]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/usb/host/xhci.c
UBUNTU: Ubuntu-5.15.0-39.42
[mirror_ubuntu-jammy-kernel.git] / drivers / usb / host / xhci.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * xHCI host controller driver
4 *
5 * Copyright (C) 2008 Intel Corp.
6 *
7 * Author: Sarah Sharp
8 * Some code borrowed from the Linux EHCI driver.
9 */
10
11 #include <linux/pci.h>
12 #include <linux/iopoll.h>
13 #include <linux/irq.h>
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/slab.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-mapping.h>
20
21 #include "xhci.h"
22 #include "xhci-trace.h"
23 #include "xhci-debugfs.h"
24 #include "xhci-dbgcap.h"
25
26 #define DRIVER_AUTHOR "Sarah Sharp"
27 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
28
29 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
30
31 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
32 static int link_quirk;
33 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
34 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
35
36 static unsigned long long quirks;
37 module_param(quirks, ullong, S_IRUGO);
38 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
39
40 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
41 {
42 struct xhci_segment *seg = ring->first_seg;
43
44 if (!td || !td->start_seg)
45 return false;
46 do {
47 if (seg == td->start_seg)
48 return true;
49 seg = seg->next;
50 } while (seg && seg != ring->first_seg);
51
52 return false;
53 }
54
55 /*
56 * xhci_handshake - spin reading hc until handshake completes or fails
57 * @ptr: address of hc register to be read
58 * @mask: bits to look at in result of read
59 * @done: value of those bits when handshake succeeds
60 * @usec: timeout in microseconds
61 *
62 * Returns negative errno, or zero on success
63 *
64 * Success happens when the "mask" bits have the specified value (hardware
65 * handshake done). There are two failure modes: "usec" have passed (major
66 * hardware flakeout), or the register reads as all-ones (hardware removed).
67 */
68 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us)
69 {
70 u32 result;
71 int ret;
72
73 ret = readl_poll_timeout_atomic(ptr, result,
74 (result & mask) == done ||
75 result == U32_MAX,
76 1, timeout_us);
77 if (result == U32_MAX) /* card removed */
78 return -ENODEV;
79
80 return ret;
81 }
82
83 /*
84 * Disable interrupts and begin the xHCI halting process.
85 */
86 void xhci_quiesce(struct xhci_hcd *xhci)
87 {
88 u32 halted;
89 u32 cmd;
90 u32 mask;
91
92 mask = ~(XHCI_IRQS);
93 halted = readl(&xhci->op_regs->status) & STS_HALT;
94 if (!halted)
95 mask &= ~CMD_RUN;
96
97 cmd = readl(&xhci->op_regs->command);
98 cmd &= mask;
99 writel(cmd, &xhci->op_regs->command);
100 }
101
102 /*
103 * Force HC into halt state.
104 *
105 * Disable any IRQs and clear the run/stop bit.
106 * HC will complete any current and actively pipelined transactions, and
107 * should halt within 16 ms of the run/stop bit being cleared.
108 * Read HC Halted bit in the status register to see when the HC is finished.
109 */
110 int xhci_halt(struct xhci_hcd *xhci)
111 {
112 int ret;
113 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
114 xhci_quiesce(xhci);
115
116 ret = xhci_handshake(&xhci->op_regs->status,
117 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
118 if (ret) {
119 xhci_warn(xhci, "Host halt failed, %d\n", ret);
120 return ret;
121 }
122 xhci->xhc_state |= XHCI_STATE_HALTED;
123 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
124 return ret;
125 }
126
127 /*
128 * Set the run bit and wait for the host to be running.
129 */
130 int xhci_start(struct xhci_hcd *xhci)
131 {
132 u32 temp;
133 int ret;
134
135 temp = readl(&xhci->op_regs->command);
136 temp |= (CMD_RUN);
137 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
138 temp);
139 writel(temp, &xhci->op_regs->command);
140
141 /*
142 * Wait for the HCHalted Status bit to be 0 to indicate the host is
143 * running.
144 */
145 ret = xhci_handshake(&xhci->op_regs->status,
146 STS_HALT, 0, XHCI_MAX_HALT_USEC);
147 if (ret == -ETIMEDOUT)
148 xhci_err(xhci, "Host took too long to start, "
149 "waited %u microseconds.\n",
150 XHCI_MAX_HALT_USEC);
151 if (!ret)
152 /* clear state flags. Including dying, halted or removing */
153 xhci->xhc_state = 0;
154
155 return ret;
156 }
157
158 /*
159 * Reset a halted HC.
160 *
161 * This resets pipelines, timers, counters, state machines, etc.
162 * Transactions will be terminated immediately, and operational registers
163 * will be set to their defaults.
164 */
165 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us)
166 {
167 u32 command;
168 u32 state;
169 int ret;
170
171 state = readl(&xhci->op_regs->status);
172
173 if (state == ~(u32)0) {
174 xhci_warn(xhci, "Host not accessible, reset failed.\n");
175 return -ENODEV;
176 }
177
178 if ((state & STS_HALT) == 0) {
179 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
180 return 0;
181 }
182
183 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
184 command = readl(&xhci->op_regs->command);
185 command |= CMD_RESET;
186 writel(command, &xhci->op_regs->command);
187
188 /* Existing Intel xHCI controllers require a delay of 1 mS,
189 * after setting the CMD_RESET bit, and before accessing any
190 * HC registers. This allows the HC to complete the
191 * reset operation and be ready for HC register access.
192 * Without this delay, the subsequent HC register access,
193 * may result in a system hang very rarely.
194 */
195 if (xhci->quirks & XHCI_INTEL_HOST)
196 udelay(1000);
197
198 ret = xhci_handshake(&xhci->op_regs->command, CMD_RESET, 0, timeout_us);
199 if (ret)
200 return ret;
201
202 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
203 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
204
205 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
206 "Wait for controller to be ready for doorbell rings");
207 /*
208 * xHCI cannot write to any doorbells or operational registers other
209 * than status until the "Controller Not Ready" flag is cleared.
210 */
211 ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us);
212
213 xhci->usb2_rhub.bus_state.port_c_suspend = 0;
214 xhci->usb2_rhub.bus_state.suspended_ports = 0;
215 xhci->usb2_rhub.bus_state.resuming_ports = 0;
216 xhci->usb3_rhub.bus_state.port_c_suspend = 0;
217 xhci->usb3_rhub.bus_state.suspended_ports = 0;
218 xhci->usb3_rhub.bus_state.resuming_ports = 0;
219
220 return ret;
221 }
222
223 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
224 {
225 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
226 int err, i;
227 u64 val;
228 u32 intrs;
229
230 /*
231 * Some Renesas controllers get into a weird state if they are
232 * reset while programmed with 64bit addresses (they will preserve
233 * the top half of the address in internal, non visible
234 * registers). You end up with half the address coming from the
235 * kernel, and the other half coming from the firmware. Also,
236 * changing the programming leads to extra accesses even if the
237 * controller is supposed to be halted. The controller ends up with
238 * a fatal fault, and is then ripe for being properly reset.
239 *
240 * Special care is taken to only apply this if the device is behind
241 * an iommu. Doing anything when there is no iommu is definitely
242 * unsafe...
243 */
244 if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev))
245 return;
246
247 xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
248
249 /* Clear HSEIE so that faults do not get signaled */
250 val = readl(&xhci->op_regs->command);
251 val &= ~CMD_HSEIE;
252 writel(val, &xhci->op_regs->command);
253
254 /* Clear HSE (aka FATAL) */
255 val = readl(&xhci->op_regs->status);
256 val |= STS_FATAL;
257 writel(val, &xhci->op_regs->status);
258
259 /* Now zero the registers, and brace for impact */
260 val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
261 if (upper_32_bits(val))
262 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
263 val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
264 if (upper_32_bits(val))
265 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
266
267 intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
268 ARRAY_SIZE(xhci->run_regs->ir_set));
269
270 for (i = 0; i < intrs; i++) {
271 struct xhci_intr_reg __iomem *ir;
272
273 ir = &xhci->run_regs->ir_set[i];
274 val = xhci_read_64(xhci, &ir->erst_base);
275 if (upper_32_bits(val))
276 xhci_write_64(xhci, 0, &ir->erst_base);
277 val= xhci_read_64(xhci, &ir->erst_dequeue);
278 if (upper_32_bits(val))
279 xhci_write_64(xhci, 0, &ir->erst_dequeue);
280 }
281
282 /* Wait for the fault to appear. It will be cleared on reset */
283 err = xhci_handshake(&xhci->op_regs->status,
284 STS_FATAL, STS_FATAL,
285 XHCI_MAX_HALT_USEC);
286 if (!err)
287 xhci_info(xhci, "Fault detected\n");
288 }
289
290 #ifdef CONFIG_USB_PCI
291 /*
292 * Set up MSI
293 */
294 static int xhci_setup_msi(struct xhci_hcd *xhci)
295 {
296 int ret;
297 /*
298 * TODO:Check with MSI Soc for sysdev
299 */
300 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
301
302 ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
303 if (ret < 0) {
304 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
305 "failed to allocate MSI entry");
306 return ret;
307 }
308
309 ret = request_irq(pdev->irq, xhci_msi_irq,
310 0, "xhci_hcd", xhci_to_hcd(xhci));
311 if (ret) {
312 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
313 "disable MSI interrupt");
314 pci_free_irq_vectors(pdev);
315 }
316
317 return ret;
318 }
319
320 /*
321 * Set up MSI-X
322 */
323 static int xhci_setup_msix(struct xhci_hcd *xhci)
324 {
325 int i, ret = 0;
326 struct usb_hcd *hcd = xhci_to_hcd(xhci);
327 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
328
329 /*
330 * calculate number of msi-x vectors supported.
331 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
332 * with max number of interrupters based on the xhci HCSPARAMS1.
333 * - num_online_cpus: maximum msi-x vectors per CPUs core.
334 * Add additional 1 vector to ensure always available interrupt.
335 */
336 xhci->msix_count = min(num_online_cpus() + 1,
337 HCS_MAX_INTRS(xhci->hcs_params1));
338
339 ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
340 PCI_IRQ_MSIX);
341 if (ret < 0) {
342 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
343 "Failed to enable MSI-X");
344 return ret;
345 }
346
347 for (i = 0; i < xhci->msix_count; i++) {
348 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
349 "xhci_hcd", xhci_to_hcd(xhci));
350 if (ret)
351 goto disable_msix;
352 }
353
354 hcd->msix_enabled = 1;
355 return ret;
356
357 disable_msix:
358 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
359 while (--i >= 0)
360 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
361 pci_free_irq_vectors(pdev);
362 return ret;
363 }
364
365 /* Free any IRQs and disable MSI-X */
366 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
367 {
368 struct usb_hcd *hcd = xhci_to_hcd(xhci);
369 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
370
371 if (xhci->quirks & XHCI_PLAT)
372 return;
373
374 /* return if using legacy interrupt */
375 if (hcd->irq > 0)
376 return;
377
378 if (hcd->msix_enabled) {
379 int i;
380
381 for (i = 0; i < xhci->msix_count; i++)
382 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
383 } else {
384 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
385 }
386
387 pci_free_irq_vectors(pdev);
388 hcd->msix_enabled = 0;
389 }
390
391 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
392 {
393 struct usb_hcd *hcd = xhci_to_hcd(xhci);
394
395 if (hcd->msix_enabled) {
396 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
397 int i;
398
399 for (i = 0; i < xhci->msix_count; i++)
400 synchronize_irq(pci_irq_vector(pdev, i));
401 }
402 }
403
404 static int xhci_try_enable_msi(struct usb_hcd *hcd)
405 {
406 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
407 struct pci_dev *pdev;
408 int ret;
409
410 /* The xhci platform device has set up IRQs through usb_add_hcd. */
411 if (xhci->quirks & XHCI_PLAT)
412 return 0;
413
414 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
415 /*
416 * Some Fresco Logic host controllers advertise MSI, but fail to
417 * generate interrupts. Don't even try to enable MSI.
