]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/usb/host/xhci.c
Merge branch 'next' into for-linus
[mirror_ubuntu-artful-kernel.git] / drivers / usb / host / xhci.c
1 /*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
31
32 #include "xhci.h"
33 #include "xhci-trace.h"
34
35 #define DRIVER_AUTHOR "Sarah Sharp"
36 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
37
38 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
39 static int link_quirk;
40 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
41 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
42
43 static unsigned int quirks;
44 module_param(quirks, uint, S_IRUGO);
45 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
46
47 /* TODO: copied from ehci-hcd.c - can this be refactored? */
48 /*
49 * xhci_handshake - spin reading hc until handshake completes or fails
50 * @ptr: address of hc register to be read
51 * @mask: bits to look at in result of read
52 * @done: value of those bits when handshake succeeds
53 * @usec: timeout in microseconds
54 *
55 * Returns negative errno, or zero on success
56 *
57 * Success happens when the "mask" bits have the specified value (hardware
58 * handshake done). There are two failure modes: "usec" have passed (major
59 * hardware flakeout), or the register reads as all-ones (hardware removed).
60 */
61 int xhci_handshake(struct xhci_hcd *xhci, void __iomem *ptr,
62 u32 mask, u32 done, int usec)
63 {
64 u32 result;
65
66 do {
67 result = readl(ptr);
68 if (result == ~(u32)0) /* card removed */
69 return -ENODEV;
70 result &= mask;
71 if (result == done)
72 return 0;
73 udelay(1);
74 usec--;
75 } while (usec > 0);
76 return -ETIMEDOUT;
77 }
78
79 /*
80 * Disable interrupts and begin the xHCI halting process.
81 */
82 void xhci_quiesce(struct xhci_hcd *xhci)
83 {
84 u32 halted;
85 u32 cmd;
86 u32 mask;
87
88 mask = ~(XHCI_IRQS);
89 halted = readl(&xhci->op_regs->status) & STS_HALT;
90 if (!halted)
91 mask &= ~CMD_RUN;
92
93 cmd = readl(&xhci->op_regs->command);
94 cmd &= mask;
95 writel(cmd, &xhci->op_regs->command);
96 }
97
98 /*
99 * Force HC into halt state.
100 *
101 * Disable any IRQs and clear the run/stop bit.
102 * HC will complete any current and actively pipelined transactions, and
103 * should halt within 16 ms of the run/stop bit being cleared.
104 * Read HC Halted bit in the status register to see when the HC is finished.
105 */
106 int xhci_halt(struct xhci_hcd *xhci)
107 {
108 int ret;
109 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
110 xhci_quiesce(xhci);
111
112 ret = xhci_handshake(xhci, &xhci->op_regs->status,
113 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
114 if (!ret) {
115 xhci->xhc_state |= XHCI_STATE_HALTED;
116 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
117 } else
118 xhci_warn(xhci, "Host not halted after %u microseconds.\n",
119 XHCI_MAX_HALT_USEC);
120 return ret;
121 }
122
123 /*
124 * Set the run bit and wait for the host to be running.
125 */
126 static int xhci_start(struct xhci_hcd *xhci)
127 {
128 u32 temp;
129 int ret;
130
131 temp = readl(&xhci->op_regs->command);
132 temp |= (CMD_RUN);
133 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
134 temp);
135 writel(temp, &xhci->op_regs->command);
136
137 /*
138 * Wait for the HCHalted Status bit to be 0 to indicate the host is
139 * running.
140 */
141 ret = xhci_handshake(xhci, &xhci->op_regs->status,
142 STS_HALT, 0, XHCI_MAX_HALT_USEC);
143 if (ret == -ETIMEDOUT)
144 xhci_err(xhci, "Host took too long to start, "
145 "waited %u microseconds.\n",
146 XHCI_MAX_HALT_USEC);
147 if (!ret)
148 xhci->xhc_state &= ~XHCI_STATE_HALTED;
149 return ret;
150 }
151
152 /*
153 * Reset a halted HC.
154 *
155 * This resets pipelines, timers, counters, state machines, etc.
156 * Transactions will be terminated immediately, and operational registers
157 * will be set to their defaults.
158 */
159 int xhci_reset(struct xhci_hcd *xhci)
160 {
161 u32 command;
162 u32 state;
163 int ret, i;
164
165 state = readl(&xhci->op_regs->status);
166 if ((state & STS_HALT) == 0) {
167 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
168 return 0;
169 }
170
171 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
172 command = readl(&xhci->op_regs->command);
173 command |= CMD_RESET;
174 writel(command, &xhci->op_regs->command);
175
176 ret = xhci_handshake(xhci, &xhci->op_regs->command,
177 CMD_RESET, 0, 10 * 1000 * 1000);
178 if (ret)
179 return ret;
180
181 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
182 "Wait for controller to be ready for doorbell rings");
183 /*
184 * xHCI cannot write to any doorbells or operational registers other
185 * than status until the "Controller Not Ready" flag is cleared.
186 */
187 ret = xhci_handshake(xhci, &xhci->op_regs->status,
188 STS_CNR, 0, 10 * 1000 * 1000);
189
190 for (i = 0; i < 2; ++i) {
191 xhci->bus_state[i].port_c_suspend = 0;
192 xhci->bus_state[i].suspended_ports = 0;
193 xhci->bus_state[i].resuming_ports = 0;
194 }
195
196 return ret;
197 }
198
199 #ifdef CONFIG_PCI
200 static int xhci_free_msi(struct xhci_hcd *xhci)
201 {
202 int i;
203
204 if (!xhci->msix_entries)
205 return -EINVAL;
206
207 for (i = 0; i < xhci->msix_count; i++)
208 if (xhci->msix_entries[i].vector)
209 free_irq(xhci->msix_entries[i].vector,
210 xhci_to_hcd(xhci));
211 return 0;
212 }
213
214 /*
215 * Set up MSI
216 */
217 static int xhci_setup_msi(struct xhci_hcd *xhci)
218 {
219 int ret;
220 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
221
222 ret = pci_enable_msi(pdev);
223 if (ret) {
224 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
225 "failed to allocate MSI entry");
226 return ret;
227 }
228
229 ret = request_irq(pdev->irq, xhci_msi_irq,
230 0, "xhci_hcd", xhci_to_hcd(xhci));
231 if (ret) {
232 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
233 "disable MSI interrupt");
234 pci_disable_msi(pdev);
235 }
236
237 return ret;
238 }
239
240 /*
241 * Free IRQs
242 * free all IRQs request
243 */
244 static void xhci_free_irq(struct xhci_hcd *xhci)
245 {
246 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
247 int ret;
248
249 /* return if using legacy interrupt */
250 if (xhci_to_hcd(xhci)->irq > 0)
251 return;
252
253 ret = xhci_free_msi(xhci);
254 if (!ret)
255 return;
256 if (pdev->irq > 0)
257 free_irq(pdev->irq, xhci_to_hcd(xhci));
258
259 return;
260 }
261
262 /*
263 * Set up MSI-X
264 */
265 static int xhci_setup_msix(struct xhci_hcd *xhci)
266 {
267 int i, ret = 0;
268 struct usb_hcd *hcd = xhci_to_hcd(xhci);
269 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
270
271 /*
272 * calculate number of msi-x vectors supported.
273 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
274 * with max number of interrupters based on the xhci HCSPARAMS1.
275 * - num_online_cpus: maximum msi-x vectors per CPUs core.
276 * Add additional 1 vector to ensure always available interrupt.
277 */
278 xhci->msix_count = min(num_online_cpus() + 1,
279 HCS_MAX_INTRS(xhci->hcs_params1));
280
281 xhci->msix_entries =
282 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
283 GFP_KERNEL);
284 if (!xhci->msix_entries) {
285 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
286 return -ENOMEM;
287 }
288
289 for (i = 0; i < xhci->msix_count; i++) {
290 xhci->msix_entries[i].entry = i;
291 xhci->msix_entries[i].vector = 0;
292 }
293
294 ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count);
295 if (ret) {
296 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
297 "Failed to enable MSI-X");
298 goto free_entries;
299 }
300
301 for (i = 0; i < xhci->msix_count; i++) {
302 ret = request_irq(xhci->msix_entries[i].vector,
303 xhci_msi_irq,
304 0, "xhci_hcd", xhci_to_hcd(xhci));
305 if (ret)
306 goto disable_msix;
307 }
308
309 hcd->msix_enabled = 1;
310 return ret;
311
312 disable_msix:
313 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
314 xhci_free_irq(xhci);
315 pci_disable_msix(pdev);
316 free_entries:
317 kfree(xhci->msix_entries);
318 xhci->msix_entries = NULL;
319 return ret;
320 }
321
322 /* Free any IRQs and disable MSI-X */
323 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
324 {
325 struct usb_hcd *hcd = xhci_to_hcd(xhci);
326 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
327
328 if (xhci->quirks & XHCI_PLAT)
329 return;
330
331 xhci_free_irq(xhci);
332
333 if (xhci->msix_entries) {
334 pci_disable_msix(pdev);
335 kfree(xhci->msix_entries);
336 xhci->msix_entries = NULL;
337 } else {
338 pci_disable_msi(pdev);
339 }
340
341 hcd->msix_enabled = 0;
342 return;
343 }
344
345 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
346 {
347 int i;
348
349 if (xhci->msix_entries) {
350 for (i = 0; i < xhci->msix_count; i++)
351 synchronize_irq(xhci->msix_entries[i].vector);
352 }
353 }
354
355 static int xhci_try_enable_msi(struct usb_hcd *hcd)
356 {
357 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
358 struct pci_dev *pdev;
359 int ret;
360
361 /* The xhci platform device has set up IRQs through usb_add_hcd. */
362 if (xhci->quirks & XHCI_PLAT)
363 return 0;
364
365 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
366 /*
367 * Some Fresco Logic host controllers advertise MSI, but fail to
368 * generate interrupts. Don't even try to enable MSI.
369 */
370 if (xhci->quirks & XHCI_BROKEN_MSI)
371 goto legacy_irq;
372
373 /* unregister the legacy interrupt */
374 if (hcd->irq)
375 free_irq(hcd->irq, hcd);
376 hcd->irq = 0;
377
378 ret = xhci_setup_msix(xhci);
379 if (ret)
380 /* fall back to msi*/
381 ret = xhci_setup_msi(xhci);
382
383 if (!ret)
384 /* hcd->irq is 0, we have MSI */
385 return 0;
386
387 if (!pdev->irq) {
388 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
389 return -EINVAL;
390 }
391
392 legacy_irq:
393 if (!strlen(hcd->irq_descr))
394 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
395 hcd->driver->description, hcd->self.busnum);
396
397 /* fall back to legacy interrupt*/
398 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
399 hcd->irq_descr, hcd);
400 if (ret) {
401 xhci_err(xhci, "request interrupt %d failed\n",
402 pdev->irq);
403 return ret;
404 }
405 hcd->irq = pdev->irq;
406 return 0;
407 }
408
409 #else
410
411 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
412 {
413 return 0;
414 }
415
416 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
417 {
418 }
419
420 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
421 {
422 }
423
424 #endif
425
426 static void compliance_mode_recovery(unsigned long arg)
427 {
428 struct xhci_hcd *xhci;
429 struct usb_hcd *hcd;
430 u32 temp;
431 int i;
432
433 xhci = (struct xhci_hcd *)arg;
434
435 for (i = 0; i < xhci->num_usb3_ports; i++) {
436 temp = readl(xhci->usb3_ports[i]);
437 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
438 /*
439 * Compliance Mode Detected. Letting USB Core
440 * handle the Warm Reset
441 */
442 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
443 "Compliance mode detected->port %d",
444 i + 1);
445 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
446 "Attempting compliance mode recovery");
447 hcd = xhci->shared_hcd;
448
449 if (hcd->state == HC_STATE_SUSPENDED)
450 usb_hcd_resume_root_hub(hcd);
451
452 usb_hcd_poll_rh_status(hcd);
453 }
454 }
455
456 if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
457 mod_timer(&xhci->comp_mode_recovery_timer,
458 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
459 }
460
461 /*
462 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
463 * that causes ports behind that hardware to enter compliance mode sometimes.
464 * The quirk creates a timer that polls every 2 seconds the link state of
465 * each host controller's port and recovers it by issuing a Warm reset
466 * if Compliance mode is detected, otherwise the port will become "dead" (no
467 * device connections or disconnections will be detected anymore). Becasue no
468 * status event is generated when entering compliance mode (per xhci spec),
469 * this quirk is needed on systems that have the failing hardware installed.
470 */
471 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
472 {
473 xhci->port_status_u0 = 0;
474 init_timer(&xhci->comp_mode_recovery_timer);
475
476 xhci->comp_mode_recovery_timer.data = (unsigned long) xhci;
477 xhci->comp_mode_recovery_timer.function = compliance_mode_recovery;
478 xhci->comp_mode_recovery_timer.expires = jiffies +
479 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
480
481 set_timer_slack(&xhci->comp_mode_recovery_timer,
482 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
483 add_timer(&xhci->comp_mode_recovery_timer);
484 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
485 "Compliance mode recovery timer initialized");
486 }
487
488 /*
489 * This function identifies the systems that have installed the SN65LVPE502CP
490 * USB3.0 re-driver and that need the Compliance Mode Quirk.
491 * Systems:
492 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
493 */
494 bool xhci_compliance_mode_recovery_timer_quirk_check(void)
495 {
496 const char *dmi_product_name, *dmi_sys_vendor;
497
498 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
499 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
500 if (!dmi_product_name || !dmi_sys_vendor)
501 return false;
502
503 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
504 return false;
505
506 if (strstr(dmi_product_name, "Z420") ||
507 strstr(dmi_product_name, "Z620") ||
508 strstr(dmi_product_name, "Z820") ||
509 strstr(dmi_product_name, "Z1 Workstation"))
510 return true;
511
512 return false;
513 }
514
515 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
516 {
517 return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
518 }
519
520
521 /*
522 * Initialize memory for HCD and xHC (one-time init).
523 *
524 * Program the PAGESIZE register, initialize the device context array, create
525 * device contexts (?), set up a command ring segment (or two?), create event
526 * ring (one for now).
527 */
528 int xhci_init(struct usb_hcd *hcd)
529 {
530 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
531 int retval = 0;
532
533 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
534 spin_lock_init(&xhci->lock);
535 if (xhci->hci_version == 0x95 && link_quirk) {
536 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
537 "QUIRK: Not clearing Link TRB chain bits.");
538 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
539 } else {
540 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
541 "xHCI doesn't need link TRB QUIRK");
542 }
543 retval = xhci_mem_init(xhci, GFP_KERNEL);
544 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
545
546 /* Initializing Compliance Mode Recovery Data If Needed */
547 if (xhci_compliance_mode_recovery_timer_quirk_check()) {
548 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
549 compliance_mode_recovery_timer_init(xhci);
550 }
551
552 return retval;
553 }
554
555 /*-------------------------------------------------------------------------*/
556
557
558 static int xhci_run_finished(struct xhci_hcd *xhci)
559 {
560 if (xhci_start(xhci)) {
561 xhci_halt(xhci);
562 return -ENODEV;
563 }
564 xhci->shared_hcd->state = HC_STATE_RUNNING;
565 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
566
567 if (xhci->quirks & XHCI_NEC_HOST)
568 xhci_ring_cmd_db(xhci);
569
570 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
571 "Finished xhci_run for USB3 roothub");
572 return 0;
573 }
574
575 /*
576 * Start the HC after it was halted.
577 *
578 * This function is called by the USB core when the HC driver is added.
579 * Its opposite is xhci_stop().
580 *
581 * xhci_init() must be called once before this function can be called.
582 * Reset the HC, enable device slot contexts, program DCBAAP, and
583 * set command ring pointer and event ring pointer.
584 *
585 * Setup MSI-X vectors and enable interrupts.
586 */
587 int xhci_run(struct usb_hcd *hcd)
588 {
589 u32 temp;
590 u64 temp_64;
591 int ret;
592 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
593
594 /* Start the xHCI host controller running only after the USB 2.0 roothub
595 * is setup.
596 */
597
598 hcd->uses_new_polling = 1;
599 if (!usb_hcd_is_primary_hcd(hcd))
600 return xhci_run_finished(xhci);
601
602 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
603
604 ret = xhci_try_enable_msi(hcd);
605 if (ret)
606 return ret;
607
608 xhci_dbg(xhci, "Command ring memory map follows:\n");
609 xhci_debug_ring(xhci, xhci->cmd_ring);
610 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
611 xhci_dbg_cmd_ptrs(xhci);
612
613 xhci_dbg(xhci, "ERST memory map follows:\n");
614 xhci_dbg_erst(xhci, &xhci->erst);
615 xhci_dbg(xhci, "Event ring:\n");
616 xhci_debug_ring(xhci, xhci->event_ring);
617 xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
618 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
619 temp_64 &= ~ERST_PTR_MASK;
620 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
621 "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
622
623 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
624 "// Set the interrupt modulation register");
625 temp = readl(&xhci->ir_set->irq_control);
626 temp &= ~ER_IRQ_INTERVAL_MASK;
627 temp |= (u32) 160;
628 writel(temp, &xhci->ir_set->irq_control);
629
630 /* Set the HCD state before we enable the irqs */
631 temp = readl(&xhci->op_regs->command);
632 temp |= (CMD_EIE);
633 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
634 "// Enable interrupts, cmd = 0x%x.", temp);
635 writel(temp, &xhci->op_regs->command);
636
637 temp = readl(&xhci->ir_set->irq_pending);
638 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
639 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
640 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
641 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
642 xhci_print_ir_set(xhci, 0);
643
644 if (xhci->quirks & XHCI_NEC_HOST) {
645 struct xhci_command *command;
646 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
647 if (!command)
648 return -ENOMEM;
649 xhci_queue_vendor_command(xhci, command, 0, 0, 0,
650 TRB_TYPE(TRB_NEC_GET_FW));
651 }
652 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
653 "Finished xhci_run for USB2 roothub");
654 return 0;
655 }
656
657 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
658 {
659 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
660
661 spin_lock_irq(&xhci->lock);
662 xhci_halt(xhci);
663
664 /* The shared_hcd is going to be deallocated shortly (the USB core only
665 * calls this function when allocation fails in usb_add_hcd(), or
666 * usb_remove_hcd() is called). So we need to unset xHCI's pointer.
667 */
668 xhci->shared_hcd = NULL;
669 spin_unlock_irq(&xhci->lock);
670 }
671
672 /*
673 * Stop xHCI driver.
674 *
675 * This function is called by the USB core when the HC driver is removed.
676 * Its opposite is xhci_run().
677 *
678 * Disable device contexts, disable IRQs, and quiesce the HC.
679 * Reset the HC, finish any completed transactions, and cleanup memory.
680 */
681 void xhci_stop(struct usb_hcd *hcd)
682 {
683 u32 temp;
684 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
685
686 if (!usb_hcd_is_primary_hcd(hcd)) {
687 xhci_only_stop_hcd(xhci->shared_hcd);
688 return;
689 }
690
691 spin_lock_irq(&xhci->lock);
692 /* Make sure the xHC is halted for a USB3 roothub
693 * (xhci_stop() could be called as part of failed init).
