]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/usb/host/xhci.c
Merge remote-tracking branch 'asoc/topic/pcm5102a' into asoc-next
[mirror_ubuntu-eoan-kernel.git] / drivers / usb / host / xhci.c
1 /*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
31
32 #include "xhci.h"
33 #include "xhci-trace.h"
34 #include "xhci-mtk.h"
35
36 #define DRIVER_AUTHOR "Sarah Sharp"
37 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
38
39 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
40
41 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
42 static int link_quirk;
43 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
44 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
45
46 static unsigned int quirks;
47 module_param(quirks, uint, S_IRUGO);
48 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
49
50 /* TODO: copied from ehci-hcd.c - can this be refactored? */
51 /*
52 * xhci_handshake - spin reading hc until handshake completes or fails
53 * @ptr: address of hc register to be read
54 * @mask: bits to look at in result of read
55 * @done: value of those bits when handshake succeeds
56 * @usec: timeout in microseconds
57 *
58 * Returns negative errno, or zero on success
59 *
60 * Success happens when the "mask" bits have the specified value (hardware
61 * handshake done). There are two failure modes: "usec" have passed (major
62 * hardware flakeout), or the register reads as all-ones (hardware removed).
63 */
64 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
65 {
66 u32 result;
67
68 do {
69 result = readl(ptr);
70 if (result == ~(u32)0) /* card removed */
71 return -ENODEV;
72 result &= mask;
73 if (result == done)
74 return 0;
75 udelay(1);
76 usec--;
77 } while (usec > 0);
78 return -ETIMEDOUT;
79 }
80
81 /*
82 * Disable interrupts and begin the xHCI halting process.
83 */
84 void xhci_quiesce(struct xhci_hcd *xhci)
85 {
86 u32 halted;
87 u32 cmd;
88 u32 mask;
89
90 mask = ~(XHCI_IRQS);
91 halted = readl(&xhci->op_regs->status) & STS_HALT;
92 if (!halted)
93 mask &= ~CMD_RUN;
94
95 cmd = readl(&xhci->op_regs->command);
96 cmd &= mask;
97 writel(cmd, &xhci->op_regs->command);
98 }
99
100 /*
101 * Force HC into halt state.
102 *
103 * Disable any IRQs and clear the run/stop bit.
104 * HC will complete any current and actively pipelined transactions, and
105 * should halt within 16 ms of the run/stop bit being cleared.
106 * Read HC Halted bit in the status register to see when the HC is finished.
107 */
108 int xhci_halt(struct xhci_hcd *xhci)
109 {
110 int ret;
111 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
112 xhci_quiesce(xhci);
113
114 ret = xhci_handshake(&xhci->op_regs->status,
115 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
116 if (!ret) {
117 xhci->xhc_state |= XHCI_STATE_HALTED;
118 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
119 } else
120 xhci_warn(xhci, "Host not halted after %u microseconds.\n",
121 XHCI_MAX_HALT_USEC);
122 return ret;
123 }
124
125 /*
126 * Set the run bit and wait for the host to be running.
127 */
128 static int xhci_start(struct xhci_hcd *xhci)
129 {
130 u32 temp;
131 int ret;
132
133 temp = readl(&xhci->op_regs->command);
134 temp |= (CMD_RUN);
135 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
136 temp);
137 writel(temp, &xhci->op_regs->command);
138
139 /*
140 * Wait for the HCHalted Status bit to be 0 to indicate the host is
141 * running.
142 */
143 ret = xhci_handshake(&xhci->op_regs->status,
144 STS_HALT, 0, XHCI_MAX_HALT_USEC);
145 if (ret == -ETIMEDOUT)
146 xhci_err(xhci, "Host took too long to start, "
147 "waited %u microseconds.\n",
148 XHCI_MAX_HALT_USEC);
149 if (!ret)
150 /* clear state flags. Including dying, halted or removing */
151 xhci->xhc_state = 0;
152
153 return ret;
154 }
155
156 /*
157 * Reset a halted HC.
158 *
159 * This resets pipelines, timers, counters, state machines, etc.
160 * Transactions will be terminated immediately, and operational registers
161 * will be set to their defaults.
162 */
163 int xhci_reset(struct xhci_hcd *xhci)
164 {
165 u32 command;
166 u32 state;
167 int ret, i;
168
169 state = readl(&xhci->op_regs->status);
170 if ((state & STS_HALT) == 0) {
171 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
172 return 0;
173 }
174
175 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
176 command = readl(&xhci->op_regs->command);
177 command |= CMD_RESET;
178 writel(command, &xhci->op_regs->command);
179
180 /* Existing Intel xHCI controllers require a delay of 1 mS,
181 * after setting the CMD_RESET bit, and before accessing any
182 * HC registers. This allows the HC to complete the
183 * reset operation and be ready for HC register access.
184 * Without this delay, the subsequent HC register access,
185 * may result in a system hang very rarely.
186 */
187 if (xhci->quirks & XHCI_INTEL_HOST)
188 udelay(1000);
189
190 ret = xhci_handshake(&xhci->op_regs->command,
191 CMD_RESET, 0, 10 * 1000 * 1000);
192 if (ret)
193 return ret;
194
195 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
196 "Wait for controller to be ready for doorbell rings");
197 /*
198 * xHCI cannot write to any doorbells or operational registers other
199 * than status until the "Controller Not Ready" flag is cleared.
200 */
201 ret = xhci_handshake(&xhci->op_regs->status,
202 STS_CNR, 0, 10 * 1000 * 1000);
203
204 for (i = 0; i < 2; ++i) {
205 xhci->bus_state[i].port_c_suspend = 0;
206 xhci->bus_state[i].suspended_ports = 0;
207 xhci->bus_state[i].resuming_ports = 0;
208 }
209
210 return ret;
211 }
212
213 #ifdef CONFIG_PCI
214 static int xhci_free_msi(struct xhci_hcd *xhci)
215 {
216 int i;
217
218 if (!xhci->msix_entries)
219 return -EINVAL;
220
221 for (i = 0; i < xhci->msix_count; i++)
222 if (xhci->msix_entries[i].vector)
223 free_irq(xhci->msix_entries[i].vector,
224 xhci_to_hcd(xhci));
225 return 0;
226 }
227
228 /*
229 * Set up MSI
230 */
231 static int xhci_setup_msi(struct xhci_hcd *xhci)
232 {
233 int ret;
234 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
235
236 ret = pci_enable_msi(pdev);
237 if (ret) {
238 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
239 "failed to allocate MSI entry");
240 return ret;
241 }
242
243 ret = request_irq(pdev->irq, xhci_msi_irq,
244 0, "xhci_hcd", xhci_to_hcd(xhci));
245 if (ret) {
246 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
247 "disable MSI interrupt");
248 pci_disable_msi(pdev);
249 }
250
251 return ret;
252 }
253
254 /*
255 * Free IRQs
256 * free all IRQs request
257 */
258 static void xhci_free_irq(struct xhci_hcd *xhci)
259 {
260 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
261 int ret;
262
263 /* return if using legacy interrupt */
264 if (xhci_to_hcd(xhci)->irq > 0)
265 return;
266
267 ret = xhci_free_msi(xhci);
268 if (!ret)
269 return;
270 if (pdev->irq > 0)
271 free_irq(pdev->irq, xhci_to_hcd(xhci));
272
273 return;
274 }
275
276 /*
277 * Set up MSI-X
278 */
279 static int xhci_setup_msix(struct xhci_hcd *xhci)
280 {
281 int i, ret = 0;
282 struct usb_hcd *hcd = xhci_to_hcd(xhci);
283 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
284
285 /*
286 * calculate number of msi-x vectors supported.
287 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
288 * with max number of interrupters based on the xhci HCSPARAMS1.
289 * - num_online_cpus: maximum msi-x vectors per CPUs core.
290 * Add additional 1 vector to ensure always available interrupt.
291 */
292 xhci->msix_count = min(num_online_cpus() + 1,
293 HCS_MAX_INTRS(xhci->hcs_params1));
294
295 xhci->msix_entries =
296 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
297 GFP_KERNEL);
298 if (!xhci->msix_entries) {
299 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
300 return -ENOMEM;
301 }
302
303 for (i = 0; i < xhci->msix_count; i++) {
304 xhci->msix_entries[i].entry = i;
305 xhci->msix_entries[i].vector = 0;
306 }
307
308 ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count);
309 if (ret) {
310 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
311 "Failed to enable MSI-X");
312 goto free_entries;
313 }
314
315 for (i = 0; i < xhci->msix_count; i++) {
316 ret = request_irq(xhci->msix_entries[i].vector,
317 xhci_msi_irq,
318 0, "xhci_hcd", xhci_to_hcd(xhci));
319 if (ret)
320 goto disable_msix;
321 }
322
323 hcd->msix_enabled = 1;
324 return ret;
325
326 disable_msix:
327 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
328 xhci_free_irq(xhci);
329 pci_disable_msix(pdev);
330 free_entries:
331 kfree(xhci->msix_entries);
332 xhci->msix_entries = NULL;
333 return ret;
334 }
335
336 /* Free any IRQs and disable MSI-X */
337 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
338 {
339 struct usb_hcd *hcd = xhci_to_hcd(xhci);
340 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
341
342 if (xhci->quirks & XHCI_PLAT)
343 return;
344
345 xhci_free_irq(xhci);
346
347 if (xhci->msix_entries) {
348 pci_disable_msix(pdev);
349 kfree(xhci->msix_entries);
350 xhci->msix_entries = NULL;
351 } else {
352 pci_disable_msi(pdev);
353 }
354
355 hcd->msix_enabled = 0;
356 return;
357 }
358
359 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
360 {
361 int i;
362
363 if (xhci->msix_entries) {
364 for (i = 0; i < xhci->msix_count; i++)
365 synchronize_irq(xhci->msix_entries[i].vector);
366 }
367 }
368
369 static int xhci_try_enable_msi(struct usb_hcd *hcd)
370 {
371 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
372 struct pci_dev *pdev;
373 int ret;
374
375 /* The xhci platform device has set up IRQs through usb_add_hcd. */
376 if (xhci->quirks & XHCI_PLAT)
377 return 0;
378
379 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
380 /*
381 * Some Fresco Logic host controllers advertise MSI, but fail to
382 * generate interrupts. Don't even try to enable MSI.
383 */
384 if (xhci->quirks & XHCI_BROKEN_MSI)
385 goto legacy_irq;
386
387 /* unregister the legacy interrupt */
388 if (hcd->irq)
389 free_irq(hcd->irq, hcd);
390 hcd->irq = 0;
391
392 ret = xhci_setup_msix(xhci);
393 if (ret)
394 /* fall back to msi*/
395 ret = xhci_setup_msi(xhci);
396
397 if (!ret)
398 /* hcd->irq is 0, we have MSI */
399 return 0;
400
401 if (!pdev->irq) {
402 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
403 return -EINVAL;
404 }
405
406 legacy_irq:
407 if (!strlen(hcd->irq_descr))
408 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
409 hcd->driver->description, hcd->self.busnum);
410
411 /* fall back to legacy interrupt*/
412 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
413 hcd->irq_descr, hcd);
414 if (ret) {
415 xhci_err(xhci, "request interrupt %d failed\n",
416 pdev->irq);
417 return ret;
418 }
419 hcd->irq = pdev->irq;
420 return 0;
421 }
422
423 #else
424
425 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
426 {
427 return 0;
428 }
429
430 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
431 {
432 }
433
434 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
435 {
436 }
437
438 #endif
439
440 static void compliance_mode_recovery(unsigned long arg)
441 {
442 struct xhci_hcd *xhci;
443 struct usb_hcd *hcd;
444 u32 temp;
445 int i;
446
447 xhci = (struct xhci_hcd *)arg;
448
449 for (i = 0; i < xhci->num_usb3_ports; i++) {
450 temp = readl(xhci->usb3_ports[i]);
451 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
452 /*
453 * Compliance Mode Detected. Letting USB Core
454 * handle the Warm Reset
455 */
456 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
457 "Compliance mode detected->port %d",
458 i + 1);
459 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
460 "Attempting compliance mode recovery");
461 hcd = xhci->shared_hcd;
462
463 if (hcd->state == HC_STATE_SUSPENDED)
464 usb_hcd_resume_root_hub(hcd);
465
466 usb_hcd_poll_rh_status(hcd);
467 }
468 }
469
470 if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
471 mod_timer(&xhci->comp_mode_recovery_timer,
472 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
473 }
474
475 /*
476 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
477 * that causes ports behind that hardware to enter compliance mode sometimes.
478 * The quirk creates a timer that polls every 2 seconds the link state of
479 * each host controller's port and recovers it by issuing a Warm reset
480 * if Compliance mode is detected, otherwise the port will become "dead" (no
481 * device connections or disconnections will be detected anymore). Becasue no
482 * status event is generated when entering compliance mode (per xhci spec),
483 * this quirk is needed on systems that have the failing hardware installed.
484 */
485 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
486 {
487 xhci->port_status_u0 = 0;
488 setup_timer(&xhci->comp_mode_recovery_timer,
489 compliance_mode_recovery, (unsigned long)xhci);
490 xhci->comp_mode_recovery_timer.expires = jiffies +
491 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
492
493 set_timer_slack(&xhci->comp_mode_recovery_timer,
494 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
495 add_timer(&xhci->comp_mode_recovery_timer);
496 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
497 "Compliance mode recovery timer initialized");
498 }
499
500 /*
501 * This function identifies the systems that have installed the SN65LVPE502CP
502 * USB3.0 re-driver and that need the Compliance Mode Quirk.
503 * Systems:
504 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
505 */
506 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
507 {
508 const char *dmi_product_name, *dmi_sys_vendor;
509
510 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
511 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
512 if (!dmi_product_name || !dmi_sys_vendor)
513 return false;
514
515 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
516 return false;
517
518 if (strstr(dmi_product_name, "Z420") ||
519 strstr(dmi_product_name, "Z620") ||
520 strstr(dmi_product_name, "Z820") ||
521 strstr(dmi_product_name, "Z1 Workstation"))
522 return true;
523
524 return false;
525 }
526
527 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
528 {
529 return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
530 }
531
532
533 /*
534 * Initialize memory for HCD and xHC (one-time init).
535 *
536 * Program the PAGESIZE register, initialize the device context array, create
537 * device contexts (?), set up a command ring segment (or two?), create event
538 * ring (one for now).
539 */
540 int xhci_init(struct usb_hcd *hcd)
541 {
542 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
543 int retval = 0;
544
545 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
546 spin_lock_init(&xhci->lock);
547 if (xhci->hci_version == 0x95 && link_quirk) {
548 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
549 "QUIRK: Not clearing Link TRB chain bits.");
550 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
551 } else {
552 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
553 "xHCI doesn't need link TRB QUIRK");
554 }
555 retval = xhci_mem_init(xhci, GFP_KERNEL);
556 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
557
558 /* Initializing Compliance Mode Recovery Data If Needed */
559 if (xhci_compliance_mode_recovery_timer_quirk_check()) {
560 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
561 compliance_mode_recovery_timer_init(xhci);
562 }
563
564 return retval;
565 }
566
567 /*-------------------------------------------------------------------------*/
568
569
570 static int xhci_run_finished(struct xhci_hcd *xhci)
571 {
572 if (xhci_start(xhci)) {
573 xhci_halt(xhci);
574 return -ENODEV;
575 }
576 xhci->shared_hcd->state = HC_STATE_RUNNING;
577 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
578
579 if (xhci->quirks & XHCI_NEC_HOST)
580 xhci_ring_cmd_db(xhci);
581
582 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
583 "Finished xhci_run for USB3 roothub");
584 return 0;
585 }
586
587 /*
588 * Start the HC after it was halted.
589 *
590 * This function is called by the USB core when the HC driver is added.
591 * Its opposite is xhci_stop().
592 *
593 * xhci_init() must be called once before this function can be called.
594 * Reset the HC, enable device slot contexts, program DCBAAP, and
595 * set command ring pointer and event ring pointer.
596 *
597 * Setup MSI-X vectors and enable interrupts.
598 */
599 int xhci_run(struct usb_hcd *hcd)
600 {
601 u32 temp;
602 u64 temp_64;
603 int ret;
604 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
605
606 /* Start the xHCI host controller running only after the USB 2.0 roothub
607 * is setup.
608 */
609
610 hcd->uses_new_polling = 1;
611 if (!usb_hcd_is_primary_hcd(hcd))
612 return xhci_run_finished(xhci);
613
614 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
615
616 ret = xhci_try_enable_msi(hcd);
617 if (ret)
618 return ret;
619
620 xhci_dbg(xhci, "Command ring memory map follows:\n");
621 xhci_debug_ring(xhci, xhci->cmd_ring);
622 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
623 xhci_dbg_cmd_ptrs(xhci);
624
625 xhci_dbg(xhci, "ERST memory map follows:\n");
626 xhci_dbg_erst(xhci, &xhci->erst);
627 xhci_dbg(xhci, "Event ring:\n");
628 xhci_debug_ring(xhci, xhci->event_ring);
629 xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
630 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
631 temp_64 &= ~ERST_PTR_MASK;
632 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
633 "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
634
635 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
636 "// Set the interrupt modulation register");
637 temp = readl(&xhci->ir_set->irq_control);
638 temp &= ~ER_IRQ_INTERVAL_MASK;
639 /*
640 * the increment interval is 8 times as much as that defined
641 * in xHCI spec on MTK's controller
642 */
643 temp |= (u32) ((xhci->quirks & XHCI_MTK_HOST) ? 20 : 160);
644 writel(temp, &xhci->ir_set->irq_control);
645
646 /* Set the HCD state before we enable the irqs */
647 temp = readl(&xhci->op_regs->command);
648 temp |= (CMD_EIE);
649 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
650 "// Enable interrupts, cmd = 0x%x.", temp);
651 writel(temp, &xhci->op_regs->command);
652
653 temp = readl(&xhci->ir_set->irq_pending);
654 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
655 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
656 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
657 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
658 xhci_print_ir_set(xhci, 0);
659
660 if (xhci->quirks & XHCI_NEC_HOST) {
661 struct xhci_command *command;
662 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
663 if (!command)
664 return -ENOMEM;
665 xhci_queue_vendor_command(xhci, command, 0, 0, 0,
666 TRB_TYPE(TRB_NEC_GET_FW));
667 }
668 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
669 "Finished xhci_run for USB2 roothub");
670 return 0;
671 }
672 EXPORT_SYMBOL_GPL(xhci_run);
673
674 /*
675 * Stop xHCI driver.
676 *
677 * This function is called by the USB core when the HC driver is removed.
678 * Its opposite is xhci_run().
679 *
680 * Disable device contexts, disable IRQs, and quiesce the HC.
681 * Reset the HC, finish any completed transactions, and cleanup memory.