418 */
419 if (xhci->quirks & XHCI_BROKEN_MSI)
420 goto legacy_irq;
421
422 /* unregister the legacy interrupt */
423 if (hcd->irq)
424 free_irq(hcd->irq, hcd);
425 hcd->irq = 0;
426
427 ret = xhci_setup_msix(xhci);
428 if (ret)
429 /* fall back to msi*/
430 ret = xhci_setup_msi(xhci);
431
432 if (!ret) {
433 hcd->msi_enabled = 1;
434 return 0;
435 }
436
437 if (!pdev->irq) {
438 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
439 return -EINVAL;
440 }
441
442 legacy_irq:
443 if (!strlen(hcd->irq_descr))
444 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
445 hcd->driver->description, hcd->self.busnum);
446
447 /* fall back to legacy interrupt*/
448 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
449 hcd->irq_descr, hcd);
450 if (ret) {
451 xhci_err(xhci, "request interrupt %d failed\n",
452 pdev->irq);
453 return ret;
454 }
455 hcd->irq = pdev->irq;
456 return 0;
457 }
458
459 #else
460
461 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
462 {
463 return 0;
464 }
465
466 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
467 {
468 }
469
470 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
471 {
472 }
473
474 #endif
475
476 static void compliance_mode_recovery(struct timer_list *t)
477 {
478 struct xhci_hcd *xhci;
479 struct usb_hcd *hcd;
480 struct xhci_hub *rhub;
481 u32 temp;
482 int i;
483
484 xhci = from_timer(xhci, t, comp_mode_recovery_timer);
485 rhub = &xhci->usb3_rhub;
486
487 for (i = 0; i < rhub->num_ports; i++) {
488 temp = readl(rhub->ports[i]->addr);
489 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
490 /*
491 * Compliance Mode Detected. Letting USB Core
492 * handle the Warm Reset
493 */
494 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
495 "Compliance mode detected->port %d",
496 i + 1);
497 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
498 "Attempting compliance mode recovery");
499 hcd = xhci->shared_hcd;
500
501 if (hcd->state == HC_STATE_SUSPENDED)
502 usb_hcd_resume_root_hub(hcd);
503
504 usb_hcd_poll_rh_status(hcd);
505 }
506 }
507
508 if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
509 mod_timer(&xhci->comp_mode_recovery_timer,
510 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
511 }
512
513 /*
514 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
515 * that causes ports behind that hardware to enter compliance mode sometimes.
516 * The quirk creates a timer that polls every 2 seconds the link state of
517 * each host controller's port and recovers it by issuing a Warm reset
518 * if Compliance mode is detected, otherwise the port will become "dead" (no
519 * device connections or disconnections will be detected anymore). Becasue no
520 * status event is generated when entering compliance mode (per xhci spec),
521 * this quirk is needed on systems that have the failing hardware installed.
522 */
523 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
524 {
525 xhci->port_status_u0 = 0;
526 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
527 0);
528 xhci->comp_mode_recovery_timer.expires = jiffies +
529 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
530
531 add_timer(&xhci->comp_mode_recovery_timer);
532 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
533 "Compliance mode recovery timer initialized");
534 }
535
536 /*
537 * This function identifies the systems that have installed the SN65LVPE502CP
538 * USB3.0 re-driver and that need the Compliance Mode Quirk.
539 * Systems:
540 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
541 */
542 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
543 {
544 const char *dmi_product_name, *dmi_sys_vendor;
545
546 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
547 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
548 if (!dmi_product_name || !dmi_sys_vendor)
549 return false;
550
551 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
552 return false;
553
554 if (strstr(dmi_product_name, "Z420") ||
555 strstr(dmi_product_name, "Z620") ||
556 strstr(dmi_product_name, "Z820") ||
557 strstr(dmi_product_name, "Z1 Workstation"))
558 return true;
559
560 return false;
561 }
562
563 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
564 {
565 return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
566 }
567
568
569 /*
570 * Initialize memory for HCD and xHC (one-time init).
571 *
572 * Program the PAGESIZE register, initialize the device context array, create
573 * device contexts (?), set up a command ring segment (or two?), create event
574 * ring (one for now).
575 */
576 static int xhci_init(struct usb_hcd *hcd)
577 {
578 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
579 int retval = 0;
580
581 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
582 spin_lock_init(&xhci->lock);
583 if (xhci->hci_version == 0x95 && link_quirk) {
584 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
585 "QUIRK: Not clearing Link TRB chain bits.");
586 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
587 } else {
588 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
589 "xHCI doesn't need link TRB QUIRK");
590 }
591 retval = xhci_mem_init(xhci, GFP_KERNEL);
592 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
593
594 /* Initializing Compliance Mode Recovery Data If Needed */
595 if (xhci_compliance_mode_recovery_timer_quirk_check()) {
596 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
597 compliance_mode_recovery_timer_init(xhci);
598 }
599
600 return retval;
601 }
602
603 /*-------------------------------------------------------------------------*/
604
605
606 static int xhci_run_finished(struct xhci_hcd *xhci)
607 {
608 if (xhci_start(xhci)) {
609 xhci_halt(xhci);
610 return -ENODEV;
611 }
612 xhci->shared_hcd->state = HC_STATE_RUNNING;
613 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
614
615 if (xhci->quirks & XHCI_NEC_HOST)
616 xhci_ring_cmd_db(xhci);
617
618 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
619 "Finished xhci_run for USB3 roothub");
620 return 0;
621 }
622
623 /*
624 * Start the HC after it was halted.
625 *
626 * This function is called by the USB core when the HC driver is added.
627 * Its opposite is xhci_stop().
628 *
629 * xhci_init() must be called once before this function can be called.
630 * Reset the HC, enable device slot contexts, program DCBAAP, and
631 * set command ring pointer and event ring pointer.
632 *
633 * Setup MSI-X vectors and enable interrupts.
634 */
635 int xhci_run(struct usb_hcd *hcd)
636 {
637 u32 temp;
638 u64 temp_64;
639 int ret;
640 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
641
642 /* Start the xHCI host controller running only after the USB 2.0 roothub
643 * is setup.
644 */
645
646 hcd->uses_new_polling = 1;
647 if (!usb_hcd_is_primary_hcd(hcd))
648 return xhci_run_finished(xhci);
649
650 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
651
652 ret = xhci_try_enable_msi(hcd);
653 if (ret)
654 return ret;
655
656 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
657 temp_64 &= ~ERST_PTR_MASK;
658 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
659 "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
660
661 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
662 "// Set the interrupt modulation register");
663 temp = readl(&xhci->ir_set->irq_control);
664 temp &= ~ER_IRQ_INTERVAL_MASK;
665 temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
666 writel(temp, &xhci->ir_set->irq_control);
667
668 /* Set the HCD state before we enable the irqs */
669 temp = readl(&xhci->op_regs->command);
670 temp |= (CMD_EIE);
671 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
672 "// Enable interrupts, cmd = 0x%x.", temp);
673 writel(temp, &xhci->op_regs->command);
674
675 temp = readl(&xhci->ir_set->irq_pending);
676 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
677 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
678 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
679 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
680
681 if (xhci->quirks & XHCI_NEC_HOST) {
682 struct xhci_command *command;
683
684 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
685 if (!command)
686 return -ENOMEM;
687
688 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
689 TRB_TYPE(TRB_NEC_GET_FW));
690 if (ret)
691 xhci_free_command(xhci, command);
692 }
693 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
694 "Finished xhci_run for USB2 roothub");
695
696 xhci_dbc_init(xhci);
697
698 xhci_debugfs_init(xhci);
699
700 return 0;
701 }
702 EXPORT_SYMBOL_GPL(xhci_run);
703
704 /*
705 * Stop xHCI driver.
706 *
707 * This function is called by the USB core when the HC driver is removed.
708 * Its opposite is xhci_run().
709 *
710 * Disable device contexts, disable IRQs, and quiesce the HC.
711 * Reset the HC, finish any completed transactions, and cleanup memory.
712 */
713 static void xhci_stop(struct usb_hcd *hcd)
714 {
715 u32 temp;
716 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
717
718 mutex_lock(&xhci->mutex);
719
720 /* Only halt host and free memory after both hcds are removed */
721 if (!usb_hcd_is_primary_hcd(hcd)) {
722 mutex_unlock(&xhci->mutex);
723 return;
724 }
725
726 xhci_dbc_exit(xhci);
727
728 spin_lock_irq(&xhci->lock);
729 xhci->xhc_state |= XHCI_STATE_HALTED;
730 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
731 xhci_halt(xhci);
732 xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
733 spin_unlock_irq(&xhci->lock);
734
735 xhci_cleanup_msix(xhci);
736
737 /* Deleting Compliance Mode Recovery Timer */
738 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
739 (!(xhci_all_ports_seen_u0(xhci)))) {
740 del_timer_sync(&xhci->comp_mode_recovery_timer);
741 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
742 "%s: compliance mode recovery timer deleted",
743 __func__);
744 }
745
746 if (xhci->quirks & XHCI_AMD_PLL_FIX)
747 usb_amd_dev_put();
748
749 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
750 "// Disabling event ring interrupts");
751 temp = readl(&xhci->op_regs->status);
752 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
753 temp = readl(&xhci->ir_set->irq_pending);
754 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
755
756 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
757 xhci_mem_cleanup(xhci);
758 xhci_debugfs_exit(xhci);
759 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
760 "xhci_stop completed - status = %x",
761 readl(&xhci->op_regs->status));
762 mutex_unlock(&xhci->mutex);
763 }
764
765 /*
766 * Shutdown HC (not bus-specific)
767 *
768 * This is called when the machine is rebooting or halting. We assume that the
769 * machine will be powered off, and the HC's internal state will be reset.
770 * Don't bother to free memory.
771 *
772 * This will only ever be called with the main usb_hcd (the USB3 roothub).
773 */
774 void xhci_shutdown(struct usb_hcd *hcd)
775 {
776 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
777
778 if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
779 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
780
781 spin_lock_irq(&xhci->lock);
782 xhci_halt(xhci);
783 /* Workaround for spurious wakeups at shutdown with HSW */
784 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
785 xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
786 spin_unlock_irq(&xhci->lock);
787
788 xhci_cleanup_msix(xhci);
789
790 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
791 "xhci_shutdown completed - status = %x",
792 readl(&xhci->op_regs->status));
793 }
794 EXPORT_SYMBOL_GPL(xhci_shutdown);
795
796 #ifdef CONFIG_PM
797 static void xhci_save_registers(struct xhci_hcd *xhci)
798 {
799 xhci->s3.command = readl(&xhci->op_regs->command);
800 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
801 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
802 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
803 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
804 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
805 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
806 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
807 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
808 }
809
810 static void xhci_restore_registers(struct xhci_hcd *xhci)
811 {
812 writel(xhci->s3.command, &xhci->op_regs->command);
813 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
814 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
815 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
816 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
817 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
818 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
819 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
820 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
821 }
822
823 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
824 {
825 u64 val_64;
826
827 /* step 2: initialize command ring buffer */
828 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
829 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
830 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
831 xhci->cmd_ring->dequeue) &
832 (u64) ~CMD_RING_RSVD_BITS) |
833 xhci->cmd_ring->cycle_state;
834 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
835 "// Setting command ring address to 0x%llx",
836 (long unsigned long) val_64);
837 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
838 }
839
840 /*
841 * The whole command ring must be cleared to zero when we suspend the host.
842 *
843 * The host doesn't save the command ring pointer in the suspend well, so we
844 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
845 * aligned, because of the reserved bits in the command ring dequeue pointer
846 * register. Therefore, we can't just set the dequeue pointer back in the
847 * middle of the ring (TRBs are 16-byte aligned).
848 */
849 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
850 {
851 struct xhci_ring *ring;
852 struct xhci_segment *seg;
853
854 ring = xhci->cmd_ring;
855 seg = ring->deq_seg;
856 do {
857 memset(seg->trbs, 0,
858 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
859 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
860 cpu_to_le32(~TRB_CYCLE);
861 seg = seg->next;
862 } while (seg != ring->deq_seg);
863
864 /* Reset the software enqueue and dequeue pointers */
865 ring->deq_seg = ring->first_seg;
866 ring->dequeue = ring->first_seg->trbs;
867 ring->enq_seg = ring->deq_seg;
868 ring->enqueue = ring->dequeue;
869
870 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
871 /*
872 * Ring is now zeroed, so the HW should look for change of ownership
873 * when the cycle bit is set to 1.
874 */
875 ring->cycle_state = 1;
876
877 /*
878 * Reset the hardware dequeue pointer.
879 * Yes, this will need to be re-written after resume, but we're paranoid
880 * and want to make sure the hardware doesn't access bogus memory
881 * because, say, the BIOS or an SMI started the host without changing
882 * the command ring pointers.