694 */
695 xhci_halt(xhci);
696 xhci_reset(xhci);
697 spin_unlock_irq(&xhci->lock);
698
699 xhci_cleanup_msix(xhci);
700
701 /* Deleting Compliance Mode Recovery Timer */
702 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
703 (!(xhci_all_ports_seen_u0(xhci)))) {
704 del_timer_sync(&xhci->comp_mode_recovery_timer);
705 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
706 "%s: compliance mode recovery timer deleted",
707 __func__);
708 }
709
710 if (xhci->quirks & XHCI_AMD_PLL_FIX)
711 usb_amd_dev_put();
712
713 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
714 "// Disabling event ring interrupts");
715 temp = readl(&xhci->op_regs->status);
716 writel(temp & ~STS_EINT, &xhci->op_regs->status);
717 temp = readl(&xhci->ir_set->irq_pending);
718 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
719 xhci_print_ir_set(xhci, 0);
720
721 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
722 xhci_mem_cleanup(xhci);
723 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
724 "xhci_stop completed - status = %x",
725 readl(&xhci->op_regs->status));
726 }
727
728 /*
729 * Shutdown HC (not bus-specific)
730 *
731 * This is called when the machine is rebooting or halting. We assume that the
732 * machine will be powered off, and the HC's internal state will be reset.
733 * Don't bother to free memory.
734 *
735 * This will only ever be called with the main usb_hcd (the USB3 roothub).
736 */
737 void xhci_shutdown(struct usb_hcd *hcd)
738 {
739 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
740
741 if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
742 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
743
744 spin_lock_irq(&xhci->lock);
745 xhci_halt(xhci);
746 /* Workaround for spurious wakeups at shutdown with HSW */
747 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
748 xhci_reset(xhci);
749 spin_unlock_irq(&xhci->lock);
750
751 xhci_cleanup_msix(xhci);
752
753 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
754 "xhci_shutdown completed - status = %x",
755 readl(&xhci->op_regs->status));
756
757 /* Yet another workaround for spurious wakeups at shutdown with HSW */
758 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
759 pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
760 }
761
762 #ifdef CONFIG_PM
763 static void xhci_save_registers(struct xhci_hcd *xhci)
764 {
765 xhci->s3.command = readl(&xhci->op_regs->command);
766 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
767 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
768 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
769 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
770 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
771 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
772 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
773 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
774 }
775
776 static void xhci_restore_registers(struct xhci_hcd *xhci)
777 {
778 writel(xhci->s3.command, &xhci->op_regs->command);
779 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
780 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
781 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
782 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
783 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
784 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
785 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
786 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
787 }
788
789 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
790 {
791 u64 val_64;
792
793 /* step 2: initialize command ring buffer */
794 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
795 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
796 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
797 xhci->cmd_ring->dequeue) &
798 (u64) ~CMD_RING_RSVD_BITS) |
799 xhci->cmd_ring->cycle_state;
800 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
801 "// Setting command ring address to 0x%llx",
802 (long unsigned long) val_64);
803 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
804 }
805
806 /*
807 * The whole command ring must be cleared to zero when we suspend the host.
808 *
809 * The host doesn't save the command ring pointer in the suspend well, so we
810 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
811 * aligned, because of the reserved bits in the command ring dequeue pointer
812 * register. Therefore, we can't just set the dequeue pointer back in the
813 * middle of the ring (TRBs are 16-byte aligned).
814 */
815 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
816 {
817 struct xhci_ring *ring;
818 struct xhci_segment *seg;
819
820 ring = xhci->cmd_ring;
821 seg = ring->deq_seg;
822 do {
823 memset(seg->trbs, 0,
824 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
825 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
826 cpu_to_le32(~TRB_CYCLE);
827 seg = seg->next;
828 } while (seg != ring->deq_seg);
829
830 /* Reset the software enqueue and dequeue pointers */
831 ring->deq_seg = ring->first_seg;
832 ring->dequeue = ring->first_seg->trbs;
833 ring->enq_seg = ring->deq_seg;
834 ring->enqueue = ring->dequeue;
835
836 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
837 /*
838 * Ring is now zeroed, so the HW should look for change of ownership
839 * when the cycle bit is set to 1.
840 */
841 ring->cycle_state = 1;
842
843 /*
844 * Reset the hardware dequeue pointer.
845 * Yes, this will need to be re-written after resume, but we're paranoid
846 * and want to make sure the hardware doesn't access bogus memory
847 * because, say, the BIOS or an SMI started the host without changing
848 * the command ring pointers.
849 */
850 xhci_set_cmd_ring_deq(xhci);
851 }
852
853 /*
854 * Stop HC (not bus-specific)
855 *
856 * This is called when the machine transition into S3/S4 mode.
857 *
858 */
859 int xhci_suspend(struct xhci_hcd *xhci)
860 {
861 int rc = 0;
862 unsigned int delay = XHCI_MAX_HALT_USEC;
863 struct usb_hcd *hcd = xhci_to_hcd(xhci);
864 u32 command;
865
866 if (hcd->state != HC_STATE_SUSPENDED ||
867 xhci->shared_hcd->state != HC_STATE_SUSPENDED)
868 return -EINVAL;
869
870 /* Don't poll the roothubs on bus suspend. */
871 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
872 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
873 del_timer_sync(&hcd->rh_timer);
874
875 spin_lock_irq(&xhci->lock);
876 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
877 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
878 /* step 1: stop endpoint */
879 /* skipped assuming that port suspend has done */
880
881 /* step 2: clear Run/Stop bit */
882 command = readl(&xhci->op_regs->command);
883 command &= ~CMD_RUN;
884 writel(command, &xhci->op_regs->command);
885
886 /* Some chips from Fresco Logic need an extraordinary delay */
887 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
888
889 if (xhci_handshake(xhci, &xhci->op_regs->status,
890 STS_HALT, STS_HALT, delay)) {
891 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
892 spin_unlock_irq(&xhci->lock);
893 return -ETIMEDOUT;
894 }
895 xhci_clear_command_ring(xhci);
896
897 /* step 3: save registers */
898 xhci_save_registers(xhci);
899
900 /* step 4: set CSS flag */
901 command = readl(&xhci->op_regs->command);
902 command |= CMD_CSS;
903 writel(command, &xhci->op_regs->command);
904 if (xhci_handshake(xhci, &xhci->op_regs->status,
905 STS_SAVE, 0, 10 * 1000)) {
906 xhci_warn(xhci, "WARN: xHC save state timeout\n");
907 spin_unlock_irq(&xhci->lock);
908 return -ETIMEDOUT;
909 }
910 spin_unlock_irq(&xhci->lock);
911
912 /*
913 * Deleting Compliance Mode Recovery Timer because the xHCI Host
914 * is about to be suspended.
915 */
916 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
917 (!(xhci_all_ports_seen_u0(xhci)))) {
918 del_timer_sync(&xhci->comp_mode_recovery_timer);
919 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
920 "%s: compliance mode recovery timer deleted",
921 __func__);
922 }
923
924 /* step 5: remove core well power */
925 /* synchronize irq when using MSI-X */
926 xhci_msix_sync_irqs(xhci);
927
928 return rc;
929 }
930
931 /*
932 * start xHC (not bus-specific)
933 *
934 * This is called when the machine transition from S3/S4 mode.
935 *
936 */
937 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
938 {
939 u32 command, temp = 0, status;
940 struct usb_hcd *hcd = xhci_to_hcd(xhci);
941 struct usb_hcd *secondary_hcd;
942 int retval = 0;
943 bool comp_timer_running = false;
944
945 /* Wait a bit if either of the roothubs need to settle from the
946 * transition into bus suspend.
947 */
948 if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
949 time_before(jiffies,
950 xhci->bus_state[1].next_statechange))
951 msleep(100);
952
953 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
954 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
955
956 spin_lock_irq(&xhci->lock);
957 if (xhci->quirks & XHCI_RESET_ON_RESUME)
958 hibernated = true;
959
960 if (!hibernated) {
961 /* step 1: restore register */
962 xhci_restore_registers(xhci);
963 /* step 2: initialize command ring buffer */
964 xhci_set_cmd_ring_deq(xhci);
965 /* step 3: restore state and start state*/
966 /* step 3: set CRS flag */
967 command = readl(&xhci->op_regs->command);
968 command |= CMD_CRS;
969 writel(command, &xhci->op_regs->command);
970 if (xhci_handshake(xhci, &xhci->op_regs->status,
971 STS_RESTORE, 0, 10 * 1000)) {
972 xhci_warn(xhci, "WARN: xHC restore state timeout\n");
973 spin_unlock_irq(&xhci->lock);
974 return -ETIMEDOUT;
975 }
976 temp = readl(&xhci->op_regs->status);
977 }
978
979 /* If restore operation fails, re-initialize the HC during resume */
980 if ((temp & STS_SRE) || hibernated) {
981
982 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
983 !(xhci_all_ports_seen_u0(xhci))) {
984 del_timer_sync(&xhci->comp_mode_recovery_timer);
985 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
986 "Compliance Mode Recovery Timer deleted!");
987 }
988
989 /* Let the USB core know _both_ roothubs lost power. */
990 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
991 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
992
993 xhci_dbg(xhci, "Stop HCD\n");
994 xhci_halt(xhci);
995 xhci_reset(xhci);
996 spin_unlock_irq(&xhci->lock);
997 xhci_cleanup_msix(xhci);
998
999 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1000 temp = readl(&xhci->op_regs->status);
1001 writel(temp & ~STS_EINT, &xhci->op_regs->status);
1002 temp = readl(&xhci->ir_set->irq_pending);
1003 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1004 xhci_print_ir_set(xhci, 0);
1005
1006 xhci_dbg(xhci, "cleaning up memory\n");
1007 xhci_mem_cleanup(xhci);
1008 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1009 readl(&xhci->op_regs->status));
1010
1011 /* USB core calls the PCI reinit and start functions twice:
1012 * first with the primary HCD, and then with the secondary HCD.
1013 * If we don't do the same, the host will never be started.
1014 */
1015 if (!usb_hcd_is_primary_hcd(hcd))
1016 secondary_hcd = hcd;
1017 else
1018 secondary_hcd = xhci->shared_hcd;
1019
1020 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1021 retval = xhci_init(hcd->primary_hcd);
1022 if (retval)
1023 return retval;
1024 comp_timer_running = true;
1025
1026 xhci_dbg(xhci, "Start the primary HCD\n");
1027 retval = xhci_run(hcd->primary_hcd);
1028 if (!retval) {
1029 xhci_dbg(xhci, "Start the secondary HCD\n");
1030 retval = xhci_run(secondary_hcd);
1031 }
1032 hcd->state = HC_STATE_SUSPENDED;
1033 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1034 goto done;
1035 }
1036
1037 /* step 4: set Run/Stop bit */
1038 command = readl(&xhci->op_regs->command);
1039 command |= CMD_RUN;
1040 writel(command, &xhci->op_regs->command);
1041 xhci_handshake(xhci, &xhci->op_regs->status, STS_HALT,
1042 0, 250 * 1000);
1043
1044 /* step 5: walk topology and initialize portsc,
1045 * portpmsc and portli
1046 */
1047 /* this is done in bus_resume */
1048
1049 /* step 6: restart each of the previously
1050 * Running endpoints by ringing their doorbells
1051 */
1052
1053 spin_unlock_irq(&xhci->lock);
1054
1055 done:
1056 if (retval == 0) {
1057 /* Resume root hubs only when have pending events. */
1058 status = readl(&xhci->op_regs->status);
1059 if (status & STS_EINT) {
1060 usb_hcd_resume_root_hub(hcd);
1061 usb_hcd_resume_root_hub(xhci->shared_hcd);
1062 }
1063 }
1064
1065 /*
1066 * If system is subject to the Quirk, Compliance Mode Timer needs to
1067 * be re-initialized Always after a system resume. Ports are subject
1068 * to suffer the Compliance Mode issue again. It doesn't matter if
1069 * ports have entered previously to U0 before system's suspension.
1070 */
1071 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1072 compliance_mode_recovery_timer_init(xhci);
1073
1074 /* Re-enable port polling. */
1075 xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1076 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1077 usb_hcd_poll_rh_status(hcd);
1078
1079 return retval;
1080 }
1081 #endif /* CONFIG_PM */
1082
1083 /*-------------------------------------------------------------------------*/
1084
1085 /**
1086 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1087 * HCDs. Find the index for an endpoint given its descriptor. Use the return
1088 * value to right shift 1 for the bitmask.
1089 *
1090 * Index = (epnum * 2) + direction - 1,
1091 * where direction = 0 for OUT, 1 for IN.
1092 * For control endpoints, the IN index is used (OUT index is unused), so
1093 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1094 */
1095 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1096 {
1097 unsigned int index;
1098 if (usb_endpoint_xfer_control(desc))
1099 index = (unsigned int) (usb_endpoint_num(desc)*2);
1100 else
1101 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1102 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1103 return index;
1104 }
1105
1106 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1107 * address from the XHCI endpoint index.
1108 */
1109 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1110 {
1111 unsigned int number = DIV_ROUND_UP(ep_index, 2);
1112 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1113 return direction | number;
1114 }
1115
1116 /* Find the flag for this endpoint (for use in the control context). Use the
1117 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1118 * bit 1, etc.
1119 */
1120 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1121 {
1122 return 1 << (xhci_get_endpoint_index(desc) + 1);
1123 }
1124
1125 /* Find the flag for this endpoint (for use in the control context). Use the
1126 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1127 * bit 1, etc.
1128 */
1129 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1130 {
1131 return 1 << (ep_index + 1);
1132 }
1133
1134 /* Compute the last valid endpoint context index. Basically, this is the
1135 * endpoint index plus one. For slot contexts with more than valid endpoint,
1136 * we find the most significant bit set in the added contexts flags.
1137 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1138 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1139 */
1140 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1141 {
1142 return fls(added_ctxs) - 1;
1143 }
1144
1145 /* Returns 1 if the arguments are OK;
1146 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1147 */
1148 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1149 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1150 const char *func) {
1151 struct xhci_hcd *xhci;
1152 struct xhci_virt_device *virt_dev;
1153
1154 if (!hcd || (check_ep && !ep) || !udev) {
1155 pr_debug("xHCI %s called with invalid args\n", func);
1156 return -EINVAL;
1157 }
1158 if (!udev->parent) {
1159 pr_debug("xHCI %s called for root hub\n", func);
1160 return 0;
1161 }
1162
1163 xhci = hcd_to_xhci(hcd);
1164 if (check_virt_dev) {
1165 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1166 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1167 func);
1168 return -EINVAL;
1169 }
1170
1171 virt_dev = xhci->devs[udev->slot_id];
1172 if (virt_dev->udev != udev) {
1173 xhci_dbg(xhci, "xHCI %s called with udev and "
1174 "virt_dev does not match\n", func);
1175 return -EINVAL;
1176 }
1177 }
1178
1179 if (xhci->xhc_state & XHCI_STATE_HALTED)
1180 return -ENODEV;
1181
1182 return 1;
1183 }
1184
1185 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1186 struct usb_device *udev, struct xhci_command *command,
1187 bool ctx_change, bool must_succeed);
1188
1189 /*
1190 * Full speed devices may have a max packet size greater than 8 bytes, but the
1191 * USB core doesn't know that until it reads the first 8 bytes of the
1192 * descriptor. If the usb_device's max packet size changes after that point,
1193 * we need to issue an evaluate context command and wait on it.
1194 */
1195 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1196 unsigned int ep_index, struct urb *urb)
1197 {
1198 struct xhci_container_ctx *out_ctx;
1199 struct xhci_input_control_ctx *ctrl_ctx;
1200 struct xhci_ep_ctx *ep_ctx;
1201 struct xhci_command *command;
1202 int max_packet_size;
1203 int hw_max_packet_size;
1204 int ret = 0;
1205
1206 out_ctx = xhci->devs[slot_id]->out_ctx;
1207 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1208 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1209 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1210 if (hw_max_packet_size != max_packet_size) {
1211 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1212 "Max Packet Size for ep 0 changed.");
1213 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1214 "Max packet size in usb_device = %d",
1215 max_packet_size);
1216 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1217 "Max packet size in xHCI HW = %d",
1218 hw_max_packet_size);
1219 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1220 "Issuing evaluate context command.");
1221
1222 /* Set up the input context flags for the command */
1223 /* FIXME: This won't work if a non-default control endpoint
1224 * changes max packet sizes.
1225 */
1226
1227 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
1228 if (!command)
1229 return -ENOMEM;
1230
1231 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1232 ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
1233 if (!ctrl_ctx) {
1234 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1235 __func__);
1236 ret = -ENOMEM;
1237 goto command_cleanup;
1238 }
1239 /* Set up the modified control endpoint 0 */
1240 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1241 xhci->devs[slot_id]->out_ctx, ep_index);
1242
1243 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1244 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1245 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1246
1247 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1248 ctrl_ctx->drop_flags = 0;
1249
1250 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1251 xhci_dbg_ctx(xhci, command->in_ctx, ep_index);
1252 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1253 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1254
1255 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1256 true, false);
1257
1258 /* Clean up the input context for later use by bandwidth
1259 * functions.
1260 */
1261 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1262 command_cleanup:
1263 kfree(command->completion);
1264 kfree(command);
1265 }
1266 return ret;
1267 }
1268
1269 /*
1270 * non-error returns are a promise to giveback() the urb later
1271 * we drop ownership so next owner (or urb unlink) can get it
1272 */
1273 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1274 {
1275 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1276 struct xhci_td *buffer;
1277 unsigned long flags;
1278 int ret = 0;
1279 unsigned int slot_id, ep_index;
1280 struct urb_priv *urb_priv;
1281 int size, i;
1282
1283 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1284 true, true, __func__) <= 0)
1285 return -EINVAL;
1286
1287 slot_id = urb->dev->slot_id;
1288 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1289
1290 if (!HCD_HW_ACCESSIBLE(hcd)) {
1291 if (!in_interrupt())
1292 xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1293 ret = -ESHUTDOWN;
1294 goto exit;
1295 }
1296
1297 if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1298 size = urb->number_of_packets;
1299 else
1300 size = 1;
1301
1302 urb_priv = kzalloc(sizeof(struct urb_priv) +
1303 size * sizeof(struct xhci_td *), mem_flags);
1304 if (!urb_priv)
1305 return -ENOMEM;
1306
1307 buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1308 if (!buffer) {
1309 kfree(urb_priv);
1310 return -ENOMEM;
1311 }
1312
1313 for (i = 0; i < size; i++) {
1314 urb_priv->td[i] = buffer;
1315 buffer++;
1316 }
1317
1318 urb_priv->length = size;
1319 urb_priv->td_cnt = 0;
1320 urb->hcpriv = urb_priv;
1321
1322 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1323 /* Check to see if the max packet size for the default control
1324 * endpoint changed during FS device enumeration
1325 */
1326 if (urb->dev->speed == USB_SPEED_FULL) {
1327 ret = xhci_check_maxpacket(xhci, slot_id,
1328 ep_index, urb);
1329 if (ret < 0) {
1330 xhci_urb_free_priv(xhci, urb_priv);
1331 urb->hcpriv = NULL;
1332 return ret;
1333 }
1334 }
1335
1336 /* We have a spinlock and interrupts disabled, so we must pass
1337 * atomic context to this function, which may allocate memory.