682 */
683 void xhci_stop(struct usb_hcd *hcd)
684 {
685 u32 temp;
686 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
687
688 mutex_lock(&xhci->mutex);
689
690 if (!(xhci->xhc_state & XHCI_STATE_HALTED)) {
691 spin_lock_irq(&xhci->lock);
692
693 xhci->xhc_state |= XHCI_STATE_HALTED;
694 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
695 xhci_halt(xhci);
696 xhci_reset(xhci);
697
698 spin_unlock_irq(&xhci->lock);
699 }
700
701 if (!usb_hcd_is_primary_hcd(hcd)) {
702 mutex_unlock(&xhci->mutex);
703 return;
704 }
705
706 xhci_cleanup_msix(xhci);
707
708 /* Deleting Compliance Mode Recovery Timer */
709 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
710 (!(xhci_all_ports_seen_u0(xhci)))) {
711 del_timer_sync(&xhci->comp_mode_recovery_timer);
712 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
713 "%s: compliance mode recovery timer deleted",
714 __func__);
715 }
716
717 if (xhci->quirks & XHCI_AMD_PLL_FIX)
718 usb_amd_dev_put();
719
720 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
721 "// Disabling event ring interrupts");
722 temp = readl(&xhci->op_regs->status);
723 writel(temp & ~STS_EINT, &xhci->op_regs->status);
724 temp = readl(&xhci->ir_set->irq_pending);
725 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
726 xhci_print_ir_set(xhci, 0);
727
728 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
729 xhci_mem_cleanup(xhci);
730 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
731 "xhci_stop completed - status = %x",
732 readl(&xhci->op_regs->status));
733 mutex_unlock(&xhci->mutex);
734 }
735
736 /*
737 * Shutdown HC (not bus-specific)
738 *
739 * This is called when the machine is rebooting or halting. We assume that the
740 * machine will be powered off, and the HC's internal state will be reset.
741 * Don't bother to free memory.
742 *
743 * This will only ever be called with the main usb_hcd (the USB3 roothub).
744 */
745 void xhci_shutdown(struct usb_hcd *hcd)
746 {
747 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
748
749 if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
750 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
751
752 spin_lock_irq(&xhci->lock);
753 xhci_halt(xhci);
754 /* Workaround for spurious wakeups at shutdown with HSW */
755 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
756 xhci_reset(xhci);
757 spin_unlock_irq(&xhci->lock);
758
759 xhci_cleanup_msix(xhci);
760
761 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
762 "xhci_shutdown completed - status = %x",
763 readl(&xhci->op_regs->status));
764
765 /* Yet another workaround for spurious wakeups at shutdown with HSW */
766 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
767 pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
768 }
769
770 #ifdef CONFIG_PM
771 static void xhci_save_registers(struct xhci_hcd *xhci)
772 {
773 xhci->s3.command = readl(&xhci->op_regs->command);
774 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
775 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
776 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
777 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
778 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
779 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
780 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
781 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
782 }
783
784 static void xhci_restore_registers(struct xhci_hcd *xhci)
785 {
786 writel(xhci->s3.command, &xhci->op_regs->command);
787 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
788 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
789 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
790 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
791 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
792 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
793 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
794 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
795 }
796
797 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
798 {
799 u64 val_64;
800
801 /* step 2: initialize command ring buffer */
802 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
803 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
804 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
805 xhci->cmd_ring->dequeue) &
806 (u64) ~CMD_RING_RSVD_BITS) |
807 xhci->cmd_ring->cycle_state;
808 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
809 "// Setting command ring address to 0x%llx",
810 (long unsigned long) val_64);
811 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
812 }
813
814 /*
815 * The whole command ring must be cleared to zero when we suspend the host.
816 *
817 * The host doesn't save the command ring pointer in the suspend well, so we
818 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
819 * aligned, because of the reserved bits in the command ring dequeue pointer
820 * register. Therefore, we can't just set the dequeue pointer back in the
821 * middle of the ring (TRBs are 16-byte aligned).
822 */
823 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
824 {
825 struct xhci_ring *ring;
826 struct xhci_segment *seg;
827
828 ring = xhci->cmd_ring;
829 seg = ring->deq_seg;
830 do {
831 memset(seg->trbs, 0,
832 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
833 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
834 cpu_to_le32(~TRB_CYCLE);
835 seg = seg->next;
836 } while (seg != ring->deq_seg);
837
838 /* Reset the software enqueue and dequeue pointers */
839 ring->deq_seg = ring->first_seg;
840 ring->dequeue = ring->first_seg->trbs;
841 ring->enq_seg = ring->deq_seg;
842 ring->enqueue = ring->dequeue;
843
844 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
845 /*
846 * Ring is now zeroed, so the HW should look for change of ownership
847 * when the cycle bit is set to 1.
848 */
849 ring->cycle_state = 1;
850
851 /*
852 * Reset the hardware dequeue pointer.
853 * Yes, this will need to be re-written after resume, but we're paranoid
854 * and want to make sure the hardware doesn't access bogus memory
855 * because, say, the BIOS or an SMI started the host without changing
856 * the command ring pointers.
857 */
858 xhci_set_cmd_ring_deq(xhci);
859 }
860
861 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
862 {
863 int port_index;
864 __le32 __iomem **port_array;
865 unsigned long flags;
866 u32 t1, t2;
867
868 spin_lock_irqsave(&xhci->lock, flags);
869
870 /* disble usb3 ports Wake bits*/
871 port_index = xhci->num_usb3_ports;
872 port_array = xhci->usb3_ports;
873 while (port_index--) {
874 t1 = readl(port_array[port_index]);
875 t1 = xhci_port_state_to_neutral(t1);
876 t2 = t1 & ~PORT_WAKE_BITS;
877 if (t1 != t2)
878 writel(t2, port_array[port_index]);
879 }
880
881 /* disble usb2 ports Wake bits*/
882 port_index = xhci->num_usb2_ports;
883 port_array = xhci->usb2_ports;
884 while (port_index--) {
885 t1 = readl(port_array[port_index]);
886 t1 = xhci_port_state_to_neutral(t1);
887 t2 = t1 & ~PORT_WAKE_BITS;
888 if (t1 != t2)
889 writel(t2, port_array[port_index]);
890 }
891
892 spin_unlock_irqrestore(&xhci->lock, flags);
893 }
894
895 /*
896 * Stop HC (not bus-specific)
897 *
898 * This is called when the machine transition into S3/S4 mode.
899 *
900 */
901 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
902 {
903 int rc = 0;
904 unsigned int delay = XHCI_MAX_HALT_USEC;
905 struct usb_hcd *hcd = xhci_to_hcd(xhci);
906 u32 command;
907
908 if (!hcd->state)
909 return 0;
910
911 if (hcd->state != HC_STATE_SUSPENDED ||
912 xhci->shared_hcd->state != HC_STATE_SUSPENDED)
913 return -EINVAL;
914
915 /* Clear root port wake on bits if wakeup not allowed. */
916 if (!do_wakeup)
917 xhci_disable_port_wake_on_bits(xhci);
918
919 /* Don't poll the roothubs on bus suspend. */
920 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
921 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
922 del_timer_sync(&hcd->rh_timer);
923 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
924 del_timer_sync(&xhci->shared_hcd->rh_timer);
925
926 spin_lock_irq(&xhci->lock);
927 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
928 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
929 /* step 1: stop endpoint */
930 /* skipped assuming that port suspend has done */
931
932 /* step 2: clear Run/Stop bit */
933 command = readl(&xhci->op_regs->command);
934 command &= ~CMD_RUN;
935 writel(command, &xhci->op_regs->command);
936
937 /* Some chips from Fresco Logic need an extraordinary delay */
938 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
939
940 if (xhci_handshake(&xhci->op_regs->status,
941 STS_HALT, STS_HALT, delay)) {
942 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
943 spin_unlock_irq(&xhci->lock);
944 return -ETIMEDOUT;
945 }
946 xhci_clear_command_ring(xhci);
947
948 /* step 3: save registers */
949 xhci_save_registers(xhci);
950
951 /* step 4: set CSS flag */
952 command = readl(&xhci->op_regs->command);
953 command |= CMD_CSS;
954 writel(command, &xhci->op_regs->command);
955 if (xhci_handshake(&xhci->op_regs->status,
956 STS_SAVE, 0, 10 * 1000)) {
957 xhci_warn(xhci, "WARN: xHC save state timeout\n");
958 spin_unlock_irq(&xhci->lock);
959 return -ETIMEDOUT;
960 }
961 spin_unlock_irq(&xhci->lock);
962
963 /*
964 * Deleting Compliance Mode Recovery Timer because the xHCI Host
965 * is about to be suspended.
966 */
967 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
968 (!(xhci_all_ports_seen_u0(xhci)))) {
969 del_timer_sync(&xhci->comp_mode_recovery_timer);
970 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
971 "%s: compliance mode recovery timer deleted",
972 __func__);
973 }
974
975 /* step 5: remove core well power */
976 /* synchronize irq when using MSI-X */
977 xhci_msix_sync_irqs(xhci);
978
979 return rc;
980 }
981 EXPORT_SYMBOL_GPL(xhci_suspend);
982
983 /*
984 * start xHC (not bus-specific)
985 *
986 * This is called when the machine transition from S3/S4 mode.
987 *
988 */
989 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
990 {
991 u32 command, temp = 0, status;
992 struct usb_hcd *hcd = xhci_to_hcd(xhci);
993 struct usb_hcd *secondary_hcd;
994 int retval = 0;
995 bool comp_timer_running = false;
996
997 if (!hcd->state)
998 return 0;
999
1000 /* Wait a bit if either of the roothubs need to settle from the
1001 * transition into bus suspend.
1002 */
1003 if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
1004 time_before(jiffies,
1005 xhci->bus_state[1].next_statechange))
1006 msleep(100);
1007
1008 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1009 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1010
1011 spin_lock_irq(&xhci->lock);
1012 if (xhci->quirks & XHCI_RESET_ON_RESUME)
1013 hibernated = true;
1014
1015 if (!hibernated) {
1016 /* step 1: restore register */
1017 xhci_restore_registers(xhci);
1018 /* step 2: initialize command ring buffer */
1019 xhci_set_cmd_ring_deq(xhci);
1020 /* step 3: restore state and start state*/
1021 /* step 3: set CRS flag */
1022 command = readl(&xhci->op_regs->command);
1023 command |= CMD_CRS;
1024 writel(command, &xhci->op_regs->command);
1025 if (xhci_handshake(&xhci->op_regs->status,
1026 STS_RESTORE, 0, 10 * 1000)) {
1027 xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1028 spin_unlock_irq(&xhci->lock);
1029 return -ETIMEDOUT;
1030 }
1031 temp = readl(&xhci->op_regs->status);
1032 }
1033
1034 /* If restore operation fails, re-initialize the HC during resume */
1035 if ((temp & STS_SRE) || hibernated) {
1036
1037 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1038 !(xhci_all_ports_seen_u0(xhci))) {
1039 del_timer_sync(&xhci->comp_mode_recovery_timer);
1040 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1041 "Compliance Mode Recovery Timer deleted!");
1042 }
1043
1044 /* Let the USB core know _both_ roothubs lost power. */
1045 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1046 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1047
1048 xhci_dbg(xhci, "Stop HCD\n");
1049 xhci_halt(xhci);
1050 xhci_reset(xhci);
1051 spin_unlock_irq(&xhci->lock);
1052 xhci_cleanup_msix(xhci);
1053
1054 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1055 temp = readl(&xhci->op_regs->status);
1056 writel(temp & ~STS_EINT, &xhci->op_regs->status);
1057 temp = readl(&xhci->ir_set->irq_pending);
1058 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1059 xhci_print_ir_set(xhci, 0);
1060
1061 xhci_dbg(xhci, "cleaning up memory\n");
1062 xhci_mem_cleanup(xhci);
1063 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1064 readl(&xhci->op_regs->status));
1065
1066 /* USB core calls the PCI reinit and start functions twice:
1067 * first with the primary HCD, and then with the secondary HCD.
1068 * If we don't do the same, the host will never be started.
1069 */
1070 if (!usb_hcd_is_primary_hcd(hcd))
1071 secondary_hcd = hcd;
1072 else
1073 secondary_hcd = xhci->shared_hcd;
1074
1075 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1076 retval = xhci_init(hcd->primary_hcd);
1077 if (retval)
1078 return retval;
1079 comp_timer_running = true;
1080
1081 xhci_dbg(xhci, "Start the primary HCD\n");
1082 retval = xhci_run(hcd->primary_hcd);
1083 if (!retval) {
1084 xhci_dbg(xhci, "Start the secondary HCD\n");
1085 retval = xhci_run(secondary_hcd);
1086 }
1087 hcd->state = HC_STATE_SUSPENDED;
1088 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1089 goto done;
1090 }
1091
1092 /* step 4: set Run/Stop bit */
1093 command = readl(&xhci->op_regs->command);
1094 command |= CMD_RUN;
1095 writel(command, &xhci->op_regs->command);
1096 xhci_handshake(&xhci->op_regs->status, STS_HALT,
1097 0, 250 * 1000);
1098
1099 /* step 5: walk topology and initialize portsc,
1100 * portpmsc and portli
1101 */
1102 /* this is done in bus_resume */
1103
1104 /* step 6: restart each of the previously
1105 * Running endpoints by ringing their doorbells
1106 */
1107
1108 spin_unlock_irq(&xhci->lock);
1109
1110 done:
1111 if (retval == 0) {
1112 /* Resume root hubs only when have pending events. */
1113 status = readl(&xhci->op_regs->status);
1114 if (status & STS_EINT) {
1115 usb_hcd_resume_root_hub(xhci->shared_hcd);
1116 usb_hcd_resume_root_hub(hcd);
1117 }
1118 }
1119
1120 /*
1121 * If system is subject to the Quirk, Compliance Mode Timer needs to
1122 * be re-initialized Always after a system resume. Ports are subject
1123 * to suffer the Compliance Mode issue again. It doesn't matter if
1124 * ports have entered previously to U0 before system's suspension.
1125 */
1126 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1127 compliance_mode_recovery_timer_init(xhci);
1128
1129 /* Re-enable port polling. */
1130 xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1131 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1132 usb_hcd_poll_rh_status(xhci->shared_hcd);
1133 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1134 usb_hcd_poll_rh_status(hcd);
1135
1136 return retval;
1137 }
1138 EXPORT_SYMBOL_GPL(xhci_resume);
1139 #endif /* CONFIG_PM */
1140
1141 /*-------------------------------------------------------------------------*/
1142
1143 /**
1144 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1145 * HCDs. Find the index for an endpoint given its descriptor. Use the return
1146 * value to right shift 1 for the bitmask.
1147 *
1148 * Index = (epnum * 2) + direction - 1,
1149 * where direction = 0 for OUT, 1 for IN.
1150 * For control endpoints, the IN index is used (OUT index is unused), so
1151 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1152 */
1153 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1154 {
1155 unsigned int index;
1156 if (usb_endpoint_xfer_control(desc))
1157 index = (unsigned int) (usb_endpoint_num(desc)*2);
1158 else
1159 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1160 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1161 return index;
1162 }
1163
1164 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1165 * address from the XHCI endpoint index.
1166 */
1167 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1168 {
1169 unsigned int number = DIV_ROUND_UP(ep_index, 2);
1170 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1171 return direction | number;
1172 }
1173
1174 /* Find the flag for this endpoint (for use in the control context). Use the
1175 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1176 * bit 1, etc.
1177 */
1178 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1179 {
1180 return 1 << (xhci_get_endpoint_index(desc) + 1);
1181 }
1182
1183 /* Find the flag for this endpoint (for use in the control context). Use the
1184 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1185 * bit 1, etc.
1186 */
1187 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1188 {
1189 return 1 << (ep_index + 1);
1190 }
1191
1192 /* Compute the last valid endpoint context index. Basically, this is the
1193 * endpoint index plus one. For slot contexts with more than valid endpoint,
1194 * we find the most significant bit set in the added contexts flags.
1195 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1196 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1197 */
1198 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1199 {
1200 return fls(added_ctxs) - 1;
1201 }
1202
1203 /* Returns 1 if the arguments are OK;
1204 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1205 */
1206 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1207 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1208 const char *func) {
1209 struct xhci_hcd *xhci;
1210 struct xhci_virt_device *virt_dev;
1211
1212 if (!hcd || (check_ep && !ep) || !udev) {
1213 pr_debug("xHCI %s called with invalid args\n", func);
1214 return -EINVAL;
1215 }
1216 if (!udev->parent) {
1217 pr_debug("xHCI %s called for root hub\n", func);
1218 return 0;
1219 }
1220
1221 xhci = hcd_to_xhci(hcd);
1222 if (check_virt_dev) {
1223 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1224 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1225 func);
1226 return -EINVAL;
1227 }
1228
1229 virt_dev = xhci->devs[udev->slot_id];
1230 if (virt_dev->udev != udev) {
1231 xhci_dbg(xhci, "xHCI %s called with udev and "
1232 "virt_dev does not match\n", func);
1233 return -EINVAL;
1234 }
1235 }
1236
1237 if (xhci->xhc_state & XHCI_STATE_HALTED)
1238 return -ENODEV;
1239
1240 return 1;
1241 }
1242
1243 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1244 struct usb_device *udev, struct xhci_command *command,
1245 bool ctx_change, bool must_succeed);
1246
1247 /*
1248 * Full speed devices may have a max packet size greater than 8 bytes, but the
1249 * USB core doesn't know that until it reads the first 8 bytes of the
1250 * descriptor. If the usb_device's max packet size changes after that point,
1251 * we need to issue an evaluate context command and wait on it.
1252 */
1253 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1254 unsigned int ep_index, struct urb *urb)
1255 {
1256 struct xhci_container_ctx *out_ctx;
1257 struct xhci_input_control_ctx *ctrl_ctx;
1258 struct xhci_ep_ctx *ep_ctx;
1259 struct xhci_command *command;
1260 int max_packet_size;
1261 int hw_max_packet_size;
1262 int ret = 0;
1263
1264 out_ctx = xhci->devs[slot_id]->out_ctx;
1265 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1266 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1267 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1268 if (hw_max_packet_size != max_packet_size) {
1269 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1270 "Max Packet Size for ep 0 changed.");
1271 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1272 "Max packet size in usb_device = %d",
1273 max_packet_size);
1274 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1275 "Max packet size in xHCI HW = %d",
1276 hw_max_packet_size);
1277 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1278 "Issuing evaluate context command.");
1279
1280 /* Set up the input context flags for the command */
1281 /* FIXME: This won't work if a non-default control endpoint
1282 * changes max packet sizes.
1283 */
1284
1285 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
1286 if (!command)
1287 return -ENOMEM;
1288
1289 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1290 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1291 if (!ctrl_ctx) {
1292 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1293 __func__);
1294 ret = -ENOMEM;
1295 goto command_cleanup;
1296 }
1297 /* Set up the modified control endpoint 0 */
1298 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1299 xhci->devs[slot_id]->out_ctx, ep_index);
1300
1301 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1302 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1303 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1304
1305 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1306 ctrl_ctx->drop_flags = 0;
1307
1308 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1309 xhci_dbg_ctx(xhci, command->in_ctx, ep_index);
1310 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1311 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1312
1313 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1314 true, false);
1315
1316 /* Clean up the input context for later use by bandwidth
1317 * functions.