883 */
884 xhci_set_cmd_ring_deq(xhci);
885 }
886
887 /*
888 * Disable port wake bits if do_wakeup is not set.
889 *
890 * Also clear a possible internal port wake state left hanging for ports that
891 * detected termination but never successfully enumerated (trained to 0U).
892 * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
893 * at enumeration clears this wake, force one here as well for unconnected ports
894 */
895
896 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
897 struct xhci_hub *rhub,
898 bool do_wakeup)
899 {
900 unsigned long flags;
901 u32 t1, t2, portsc;
902 int i;
903
904 spin_lock_irqsave(&xhci->lock, flags);
905
906 for (i = 0; i < rhub->num_ports; i++) {
907 portsc = readl(rhub->ports[i]->addr);
908 t1 = xhci_port_state_to_neutral(portsc);
909 t2 = t1;
910
911 /* clear wake bits if do_wake is not set */
912 if (!do_wakeup)
913 t2 &= ~PORT_WAKE_BITS;
914
915 /* Don't touch csc bit if connected or connect change is set */
916 if (!(portsc & (PORT_CSC | PORT_CONNECT)))
917 t2 |= PORT_CSC;
918
919 if (t1 != t2) {
920 writel(t2, rhub->ports[i]->addr);
921 xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
922 rhub->hcd->self.busnum, i + 1, portsc, t2);
923 }
924 }
925 spin_unlock_irqrestore(&xhci->lock, flags);
926 }
927
928 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
929 {
930 struct xhci_port **ports;
931 int port_index;
932 u32 status;
933 u32 portsc;
934
935 status = readl(&xhci->op_regs->status);
936 if (status & STS_EINT)
937 return true;
938 /*
939 * Checking STS_EINT is not enough as there is a lag between a change
940 * bit being set and the Port Status Change Event that it generated
941 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
942 */
943
944 port_index = xhci->usb2_rhub.num_ports;
945 ports = xhci->usb2_rhub.ports;
946 while (port_index--) {
947 portsc = readl(ports[port_index]->addr);
948 if (portsc & PORT_CHANGE_MASK ||
949 (portsc & PORT_PLS_MASK) == XDEV_RESUME)
950 return true;
951 }
952 port_index = xhci->usb3_rhub.num_ports;
953 ports = xhci->usb3_rhub.ports;
954 while (port_index--) {
955 portsc = readl(ports[port_index]->addr);
956 if (portsc & PORT_CHANGE_MASK ||
957 (portsc & PORT_PLS_MASK) == XDEV_RESUME)
958 return true;
959 }
960 return false;
961 }
962
963 /*
964 * Stop HC (not bus-specific)
965 *
966 * This is called when the machine transition into S3/S4 mode.
967 *
968 */
969 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
970 {
971 int rc = 0;
972 unsigned int delay = XHCI_MAX_HALT_USEC * 2;
973 struct usb_hcd *hcd = xhci_to_hcd(xhci);
974 u32 command;
975 u32 res;
976
977 if (!hcd->state)
978 return 0;
979
980 if (hcd->state != HC_STATE_SUSPENDED ||
981 xhci->shared_hcd->state != HC_STATE_SUSPENDED)
982 return -EINVAL;
983
984 /* Clear root port wake on bits if wakeup not allowed. */
985 xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
986 xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
987
988 if (!HCD_HW_ACCESSIBLE(hcd))
989 return 0;
990
991 xhci_dbc_suspend(xhci);
992
993 /* Don't poll the roothubs on bus suspend. */
994 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
995 __func__, hcd->self.busnum);
996 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
997 del_timer_sync(&hcd->rh_timer);
998 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
999 del_timer_sync(&xhci->shared_hcd->rh_timer);
1000
1001 if (xhci->quirks & XHCI_SUSPEND_DELAY)
1002 usleep_range(1000, 1500);
1003
1004 spin_lock_irq(&xhci->lock);
1005 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1006 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1007 /* step 1: stop endpoint */
1008 /* skipped assuming that port suspend has done */
1009
1010 /* step 2: clear Run/Stop bit */
1011 command = readl(&xhci->op_regs->command);
1012 command &= ~CMD_RUN;
1013 writel(command, &xhci->op_regs->command);
1014
1015 /* Some chips from Fresco Logic need an extraordinary delay */
1016 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1017
1018 if (xhci_handshake(&xhci->op_regs->status,
1019 STS_HALT, STS_HALT, delay)) {
1020 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1021 spin_unlock_irq(&xhci->lock);
1022 return -ETIMEDOUT;
1023 }
1024 xhci_clear_command_ring(xhci);
1025
1026 /* step 3: save registers */
1027 xhci_save_registers(xhci);
1028
1029 /* step 4: set CSS flag */
1030 command = readl(&xhci->op_regs->command);
1031 command |= CMD_CSS;
1032 writel(command, &xhci->op_regs->command);
1033 xhci->broken_suspend = 0;
1034 if (xhci_handshake(&xhci->op_regs->status,
1035 STS_SAVE, 0, 20 * 1000)) {
1036 /*
1037 * AMD SNPS xHC 3.0 occasionally does not clear the
1038 * SSS bit of USBSTS and when driver tries to poll
1039 * to see if the xHC clears BIT(8) which never happens
1040 * and driver assumes that controller is not responding
1041 * and times out. To workaround this, its good to check
1042 * if SRE and HCE bits are not set (as per xhci
1043 * Section 5.4.2) and bypass the timeout.
1044 */
1045 res = readl(&xhci->op_regs->status);
1046 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1047 (((res & STS_SRE) == 0) &&
1048 ((res & STS_HCE) == 0))) {
1049 xhci->broken_suspend = 1;
1050 } else {
1051 xhci_warn(xhci, "WARN: xHC save state timeout\n");
1052 spin_unlock_irq(&xhci->lock);
1053 return -ETIMEDOUT;
1054 }
1055 }
1056 spin_unlock_irq(&xhci->lock);
1057
1058 /*
1059 * Deleting Compliance Mode Recovery Timer because the xHCI Host
1060 * is about to be suspended.
1061 */
1062 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1063 (!(xhci_all_ports_seen_u0(xhci)))) {
1064 del_timer_sync(&xhci->comp_mode_recovery_timer);
1065 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1066 "%s: compliance mode recovery timer deleted",
1067 __func__);
1068 }
1069
1070 /* step 5: remove core well power */
1071 /* synchronize irq when using MSI-X */
1072 xhci_msix_sync_irqs(xhci);
1073
1074 return rc;
1075 }
1076 EXPORT_SYMBOL_GPL(xhci_suspend);
1077
1078 /*
1079 * start xHC (not bus-specific)
1080 *
1081 * This is called when the machine transition from S3/S4 mode.
1082 *
1083 */
1084 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1085 {
1086 u32 command, temp = 0;
1087 struct usb_hcd *hcd = xhci_to_hcd(xhci);
1088 struct usb_hcd *secondary_hcd;
1089 int retval = 0;
1090 bool comp_timer_running = false;
1091 bool pending_portevent = false;
1092 bool reinit_xhc = false;
1093
1094 if (!hcd->state)
1095 return 0;
1096
1097 /* Wait a bit if either of the roothubs need to settle from the
1098 * transition into bus suspend.
1099 */
1100
1101 if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1102 time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1103 msleep(100);
1104
1105 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1106 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1107
1108 spin_lock_irq(&xhci->lock);
1109
1110 if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend)
1111 reinit_xhc = true;
1112
1113 if (!reinit_xhc) {
1114 /*
1115 * Some controllers might lose power during suspend, so wait
1116 * for controller not ready bit to clear, just as in xHC init.
1117 */
1118 retval = xhci_handshake(&xhci->op_regs->status,
1119 STS_CNR, 0, 10 * 1000 * 1000);
1120 if (retval) {
1121 xhci_warn(xhci, "Controller not ready at resume %d\n",
1122 retval);
1123 spin_unlock_irq(&xhci->lock);
1124 return retval;
1125 }
1126 /* step 1: restore register */
1127 xhci_restore_registers(xhci);
1128 /* step 2: initialize command ring buffer */
1129 xhci_set_cmd_ring_deq(xhci);
1130 /* step 3: restore state and start state*/
1131 /* step 3: set CRS flag */
1132 command = readl(&xhci->op_regs->command);
1133 command |= CMD_CRS;
1134 writel(command, &xhci->op_regs->command);
1135 /*
1136 * Some controllers take up to 55+ ms to complete the controller
1137 * restore so setting the timeout to 100ms. Xhci specification
1138 * doesn't mention any timeout value.
1139 */
1140 if (xhci_handshake(&xhci->op_regs->status,
1141 STS_RESTORE, 0, 100 * 1000)) {
1142 xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1143 spin_unlock_irq(&xhci->lock);
1144 return -ETIMEDOUT;
1145 }
1146 }
1147
1148 temp = readl(&xhci->op_regs->status);
1149
1150 /* re-initialize the HC on Restore Error, or Host Controller Error */
1151 if (temp & (STS_SRE | STS_HCE)) {
1152 reinit_xhc = true;
1153 xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp);
1154 }
1155
1156 if (reinit_xhc) {
1157 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1158 !(xhci_all_ports_seen_u0(xhci))) {
1159 del_timer_sync(&xhci->comp_mode_recovery_timer);
1160 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1161 "Compliance Mode Recovery Timer deleted!");
1162 }
1163
1164 /* Let the USB core know _both_ roothubs lost power. */
1165 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1166 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1167
1168 xhci_dbg(xhci, "Stop HCD\n");
1169 xhci_halt(xhci);
1170 xhci_zero_64b_regs(xhci);
1171 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
1172 spin_unlock_irq(&xhci->lock);
1173 if (retval)
1174 return retval;
1175 xhci_cleanup_msix(xhci);
1176
1177 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1178 temp = readl(&xhci->op_regs->status);
1179 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1180 temp = readl(&xhci->ir_set->irq_pending);
1181 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1182
1183 xhci_dbg(xhci, "cleaning up memory\n");
1184 xhci_mem_cleanup(xhci);
1185 xhci_debugfs_exit(xhci);
1186 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1187 readl(&xhci->op_regs->status));
1188
1189 /* USB core calls the PCI reinit and start functions twice:
1190 * first with the primary HCD, and then with the secondary HCD.
1191 * If we don't do the same, the host will never be started.
1192 */
1193 if (!usb_hcd_is_primary_hcd(hcd))
1194 secondary_hcd = hcd;
1195 else
1196 secondary_hcd = xhci->shared_hcd;
1197
1198 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1199 retval = xhci_init(hcd->primary_hcd);
1200 if (retval)
1201 return retval;
1202 comp_timer_running = true;
1203
1204 xhci_dbg(xhci, "Start the primary HCD\n");
1205 retval = xhci_run(hcd->primary_hcd);
1206 if (!retval) {
1207 xhci_dbg(xhci, "Start the secondary HCD\n");
1208 retval = xhci_run(secondary_hcd);
1209 }
1210 hcd->state = HC_STATE_SUSPENDED;
1211 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1212 goto done;
1213 }
1214
1215 /* step 4: set Run/Stop bit */
1216 command = readl(&xhci->op_regs->command);
1217 command |= CMD_RUN;
1218 writel(command, &xhci->op_regs->command);
1219 xhci_handshake(&xhci->op_regs->status, STS_HALT,
1220 0, 250 * 1000);
1221
1222 /* step 5: walk topology and initialize portsc,
1223 * portpmsc and portli
1224 */
1225 /* this is done in bus_resume */
1226
1227 /* step 6: restart each of the previously
1228 * Running endpoints by ringing their doorbells
1229 */
1230
1231 spin_unlock_irq(&xhci->lock);
1232
1233 xhci_dbc_resume(xhci);
1234
1235 done:
1236 if (retval == 0) {
1237 /*
1238 * Resume roothubs only if there are pending events.
1239 * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1240 * the first wake signalling failed, give it that chance.
1241 */
1242 pending_portevent = xhci_pending_portevent(xhci);
1243 if (!pending_portevent) {
1244 msleep(120);
1245 pending_portevent = xhci_pending_portevent(xhci);
1246 }
1247
1248 if (pending_portevent) {
1249 usb_hcd_resume_root_hub(xhci->shared_hcd);
1250 usb_hcd_resume_root_hub(hcd);
1251 }
1252 }
1253 /*
1254 * If system is subject to the Quirk, Compliance Mode Timer needs to
1255 * be re-initialized Always after a system resume. Ports are subject
1256 * to suffer the Compliance Mode issue again. It doesn't matter if
1257 * ports have entered previously to U0 before system's suspension.