1338 */
1339 spin_lock_irqsave(&xhci->lock, flags);
1340 if (xhci->xhc_state & XHCI_STATE_DYING)
1341 goto dying;
1342 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1343 slot_id, ep_index);
1344 if (ret)
1345 goto free_priv;
1346 spin_unlock_irqrestore(&xhci->lock, flags);
1347 } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1348 spin_lock_irqsave(&xhci->lock, flags);
1349 if (xhci->xhc_state & XHCI_STATE_DYING)
1350 goto dying;
1351 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1352 EP_GETTING_STREAMS) {
1353 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1354 "is transitioning to using streams.\n");
1355 ret = -EINVAL;
1356 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1357 EP_GETTING_NO_STREAMS) {
1358 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1359 "is transitioning to "
1360 "not having streams.\n");
1361 ret = -EINVAL;
1362 } else {
1363 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1364 slot_id, ep_index);
1365 }
1366 if (ret)
1367 goto free_priv;
1368 spin_unlock_irqrestore(&xhci->lock, flags);
1369 } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1370 spin_lock_irqsave(&xhci->lock, flags);
1371 if (xhci->xhc_state & XHCI_STATE_DYING)
1372 goto dying;
1373 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1374 slot_id, ep_index);
1375 if (ret)
1376 goto free_priv;
1377 spin_unlock_irqrestore(&xhci->lock, flags);
1378 } else {
1379 spin_lock_irqsave(&xhci->lock, flags);
1380 if (xhci->xhc_state & XHCI_STATE_DYING)
1381 goto dying;
1382 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1383 slot_id, ep_index);
1384 if (ret)
1385 goto free_priv;
1386 spin_unlock_irqrestore(&xhci->lock, flags);
1387 }
1388 exit:
1389 return ret;
1390 dying:
1391 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1392 "non-responsive xHCI host.\n",
1393 urb->ep->desc.bEndpointAddress, urb);
1394 ret = -ESHUTDOWN;
1395 free_priv:
1396 xhci_urb_free_priv(xhci, urb_priv);
1397 urb->hcpriv = NULL;
1398 spin_unlock_irqrestore(&xhci->lock, flags);
1399 return ret;
1400 }
1401
1402 /* Get the right ring for the given URB.
1403 * If the endpoint supports streams, boundary check the URB's stream ID.
1404 * If the endpoint doesn't support streams, return the singular endpoint ring.
1405 */
1406 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1407 struct urb *urb)
1408 {
1409 unsigned int slot_id;
1410 unsigned int ep_index;
1411 unsigned int stream_id;
1412 struct xhci_virt_ep *ep;
1413
1414 slot_id = urb->dev->slot_id;
1415 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1416 stream_id = urb->stream_id;
1417 ep = &xhci->devs[slot_id]->eps[ep_index];
1418 /* Common case: no streams */
1419 if (!(ep->ep_state & EP_HAS_STREAMS))
1420 return ep->ring;
1421
1422 if (stream_id == 0) {
1423 xhci_warn(xhci,
1424 "WARN: Slot ID %u, ep index %u has streams, "
1425 "but URB has no stream ID.\n",
1426 slot_id, ep_index);
1427 return NULL;
1428 }
1429
1430 if (stream_id < ep->stream_info->num_streams)
1431 return ep->stream_info->stream_rings[stream_id];
1432
1433 xhci_warn(xhci,
1434 "WARN: Slot ID %u, ep index %u has "
1435 "stream IDs 1 to %u allocated, "
1436 "but stream ID %u is requested.\n",
1437 slot_id, ep_index,
1438 ep->stream_info->num_streams - 1,
1439 stream_id);
1440 return NULL;
1441 }
1442
1443 /*
1444 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1445 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1446 * should pick up where it left off in the TD, unless a Set Transfer Ring
1447 * Dequeue Pointer is issued.
1448 *
1449 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1450 * the ring. Since the ring is a contiguous structure, they can't be physically
1451 * removed. Instead, there are two options:
1452 *
1453 * 1) If the HC is in the middle of processing the URB to be canceled, we
1454 * simply move the ring's dequeue pointer past those TRBs using the Set
1455 * Transfer Ring Dequeue Pointer command. This will be the common case,
1456 * when drivers timeout on the last submitted URB and attempt to cancel.
1457 *
1458 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1459 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1460 * HC will need to invalidate the any TRBs it has cached after the stop
1461 * endpoint command, as noted in the xHCI 0.95 errata.
1462 *
1463 * 3) The TD may have completed by the time the Stop Endpoint Command
1464 * completes, so software needs to handle that case too.
1465 *
1466 * This function should protect against the TD enqueueing code ringing the
1467 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1468 * It also needs to account for multiple cancellations on happening at the same
1469 * time for the same endpoint.
1470 *
1471 * Note that this function can be called in any context, or so says
1472 * usb_hcd_unlink_urb()
1473 */
1474 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1475 {
1476 unsigned long flags;
1477 int ret, i;
1478 u32 temp;
1479 struct xhci_hcd *xhci;
1480 struct urb_priv *urb_priv;
1481 struct xhci_td *td;
1482 unsigned int ep_index;
1483 struct xhci_ring *ep_ring;
1484 struct xhci_virt_ep *ep;
1485 struct xhci_command *command;
1486
1487 xhci = hcd_to_xhci(hcd);
1488 spin_lock_irqsave(&xhci->lock, flags);
1489 /* Make sure the URB hasn't completed or been unlinked already */
1490 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1491 if (ret || !urb->hcpriv)
1492 goto done;
1493 temp = readl(&xhci->op_regs->status);
1494 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1495 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1496 "HW died, freeing TD.");
1497 urb_priv = urb->hcpriv;
1498 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1499 td = urb_priv->td[i];
1500 if (!list_empty(&td->td_list))
1501 list_del_init(&td->td_list);
1502 if (!list_empty(&td->cancelled_td_list))
1503 list_del_init(&td->cancelled_td_list);
1504 }
1505
1506 usb_hcd_unlink_urb_from_ep(hcd, urb);
1507 spin_unlock_irqrestore(&xhci->lock, flags);
1508 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1509 xhci_urb_free_priv(xhci, urb_priv);
1510 return ret;
1511 }
1512 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1513 (xhci->xhc_state & XHCI_STATE_HALTED)) {
1514 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1515 "Ep 0x%x: URB %p to be canceled on "
1516 "non-responsive xHCI host.",
1517 urb->ep->desc.bEndpointAddress, urb);
1518 /* Let the stop endpoint command watchdog timer (which set this
1519 * state) finish cleaning up the endpoint TD lists. We must
1520 * have caught it in the middle of dropping a lock and giving
1521 * back an URB.
1522 */
1523 goto done;
1524 }
1525
1526 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1527 ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1528 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1529 if (!ep_ring) {
1530 ret = -EINVAL;
1531 goto done;
1532 }
1533
1534 urb_priv = urb->hcpriv;
1535 i = urb_priv->td_cnt;
1536 if (i < urb_priv->length)
1537 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1538 "Cancel URB %p, dev %s, ep 0x%x, "
1539 "starting at offset 0x%llx",
1540 urb, urb->dev->devpath,
1541 urb->ep->desc.bEndpointAddress,
1542 (unsigned long long) xhci_trb_virt_to_dma(
1543 urb_priv->td[i]->start_seg,
1544 urb_priv->td[i]->first_trb));
1545
1546 for (; i < urb_priv->length; i++) {
1547 td = urb_priv->td[i];
1548 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1549 }
1550
1551 /* Queue a stop endpoint command, but only if this is
1552 * the first cancellation to be handled.
1553 */
1554 if (!(ep->ep_state & EP_HALT_PENDING)) {
1555 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1556 ep->ep_state |= EP_HALT_PENDING;
1557 ep->stop_cmds_pending++;
1558 ep->stop_cmd_timer.expires = jiffies +
1559 XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1560 add_timer(&ep->stop_cmd_timer);
1561 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1562 ep_index, 0);
1563 xhci_ring_cmd_db(xhci);
1564 }
1565 done:
1566 spin_unlock_irqrestore(&xhci->lock, flags);
1567 return ret;
1568 }
1569
1570 /* Drop an endpoint from a new bandwidth configuration for this device.
1571 * Only one call to this function is allowed per endpoint before
1572 * check_bandwidth() or reset_bandwidth() must be called.
1573 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1574 * add the endpoint to the schedule with possibly new parameters denoted by a
1575 * different endpoint descriptor in usb_host_endpoint.
1576 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1577 * not allowed.
1578 *
1579 * The USB core will not allow URBs to be queued to an endpoint that is being
1580 * disabled, so there's no need for mutual exclusion to protect
1581 * the xhci->devs[slot_id] structure.
1582 */
1583 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1584 struct usb_host_endpoint *ep)
1585 {
1586 struct xhci_hcd *xhci;
1587 struct xhci_container_ctx *in_ctx, *out_ctx;
1588 struct xhci_input_control_ctx *ctrl_ctx;
1589 struct xhci_slot_ctx *slot_ctx;
1590 unsigned int last_ctx;
1591 unsigned int ep_index;
1592 struct xhci_ep_ctx *ep_ctx;
1593 u32 drop_flag;
1594 u32 new_add_flags, new_drop_flags, new_slot_info;
1595 int ret;
1596
1597 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1598 if (ret <= 0)
1599 return ret;
1600 xhci = hcd_to_xhci(hcd);
1601 if (xhci->xhc_state & XHCI_STATE_DYING)
1602 return -ENODEV;
1603
1604 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1605 drop_flag = xhci_get_endpoint_flag(&ep->desc);
1606 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1607 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1608 __func__, drop_flag);
1609 return 0;
1610 }
1611
1612 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1613 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1614 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1615 if (!ctrl_ctx) {
1616 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1617 __func__);
1618 return 0;
1619 }
1620
1621 ep_index = xhci_get_endpoint_index(&ep->desc);
1622 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1623 /* If the HC already knows the endpoint is disabled,
1624 * or the HCD has noted it is disabled, ignore this request
1625 */
1626 if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1627 cpu_to_le32(EP_STATE_DISABLED)) ||
1628 le32_to_cpu(ctrl_ctx->drop_flags) &
1629 xhci_get_endpoint_flag(&ep->desc)) {
1630 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1631 __func__, ep);
1632 return 0;
1633 }
1634
1635 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1636 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1637
1638 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1639 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1640
1641 last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1642 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1643 /* Update the last valid endpoint context, if we deleted the last one */
1644 if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1645 LAST_CTX(last_ctx)) {
1646 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1647 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1648 }
1649 new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1650
1651 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1652
1653 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1654 (unsigned int) ep->desc.bEndpointAddress,
1655 udev->slot_id,
1656 (unsigned int) new_drop_flags,
1657 (unsigned int) new_add_flags,
1658 (unsigned int) new_slot_info);
1659 return 0;
1660 }
1661
1662 /* Add an endpoint to a new possible bandwidth configuration for this device.
1663 * Only one call to this function is allowed per endpoint before
1664 * check_bandwidth() or reset_bandwidth() must be called.
1665 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1666 * add the endpoint to the schedule with possibly new parameters denoted by a
1667 * different endpoint descriptor in usb_host_endpoint.
1668 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1669 * not allowed.
1670 *
1671 * The USB core will not allow URBs to be queued to an endpoint until the
1672 * configuration or alt setting is installed in the device, so there's no need
1673 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1674 */
1675 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1676 struct usb_host_endpoint *ep)
1677 {
1678 struct xhci_hcd *xhci;
1679 struct xhci_container_ctx *in_ctx, *out_ctx;
1680 unsigned int ep_index;
1681 struct xhci_slot_ctx *slot_ctx;
1682 struct xhci_input_control_ctx *ctrl_ctx;
1683 u32 added_ctxs;
1684 unsigned int last_ctx;
1685 u32 new_add_flags, new_drop_flags, new_slot_info;
1686 struct xhci_virt_device *virt_dev;
1687 int ret = 0;
1688
1689 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1690 if (ret <= 0) {
1691 /* So we won't queue a reset ep command for a root hub */
1692 ep->hcpriv = NULL;
1693 return ret;
1694 }
1695 xhci = hcd_to_xhci(hcd);
1696 if (xhci->xhc_state & XHCI_STATE_DYING)
1697 return -ENODEV;
1698
1699 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1700 last_ctx = xhci_last_valid_endpoint(added_ctxs);
1701 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1702 /* FIXME when we have to issue an evaluate endpoint command to
1703 * deal with ep0 max packet size changing once we get the
1704 * descriptors
1705 */
1706 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1707 __func__, added_ctxs);
1708 return 0;
1709 }
1710
1711 virt_dev = xhci->devs[udev->slot_id];
1712 in_ctx = virt_dev->in_ctx;
1713 out_ctx = virt_dev->out_ctx;
1714 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1715 if (!ctrl_ctx) {
1716 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1717 __func__);
1718 return 0;
1719 }
1720
1721 ep_index = xhci_get_endpoint_index(&ep->desc);
1722 /* If this endpoint is already in use, and the upper layers are trying
1723 * to add it again without dropping it, reject the addition.
1724 */
1725 if (virt_dev->eps[ep_index].ring &&
1726 !(le32_to_cpu(ctrl_ctx->drop_flags) &
1727 xhci_get_endpoint_flag(&ep->desc))) {
1728 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1729 "without dropping it.\n",
1730 (unsigned int) ep->desc.bEndpointAddress);
1731 return -EINVAL;
1732 }
1733
1734 /* If the HCD has already noted the endpoint is enabled,
1735 * ignore this request.
1736 */
1737 if (le32_to_cpu(ctrl_ctx->add_flags) &
1738 xhci_get_endpoint_flag(&ep->desc)) {
1739 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1740 __func__, ep);
1741 return 0;
1742 }
1743
1744 /*
1745 * Configuration and alternate setting changes must be done in
1746 * process context, not interrupt context (or so documenation
1747 * for usb_set_interface() and usb_set_configuration() claim).
1748 */
1749 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1750 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1751 __func__, ep->desc.bEndpointAddress);
1752 return -ENOMEM;
1753 }
1754
1755 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1756 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1757
1758 /* If xhci_endpoint_disable() was called for this endpoint, but the
1759 * xHC hasn't been notified yet through the check_bandwidth() call,
1760 * this re-adds a new state for the endpoint from the new endpoint
1761 * descriptors. We must drop and re-add this endpoint, so we leave the
1762 * drop flags alone.
1763 */
1764 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1765
1766 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1767 /* Update the last valid endpoint context, if we just added one past */
1768 if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1769 LAST_CTX(last_ctx)) {
1770 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1771 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1772 }
1773 new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1774
1775 /* Store the usb_device pointer for later use */
1776 ep->hcpriv = udev;
1777
1778 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1779 (unsigned int) ep->desc.bEndpointAddress,
1780 udev->slot_id,
1781 (unsigned int) new_drop_flags,
1782 (unsigned int) new_add_flags,
1783 (unsigned int) new_slot_info);
1784 return 0;
1785 }
1786
1787 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1788 {
1789 struct xhci_input_control_ctx *ctrl_ctx;
1790 struct xhci_ep_ctx *ep_ctx;
1791 struct xhci_slot_ctx *slot_ctx;
1792 int i;
1793
1794 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1795 if (!ctrl_ctx) {
1796 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1797 __func__);
1798 return;
1799 }
1800
1801 /* When a device's add flag and drop flag are zero, any subsequent
1802 * configure endpoint command will leave that endpoint's state
1803 * untouched. Make sure we don't leave any old state in the input
1804 * endpoint contexts.
1805 */
1806 ctrl_ctx->drop_flags = 0;
1807 ctrl_ctx->add_flags = 0;
1808 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1809 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1810 /* Endpoint 0 is always valid */
1811 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1812 for (i = 1; i < 31; ++i) {
1813 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1814 ep_ctx->ep_info = 0;
1815 ep_ctx->ep_info2 = 0;
1816 ep_ctx->deq = 0;
1817 ep_ctx->tx_info = 0;
1818 }
1819 }
1820
1821 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1822 struct usb_device *udev, u32 *cmd_status)
1823 {
1824 int ret;
1825
1826 switch (*cmd_status) {
1827 case COMP_CMD_ABORT:
1828 case COMP_CMD_STOP:
1829 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1830 ret = -ETIME;
1831 break;
1832 case COMP_ENOMEM:
1833 dev_warn(&udev->dev, "Not enough host controller resources "
1834 "for new device state.\n");
1835 ret = -ENOMEM;
1836 /* FIXME: can we allocate more resources for the HC? */
1837 break;
1838 case COMP_BW_ERR:
1839 case COMP_2ND_BW_ERR:
1840 dev_warn(&udev->dev, "Not enough bandwidth "
1841 "for new device state.\n");
1842 ret = -ENOSPC;
1843 /* FIXME: can we go back to the old state? */
1844 break;
1845 case COMP_TRB_ERR:
1846 /* the HCD set up something wrong */
1847 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1848 "add flag = 1, "
1849 "and endpoint is not disabled.\n");
1850 ret = -EINVAL;
1851 break;
1852 case COMP_DEV_ERR:
1853 dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1854 "configure command.\n");
1855 ret = -ENODEV;
1856 break;
1857 case COMP_SUCCESS:
1858 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1859 "Successful Endpoint Configure command");
1860 ret = 0;
1861 break;
1862 default:
1863 xhci_err(xhci, "ERROR: unexpected command completion "
1864 "code 0x%x.\n", *cmd_status);
1865 ret = -EINVAL;
1866 break;
1867 }
1868 return ret;
1869 }
1870
1871 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1872 struct usb_device *udev, u32 *cmd_status)
1873 {
1874 int ret;
1875 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1876
1877 switch (*cmd_status) {
1878 case COMP_CMD_ABORT:
1879 case COMP_CMD_STOP:
1880 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1881 ret = -ETIME;
1882 break;
1883 case COMP_EINVAL:
1884 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1885 "context command.\n");
1886 ret = -EINVAL;
1887 break;
1888 case COMP_EBADSLT:
1889 dev_warn(&udev->dev, "WARN: slot not enabled for"
1890 "evaluate context command.\n");
1891 ret = -EINVAL;
1892 break;
1893 case COMP_CTX_STATE:
1894 dev_warn(&udev->dev, "WARN: invalid context state for "
1895 "evaluate context command.\n");
1896 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1897 ret = -EINVAL;
1898 break;
1899 case COMP_DEV_ERR:
1900 dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1901 "context command.\n");
1902 ret = -ENODEV;
1903 break;
1904 case COMP_MEL_ERR:
1905 /* Max Exit Latency too large error */
1906 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1907 ret = -EINVAL;
1908 break;
1909 case COMP_SUCCESS:
1910 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1911 "Successful evaluate context command");
1912 ret = 0;
1913 break;
1914 default:
1915 xhci_err(xhci, "ERROR: unexpected command completion "
1916 "code 0x%x.\n", *cmd_status);
1917 ret = -EINVAL;
1918 break;
1919 }
1920 return ret;
1921 }
1922
1923 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1924 struct xhci_input_control_ctx *ctrl_ctx)
1925 {
1926 u32 valid_add_flags;
1927 u32 valid_drop_flags;
1928
1929 /* Ignore the slot flag (bit 0), and the default control endpoint flag
1930 * (bit 1). The default control endpoint is added during the Address
1931 * Device command and is never removed until the slot is disabled.