1318 */
1319 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1320 command_cleanup:
1321 kfree(command->completion);
1322 kfree(command);
1323 }
1324 return ret;
1325 }
1326
1327 /*
1328 * non-error returns are a promise to giveback() the urb later
1329 * we drop ownership so next owner (or urb unlink) can get it
1330 */
1331 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1332 {
1333 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1334 struct xhci_td *buffer;
1335 unsigned long flags;
1336 int ret = 0;
1337 unsigned int slot_id, ep_index;
1338 struct urb_priv *urb_priv;
1339 int size, i;
1340
1341 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1342 true, true, __func__) <= 0)
1343 return -EINVAL;
1344
1345 slot_id = urb->dev->slot_id;
1346 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1347
1348 if (!HCD_HW_ACCESSIBLE(hcd)) {
1349 if (!in_interrupt())
1350 xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1351 ret = -ESHUTDOWN;
1352 goto exit;
1353 }
1354
1355 if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1356 size = urb->number_of_packets;
1357 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1358 urb->transfer_buffer_length > 0 &&
1359 urb->transfer_flags & URB_ZERO_PACKET &&
1360 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1361 size = 2;
1362 else
1363 size = 1;
1364
1365 urb_priv = kzalloc(sizeof(struct urb_priv) +
1366 size * sizeof(struct xhci_td *), mem_flags);
1367 if (!urb_priv)
1368 return -ENOMEM;
1369
1370 buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1371 if (!buffer) {
1372 kfree(urb_priv);
1373 return -ENOMEM;
1374 }
1375
1376 for (i = 0; i < size; i++) {
1377 urb_priv->td[i] = buffer;
1378 buffer++;
1379 }
1380
1381 urb_priv->length = size;
1382 urb_priv->td_cnt = 0;
1383 urb->hcpriv = urb_priv;
1384
1385 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1386 /* Check to see if the max packet size for the default control
1387 * endpoint changed during FS device enumeration
1388 */
1389 if (urb->dev->speed == USB_SPEED_FULL) {
1390 ret = xhci_check_maxpacket(xhci, slot_id,
1391 ep_index, urb);
1392 if (ret < 0) {
1393 xhci_urb_free_priv(urb_priv);
1394 urb->hcpriv = NULL;
1395 return ret;
1396 }
1397 }
1398
1399 /* We have a spinlock and interrupts disabled, so we must pass
1400 * atomic context to this function, which may allocate memory.
1401 */
1402 spin_lock_irqsave(&xhci->lock, flags);
1403 if (xhci->xhc_state & XHCI_STATE_DYING)
1404 goto dying;
1405 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1406 slot_id, ep_index);
1407 if (ret)
1408 goto free_priv;
1409 spin_unlock_irqrestore(&xhci->lock, flags);
1410 } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1411 spin_lock_irqsave(&xhci->lock, flags);
1412 if (xhci->xhc_state & XHCI_STATE_DYING)
1413 goto dying;
1414 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1415 EP_GETTING_STREAMS) {
1416 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1417 "is transitioning to using streams.\n");
1418 ret = -EINVAL;
1419 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1420 EP_GETTING_NO_STREAMS) {
1421 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1422 "is transitioning to "
1423 "not having streams.\n");
1424 ret = -EINVAL;
1425 } else {
1426 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1427 slot_id, ep_index);
1428 }
1429 if (ret)
1430 goto free_priv;
1431 spin_unlock_irqrestore(&xhci->lock, flags);
1432 } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1433 spin_lock_irqsave(&xhci->lock, flags);
1434 if (xhci->xhc_state & XHCI_STATE_DYING)
1435 goto dying;
1436 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1437 slot_id, ep_index);
1438 if (ret)
1439 goto free_priv;
1440 spin_unlock_irqrestore(&xhci->lock, flags);
1441 } else {
1442 spin_lock_irqsave(&xhci->lock, flags);
1443 if (xhci->xhc_state & XHCI_STATE_DYING)
1444 goto dying;
1445 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1446 slot_id, ep_index);
1447 if (ret)
1448 goto free_priv;
1449 spin_unlock_irqrestore(&xhci->lock, flags);
1450 }
1451 exit:
1452 return ret;
1453 dying:
1454 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1455 "non-responsive xHCI host.\n",
1456 urb->ep->desc.bEndpointAddress, urb);
1457 ret = -ESHUTDOWN;
1458 free_priv:
1459 xhci_urb_free_priv(urb_priv);
1460 urb->hcpriv = NULL;
1461 spin_unlock_irqrestore(&xhci->lock, flags);
1462 return ret;
1463 }
1464
1465 /*
1466 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1467 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1468 * should pick up where it left off in the TD, unless a Set Transfer Ring
1469 * Dequeue Pointer is issued.
1470 *
1471 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1472 * the ring. Since the ring is a contiguous structure, they can't be physically
1473 * removed. Instead, there are two options:
1474 *
1475 * 1) If the HC is in the middle of processing the URB to be canceled, we
1476 * simply move the ring's dequeue pointer past those TRBs using the Set
1477 * Transfer Ring Dequeue Pointer command. This will be the common case,
1478 * when drivers timeout on the last submitted URB and attempt to cancel.
1479 *
1480 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1481 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1482 * HC will need to invalidate the any TRBs it has cached after the stop
1483 * endpoint command, as noted in the xHCI 0.95 errata.
1484 *
1485 * 3) The TD may have completed by the time the Stop Endpoint Command
1486 * completes, so software needs to handle that case too.
1487 *
1488 * This function should protect against the TD enqueueing code ringing the
1489 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1490 * It also needs to account for multiple cancellations on happening at the same
1491 * time for the same endpoint.
1492 *
1493 * Note that this function can be called in any context, or so says
1494 * usb_hcd_unlink_urb()
1495 */
1496 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1497 {
1498 unsigned long flags;
1499 int ret, i;
1500 u32 temp;
1501 struct xhci_hcd *xhci;
1502 struct urb_priv *urb_priv;
1503 struct xhci_td *td;
1504 unsigned int ep_index;
1505 struct xhci_ring *ep_ring;
1506 struct xhci_virt_ep *ep;
1507 struct xhci_command *command;
1508
1509 xhci = hcd_to_xhci(hcd);
1510 spin_lock_irqsave(&xhci->lock, flags);
1511 /* Make sure the URB hasn't completed or been unlinked already */
1512 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1513 if (ret || !urb->hcpriv)
1514 goto done;
1515 temp = readl(&xhci->op_regs->status);
1516 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1517 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1518 "HW died, freeing TD.");
1519 urb_priv = urb->hcpriv;
1520 for (i = urb_priv->td_cnt;
1521 i < urb_priv->length && xhci->devs[urb->dev->slot_id];
1522 i++) {
1523 td = urb_priv->td[i];
1524 if (!list_empty(&td->td_list))
1525 list_del_init(&td->td_list);
1526 if (!list_empty(&td->cancelled_td_list))
1527 list_del_init(&td->cancelled_td_list);
1528 }
1529
1530 usb_hcd_unlink_urb_from_ep(hcd, urb);
1531 spin_unlock_irqrestore(&xhci->lock, flags);
1532 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1533 xhci_urb_free_priv(urb_priv);
1534 return ret;
1535 }
1536 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1537 (xhci->xhc_state & XHCI_STATE_HALTED)) {
1538 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1539 "Ep 0x%x: URB %p to be canceled on "
1540 "non-responsive xHCI host.",
1541 urb->ep->desc.bEndpointAddress, urb);
1542 /* Let the stop endpoint command watchdog timer (which set this
1543 * state) finish cleaning up the endpoint TD lists. We must
1544 * have caught it in the middle of dropping a lock and giving
1545 * back an URB.
1546 */
1547 goto done;
1548 }
1549
1550 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1551 ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1552 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1553 if (!ep_ring) {
1554 ret = -EINVAL;
1555 goto done;
1556 }
1557
1558 urb_priv = urb->hcpriv;
1559 i = urb_priv->td_cnt;
1560 if (i < urb_priv->length)
1561 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1562 "Cancel URB %p, dev %s, ep 0x%x, "
1563 "starting at offset 0x%llx",
1564 urb, urb->dev->devpath,
1565 urb->ep->desc.bEndpointAddress,
1566 (unsigned long long) xhci_trb_virt_to_dma(
1567 urb_priv->td[i]->start_seg,
1568 urb_priv->td[i]->first_trb));
1569
1570 for (; i < urb_priv->length; i++) {
1571 td = urb_priv->td[i];
1572 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1573 }
1574
1575 /* Queue a stop endpoint command, but only if this is
1576 * the first cancellation to be handled.
1577 */
1578 if (!(ep->ep_state & EP_HALT_PENDING)) {
1579 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1580 if (!command) {
1581 ret = -ENOMEM;
1582 goto done;
1583 }
1584 ep->ep_state |= EP_HALT_PENDING;
1585 ep->stop_cmds_pending++;
1586 ep->stop_cmd_timer.expires = jiffies +
1587 XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1588 add_timer(&ep->stop_cmd_timer);
1589 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1590 ep_index, 0);
1591 xhci_ring_cmd_db(xhci);
1592 }
1593 done:
1594 spin_unlock_irqrestore(&xhci->lock, flags);
1595 return ret;
1596 }
1597
1598 /* Drop an endpoint from a new bandwidth configuration for this device.
1599 * Only one call to this function is allowed per endpoint before
1600 * check_bandwidth() or reset_bandwidth() must be called.
1601 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1602 * add the endpoint to the schedule with possibly new parameters denoted by a
1603 * different endpoint descriptor in usb_host_endpoint.
1604 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1605 * not allowed.
1606 *
1607 * The USB core will not allow URBs to be queued to an endpoint that is being
1608 * disabled, so there's no need for mutual exclusion to protect
1609 * the xhci->devs[slot_id] structure.
1610 */
1611 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1612 struct usb_host_endpoint *ep)
1613 {
1614 struct xhci_hcd *xhci;
1615 struct xhci_container_ctx *in_ctx, *out_ctx;
1616 struct xhci_input_control_ctx *ctrl_ctx;
1617 unsigned int ep_index;
1618 struct xhci_ep_ctx *ep_ctx;
1619 u32 drop_flag;
1620 u32 new_add_flags, new_drop_flags;
1621 int ret;
1622
1623 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1624 if (ret <= 0)
1625 return ret;
1626 xhci = hcd_to_xhci(hcd);
1627 if (xhci->xhc_state & XHCI_STATE_DYING)
1628 return -ENODEV;
1629
1630 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1631 drop_flag = xhci_get_endpoint_flag(&ep->desc);
1632 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1633 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1634 __func__, drop_flag);
1635 return 0;
1636 }
1637
1638 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1639 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1640 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1641 if (!ctrl_ctx) {
1642 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1643 __func__);
1644 return 0;
1645 }
1646
1647 ep_index = xhci_get_endpoint_index(&ep->desc);
1648 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1649 /* If the HC already knows the endpoint is disabled,
1650 * or the HCD has noted it is disabled, ignore this request
1651 */
1652 if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1653 cpu_to_le32(EP_STATE_DISABLED)) ||
1654 le32_to_cpu(ctrl_ctx->drop_flags) &
1655 xhci_get_endpoint_flag(&ep->desc)) {
1656 /* Do not warn when called after a usb_device_reset */
1657 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1658 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1659 __func__, ep);
1660 return 0;
1661 }
1662
1663 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1664 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1665
1666 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1667 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1668
1669 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1670
1671 if (xhci->quirks & XHCI_MTK_HOST)
1672 xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1673
1674 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1675 (unsigned int) ep->desc.bEndpointAddress,
1676 udev->slot_id,
1677 (unsigned int) new_drop_flags,
1678 (unsigned int) new_add_flags);
1679 return 0;
1680 }
1681
1682 /* Add an endpoint to a new possible bandwidth configuration for this device.
1683 * Only one call to this function is allowed per endpoint before
1684 * check_bandwidth() or reset_bandwidth() must be called.
1685 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1686 * add the endpoint to the schedule with possibly new parameters denoted by a
1687 * different endpoint descriptor in usb_host_endpoint.
1688 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1689 * not allowed.
1690 *
1691 * The USB core will not allow URBs to be queued to an endpoint until the
1692 * configuration or alt setting is installed in the device, so there's no need
1693 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1694 */
1695 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1696 struct usb_host_endpoint *ep)
1697 {
1698 struct xhci_hcd *xhci;
1699 struct xhci_container_ctx *in_ctx;
1700 unsigned int ep_index;
1701 struct xhci_input_control_ctx *ctrl_ctx;
1702 u32 added_ctxs;
1703 u32 new_add_flags, new_drop_flags;
1704 struct xhci_virt_device *virt_dev;
1705 int ret = 0;
1706
1707 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1708 if (ret <= 0) {
1709 /* So we won't queue a reset ep command for a root hub */
1710 ep->hcpriv = NULL;
1711 return ret;
1712 }
1713 xhci = hcd_to_xhci(hcd);
1714 if (xhci->xhc_state & XHCI_STATE_DYING)
1715 return -ENODEV;
1716
1717 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1718 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1719 /* FIXME when we have to issue an evaluate endpoint command to
1720 * deal with ep0 max packet size changing once we get the
1721 * descriptors
1722 */
1723 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1724 __func__, added_ctxs);
1725 return 0;
1726 }
1727
1728 virt_dev = xhci->devs[udev->slot_id];
1729 in_ctx = virt_dev->in_ctx;
1730 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1731 if (!ctrl_ctx) {
1732 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1733 __func__);
1734 return 0;
1735 }
1736
1737 ep_index = xhci_get_endpoint_index(&ep->desc);
1738 /* If this endpoint is already in use, and the upper layers are trying
1739 * to add it again without dropping it, reject the addition.
1740 */
1741 if (virt_dev->eps[ep_index].ring &&
1742 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1743 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1744 "without dropping it.\n",
1745 (unsigned int) ep->desc.bEndpointAddress);
1746 return -EINVAL;
1747 }
1748
1749 /* If the HCD has already noted the endpoint is enabled,
1750 * ignore this request.
1751 */
1752 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1753 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1754 __func__, ep);
1755 return 0;
1756 }
1757
1758 /*
1759 * Configuration and alternate setting changes must be done in
1760 * process context, not interrupt context (or so documenation
1761 * for usb_set_interface() and usb_set_configuration() claim).
1762 */
1763 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1764 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1765 __func__, ep->desc.bEndpointAddress);
1766 return -ENOMEM;
1767 }
1768
1769 if (xhci->quirks & XHCI_MTK_HOST) {
1770 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1771 if (ret < 0) {
1772 xhci_free_or_cache_endpoint_ring(xhci,
1773 virt_dev, ep_index);
1774 return ret;
1775 }
1776 }
1777
1778 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1779 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1780
1781 /* If xhci_endpoint_disable() was called for this endpoint, but the
1782 * xHC hasn't been notified yet through the check_bandwidth() call,
1783 * this re-adds a new state for the endpoint from the new endpoint
1784 * descriptors. We must drop and re-add this endpoint, so we leave the
1785 * drop flags alone.
1786 */
1787 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1788
1789 /* Store the usb_device pointer for later use */
1790 ep->hcpriv = udev;
1791
1792 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1793 (unsigned int) ep->desc.bEndpointAddress,
1794 udev->slot_id,
1795 (unsigned int) new_drop_flags,
1796 (unsigned int) new_add_flags);
1797 return 0;
1798 }
1799
1800 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1801 {
1802 struct xhci_input_control_ctx *ctrl_ctx;
1803 struct xhci_ep_ctx *ep_ctx;
1804 struct xhci_slot_ctx *slot_ctx;
1805 int i;
1806
1807 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1808 if (!ctrl_ctx) {
1809 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1810 __func__);
1811 return;
1812 }
1813
1814 /* When a device's add flag and drop flag are zero, any subsequent
1815 * configure endpoint command will leave that endpoint's state
1816 * untouched. Make sure we don't leave any old state in the input
1817 * endpoint contexts.
1818 */
1819 ctrl_ctx->drop_flags = 0;
1820 ctrl_ctx->add_flags = 0;
1821 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1822 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1823 /* Endpoint 0 is always valid */
1824 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1825 for (i = 1; i < 31; ++i) {
1826 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1827 ep_ctx->ep_info = 0;
1828 ep_ctx->ep_info2 = 0;
1829 ep_ctx->deq = 0;
1830 ep_ctx->tx_info = 0;
1831 }
1832 }
1833
1834 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1835 struct usb_device *udev, u32 *cmd_status)
1836 {
1837 int ret;
1838
1839 switch (*cmd_status) {
1840 case COMP_CMD_ABORT:
1841 case COMP_CMD_STOP:
1842 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1843 ret = -ETIME;
1844 break;
1845 case COMP_ENOMEM:
1846 dev_warn(&udev->dev,
1847 "Not enough host controller resources for new device state.\n");
1848 ret = -ENOMEM;
1849 /* FIXME: can we allocate more resources for the HC? */
1850 break;
1851 case COMP_BW_ERR:
1852 case COMP_2ND_BW_ERR:
1853 dev_warn(&udev->dev,
1854 "Not enough bandwidth for new device state.\n");
1855 ret = -ENOSPC;
1856 /* FIXME: can we go back to the old state? */
1857 break;
1858 case COMP_TRB_ERR:
1859 /* the HCD set up something wrong */
1860 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1861 "add flag = 1, "
1862 "and endpoint is not disabled.\n");
1863 ret = -EINVAL;
1864 break;
1865 case COMP_DEV_ERR:
1866 dev_warn(&udev->dev,
1867 "ERROR: Incompatible device for endpoint configure command.\n");
1868 ret = -ENODEV;
1869 break;
1870 case COMP_SUCCESS:
1871 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1872 "Successful Endpoint Configure command");
1873 ret = 0;
1874 break;
1875 default:
1876 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1877 *cmd_status);
1878 ret = -EINVAL;
1879 break;
1880 }
1881 return ret;
1882 }
1883
1884 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1885 struct usb_device *udev, u32 *cmd_status)
1886 {
1887 int ret;
1888 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1889
1890 switch (*cmd_status) {
1891 case COMP_CMD_ABORT:
1892 case COMP_CMD_STOP:
1893 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1894 ret = -ETIME;
1895 break;
1896 case COMP_EINVAL:
1897 dev_warn(&udev->dev,
1898 "WARN: xHCI driver setup invalid evaluate context command.\n");
1899 ret = -EINVAL;
1900 break;
1901 case COMP_EBADSLT:
1902 dev_warn(&udev->dev,
1903 "WARN: slot not enabled for evaluate context command.\n");
1904 ret = -EINVAL;
1905 break;
1906 case COMP_CTX_STATE:
1907 dev_warn(&udev->dev,
1908 "WARN: invalid context state for evaluate context command.\n");
1909 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1910 ret = -EINVAL;
1911 break;
1912 case COMP_DEV_ERR:
1913 dev_warn(&udev->dev,
1914 "ERROR: Incompatible device for evaluate context command.\n");
1915 ret = -ENODEV;
1916 break;
1917 case COMP_MEL_ERR:
1918 /* Max Exit Latency too large error */
1919 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1920 ret = -EINVAL;
1921 break;
1922 case COMP_SUCCESS:
1923 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1924 "Successful evaluate context command");
1925 ret = 0;
1926 break;
1927 default:
1928 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1929 *cmd_status);
1930 ret = -EINVAL;
1931 break;
1932 }
1933 return ret;
1934 }
1935
1936 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1937 struct xhci_input_control_ctx *ctrl_ctx)
1938 {
1939 u32 valid_add_flags;
1940 u32 valid_drop_flags;
1941
1942 /* Ignore the slot flag (bit 0), and the default control endpoint flag
1943 * (bit 1). The default control endpoint is added during the Address
1944 * Device command and is never removed until the slot is disabled.
1945 */
1946 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1947 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1948
1949 /* Use hweight32 to count the number of ones in the add flags, or
1950 * number of endpoints added. Don't count endpoints that are changed
1951 * (both added and dropped).