1258 */
1259 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1260 compliance_mode_recovery_timer_init(xhci);
1261
1262 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1263 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1264
1265 /* Re-enable port polling. */
1266 xhci_dbg(xhci, "%s: starting usb%d port polling.\n",
1267 __func__, hcd->self.busnum);
1268 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1269 usb_hcd_poll_rh_status(xhci->shared_hcd);
1270 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1271 usb_hcd_poll_rh_status(hcd);
1272
1273 return retval;
1274 }
1275 EXPORT_SYMBOL_GPL(xhci_resume);
1276 #endif /* CONFIG_PM */
1277
1278 /*-------------------------------------------------------------------------*/
1279
1280 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1281 {
1282 void *temp;
1283 int ret = 0;
1284 unsigned int buf_len;
1285 enum dma_data_direction dir;
1286
1287 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1288 buf_len = urb->transfer_buffer_length;
1289
1290 temp = kzalloc_node(buf_len, GFP_ATOMIC,
1291 dev_to_node(hcd->self.sysdev));
1292
1293 if (usb_urb_dir_out(urb))
1294 sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1295 temp, buf_len, 0);
1296
1297 urb->transfer_buffer = temp;
1298 urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1299 urb->transfer_buffer,
1300 urb->transfer_buffer_length,
1301 dir);
1302
1303 if (dma_mapping_error(hcd->self.sysdev,
1304 urb->transfer_dma)) {
1305 ret = -EAGAIN;
1306 kfree(temp);
1307 } else {
1308 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1309 }
1310
1311 return ret;
1312 }
1313
1314 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1315 struct urb *urb)
1316 {
1317 bool ret = false;
1318 unsigned int i;
1319 unsigned int len = 0;
1320 unsigned int trb_size;
1321 unsigned int max_pkt;
1322 struct scatterlist *sg;
1323 struct scatterlist *tail_sg;
1324
1325 tail_sg = urb->sg;
1326 max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1327
1328 if (!urb->num_sgs)
1329 return ret;
1330
1331 if (urb->dev->speed >= USB_SPEED_SUPER)
1332 trb_size = TRB_CACHE_SIZE_SS;
1333 else
1334 trb_size = TRB_CACHE_SIZE_HS;
1335
1336 if (urb->transfer_buffer_length != 0 &&
1337 !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1338 for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1339 len = len + sg->length;
1340 if (i > trb_size - 2) {
1341 len = len - tail_sg->length;
1342 if (len < max_pkt) {
1343 ret = true;
1344 break;
1345 }
1346
1347 tail_sg = sg_next(tail_sg);
1348 }
1349 }
1350 }
1351 return ret;
1352 }
1353
1354 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1355 {
1356 unsigned int len;
1357 unsigned int buf_len;
1358 enum dma_data_direction dir;
1359
1360 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1361
1362 buf_len = urb->transfer_buffer_length;
1363
1364 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1365 (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1366 dma_unmap_single(hcd->self.sysdev,
1367 urb->transfer_dma,
1368 urb->transfer_buffer_length,
1369 dir);
1370
1371 if (usb_urb_dir_in(urb)) {
1372 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1373 urb->transfer_buffer,
1374 buf_len,
1375 0);
1376 if (len != buf_len) {
1377 xhci_dbg(hcd_to_xhci(hcd),
1378 "Copy from tmp buf to urb sg list failed\n");
1379 urb->actual_length = len;
1380 }
1381 }
1382 urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1383 kfree(urb->transfer_buffer);
1384 urb->transfer_buffer = NULL;
1385 }
1386
1387 /*
1388 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1389 * we'll copy the actual data into the TRB address register. This is limited to
1390 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1391 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1392 */
1393 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1394 gfp_t mem_flags)
1395 {
1396 struct xhci_hcd *xhci;
1397
1398 xhci = hcd_to_xhci(hcd);
1399
1400 if (xhci_urb_suitable_for_idt(urb))
1401 return 0;
1402
1403 if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1404 if (xhci_urb_temp_buffer_required(hcd, urb))
1405 return xhci_map_temp_buffer(hcd, urb);
1406 }
1407 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1408 }
1409
1410 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1411 {
1412 struct xhci_hcd *xhci;
1413 bool unmap_temp_buf = false;
1414
1415 xhci = hcd_to_xhci(hcd);
1416
1417 if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1418 unmap_temp_buf = true;
1419
1420 if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1421 xhci_unmap_temp_buf(hcd, urb);
1422 else
1423 usb_hcd_unmap_urb_for_dma(hcd, urb);
1424 }
1425
1426 /**
1427 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1428 * HCDs. Find the index for an endpoint given its descriptor. Use the return
1429 * value to right shift 1 for the bitmask.
1430 *
1431 * Index = (epnum * 2) + direction - 1,
1432 * where direction = 0 for OUT, 1 for IN.
1433 * For control endpoints, the IN index is used (OUT index is unused), so
1434 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1435 */
1436 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1437 {
1438 unsigned int index;
1439 if (usb_endpoint_xfer_control(desc))
1440 index = (unsigned int) (usb_endpoint_num(desc)*2);
1441 else
1442 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1443 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1444 return index;
1445 }
1446 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1447
1448 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1449 * address from the XHCI endpoint index.
1450 */
1451 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1452 {
1453 unsigned int number = DIV_ROUND_UP(ep_index, 2);
1454 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1455 return direction | number;
1456 }
1457
1458 /* Find the flag for this endpoint (for use in the control context). Use the
1459 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1460 * bit 1, etc.
1461 */
1462 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1463 {
1464 return 1 << (xhci_get_endpoint_index(desc) + 1);
1465 }
1466
1467 /* Compute the last valid endpoint context index. Basically, this is the
1468 * endpoint index plus one. For slot contexts with more than valid endpoint,
1469 * we find the most significant bit set in the added contexts flags.
1470 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1471 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1472 */
1473 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1474 {
1475 return fls(added_ctxs) - 1;
1476 }
1477
1478 /* Returns 1 if the arguments are OK;
1479 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1480 */
1481 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1482 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1483 const char *func) {
1484 struct xhci_hcd *xhci;
1485 struct xhci_virt_device *virt_dev;
1486
1487 if (!hcd || (check_ep && !ep) || !udev) {
1488 pr_debug("xHCI %s called with invalid args\n", func);
1489 return -EINVAL;
1490 }
1491 if (!udev->parent) {
1492 pr_debug("xHCI %s called for root hub\n", func);
1493 return 0;
1494 }
1495
1496 xhci = hcd_to_xhci(hcd);
1497 if (check_virt_dev) {
1498 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1499 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1500 func);
1501 return -EINVAL;
1502 }
1503
1504 virt_dev = xhci->devs[udev->slot_id];
1505 if (virt_dev->udev != udev) {
1506 xhci_dbg(xhci, "xHCI %s called with udev and "
1507 "virt_dev does not match\n", func);
1508 return -EINVAL;
1509 }
1510 }
1511
1512 if (xhci->xhc_state & XHCI_STATE_HALTED)
1513 return -ENODEV;
1514
1515 return 1;
1516 }
1517
1518 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1519 struct usb_device *udev, struct xhci_command *command,
1520 bool ctx_change, bool must_succeed);
1521
1522 /*
1523 * Full speed devices may have a max packet size greater than 8 bytes, but the
1524 * USB core doesn't know that until it reads the first 8 bytes of the
1525 * descriptor. If the usb_device's max packet size changes after that point,
1526 * we need to issue an evaluate context command and wait on it.
1527 */
1528 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1529 unsigned int ep_index, struct urb *urb, gfp_t mem_flags)
1530 {
1531 struct xhci_container_ctx *out_ctx;
1532 struct xhci_input_control_ctx *ctrl_ctx;
1533 struct xhci_ep_ctx *ep_ctx;
1534 struct xhci_command *command;
1535 int max_packet_size;
1536 int hw_max_packet_size;
1537 int ret = 0;
1538
1539 out_ctx = xhci->devs[slot_id]->out_ctx;
1540 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1541 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1542 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1543 if (hw_max_packet_size != max_packet_size) {
1544 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1545 "Max Packet Size for ep 0 changed.");
1546 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1547 "Max packet size in usb_device = %d",
1548 max_packet_size);
1549 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1550 "Max packet size in xHCI HW = %d",
1551 hw_max_packet_size);
1552 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1553 "Issuing evaluate context command.");
1554
1555 /* Set up the input context flags for the command */
1556 /* FIXME: This won't work if a non-default control endpoint
1557 * changes max packet sizes.
1558 */
1559
1560 command = xhci_alloc_command(xhci, true, mem_flags);
1561 if (!command)
1562 return -ENOMEM;
1563
1564 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1565 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1566 if (!ctrl_ctx) {
1567 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1568 __func__);
1569 ret = -ENOMEM;
1570 goto command_cleanup;
1571 }
1572 /* Set up the modified control endpoint 0 */
1573 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1574 xhci->devs[slot_id]->out_ctx, ep_index);
1575
1576 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1577 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1578 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1579 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1580
1581 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1582 ctrl_ctx->drop_flags = 0;
1583
1584 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1585 true, false);
1586
1587 /* Clean up the input context for later use by bandwidth
1588 * functions.
1589 */
1590 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1591 command_cleanup:
1592 kfree(command->completion);
1593 kfree(command);
1594 }
1595 return ret;
1596 }
1597
1598 /*
1599 * non-error returns are a promise to giveback() the urb later
1600 * we drop ownership so next owner (or urb unlink) can get it
1601 */
1602 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1603 {
1604 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1605 unsigned long flags;
1606 int ret = 0;
1607 unsigned int slot_id, ep_index;
1608 unsigned int *ep_state;
1609 struct urb_priv *urb_priv;
1610 int num_tds;
1611
1612 if (!urb)
1613 return -EINVAL;
1614 ret = xhci_check_args(hcd, urb->dev, urb->ep,
1615 true, true, __func__);
1616 if (ret <= 0)
1617 return ret ? ret : -EINVAL;
1618
1619 slot_id = urb->dev->slot_id;
1620 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1621 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1622
1623 if (!HCD_HW_ACCESSIBLE(hcd))
1624 return -ESHUTDOWN;
1625
1626 if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1627 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1628 return -ENODEV;
1629 }
1630
1631 if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1632 num_tds = urb->number_of_packets;
1633 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1634 urb->transfer_buffer_length > 0 &&
1635 urb->transfer_flags & URB_ZERO_PACKET &&
1636 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1637 num_tds = 2;
1638 else
1639 num_tds = 1;
1640
1641 urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1642 if (!urb_priv)
1643 return -ENOMEM;
1644
1645 urb_priv->num_tds = num_tds;
1646 urb_priv->num_tds_done = 0;
1647 urb->hcpriv = urb_priv;
1648
1649 trace_xhci_urb_enqueue(urb);
1650
1651 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1652 /* Check to see if the max packet size for the default control
1653 * endpoint changed during FS device enumeration
1654 */
1655 if (urb->dev->speed == USB_SPEED_FULL) {
1656 ret = xhci_check_maxpacket(xhci, slot_id,
1657 ep_index, urb, mem_flags);
1658 if (ret < 0) {
1659 xhci_urb_free_priv(urb_priv);
1660 urb->hcpriv = NULL;
1661 return ret;
1662 }
1663 }
1664 }
1665
1666 spin_lock_irqsave(&xhci->lock, flags);
1667
1668 if (xhci->xhc_state & XHCI_STATE_DYING) {
1669 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1670 urb->ep->desc.bEndpointAddress, urb);
1671 ret = -ESHUTDOWN;
1672 goto free_priv;
1673 }
1674 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1675 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1676 *ep_state);
1677 ret = -EINVAL;
1678 goto free_priv;
1679 }
1680 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1681 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1682 ret = -EINVAL;
1683 goto free_priv;
1684 }
1685
1686 switch (usb_endpoint_type(&urb->ep->desc)) {
1687
1688 case USB_ENDPOINT_XFER_CONTROL:
1689 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1690 slot_id, ep_index);
1691 break;
1692 case USB_ENDPOINT_XFER_BULK:
1693 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1694 slot_id, ep_index);
1695 break;
1696 case USB_ENDPOINT_XFER_INT:
1697 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1698 slot_id, ep_index);
1699 break;
1700 case USB_ENDPOINT_XFER_ISOC:
1701 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1702 slot_id, ep_index);
1703 }
1704
1705 if (ret) {
1706 free_priv:
1707 xhci_urb_free_priv(urb_priv);
1708 urb->hcpriv = NULL;
1709 }
1710 spin_unlock_irqrestore(&xhci->lock, flags);
1711 return ret;
1712 }
1713
1714 /*
1715 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1716 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1717 * should pick up where it left off in the TD, unless a Set Transfer Ring
1718 * Dequeue Pointer is issued.