1932 */
1933 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1934 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1935
1936 /* Use hweight32 to count the number of ones in the add flags, or
1937 * number of endpoints added. Don't count endpoints that are changed
1938 * (both added and dropped).
1939 */
1940 return hweight32(valid_add_flags) -
1941 hweight32(valid_add_flags & valid_drop_flags);
1942 }
1943
1944 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1945 struct xhci_input_control_ctx *ctrl_ctx)
1946 {
1947 u32 valid_add_flags;
1948 u32 valid_drop_flags;
1949
1950 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1951 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1952
1953 return hweight32(valid_drop_flags) -
1954 hweight32(valid_add_flags & valid_drop_flags);
1955 }
1956
1957 /*
1958 * We need to reserve the new number of endpoints before the configure endpoint
1959 * command completes. We can't subtract the dropped endpoints from the number
1960 * of active endpoints until the command completes because we can oversubscribe
1961 * the host in this case:
1962 *
1963 * - the first configure endpoint command drops more endpoints than it adds
1964 * - a second configure endpoint command that adds more endpoints is queued
1965 * - the first configure endpoint command fails, so the config is unchanged
1966 * - the second command may succeed, even though there isn't enough resources
1967 *
1968 * Must be called with xhci->lock held.
1969 */
1970 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1971 struct xhci_input_control_ctx *ctrl_ctx)
1972 {
1973 u32 added_eps;
1974
1975 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1976 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1977 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1978 "Not enough ep ctxs: "
1979 "%u active, need to add %u, limit is %u.",
1980 xhci->num_active_eps, added_eps,
1981 xhci->limit_active_eps);
1982 return -ENOMEM;
1983 }
1984 xhci->num_active_eps += added_eps;
1985 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1986 "Adding %u ep ctxs, %u now active.", added_eps,
1987 xhci->num_active_eps);
1988 return 0;
1989 }
1990
1991 /*
1992 * The configure endpoint was failed by the xHC for some other reason, so we
1993 * need to revert the resources that failed configuration would have used.
1994 *
1995 * Must be called with xhci->lock held.
1996 */
1997 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1998 struct xhci_input_control_ctx *ctrl_ctx)
1999 {
2000 u32 num_failed_eps;
2001
2002 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2003 xhci->num_active_eps -= num_failed_eps;
2004 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2005 "Removing %u failed ep ctxs, %u now active.",
2006 num_failed_eps,
2007 xhci->num_active_eps);
2008 }
2009
2010 /*
2011 * Now that the command has completed, clean up the active endpoint count by
2012 * subtracting out the endpoints that were dropped (but not changed).
2013 *
2014 * Must be called with xhci->lock held.
2015 */
2016 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2017 struct xhci_input_control_ctx *ctrl_ctx)
2018 {
2019 u32 num_dropped_eps;
2020
2021 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2022 xhci->num_active_eps -= num_dropped_eps;
2023 if (num_dropped_eps)
2024 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2025 "Removing %u dropped ep ctxs, %u now active.",
2026 num_dropped_eps,
2027 xhci->num_active_eps);
2028 }
2029
2030 static unsigned int xhci_get_block_size(struct usb_device *udev)
2031 {
2032 switch (udev->speed) {
2033 case USB_SPEED_LOW:
2034 case USB_SPEED_FULL:
2035 return FS_BLOCK;
2036 case USB_SPEED_HIGH:
2037 return HS_BLOCK;
2038 case USB_SPEED_SUPER:
2039 return SS_BLOCK;
2040 case USB_SPEED_UNKNOWN:
2041 case USB_SPEED_WIRELESS:
2042 default:
2043 /* Should never happen */
2044 return 1;
2045 }
2046 }
2047
2048 static unsigned int
2049 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2050 {
2051 if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2052 return LS_OVERHEAD;
2053 if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2054 return FS_OVERHEAD;
2055 return HS_OVERHEAD;
2056 }
2057
2058 /* If we are changing a LS/FS device under a HS hub,
2059 * make sure (if we are activating a new TT) that the HS bus has enough
2060 * bandwidth for this new TT.
2061 */
2062 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2063 struct xhci_virt_device *virt_dev,
2064 int old_active_eps)
2065 {
2066 struct xhci_interval_bw_table *bw_table;
2067 struct xhci_tt_bw_info *tt_info;
2068
2069 /* Find the bandwidth table for the root port this TT is attached to. */
2070 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2071 tt_info = virt_dev->tt_info;
2072 /* If this TT already had active endpoints, the bandwidth for this TT
2073 * has already been added. Removing all periodic endpoints (and thus
2074 * making the TT enactive) will only decrease the bandwidth used.
2075 */
2076 if (old_active_eps)
2077 return 0;
2078 if (old_active_eps == 0 && tt_info->active_eps != 0) {
2079 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2080 return -ENOMEM;
2081 return 0;
2082 }
2083 /* Not sure why we would have no new active endpoints...
2084 *
2085 * Maybe because of an Evaluate Context change for a hub update or a
2086 * control endpoint 0 max packet size change?
2087 * FIXME: skip the bandwidth calculation in that case.
2088 */
2089 return 0;
2090 }
2091
2092 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2093 struct xhci_virt_device *virt_dev)
2094 {
2095 unsigned int bw_reserved;
2096
2097 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2098 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2099 return -ENOMEM;
2100
2101 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2102 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2103 return -ENOMEM;
2104
2105 return 0;
2106 }
2107
2108 /*
2109 * This algorithm is a very conservative estimate of the worst-case scheduling
2110 * scenario for any one interval. The hardware dynamically schedules the
2111 * packets, so we can't tell which microframe could be the limiting factor in
2112 * the bandwidth scheduling. This only takes into account periodic endpoints.
2113 *
2114 * Obviously, we can't solve an NP complete problem to find the minimum worst
2115 * case scenario. Instead, we come up with an estimate that is no less than
2116 * the worst case bandwidth used for any one microframe, but may be an
2117 * over-estimate.
2118 *
2119 * We walk the requirements for each endpoint by interval, starting with the
2120 * smallest interval, and place packets in the schedule where there is only one
2121 * possible way to schedule packets for that interval. In order to simplify
2122 * this algorithm, we record the largest max packet size for each interval, and
2123 * assume all packets will be that size.
2124 *
2125 * For interval 0, we obviously must schedule all packets for each interval.
2126 * The bandwidth for interval 0 is just the amount of data to be transmitted
2127 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2128 * the number of packets).
2129 *
2130 * For interval 1, we have two possible microframes to schedule those packets
2131 * in. For this algorithm, if we can schedule the same number of packets for
2132 * each possible scheduling opportunity (each microframe), we will do so. The
2133 * remaining number of packets will be saved to be transmitted in the gaps in
2134 * the next interval's scheduling sequence.
2135 *
2136 * As we move those remaining packets to be scheduled with interval 2 packets,
2137 * we have to double the number of remaining packets to transmit. This is
2138 * because the intervals are actually powers of 2, and we would be transmitting
2139 * the previous interval's packets twice in this interval. We also have to be
2140 * sure that when we look at the largest max packet size for this interval, we
2141 * also look at the largest max packet size for the remaining packets and take
2142 * the greater of the two.
2143 *
2144 * The algorithm continues to evenly distribute packets in each scheduling
2145 * opportunity, and push the remaining packets out, until we get to the last
2146 * interval. Then those packets and their associated overhead are just added
2147 * to the bandwidth used.
2148 */
2149 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2150 struct xhci_virt_device *virt_dev,
2151 int old_active_eps)
2152 {
2153 unsigned int bw_reserved;
2154 unsigned int max_bandwidth;
2155 unsigned int bw_used;
2156 unsigned int block_size;
2157 struct xhci_interval_bw_table *bw_table;
2158 unsigned int packet_size = 0;
2159 unsigned int overhead = 0;
2160 unsigned int packets_transmitted = 0;
2161 unsigned int packets_remaining = 0;
2162 unsigned int i;
2163
2164 if (virt_dev->udev->speed == USB_SPEED_SUPER)
2165 return xhci_check_ss_bw(xhci, virt_dev);
2166
2167 if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2168 max_bandwidth = HS_BW_LIMIT;
2169 /* Convert percent of bus BW reserved to blocks reserved */
2170 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2171 } else {
2172 max_bandwidth = FS_BW_LIMIT;
2173 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2174 }
2175
2176 bw_table = virt_dev->bw_table;
2177 /* We need to translate the max packet size and max ESIT payloads into
2178 * the units the hardware uses.
2179 */
2180 block_size = xhci_get_block_size(virt_dev->udev);
2181
2182 /* If we are manipulating a LS/FS device under a HS hub, double check
2183 * that the HS bus has enough bandwidth if we are activing a new TT.
2184 */
2185 if (virt_dev->tt_info) {
2186 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2187 "Recalculating BW for rootport %u",
2188 virt_dev->real_port);
2189 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2190 xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2191 "newly activated TT.\n");
2192 return -ENOMEM;
2193 }
2194 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2195 "Recalculating BW for TT slot %u port %u",
2196 virt_dev->tt_info->slot_id,
2197 virt_dev->tt_info->ttport);
2198 } else {
2199 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2200 "Recalculating BW for rootport %u",
2201 virt_dev->real_port);
2202 }
2203
2204 /* Add in how much bandwidth will be used for interval zero, or the
2205 * rounded max ESIT payload + number of packets * largest overhead.
2206 */
2207 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2208 bw_table->interval_bw[0].num_packets *
2209 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2210
2211 for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2212 unsigned int bw_added;
2213 unsigned int largest_mps;
2214 unsigned int interval_overhead;
2215
2216 /*
2217 * How many packets could we transmit in this interval?
2218 * If packets didn't fit in the previous interval, we will need
2219 * to transmit that many packets twice within this interval.
2220 */
2221 packets_remaining = 2 * packets_remaining +
2222 bw_table->interval_bw[i].num_packets;
2223
2224 /* Find the largest max packet size of this or the previous
2225 * interval.
2226 */
2227 if (list_empty(&bw_table->interval_bw[i].endpoints))
2228 largest_mps = 0;
2229 else {
2230 struct xhci_virt_ep *virt_ep;
2231 struct list_head *ep_entry;
2232
2233 ep_entry = bw_table->interval_bw[i].endpoints.next;
2234 virt_ep = list_entry(ep_entry,
2235 struct xhci_virt_ep, bw_endpoint_list);
2236 /* Convert to blocks, rounding up */
2237 largest_mps = DIV_ROUND_UP(
2238 virt_ep->bw_info.max_packet_size,
2239 block_size);
2240 }
2241 if (largest_mps > packet_size)
2242 packet_size = largest_mps;
2243
2244 /* Use the larger overhead of this or the previous interval. */
2245 interval_overhead = xhci_get_largest_overhead(
2246 &bw_table->interval_bw[i]);
2247 if (interval_overhead > overhead)
2248 overhead = interval_overhead;
2249
2250 /* How many packets can we evenly distribute across
2251 * (1 << (i + 1)) possible scheduling opportunities?
2252 */
2253 packets_transmitted = packets_remaining >> (i + 1);
2254
2255 /* Add in the bandwidth used for those scheduled packets */
2256 bw_added = packets_transmitted * (overhead + packet_size);
2257
2258 /* How many packets do we have remaining to transmit? */
2259 packets_remaining = packets_remaining % (1 << (i + 1));
2260
2261 /* What largest max packet size should those packets have? */
2262 /* If we've transmitted all packets, don't carry over the
2263 * largest packet size.
2264 */
2265 if (packets_remaining == 0) {
2266 packet_size = 0;
2267 overhead = 0;
2268 } else if (packets_transmitted > 0) {
2269 /* Otherwise if we do have remaining packets, and we've
2270 * scheduled some packets in this interval, take the
2271 * largest max packet size from endpoints with this
2272 * interval.
2273 */
2274 packet_size = largest_mps;
2275 overhead = interval_overhead;
2276 }
2277 /* Otherwise carry over packet_size and overhead from the last
2278 * time we had a remainder.
2279 */
2280 bw_used += bw_added;
2281 if (bw_used > max_bandwidth) {
2282 xhci_warn(xhci, "Not enough bandwidth. "
2283 "Proposed: %u, Max: %u\n",
2284 bw_used, max_bandwidth);
2285 return -ENOMEM;
2286 }
2287 }
2288 /*
2289 * Ok, we know we have some packets left over after even-handedly
2290 * scheduling interval 15. We don't know which microframes they will
2291 * fit into, so we over-schedule and say they will be scheduled every
2292 * microframe.
2293 */
2294 if (packets_remaining > 0)
2295 bw_used += overhead + packet_size;
2296
2297 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2298 unsigned int port_index = virt_dev->real_port - 1;
2299
2300 /* OK, we're manipulating a HS device attached to a
2301 * root port bandwidth domain. Include the number of active TTs
2302 * in the bandwidth used.
2303 */
2304 bw_used += TT_HS_OVERHEAD *
2305 xhci->rh_bw[port_index].num_active_tts;
2306 }
2307
2308 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2309 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2310 "Available: %u " "percent",
2311 bw_used, max_bandwidth, bw_reserved,
2312 (max_bandwidth - bw_used - bw_reserved) * 100 /
2313 max_bandwidth);
2314
2315 bw_used += bw_reserved;
2316 if (bw_used > max_bandwidth) {
2317 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2318 bw_used, max_bandwidth);
2319 return -ENOMEM;
2320 }
2321
2322 bw_table->bw_used = bw_used;
2323 return 0;
2324 }
2325
2326 static bool xhci_is_async_ep(unsigned int ep_type)
2327 {
2328 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2329 ep_type != ISOC_IN_EP &&
2330 ep_type != INT_IN_EP);
2331 }
2332
2333 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2334 {
2335 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2336 }
2337
2338 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2339 {
2340 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2341
2342 if (ep_bw->ep_interval == 0)
2343 return SS_OVERHEAD_BURST +
2344 (ep_bw->mult * ep_bw->num_packets *
2345 (SS_OVERHEAD + mps));
2346 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2347 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2348 1 << ep_bw->ep_interval);
2349
2350 }
2351
2352 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2353 struct xhci_bw_info *ep_bw,
2354 struct xhci_interval_bw_table *bw_table,
2355 struct usb_device *udev,
2356 struct xhci_virt_ep *virt_ep,
2357 struct xhci_tt_bw_info *tt_info)
2358 {
2359 struct xhci_interval_bw *interval_bw;
2360 int normalized_interval;
2361
2362 if (xhci_is_async_ep(ep_bw->type))
2363 return;
2364
2365 if (udev->speed == USB_SPEED_SUPER) {
2366 if (xhci_is_sync_in_ep(ep_bw->type))
2367 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2368 xhci_get_ss_bw_consumed(ep_bw);
2369 else
2370 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2371 xhci_get_ss_bw_consumed(ep_bw);
2372 return;
2373 }
2374
2375 /* SuperSpeed endpoints never get added to intervals in the table, so
2376 * this check is only valid for HS/FS/LS devices.
2377 */
2378 if (list_empty(&virt_ep->bw_endpoint_list))
2379 return;
2380 /* For LS/FS devices, we need to translate the interval expressed in
2381 * microframes to frames.
2382 */
2383 if (udev->speed == USB_SPEED_HIGH)
2384 normalized_interval = ep_bw->ep_interval;
2385 else
2386 normalized_interval = ep_bw->ep_interval - 3;
2387
2388 if (normalized_interval == 0)
2389 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2390 interval_bw = &bw_table->interval_bw[normalized_interval];
2391 interval_bw->num_packets -= ep_bw->num_packets;
2392 switch (udev->speed) {
2393 case USB_SPEED_LOW:
2394 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2395 break;
2396 case USB_SPEED_FULL:
2397 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2398 break;
2399 case USB_SPEED_HIGH:
2400 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2401 break;
2402 case USB_SPEED_SUPER:
2403 case USB_SPEED_UNKNOWN:
2404 case USB_SPEED_WIRELESS:
2405 /* Should never happen because only LS/FS/HS endpoints will get
2406 * added to the endpoint list.
2407 */
2408 return;
2409 }
2410 if (tt_info)
2411 tt_info->active_eps -= 1;
2412 list_del_init(&virt_ep->bw_endpoint_list);
2413 }
2414
2415 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2416 struct xhci_bw_info *ep_bw,
2417 struct xhci_interval_bw_table *bw_table,
2418 struct usb_device *udev,
2419 struct xhci_virt_ep *virt_ep,
2420 struct xhci_tt_bw_info *tt_info)
2421 {
2422 struct xhci_interval_bw *interval_bw;
2423 struct xhci_virt_ep *smaller_ep;
2424 int normalized_interval;
2425
2426 if (xhci_is_async_ep(ep_bw->type))
2427 return;
2428
2429 if (udev->speed == USB_SPEED_SUPER) {
2430 if (xhci_is_sync_in_ep(ep_bw->type))
2431 xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2432 xhci_get_ss_bw_consumed(ep_bw);
2433 else
2434 xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2435 xhci_get_ss_bw_consumed(ep_bw);
2436 return;
2437 }
2438
2439 /* For LS/FS devices, we need to translate the interval expressed in
2440 * microframes to frames.
2441 */
2442 if (udev->speed == USB_SPEED_HIGH)
2443 normalized_interval = ep_bw->ep_interval;
2444 else
2445 normalized_interval = ep_bw->ep_interval - 3;
2446
2447 if (normalized_interval == 0)
2448 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2449 interval_bw = &bw_table->interval_bw[normalized_interval];
2450 interval_bw->num_packets += ep_bw->num_packets;
2451 switch (udev->speed) {
2452 case USB_SPEED_LOW:
2453 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2454 break;
2455 case USB_SPEED_FULL:
2456 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2457 break;
2458 case USB_SPEED_HIGH:
2459 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2460 break;
2461 case USB_SPEED_SUPER:
2462 case USB_SPEED_UNKNOWN:
2463 case USB_SPEED_WIRELESS:
2464 /* Should never happen because only LS/FS/HS endpoints will get
2465 * added to the endpoint list.