1952 */
1953 return hweight32(valid_add_flags) -
1954 hweight32(valid_add_flags & valid_drop_flags);
1955 }
1956
1957 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1958 struct xhci_input_control_ctx *ctrl_ctx)
1959 {
1960 u32 valid_add_flags;
1961 u32 valid_drop_flags;
1962
1963 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1964 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1965
1966 return hweight32(valid_drop_flags) -
1967 hweight32(valid_add_flags & valid_drop_flags);
1968 }
1969
1970 /*
1971 * We need to reserve the new number of endpoints before the configure endpoint
1972 * command completes. We can't subtract the dropped endpoints from the number
1973 * of active endpoints until the command completes because we can oversubscribe
1974 * the host in this case:
1975 *
1976 * - the first configure endpoint command drops more endpoints than it adds
1977 * - a second configure endpoint command that adds more endpoints is queued
1978 * - the first configure endpoint command fails, so the config is unchanged
1979 * - the second command may succeed, even though there isn't enough resources
1980 *
1981 * Must be called with xhci->lock held.
1982 */
1983 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1984 struct xhci_input_control_ctx *ctrl_ctx)
1985 {
1986 u32 added_eps;
1987
1988 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1989 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1990 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1991 "Not enough ep ctxs: "
1992 "%u active, need to add %u, limit is %u.",
1993 xhci->num_active_eps, added_eps,
1994 xhci->limit_active_eps);
1995 return -ENOMEM;
1996 }
1997 xhci->num_active_eps += added_eps;
1998 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1999 "Adding %u ep ctxs, %u now active.", added_eps,
2000 xhci->num_active_eps);
2001 return 0;
2002 }
2003
2004 /*
2005 * The configure endpoint was failed by the xHC for some other reason, so we
2006 * need to revert the resources that failed configuration would have used.
2007 *
2008 * Must be called with xhci->lock held.
2009 */
2010 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2011 struct xhci_input_control_ctx *ctrl_ctx)
2012 {
2013 u32 num_failed_eps;
2014
2015 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2016 xhci->num_active_eps -= num_failed_eps;
2017 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2018 "Removing %u failed ep ctxs, %u now active.",
2019 num_failed_eps,
2020 xhci->num_active_eps);
2021 }
2022
2023 /*
2024 * Now that the command has completed, clean up the active endpoint count by
2025 * subtracting out the endpoints that were dropped (but not changed).
2026 *
2027 * Must be called with xhci->lock held.
2028 */
2029 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2030 struct xhci_input_control_ctx *ctrl_ctx)
2031 {
2032 u32 num_dropped_eps;
2033
2034 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2035 xhci->num_active_eps -= num_dropped_eps;
2036 if (num_dropped_eps)
2037 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2038 "Removing %u dropped ep ctxs, %u now active.",
2039 num_dropped_eps,
2040 xhci->num_active_eps);
2041 }
2042
2043 static unsigned int xhci_get_block_size(struct usb_device *udev)
2044 {
2045 switch (udev->speed) {
2046 case USB_SPEED_LOW:
2047 case USB_SPEED_FULL:
2048 return FS_BLOCK;
2049 case USB_SPEED_HIGH:
2050 return HS_BLOCK;
2051 case USB_SPEED_SUPER:
2052 case USB_SPEED_SUPER_PLUS:
2053 return SS_BLOCK;
2054 case USB_SPEED_UNKNOWN:
2055 case USB_SPEED_WIRELESS:
2056 default:
2057 /* Should never happen */
2058 return 1;
2059 }
2060 }
2061
2062 static unsigned int
2063 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2064 {
2065 if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2066 return LS_OVERHEAD;
2067 if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2068 return FS_OVERHEAD;
2069 return HS_OVERHEAD;
2070 }
2071
2072 /* If we are changing a LS/FS device under a HS hub,
2073 * make sure (if we are activating a new TT) that the HS bus has enough
2074 * bandwidth for this new TT.
2075 */
2076 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2077 struct xhci_virt_device *virt_dev,
2078 int old_active_eps)
2079 {
2080 struct xhci_interval_bw_table *bw_table;
2081 struct xhci_tt_bw_info *tt_info;
2082
2083 /* Find the bandwidth table for the root port this TT is attached to. */
2084 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2085 tt_info = virt_dev->tt_info;
2086 /* If this TT already had active endpoints, the bandwidth for this TT
2087 * has already been added. Removing all periodic endpoints (and thus
2088 * making the TT enactive) will only decrease the bandwidth used.
2089 */
2090 if (old_active_eps)
2091 return 0;
2092 if (old_active_eps == 0 && tt_info->active_eps != 0) {
2093 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2094 return -ENOMEM;
2095 return 0;
2096 }
2097 /* Not sure why we would have no new active endpoints...
2098 *
2099 * Maybe because of an Evaluate Context change for a hub update or a
2100 * control endpoint 0 max packet size change?
2101 * FIXME: skip the bandwidth calculation in that case.
2102 */
2103 return 0;
2104 }
2105
2106 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2107 struct xhci_virt_device *virt_dev)
2108 {
2109 unsigned int bw_reserved;
2110
2111 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2112 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2113 return -ENOMEM;
2114
2115 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2116 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2117 return -ENOMEM;
2118
2119 return 0;
2120 }
2121
2122 /*
2123 * This algorithm is a very conservative estimate of the worst-case scheduling
2124 * scenario for any one interval. The hardware dynamically schedules the
2125 * packets, so we can't tell which microframe could be the limiting factor in
2126 * the bandwidth scheduling. This only takes into account periodic endpoints.
2127 *
2128 * Obviously, we can't solve an NP complete problem to find the minimum worst
2129 * case scenario. Instead, we come up with an estimate that is no less than
2130 * the worst case bandwidth used for any one microframe, but may be an
2131 * over-estimate.
2132 *
2133 * We walk the requirements for each endpoint by interval, starting with the
2134 * smallest interval, and place packets in the schedule where there is only one
2135 * possible way to schedule packets for that interval. In order to simplify
2136 * this algorithm, we record the largest max packet size for each interval, and
2137 * assume all packets will be that size.
2138 *
2139 * For interval 0, we obviously must schedule all packets for each interval.
2140 * The bandwidth for interval 0 is just the amount of data to be transmitted
2141 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2142 * the number of packets).
2143 *
2144 * For interval 1, we have two possible microframes to schedule those packets
2145 * in. For this algorithm, if we can schedule the same number of packets for
2146 * each possible scheduling opportunity (each microframe), we will do so. The
2147 * remaining number of packets will be saved to be transmitted in the gaps in
2148 * the next interval's scheduling sequence.
2149 *
2150 * As we move those remaining packets to be scheduled with interval 2 packets,
2151 * we have to double the number of remaining packets to transmit. This is
2152 * because the intervals are actually powers of 2, and we would be transmitting
2153 * the previous interval's packets twice in this interval. We also have to be
2154 * sure that when we look at the largest max packet size for this interval, we
2155 * also look at the largest max packet size for the remaining packets and take
2156 * the greater of the two.
2157 *
2158 * The algorithm continues to evenly distribute packets in each scheduling
2159 * opportunity, and push the remaining packets out, until we get to the last
2160 * interval. Then those packets and their associated overhead are just added
2161 * to the bandwidth used.
2162 */
2163 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2164 struct xhci_virt_device *virt_dev,
2165 int old_active_eps)
2166 {
2167 unsigned int bw_reserved;
2168 unsigned int max_bandwidth;
2169 unsigned int bw_used;
2170 unsigned int block_size;
2171 struct xhci_interval_bw_table *bw_table;
2172 unsigned int packet_size = 0;
2173 unsigned int overhead = 0;
2174 unsigned int packets_transmitted = 0;
2175 unsigned int packets_remaining = 0;
2176 unsigned int i;
2177
2178 if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2179 return xhci_check_ss_bw(xhci, virt_dev);
2180
2181 if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2182 max_bandwidth = HS_BW_LIMIT;
2183 /* Convert percent of bus BW reserved to blocks reserved */
2184 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2185 } else {
2186 max_bandwidth = FS_BW_LIMIT;
2187 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2188 }
2189
2190 bw_table = virt_dev->bw_table;
2191 /* We need to translate the max packet size and max ESIT payloads into
2192 * the units the hardware uses.
2193 */
2194 block_size = xhci_get_block_size(virt_dev->udev);
2195
2196 /* If we are manipulating a LS/FS device under a HS hub, double check
2197 * that the HS bus has enough bandwidth if we are activing a new TT.
2198 */
2199 if (virt_dev->tt_info) {
2200 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2201 "Recalculating BW for rootport %u",
2202 virt_dev->real_port);
2203 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2204 xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2205 "newly activated TT.\n");
2206 return -ENOMEM;
2207 }
2208 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2209 "Recalculating BW for TT slot %u port %u",
2210 virt_dev->tt_info->slot_id,
2211 virt_dev->tt_info->ttport);
2212 } else {
2213 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2214 "Recalculating BW for rootport %u",
2215 virt_dev->real_port);
2216 }
2217
2218 /* Add in how much bandwidth will be used for interval zero, or the
2219 * rounded max ESIT payload + number of packets * largest overhead.
2220 */
2221 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2222 bw_table->interval_bw[0].num_packets *
2223 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2224
2225 for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2226 unsigned int bw_added;
2227 unsigned int largest_mps;
2228 unsigned int interval_overhead;
2229
2230 /*
2231 * How many packets could we transmit in this interval?
2232 * If packets didn't fit in the previous interval, we will need
2233 * to transmit that many packets twice within this interval.
2234 */
2235 packets_remaining = 2 * packets_remaining +
2236 bw_table->interval_bw[i].num_packets;
2237
2238 /* Find the largest max packet size of this or the previous
2239 * interval.
2240 */
2241 if (list_empty(&bw_table->interval_bw[i].endpoints))
2242 largest_mps = 0;
2243 else {
2244 struct xhci_virt_ep *virt_ep;
2245 struct list_head *ep_entry;
2246
2247 ep_entry = bw_table->interval_bw[i].endpoints.next;
2248 virt_ep = list_entry(ep_entry,
2249 struct xhci_virt_ep, bw_endpoint_list);
2250 /* Convert to blocks, rounding up */
2251 largest_mps = DIV_ROUND_UP(
2252 virt_ep->bw_info.max_packet_size,
2253 block_size);
2254 }
2255 if (largest_mps > packet_size)
2256 packet_size = largest_mps;
2257
2258 /* Use the larger overhead of this or the previous interval. */
2259 interval_overhead = xhci_get_largest_overhead(
2260 &bw_table->interval_bw[i]);
2261 if (interval_overhead > overhead)
2262 overhead = interval_overhead;
2263
2264 /* How many packets can we evenly distribute across
2265 * (1 << (i + 1)) possible scheduling opportunities?
2266 */
2267 packets_transmitted = packets_remaining >> (i + 1);
2268
2269 /* Add in the bandwidth used for those scheduled packets */
2270 bw_added = packets_transmitted * (overhead + packet_size);
2271
2272 /* How many packets do we have remaining to transmit? */
2273 packets_remaining = packets_remaining % (1 << (i + 1));
2274
2275 /* What largest max packet size should those packets have? */
2276 /* If we've transmitted all packets, don't carry over the
2277 * largest packet size.
2278 */
2279 if (packets_remaining == 0) {
2280 packet_size = 0;
2281 overhead = 0;
2282 } else if (packets_transmitted > 0) {
2283 /* Otherwise if we do have remaining packets, and we've
2284 * scheduled some packets in this interval, take the
2285 * largest max packet size from endpoints with this
2286 * interval.
2287 */
2288 packet_size = largest_mps;
2289 overhead = interval_overhead;
2290 }
2291 /* Otherwise carry over packet_size and overhead from the last
2292 * time we had a remainder.
2293 */
2294 bw_used += bw_added;
2295 if (bw_used > max_bandwidth) {
2296 xhci_warn(xhci, "Not enough bandwidth. "
2297 "Proposed: %u, Max: %u\n",
2298 bw_used, max_bandwidth);
2299 return -ENOMEM;
2300 }
2301 }
2302 /*
2303 * Ok, we know we have some packets left over after even-handedly
2304 * scheduling interval 15. We don't know which microframes they will
2305 * fit into, so we over-schedule and say they will be scheduled every
2306 * microframe.
2307 */
2308 if (packets_remaining > 0)
2309 bw_used += overhead + packet_size;
2310
2311 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2312 unsigned int port_index = virt_dev->real_port - 1;
2313
2314 /* OK, we're manipulating a HS device attached to a
2315 * root port bandwidth domain. Include the number of active TTs
2316 * in the bandwidth used.
2317 */
2318 bw_used += TT_HS_OVERHEAD *
2319 xhci->rh_bw[port_index].num_active_tts;
2320 }
2321
2322 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2323 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2324 "Available: %u " "percent",
2325 bw_used, max_bandwidth, bw_reserved,
2326 (max_bandwidth - bw_used - bw_reserved) * 100 /
2327 max_bandwidth);
2328
2329 bw_used += bw_reserved;
2330 if (bw_used > max_bandwidth) {
2331 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2332 bw_used, max_bandwidth);
2333 return -ENOMEM;
2334 }
2335
2336 bw_table->bw_used = bw_used;
2337 return 0;
2338 }
2339
2340 static bool xhci_is_async_ep(unsigned int ep_type)
2341 {
2342 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2343 ep_type != ISOC_IN_EP &&
2344 ep_type != INT_IN_EP);
2345 }
2346
2347 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2348 {
2349 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2350 }
2351
2352 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2353 {
2354 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2355
2356 if (ep_bw->ep_interval == 0)
2357 return SS_OVERHEAD_BURST +
2358 (ep_bw->mult * ep_bw->num_packets *
2359 (SS_OVERHEAD + mps));
2360 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2361 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2362 1 << ep_bw->ep_interval);
2363
2364 }
2365
2366 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2367 struct xhci_bw_info *ep_bw,
2368 struct xhci_interval_bw_table *bw_table,
2369 struct usb_device *udev,
2370 struct xhci_virt_ep *virt_ep,
2371 struct xhci_tt_bw_info *tt_info)
2372 {
2373 struct xhci_interval_bw *interval_bw;
2374 int normalized_interval;
2375
2376 if (xhci_is_async_ep(ep_bw->type))
2377 return;
2378
2379 if (udev->speed >= USB_SPEED_SUPER) {
2380 if (xhci_is_sync_in_ep(ep_bw->type))
2381 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2382 xhci_get_ss_bw_consumed(ep_bw);
2383 else
2384 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2385 xhci_get_ss_bw_consumed(ep_bw);
2386 return;
2387 }
2388
2389 /* SuperSpeed endpoints never get added to intervals in the table, so
2390 * this check is only valid for HS/FS/LS devices.
2391 */
2392 if (list_empty(&virt_ep->bw_endpoint_list))
2393 return;
2394 /* For LS/FS devices, we need to translate the interval expressed in
2395 * microframes to frames.
2396 */
2397 if (udev->speed == USB_SPEED_HIGH)
2398 normalized_interval = ep_bw->ep_interval;
2399 else
2400 normalized_interval = ep_bw->ep_interval - 3;
2401
2402 if (normalized_interval == 0)
2403 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2404 interval_bw = &bw_table->interval_bw[normalized_interval];
2405 interval_bw->num_packets -= ep_bw->num_packets;
2406 switch (udev->speed) {
2407 case USB_SPEED_LOW:
2408 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2409 break;
2410 case USB_SPEED_FULL:
2411 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2412 break;
2413 case USB_SPEED_HIGH:
2414 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2415 break;
2416 case USB_SPEED_SUPER:
2417 case USB_SPEED_SUPER_PLUS:
2418 case USB_SPEED_UNKNOWN:
2419 case USB_SPEED_WIRELESS:
2420 /* Should never happen because only LS/FS/HS endpoints will get
2421 * added to the endpoint list.
2422 */
2423 return;
2424 }
2425 if (tt_info)
2426 tt_info->active_eps -= 1;
2427 list_del_init(&virt_ep->bw_endpoint_list);
2428 }
2429
2430 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2431 struct xhci_bw_info *ep_bw,
2432 struct xhci_interval_bw_table *bw_table,
2433 struct usb_device *udev,
2434 struct xhci_virt_ep *virt_ep,
2435 struct xhci_tt_bw_info *tt_info)
2436 {
2437 struct xhci_interval_bw *interval_bw;
2438 struct xhci_virt_ep *smaller_ep;
2439 int normalized_interval;
2440
2441 if (xhci_is_async_ep(ep_bw->type))
2442 return;
2443
2444 if (udev->speed == USB_SPEED_SUPER) {
2445 if (xhci_is_sync_in_ep(ep_bw->type))
2446 xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2447 xhci_get_ss_bw_consumed(ep_bw);
2448 else
2449 xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2450 xhci_get_ss_bw_consumed(ep_bw);
2451 return;
2452 }
2453
2454 /* For LS/FS devices, we need to translate the interval expressed in
2455 * microframes to frames.
2456 */
2457 if (udev->speed == USB_SPEED_HIGH)
2458 normalized_interval = ep_bw->ep_interval;
2459 else
2460 normalized_interval = ep_bw->ep_interval - 3;
2461
2462 if (normalized_interval == 0)
2463 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2464 interval_bw = &bw_table->interval_bw[normalized_interval];
2465 interval_bw->num_packets += ep_bw->num_packets;
2466 switch (udev->speed) {
2467 case USB_SPEED_LOW:
2468 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2469 break;
2470 case USB_SPEED_FULL:
2471 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2472 break;
2473 case USB_SPEED_HIGH:
2474 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2475 break;
2476 case USB_SPEED_SUPER:
2477 case USB_SPEED_SUPER_PLUS:
2478 case USB_SPEED_UNKNOWN:
2479 case USB_SPEED_WIRELESS:
2480 /* Should never happen because only LS/FS/HS endpoints will get
2481 * added to the endpoint list.
2482 */
2483 return;
2484 }
2485
2486 if (tt_info)
2487 tt_info->active_eps += 1;
2488 /* Insert the endpoint into the list, largest max packet size first. */
2489 list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2490 bw_endpoint_list) {
2491 if (ep_bw->max_packet_size >=
2492 smaller_ep->bw_info.max_packet_size) {
2493 /* Add the new ep before the smaller endpoint */
2494 list_add_tail(&virt_ep->bw_endpoint_list,
2495 &smaller_ep->bw_endpoint_list);
2496 return;
2497 }
2498 }
2499 /* Add the new endpoint at the end of the list. */
2500 list_add_tail(&virt_ep->bw_endpoint_list,
2501 &interval_bw->endpoints);
2502 }
2503
2504 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2505 struct xhci_virt_device *virt_dev,
2506 int old_active_eps)
2507 {
2508 struct xhci_root_port_bw_info *rh_bw_info;
2509 if (!virt_dev->tt_info)
2510 return;
2511
2512 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2513 if (old_active_eps == 0 &&
2514 virt_dev->tt_info->active_eps != 0) {
2515 rh_bw_info->num_active_tts += 1;
2516 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2517 } else if (old_active_eps != 0 &&
2518 virt_dev->tt_info->active_eps == 0) {
2519 rh_bw_info->num_active_tts -= 1;
2520 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2521 }
2522 }
2523
2524 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2525 struct xhci_virt_device *virt_dev,
2526 struct xhci_container_ctx *in_ctx)
2527 {
2528 struct xhci_bw_info ep_bw_info[31];
2529 int i;
2530 struct xhci_input_control_ctx *ctrl_ctx;
2531 int old_active_eps = 0;
2532
2533 if (virt_dev->tt_info)
2534 old_active_eps = virt_dev->tt_info->active_eps;
2535
2536 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2537 if (!ctrl_ctx) {
2538 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2539 __func__);
2540 return -ENOMEM;
2541 }
2542
2543 for (i = 0; i < 31; i++) {
2544 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2545 continue;
2546
2547 /* Make a copy of the BW info in case we need to revert this */
2548 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2549 sizeof(ep_bw_info[i]));
2550 /* Drop the endpoint from the interval table if the endpoint is
2551 * being dropped or changed.