1719 *
1720 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1721 * the ring. Since the ring is a contiguous structure, they can't be physically
1722 * removed. Instead, there are two options:
1723 *
1724 * 1) If the HC is in the middle of processing the URB to be canceled, we
1725 * simply move the ring's dequeue pointer past those TRBs using the Set
1726 * Transfer Ring Dequeue Pointer command. This will be the common case,
1727 * when drivers timeout on the last submitted URB and attempt to cancel.
1728 *
1729 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1730 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1731 * HC will need to invalidate the any TRBs it has cached after the stop
1732 * endpoint command, as noted in the xHCI 0.95 errata.
1733 *
1734 * 3) The TD may have completed by the time the Stop Endpoint Command
1735 * completes, so software needs to handle that case too.
1736 *
1737 * This function should protect against the TD enqueueing code ringing the
1738 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1739 * It also needs to account for multiple cancellations on happening at the same
1740 * time for the same endpoint.
1741 *
1742 * Note that this function can be called in any context, or so says
1743 * usb_hcd_unlink_urb()
1744 */
1745 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1746 {
1747 unsigned long flags;
1748 int ret, i;
1749 u32 temp;
1750 struct xhci_hcd *xhci;
1751 struct urb_priv *urb_priv;
1752 struct xhci_td *td;
1753 unsigned int ep_index;
1754 struct xhci_ring *ep_ring;
1755 struct xhci_virt_ep *ep;
1756 struct xhci_command *command;
1757 struct xhci_virt_device *vdev;
1758
1759 xhci = hcd_to_xhci(hcd);
1760 spin_lock_irqsave(&xhci->lock, flags);
1761
1762 trace_xhci_urb_dequeue(urb);
1763
1764 /* Make sure the URB hasn't completed or been unlinked already */
1765 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1766 if (ret)
1767 goto done;
1768
1769 /* give back URB now if we can't queue it for cancel */
1770 vdev = xhci->devs[urb->dev->slot_id];
1771 urb_priv = urb->hcpriv;
1772 if (!vdev || !urb_priv)
1773 goto err_giveback;
1774
1775 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1776 ep = &vdev->eps[ep_index];
1777 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1778 if (!ep || !ep_ring)
1779 goto err_giveback;
1780
1781 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1782 temp = readl(&xhci->op_regs->status);
1783 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1784 xhci_hc_died(xhci);
1785 goto done;
1786 }
1787
1788 /*
1789 * check ring is not re-allocated since URB was enqueued. If it is, then
1790 * make sure none of the ring related pointers in this URB private data
1791 * are touched, such as td_list, otherwise we overwrite freed data
1792 */
1793 if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1794 xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1795 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1796 td = &urb_priv->td[i];
1797 if (!list_empty(&td->cancelled_td_list))
1798 list_del_init(&td->cancelled_td_list);
1799 }
1800 goto err_giveback;
1801 }
1802
1803 if (xhci->xhc_state & XHCI_STATE_HALTED) {
1804 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1805 "HC halted, freeing TD manually.");
1806 for (i = urb_priv->num_tds_done;
1807 i < urb_priv->num_tds;
1808 i++) {
1809 td = &urb_priv->td[i];
1810 if (!list_empty(&td->td_list))
1811 list_del_init(&td->td_list);
1812 if (!list_empty(&td->cancelled_td_list))
1813 list_del_init(&td->cancelled_td_list);
1814 }
1815 goto err_giveback;
1816 }
1817
1818 i = urb_priv->num_tds_done;
1819 if (i < urb_priv->num_tds)
1820 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1821 "Cancel URB %p, dev %s, ep 0x%x, "
1822 "starting at offset 0x%llx",
1823 urb, urb->dev->devpath,
1824 urb->ep->desc.bEndpointAddress,
1825 (unsigned long long) xhci_trb_virt_to_dma(
1826 urb_priv->td[i].start_seg,
1827 urb_priv->td[i].first_trb));
1828
1829 for (; i < urb_priv->num_tds; i++) {
1830 td = &urb_priv->td[i];
1831 /* TD can already be on cancelled list if ep halted on it */
1832 if (list_empty(&td->cancelled_td_list)) {
1833 td->cancel_status = TD_DIRTY;
1834 list_add_tail(&td->cancelled_td_list,
1835 &ep->cancelled_td_list);
1836 }
1837 }
1838
1839 /* Queue a stop endpoint command, but only if this is
1840 * the first cancellation to be handled.
1841 */
1842 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1843 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1844 if (!command) {
1845 ret = -ENOMEM;
1846 goto done;
1847 }
1848 ep->ep_state |= EP_STOP_CMD_PENDING;
1849 ep->stop_cmd_timer.expires = jiffies +
1850 XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1851 add_timer(&ep->stop_cmd_timer);
1852 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1853 ep_index, 0);
1854 xhci_ring_cmd_db(xhci);
1855 }
1856 done:
1857 spin_unlock_irqrestore(&xhci->lock, flags);
1858 return ret;
1859
1860 err_giveback:
1861 if (urb_priv)
1862 xhci_urb_free_priv(urb_priv);
1863 usb_hcd_unlink_urb_from_ep(hcd, urb);
1864 spin_unlock_irqrestore(&xhci->lock, flags);
1865 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1866 return ret;
1867 }
1868
1869 /* Drop an endpoint from a new bandwidth configuration for this device.
1870 * Only one call to this function is allowed per endpoint before
1871 * check_bandwidth() or reset_bandwidth() must be called.
1872 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1873 * add the endpoint to the schedule with possibly new parameters denoted by a
1874 * different endpoint descriptor in usb_host_endpoint.
1875 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1876 * not allowed.
1877 *
1878 * The USB core will not allow URBs to be queued to an endpoint that is being
1879 * disabled, so there's no need for mutual exclusion to protect
1880 * the xhci->devs[slot_id] structure.
1881 */
1882 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1883 struct usb_host_endpoint *ep)
1884 {
1885 struct xhci_hcd *xhci;
1886 struct xhci_container_ctx *in_ctx, *out_ctx;
1887 struct xhci_input_control_ctx *ctrl_ctx;
1888 unsigned int ep_index;
1889 struct xhci_ep_ctx *ep_ctx;
1890 u32 drop_flag;
1891 u32 new_add_flags, new_drop_flags;
1892 int ret;
1893
1894 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1895 if (ret <= 0)
1896 return ret;
1897 xhci = hcd_to_xhci(hcd);
1898 if (xhci->xhc_state & XHCI_STATE_DYING)
1899 return -ENODEV;
1900
1901 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1902 drop_flag = xhci_get_endpoint_flag(&ep->desc);
1903 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1904 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1905 __func__, drop_flag);
1906 return 0;
1907 }
1908
1909 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1910 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1911 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1912 if (!ctrl_ctx) {
1913 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1914 __func__);
1915 return 0;
1916 }
1917
1918 ep_index = xhci_get_endpoint_index(&ep->desc);
1919 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1920 /* If the HC already knows the endpoint is disabled,
1921 * or the HCD has noted it is disabled, ignore this request
1922 */
1923 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1924 le32_to_cpu(ctrl_ctx->drop_flags) &
1925 xhci_get_endpoint_flag(&ep->desc)) {
1926 /* Do not warn when called after a usb_device_reset */
1927 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1928 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1929 __func__, ep);
1930 return 0;
1931 }
1932
1933 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1934 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1935
1936 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1937 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1938
1939 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1940
1941 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1942
1943 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1944 (unsigned int) ep->desc.bEndpointAddress,
1945 udev->slot_id,
1946 (unsigned int) new_drop_flags,
1947 (unsigned int) new_add_flags);
1948 return 0;
1949 }
1950 EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
1951
1952 /* Add an endpoint to a new possible bandwidth configuration for this device.
1953 * Only one call to this function is allowed per endpoint before
1954 * check_bandwidth() or reset_bandwidth() must be called.
1955 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1956 * add the endpoint to the schedule with possibly new parameters denoted by a
1957 * different endpoint descriptor in usb_host_endpoint.
1958 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1959 * not allowed.
1960 *
1961 * The USB core will not allow URBs to be queued to an endpoint until the
1962 * configuration or alt setting is installed in the device, so there's no need
1963 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1964 */
1965 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1966 struct usb_host_endpoint *ep)
1967 {
1968 struct xhci_hcd *xhci;
1969 struct xhci_container_ctx *in_ctx;
1970 unsigned int ep_index;
1971 struct xhci_input_control_ctx *ctrl_ctx;
1972 struct xhci_ep_ctx *ep_ctx;
1973 u32 added_ctxs;
1974 u32 new_add_flags, new_drop_flags;
1975 struct xhci_virt_device *virt_dev;
1976 int ret = 0;
1977
1978 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1979 if (ret <= 0) {
1980 /* So we won't queue a reset ep command for a root hub */
1981 ep->hcpriv = NULL;
1982 return ret;
1983 }
1984 xhci = hcd_to_xhci(hcd);
1985 if (xhci->xhc_state & XHCI_STATE_DYING)
1986 return -ENODEV;
1987
1988 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1989 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1990 /* FIXME when we have to issue an evaluate endpoint command to
1991 * deal with ep0 max packet size changing once we get the
1992 * descriptors
1993 */
1994 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1995 __func__, added_ctxs);
1996 return 0;
1997 }
1998
1999 virt_dev = xhci->devs[udev->slot_id];
2000 in_ctx = virt_dev->in_ctx;
2001 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2002 if (!ctrl_ctx) {
2003 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2004 __func__);
2005 return 0;
2006 }
2007
2008 ep_index = xhci_get_endpoint_index(&ep->desc);
2009 /* If this endpoint is already in use, and the upper layers are trying
2010 * to add it again without dropping it, reject the addition.
2011 */
2012 if (virt_dev->eps[ep_index].ring &&
2013 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
2014 xhci_warn(xhci, "Trying to add endpoint 0x%x "
2015 "without dropping it.\n",
2016 (unsigned int) ep->desc.bEndpointAddress);
2017 return -EINVAL;
2018 }
2019
2020 /* If the HCD has already noted the endpoint is enabled,
2021 * ignore this request.
2022 */
2023 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
2024 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
2025 __func__, ep);
2026 return 0;
2027 }
2028
2029 /*
2030 * Configuration and alternate setting changes must be done in
2031 * process context, not interrupt context (or so documenation
2032 * for usb_set_interface() and usb_set_configuration() claim).
2033 */
2034 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
2035 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
2036 __func__, ep->desc.bEndpointAddress);
2037 return -ENOMEM;
2038 }
2039
2040 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
2041 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
2042
2043 /* If xhci_endpoint_disable() was called for this endpoint, but the
2044 * xHC hasn't been notified yet through the check_bandwidth() call,
2045 * this re-adds a new state for the endpoint from the new endpoint
2046 * descriptors. We must drop and re-add this endpoint, so we leave the
2047 * drop flags alone.
2048 */
2049 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
2050
2051 /* Store the usb_device pointer for later use */
2052 ep->hcpriv = udev;
2053
2054 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
2055 trace_xhci_add_endpoint(ep_ctx);
2056
2057 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
2058 (unsigned int) ep->desc.bEndpointAddress,
2059 udev->slot_id,
2060 (unsigned int) new_drop_flags,
2061 (unsigned int) new_add_flags);
2062 return 0;
2063 }
2064 EXPORT_SYMBOL_GPL(xhci_add_endpoint);
2065
2066 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
2067 {
2068 struct xhci_input_control_ctx *ctrl_ctx;
2069 struct xhci_ep_ctx *ep_ctx;
2070 struct xhci_slot_ctx *slot_ctx;
2071 int i;
2072
2073 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
2074 if (!ctrl_ctx) {
2075 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2076 __func__);
2077 return;
2078 }
2079
2080 /* When a device's add flag and drop flag are zero, any subsequent
2081 * configure endpoint command will leave that endpoint's state
2082 * untouched. Make sure we don't leave any old state in the input
2083 * endpoint contexts.