2466 */
2467 return;
2468 }
2469
2470 if (tt_info)
2471 tt_info->active_eps += 1;
2472 /* Insert the endpoint into the list, largest max packet size first. */
2473 list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2474 bw_endpoint_list) {
2475 if (ep_bw->max_packet_size >=
2476 smaller_ep->bw_info.max_packet_size) {
2477 /* Add the new ep before the smaller endpoint */
2478 list_add_tail(&virt_ep->bw_endpoint_list,
2479 &smaller_ep->bw_endpoint_list);
2480 return;
2481 }
2482 }
2483 /* Add the new endpoint at the end of the list. */
2484 list_add_tail(&virt_ep->bw_endpoint_list,
2485 &interval_bw->endpoints);
2486 }
2487
2488 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2489 struct xhci_virt_device *virt_dev,
2490 int old_active_eps)
2491 {
2492 struct xhci_root_port_bw_info *rh_bw_info;
2493 if (!virt_dev->tt_info)
2494 return;
2495
2496 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2497 if (old_active_eps == 0 &&
2498 virt_dev->tt_info->active_eps != 0) {
2499 rh_bw_info->num_active_tts += 1;
2500 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2501 } else if (old_active_eps != 0 &&
2502 virt_dev->tt_info->active_eps == 0) {
2503 rh_bw_info->num_active_tts -= 1;
2504 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2505 }
2506 }
2507
2508 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2509 struct xhci_virt_device *virt_dev,
2510 struct xhci_container_ctx *in_ctx)
2511 {
2512 struct xhci_bw_info ep_bw_info[31];
2513 int i;
2514 struct xhci_input_control_ctx *ctrl_ctx;
2515 int old_active_eps = 0;
2516
2517 if (virt_dev->tt_info)
2518 old_active_eps = virt_dev->tt_info->active_eps;
2519
2520 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2521 if (!ctrl_ctx) {
2522 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2523 __func__);
2524 return -ENOMEM;
2525 }
2526
2527 for (i = 0; i < 31; i++) {
2528 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2529 continue;
2530
2531 /* Make a copy of the BW info in case we need to revert this */
2532 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2533 sizeof(ep_bw_info[i]));
2534 /* Drop the endpoint from the interval table if the endpoint is
2535 * being dropped or changed.
2536 */
2537 if (EP_IS_DROPPED(ctrl_ctx, i))
2538 xhci_drop_ep_from_interval_table(xhci,
2539 &virt_dev->eps[i].bw_info,
2540 virt_dev->bw_table,
2541 virt_dev->udev,
2542 &virt_dev->eps[i],
2543 virt_dev->tt_info);
2544 }
2545 /* Overwrite the information stored in the endpoints' bw_info */
2546 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2547 for (i = 0; i < 31; i++) {
2548 /* Add any changed or added endpoints to the interval table */
2549 if (EP_IS_ADDED(ctrl_ctx, i))
2550 xhci_add_ep_to_interval_table(xhci,
2551 &virt_dev->eps[i].bw_info,
2552 virt_dev->bw_table,
2553 virt_dev->udev,
2554 &virt_dev->eps[i],
2555 virt_dev->tt_info);
2556 }
2557
2558 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2559 /* Ok, this fits in the bandwidth we have.
2560 * Update the number of active TTs.
2561 */
2562 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2563 return 0;
2564 }
2565
2566 /* We don't have enough bandwidth for this, revert the stored info. */
2567 for (i = 0; i < 31; i++) {
2568 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2569 continue;
2570
2571 /* Drop the new copies of any added or changed endpoints from
2572 * the interval table.
2573 */
2574 if (EP_IS_ADDED(ctrl_ctx, i)) {
2575 xhci_drop_ep_from_interval_table(xhci,
2576 &virt_dev->eps[i].bw_info,
2577 virt_dev->bw_table,
2578 virt_dev->udev,
2579 &virt_dev->eps[i],
2580 virt_dev->tt_info);
2581 }
2582 /* Revert the endpoint back to its old information */
2583 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2584 sizeof(ep_bw_info[i]));
2585 /* Add any changed or dropped endpoints back into the table */
2586 if (EP_IS_DROPPED(ctrl_ctx, i))
2587 xhci_add_ep_to_interval_table(xhci,
2588 &virt_dev->eps[i].bw_info,
2589 virt_dev->bw_table,
2590 virt_dev->udev,
2591 &virt_dev->eps[i],
2592 virt_dev->tt_info);
2593 }
2594 return -ENOMEM;
2595 }
2596
2597
2598 /* Issue a configure endpoint command or evaluate context command
2599 * and wait for it to finish.
2600 */
2601 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2602 struct usb_device *udev,
2603 struct xhci_command *command,
2604 bool ctx_change, bool must_succeed)
2605 {
2606 int ret;
2607 unsigned long flags;
2608 struct xhci_input_control_ctx *ctrl_ctx;
2609 struct xhci_virt_device *virt_dev;
2610
2611 if (!command)
2612 return -EINVAL;
2613
2614 spin_lock_irqsave(&xhci->lock, flags);
2615 virt_dev = xhci->devs[udev->slot_id];
2616
2617 ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
2618 if (!ctrl_ctx) {
2619 spin_unlock_irqrestore(&xhci->lock, flags);
2620 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2621 __func__);
2622 return -ENOMEM;
2623 }
2624
2625 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2626 xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2627 spin_unlock_irqrestore(&xhci->lock, flags);
2628 xhci_warn(xhci, "Not enough host resources, "
2629 "active endpoint contexts = %u\n",
2630 xhci->num_active_eps);
2631 return -ENOMEM;
2632 }
2633 if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2634 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2635 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2636 xhci_free_host_resources(xhci, ctrl_ctx);
2637 spin_unlock_irqrestore(&xhci->lock, flags);
2638 xhci_warn(xhci, "Not enough bandwidth\n");
2639 return -ENOMEM;
2640 }
2641
2642 if (!ctx_change)
2643 ret = xhci_queue_configure_endpoint(xhci, command,
2644 command->in_ctx->dma,
2645 udev->slot_id, must_succeed);
2646 else
2647 ret = xhci_queue_evaluate_context(xhci, command,
2648 command->in_ctx->dma,
2649 udev->slot_id, must_succeed);
2650 if (ret < 0) {
2651 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2652 xhci_free_host_resources(xhci, ctrl_ctx);
2653 spin_unlock_irqrestore(&xhci->lock, flags);
2654 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2655 "FIXME allocate a new ring segment");
2656 return -ENOMEM;
2657 }
2658 xhci_ring_cmd_db(xhci);
2659 spin_unlock_irqrestore(&xhci->lock, flags);
2660
2661 /* Wait for the configure endpoint command to complete */
2662 wait_for_completion(command->completion);
2663
2664 if (!ctx_change)
2665 ret = xhci_configure_endpoint_result(xhci, udev,
2666 &command->status);
2667 else
2668 ret = xhci_evaluate_context_result(xhci, udev,
2669 &command->status);
2670
2671 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2672 spin_lock_irqsave(&xhci->lock, flags);
2673 /* If the command failed, remove the reserved resources.
2674 * Otherwise, clean up the estimate to include dropped eps.
2675 */
2676 if (ret)
2677 xhci_free_host_resources(xhci, ctrl_ctx);
2678 else
2679 xhci_finish_resource_reservation(xhci, ctrl_ctx);
2680 spin_unlock_irqrestore(&xhci->lock, flags);
2681 }
2682 return ret;
2683 }
2684
2685 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2686 struct xhci_virt_device *vdev, int i)
2687 {
2688 struct xhci_virt_ep *ep = &vdev->eps[i];
2689
2690 if (ep->ep_state & EP_HAS_STREAMS) {
2691 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2692 xhci_get_endpoint_address(i));
2693 xhci_free_stream_info(xhci, ep->stream_info);
2694 ep->stream_info = NULL;
2695 ep->ep_state &= ~EP_HAS_STREAMS;
2696 }
2697 }
2698
2699 /* Called after one or more calls to xhci_add_endpoint() or
2700 * xhci_drop_endpoint(). If this call fails, the USB core is expected
2701 * to call xhci_reset_bandwidth().
2702 *
2703 * Since we are in the middle of changing either configuration or
2704 * installing a new alt setting, the USB core won't allow URBs to be
2705 * enqueued for any endpoint on the old config or interface. Nothing
2706 * else should be touching the xhci->devs[slot_id] structure, so we
2707 * don't need to take the xhci->lock for manipulating that.
2708 */
2709 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2710 {
2711 int i;
2712 int ret = 0;
2713 struct xhci_hcd *xhci;
2714 struct xhci_virt_device *virt_dev;
2715 struct xhci_input_control_ctx *ctrl_ctx;
2716 struct xhci_slot_ctx *slot_ctx;
2717 struct xhci_command *command;
2718
2719 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2720 if (ret <= 0)
2721 return ret;
2722 xhci = hcd_to_xhci(hcd);
2723 if (xhci->xhc_state & XHCI_STATE_DYING)
2724 return -ENODEV;
2725
2726 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2727 virt_dev = xhci->devs[udev->slot_id];
2728
2729 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2730 if (!command)
2731 return -ENOMEM;
2732
2733 command->in_ctx = virt_dev->in_ctx;
2734
2735 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2736 ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
2737 if (!ctrl_ctx) {
2738 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2739 __func__);
2740 ret = -ENOMEM;
2741 goto command_cleanup;
2742 }
2743 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2744 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2745 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2746
2747 /* Don't issue the command if there's no endpoints to update. */
2748 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2749 ctrl_ctx->drop_flags == 0) {
2750 ret = 0;
2751 goto command_cleanup;
2752 }
2753 xhci_dbg(xhci, "New Input Control Context:\n");
2754 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2755 xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2756 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2757
2758 ret = xhci_configure_endpoint(xhci, udev, command,
2759 false, false);
2760 if (ret)
2761 /* Callee should call reset_bandwidth() */
2762 goto command_cleanup;
2763
2764 xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2765 xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2766 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2767
2768 /* Free any rings that were dropped, but not changed. */
2769 for (i = 1; i < 31; ++i) {
2770 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2771 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2772 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2773 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2774 }
2775 }
2776 xhci_zero_in_ctx(xhci, virt_dev);
2777 /*
2778 * Install any rings for completely new endpoints or changed endpoints,
2779 * and free or cache any old rings from changed endpoints.
2780 */
2781 for (i = 1; i < 31; ++i) {
2782 if (!virt_dev->eps[i].new_ring)
2783 continue;
2784 /* Only cache or free the old ring if it exists.
2785 * It may not if this is the first add of an endpoint.
2786 */
2787 if (virt_dev->eps[i].ring) {
2788 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2789 }
2790 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2791 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2792 virt_dev->eps[i].new_ring = NULL;
2793 }
2794 command_cleanup:
2795 kfree(command->completion);
2796 kfree(command);
2797
2798 return ret;
2799 }
2800
2801 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2802 {
2803 struct xhci_hcd *xhci;
2804 struct xhci_virt_device *virt_dev;
2805 int i, ret;
2806
2807 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2808 if (ret <= 0)
2809 return;
2810 xhci = hcd_to_xhci(hcd);
2811
2812 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2813 virt_dev = xhci->devs[udev->slot_id];
2814 /* Free any rings allocated for added endpoints */
2815 for (i = 0; i < 31; ++i) {
2816 if (virt_dev->eps[i].new_ring) {
2817 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2818 virt_dev->eps[i].new_ring = NULL;
2819 }
2820 }
2821 xhci_zero_in_ctx(xhci, virt_dev);
2822 }
2823
2824 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2825 struct xhci_container_ctx *in_ctx,
2826 struct xhci_container_ctx *out_ctx,
2827 struct xhci_input_control_ctx *ctrl_ctx,
2828 u32 add_flags, u32 drop_flags)
2829 {
2830 ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2831 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2832 xhci_slot_copy(xhci, in_ctx, out_ctx);
2833 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2834
2835 xhci_dbg(xhci, "Input Context:\n");
2836 xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2837 }
2838
2839 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2840 unsigned int slot_id, unsigned int ep_index,
2841 struct xhci_dequeue_state *deq_state)
2842 {
2843 struct xhci_input_control_ctx *ctrl_ctx;
2844 struct xhci_container_ctx *in_ctx;
2845 struct xhci_ep_ctx *ep_ctx;
2846 u32 added_ctxs;
2847 dma_addr_t addr;
2848
2849 in_ctx = xhci->devs[slot_id]->in_ctx;
2850 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2851 if (!ctrl_ctx) {
2852 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2853 __func__);
2854 return;
2855 }
2856
2857 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2858 xhci->devs[slot_id]->out_ctx, ep_index);
2859 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2860 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2861 deq_state->new_deq_ptr);
2862 if (addr == 0) {
2863 xhci_warn(xhci, "WARN Cannot submit config ep after "
2864 "reset ep command\n");
2865 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2866 deq_state->new_deq_seg,
2867 deq_state->new_deq_ptr);
2868 return;
2869 }
2870 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2871
2872 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2873 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2874 xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2875 added_ctxs, added_ctxs);
2876 }
2877
2878 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2879 struct usb_device *udev, unsigned int ep_index)
2880 {
2881 struct xhci_dequeue_state deq_state;
2882 struct xhci_virt_ep *ep;
2883
2884 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2885 "Cleaning up stalled endpoint ring");
2886 ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2887 /* We need to move the HW's dequeue pointer past this TD,
2888 * or it will attempt to resend it on the next doorbell ring.
2889 */
2890 xhci_find_new_dequeue_state(xhci, udev->slot_id,
2891 ep_index, ep->stopped_stream, ep->stopped_td,
2892 &deq_state);
2893
2894 /* HW with the reset endpoint quirk will use the saved dequeue state to
2895 * issue a configure endpoint command later.
2896 */
2897 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2898 struct xhci_command *command;
2899 /* Can't sleep if we're called from cleanup_halted_endpoint() */
2900 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
2901 if (!command)
2902 return;
2903 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2904 "Queueing new dequeue state");
2905 xhci_queue_new_dequeue_state(xhci, command, udev->slot_id,
2906 ep_index, ep->stopped_stream, &deq_state);
2907 } else {
2908 /* Better hope no one uses the input context between now and the
2909 * reset endpoint completion!
2910 * XXX: No idea how this hardware will react when stream rings
2911 * are enabled.
2912 */
2913 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2914 "Setting up input context for "
2915 "configure endpoint command");
2916 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2917 ep_index, &deq_state);
2918 }
2919 }
2920
2921 /* Deal with stalled endpoints. The core should have sent the control message
2922 * to clear the halt condition. However, we need to make the xHCI hardware
2923 * reset its sequence number, since a device will expect a sequence number of
2924 * zero after the halt condition is cleared.
2925 * Context: in_interrupt
2926 */
2927 void xhci_endpoint_reset(struct usb_hcd *hcd,
2928 struct usb_host_endpoint *ep)
2929 {
2930 struct xhci_hcd *xhci;
2931 struct usb_device *udev;
2932 unsigned int ep_index;
2933 unsigned long flags;
2934 int ret;
2935 struct xhci_virt_ep *virt_ep;
2936 struct xhci_command *command;
2937
2938 xhci = hcd_to_xhci(hcd);
2939 udev = (struct usb_device *) ep->hcpriv;
2940 /* Called with a root hub endpoint (or an endpoint that wasn't added
2941 * with xhci_add_endpoint()
2942 */
2943 if (!ep->hcpriv)
2944 return;
2945 ep_index = xhci_get_endpoint_index(&ep->desc);
2946 virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2947 if (!virt_ep->stopped_td) {
2948 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2949 "Endpoint 0x%x not halted, refusing to reset.",
2950 ep->desc.bEndpointAddress);
2951 return;
2952 }
2953 if (usb_endpoint_xfer_control(&ep->desc)) {
2954 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2955 "Control endpoint stall already handled.");
2956 return;
2957 }
2958
2959 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
2960 if (!command)
2961 return;
2962
2963 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2964 "Queueing reset endpoint command");
2965 spin_lock_irqsave(&xhci->lock, flags);
2966 ret = xhci_queue_reset_ep(xhci, command, udev->slot_id, ep_index);
2967 /*
2968 * Can't change the ring dequeue pointer until it's transitioned to the
2969 * stopped state, which is only upon a successful reset endpoint
2970 * command. Better hope that last command worked!
2971 */
2972 if (!ret) {
2973 xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2974 kfree(virt_ep->stopped_td);
2975 xhci_ring_cmd_db(xhci);
2976 }
2977 virt_ep->stopped_td = NULL;
2978 virt_ep->stopped_stream = 0;
2979 spin_unlock_irqrestore(&xhci->lock, flags);
2980
2981 if (ret)
2982 xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2983 }
2984
2985 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2986 struct usb_device *udev, struct usb_host_endpoint *ep,
2987 unsigned int slot_id)
2988 {
2989 int ret;
2990 unsigned int ep_index;
2991 unsigned int ep_state;
2992
2993 if (!ep)
2994 return -EINVAL;
2995 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2996 if (ret <= 0)
2997 return -EINVAL;
2998 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
2999 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3000 " descriptor for ep 0x%x does not support streams\n",
3001 ep->desc.bEndpointAddress);
3002 return -EINVAL;
3003 }
3004
3005 ep_index = xhci_get_endpoint_index(&ep->desc);
3006 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3007 if (ep_state & EP_HAS_STREAMS ||
3008 ep_state & EP_GETTING_STREAMS) {
3009 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3010 "already has streams set up.\n",
3011 ep->desc.bEndpointAddress);
3012 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3013 "dynamic stream context array reallocation.\n");
3014 return -EINVAL;
3015 }
3016 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3017 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3018 "endpoint 0x%x; URBs are pending.\n",
3019 ep->desc.bEndpointAddress);
3020 return -EINVAL;
3021 }
3022 return 0;
3023 }
3024
3025 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3026 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3027 {
3028 unsigned int max_streams;
3029
3030 /* The stream context array size must be a power of two */
3031 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3032 /*
3033 * Find out how many primary stream array entries the host controller
3034 * supports. Later we may use secondary stream arrays (similar to 2nd
3035 * level page entries), but that's an optional feature for xHCI host
3036 * controllers. xHCs must support at least 4 stream IDs.
3037 */
3038 max_streams = HCC_MAX_PSA(xhci->hcc_params);
3039 if (*num_stream_ctxs > max_streams) {
3040 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3041 max_streams);
3042 *num_stream_ctxs = max_streams;
3043 *num_streams = max_streams;
3044 }
3045 }
3046
3047 /* Returns an error code if one of the endpoint already has streams.
3048 * This does not change any data structures, it only checks and gathers
3049 * information.