2552 */
2553 if (EP_IS_DROPPED(ctrl_ctx, i))
2554 xhci_drop_ep_from_interval_table(xhci,
2555 &virt_dev->eps[i].bw_info,
2556 virt_dev->bw_table,
2557 virt_dev->udev,
2558 &virt_dev->eps[i],
2559 virt_dev->tt_info);
2560 }
2561 /* Overwrite the information stored in the endpoints' bw_info */
2562 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2563 for (i = 0; i < 31; i++) {
2564 /* Add any changed or added endpoints to the interval table */
2565 if (EP_IS_ADDED(ctrl_ctx, i))
2566 xhci_add_ep_to_interval_table(xhci,
2567 &virt_dev->eps[i].bw_info,
2568 virt_dev->bw_table,
2569 virt_dev->udev,
2570 &virt_dev->eps[i],
2571 virt_dev->tt_info);
2572 }
2573
2574 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2575 /* Ok, this fits in the bandwidth we have.
2576 * Update the number of active TTs.
2577 */
2578 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2579 return 0;
2580 }
2581
2582 /* We don't have enough bandwidth for this, revert the stored info. */
2583 for (i = 0; i < 31; i++) {
2584 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2585 continue;
2586
2587 /* Drop the new copies of any added or changed endpoints from
2588 * the interval table.
2589 */
2590 if (EP_IS_ADDED(ctrl_ctx, i)) {
2591 xhci_drop_ep_from_interval_table(xhci,
2592 &virt_dev->eps[i].bw_info,
2593 virt_dev->bw_table,
2594 virt_dev->udev,
2595 &virt_dev->eps[i],
2596 virt_dev->tt_info);
2597 }
2598 /* Revert the endpoint back to its old information */
2599 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2600 sizeof(ep_bw_info[i]));
2601 /* Add any changed or dropped endpoints back into the table */
2602 if (EP_IS_DROPPED(ctrl_ctx, i))
2603 xhci_add_ep_to_interval_table(xhci,
2604 &virt_dev->eps[i].bw_info,
2605 virt_dev->bw_table,
2606 virt_dev->udev,
2607 &virt_dev->eps[i],
2608 virt_dev->tt_info);
2609 }
2610 return -ENOMEM;
2611 }
2612
2613
2614 /* Issue a configure endpoint command or evaluate context command
2615 * and wait for it to finish.
2616 */
2617 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2618 struct usb_device *udev,
2619 struct xhci_command *command,
2620 bool ctx_change, bool must_succeed)
2621 {
2622 int ret;
2623 unsigned long flags;
2624 struct xhci_input_control_ctx *ctrl_ctx;
2625 struct xhci_virt_device *virt_dev;
2626
2627 if (!command)
2628 return -EINVAL;
2629
2630 spin_lock_irqsave(&xhci->lock, flags);
2631 virt_dev = xhci->devs[udev->slot_id];
2632
2633 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2634 if (!ctrl_ctx) {
2635 spin_unlock_irqrestore(&xhci->lock, flags);
2636 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2637 __func__);
2638 return -ENOMEM;
2639 }
2640
2641 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2642 xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2643 spin_unlock_irqrestore(&xhci->lock, flags);
2644 xhci_warn(xhci, "Not enough host resources, "
2645 "active endpoint contexts = %u\n",
2646 xhci->num_active_eps);
2647 return -ENOMEM;
2648 }
2649 if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2650 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2651 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2652 xhci_free_host_resources(xhci, ctrl_ctx);
2653 spin_unlock_irqrestore(&xhci->lock, flags);
2654 xhci_warn(xhci, "Not enough bandwidth\n");
2655 return -ENOMEM;
2656 }
2657
2658 if (!ctx_change)
2659 ret = xhci_queue_configure_endpoint(xhci, command,
2660 command->in_ctx->dma,
2661 udev->slot_id, must_succeed);
2662 else
2663 ret = xhci_queue_evaluate_context(xhci, command,
2664 command->in_ctx->dma,
2665 udev->slot_id, must_succeed);
2666 if (ret < 0) {
2667 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2668 xhci_free_host_resources(xhci, ctrl_ctx);
2669 spin_unlock_irqrestore(&xhci->lock, flags);
2670 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2671 "FIXME allocate a new ring segment");
2672 return -ENOMEM;
2673 }
2674 xhci_ring_cmd_db(xhci);
2675 spin_unlock_irqrestore(&xhci->lock, flags);
2676
2677 /* Wait for the configure endpoint command to complete */
2678 wait_for_completion(command->completion);
2679
2680 if (!ctx_change)
2681 ret = xhci_configure_endpoint_result(xhci, udev,
2682 &command->status);
2683 else
2684 ret = xhci_evaluate_context_result(xhci, udev,
2685 &command->status);
2686
2687 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2688 spin_lock_irqsave(&xhci->lock, flags);
2689 /* If the command failed, remove the reserved resources.
2690 * Otherwise, clean up the estimate to include dropped eps.
2691 */
2692 if (ret)
2693 xhci_free_host_resources(xhci, ctrl_ctx);
2694 else
2695 xhci_finish_resource_reservation(xhci, ctrl_ctx);
2696 spin_unlock_irqrestore(&xhci->lock, flags);
2697 }
2698 return ret;
2699 }
2700
2701 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2702 struct xhci_virt_device *vdev, int i)
2703 {
2704 struct xhci_virt_ep *ep = &vdev->eps[i];
2705
2706 if (ep->ep_state & EP_HAS_STREAMS) {
2707 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2708 xhci_get_endpoint_address(i));
2709 xhci_free_stream_info(xhci, ep->stream_info);
2710 ep->stream_info = NULL;
2711 ep->ep_state &= ~EP_HAS_STREAMS;
2712 }
2713 }
2714
2715 /* Called after one or more calls to xhci_add_endpoint() or
2716 * xhci_drop_endpoint(). If this call fails, the USB core is expected
2717 * to call xhci_reset_bandwidth().
2718 *
2719 * Since we are in the middle of changing either configuration or
2720 * installing a new alt setting, the USB core won't allow URBs to be
2721 * enqueued for any endpoint on the old config or interface. Nothing
2722 * else should be touching the xhci->devs[slot_id] structure, so we
2723 * don't need to take the xhci->lock for manipulating that.
2724 */
2725 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2726 {
2727 int i;
2728 int ret = 0;
2729 struct xhci_hcd *xhci;
2730 struct xhci_virt_device *virt_dev;
2731 struct xhci_input_control_ctx *ctrl_ctx;
2732 struct xhci_slot_ctx *slot_ctx;
2733 struct xhci_command *command;
2734
2735 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2736 if (ret <= 0)
2737 return ret;
2738 xhci = hcd_to_xhci(hcd);
2739 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2740 (xhci->xhc_state & XHCI_STATE_REMOVING))
2741 return -ENODEV;
2742
2743 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2744 virt_dev = xhci->devs[udev->slot_id];
2745
2746 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2747 if (!command)
2748 return -ENOMEM;
2749
2750 command->in_ctx = virt_dev->in_ctx;
2751
2752 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2753 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2754 if (!ctrl_ctx) {
2755 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2756 __func__);
2757 ret = -ENOMEM;
2758 goto command_cleanup;
2759 }
2760 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2761 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2762 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2763
2764 /* Don't issue the command if there's no endpoints to update. */
2765 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2766 ctrl_ctx->drop_flags == 0) {
2767 ret = 0;
2768 goto command_cleanup;
2769 }
2770 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2771 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2772 for (i = 31; i >= 1; i--) {
2773 __le32 le32 = cpu_to_le32(BIT(i));
2774
2775 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2776 || (ctrl_ctx->add_flags & le32) || i == 1) {
2777 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2778 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2779 break;
2780 }
2781 }
2782 xhci_dbg(xhci, "New Input Control Context:\n");
2783 xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2784 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2785
2786 ret = xhci_configure_endpoint(xhci, udev, command,
2787 false, false);
2788 if (ret)
2789 /* Callee should call reset_bandwidth() */
2790 goto command_cleanup;
2791
2792 xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2793 xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2794 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2795
2796 /* Free any rings that were dropped, but not changed. */
2797 for (i = 1; i < 31; ++i) {
2798 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2799 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2800 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2801 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2802 }
2803 }
2804 xhci_zero_in_ctx(xhci, virt_dev);
2805 /*
2806 * Install any rings for completely new endpoints or changed endpoints,
2807 * and free or cache any old rings from changed endpoints.
2808 */
2809 for (i = 1; i < 31; ++i) {
2810 if (!virt_dev->eps[i].new_ring)
2811 continue;
2812 /* Only cache or free the old ring if it exists.
2813 * It may not if this is the first add of an endpoint.
2814 */
2815 if (virt_dev->eps[i].ring) {
2816 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2817 }
2818 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2819 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2820 virt_dev->eps[i].new_ring = NULL;
2821 }
2822 command_cleanup:
2823 kfree(command->completion);
2824 kfree(command);
2825
2826 return ret;
2827 }
2828
2829 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2830 {
2831 struct xhci_hcd *xhci;
2832 struct xhci_virt_device *virt_dev;
2833 int i, ret;
2834
2835 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2836 if (ret <= 0)
2837 return;
2838 xhci = hcd_to_xhci(hcd);
2839
2840 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2841 virt_dev = xhci->devs[udev->slot_id];
2842 /* Free any rings allocated for added endpoints */
2843 for (i = 0; i < 31; ++i) {
2844 if (virt_dev->eps[i].new_ring) {
2845 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2846 virt_dev->eps[i].new_ring = NULL;
2847 }
2848 }
2849 xhci_zero_in_ctx(xhci, virt_dev);
2850 }
2851
2852 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2853 struct xhci_container_ctx *in_ctx,
2854 struct xhci_container_ctx *out_ctx,
2855 struct xhci_input_control_ctx *ctrl_ctx,
2856 u32 add_flags, u32 drop_flags)
2857 {
2858 ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2859 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2860 xhci_slot_copy(xhci, in_ctx, out_ctx);
2861 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2862
2863 xhci_dbg(xhci, "Input Context:\n");
2864 xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2865 }
2866
2867 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2868 unsigned int slot_id, unsigned int ep_index,
2869 struct xhci_dequeue_state *deq_state)
2870 {
2871 struct xhci_input_control_ctx *ctrl_ctx;
2872 struct xhci_container_ctx *in_ctx;
2873 struct xhci_ep_ctx *ep_ctx;
2874 u32 added_ctxs;
2875 dma_addr_t addr;
2876
2877 in_ctx = xhci->devs[slot_id]->in_ctx;
2878 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2879 if (!ctrl_ctx) {
2880 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2881 __func__);
2882 return;
2883 }
2884
2885 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2886 xhci->devs[slot_id]->out_ctx, ep_index);
2887 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2888 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2889 deq_state->new_deq_ptr);
2890 if (addr == 0) {
2891 xhci_warn(xhci, "WARN Cannot submit config ep after "
2892 "reset ep command\n");
2893 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2894 deq_state->new_deq_seg,
2895 deq_state->new_deq_ptr);
2896 return;
2897 }
2898 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2899
2900 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2901 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2902 xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2903 added_ctxs, added_ctxs);
2904 }
2905
2906 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2907 unsigned int ep_index, struct xhci_td *td)
2908 {
2909 struct xhci_dequeue_state deq_state;
2910 struct xhci_virt_ep *ep;
2911 struct usb_device *udev = td->urb->dev;
2912
2913 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2914 "Cleaning up stalled endpoint ring");
2915 ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2916 /* We need to move the HW's dequeue pointer past this TD,
2917 * or it will attempt to resend it on the next doorbell ring.
2918 */
2919 xhci_find_new_dequeue_state(xhci, udev->slot_id,
2920 ep_index, ep->stopped_stream, td, &deq_state);
2921
2922 if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2923 return;
2924
2925 /* HW with the reset endpoint quirk will use the saved dequeue state to
2926 * issue a configure endpoint command later.
2927 */
2928 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2929 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2930 "Queueing new dequeue state");
2931 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2932 ep_index, ep->stopped_stream, &deq_state);
2933 } else {
2934 /* Better hope no one uses the input context between now and the
2935 * reset endpoint completion!
2936 * XXX: No idea how this hardware will react when stream rings
2937 * are enabled.
2938 */
2939 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2940 "Setting up input context for "
2941 "configure endpoint command");
2942 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2943 ep_index, &deq_state);
2944 }
2945 }
2946
2947 /* Called when clearing halted device. The core should have sent the control
2948 * message to clear the device halt condition. The host side of the halt should
2949 * already be cleared with a reset endpoint command issued when the STALL tx
2950 * event was received.
2951 *
2952 * Context: in_interrupt
2953 */
2954
2955 void xhci_endpoint_reset(struct usb_hcd *hcd,
2956 struct usb_host_endpoint *ep)
2957 {
2958 struct xhci_hcd *xhci;
2959
2960 xhci = hcd_to_xhci(hcd);
2961
2962 /*
2963 * We might need to implement the config ep cmd in xhci 4.8.1 note:
2964 * The Reset Endpoint Command may only be issued to endpoints in the
2965 * Halted state. If software wishes reset the Data Toggle or Sequence
2966 * Number of an endpoint that isn't in the Halted state, then software
2967 * may issue a Configure Endpoint Command with the Drop and Add bits set
2968 * for the target endpoint. that is in the Stopped state.
2969 */
2970
2971 /* For now just print debug to follow the situation */
2972 xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
2973 ep->desc.bEndpointAddress);
2974 }
2975
2976 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2977 struct usb_device *udev, struct usb_host_endpoint *ep,
2978 unsigned int slot_id)
2979 {
2980 int ret;
2981 unsigned int ep_index;
2982 unsigned int ep_state;
2983
2984 if (!ep)
2985 return -EINVAL;
2986 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2987 if (ret <= 0)
2988 return -EINVAL;
2989 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
2990 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2991 " descriptor for ep 0x%x does not support streams\n",
2992 ep->desc.bEndpointAddress);
2993 return -EINVAL;
2994 }
2995
2996 ep_index = xhci_get_endpoint_index(&ep->desc);
2997 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2998 if (ep_state & EP_HAS_STREAMS ||
2999 ep_state & EP_GETTING_STREAMS) {
3000 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3001 "already has streams set up.\n",
3002 ep->desc.bEndpointAddress);
3003 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3004 "dynamic stream context array reallocation.\n");
3005 return -EINVAL;
3006 }
3007 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3008 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3009 "endpoint 0x%x; URBs are pending.\n",
3010 ep->desc.bEndpointAddress);
3011 return -EINVAL;
3012 }
3013 return 0;
3014 }
3015
3016 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3017 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3018 {
3019 unsigned int max_streams;
3020
3021 /* The stream context array size must be a power of two */
3022 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3023 /*
3024 * Find out how many primary stream array entries the host controller
3025 * supports. Later we may use secondary stream arrays (similar to 2nd
3026 * level page entries), but that's an optional feature for xHCI host
3027 * controllers. xHCs must support at least 4 stream IDs.
3028 */
3029 max_streams = HCC_MAX_PSA(xhci->hcc_params);
3030 if (*num_stream_ctxs > max_streams) {
3031 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3032 max_streams);
3033 *num_stream_ctxs = max_streams;
3034 *num_streams = max_streams;
3035 }
3036 }
3037
3038 /* Returns an error code if one of the endpoint already has streams.
3039 * This does not change any data structures, it only checks and gathers
3040 * information.
3041 */
3042 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3043 struct usb_device *udev,
3044 struct usb_host_endpoint **eps, unsigned int num_eps,
3045 unsigned int *num_streams, u32 *changed_ep_bitmask)
3046 {
3047 unsigned int max_streams;
3048 unsigned int endpoint_flag;
3049 int i;
3050 int ret;
3051
3052 for (i = 0; i < num_eps; i++) {
3053 ret = xhci_check_streams_endpoint(xhci, udev,
3054 eps[i], udev->slot_id);
3055 if (ret < 0)
3056 return ret;
3057
3058 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3059 if (max_streams < (*num_streams - 1)) {
3060 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3061 eps[i]->desc.bEndpointAddress,
3062 max_streams);
3063 *num_streams = max_streams+1;
3064 }
3065
3066 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3067 if (*changed_ep_bitmask & endpoint_flag)
3068 return -EINVAL;
3069 *changed_ep_bitmask |= endpoint_flag;
3070 }
3071 return 0;
3072 }
3073
3074 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3075 struct usb_device *udev,
3076 struct usb_host_endpoint **eps, unsigned int num_eps)
3077 {
3078 u32 changed_ep_bitmask = 0;
3079 unsigned int slot_id;
3080 unsigned int ep_index;
3081 unsigned int ep_state;
3082 int i;
3083
3084 slot_id = udev->slot_id;
3085 if (!xhci->devs[slot_id])
3086 return 0;
3087
3088 for (i = 0; i < num_eps; i++) {
3089 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3090 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3091 /* Are streams already being freed for the endpoint? */
3092 if (ep_state & EP_GETTING_NO_STREAMS) {
3093 xhci_warn(xhci, "WARN Can't disable streams for "
3094 "endpoint 0x%x, "
3095 "streams are being disabled already\n",
3096 eps[i]->desc.bEndpointAddress);
3097 return 0;
3098 }
3099 /* Are there actually any streams to free? */
3100 if (!(ep_state & EP_HAS_STREAMS) &&
3101 !(ep_state & EP_GETTING_STREAMS)) {
3102 xhci_warn(xhci, "WARN Can't disable streams for "
3103 "endpoint 0x%x, "
3104 "streams are already disabled!\n",
3105 eps[i]->desc.bEndpointAddress);
3106 xhci_warn(xhci, "WARN xhci_free_streams() called "
3107 "with non-streams endpoint\n");
3108 return 0;
3109 }
3110 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3111 }
3112 return changed_ep_bitmask;
3113 }
3114
3115 /*
3116 * The USB device drivers use this function (through the HCD interface in USB
3117 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
3118 * coordinate mass storage command queueing across multiple endpoints (basically
3119 * a stream ID == a task ID).
3120 *
3121 * Setting up streams involves allocating the same size stream context array
3122 * for each endpoint and issuing a configure endpoint command for all endpoints.
3123 *
3124 * Don't allow the call to succeed if one endpoint only supports one stream
3125 * (which means it doesn't support streams at all).
3126 *
3127 * Drivers may get less stream IDs than they asked for, if the host controller
3128 * hardware or endpoints claim they can't support the number of requested
3129 * stream IDs.
3130 */
3131 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3132 struct usb_host_endpoint **eps, unsigned int num_eps,
3133 unsigned int num_streams, gfp_t mem_flags)
3134 {
3135 int i, ret;
3136 struct xhci_hcd *xhci;
3137 struct xhci_virt_device *vdev;
3138 struct xhci_command *config_cmd;
3139 struct xhci_input_control_ctx *ctrl_ctx;
3140 unsigned int ep_index;
3141 unsigned int num_stream_ctxs;
3142 unsigned long flags;
3143 u32 changed_ep_bitmask = 0;
3144
3145 if (!eps)
3146 return -EINVAL;
3147
3148 /* Add one to the number of streams requested to account for
3149 * stream 0 that is reserved for xHCI usage.