2084 */
2085 ctrl_ctx->drop_flags = 0;
2086 ctrl_ctx->add_flags = 0;
2087 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2088 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2089 /* Endpoint 0 is always valid */
2090 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2091 for (i = 1; i < 31; i++) {
2092 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
2093 ep_ctx->ep_info = 0;
2094 ep_ctx->ep_info2 = 0;
2095 ep_ctx->deq = 0;
2096 ep_ctx->tx_info = 0;
2097 }
2098 }
2099
2100 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2101 struct usb_device *udev, u32 *cmd_status)
2102 {
2103 int ret;
2104
2105 switch (*cmd_status) {
2106 case COMP_COMMAND_ABORTED:
2107 case COMP_COMMAND_RING_STOPPED:
2108 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2109 ret = -ETIME;
2110 break;
2111 case COMP_RESOURCE_ERROR:
2112 dev_warn(&udev->dev,
2113 "Not enough host controller resources for new device state.\n");
2114 ret = -ENOMEM;
2115 /* FIXME: can we allocate more resources for the HC? */
2116 break;
2117 case COMP_BANDWIDTH_ERROR:
2118 case COMP_SECONDARY_BANDWIDTH_ERROR:
2119 dev_warn(&udev->dev,
2120 "Not enough bandwidth for new device state.\n");
2121 ret = -ENOSPC;
2122 /* FIXME: can we go back to the old state? */
2123 break;
2124 case COMP_TRB_ERROR:
2125 /* the HCD set up something wrong */
2126 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2127 "add flag = 1, "
2128 "and endpoint is not disabled.\n");
2129 ret = -EINVAL;
2130 break;
2131 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2132 dev_warn(&udev->dev,
2133 "ERROR: Incompatible device for endpoint configure command.\n");
2134 ret = -ENODEV;
2135 break;
2136 case COMP_SUCCESS:
2137 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2138 "Successful Endpoint Configure command");
2139 ret = 0;
2140 break;
2141 default:
2142 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2143 *cmd_status);
2144 ret = -EINVAL;
2145 break;
2146 }
2147 return ret;
2148 }
2149
2150 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2151 struct usb_device *udev, u32 *cmd_status)
2152 {
2153 int ret;
2154
2155 switch (*cmd_status) {
2156 case COMP_COMMAND_ABORTED:
2157 case COMP_COMMAND_RING_STOPPED:
2158 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2159 ret = -ETIME;
2160 break;
2161 case COMP_PARAMETER_ERROR:
2162 dev_warn(&udev->dev,
2163 "WARN: xHCI driver setup invalid evaluate context command.\n");
2164 ret = -EINVAL;
2165 break;
2166 case COMP_SLOT_NOT_ENABLED_ERROR:
2167 dev_warn(&udev->dev,
2168 "WARN: slot not enabled for evaluate context command.\n");
2169 ret = -EINVAL;
2170 break;
2171 case COMP_CONTEXT_STATE_ERROR:
2172 dev_warn(&udev->dev,
2173 "WARN: invalid context state for evaluate context command.\n");
2174 ret = -EINVAL;
2175 break;
2176 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2177 dev_warn(&udev->dev,
2178 "ERROR: Incompatible device for evaluate context command.\n");
2179 ret = -ENODEV;
2180 break;
2181 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2182 /* Max Exit Latency too large error */
2183 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2184 ret = -EINVAL;
2185 break;
2186 case COMP_SUCCESS:
2187 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2188 "Successful evaluate context command");
2189 ret = 0;
2190 break;
2191 default:
2192 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2193 *cmd_status);
2194 ret = -EINVAL;
2195 break;
2196 }
2197 return ret;
2198 }
2199
2200 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2201 struct xhci_input_control_ctx *ctrl_ctx)
2202 {
2203 u32 valid_add_flags;
2204 u32 valid_drop_flags;
2205
2206 /* Ignore the slot flag (bit 0), and the default control endpoint flag
2207 * (bit 1). The default control endpoint is added during the Address
2208 * Device command and is never removed until the slot is disabled.
2209 */
2210 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2211 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2212
2213 /* Use hweight32 to count the number of ones in the add flags, or
2214 * number of endpoints added. Don't count endpoints that are changed
2215 * (both added and dropped).
2216 */
2217 return hweight32(valid_add_flags) -
2218 hweight32(valid_add_flags & valid_drop_flags);
2219 }
2220
2221 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2222 struct xhci_input_control_ctx *ctrl_ctx)
2223 {
2224 u32 valid_add_flags;
2225 u32 valid_drop_flags;
2226
2227 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2228 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2229
2230 return hweight32(valid_drop_flags) -
2231 hweight32(valid_add_flags & valid_drop_flags);
2232 }
2233
2234 /*
2235 * We need to reserve the new number of endpoints before the configure endpoint
2236 * command completes. We can't subtract the dropped endpoints from the number
2237 * of active endpoints until the command completes because we can oversubscribe
2238 * the host in this case:
2239 *
2240 * - the first configure endpoint command drops more endpoints than it adds
2241 * - a second configure endpoint command that adds more endpoints is queued
2242 * - the first configure endpoint command fails, so the config is unchanged
2243 * - the second command may succeed, even though there isn't enough resources
2244 *
2245 * Must be called with xhci->lock held.
2246 */
2247 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2248 struct xhci_input_control_ctx *ctrl_ctx)
2249 {
2250 u32 added_eps;
2251
2252 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2253 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2254 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2255 "Not enough ep ctxs: "
2256 "%u active, need to add %u, limit is %u.",
2257 xhci->num_active_eps, added_eps,
2258 xhci->limit_active_eps);
2259 return -ENOMEM;
2260 }
2261 xhci->num_active_eps += added_eps;
2262 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2263 "Adding %u ep ctxs, %u now active.", added_eps,
2264 xhci->num_active_eps);
2265 return 0;
2266 }
2267
2268 /*
2269 * The configure endpoint was failed by the xHC for some other reason, so we
2270 * need to revert the resources that failed configuration would have used.
2271 *
2272 * Must be called with xhci->lock held.
2273 */
2274 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2275 struct xhci_input_control_ctx *ctrl_ctx)
2276 {
2277 u32 num_failed_eps;
2278
2279 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2280 xhci->num_active_eps -= num_failed_eps;
2281 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2282 "Removing %u failed ep ctxs, %u now active.",
2283 num_failed_eps,
2284 xhci->num_active_eps);
2285 }
2286
2287 /*
2288 * Now that the command has completed, clean up the active endpoint count by
2289 * subtracting out the endpoints that were dropped (but not changed).
2290 *
2291 * Must be called with xhci->lock held.
2292 */
2293 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2294 struct xhci_input_control_ctx *ctrl_ctx)
2295 {
2296 u32 num_dropped_eps;
2297
2298 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2299 xhci->num_active_eps -= num_dropped_eps;
2300 if (num_dropped_eps)
2301 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2302 "Removing %u dropped ep ctxs, %u now active.",
2303 num_dropped_eps,
2304 xhci->num_active_eps);
2305 }
2306
2307 static unsigned int xhci_get_block_size(struct usb_device *udev)
2308 {
2309 switch (udev->speed) {
2310 case USB_SPEED_LOW:
2311 case USB_SPEED_FULL:
2312 return FS_BLOCK;
2313 case USB_SPEED_HIGH:
2314 return HS_BLOCK;
2315 case USB_SPEED_SUPER:
2316 case USB_SPEED_SUPER_PLUS:
2317 return SS_BLOCK;
2318 case USB_SPEED_UNKNOWN:
2319 case USB_SPEED_WIRELESS:
2320 default:
2321 /* Should never happen */
2322 return 1;
2323 }
2324 }
2325
2326 static unsigned int
2327 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2328 {
2329 if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2330 return LS_OVERHEAD;
2331 if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2332 return FS_OVERHEAD;
2333 return HS_OVERHEAD;
2334 }
2335
2336 /* If we are changing a LS/FS device under a HS hub,
2337 * make sure (if we are activating a new TT) that the HS bus has enough
2338 * bandwidth for this new TT.
2339 */
2340 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2341 struct xhci_virt_device *virt_dev,
2342 int old_active_eps)
2343 {
2344 struct xhci_interval_bw_table *bw_table;
2345 struct xhci_tt_bw_info *tt_info;
2346
2347 /* Find the bandwidth table for the root port this TT is attached to. */
2348 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2349 tt_info = virt_dev->tt_info;
2350 /* If this TT already had active endpoints, the bandwidth for this TT
2351 * has already been added. Removing all periodic endpoints (and thus
2352 * making the TT enactive) will only decrease the bandwidth used.
2353 */
2354 if (old_active_eps)
2355 return 0;
2356 if (old_active_eps == 0 && tt_info->active_eps != 0) {
2357 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2358 return -ENOMEM;
2359 return 0;
2360 }
2361 /* Not sure why we would have no new active endpoints...
2362 *
2363 * Maybe because of an Evaluate Context change for a hub update or a
2364 * control endpoint 0 max packet size change?
2365 * FIXME: skip the bandwidth calculation in that case.
2366 */
2367 return 0;
2368 }
2369
2370 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2371 struct xhci_virt_device *virt_dev)
2372 {
2373 unsigned int bw_reserved;
2374
2375 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2376 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2377 return -ENOMEM;
2378
2379 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2380 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2381 return -ENOMEM;
2382
2383 return 0;
2384 }
2385
2386 /*
2387 * This algorithm is a very conservative estimate of the worst-case scheduling
2388 * scenario for any one interval. The hardware dynamically schedules the
2389 * packets, so we can't tell which microframe could be the limiting factor in
2390 * the bandwidth scheduling. This only takes into account periodic endpoints.
2391 *
2392 * Obviously, we can't solve an NP complete problem to find the minimum worst
2393 * case scenario. Instead, we come up with an estimate that is no less than
2394 * the worst case bandwidth used for any one microframe, but may be an
2395 * over-estimate.
2396 *
2397 * We walk the requirements for each endpoint by interval, starting with the
2398 * smallest interval, and place packets in the schedule where there is only one
2399 * possible way to schedule packets for that interval. In order to simplify
2400 * this algorithm, we record the largest max packet size for each interval, and
2401 * assume all packets will be that size.
2402 *
2403 * For interval 0, we obviously must schedule all packets for each interval.
2404 * The bandwidth for interval 0 is just the amount of data to be transmitted
2405 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2406 * the number of packets).
2407 *
2408 * For interval 1, we have two possible microframes to schedule those packets
2409 * in. For this algorithm, if we can schedule the same number of packets for
2410 * each possible scheduling opportunity (each microframe), we will do so. The
2411 * remaining number of packets will be saved to be transmitted in the gaps in
2412 * the next interval's scheduling sequence.
2413 *
2414 * As we move those remaining packets to be scheduled with interval 2 packets,
2415 * we have to double the number of remaining packets to transmit. This is
2416 * because the intervals are actually powers of 2, and we would be transmitting
2417 * the previous interval's packets twice in this interval. We also have to be
2418 * sure that when we look at the largest max packet size for this interval, we
2419 * also look at the largest max packet size for the remaining packets and take
2420 * the greater of the two.
2421 *
2422 * The algorithm continues to evenly distribute packets in each scheduling
2423 * opportunity, and push the remaining packets out, until we get to the last
2424 * interval. Then those packets and their associated overhead are just added
2425 * to the bandwidth used.
2426 */
2427 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2428 struct xhci_virt_device *virt_dev,
2429 int old_active_eps)
2430 {
2431 unsigned int bw_reserved;
2432 unsigned int max_bandwidth;
2433 unsigned int bw_used;
2434 unsigned int block_size;
2435 struct xhci_interval_bw_table *bw_table;
2436 unsigned int packet_size = 0;
2437 unsigned int overhead = 0;
2438 unsigned int packets_transmitted = 0;
2439 unsigned int packets_remaining = 0;
2440 unsigned int i;
2441
2442 if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2443 return xhci_check_ss_bw(xhci, virt_dev);
2444
2445 if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2446 max_bandwidth = HS_BW_LIMIT;
2447 /* Convert percent of bus BW reserved to blocks reserved */
2448 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2449 } else {
2450 max_bandwidth = FS_BW_LIMIT;
2451 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2452 }
2453
2454 bw_table = virt_dev->bw_table;
2455 /* We need to translate the max packet size and max ESIT payloads into
2456 * the units the hardware uses.
2457 */
2458 block_size = xhci_get_block_size(virt_dev->udev);
2459
2460 /* If we are manipulating a LS/FS device under a HS hub, double check
2461 * that the HS bus has enough bandwidth if we are activing a new TT.