3050 */
3051 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3052 struct usb_device *udev,
3053 struct usb_host_endpoint **eps, unsigned int num_eps,
3054 unsigned int *num_streams, u32 *changed_ep_bitmask)
3055 {
3056 unsigned int max_streams;
3057 unsigned int endpoint_flag;
3058 int i;
3059 int ret;
3060
3061 for (i = 0; i < num_eps; i++) {
3062 ret = xhci_check_streams_endpoint(xhci, udev,
3063 eps[i], udev->slot_id);
3064 if (ret < 0)
3065 return ret;
3066
3067 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3068 if (max_streams < (*num_streams - 1)) {
3069 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3070 eps[i]->desc.bEndpointAddress,
3071 max_streams);
3072 *num_streams = max_streams+1;
3073 }
3074
3075 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3076 if (*changed_ep_bitmask & endpoint_flag)
3077 return -EINVAL;
3078 *changed_ep_bitmask |= endpoint_flag;
3079 }
3080 return 0;
3081 }
3082
3083 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3084 struct usb_device *udev,
3085 struct usb_host_endpoint **eps, unsigned int num_eps)
3086 {
3087 u32 changed_ep_bitmask = 0;
3088 unsigned int slot_id;
3089 unsigned int ep_index;
3090 unsigned int ep_state;
3091 int i;
3092
3093 slot_id = udev->slot_id;
3094 if (!xhci->devs[slot_id])
3095 return 0;
3096
3097 for (i = 0; i < num_eps; i++) {
3098 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3099 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3100 /* Are streams already being freed for the endpoint? */
3101 if (ep_state & EP_GETTING_NO_STREAMS) {
3102 xhci_warn(xhci, "WARN Can't disable streams for "
3103 "endpoint 0x%x, "
3104 "streams are being disabled already\n",
3105 eps[i]->desc.bEndpointAddress);
3106 return 0;
3107 }
3108 /* Are there actually any streams to free? */
3109 if (!(ep_state & EP_HAS_STREAMS) &&
3110 !(ep_state & EP_GETTING_STREAMS)) {
3111 xhci_warn(xhci, "WARN Can't disable streams for "
3112 "endpoint 0x%x, "
3113 "streams are already disabled!\n",
3114 eps[i]->desc.bEndpointAddress);
3115 xhci_warn(xhci, "WARN xhci_free_streams() called "
3116 "with non-streams endpoint\n");
3117 return 0;
3118 }
3119 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3120 }
3121 return changed_ep_bitmask;
3122 }
3123
3124 /*
3125 * The USB device drivers use this function (though the HCD interface in USB
3126 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
3127 * coordinate mass storage command queueing across multiple endpoints (basically
3128 * a stream ID == a task ID).
3129 *
3130 * Setting up streams involves allocating the same size stream context array
3131 * for each endpoint and issuing a configure endpoint command for all endpoints.
3132 *
3133 * Don't allow the call to succeed if one endpoint only supports one stream
3134 * (which means it doesn't support streams at all).
3135 *
3136 * Drivers may get less stream IDs than they asked for, if the host controller
3137 * hardware or endpoints claim they can't support the number of requested
3138 * stream IDs.
3139 */
3140 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3141 struct usb_host_endpoint **eps, unsigned int num_eps,
3142 unsigned int num_streams, gfp_t mem_flags)
3143 {
3144 int i, ret;
3145 struct xhci_hcd *xhci;
3146 struct xhci_virt_device *vdev;
3147 struct xhci_command *config_cmd;
3148 struct xhci_input_control_ctx *ctrl_ctx;
3149 unsigned int ep_index;
3150 unsigned int num_stream_ctxs;
3151 unsigned long flags;
3152 u32 changed_ep_bitmask = 0;
3153
3154 if (!eps)
3155 return -EINVAL;
3156
3157 /* Add one to the number of streams requested to account for
3158 * stream 0 that is reserved for xHCI usage.
3159 */
3160 num_streams += 1;
3161 xhci = hcd_to_xhci(hcd);
3162 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3163 num_streams);
3164
3165 /* MaxPSASize value 0 (2 streams) means streams are not supported */
3166 if (HCC_MAX_PSA(xhci->hcc_params) < 4) {
3167 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3168 return -ENOSYS;
3169 }
3170
3171 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3172 if (!config_cmd) {
3173 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3174 return -ENOMEM;
3175 }
3176 ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
3177 if (!ctrl_ctx) {
3178 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3179 __func__);
3180 xhci_free_command(xhci, config_cmd);
3181 return -ENOMEM;
3182 }
3183
3184 /* Check to make sure all endpoints are not already configured for
3185 * streams. While we're at it, find the maximum number of streams that
3186 * all the endpoints will support and check for duplicate endpoints.
3187 */
3188 spin_lock_irqsave(&xhci->lock, flags);
3189 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3190 num_eps, &num_streams, &changed_ep_bitmask);
3191 if (ret < 0) {
3192 xhci_free_command(xhci, config_cmd);
3193 spin_unlock_irqrestore(&xhci->lock, flags);
3194 return ret;
3195 }
3196 if (num_streams <= 1) {
3197 xhci_warn(xhci, "WARN: endpoints can't handle "
3198 "more than one stream.\n");
3199 xhci_free_command(xhci, config_cmd);
3200 spin_unlock_irqrestore(&xhci->lock, flags);
3201 return -EINVAL;
3202 }
3203 vdev = xhci->devs[udev->slot_id];
3204 /* Mark each endpoint as being in transition, so
3205 * xhci_urb_enqueue() will reject all URBs.
3206 */
3207 for (i = 0; i < num_eps; i++) {
3208 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3209 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3210 }
3211 spin_unlock_irqrestore(&xhci->lock, flags);
3212
3213 /* Setup internal data structures and allocate HW data structures for
3214 * streams (but don't install the HW structures in the input context
3215 * until we're sure all memory allocation succeeded).
3216 */
3217 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3218 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3219 num_stream_ctxs, num_streams);
3220
3221 for (i = 0; i < num_eps; i++) {
3222 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3223 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3224 num_stream_ctxs,
3225 num_streams, mem_flags);
3226 if (!vdev->eps[ep_index].stream_info)
3227 goto cleanup;
3228 /* Set maxPstreams in endpoint context and update deq ptr to
3229 * point to stream context array. FIXME
3230 */
3231 }
3232
3233 /* Set up the input context for a configure endpoint command. */
3234 for (i = 0; i < num_eps; i++) {
3235 struct xhci_ep_ctx *ep_ctx;
3236
3237 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3238 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3239
3240 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3241 vdev->out_ctx, ep_index);
3242 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3243 vdev->eps[ep_index].stream_info);
3244 }
3245 /* Tell the HW to drop its old copy of the endpoint context info
3246 * and add the updated copy from the input context.
3247 */
3248 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3249 vdev->out_ctx, ctrl_ctx,
3250 changed_ep_bitmask, changed_ep_bitmask);
3251
3252 /* Issue and wait for the configure endpoint command */
3253 ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3254 false, false);
3255
3256 /* xHC rejected the configure endpoint command for some reason, so we
3257 * leave the old ring intact and free our internal streams data
3258 * structure.
3259 */
3260 if (ret < 0)
3261 goto cleanup;
3262
3263 spin_lock_irqsave(&xhci->lock, flags);
3264 for (i = 0; i < num_eps; i++) {
3265 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3266 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3267 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3268 udev->slot_id, ep_index);
3269 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3270 }
3271 xhci_free_command(xhci, config_cmd);
3272 spin_unlock_irqrestore(&xhci->lock, flags);
3273
3274 /* Subtract 1 for stream 0, which drivers can't use */
3275 return num_streams - 1;
3276
3277 cleanup:
3278 /* If it didn't work, free the streams! */
3279 for (i = 0; i < num_eps; i++) {
3280 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3281 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3282 vdev->eps[ep_index].stream_info = NULL;
3283 /* FIXME Unset maxPstreams in endpoint context and
3284 * update deq ptr to point to normal string ring.
3285 */
3286 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3287 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3288 xhci_endpoint_zero(xhci, vdev, eps[i]);
3289 }
3290 xhci_free_command(xhci, config_cmd);
3291 return -ENOMEM;
3292 }
3293
3294 /* Transition the endpoint from using streams to being a "normal" endpoint
3295 * without streams.
3296 *
3297 * Modify the endpoint context state, submit a configure endpoint command,
3298 * and free all endpoint rings for streams if that completes successfully.
3299 */
3300 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3301 struct usb_host_endpoint **eps, unsigned int num_eps,
3302 gfp_t mem_flags)
3303 {
3304 int i, ret;
3305 struct xhci_hcd *xhci;
3306 struct xhci_virt_device *vdev;
3307 struct xhci_command *command;
3308 struct xhci_input_control_ctx *ctrl_ctx;
3309 unsigned int ep_index;
3310 unsigned long flags;
3311 u32 changed_ep_bitmask;
3312
3313 xhci = hcd_to_xhci(hcd);
3314 vdev = xhci->devs[udev->slot_id];
3315
3316 /* Set up a configure endpoint command to remove the streams rings */
3317 spin_lock_irqsave(&xhci->lock, flags);
3318 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3319 udev, eps, num_eps);
3320 if (changed_ep_bitmask == 0) {
3321 spin_unlock_irqrestore(&xhci->lock, flags);
3322 return -EINVAL;
3323 }
3324
3325 /* Use the xhci_command structure from the first endpoint. We may have
3326 * allocated too many, but the driver may call xhci_free_streams() for
3327 * each endpoint it grouped into one call to xhci_alloc_streams().
3328 */
3329 ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3330 command = vdev->eps[ep_index].stream_info->free_streams_command;
3331 ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
3332 if (!ctrl_ctx) {
3333 spin_unlock_irqrestore(&xhci->lock, flags);
3334 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3335 __func__);
3336 return -EINVAL;
3337 }
3338
3339 for (i = 0; i < num_eps; i++) {
3340 struct xhci_ep_ctx *ep_ctx;
3341
3342 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3343 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3344 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3345 EP_GETTING_NO_STREAMS;
3346
3347 xhci_endpoint_copy(xhci, command->in_ctx,
3348 vdev->out_ctx, ep_index);
3349 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3350 &vdev->eps[ep_index]);
3351 }
3352 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3353 vdev->out_ctx, ctrl_ctx,
3354 changed_ep_bitmask, changed_ep_bitmask);
3355 spin_unlock_irqrestore(&xhci->lock, flags);
3356
3357 /* Issue and wait for the configure endpoint command,
3358 * which must succeed.
3359 */
3360 ret = xhci_configure_endpoint(xhci, udev, command,
3361 false, true);
3362
3363 /* xHC rejected the configure endpoint command for some reason, so we
3364 * leave the streams rings intact.
3365 */
3366 if (ret < 0)
3367 return ret;
3368
3369 spin_lock_irqsave(&xhci->lock, flags);
3370 for (i = 0; i < num_eps; i++) {
3371 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3372 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3373 vdev->eps[ep_index].stream_info = NULL;
3374 /* FIXME Unset maxPstreams in endpoint context and
3375 * update deq ptr to point to normal string ring.
3376 */
3377 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3378 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3379 }
3380 spin_unlock_irqrestore(&xhci->lock, flags);
3381
3382 return 0;
3383 }
3384
3385 /*
3386 * Deletes endpoint resources for endpoints that were active before a Reset
3387 * Device command, or a Disable Slot command. The Reset Device command leaves
3388 * the control endpoint intact, whereas the Disable Slot command deletes it.
3389 *
3390 * Must be called with xhci->lock held.
3391 */
3392 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3393 struct xhci_virt_device *virt_dev, bool drop_control_ep)
3394 {
3395 int i;
3396 unsigned int num_dropped_eps = 0;
3397 unsigned int drop_flags = 0;
3398
3399 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3400 if (virt_dev->eps[i].ring) {
3401 drop_flags |= 1 << i;
3402 num_dropped_eps++;
3403 }
3404 }
3405 xhci->num_active_eps -= num_dropped_eps;
3406 if (num_dropped_eps)
3407 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3408 "Dropped %u ep ctxs, flags = 0x%x, "
3409 "%u now active.",
3410 num_dropped_eps, drop_flags,
3411 xhci->num_active_eps);
3412 }
3413
3414 /*
3415 * This submits a Reset Device Command, which will set the device state to 0,
3416 * set the device address to 0, and disable all the endpoints except the default
3417 * control endpoint. The USB core should come back and call
3418 * xhci_address_device(), and then re-set up the configuration. If this is
3419 * called because of a usb_reset_and_verify_device(), then the old alternate
3420 * settings will be re-installed through the normal bandwidth allocation
3421 * functions.
3422 *
3423 * Wait for the Reset Device command to finish. Remove all structures
3424 * associated with the endpoints that were disabled. Clear the input device
3425 * structure? Cache the rings? Reset the control endpoint 0 max packet size?
3426 *
3427 * If the virt_dev to be reset does not exist or does not match the udev,
3428 * it means the device is lost, possibly due to the xHC restore error and
3429 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3430 * re-allocate the device.
3431 */
3432 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3433 {
3434 int ret, i;
3435 unsigned long flags;
3436 struct xhci_hcd *xhci;
3437 unsigned int slot_id;
3438 struct xhci_virt_device *virt_dev;
3439 struct xhci_command *reset_device_cmd;
3440 int last_freed_endpoint;
3441 struct xhci_slot_ctx *slot_ctx;
3442 int old_active_eps = 0;
3443
3444 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3445 if (ret <= 0)
3446 return ret;
3447 xhci = hcd_to_xhci(hcd);
3448 slot_id = udev->slot_id;
3449 virt_dev = xhci->devs[slot_id];
3450 if (!virt_dev) {
3451 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3452 "not exist. Re-allocate the device\n", slot_id);
3453 ret = xhci_alloc_dev(hcd, udev);
3454 if (ret == 1)
3455 return 0;
3456 else
3457 return -EINVAL;
3458 }
3459
3460 if (virt_dev->udev != udev) {
3461 /* If the virt_dev and the udev does not match, this virt_dev
3462 * may belong to another udev.
3463 * Re-allocate the device.
3464 */
3465 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3466 "not match the udev. Re-allocate the device\n",
3467 slot_id);
3468 ret = xhci_alloc_dev(hcd, udev);
3469 if (ret == 1)
3470 return 0;
3471 else
3472 return -EINVAL;
3473 }
3474
3475 /* If device is not setup, there is no point in resetting it */
3476 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3477 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3478 SLOT_STATE_DISABLED)
3479 return 0;
3480
3481 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3482 /* Allocate the command structure that holds the struct completion.
3483 * Assume we're in process context, since the normal device reset
3484 * process has to wait for the device anyway. Storage devices are
3485 * reset as part of error handling, so use GFP_NOIO instead of
3486 * GFP_KERNEL.
3487 */
3488 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3489 if (!reset_device_cmd) {
3490 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3491 return -ENOMEM;
3492 }
3493
3494 /* Attempt to submit the Reset Device command to the command ring */
3495 spin_lock_irqsave(&xhci->lock, flags);
3496
3497 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3498 if (ret) {
3499 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3500 spin_unlock_irqrestore(&xhci->lock, flags);
3501 goto command_cleanup;
3502 }
3503 xhci_ring_cmd_db(xhci);
3504 spin_unlock_irqrestore(&xhci->lock, flags);
3505
3506 /* Wait for the Reset Device command to finish */
3507 wait_for_completion(reset_device_cmd->completion);
3508
3509 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3510 * unless we tried to reset a slot ID that wasn't enabled,
3511 * or the device wasn't in the addressed or configured state.
3512 */
3513 ret = reset_device_cmd->status;
3514 switch (ret) {
3515 case COMP_CMD_ABORT:
3516 case COMP_CMD_STOP:
3517 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3518 ret = -ETIME;
3519 goto command_cleanup;
3520 case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3521 case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3522 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3523 slot_id,
3524 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3525 xhci_dbg(xhci, "Not freeing device rings.\n");
3526 /* Don't treat this as an error. May change my mind later. */
3527 ret = 0;
3528 goto command_cleanup;
3529 case COMP_SUCCESS:
3530 xhci_dbg(xhci, "Successful reset device command.\n");
3531 break;
3532 default:
3533 if (xhci_is_vendor_info_code(xhci, ret))
3534 break;
3535 xhci_warn(xhci, "Unknown completion code %u for "
3536 "reset device command.\n", ret);
3537 ret = -EINVAL;
3538 goto command_cleanup;
3539 }
3540
3541 /* Free up host controller endpoint resources */
3542 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3543 spin_lock_irqsave(&xhci->lock, flags);
3544 /* Don't delete the default control endpoint resources */
3545 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3546 spin_unlock_irqrestore(&xhci->lock, flags);
3547 }
3548
3549 /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3550 last_freed_endpoint = 1;
3551 for (i = 1; i < 31; ++i) {
3552 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3553
3554 if (ep->ep_state & EP_HAS_STREAMS) {
3555 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3556 xhci_get_endpoint_address(i));
3557 xhci_free_stream_info(xhci, ep->stream_info);
3558 ep->stream_info = NULL;
3559 ep->ep_state &= ~EP_HAS_STREAMS;
3560 }
3561
3562 if (ep->ring) {
3563 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3564 last_freed_endpoint = i;
3565 }
3566 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3567 xhci_drop_ep_from_interval_table(xhci,
3568 &virt_dev->eps[i].bw_info,
3569 virt_dev->bw_table,
3570 udev,
3571 &virt_dev->eps[i],
3572 virt_dev->tt_info);
3573 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3574 }
3575 /* If necessary, update the number of active TTs on this root port */
3576 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3577
3578 xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3579 xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3580 ret = 0;
3581
3582 command_cleanup:
3583 xhci_free_command(xhci, reset_device_cmd);
3584 return ret;
3585 }
3586
3587 /*
3588 * At this point, the struct usb_device is about to go away, the device has
3589 * disconnected, and all traffic has been stopped and the endpoints have been
3590 * disabled. Free any HC data structures associated with that device.
3591 */
3592 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3593 {
3594 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3595 struct xhci_virt_device *virt_dev;
3596 unsigned long flags;
3597 u32 state;
3598 int i, ret;
3599 struct xhci_command *command;
3600
3601 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3602 if (!command)
3603 return;
3604
3605 #ifndef CONFIG_USB_DEFAULT_PERSIST
3606 /*
3607 * We called pm_runtime_get_noresume when the device was attached.
3608 * Decrement the counter here to allow controller to runtime suspend
3609 * if no devices remain.
3610 */
3611 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3612 pm_runtime_put_noidle(hcd->self.controller);
3613 #endif
3614
3615 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3616 /* If the host is halted due to driver unload, we still need to free the
3617 * device.
3618 */
3619 if (ret <= 0 && ret != -ENODEV) {
3620 kfree(command);
3621 return;
3622 }
3623
3624 virt_dev = xhci->devs[udev->slot_id];
3625
3626 /* Stop any wayward timer functions (which may grab the lock) */
3627 for (i = 0; i < 31; ++i) {
3628 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3629 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3630 }
3631
3632 spin_lock_irqsave(&xhci->lock, flags);
3633 /* Don't disable the slot if the host controller is dead. */
3634 state = readl(&xhci->op_regs->status);
3635 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3636 (xhci->xhc_state & XHCI_STATE_HALTED)) {
3637 xhci_free_virt_device(xhci, udev->slot_id);
3638 spin_unlock_irqrestore(&xhci->lock, flags);
3639 kfree(command);
3640 return;
3641 }
3642
3643 if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3644 udev->slot_id)) {
3645 spin_unlock_irqrestore(&xhci->lock, flags);
3646 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3647 return;
3648 }
3649 xhci_ring_cmd_db(xhci);
3650 spin_unlock_irqrestore(&xhci->lock, flags);
3651
3652 /*
3653 * Event command completion handler will free any data structures
3654 * associated with the slot. XXX Can free sleep?