3150 */
3151 num_streams += 1;
3152 xhci = hcd_to_xhci(hcd);
3153 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3154 num_streams);
3155
3156 /* MaxPSASize value 0 (2 streams) means streams are not supported */
3157 if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3158 HCC_MAX_PSA(xhci->hcc_params) < 4) {
3159 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3160 return -ENOSYS;
3161 }
3162
3163 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3164 if (!config_cmd) {
3165 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3166 return -ENOMEM;
3167 }
3168 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3169 if (!ctrl_ctx) {
3170 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3171 __func__);
3172 xhci_free_command(xhci, config_cmd);
3173 return -ENOMEM;
3174 }
3175
3176 /* Check to make sure all endpoints are not already configured for
3177 * streams. While we're at it, find the maximum number of streams that
3178 * all the endpoints will support and check for duplicate endpoints.
3179 */
3180 spin_lock_irqsave(&xhci->lock, flags);
3181 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3182 num_eps, &num_streams, &changed_ep_bitmask);
3183 if (ret < 0) {
3184 xhci_free_command(xhci, config_cmd);
3185 spin_unlock_irqrestore(&xhci->lock, flags);
3186 return ret;
3187 }
3188 if (num_streams <= 1) {
3189 xhci_warn(xhci, "WARN: endpoints can't handle "
3190 "more than one stream.\n");
3191 xhci_free_command(xhci, config_cmd);
3192 spin_unlock_irqrestore(&xhci->lock, flags);
3193 return -EINVAL;
3194 }
3195 vdev = xhci->devs[udev->slot_id];
3196 /* Mark each endpoint as being in transition, so
3197 * xhci_urb_enqueue() will reject all URBs.
3198 */
3199 for (i = 0; i < num_eps; i++) {
3200 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3201 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3202 }
3203 spin_unlock_irqrestore(&xhci->lock, flags);
3204
3205 /* Setup internal data structures and allocate HW data structures for
3206 * streams (but don't install the HW structures in the input context
3207 * until we're sure all memory allocation succeeded).
3208 */
3209 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3210 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3211 num_stream_ctxs, num_streams);
3212
3213 for (i = 0; i < num_eps; i++) {
3214 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3215 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3216 num_stream_ctxs,
3217 num_streams, mem_flags);
3218 if (!vdev->eps[ep_index].stream_info)
3219 goto cleanup;
3220 /* Set maxPstreams in endpoint context and update deq ptr to
3221 * point to stream context array. FIXME
3222 */
3223 }
3224
3225 /* Set up the input context for a configure endpoint command. */
3226 for (i = 0; i < num_eps; i++) {
3227 struct xhci_ep_ctx *ep_ctx;
3228
3229 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3230 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3231
3232 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3233 vdev->out_ctx, ep_index);
3234 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3235 vdev->eps[ep_index].stream_info);
3236 }
3237 /* Tell the HW to drop its old copy of the endpoint context info
3238 * and add the updated copy from the input context.
3239 */
3240 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3241 vdev->out_ctx, ctrl_ctx,
3242 changed_ep_bitmask, changed_ep_bitmask);
3243
3244 /* Issue and wait for the configure endpoint command */
3245 ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3246 false, false);
3247
3248 /* xHC rejected the configure endpoint command for some reason, so we
3249 * leave the old ring intact and free our internal streams data
3250 * structure.
3251 */
3252 if (ret < 0)
3253 goto cleanup;
3254
3255 spin_lock_irqsave(&xhci->lock, flags);
3256 for (i = 0; i < num_eps; i++) {
3257 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3258 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3259 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3260 udev->slot_id, ep_index);
3261 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3262 }
3263 xhci_free_command(xhci, config_cmd);
3264 spin_unlock_irqrestore(&xhci->lock, flags);
3265
3266 /* Subtract 1 for stream 0, which drivers can't use */
3267 return num_streams - 1;
3268
3269 cleanup:
3270 /* If it didn't work, free the streams! */
3271 for (i = 0; i < num_eps; i++) {
3272 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3273 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3274 vdev->eps[ep_index].stream_info = NULL;
3275 /* FIXME Unset maxPstreams in endpoint context and
3276 * update deq ptr to point to normal string ring.
3277 */
3278 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3279 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3280 xhci_endpoint_zero(xhci, vdev, eps[i]);
3281 }
3282 xhci_free_command(xhci, config_cmd);
3283 return -ENOMEM;
3284 }
3285
3286 /* Transition the endpoint from using streams to being a "normal" endpoint
3287 * without streams.
3288 *
3289 * Modify the endpoint context state, submit a configure endpoint command,
3290 * and free all endpoint rings for streams if that completes successfully.
3291 */
3292 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3293 struct usb_host_endpoint **eps, unsigned int num_eps,
3294 gfp_t mem_flags)
3295 {
3296 int i, ret;
3297 struct xhci_hcd *xhci;
3298 struct xhci_virt_device *vdev;
3299 struct xhci_command *command;
3300 struct xhci_input_control_ctx *ctrl_ctx;
3301 unsigned int ep_index;
3302 unsigned long flags;
3303 u32 changed_ep_bitmask;
3304
3305 xhci = hcd_to_xhci(hcd);
3306 vdev = xhci->devs[udev->slot_id];
3307
3308 /* Set up a configure endpoint command to remove the streams rings */
3309 spin_lock_irqsave(&xhci->lock, flags);
3310 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3311 udev, eps, num_eps);
3312 if (changed_ep_bitmask == 0) {
3313 spin_unlock_irqrestore(&xhci->lock, flags);
3314 return -EINVAL;
3315 }
3316
3317 /* Use the xhci_command structure from the first endpoint. We may have
3318 * allocated too many, but the driver may call xhci_free_streams() for
3319 * each endpoint it grouped into one call to xhci_alloc_streams().
3320 */
3321 ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3322 command = vdev->eps[ep_index].stream_info->free_streams_command;
3323 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3324 if (!ctrl_ctx) {
3325 spin_unlock_irqrestore(&xhci->lock, flags);
3326 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3327 __func__);
3328 return -EINVAL;
3329 }
3330
3331 for (i = 0; i < num_eps; i++) {
3332 struct xhci_ep_ctx *ep_ctx;
3333
3334 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3335 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3336 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3337 EP_GETTING_NO_STREAMS;
3338
3339 xhci_endpoint_copy(xhci, command->in_ctx,
3340 vdev->out_ctx, ep_index);
3341 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3342 &vdev->eps[ep_index]);
3343 }
3344 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3345 vdev->out_ctx, ctrl_ctx,
3346 changed_ep_bitmask, changed_ep_bitmask);
3347 spin_unlock_irqrestore(&xhci->lock, flags);
3348
3349 /* Issue and wait for the configure endpoint command,
3350 * which must succeed.
3351 */
3352 ret = xhci_configure_endpoint(xhci, udev, command,
3353 false, true);
3354
3355 /* xHC rejected the configure endpoint command for some reason, so we
3356 * leave the streams rings intact.
3357 */
3358 if (ret < 0)
3359 return ret;
3360
3361 spin_lock_irqsave(&xhci->lock, flags);
3362 for (i = 0; i < num_eps; i++) {
3363 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3364 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3365 vdev->eps[ep_index].stream_info = NULL;
3366 /* FIXME Unset maxPstreams in endpoint context and
3367 * update deq ptr to point to normal string ring.
3368 */
3369 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3370 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3371 }
3372 spin_unlock_irqrestore(&xhci->lock, flags);
3373
3374 return 0;
3375 }
3376
3377 /*
3378 * Deletes endpoint resources for endpoints that were active before a Reset
3379 * Device command, or a Disable Slot command. The Reset Device command leaves
3380 * the control endpoint intact, whereas the Disable Slot command deletes it.
3381 *
3382 * Must be called with xhci->lock held.
3383 */
3384 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3385 struct xhci_virt_device *virt_dev, bool drop_control_ep)
3386 {
3387 int i;
3388 unsigned int num_dropped_eps = 0;
3389 unsigned int drop_flags = 0;
3390
3391 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3392 if (virt_dev->eps[i].ring) {
3393 drop_flags |= 1 << i;
3394 num_dropped_eps++;
3395 }
3396 }
3397 xhci->num_active_eps -= num_dropped_eps;
3398 if (num_dropped_eps)
3399 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3400 "Dropped %u ep ctxs, flags = 0x%x, "
3401 "%u now active.",
3402 num_dropped_eps, drop_flags,
3403 xhci->num_active_eps);
3404 }
3405
3406 /*
3407 * This submits a Reset Device Command, which will set the device state to 0,
3408 * set the device address to 0, and disable all the endpoints except the default
3409 * control endpoint. The USB core should come back and call
3410 * xhci_address_device(), and then re-set up the configuration. If this is
3411 * called because of a usb_reset_and_verify_device(), then the old alternate
3412 * settings will be re-installed through the normal bandwidth allocation
3413 * functions.
3414 *
3415 * Wait for the Reset Device command to finish. Remove all structures
3416 * associated with the endpoints that were disabled. Clear the input device
3417 * structure? Cache the rings? Reset the control endpoint 0 max packet size?
3418 *
3419 * If the virt_dev to be reset does not exist or does not match the udev,
3420 * it means the device is lost, possibly due to the xHC restore error and
3421 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3422 * re-allocate the device.
3423 */
3424 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3425 {
3426 int ret, i;
3427 unsigned long flags;
3428 struct xhci_hcd *xhci;
3429 unsigned int slot_id;
3430 struct xhci_virt_device *virt_dev;
3431 struct xhci_command *reset_device_cmd;
3432 int last_freed_endpoint;
3433 struct xhci_slot_ctx *slot_ctx;
3434 int old_active_eps = 0;
3435
3436 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3437 if (ret <= 0)
3438 return ret;
3439 xhci = hcd_to_xhci(hcd);
3440 slot_id = udev->slot_id;
3441 virt_dev = xhci->devs[slot_id];
3442 if (!virt_dev) {
3443 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3444 "not exist. Re-allocate the device\n", slot_id);
3445 ret = xhci_alloc_dev(hcd, udev);
3446 if (ret == 1)
3447 return 0;
3448 else
3449 return -EINVAL;
3450 }
3451
3452 if (virt_dev->tt_info)
3453 old_active_eps = virt_dev->tt_info->active_eps;
3454
3455 if (virt_dev->udev != udev) {
3456 /* If the virt_dev and the udev does not match, this virt_dev
3457 * may belong to another udev.
3458 * Re-allocate the device.
3459 */
3460 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3461 "not match the udev. Re-allocate the device\n",
3462 slot_id);
3463 ret = xhci_alloc_dev(hcd, udev);
3464 if (ret == 1)
3465 return 0;
3466 else
3467 return -EINVAL;
3468 }
3469
3470 /* If device is not setup, there is no point in resetting it */
3471 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3472 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3473 SLOT_STATE_DISABLED)
3474 return 0;
3475
3476 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3477 /* Allocate the command structure that holds the struct completion.
3478 * Assume we're in process context, since the normal device reset
3479 * process has to wait for the device anyway. Storage devices are
3480 * reset as part of error handling, so use GFP_NOIO instead of
3481 * GFP_KERNEL.
3482 */
3483 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3484 if (!reset_device_cmd) {
3485 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3486 return -ENOMEM;
3487 }
3488
3489 /* Attempt to submit the Reset Device command to the command ring */
3490 spin_lock_irqsave(&xhci->lock, flags);
3491
3492 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3493 if (ret) {
3494 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3495 spin_unlock_irqrestore(&xhci->lock, flags);
3496 goto command_cleanup;
3497 }
3498 xhci_ring_cmd_db(xhci);
3499 spin_unlock_irqrestore(&xhci->lock, flags);
3500
3501 /* Wait for the Reset Device command to finish */
3502 wait_for_completion(reset_device_cmd->completion);
3503
3504 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3505 * unless we tried to reset a slot ID that wasn't enabled,
3506 * or the device wasn't in the addressed or configured state.
3507 */
3508 ret = reset_device_cmd->status;
3509 switch (ret) {
3510 case COMP_CMD_ABORT:
3511 case COMP_CMD_STOP:
3512 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3513 ret = -ETIME;
3514 goto command_cleanup;
3515 case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3516 case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3517 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3518 slot_id,
3519 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3520 xhci_dbg(xhci, "Not freeing device rings.\n");
3521 /* Don't treat this as an error. May change my mind later. */
3522 ret = 0;
3523 goto command_cleanup;
3524 case COMP_SUCCESS:
3525 xhci_dbg(xhci, "Successful reset device command.\n");
3526 break;
3527 default:
3528 if (xhci_is_vendor_info_code(xhci, ret))
3529 break;
3530 xhci_warn(xhci, "Unknown completion code %u for "
3531 "reset device command.\n", ret);
3532 ret = -EINVAL;
3533 goto command_cleanup;
3534 }
3535
3536 /* Free up host controller endpoint resources */
3537 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3538 spin_lock_irqsave(&xhci->lock, flags);
3539 /* Don't delete the default control endpoint resources */
3540 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3541 spin_unlock_irqrestore(&xhci->lock, flags);
3542 }
3543
3544 /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3545 last_freed_endpoint = 1;
3546 for (i = 1; i < 31; ++i) {
3547 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3548
3549 if (ep->ep_state & EP_HAS_STREAMS) {
3550 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3551 xhci_get_endpoint_address(i));
3552 xhci_free_stream_info(xhci, ep->stream_info);
3553 ep->stream_info = NULL;
3554 ep->ep_state &= ~EP_HAS_STREAMS;
3555 }
3556
3557 if (ep->ring) {
3558 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3559 last_freed_endpoint = i;
3560 }
3561 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3562 xhci_drop_ep_from_interval_table(xhci,
3563 &virt_dev->eps[i].bw_info,
3564 virt_dev->bw_table,
3565 udev,
3566 &virt_dev->eps[i],
3567 virt_dev->tt_info);
3568 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3569 }
3570 /* If necessary, update the number of active TTs on this root port */
3571 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3572
3573 xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3574 xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3575 ret = 0;
3576
3577 command_cleanup:
3578 xhci_free_command(xhci, reset_device_cmd);
3579 return ret;
3580 }
3581
3582 /*
3583 * At this point, the struct usb_device is about to go away, the device has
3584 * disconnected, and all traffic has been stopped and the endpoints have been
3585 * disabled. Free any HC data structures associated with that device.
3586 */
3587 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3588 {
3589 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3590 struct xhci_virt_device *virt_dev;
3591 unsigned long flags;
3592 u32 state;
3593 int i, ret;
3594 struct xhci_command *command;
3595
3596 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3597 if (!command)
3598 return;
3599
3600 #ifndef CONFIG_USB_DEFAULT_PERSIST
3601 /*
3602 * We called pm_runtime_get_noresume when the device was attached.
3603 * Decrement the counter here to allow controller to runtime suspend
3604 * if no devices remain.
3605 */
3606 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3607 pm_runtime_put_noidle(hcd->self.controller);
3608 #endif
3609
3610 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3611 /* If the host is halted due to driver unload, we still need to free the
3612 * device.
3613 */
3614 if (ret <= 0 && ret != -ENODEV) {
3615 kfree(command);
3616 return;
3617 }
3618
3619 virt_dev = xhci->devs[udev->slot_id];
3620
3621 /* Stop any wayward timer functions (which may grab the lock) */
3622 for (i = 0; i < 31; ++i) {
3623 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3624 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3625 }
3626
3627 spin_lock_irqsave(&xhci->lock, flags);
3628 /* Don't disable the slot if the host controller is dead. */
3629 state = readl(&xhci->op_regs->status);
3630 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3631 (xhci->xhc_state & XHCI_STATE_HALTED)) {
3632 xhci_free_virt_device(xhci, udev->slot_id);
3633 spin_unlock_irqrestore(&xhci->lock, flags);
3634 kfree(command);
3635 return;
3636 }
3637
3638 if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3639 udev->slot_id)) {
3640 spin_unlock_irqrestore(&xhci->lock, flags);
3641 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3642 return;
3643 }
3644 xhci_ring_cmd_db(xhci);
3645 spin_unlock_irqrestore(&xhci->lock, flags);
3646
3647 /*
3648 * Event command completion handler will free any data structures
3649 * associated with the slot. XXX Can free sleep?
3650 */
3651 }
3652
3653 /*
3654 * Checks if we have enough host controller resources for the default control
3655 * endpoint.
3656 *
3657 * Must be called with xhci->lock held.
3658 */
3659 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3660 {
3661 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3662 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3663 "Not enough ep ctxs: "
3664 "%u active, need to add 1, limit is %u.",
3665 xhci->num_active_eps, xhci->limit_active_eps);
3666 return -ENOMEM;
3667 }
3668 xhci->num_active_eps += 1;
3669 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3670 "Adding 1 ep ctx, %u now active.",
3671 xhci->num_active_eps);
3672 return 0;
3673 }
3674
3675
3676 /*
3677 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3678 * timed out, or allocating memory failed. Returns 1 on success.
3679 */
3680 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3681 {
3682 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3683 unsigned long flags;
3684 int ret, slot_id;
3685 struct xhci_command *command;
3686
3687 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3688 if (!command)
3689 return 0;
3690
3691 /* xhci->slot_id and xhci->addr_dev are not thread-safe */
3692 mutex_lock(&xhci->mutex);
3693 spin_lock_irqsave(&xhci->lock, flags);
3694 command->completion = &xhci->addr_dev;
3695 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3696 if (ret) {
3697 spin_unlock_irqrestore(&xhci->lock, flags);
3698 mutex_unlock(&xhci->mutex);
3699 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3700 kfree(command);
3701 return 0;
3702 }
3703 xhci_ring_cmd_db(xhci);
3704 spin_unlock_irqrestore(&xhci->lock, flags);
3705
3706 wait_for_completion(command->completion);
3707 slot_id = xhci->slot_id;
3708 mutex_unlock(&xhci->mutex);
3709
3710 if (!slot_id || command->status != COMP_SUCCESS) {
3711 xhci_err(xhci, "Error while assigning device slot ID\n");
3712 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3713 HCS_MAX_SLOTS(
3714 readl(&xhci->cap_regs->hcs_params1)));
3715 kfree(command);
3716 return 0;
3717 }
3718
3719 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3720 spin_lock_irqsave(&xhci->lock, flags);
3721 ret = xhci_reserve_host_control_ep_resources(xhci);
3722 if (ret) {
3723 spin_unlock_irqrestore(&xhci->lock, flags);
3724 xhci_warn(xhci, "Not enough host resources, "
3725 "active endpoint contexts = %u\n",
3726 xhci->num_active_eps);
3727 goto disable_slot;
3728 }
3729 spin_unlock_irqrestore(&xhci->lock, flags);
3730 }
3731 /* Use GFP_NOIO, since this function can be called from
3732 * xhci_discover_or_reset_device(), which may be called as part of
3733 * mass storage driver error handling.
3734 */
3735 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3736 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3737 goto disable_slot;
3738 }
3739 udev->slot_id = slot_id;
3740
3741 #ifndef CONFIG_USB_DEFAULT_PERSIST
3742 /*
3743 * If resetting upon resume, we can't put the controller into runtime
3744 * suspend if there is a device attached.
3745 */
3746 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3747 pm_runtime_get_noresume(hcd->self.controller);
3748 #endif
3749
3750
3751 kfree(command);
3752 /* Is this a LS or FS device under a HS hub? */
3753 /* Hub or peripherial? */
3754 return 1;
3755
3756 disable_slot:
3757 /* Disable slot, if we can do it without mem alloc */
3758 spin_lock_irqsave(&xhci->lock, flags);
3759 command->completion = NULL;
3760 command->status = 0;
3761 if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3762 udev->slot_id))
3763 xhci_ring_cmd_db(xhci);
3764 spin_unlock_irqrestore(&xhci->lock, flags);
3765 return 0;
3766 }
3767
3768 /*
3769 * Issue an Address Device command and optionally send a corresponding
3770 * SetAddress request to the device.