2462 */
2463 if (virt_dev->tt_info) {
2464 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2465 "Recalculating BW for rootport %u",
2466 virt_dev->real_port);
2467 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2468 xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2469 "newly activated TT.\n");
2470 return -ENOMEM;
2471 }
2472 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2473 "Recalculating BW for TT slot %u port %u",
2474 virt_dev->tt_info->slot_id,
2475 virt_dev->tt_info->ttport);
2476 } else {
2477 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2478 "Recalculating BW for rootport %u",
2479 virt_dev->real_port);
2480 }
2481
2482 /* Add in how much bandwidth will be used for interval zero, or the
2483 * rounded max ESIT payload + number of packets * largest overhead.
2484 */
2485 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2486 bw_table->interval_bw[0].num_packets *
2487 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2488
2489 for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2490 unsigned int bw_added;
2491 unsigned int largest_mps;
2492 unsigned int interval_overhead;
2493
2494 /*
2495 * How many packets could we transmit in this interval?
2496 * If packets didn't fit in the previous interval, we will need
2497 * to transmit that many packets twice within this interval.
2498 */
2499 packets_remaining = 2 * packets_remaining +
2500 bw_table->interval_bw[i].num_packets;
2501
2502 /* Find the largest max packet size of this or the previous
2503 * interval.
2504 */
2505 if (list_empty(&bw_table->interval_bw[i].endpoints))
2506 largest_mps = 0;
2507 else {
2508 struct xhci_virt_ep *virt_ep;
2509 struct list_head *ep_entry;
2510
2511 ep_entry = bw_table->interval_bw[i].endpoints.next;
2512 virt_ep = list_entry(ep_entry,
2513 struct xhci_virt_ep, bw_endpoint_list);
2514 /* Convert to blocks, rounding up */
2515 largest_mps = DIV_ROUND_UP(
2516 virt_ep->bw_info.max_packet_size,
2517 block_size);
2518 }
2519 if (largest_mps > packet_size)
2520 packet_size = largest_mps;
2521
2522 /* Use the larger overhead of this or the previous interval. */
2523 interval_overhead = xhci_get_largest_overhead(
2524 &bw_table->interval_bw[i]);
2525 if (interval_overhead > overhead)
2526 overhead = interval_overhead;
2527
2528 /* How many packets can we evenly distribute across
2529 * (1 << (i + 1)) possible scheduling opportunities?
2530 */
2531 packets_transmitted = packets_remaining >> (i + 1);
2532
2533 /* Add in the bandwidth used for those scheduled packets */
2534 bw_added = packets_transmitted * (overhead + packet_size);
2535
2536 /* How many packets do we have remaining to transmit? */
2537 packets_remaining = packets_remaining % (1 << (i + 1));
2538
2539 /* What largest max packet size should those packets have? */
2540 /* If we've transmitted all packets, don't carry over the
2541 * largest packet size.
2542 */
2543 if (packets_remaining == 0) {
2544 packet_size = 0;
2545 overhead = 0;
2546 } else if (packets_transmitted > 0) {
2547 /* Otherwise if we do have remaining packets, and we've
2548 * scheduled some packets in this interval, take the
2549 * largest max packet size from endpoints with this
2550 * interval.
2551 */
2552 packet_size = largest_mps;
2553 overhead = interval_overhead;
2554 }
2555 /* Otherwise carry over packet_size and overhead from the last
2556 * time we had a remainder.
2557 */
2558 bw_used += bw_added;
2559 if (bw_used > max_bandwidth) {
2560 xhci_warn(xhci, "Not enough bandwidth. "
2561 "Proposed: %u, Max: %u\n",
2562 bw_used, max_bandwidth);
2563 return -ENOMEM;
2564 }
2565 }
2566 /*
2567 * Ok, we know we have some packets left over after even-handedly
2568 * scheduling interval 15. We don't know which microframes they will
2569 * fit into, so we over-schedule and say they will be scheduled every
2570 * microframe.
2571 */
2572 if (packets_remaining > 0)
2573 bw_used += overhead + packet_size;
2574
2575 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2576 unsigned int port_index = virt_dev->real_port - 1;
2577
2578 /* OK, we're manipulating a HS device attached to a
2579 * root port bandwidth domain. Include the number of active TTs
2580 * in the bandwidth used.
2581 */
2582 bw_used += TT_HS_OVERHEAD *
2583 xhci->rh_bw[port_index].num_active_tts;
2584 }
2585
2586 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2587 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2588 "Available: %u " "percent",
2589 bw_used, max_bandwidth, bw_reserved,
2590 (max_bandwidth - bw_used - bw_reserved) * 100 /
2591 max_bandwidth);
2592
2593 bw_used += bw_reserved;
2594 if (bw_used > max_bandwidth) {
2595 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2596 bw_used, max_bandwidth);
2597 return -ENOMEM;
2598 }
2599
2600 bw_table->bw_used = bw_used;
2601 return 0;
2602 }
2603
2604 static bool xhci_is_async_ep(unsigned int ep_type)
2605 {
2606 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2607 ep_type != ISOC_IN_EP &&
2608 ep_type != INT_IN_EP);
2609 }
2610
2611 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2612 {
2613 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2614 }
2615
2616 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2617 {
2618 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2619
2620 if (ep_bw->ep_interval == 0)
2621 return SS_OVERHEAD_BURST +
2622 (ep_bw->mult * ep_bw->num_packets *
2623 (SS_OVERHEAD + mps));
2624 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2625 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2626 1 << ep_bw->ep_interval);
2627
2628 }
2629
2630 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2631 struct xhci_bw_info *ep_bw,
2632 struct xhci_interval_bw_table *bw_table,
2633 struct usb_device *udev,
2634 struct xhci_virt_ep *virt_ep,
2635 struct xhci_tt_bw_info *tt_info)
2636 {
2637 struct xhci_interval_bw *interval_bw;
2638 int normalized_interval;
2639
2640 if (xhci_is_async_ep(ep_bw->type))
2641 return;
2642
2643 if (udev->speed >= USB_SPEED_SUPER) {
2644 if (xhci_is_sync_in_ep(ep_bw->type))
2645 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2646 xhci_get_ss_bw_consumed(ep_bw);
2647 else
2648 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2649 xhci_get_ss_bw_consumed(ep_bw);
2650 return;
2651 }
2652
2653 /* SuperSpeed endpoints never get added to intervals in the table, so
2654 * this check is only valid for HS/FS/LS devices.
2655 */
2656 if (list_empty(&virt_ep->bw_endpoint_list))
2657 return;
2658 /* For LS/FS devices, we need to translate the interval expressed in
2659 * microframes to frames.
2660 */
2661 if (udev->speed == USB_SPEED_HIGH)
2662 normalized_interval = ep_bw->ep_interval;
2663 else
2664 normalized_interval = ep_bw->ep_interval - 3;
2665
2666 if (normalized_interval == 0)
2667 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2668 interval_bw = &bw_table->interval_bw[normalized_interval];
2669 interval_bw->num_packets -= ep_bw->num_packets;
2670 switch (udev->speed) {
2671 case USB_SPEED_LOW:
2672 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2673 break;
2674 case USB_SPEED_FULL:
2675 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2676 break;
2677 case USB_SPEED_HIGH:
2678 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2679 break;
2680 case USB_SPEED_SUPER:
2681 case USB_SPEED_SUPER_PLUS:
2682 case USB_SPEED_UNKNOWN:
2683 case USB_SPEED_WIRELESS:
2684 /* Should never happen because only LS/FS/HS endpoints will get
2685 * added to the endpoint list.
2686 */
2687 return;
2688 }
2689 if (tt_info)
2690 tt_info->active_eps -= 1;
2691 list_del_init(&virt_ep->bw_endpoint_list);
2692 }
2693
2694 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2695 struct xhci_bw_info *ep_bw,
2696 struct xhci_interval_bw_table *bw_table,
2697 struct usb_device *udev,
2698 struct xhci_virt_ep *virt_ep,
2699 struct xhci_tt_bw_info *tt_info)
2700 {
2701 struct xhci_interval_bw *interval_bw;
2702 struct xhci_virt_ep *smaller_ep;
2703 int normalized_interval;
2704
2705 if (xhci_is_async_ep(ep_bw->type))
2706 return;
2707
2708 if (udev->speed == USB_SPEED_SUPER) {
2709 if (xhci_is_sync_in_ep(ep_bw->type))
2710 xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2711 xhci_get_ss_bw_consumed(ep_bw);
2712 else
2713 xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2714 xhci_get_ss_bw_consumed(ep_bw);
2715 return;
2716 }
2717
2718 /* For LS/FS devices, we need to translate the interval expressed in
2719 * microframes to frames.
2720 */
2721 if (udev->speed == USB_SPEED_HIGH)
2722 normalized_interval = ep_bw->ep_interval;
2723 else
2724 normalized_interval = ep_bw->ep_interval - 3;
2725
2726 if (normalized_interval == 0)
2727 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2728 interval_bw = &bw_table->interval_bw[normalized_interval];
2729 interval_bw->num_packets += ep_bw->num_packets;
2730 switch (udev->speed) {
2731 case USB_SPEED_LOW:
2732 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2733 break;
2734 case USB_SPEED_FULL:
2735 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2736 break;
2737 case USB_SPEED_HIGH:
2738 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2739 break;
2740 case USB_SPEED_SUPER:
2741 case USB_SPEED_SUPER_PLUS:
2742 case USB_SPEED_UNKNOWN:
2743 case USB_SPEED_WIRELESS:
2744 /* Should never happen because only LS/FS/HS endpoints will get
2745 * added to the endpoint list.
2746 */
2747 return;
2748 }
2749
2750 if (tt_info)
2751 tt_info->active_eps += 1;
2752 /* Insert the endpoint into the list, largest max packet size first. */
2753 list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2754 bw_endpoint_list) {
2755 if (ep_bw->max_packet_size >=
2756 smaller_ep->bw_info.max_packet_size) {
2757 /* Add the new ep before the smaller endpoint */
2758 list_add_tail(&virt_ep->bw_endpoint_list,
2759 &smaller_ep->bw_endpoint_list);
2760 return;
2761 }
2762 }
2763 /* Add the new endpoint at the end of the list. */
2764 list_add_tail(&virt_ep->bw_endpoint_list,
2765 &interval_bw->endpoints);
2766 }
2767
2768 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2769 struct xhci_virt_device *virt_dev,
2770 int old_active_eps)
2771 {
2772 struct xhci_root_port_bw_info *rh_bw_info;
2773 if (!virt_dev->tt_info)
2774 return;
2775
2776 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2777 if (old_active_eps == 0 &&
2778 virt_dev->tt_info->active_eps != 0) {
2779 rh_bw_info->num_active_tts += 1;
2780 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2781 } else if (old_active_eps != 0 &&
2782 virt_dev->tt_info->active_eps == 0) {
2783 rh_bw_info->num_active_tts -= 1;
2784 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2785 }
2786 }
2787
2788 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2789 struct xhci_virt_device *virt_dev,
2790 struct xhci_container_ctx *in_ctx)
2791 {
2792 struct xhci_bw_info ep_bw_info[31];
2793 int i;
2794 struct xhci_input_control_ctx *ctrl_ctx;
2795 int old_active_eps = 0;
2796
2797 if (virt_dev->tt_info)
2798 old_active_eps = virt_dev->tt_info->active_eps;
2799
2800 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2801 if (!ctrl_ctx) {
2802 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2803 __func__);
2804 return -ENOMEM;
2805 }
2806
2807 for (i = 0; i < 31; i++) {
2808 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2809 continue;
2810
2811 /* Make a copy of the BW info in case we need to revert this */
2812 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2813 sizeof(ep_bw_info[i]));
2814 /* Drop the endpoint from the interval table if the endpoint is
2815 * being dropped or changed.
2816 */
2817 if (EP_IS_DROPPED(ctrl_ctx, i))
2818 xhci_drop_ep_from_interval_table(xhci,
2819 &virt_dev->eps[i].bw_info,
2820 virt_dev->bw_table,
2821 virt_dev->udev,
2822 &virt_dev->eps[i],
2823 virt_dev->tt_info);
2824 }
2825 /* Overwrite the information stored in the endpoints' bw_info */
2826 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2827 for (i = 0; i < 31; i++) {
2828 /* Add any changed or added endpoints to the interval table */
2829 if (EP_IS_ADDED(ctrl_ctx, i))
2830 xhci_add_ep_to_interval_table(xhci,
2831 &virt_dev->eps[i].bw_info,
2832 virt_dev->bw_table,
2833 virt_dev->udev,
2834 &virt_dev->eps[i],
2835 virt_dev->tt_info);
2836 }
2837
2838 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2839 /* Ok, this fits in the bandwidth we have.