3655 */
3656 }
3657
3658 /*
3659 * Checks if we have enough host controller resources for the default control
3660 * endpoint.
3661 *
3662 * Must be called with xhci->lock held.
3663 */
3664 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3665 {
3666 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3667 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3668 "Not enough ep ctxs: "
3669 "%u active, need to add 1, limit is %u.",
3670 xhci->num_active_eps, xhci->limit_active_eps);
3671 return -ENOMEM;
3672 }
3673 xhci->num_active_eps += 1;
3674 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3675 "Adding 1 ep ctx, %u now active.",
3676 xhci->num_active_eps);
3677 return 0;
3678 }
3679
3680
3681 /*
3682 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3683 * timed out, or allocating memory failed. Returns 1 on success.
3684 */
3685 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3686 {
3687 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3688 unsigned long flags;
3689 int ret;
3690 struct xhci_command *command;
3691
3692 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3693 if (!command)
3694 return 0;
3695
3696 spin_lock_irqsave(&xhci->lock, flags);
3697 command->completion = &xhci->addr_dev;
3698 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3699 if (ret) {
3700 spin_unlock_irqrestore(&xhci->lock, flags);
3701 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3702 kfree(command);
3703 return 0;
3704 }
3705 xhci_ring_cmd_db(xhci);
3706 spin_unlock_irqrestore(&xhci->lock, flags);
3707
3708 wait_for_completion(command->completion);
3709
3710 if (!xhci->slot_id || command->status != COMP_SUCCESS) {
3711 xhci_err(xhci, "Error while assigning device slot ID\n");
3712 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3713 HCS_MAX_SLOTS(
3714 readl(&xhci->cap_regs->hcs_params1)));
3715 kfree(command);
3716 return 0;
3717 }
3718
3719 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3720 spin_lock_irqsave(&xhci->lock, flags);
3721 ret = xhci_reserve_host_control_ep_resources(xhci);
3722 if (ret) {
3723 spin_unlock_irqrestore(&xhci->lock, flags);
3724 xhci_warn(xhci, "Not enough host resources, "
3725 "active endpoint contexts = %u\n",
3726 xhci->num_active_eps);
3727 goto disable_slot;
3728 }
3729 spin_unlock_irqrestore(&xhci->lock, flags);
3730 }
3731 /* Use GFP_NOIO, since this function can be called from
3732 * xhci_discover_or_reset_device(), which may be called as part of
3733 * mass storage driver error handling.
3734 */
3735 if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3736 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3737 goto disable_slot;
3738 }
3739 udev->slot_id = xhci->slot_id;
3740
3741 #ifndef CONFIG_USB_DEFAULT_PERSIST
3742 /*
3743 * If resetting upon resume, we can't put the controller into runtime
3744 * suspend if there is a device attached.
3745 */
3746 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3747 pm_runtime_get_noresume(hcd->self.controller);
3748 #endif
3749
3750
3751 kfree(command);
3752 /* Is this a LS or FS device under a HS hub? */
3753 /* Hub or peripherial? */
3754 return 1;
3755
3756 disable_slot:
3757 /* Disable slot, if we can do it without mem alloc */
3758 spin_lock_irqsave(&xhci->lock, flags);
3759 command->completion = NULL;
3760 command->status = 0;
3761 if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3762 udev->slot_id))
3763 xhci_ring_cmd_db(xhci);
3764 spin_unlock_irqrestore(&xhci->lock, flags);
3765 return 0;
3766 }
3767
3768 /*
3769 * Issue an Address Device command and optionally send a corresponding
3770 * SetAddress request to the device.
3771 * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3772 * we should only issue and wait on one address command at the same time.
3773 */
3774 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3775 enum xhci_setup_dev setup)
3776 {
3777 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3778 unsigned long flags;
3779 struct xhci_virt_device *virt_dev;
3780 int ret = 0;
3781 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3782 struct xhci_slot_ctx *slot_ctx;
3783 struct xhci_input_control_ctx *ctrl_ctx;
3784 u64 temp_64;
3785 struct xhci_command *command;
3786
3787 if (!udev->slot_id) {
3788 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3789 "Bad Slot ID %d", udev->slot_id);
3790 return -EINVAL;
3791 }
3792
3793 virt_dev = xhci->devs[udev->slot_id];
3794
3795 if (WARN_ON(!virt_dev)) {
3796 /*
3797 * In plug/unplug torture test with an NEC controller,
3798 * a zero-dereference was observed once due to virt_dev = 0.
3799 * Print useful debug rather than crash if it is observed again!
3800 */
3801 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3802 udev->slot_id);
3803 return -EINVAL;
3804 }
3805
3806 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3807 if (!command)
3808 return -ENOMEM;
3809
3810 command->in_ctx = virt_dev->in_ctx;
3811 command->completion = &xhci->addr_dev;
3812
3813 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3814 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3815 if (!ctrl_ctx) {
3816 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3817 __func__);
3818 kfree(command);
3819 return -EINVAL;
3820 }
3821 /*
3822 * If this is the first Set Address since device plug-in or
3823 * virt_device realloaction after a resume with an xHCI power loss,
3824 * then set up the slot context.
3825 */
3826 if (!slot_ctx->dev_info)
3827 xhci_setup_addressable_virt_dev(xhci, udev);
3828 /* Otherwise, update the control endpoint ring enqueue pointer. */
3829 else
3830 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3831 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3832 ctrl_ctx->drop_flags = 0;
3833
3834 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3835 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3836 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3837 le32_to_cpu(slot_ctx->dev_info) >> 27);
3838
3839 spin_lock_irqsave(&xhci->lock, flags);
3840 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3841 udev->slot_id, setup);
3842 if (ret) {
3843 spin_unlock_irqrestore(&xhci->lock, flags);
3844 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3845 "FIXME: allocate a command ring segment");
3846 kfree(command);
3847 return ret;
3848 }
3849 xhci_ring_cmd_db(xhci);
3850 spin_unlock_irqrestore(&xhci->lock, flags);
3851
3852 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3853 wait_for_completion(command->completion);
3854
3855 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3856 * the SetAddress() "recovery interval" required by USB and aborting the
3857 * command on a timeout.
3858 */
3859 switch (command->status) {
3860 case COMP_CMD_ABORT:
3861 case COMP_CMD_STOP:
3862 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3863 ret = -ETIME;
3864 break;
3865 case COMP_CTX_STATE:
3866 case COMP_EBADSLT:
3867 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3868 act, udev->slot_id);
3869 ret = -EINVAL;
3870 break;
3871 case COMP_TX_ERR:
3872 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3873 ret = -EPROTO;
3874 break;
3875 case COMP_DEV_ERR:
3876 dev_warn(&udev->dev,
3877 "ERROR: Incompatible device for setup %s command\n", act);
3878 ret = -ENODEV;
3879 break;
3880 case COMP_SUCCESS:
3881 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3882 "Successful setup %s command", act);
3883 break;
3884 default:
3885 xhci_err(xhci,
3886 "ERROR: unexpected setup %s command completion code 0x%x.\n",
3887 act, command->status);
3888 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3889 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3890 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3891 ret = -EINVAL;
3892 break;
3893 }
3894 if (ret) {
3895 kfree(command);
3896 return ret;
3897 }
3898 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3899 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3900 "Op regs DCBAA ptr = %#016llx", temp_64);
3901 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3902 "Slot ID %d dcbaa entry @%p = %#016llx",
3903 udev->slot_id,
3904 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3905 (unsigned long long)
3906 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3907 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3908 "Output Context DMA address = %#08llx",
3909 (unsigned long long)virt_dev->out_ctx->dma);
3910 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3911 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3912 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3913 le32_to_cpu(slot_ctx->dev_info) >> 27);
3914 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3915 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3916 /*
3917 * USB core uses address 1 for the roothubs, so we add one to the
3918 * address given back to us by the HC.
3919 */
3920 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3921 trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3922 le32_to_cpu(slot_ctx->dev_info) >> 27);
3923 /* Zero the input context control for later use */
3924 ctrl_ctx->add_flags = 0;
3925 ctrl_ctx->drop_flags = 0;
3926
3927 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3928 "Internal device address = %d",
3929 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3930 kfree(command);
3931 return 0;
3932 }
3933
3934 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3935 {
3936 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3937 }
3938
3939 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3940 {
3941 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3942 }
3943
3944 /*
3945 * Transfer the port index into real index in the HW port status
3946 * registers. Caculate offset between the port's PORTSC register
3947 * and port status base. Divide the number of per port register
3948 * to get the real index. The raw port number bases 1.
3949 */
3950 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3951 {
3952 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3953 __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3954 __le32 __iomem *addr;
3955 int raw_port;
3956
3957 if (hcd->speed != HCD_USB3)
3958 addr = xhci->usb2_ports[port1 - 1];
3959 else
3960 addr = xhci->usb3_ports[port1 - 1];
3961
3962 raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3963 return raw_port;
3964 }
3965
3966 /*
3967 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3968 * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
3969 */
3970 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3971 struct usb_device *udev, u16 max_exit_latency)
3972 {
3973 struct xhci_virt_device *virt_dev;
3974 struct xhci_command *command;
3975 struct xhci_input_control_ctx *ctrl_ctx;
3976 struct xhci_slot_ctx *slot_ctx;
3977 unsigned long flags;
3978 int ret;
3979
3980 spin_lock_irqsave(&xhci->lock, flags);
3981 if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) {
3982 spin_unlock_irqrestore(&xhci->lock, flags);
3983 return 0;
3984 }
3985
3986 /* Attempt to issue an Evaluate Context command to change the MEL. */
3987 virt_dev = xhci->devs[udev->slot_id];
3988 command = xhci->lpm_command;
3989 ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
3990 if (!ctrl_ctx) {
3991 spin_unlock_irqrestore(&xhci->lock, flags);
3992 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3993 __func__);
3994 return -ENOMEM;
3995 }
3996
3997 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
3998 spin_unlock_irqrestore(&xhci->lock, flags);
3999
4000 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4001 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4002 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4003 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4004
4005 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4006 "Set up evaluate context for LPM MEL change.");
4007 xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4008 xhci_dbg_ctx(xhci, command->in_ctx, 0);
4009
4010 /* Issue and wait for the evaluate context command. */
4011 ret = xhci_configure_endpoint(xhci, udev, command,
4012 true, true);
4013 xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4014 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4015
4016 if (!ret) {
4017 spin_lock_irqsave(&xhci->lock, flags);
4018 virt_dev->current_mel = max_exit_latency;
4019 spin_unlock_irqrestore(&xhci->lock, flags);
4020 }
4021 return ret;
4022 }
4023
4024 #ifdef CONFIG_PM_RUNTIME
4025
4026 /* BESL to HIRD Encoding array for USB2 LPM */
4027 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4028 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4029
4030 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4031 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4032 struct usb_device *udev)
4033 {
4034 int u2del, besl, besl_host;
4035 int besl_device = 0;
4036 u32 field;
4037
4038 u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4039 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4040
4041 if (field & USB_BESL_SUPPORT) {
4042 for (besl_host = 0; besl_host < 16; besl_host++) {
4043 if (xhci_besl_encoding[besl_host] >= u2del)
4044 break;
4045 }
4046 /* Use baseline BESL value as default */
4047 if (field & USB_BESL_BASELINE_VALID)
4048 besl_device = USB_GET_BESL_BASELINE(field);
4049 else if (field & USB_BESL_DEEP_VALID)
4050 besl_device = USB_GET_BESL_DEEP(field);
4051 } else {
4052 if (u2del <= 50)
4053 besl_host = 0;
4054 else
4055 besl_host = (u2del - 51) / 75 + 1;
4056 }
4057
4058 besl = besl_host + besl_device;
4059 if (besl > 15)
4060 besl = 15;
4061
4062 return besl;
4063 }
4064
4065 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4066 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4067 {
4068 u32 field;
4069 int l1;
4070 int besld = 0;
4071 int hirdm = 0;
4072
4073 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4074
4075 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4076 l1 = udev->l1_params.timeout / 256;
4077
4078 /* device has preferred BESLD */
4079 if (field & USB_BESL_DEEP_VALID) {
4080 besld = USB_GET_BESL_DEEP(field);
4081 hirdm = 1;
4082 }
4083
4084 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4085 }
4086
4087 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4088 struct usb_device *udev, int enable)
4089 {
4090 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4091 __le32 __iomem **port_array;
4092 __le32 __iomem *pm_addr, *hlpm_addr;
4093 u32 pm_val, hlpm_val, field;
4094 unsigned int port_num;
4095 unsigned long flags;
4096 int hird, exit_latency;
4097 int ret;
4098
4099 if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
4100 !udev->lpm_capable)
4101 return -EPERM;
4102
4103 if (!udev->parent || udev->parent->parent ||
4104 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4105 return -EPERM;
4106
4107 if (udev->usb2_hw_lpm_capable != 1)
4108 return -EPERM;
4109
4110 spin_lock_irqsave(&xhci->lock, flags);
4111
4112 port_array = xhci->usb2_ports;
4113 port_num = udev->portnum - 1;
4114 pm_addr = port_array[port_num] + PORTPMSC;
4115 pm_val = readl(pm_addr);
4116 hlpm_addr = port_array[port_num] + PORTHLPMC;
4117 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4118
4119 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4120 enable ? "enable" : "disable", port_num + 1);
4121
4122 if (enable) {
4123 /* Host supports BESL timeout instead of HIRD */
4124 if (udev->usb2_hw_lpm_besl_capable) {
4125 /* if device doesn't have a preferred BESL value use a
4126 * default one which works with mixed HIRD and BESL
4127 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4128 */
4129 if ((field & USB_BESL_SUPPORT) &&
4130 (field & USB_BESL_BASELINE_VALID))
4131 hird = USB_GET_BESL_BASELINE(field);
4132 else
4133 hird = udev->l1_params.besl;
4134
4135 exit_latency = xhci_besl_encoding[hird];
4136 spin_unlock_irqrestore(&xhci->lock, flags);
4137
4138 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4139 * input context for link powermanagement evaluate
4140 * context commands. It is protected by hcd->bandwidth
4141 * mutex and is shared by all devices. We need to set
4142 * the max ext latency in USB 2 BESL LPM as well, so
4143 * use the same mutex and xhci_change_max_exit_latency()
4144 */
4145 mutex_lock(hcd->bandwidth_mutex);
4146 ret = xhci_change_max_exit_latency(xhci, udev,
4147 exit_latency);
4148 mutex_unlock(hcd->bandwidth_mutex);
4149
4150 if (ret < 0)
4151 return ret;
4152 spin_lock_irqsave(&xhci->lock, flags);
4153
4154 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4155 writel(hlpm_val, hlpm_addr);
4156 /* flush write */
4157 readl(hlpm_addr);
4158 } else {
4159 hird = xhci_calculate_hird_besl(xhci, udev);
4160 }
4161
4162 pm_val &= ~PORT_HIRD_MASK;
4163 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4164 writel(pm_val, pm_addr);
4165 pm_val = readl(pm_addr);
4166 pm_val |= PORT_HLE;
4167 writel(pm_val, pm_addr);
4168 /* flush write */
4169 readl(pm_addr);
4170 } else {
4171 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4172 writel(pm_val, pm_addr);
4173 /* flush write */
4174 readl(pm_addr);
4175 if (udev->usb2_hw_lpm_besl_capable) {
4176 spin_unlock_irqrestore(&xhci->lock, flags);
4177 mutex_lock(hcd->bandwidth_mutex);
4178 xhci_change_max_exit_latency(xhci, udev, 0);
4179 mutex_unlock(hcd->bandwidth_mutex);
4180 return 0;
4181 }
4182 }
4183
4184 spin_unlock_irqrestore(&xhci->lock, flags);
4185 return 0;
4186 }
4187
4188 /* check if a usb2 port supports a given extened capability protocol
4189 * only USB2 ports extended protocol capability values are cached.
4190 * Return 1 if capability is supported
4191 */
4192 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4193 unsigned capability)
4194 {
4195 u32 port_offset, port_count;
4196 int i;
4197
4198 for (i = 0; i < xhci->num_ext_caps; i++) {
4199 if (xhci->ext_caps[i] & capability) {
4200 /* port offsets starts at 1 */
4201 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4202 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4203 if (port >= port_offset &&
4204 port < port_offset + port_count)
4205 return 1;
4206 }
4207 }
4208 return 0;
4209 }
4210
4211 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4212 {
4213 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4214 int portnum = udev->portnum - 1;
4215
4216 if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
4217 !udev->lpm_capable)
4218 return 0;
4219
4220 /* we only support lpm for non-hub device connected to root hub yet */
4221 if (!udev->parent || udev->parent->parent ||
4222 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4223 return 0;
4224
4225 if (xhci->hw_lpm_support == 1 &&
4226 xhci_check_usb2_port_capability(
4227 xhci, portnum, XHCI_HLC)) {
4228 udev->usb2_hw_lpm_capable = 1;
4229 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4230 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4231 if (xhci_check_usb2_port_capability(xhci, portnum,
4232 XHCI_BLC))
4233 udev->usb2_hw_lpm_besl_capable = 1;
4234 }
4235
4236 return 0;
4237 }
4238
4239 #else
4240
4241 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4242 struct usb_device *udev, int enable)
4243 {
4244 return 0;
4245 }
4246
4247 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4248 {
4249 return 0;
4250 }
4251
4252 #endif /* CONFIG_PM_RUNTIME */
4253
4254 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4255
4256 #ifdef CONFIG_PM
4257 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4258 static unsigned long long xhci_service_interval_to_ns(
4259 struct usb_endpoint_descriptor *desc)
4260 {
4261 return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4262 }
4263
4264 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4265 enum usb3_link_state state)
4266 {
4267 unsigned long long sel;
4268 unsigned long long pel;
4269 unsigned int max_sel_pel;
4270 char *state_name;
4271
4272 switch (state) {
4273 case USB3_LPM_U1:
4274 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4275 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4276 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4277 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4278 state_name = "U1";
4279 break;
4280 case USB3_LPM_U2:
4281 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4282 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4283 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4284 state_name = "U2";
4285 break;
4286 default:
4287 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4288 __func__);
4289 return USB3_LPM_DISABLED;
4290 }
4291
4292 if (sel <= max_sel_pel && pel <= max_sel_pel)
4293 return USB3_LPM_DEVICE_INITIATED;
4294
4295 if (sel > max_sel_pel)
4296 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4297 "due to long SEL %llu ms\n",
4298 state_name, sel);
4299 else
4300 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4301 "due to long PEL %llu ms\n",
4302 state_name, pel);
4303 return USB3_LPM_DISABLED;
4304 }
4305
4306 /* Returns the hub-encoded U1 timeout value.