3771 */
3772 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3773 enum xhci_setup_dev setup)
3774 {
3775 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3776 unsigned long flags;
3777 struct xhci_virt_device *virt_dev;
3778 int ret = 0;
3779 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3780 struct xhci_slot_ctx *slot_ctx;
3781 struct xhci_input_control_ctx *ctrl_ctx;
3782 u64 temp_64;
3783 struct xhci_command *command = NULL;
3784
3785 mutex_lock(&xhci->mutex);
3786
3787 if (xhci->xhc_state) /* dying, removing or halted */
3788 goto out;
3789
3790 if (!udev->slot_id) {
3791 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3792 "Bad Slot ID %d", udev->slot_id);
3793 ret = -EINVAL;
3794 goto out;
3795 }
3796
3797 virt_dev = xhci->devs[udev->slot_id];
3798
3799 if (WARN_ON(!virt_dev)) {
3800 /*
3801 * In plug/unplug torture test with an NEC controller,
3802 * a zero-dereference was observed once due to virt_dev = 0.
3803 * Print useful debug rather than crash if it is observed again!
3804 */
3805 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3806 udev->slot_id);
3807 ret = -EINVAL;
3808 goto out;
3809 }
3810
3811 if (setup == SETUP_CONTEXT_ONLY) {
3812 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3813 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3814 SLOT_STATE_DEFAULT) {
3815 xhci_dbg(xhci, "Slot already in default state\n");
3816 goto out;
3817 }
3818 }
3819
3820 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3821 if (!command) {
3822 ret = -ENOMEM;
3823 goto out;
3824 }
3825
3826 command->in_ctx = virt_dev->in_ctx;
3827 command->completion = &xhci->addr_dev;
3828
3829 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3830 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3831 if (!ctrl_ctx) {
3832 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3833 __func__);
3834 ret = -EINVAL;
3835 goto out;
3836 }
3837 /*
3838 * If this is the first Set Address since device plug-in or
3839 * virt_device realloaction after a resume with an xHCI power loss,
3840 * then set up the slot context.
3841 */
3842 if (!slot_ctx->dev_info)
3843 xhci_setup_addressable_virt_dev(xhci, udev);
3844 /* Otherwise, update the control endpoint ring enqueue pointer. */
3845 else
3846 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3847 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3848 ctrl_ctx->drop_flags = 0;
3849
3850 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3851 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3852 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3853 le32_to_cpu(slot_ctx->dev_info) >> 27);
3854
3855 spin_lock_irqsave(&xhci->lock, flags);
3856 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3857 udev->slot_id, setup);
3858 if (ret) {
3859 spin_unlock_irqrestore(&xhci->lock, flags);
3860 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3861 "FIXME: allocate a command ring segment");
3862 goto out;
3863 }
3864 xhci_ring_cmd_db(xhci);
3865 spin_unlock_irqrestore(&xhci->lock, flags);
3866
3867 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3868 wait_for_completion(command->completion);
3869
3870 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3871 * the SetAddress() "recovery interval" required by USB and aborting the
3872 * command on a timeout.
3873 */
3874 switch (command->status) {
3875 case COMP_CMD_ABORT:
3876 case COMP_CMD_STOP:
3877 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3878 ret = -ETIME;
3879 break;
3880 case COMP_CTX_STATE:
3881 case COMP_EBADSLT:
3882 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3883 act, udev->slot_id);
3884 ret = -EINVAL;
3885 break;
3886 case COMP_TX_ERR:
3887 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3888 ret = -EPROTO;
3889 break;
3890 case COMP_DEV_ERR:
3891 dev_warn(&udev->dev,
3892 "ERROR: Incompatible device for setup %s command\n", act);
3893 ret = -ENODEV;
3894 break;
3895 case COMP_SUCCESS:
3896 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3897 "Successful setup %s command", act);
3898 break;
3899 default:
3900 xhci_err(xhci,
3901 "ERROR: unexpected setup %s command completion code 0x%x.\n",
3902 act, command->status);
3903 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3904 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3905 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3906 ret = -EINVAL;
3907 break;
3908 }
3909 if (ret)
3910 goto out;
3911 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3912 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3913 "Op regs DCBAA ptr = %#016llx", temp_64);
3914 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3915 "Slot ID %d dcbaa entry @%p = %#016llx",
3916 udev->slot_id,
3917 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3918 (unsigned long long)
3919 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3920 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3921 "Output Context DMA address = %#08llx",
3922 (unsigned long long)virt_dev->out_ctx->dma);
3923 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3924 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3925 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3926 le32_to_cpu(slot_ctx->dev_info) >> 27);
3927 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3928 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3929 /*
3930 * USB core uses address 1 for the roothubs, so we add one to the
3931 * address given back to us by the HC.
3932 */
3933 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3934 trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3935 le32_to_cpu(slot_ctx->dev_info) >> 27);
3936 /* Zero the input context control for later use */
3937 ctrl_ctx->add_flags = 0;
3938 ctrl_ctx->drop_flags = 0;
3939
3940 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3941 "Internal device address = %d",
3942 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3943 out:
3944 mutex_unlock(&xhci->mutex);
3945 kfree(command);
3946 return ret;
3947 }
3948
3949 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3950 {
3951 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3952 }
3953
3954 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3955 {
3956 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3957 }
3958
3959 /*
3960 * Transfer the port index into real index in the HW port status
3961 * registers. Caculate offset between the port's PORTSC register
3962 * and port status base. Divide the number of per port register
3963 * to get the real index. The raw port number bases 1.
3964 */
3965 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3966 {
3967 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3968 __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3969 __le32 __iomem *addr;
3970 int raw_port;
3971
3972 if (hcd->speed < HCD_USB3)
3973 addr = xhci->usb2_ports[port1 - 1];
3974 else
3975 addr = xhci->usb3_ports[port1 - 1];
3976
3977 raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3978 return raw_port;
3979 }
3980
3981 /*
3982 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3983 * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
3984 */
3985 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3986 struct usb_device *udev, u16 max_exit_latency)
3987 {
3988 struct xhci_virt_device *virt_dev;
3989 struct xhci_command *command;
3990 struct xhci_input_control_ctx *ctrl_ctx;
3991 struct xhci_slot_ctx *slot_ctx;
3992 unsigned long flags;
3993 int ret;
3994
3995 spin_lock_irqsave(&xhci->lock, flags);
3996
3997 virt_dev = xhci->devs[udev->slot_id];
3998
3999 /*
4000 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4001 * xHC was re-initialized. Exit latency will be set later after
4002 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4003 */
4004
4005 if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4006 spin_unlock_irqrestore(&xhci->lock, flags);
4007 return 0;
4008 }
4009
4010 /* Attempt to issue an Evaluate Context command to change the MEL. */
4011 command = xhci->lpm_command;
4012 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4013 if (!ctrl_ctx) {
4014 spin_unlock_irqrestore(&xhci->lock, flags);
4015 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4016 __func__);
4017 return -ENOMEM;
4018 }
4019
4020 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4021 spin_unlock_irqrestore(&xhci->lock, flags);
4022
4023 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4024 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4025 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4026 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4027 slot_ctx->dev_state = 0;
4028
4029 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4030 "Set up evaluate context for LPM MEL change.");
4031 xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4032 xhci_dbg_ctx(xhci, command->in_ctx, 0);
4033
4034 /* Issue and wait for the evaluate context command. */
4035 ret = xhci_configure_endpoint(xhci, udev, command,
4036 true, true);
4037 xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4038 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4039
4040 if (!ret) {
4041 spin_lock_irqsave(&xhci->lock, flags);
4042 virt_dev->current_mel = max_exit_latency;
4043 spin_unlock_irqrestore(&xhci->lock, flags);
4044 }
4045 return ret;
4046 }
4047
4048 #ifdef CONFIG_PM
4049
4050 /* BESL to HIRD Encoding array for USB2 LPM */
4051 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4052 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4053
4054 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4055 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4056 struct usb_device *udev)
4057 {
4058 int u2del, besl, besl_host;
4059 int besl_device = 0;
4060 u32 field;
4061
4062 u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4063 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4064
4065 if (field & USB_BESL_SUPPORT) {
4066 for (besl_host = 0; besl_host < 16; besl_host++) {
4067 if (xhci_besl_encoding[besl_host] >= u2del)
4068 break;
4069 }
4070 /* Use baseline BESL value as default */
4071 if (field & USB_BESL_BASELINE_VALID)
4072 besl_device = USB_GET_BESL_BASELINE(field);
4073 else if (field & USB_BESL_DEEP_VALID)
4074 besl_device = USB_GET_BESL_DEEP(field);
4075 } else {
4076 if (u2del <= 50)
4077 besl_host = 0;
4078 else
4079 besl_host = (u2del - 51) / 75 + 1;
4080 }
4081
4082 besl = besl_host + besl_device;
4083 if (besl > 15)
4084 besl = 15;
4085
4086 return besl;
4087 }
4088
4089 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4090 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4091 {
4092 u32 field;
4093 int l1;
4094 int besld = 0;
4095 int hirdm = 0;
4096
4097 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4098
4099 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4100 l1 = udev->l1_params.timeout / 256;
4101
4102 /* device has preferred BESLD */
4103 if (field & USB_BESL_DEEP_VALID) {
4104 besld = USB_GET_BESL_DEEP(field);
4105 hirdm = 1;
4106 }
4107
4108 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4109 }
4110
4111 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4112 struct usb_device *udev, int enable)
4113 {
4114 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4115 __le32 __iomem **port_array;
4116 __le32 __iomem *pm_addr, *hlpm_addr;
4117 u32 pm_val, hlpm_val, field;
4118 unsigned int port_num;
4119 unsigned long flags;
4120 int hird, exit_latency;
4121 int ret;
4122
4123 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4124 !udev->lpm_capable)
4125 return -EPERM;
4126
4127 if (!udev->parent || udev->parent->parent ||
4128 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4129 return -EPERM;
4130
4131 if (udev->usb2_hw_lpm_capable != 1)
4132 return -EPERM;
4133
4134 spin_lock_irqsave(&xhci->lock, flags);
4135
4136 port_array = xhci->usb2_ports;
4137 port_num = udev->portnum - 1;
4138 pm_addr = port_array[port_num] + PORTPMSC;
4139 pm_val = readl(pm_addr);
4140 hlpm_addr = port_array[port_num] + PORTHLPMC;
4141 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4142
4143 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4144 enable ? "enable" : "disable", port_num + 1);
4145
4146 if (enable) {
4147 /* Host supports BESL timeout instead of HIRD */
4148 if (udev->usb2_hw_lpm_besl_capable) {
4149 /* if device doesn't have a preferred BESL value use a
4150 * default one which works with mixed HIRD and BESL
4151 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4152 */
4153 if ((field & USB_BESL_SUPPORT) &&
4154 (field & USB_BESL_BASELINE_VALID))
4155 hird = USB_GET_BESL_BASELINE(field);
4156 else
4157 hird = udev->l1_params.besl;
4158
4159 exit_latency = xhci_besl_encoding[hird];
4160 spin_unlock_irqrestore(&xhci->lock, flags);
4161
4162 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4163 * input context for link powermanagement evaluate
4164 * context commands. It is protected by hcd->bandwidth
4165 * mutex and is shared by all devices. We need to set
4166 * the max ext latency in USB 2 BESL LPM as well, so
4167 * use the same mutex and xhci_change_max_exit_latency()
4168 */
4169 mutex_lock(hcd->bandwidth_mutex);
4170 ret = xhci_change_max_exit_latency(xhci, udev,
4171 exit_latency);
4172 mutex_unlock(hcd->bandwidth_mutex);
4173
4174 if (ret < 0)
4175 return ret;
4176 spin_lock_irqsave(&xhci->lock, flags);
4177
4178 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4179 writel(hlpm_val, hlpm_addr);
4180 /* flush write */
4181 readl(hlpm_addr);
4182 } else {
4183 hird = xhci_calculate_hird_besl(xhci, udev);
4184 }
4185
4186 pm_val &= ~PORT_HIRD_MASK;
4187 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4188 writel(pm_val, pm_addr);
4189 pm_val = readl(pm_addr);
4190 pm_val |= PORT_HLE;
4191 writel(pm_val, pm_addr);
4192 /* flush write */
4193 readl(pm_addr);
4194 } else {
4195 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4196 writel(pm_val, pm_addr);
4197 /* flush write */
4198 readl(pm_addr);
4199 if (udev->usb2_hw_lpm_besl_capable) {
4200 spin_unlock_irqrestore(&xhci->lock, flags);
4201 mutex_lock(hcd->bandwidth_mutex);
4202 xhci_change_max_exit_latency(xhci, udev, 0);
4203 mutex_unlock(hcd->bandwidth_mutex);
4204 return 0;
4205 }
4206 }
4207
4208 spin_unlock_irqrestore(&xhci->lock, flags);
4209 return 0;
4210 }
4211
4212 /* check if a usb2 port supports a given extened capability protocol
4213 * only USB2 ports extended protocol capability values are cached.
4214 * Return 1 if capability is supported
4215 */
4216 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4217 unsigned capability)
4218 {
4219 u32 port_offset, port_count;
4220 int i;
4221
4222 for (i = 0; i < xhci->num_ext_caps; i++) {
4223 if (xhci->ext_caps[i] & capability) {
4224 /* port offsets starts at 1 */
4225 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4226 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4227 if (port >= port_offset &&
4228 port < port_offset + port_count)
4229 return 1;
4230 }
4231 }
4232 return 0;
4233 }
4234
4235 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4236 {
4237 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4238 int portnum = udev->portnum - 1;
4239
4240 if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4241 !udev->lpm_capable)
4242 return 0;
4243
4244 /* we only support lpm for non-hub device connected to root hub yet */
4245 if (!udev->parent || udev->parent->parent ||
4246 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4247 return 0;
4248
4249 if (xhci->hw_lpm_support == 1 &&
4250 xhci_check_usb2_port_capability(
4251 xhci, portnum, XHCI_HLC)) {
4252 udev->usb2_hw_lpm_capable = 1;
4253 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4254 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4255 if (xhci_check_usb2_port_capability(xhci, portnum,
4256 XHCI_BLC))
4257 udev->usb2_hw_lpm_besl_capable = 1;
4258 }
4259
4260 return 0;
4261 }
4262
4263 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4264
4265 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4266 static unsigned long long xhci_service_interval_to_ns(
4267 struct usb_endpoint_descriptor *desc)
4268 {
4269 return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4270 }
4271
4272 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4273 enum usb3_link_state state)
4274 {
4275 unsigned long long sel;
4276 unsigned long long pel;
4277 unsigned int max_sel_pel;
4278 char *state_name;
4279
4280 switch (state) {
4281 case USB3_LPM_U1:
4282 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4283 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4284 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4285 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4286 state_name = "U1";
4287 break;
4288 case USB3_LPM_U2:
4289 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4290 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4291 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4292 state_name = "U2";
4293 break;
4294 default:
4295 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4296 __func__);
4297 return USB3_LPM_DISABLED;
4298 }
4299
4300 if (sel <= max_sel_pel && pel <= max_sel_pel)
4301 return USB3_LPM_DEVICE_INITIATED;
4302
4303 if (sel > max_sel_pel)
4304 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4305 "due to long SEL %llu ms\n",
4306 state_name, sel);
4307 else
4308 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4309 "due to long PEL %llu ms\n",
4310 state_name, pel);
4311 return USB3_LPM_DISABLED;
4312 }
4313
4314 /* The U1 timeout should be the maximum of the following values:
4315 * - For control endpoints, U1 system exit latency (SEL) * 3
4316 * - For bulk endpoints, U1 SEL * 5
4317 * - For interrupt endpoints:
4318 * - Notification EPs, U1 SEL * 3
4319 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4320 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4321 */
4322 static unsigned long long xhci_calculate_intel_u1_timeout(
4323 struct usb_device *udev,
4324 struct usb_endpoint_descriptor *desc)
4325 {
4326 unsigned long long timeout_ns;
4327 int ep_type;
4328 int intr_type;
4329
4330 ep_type = usb_endpoint_type(desc);
4331 switch (ep_type) {
4332 case USB_ENDPOINT_XFER_CONTROL:
4333 timeout_ns = udev->u1_params.sel * 3;
4334 break;
4335 case USB_ENDPOINT_XFER_BULK:
4336 timeout_ns = udev->u1_params.sel * 5;
4337 break;
4338 case USB_ENDPOINT_XFER_INT:
4339 intr_type = usb_endpoint_interrupt_type(desc);
4340 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4341 timeout_ns = udev->u1_params.sel * 3;
4342 break;
4343 }
4344 /* Otherwise the calculation is the same as isoc eps */
4345 case USB_ENDPOINT_XFER_ISOC:
4346 timeout_ns = xhci_service_interval_to_ns(desc);
4347 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4348 if (timeout_ns < udev->u1_params.sel * 2)
4349 timeout_ns = udev->u1_params.sel * 2;
4350 break;
4351 default:
4352 return 0;
4353 }
4354
4355 return timeout_ns;
4356 }
4357
4358 /* Returns the hub-encoded U1 timeout value. */
4359 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4360 struct usb_device *udev,
4361 struct usb_endpoint_descriptor *desc)
4362 {
4363 unsigned long long timeout_ns;
4364
4365 if (xhci->quirks & XHCI_INTEL_HOST)
4366 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4367 else
4368 timeout_ns = udev->u1_params.sel;
4369
4370 /* The U1 timeout is encoded in 1us intervals.
4371 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4372 */
4373 if (timeout_ns == USB3_LPM_DISABLED)
4374 timeout_ns = 1;
4375 else
4376 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4377
4378 /* If the necessary timeout value is bigger than what we can set in the
4379 * USB 3.0 hub, we have to disable hub-initiated U1.
4380 */
4381 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4382 return timeout_ns;
4383 dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4384 "due to long timeout %llu ms\n", timeout_ns);
4385 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4386 }
4387
4388 /* The U2 timeout should be the maximum of:
4389 * - 10 ms (to avoid the bandwidth impact on the scheduler)
4390 * - largest bInterval of any active periodic endpoint (to avoid going
4391 * into lower power link states between intervals).
4392 * - the U2 Exit Latency of the device
4393 */
4394 static unsigned long long xhci_calculate_intel_u2_timeout(
4395 struct usb_device *udev,
4396 struct usb_endpoint_descriptor *desc)
4397 {
4398 unsigned long long timeout_ns;
4399 unsigned long long u2_del_ns;
4400
4401 timeout_ns = 10 * 1000 * 1000;
4402
4403 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4404 (xhci_service_interval_to_ns(desc) > timeout_ns))
4405 timeout_ns = xhci_service_interval_to_ns(desc);
4406
4407 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4408 if (u2_del_ns > timeout_ns)
4409 timeout_ns = u2_del_ns;
4410
4411 return timeout_ns;
4412 }
4413
4414 /* Returns the hub-encoded U2 timeout value. */
4415 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4416 struct usb_device *udev,
4417 struct usb_endpoint_descriptor *desc)
4418 {
4419 unsigned long long timeout_ns;
4420
4421 if (xhci->quirks & XHCI_INTEL_HOST)
4422 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4423 else
4424 timeout_ns = udev->u2_params.sel;
4425
4426 /* The U2 timeout is encoded in 256us intervals */
4427 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4428 /* If the necessary timeout value is bigger than what we can set in the
4429 * USB 3.0 hub, we have to disable hub-initiated U2.
