_endpoint,
4927 .drop_endpoint = xhci_drop_endpoint,
4928 .endpoint_reset = xhci_endpoint_reset,
4929 .check_bandwidth = xhci_check_bandwidth,
4930 .reset_bandwidth = xhci_reset_bandwidth,
4931 .address_device = xhci_address_device,
4932 .enable_device = xhci_enable_device,
4933 .update_hub_device = xhci_update_hub_device,
4934 .reset_device = xhci_discover_or_reset_device,
4935
4936 /*
4937 * scheduling support
4938 */
4939 .get_frame_number = xhci_get_frame,
4940
4941 /*
4942 * root hub support
4943 */
4944 .hub_control = xhci_hub_control,
4945 .hub_status_data = xhci_hub_status_data,
4946 .bus_suspend = xhci_bus_suspend,
4947 .bus_resume = xhci_bus_resume,
4948
4949 /*
4950 * call back when device connected and addressed
4951 */
4952 .update_device = xhci_update_device,
4953 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm,
4954 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout,
4955 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout,
4956 .find_raw_port_number = xhci_find_raw_port_number,
4957 };
4958
4959 void xhci_init_driver(struct hc_driver *drv,
4960 const struct xhci_driver_overrides *over)
4961 {
4962 BUG_ON(!over);
4963
4964 /* Copy the generic table to drv then apply the overrides */
4965 *drv = xhci_hc_driver;
4966
4967 if (over) {
4968 drv->hcd_priv_size += over->extra_priv_size;
4969 if (over->reset)
4970 drv->reset = over->reset;
4971 if (over->start)
4972 drv->start = over->start;
4973 }
4974 }
4975 EXPORT_SYMBOL_GPL(xhci_init_driver);
4976
4977 MODULE_DESCRIPTION(DRIVER_DESC);
4978 MODULE_AUTHOR(DRIVER_AUTHOR);
4979 MODULE_LICENSE("GPL");
4980
4981 static int __init xhci_hcd_init(void)
4982 {
4983 /*
4984 * Check the compiler generated sizes of structures that must be laid
4985 * out in specific ways for hardware access.
4986 */
4987 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4988 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4989 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4990 /* xhci_device_control has eight fields, and also
4991 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4992 */
4993 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4994 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4995 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4996 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
4997 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4998 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4999 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5000
5001 if (usb_disabled())
5002 return -ENODEV;
5003
5004 xhci_debugfs_create_root();
5005
5006 return 0;
5007 }
5008
5009 /*
5010 * If an init function is provided, an exit function must also be provided
5011 * to allow module unload.
5012 */
5013 static void __exit xhci_hcd_fini(void)
5014 {
5015 xhci_debugfs_remove_root();
5016 }
5017
5018 module_init(xhci_hcd_init);
5019 module_exit(xhci_hcd_fini);