4307 * The U1 timeout should be the maximum of the following values:
4308 * - For control endpoints, U1 system exit latency (SEL) * 3
4309 * - For bulk endpoints, U1 SEL * 5
4310 * - For interrupt endpoints:
4311 * - Notification EPs, U1 SEL * 3
4312 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4313 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4314 */
4315 static u16 xhci_calculate_intel_u1_timeout(struct usb_device *udev,
4316 struct usb_endpoint_descriptor *desc)
4317 {
4318 unsigned long long timeout_ns;
4319 int ep_type;
4320 int intr_type;
4321
4322 ep_type = usb_endpoint_type(desc);
4323 switch (ep_type) {
4324 case USB_ENDPOINT_XFER_CONTROL:
4325 timeout_ns = udev->u1_params.sel * 3;
4326 break;
4327 case USB_ENDPOINT_XFER_BULK:
4328 timeout_ns = udev->u1_params.sel * 5;
4329 break;
4330 case USB_ENDPOINT_XFER_INT:
4331 intr_type = usb_endpoint_interrupt_type(desc);
4332 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4333 timeout_ns = udev->u1_params.sel * 3;
4334 break;
4335 }
4336 /* Otherwise the calculation is the same as isoc eps */
4337 case USB_ENDPOINT_XFER_ISOC:
4338 timeout_ns = xhci_service_interval_to_ns(desc);
4339 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4340 if (timeout_ns < udev->u1_params.sel * 2)
4341 timeout_ns = udev->u1_params.sel * 2;
4342 break;
4343 default:
4344 return 0;
4345 }
4346
4347 /* The U1 timeout is encoded in 1us intervals. */
4348 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4349 /* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */
4350 if (timeout_ns == USB3_LPM_DISABLED)
4351 timeout_ns++;
4352
4353 /* If the necessary timeout value is bigger than what we can set in the
4354 * USB 3.0 hub, we have to disable hub-initiated U1.
4355 */
4356 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4357 return timeout_ns;
4358 dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4359 "due to long timeout %llu ms\n", timeout_ns);
4360 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4361 }
4362
4363 /* Returns the hub-encoded U2 timeout value.
4364 * The U2 timeout should be the maximum of:
4365 * - 10 ms (to avoid the bandwidth impact on the scheduler)
4366 * - largest bInterval of any active periodic endpoint (to avoid going
4367 * into lower power link states between intervals).
4368 * - the U2 Exit Latency of the device
4369 */
4370 static u16 xhci_calculate_intel_u2_timeout(struct usb_device *udev,
4371 struct usb_endpoint_descriptor *desc)
4372 {
4373 unsigned long long timeout_ns;
4374 unsigned long long u2_del_ns;
4375
4376 timeout_ns = 10 * 1000 * 1000;
4377
4378 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4379 (xhci_service_interval_to_ns(desc) > timeout_ns))
4380 timeout_ns = xhci_service_interval_to_ns(desc);
4381
4382 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4383 if (u2_del_ns > timeout_ns)
4384 timeout_ns = u2_del_ns;
4385
4386 /* The U2 timeout is encoded in 256us intervals */
4387 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4388 /* If the necessary timeout value is bigger than what we can set in the
4389 * USB 3.0 hub, we have to disable hub-initiated U2.
4390 */
4391 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4392 return timeout_ns;
4393 dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4394 "due to long timeout %llu ms\n", timeout_ns);
4395 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4396 }
4397
4398 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4399 struct usb_device *udev,
4400 struct usb_endpoint_descriptor *desc,
4401 enum usb3_link_state state,
4402 u16 *timeout)
4403 {
4404 if (state == USB3_LPM_U1) {
4405 if (xhci->quirks & XHCI_INTEL_HOST)
4406 return xhci_calculate_intel_u1_timeout(udev, desc);
4407 } else {
4408 if (xhci->quirks & XHCI_INTEL_HOST)
4409 return xhci_calculate_intel_u2_timeout(udev, desc);
4410 }
4411
4412 return USB3_LPM_DISABLED;
4413 }
4414
4415 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4416 struct usb_device *udev,
4417 struct usb_endpoint_descriptor *desc,
4418 enum usb3_link_state state,
4419 u16 *timeout)
4420 {
4421 u16 alt_timeout;
4422
4423 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4424 desc, state, timeout);
4425
4426 /* If we found we can't enable hub-initiated LPM, or
4427 * the U1 or U2 exit latency was too high to allow
4428 * device-initiated LPM as well, just stop searching.
4429 */
4430 if (alt_timeout == USB3_LPM_DISABLED ||
4431 alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4432 *timeout = alt_timeout;
4433 return -E2BIG;
4434 }
4435 if (alt_timeout > *timeout)
4436 *timeout = alt_timeout;
4437 return 0;
4438 }
4439
4440 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4441 struct usb_device *udev,
4442 struct usb_host_interface *alt,
4443 enum usb3_link_state state,
4444 u16 *timeout)
4445 {
4446 int j;
4447
4448 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4449 if (xhci_update_timeout_for_endpoint(xhci, udev,
4450 &alt->endpoint[j].desc, state, timeout))
4451 return -E2BIG;
4452 continue;
4453 }
4454 return 0;
4455 }
4456
4457 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4458 enum usb3_link_state state)
4459 {
4460 struct usb_device *parent;
4461 unsigned int num_hubs;
4462
4463 if (state == USB3_LPM_U2)
4464 return 0;
4465
4466 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4467 for (parent = udev->parent, num_hubs = 0; parent->parent;
4468 parent = parent->parent)
4469 num_hubs++;
4470
4471 if (num_hubs < 2)
4472 return 0;
4473
4474 dev_dbg(&udev->dev, "Disabling U1 link state for device"
4475 " below second-tier hub.\n");
4476 dev_dbg(&udev->dev, "Plug device into first-tier hub "
4477 "to decrease power consumption.\n");
4478 return -E2BIG;
4479 }
4480
4481 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4482 struct usb_device *udev,
4483 enum usb3_link_state state)
4484 {
4485 if (xhci->quirks & XHCI_INTEL_HOST)
4486 return xhci_check_intel_tier_policy(udev, state);
4487 return -EINVAL;
4488 }
4489
4490 /* Returns the U1 or U2 timeout that should be enabled.
4491 * If the tier check or timeout setting functions return with a non-zero exit
4492 * code, that means the timeout value has been finalized and we shouldn't look
4493 * at any more endpoints.
4494 */
4495 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4496 struct usb_device *udev, enum usb3_link_state state)
4497 {
4498 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4499 struct usb_host_config *config;
4500 char *state_name;
4501 int i;
4502 u16 timeout = USB3_LPM_DISABLED;
4503
4504 if (state == USB3_LPM_U1)
4505 state_name = "U1";
4506 else if (state == USB3_LPM_U2)
4507 state_name = "U2";
4508 else {
4509 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4510 state);
4511 return timeout;
4512 }
4513
4514 if (xhci_check_tier_policy(xhci, udev, state) < 0)
4515 return timeout;
4516
4517 /* Gather some information about the currently installed configuration
4518 * and alternate interface settings.
4519 */
4520 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4521 state, &timeout))
4522 return timeout;
4523
4524 config = udev->actconfig;
4525 if (!config)
4526 return timeout;
4527
4528 for (i = 0; i < config->desc.bNumInterfaces; i++) {
4529 struct usb_driver *driver;
4530 struct usb_interface *intf = config->interface[i];
4531
4532 if (!intf)
4533 continue;
4534
4535 /* Check if any currently bound drivers want hub-initiated LPM
4536 * disabled.
4537 */
4538 if (intf->dev.driver) {
4539 driver = to_usb_driver(intf->dev.driver);
4540 if (driver && driver->disable_hub_initiated_lpm) {
4541 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4542 "at request of driver %s\n",
4543 state_name, driver->name);
4544 return xhci_get_timeout_no_hub_lpm(udev, state);
4545 }
4546 }
4547
4548 /* Not sure how this could happen... */
4549 if (!intf->cur_altsetting)
4550 continue;
4551
4552 if (xhci_update_timeout_for_interface(xhci, udev,
4553 intf->cur_altsetting,
4554 state, &timeout))
4555 return timeout;
4556 }
4557 return timeout;
4558 }
4559
4560 static int calculate_max_exit_latency(struct usb_device *udev,
4561 enum usb3_link_state state_changed,
4562 u16 hub_encoded_timeout)
4563 {
4564 unsigned long long u1_mel_us = 0;
4565 unsigned long long u2_mel_us = 0;
4566 unsigned long long mel_us = 0;
4567 bool disabling_u1;
4568 bool disabling_u2;
4569 bool enabling_u1;
4570 bool enabling_u2;
4571
4572 disabling_u1 = (state_changed == USB3_LPM_U1 &&
4573 hub_encoded_timeout == USB3_LPM_DISABLED);
4574 disabling_u2 = (state_changed == USB3_LPM_U2 &&
4575 hub_encoded_timeout == USB3_LPM_DISABLED);
4576
4577 enabling_u1 = (state_changed == USB3_LPM_U1 &&
4578 hub_encoded_timeout != USB3_LPM_DISABLED);
4579 enabling_u2 = (state_changed == USB3_LPM_U2 &&
4580 hub_encoded_timeout != USB3_LPM_DISABLED);
4581
4582 /* If U1 was already enabled and we're not disabling it,
4583 * or we're going to enable U1, account for the U1 max exit latency.
4584 */
4585 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4586 enabling_u1)
4587 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4588 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4589 enabling_u2)
4590 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4591
4592 if (u1_mel_us > u2_mel_us)
4593 mel_us = u1_mel_us;
4594 else
4595 mel_us = u2_mel_us;
4596 /* xHCI host controller max exit latency field is only 16 bits wide. */
4597 if (mel_us > MAX_EXIT) {
4598 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4599 "is too big.\n", mel_us);
4600 return -E2BIG;
4601 }
4602 return mel_us;
4603 }
4604
4605 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4606 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4607 struct usb_device *udev, enum usb3_link_state state)
4608 {
4609 struct xhci_hcd *xhci;
4610 u16 hub_encoded_timeout;
4611 int mel;
4612 int ret;
4613
4614 xhci = hcd_to_xhci(hcd);
4615 /* The LPM timeout values are pretty host-controller specific, so don't
4616 * enable hub-initiated timeouts unless the vendor has provided
4617 * information about their timeout algorithm.
4618 */
4619 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4620 !xhci->devs[udev->slot_id])
4621 return USB3_LPM_DISABLED;
4622
4623 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4624 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4625 if (mel < 0) {
4626 /* Max Exit Latency is too big, disable LPM. */
4627 hub_encoded_timeout = USB3_LPM_DISABLED;
4628 mel = 0;
4629 }
4630
4631 ret = xhci_change_max_exit_latency(xhci, udev, mel);
4632 if (ret)
4633 return ret;
4634 return hub_encoded_timeout;
4635 }
4636
4637 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4638 struct usb_device *udev, enum usb3_link_state state)
4639 {
4640 struct xhci_hcd *xhci;
4641 u16 mel;
4642 int ret;
4643
4644 xhci = hcd_to_xhci(hcd);
4645 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4646 !xhci->devs[udev->slot_id])
4647 return 0;
4648
4649 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4650 ret = xhci_change_max_exit_latency(xhci, udev, mel);
4651 if (ret)
4652 return ret;
4653 return 0;
4654 }
4655 #else /* CONFIG_PM */
4656
4657 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4658 struct usb_device *udev, enum usb3_link_state state)
4659 {
4660 return USB3_LPM_DISABLED;
4661 }
4662
4663 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4664 struct usb_device *udev, enum usb3_link_state state)
4665 {
4666 return 0;
4667 }
4668 #endif /* CONFIG_PM */
4669
4670 /*-------------------------------------------------------------------------*/
4671
4672 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4673 * internal data structures for the device.
4674 */
4675 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4676 struct usb_tt *tt, gfp_t mem_flags)
4677 {
4678 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4679 struct xhci_virt_device *vdev;
4680 struct xhci_command *config_cmd;
4681 struct xhci_input_control_ctx *ctrl_ctx;
4682 struct xhci_slot_ctx *slot_ctx;
4683 unsigned long flags;
4684 unsigned think_time;
4685 int ret;
4686
4687 /* Ignore root hubs */
4688 if (!hdev->parent)
4689 return 0;
4690
4691 vdev = xhci->devs[hdev->slot_id];
4692 if (!vdev) {
4693 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4694 return -EINVAL;
4695 }
4696 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4697 if (!config_cmd) {
4698 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4699 return -ENOMEM;
4700 }
4701 ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
4702 if (!ctrl_ctx) {
4703 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4704 __func__);
4705 xhci_free_command(xhci, config_cmd);
4706 return -ENOMEM;
4707 }
4708
4709 spin_lock_irqsave(&xhci->lock, flags);
4710 if (hdev->speed == USB_SPEED_HIGH &&
4711 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4712 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4713 xhci_free_command(xhci, config_cmd);
4714 spin_unlock_irqrestore(&xhci->lock, flags);
4715 return -ENOMEM;
4716 }
4717
4718 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4719 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4720 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4721 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4722 if (tt->multi)
4723 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4724 if (xhci->hci_version > 0x95) {
4725 xhci_dbg(xhci, "xHCI version %x needs hub "
4726 "TT think time and number of ports\n",
4727 (unsigned int) xhci->hci_version);
4728 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4729 /* Set TT think time - convert from ns to FS bit times.
4730 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4731 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4732 *
4733 * xHCI 1.0: this field shall be 0 if the device is not a
4734 * High-spped hub.
4735 */
4736 think_time = tt->think_time;
4737 if (think_time != 0)
4738 think_time = (think_time / 666) - 1;
4739 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4740 slot_ctx->tt_info |=
4741 cpu_to_le32(TT_THINK_TIME(think_time));
4742 } else {
4743 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4744 "TT think time or number of ports\n",
4745 (unsigned int) xhci->hci_version);
4746 }
4747 slot_ctx->dev_state = 0;
4748 spin_unlock_irqrestore(&xhci->lock, flags);
4749
4750 xhci_dbg(xhci, "Set up %s for hub device.\n",
4751 (xhci->hci_version > 0x95) ?
4752 "configure endpoint" : "evaluate context");
4753 xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4754 xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4755
4756 /* Issue and wait for the configure endpoint or
4757 * evaluate context command.
4758 */
4759 if (xhci->hci_version > 0x95)
4760 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4761 false, false);
4762 else
4763 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4764 true, false);
4765
4766 xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4767 xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4768
4769 xhci_free_command(xhci, config_cmd);
4770 return ret;
4771 }
4772
4773 int xhci_get_frame(struct usb_hcd *hcd)
4774 {
4775 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4776 /* EHCI mods by the periodic size. Why? */
4777 return readl(&xhci->run_regs->microframe_index) >> 3;
4778 }
4779
4780 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4781 {
4782 struct xhci_hcd *xhci;
4783 struct device *dev = hcd->self.controller;
4784 int retval;
4785
4786 /* Accept arbitrarily long scatter-gather lists */
4787 hcd->self.sg_tablesize = ~0;
4788
4789 /* support to build packet from discontinuous buffers */
4790 hcd->self.no_sg_constraint = 1;
4791
4792 /* XHCI controllers don't stop the ep queue on short packets :| */
4793 hcd->self.no_stop_on_short = 1;
4794
4795 if (usb_hcd_is_primary_hcd(hcd)) {
4796 xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
4797 if (!xhci)
4798 return -ENOMEM;
4799 *((struct xhci_hcd **) hcd->hcd_priv) = xhci;
4800 xhci->main_hcd = hcd;
4801 /* Mark the first roothub as being USB 2.0.
4802 * The xHCI driver will register the USB 3.0 roothub.
4803 */
4804 hcd->speed = HCD_USB2;
4805 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4806 /*
4807 * USB 2.0 roothub under xHCI has an integrated TT,
4808 * (rate matching hub) as opposed to having an OHCI/UHCI
4809 * companion controller.
4810 */
4811 hcd->has_tt = 1;
4812 } else {
4813 /* xHCI private pointer was set in xhci_pci_probe for the second
4814 * registered roothub.
4815 */
4816 return 0;
4817 }
4818
4819 xhci->cap_regs = hcd->regs;
4820 xhci->op_regs = hcd->regs +
4821 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4822 xhci->run_regs = hcd->regs +
4823 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4824 /* Cache read-only capability registers */
4825 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4826 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4827 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4828 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4829 xhci->hci_version = HC_VERSION(xhci->hcc_params);
4830 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4831 xhci_print_registers(xhci);
4832
4833 xhci->quirks = quirks;
4834
4835 get_quirks(dev, xhci);
4836
4837 /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4838 * success event after a short transfer. This quirk will ignore such
4839 * spurious event.
4840 */
4841 if (xhci->hci_version > 0x96)
4842 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4843
4844 /* Make sure the HC is halted. */
4845 retval = xhci_halt(xhci);
4846 if (retval)
4847 goto error;
4848
4849 xhci_dbg(xhci, "Resetting HCD\n");
4850 /* Reset the internal HC memory state and registers. */
4851 retval = xhci_reset(xhci);
4852 if (retval)
4853 goto error;
4854 xhci_dbg(xhci, "Reset complete\n");
4855
4856 /* Set dma_mask and coherent_dma_mask to 64-bits,
4857 * if xHC supports 64-bit addressing */
4858 if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4859 !dma_set_mask(dev, DMA_BIT_MASK(64))) {
4860 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4861 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4862 }
4863
4864 xhci_dbg(xhci, "Calling HCD init\n");
4865 /* Initialize HCD and host controller data structures. */
4866 retval = xhci_init(hcd);
4867 if (retval)
4868 goto error;
4869 xhci_dbg(xhci, "Called HCD init\n");
4870 return 0;
4871 error:
4872 kfree(xhci);
4873 return retval;
4874 }
4875
4876 MODULE_DESCRIPTION(DRIVER_DESC);
4877 MODULE_AUTHOR(DRIVER_AUTHOR);
4878 MODULE_LICENSE("GPL");
4879
4880 static int __init xhci_hcd_init(void)
4881 {
4882 int retval;
4883
4884 retval = xhci_register_pci();
4885 if (retval < 0) {
4886 pr_debug("Problem registering PCI driver.\n");
4887 return retval;
4888 }
4889 retval = xhci_register_plat();
4890 if (retval < 0) {
4891 pr_debug("Problem registering platform driver.\n");
4892 goto unreg_pci;
4893 }
4894 /*
4895 * Check the compiler generated sizes of structures that must be laid
4896 * out in specific ways for hardware access.
4897 */
4898 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4899 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4900 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4901 /* xhci_device_control has eight fields, and also
4902 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4903 */
4904 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4905 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4906 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4907 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4908 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4909 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4910 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4911 return 0;
4912 unreg_pci:
4913 xhci_unregister_pci();
4914 return retval;
4915 }
4916 module_init(xhci_hcd_init);
4917
4918 static void __exit xhci_hcd_cleanup(void)
4919 {
4920 xhci_unregister_pci();
4921 xhci_unregister_plat();
4922 }
4923 module_exit(xhci_hcd_cleanup);