4430 */
4431 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4432 return timeout_ns;
4433 dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4434 "due to long timeout %llu ms\n", timeout_ns);
4435 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4436 }
4437
4438 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4439 struct usb_device *udev,
4440 struct usb_endpoint_descriptor *desc,
4441 enum usb3_link_state state,
4442 u16 *timeout)
4443 {
4444 if (state == USB3_LPM_U1)
4445 return xhci_calculate_u1_timeout(xhci, udev, desc);
4446 else if (state == USB3_LPM_U2)
4447 return xhci_calculate_u2_timeout(xhci, udev, desc);
4448
4449 return USB3_LPM_DISABLED;
4450 }
4451
4452 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4453 struct usb_device *udev,
4454 struct usb_endpoint_descriptor *desc,
4455 enum usb3_link_state state,
4456 u16 *timeout)
4457 {
4458 u16 alt_timeout;
4459
4460 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4461 desc, state, timeout);
4462
4463 /* If we found we can't enable hub-initiated LPM, or
4464 * the U1 or U2 exit latency was too high to allow
4465 * device-initiated LPM as well, just stop searching.
4466 */
4467 if (alt_timeout == USB3_LPM_DISABLED ||
4468 alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4469 *timeout = alt_timeout;
4470 return -E2BIG;
4471 }
4472 if (alt_timeout > *timeout)
4473 *timeout = alt_timeout;
4474 return 0;
4475 }
4476
4477 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4478 struct usb_device *udev,
4479 struct usb_host_interface *alt,
4480 enum usb3_link_state state,
4481 u16 *timeout)
4482 {
4483 int j;
4484
4485 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4486 if (xhci_update_timeout_for_endpoint(xhci, udev,
4487 &alt->endpoint[j].desc, state, timeout))
4488 return -E2BIG;
4489 continue;
4490 }
4491 return 0;
4492 }
4493
4494 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4495 enum usb3_link_state state)
4496 {
4497 struct usb_device *parent;
4498 unsigned int num_hubs;
4499
4500 if (state == USB3_LPM_U2)
4501 return 0;
4502
4503 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4504 for (parent = udev->parent, num_hubs = 0; parent->parent;
4505 parent = parent->parent)
4506 num_hubs++;
4507
4508 if (num_hubs < 2)
4509 return 0;
4510
4511 dev_dbg(&udev->dev, "Disabling U1 link state for device"
4512 " below second-tier hub.\n");
4513 dev_dbg(&udev->dev, "Plug device into first-tier hub "
4514 "to decrease power consumption.\n");
4515 return -E2BIG;
4516 }
4517
4518 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4519 struct usb_device *udev,
4520 enum usb3_link_state state)
4521 {
4522 if (xhci->quirks & XHCI_INTEL_HOST)
4523 return xhci_check_intel_tier_policy(udev, state);
4524 else
4525 return 0;
4526 }
4527
4528 /* Returns the U1 or U2 timeout that should be enabled.
4529 * If the tier check or timeout setting functions return with a non-zero exit
4530 * code, that means the timeout value has been finalized and we shouldn't look
4531 * at any more endpoints.
4532 */
4533 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4534 struct usb_device *udev, enum usb3_link_state state)
4535 {
4536 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4537 struct usb_host_config *config;
4538 char *state_name;
4539 int i;
4540 u16 timeout = USB3_LPM_DISABLED;
4541
4542 if (state == USB3_LPM_U1)
4543 state_name = "U1";
4544 else if (state == USB3_LPM_U2)
4545 state_name = "U2";
4546 else {
4547 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4548 state);
4549 return timeout;
4550 }
4551
4552 if (xhci_check_tier_policy(xhci, udev, state) < 0)
4553 return timeout;
4554
4555 /* Gather some information about the currently installed configuration
4556 * and alternate interface settings.
4557 */
4558 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4559 state, &timeout))
4560 return timeout;
4561
4562 config = udev->actconfig;
4563 if (!config)
4564 return timeout;
4565
4566 for (i = 0; i < config->desc.bNumInterfaces; i++) {
4567 struct usb_driver *driver;
4568 struct usb_interface *intf = config->interface[i];
4569
4570 if (!intf)
4571 continue;
4572
4573 /* Check if any currently bound drivers want hub-initiated LPM
4574 * disabled.
4575 */
4576 if (intf->dev.driver) {
4577 driver = to_usb_driver(intf->dev.driver);
4578 if (driver && driver->disable_hub_initiated_lpm) {
4579 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4580 "at request of driver %s\n",
4581 state_name, driver->name);
4582 return xhci_get_timeout_no_hub_lpm(udev, state);
4583 }
4584 }
4585
4586 /* Not sure how this could happen... */
4587 if (!intf->cur_altsetting)
4588 continue;
4589
4590 if (xhci_update_timeout_for_interface(xhci, udev,
4591 intf->cur_altsetting,
4592 state, &timeout))
4593 return timeout;
4594 }
4595 return timeout;
4596 }
4597
4598 static int calculate_max_exit_latency(struct usb_device *udev,
4599 enum usb3_link_state state_changed,
4600 u16 hub_encoded_timeout)
4601 {
4602 unsigned long long u1_mel_us = 0;
4603 unsigned long long u2_mel_us = 0;
4604 unsigned long long mel_us = 0;
4605 bool disabling_u1;
4606 bool disabling_u2;
4607 bool enabling_u1;
4608 bool enabling_u2;
4609
4610 disabling_u1 = (state_changed == USB3_LPM_U1 &&
4611 hub_encoded_timeout == USB3_LPM_DISABLED);
4612 disabling_u2 = (state_changed == USB3_LPM_U2 &&
4613 hub_encoded_timeout == USB3_LPM_DISABLED);
4614
4615 enabling_u1 = (state_changed == USB3_LPM_U1 &&
4616 hub_encoded_timeout != USB3_LPM_DISABLED);
4617 enabling_u2 = (state_changed == USB3_LPM_U2 &&
4618 hub_encoded_timeout != USB3_LPM_DISABLED);
4619
4620 /* If U1 was already enabled and we're not disabling it,
4621 * or we're going to enable U1, account for the U1 max exit latency.
4622 */
4623 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4624 enabling_u1)
4625 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4626 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4627 enabling_u2)
4628 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4629
4630 if (u1_mel_us > u2_mel_us)
4631 mel_us = u1_mel_us;
4632 else
4633 mel_us = u2_mel_us;
4634 /* xHCI host controller max exit latency field is only 16 bits wide. */
4635 if (mel_us > MAX_EXIT) {
4636 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4637 "is too big.\n", mel_us);
4638 return -E2BIG;
4639 }
4640 return mel_us;
4641 }
4642
4643 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4644 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4645 struct usb_device *udev, enum usb3_link_state state)
4646 {
4647 struct xhci_hcd *xhci;
4648 u16 hub_encoded_timeout;
4649 int mel;
4650 int ret;
4651
4652 xhci = hcd_to_xhci(hcd);
4653 /* The LPM timeout values are pretty host-controller specific, so don't
4654 * enable hub-initiated timeouts unless the vendor has provided
4655 * information about their timeout algorithm.
4656 */
4657 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4658 !xhci->devs[udev->slot_id])
4659 return USB3_LPM_DISABLED;
4660
4661 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4662 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4663 if (mel < 0) {
4664 /* Max Exit Latency is too big, disable LPM. */
4665 hub_encoded_timeout = USB3_LPM_DISABLED;
4666 mel = 0;
4667 }
4668
4669 ret = xhci_change_max_exit_latency(xhci, udev, mel);
4670 if (ret)
4671 return ret;
4672 return hub_encoded_timeout;
4673 }
4674
4675 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4676 struct usb_device *udev, enum usb3_link_state state)
4677 {
4678 struct xhci_hcd *xhci;
4679 u16 mel;
4680
4681 xhci = hcd_to_xhci(hcd);
4682 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4683 !xhci->devs[udev->slot_id])
4684 return 0;
4685
4686 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4687 return xhci_change_max_exit_latency(xhci, udev, mel);
4688 }
4689 #else /* CONFIG_PM */
4690
4691 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4692 struct usb_device *udev, int enable)
4693 {
4694 return 0;
4695 }
4696
4697 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4698 {
4699 return 0;
4700 }
4701
4702 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4703 struct usb_device *udev, enum usb3_link_state state)
4704 {
4705 return USB3_LPM_DISABLED;
4706 }
4707
4708 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4709 struct usb_device *udev, enum usb3_link_state state)
4710 {
4711 return 0;
4712 }
4713 #endif /* CONFIG_PM */
4714
4715 /*-------------------------------------------------------------------------*/
4716
4717 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4718 * internal data structures for the device.
4719 */
4720 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4721 struct usb_tt *tt, gfp_t mem_flags)
4722 {
4723 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4724 struct xhci_virt_device *vdev;
4725 struct xhci_command *config_cmd;
4726 struct xhci_input_control_ctx *ctrl_ctx;
4727 struct xhci_slot_ctx *slot_ctx;
4728 unsigned long flags;
4729 unsigned think_time;
4730 int ret;
4731
4732 /* Ignore root hubs */
4733 if (!hdev->parent)
4734 return 0;
4735
4736 vdev = xhci->devs[hdev->slot_id];
4737 if (!vdev) {
4738 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4739 return -EINVAL;
4740 }
4741 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4742 if (!config_cmd) {
4743 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4744 return -ENOMEM;
4745 }
4746 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4747 if (!ctrl_ctx) {
4748 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4749 __func__);
4750 xhci_free_command(xhci, config_cmd);
4751 return -ENOMEM;
4752 }
4753
4754 spin_lock_irqsave(&xhci->lock, flags);
4755 if (hdev->speed == USB_SPEED_HIGH &&
4756 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4757 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4758 xhci_free_command(xhci, config_cmd);
4759 spin_unlock_irqrestore(&xhci->lock, flags);
4760 return -ENOMEM;
4761 }
4762
4763 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4764 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4765 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4766 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4767 /*
4768 * refer to section 6.2.2: MTT should be 0 for full speed hub,
4769 * but it may be already set to 1 when setup an xHCI virtual
4770 * device, so clear it anyway.
4771 */
4772 if (tt->multi)
4773 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4774 else if (hdev->speed == USB_SPEED_FULL)
4775 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4776
4777 if (xhci->hci_version > 0x95) {
4778 xhci_dbg(xhci, "xHCI version %x needs hub "
4779 "TT think time and number of ports\n",
4780 (unsigned int) xhci->hci_version);
4781 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4782 /* Set TT think time - convert from ns to FS bit times.
4783 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4784 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4785 *
4786 * xHCI 1.0: this field shall be 0 if the device is not a
4787 * High-spped hub.
4788 */
4789 think_time = tt->think_time;
4790 if (think_time != 0)
4791 think_time = (think_time / 666) - 1;
4792 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4793 slot_ctx->tt_info |=
4794 cpu_to_le32(TT_THINK_TIME(think_time));
4795 } else {
4796 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4797 "TT think time or number of ports\n",
4798 (unsigned int) xhci->hci_version);
4799 }
4800 slot_ctx->dev_state = 0;
4801 spin_unlock_irqrestore(&xhci->lock, flags);
4802
4803 xhci_dbg(xhci, "Set up %s for hub device.\n",
4804 (xhci->hci_version > 0x95) ?
4805 "configure endpoint" : "evaluate context");
4806 xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4807 xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4808
4809 /* Issue and wait for the configure endpoint or
4810 * evaluate context command.
4811 */
4812 if (xhci->hci_version > 0x95)
4813 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4814 false, false);
4815 else
4816 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4817 true, false);
4818
4819 xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4820 xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4821
4822 xhci_free_command(xhci, config_cmd);
4823 return ret;
4824 }
4825
4826 int xhci_get_frame(struct usb_hcd *hcd)
4827 {
4828 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4829 /* EHCI mods by the periodic size. Why? */
4830 return readl(&xhci->run_regs->microframe_index) >> 3;
4831 }
4832
4833 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4834 {
4835 struct xhci_hcd *xhci;
4836 struct device *dev = hcd->self.controller;
4837 int retval;
4838
4839 /* Accept arbitrarily long scatter-gather lists */
4840 hcd->self.sg_tablesize = ~0;
4841
4842 /* support to build packet from discontinuous buffers */
4843 hcd->self.no_sg_constraint = 1;
4844
4845 /* XHCI controllers don't stop the ep queue on short packets :| */
4846 hcd->self.no_stop_on_short = 1;
4847
4848 xhci = hcd_to_xhci(hcd);
4849
4850 if (usb_hcd_is_primary_hcd(hcd)) {
4851 xhci->main_hcd = hcd;
4852 /* Mark the first roothub as being USB 2.0.
4853 * The xHCI driver will register the USB 3.0 roothub.
4854 */
4855 hcd->speed = HCD_USB2;
4856 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4857 /*
4858 * USB 2.0 roothub under xHCI has an integrated TT,
4859 * (rate matching hub) as opposed to having an OHCI/UHCI
4860 * companion controller.
4861 */
4862 hcd->has_tt = 1;
4863 } else {
4864 if (xhci->sbrn == 0x31) {
4865 xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n");
4866 hcd->speed = HCD_USB31;
4867 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
4868 }
4869 /* xHCI private pointer was set in xhci_pci_probe for the second
4870 * registered roothub.
4871 */
4872 return 0;
4873 }
4874
4875 mutex_init(&xhci->mutex);
4876 xhci->cap_regs = hcd->regs;
4877 xhci->op_regs = hcd->regs +
4878 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4879 xhci->run_regs = hcd->regs +
4880 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4881 /* Cache read-only capability registers */
4882 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4883 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4884 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4885 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4886 xhci->hci_version = HC_VERSION(xhci->hcc_params);
4887 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4888 if (xhci->hci_version > 0x100)
4889 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
4890 xhci_print_registers(xhci);
4891
4892 xhci->quirks |= quirks;
4893
4894 get_quirks(dev, xhci);
4895
4896 /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4897 * success event after a short transfer. This quirk will ignore such
4898 * spurious event.
4899 */
4900 if (xhci->hci_version > 0x96)
4901 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4902
4903 /* Make sure the HC is halted. */
4904 retval = xhci_halt(xhci);
4905 if (retval)
4906 return retval;
4907
4908 xhci_dbg(xhci, "Resetting HCD\n");
4909 /* Reset the internal HC memory state and registers. */
4910 retval = xhci_reset(xhci);
4911 if (retval)
4912 return retval;
4913 xhci_dbg(xhci, "Reset complete\n");
4914
4915 /*
4916 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
4917 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
4918 * address memory pointers actually. So, this driver clears the AC64
4919 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
4920 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
4921 */
4922 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
4923 xhci->hcc_params &= ~BIT(0);
4924
4925 /* Set dma_mask and coherent_dma_mask to 64-bits,
4926 * if xHC supports 64-bit addressing */
4927 if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4928 !dma_set_mask(dev, DMA_BIT_MASK(64))) {
4929 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4930 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4931 } else {
4932 /*
4933 * This is to avoid error in cases where a 32-bit USB
4934 * controller is used on a 64-bit capable system.
4935 */
4936 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
4937 if (retval)
4938 return retval;
4939 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
4940 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
4941 }
4942
4943 xhci_dbg(xhci, "Calling HCD init\n");
4944 /* Initialize HCD and host controller data structures. */
4945 retval = xhci_init(hcd);
4946 if (retval)
4947 return retval;
4948 xhci_dbg(xhci, "Called HCD init\n");
4949
4950 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
4951 xhci->hcc_params, xhci->hci_version, xhci->quirks);
4952
4953 return 0;
4954 }
4955 EXPORT_SYMBOL_GPL(xhci_gen_setup);
4956
4957 static const struct hc_driver xhci_hc_driver = {
4958 .description = "xhci-hcd",
4959 .product_desc = "xHCI Host Controller",
4960 .hcd_priv_size = sizeof(struct xhci_hcd),
4961
4962 /*
4963 * generic hardware linkage
4964 */
4965 .irq = xhci_irq,
4966 .flags = HCD_MEMORY | HCD_USB3 | HCD_SHARED,
4967
4968 /*
4969 * basic lifecycle operations
4970 */
4971 .reset = NULL, /* set in xhci_init_driver() */
4972 .start = xhci_run,
4973 .stop = xhci_stop,
4974 .shutdown = xhci_shutdown,
4975
4976 /*
4977 * managing i/o requests and associated device resources
4978 */
4979 .urb_enqueue = xhci_urb_enqueue,
4980 .urb_dequeue = xhci_urb_dequeue,
4981 .alloc_dev = xhci_alloc_dev,
4982 .free_dev = xhci_free_dev,
4983 .alloc_streams = xhci_alloc_streams,
4984 .free_streams = xhci_free_streams,
4985 .add_endpoint = xhci_add_endpoint,
4986 .drop_endpoint = xhci_drop_endpoint,
4987 .endpoint_reset = xhci_endpoint_reset,
4988 .check_bandwidth = xhci_check_bandwidth,
4989 .reset_bandwidth = xhci_reset_bandwidth,
4990 .address_device = xhci_address_device,
4991 .enable_device = xhci_enable_device,
4992 .update_hub_device = xhci_update_hub_device,
4993 .reset_device = xhci_discover_or_reset_device,
4994
4995 /*
4996 * scheduling support
4997 */
4998 .get_frame_number = xhci_get_frame,
4999
5000 /*
5001 * root hub support
5002 */
5003 .hub_control = xhci_hub_control,
5004 .hub_status_data = xhci_hub_status_data,
5005 .bus_suspend = xhci_bus_suspend,
5006 .bus_resume = xhci_bus_resume,
5007
5008 /*
5009 * call back when device connected and addressed
5010 */
5011 .update_device = xhci_update_device,
5012 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm,
5013 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout,
5014 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout,
5015 .find_raw_port_number = xhci_find_raw_port_number,
5016 };
5017
5018 void xhci_init_driver(struct hc_driver *drv,
5019 const struct xhci_driver_overrides *over)
5020 {
5021 BUG_ON(!over);
5022
5023 /* Copy the generic table to drv then apply the overrides */
5024 *drv = xhci_hc_driver;
5025
5026 if (over) {
5027 drv->hcd_priv_size += over->extra_priv_size;
5028 if (over->reset)
5029 drv->reset = over->reset;
5030 if (over->start)
5031 drv->start = over->start;
5032 }
5033 }
5034 EXPORT_SYMBOL_GPL(xhci_init_driver);
5035
5036 MODULE_DESCRIPTION(DRIVER_DESC);
5037 MODULE_AUTHOR(DRIVER_AUTHOR);
5038 MODULE_LICENSE("GPL");
5039
5040 static int __init xhci_hcd_init(void)
5041 {
5042 /*
5043 * Check the compiler generated sizes of structures that must be laid
5044 * out in specific ways for hardware access.
5045 */
5046 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5047 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5048 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5049 /* xhci_device_control has eight fields, and also
5050 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5051 */
5052 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5053 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5054 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5055 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5056 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5057 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5058 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5059
5060 if (usb_disabled())
5061 return -ENODEV;
5062
5063 return 0;
5064 }
5065
5066 /*
5067 * If an init function is provided, an exit function must also be provided
5068 * to allow module unload.
5069 */
5070 static void __exit xhci_hcd_fini(void) { }
5071
5072 module_init(xhci_hcd_init);
5073 module_exit(xhci_hcd_fini);