2840 * Update the number of active TTs.
2841 */
2842 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2843 return 0;
2844 }
2845
2846 /* We don't have enough bandwidth for this, revert the stored info. */
2847 for (i = 0; i < 31; i++) {
2848 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2849 continue;
2850
2851 /* Drop the new copies of any added or changed endpoints from
2852 * the interval table.
2853 */
2854 if (EP_IS_ADDED(ctrl_ctx, i)) {
2855 xhci_drop_ep_from_interval_table(xhci,
2856 &virt_dev->eps[i].bw_info,
2857 virt_dev->bw_table,
2858 virt_dev->udev,
2859 &virt_dev->eps[i],
2860 virt_dev->tt_info);
2861 }
2862 /* Revert the endpoint back to its old information */
2863 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2864 sizeof(ep_bw_info[i]));
2865 /* Add any changed or dropped endpoints back into the table */
2866 if (EP_IS_DROPPED(ctrl_ctx, i))
2867 xhci_add_ep_to_interval_table(xhci,
2868 &virt_dev->eps[i].bw_info,
2869 virt_dev->bw_table,
2870 virt_dev->udev,
2871 &virt_dev->eps[i],
2872 virt_dev->tt_info);
2873 }
2874 return -ENOMEM;
2875 }
2876
2877
2878 /* Issue a configure endpoint command or evaluate context command
2879 * and wait for it to finish.
2880 */
2881 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2882 struct usb_device *udev,
2883 struct xhci_command *command,
2884 bool ctx_change, bool must_succeed)
2885 {
2886 int ret;
2887 unsigned long flags;
2888 struct xhci_input_control_ctx *ctrl_ctx;
2889 struct xhci_virt_device *virt_dev;
2890 struct xhci_slot_ctx *slot_ctx;
2891
2892 if (!command)
2893 return -EINVAL;
2894
2895 spin_lock_irqsave(&xhci->lock, flags);
2896
2897 if (xhci->xhc_state & XHCI_STATE_DYING) {
2898 spin_unlock_irqrestore(&xhci->lock, flags);
2899 return -ESHUTDOWN;
2900 }
2901
2902 virt_dev = xhci->devs[udev->slot_id];
2903
2904 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2905 if (!ctrl_ctx) {
2906 spin_unlock_irqrestore(&xhci->lock, flags);
2907 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2908 __func__);
2909 return -ENOMEM;
2910 }
2911
2912 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2913 xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2914 spin_unlock_irqrestore(&xhci->lock, flags);
2915 xhci_warn(xhci, "Not enough host resources, "
2916 "active endpoint contexts = %u\n",
2917 xhci->num_active_eps);
2918 return -ENOMEM;
2919 }
2920 if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2921 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2922 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2923 xhci_free_host_resources(xhci, ctrl_ctx);
2924 spin_unlock_irqrestore(&xhci->lock, flags);
2925 xhci_warn(xhci, "Not enough bandwidth\n");
2926 return -ENOMEM;
2927 }
2928
2929 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2930
2931 trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2932 trace_xhci_configure_endpoint(slot_ctx);
2933
2934 if (!ctx_change)
2935 ret = xhci_queue_configure_endpoint(xhci, command,
2936 command->in_ctx->dma,
2937 udev->slot_id, must_succeed);
2938 else
2939 ret = xhci_queue_evaluate_context(xhci, command,
2940 command->in_ctx->dma,
2941 udev->slot_id, must_succeed);
2942 if (ret < 0) {
2943 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2944 xhci_free_host_resources(xhci, ctrl_ctx);
2945 spin_unlock_irqrestore(&xhci->lock, flags);
2946 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2947 "FIXME allocate a new ring segment");
2948 return -ENOMEM;
2949 }
2950 xhci_ring_cmd_db(xhci);
2951 spin_unlock_irqrestore(&xhci->lock, flags);
2952
2953 /* Wait for the configure endpoint command to complete */
2954 wait_for_completion(command->completion);
2955
2956 if (!ctx_change)
2957 ret = xhci_configure_endpoint_result(xhci, udev,
2958 &command->status);
2959 else
2960 ret = xhci_evaluate_context_result(xhci, udev,
2961 &command->status);
2962
2963 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2964 spin_lock_irqsave(&xhci->lock, flags);
2965 /* If the command failed, remove the reserved resources.
2966 * Otherwise, clean up the estimate to include dropped eps.
2967 */
2968 if (ret)
2969 xhci_free_host_resources(xhci, ctrl_ctx);
2970 else
2971 xhci_finish_resource_reservation(xhci, ctrl_ctx);
2972 spin_unlock_irqrestore(&xhci->lock, flags);
2973 }
2974 return ret;
2975 }
2976
2977 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2978 struct xhci_virt_device *vdev, int i)
2979 {
2980 struct xhci_virt_ep *ep = &vdev->eps[i];
2981
2982 if (ep->ep_state & EP_HAS_STREAMS) {
2983 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2984 xhci_get_endpoint_address(i));
2985 xhci_free_stream_info(xhci, ep->stream_info);
2986 ep->stream_info = NULL;
2987 ep->ep_state &= ~EP_HAS_STREAMS;
2988 }
2989 }
2990
2991 /* Called after one or more calls to xhci_add_endpoint() or
2992 * xhci_drop_endpoint(). If this call fails, the USB core is expected
2993 * to call xhci_reset_bandwidth().
2994 *
2995 * Since we are in the middle of changing either configuration or
2996 * installing a new alt setting, the USB core won't allow URBs to be
2997 * enqueued for any endpoint on the old config or interface. Nothing
2998 * else should be touching the xhci->devs[slot_id] structure, so we
2999 * don't need to take the xhci->lock for manipulating that.
3000 */
3001 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3002 {
3003 int i;
3004 int ret = 0;
3005 struct xhci_hcd *xhci;
3006 struct xhci_virt_device *virt_dev;
3007 struct xhci_input_control_ctx *ctrl_ctx;
3008 struct xhci_slot_ctx *slot_ctx;
3009 struct xhci_command *command;
3010
3011 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3012 if (ret <= 0)
3013 return ret;
3014 xhci = hcd_to_xhci(hcd);
3015 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
3016 (xhci->xhc_state & XHCI_STATE_REMOVING))
3017 return -ENODEV;
3018
3019 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3020 virt_dev = xhci->devs[udev->slot_id];
3021
3022 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3023 if (!command)
3024 return -ENOMEM;
3025
3026 command->in_ctx = virt_dev->in_ctx;
3027
3028 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
3029 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3030 if (!ctrl_ctx) {
3031 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3032 __func__);
3033 ret = -ENOMEM;
3034 goto command_cleanup;
3035 }
3036 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3037 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
3038 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
3039
3040 /* Don't issue the command if there's no endpoints to update. */
3041 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
3042 ctrl_ctx->drop_flags == 0) {
3043 ret = 0;
3044 goto command_cleanup;
3045 }
3046 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
3047 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3048 for (i = 31; i >= 1; i--) {
3049 __le32 le32 = cpu_to_le32(BIT(i));
3050
3051 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
3052 || (ctrl_ctx->add_flags & le32) || i == 1) {
3053 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
3054 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
3055 break;
3056 }
3057 }
3058
3059 ret = xhci_configure_endpoint(xhci, udev, command,
3060 false, false);
3061 if (ret)
3062 /* Callee should call reset_bandwidth() */
3063 goto command_cleanup;
3064
3065 /* Free any rings that were dropped, but not changed. */
3066 for (i = 1; i < 31; i++) {
3067 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
3068 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
3069 xhci_free_endpoint_ring(xhci, virt_dev, i);
3070 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3071 }
3072 }
3073 xhci_zero_in_ctx(xhci, virt_dev);
3074 /*
3075 * Install any rings for completely new endpoints or changed endpoints,
3076 * and free any old rings from changed endpoints.
3077 */
3078 for (i = 1; i < 31; i++) {
3079 if (!virt_dev->eps[i].new_ring)
3080 continue;
3081 /* Only free the old ring if it exists.
3082 * It may not if this is the first add of an endpoint.
3083 */
3084 if (virt_dev->eps[i].ring) {
3085 xhci_free_endpoint_ring(xhci, virt_dev, i);
3086 }
3087 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3088 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
3089 virt_dev->eps[i].new_ring = NULL;
3090 xhci_debugfs_create_endpoint(xhci, virt_dev, i);
3091 }
3092 command_cleanup:
3093 kfree(command->completion);
3094 kfree(command);
3095
3096 return ret;
3097 }
3098 EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
3099
3100 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3101 {
3102 struct xhci_hcd *xhci;
3103 struct xhci_virt_device *virt_dev;
3104 int i, ret;
3105
3106 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3107 if (ret <= 0)
3108 return;
3109 xhci = hcd_to_xhci(hcd);
3110
3111 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3112 virt_dev = xhci->devs[udev->slot_id];
3113 /* Free any rings allocated for added endpoints */
3114 for (i = 0; i < 31; i++) {
3115 if (virt_dev->eps[i].new_ring) {
3116 xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3117 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3118 virt_dev->eps[i].new_ring = NULL;
3119 }
3120 }
3121 xhci_zero_in_ctx(xhci, virt_dev);
3122 }
3123 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3124
3125 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3126 struct xhci_container_ctx *in_ctx,
3127 struct xhci_container_ctx *out_ctx,
3128 struct xhci_input_control_ctx *ctrl_ctx,
3129 u32 add_flags, u32 drop_flags)
3130 {
3131 ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3132 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3133 xhci_slot_copy(xhci, in_ctx, out_ctx);
3134 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3135 }
3136
3137 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3138 struct usb_host_endpoint *host_ep)
3139 {
3140 struct xhci_hcd *xhci;
3141 struct xhci_virt_device *vdev;
3142 struct xhci_virt_ep *ep;
3143 struct usb_device *udev;
3144 unsigned long flags;
3145 unsigned int ep_index;
3146
3147 xhci = hcd_to_xhci(hcd);
3148 rescan:
3149 spin_lock_irqsave(&xhci->lock, flags);
3150
3151 udev = (struct usb_device *)host_ep->hcpriv;
3152 if (!udev || !udev->slot_id)
3153 goto done;
3154
3155 vdev = xhci->devs[udev->slot_id];
3156 if (!vdev)
3157 goto done;
3158
3159 ep_index = xhci_get_endpoint_index(&host_ep->desc);
3160 ep = &vdev->eps[ep_index];
3161 if (!ep)
3162 goto done;
3163
3164 /* wait for hub_tt_work to finish clearing hub TT */
3165 if (ep->ep_state & EP_CLEARING_TT) {
3166 spin_unlock_irqrestore(&xhci->lock, flags);
3167 schedule_timeout_uninterruptible(1);
3168 goto rescan;
3169 }
3170
3171 if (ep->ep_state)
3172 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3173 ep->ep_state);
3174 done:
3175 host_ep->hcpriv = NULL;
3176 spin_unlock_irqrestore(&xhci->lock, flags);
3177 }
3178
3179 /*
3180 * Called after usb core issues a clear halt control message.
3181 * The host side of the halt should already be cleared by a reset endpoint
3182 * command issued when the STALL event was received.
3183 *
3184 * The reset endpoint command may only be issued to endpoints in the halted
3185 * state. For software that wishes to reset the data toggle or sequence number
3186 * of an endpoint that isn't in the halted state this function will issue a
3187 * configure endpoint command with the Drop and Add bits set for the target
3188 * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3189 */
3190
3191 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3192 struct usb_host_endpoint *host_ep)
3193 {
3194 struct xhci_hcd *xhci;
3195 struct usb_device *udev;
3196 struct xhci_virt_device *vdev;
3197 struct xhci_virt_ep *ep;
3198 struct xhci_input_control_ctx *ctrl_ctx;
3199 struct xhci_command *stop_cmd, *cfg_cmd;
3200 unsigned int ep_index;
3201 unsigned long flags;
3202 u32 ep_flag;
3203 int err;
3204
3205 xhci = hcd_to_xhci(hcd);
3206 if (!host_ep->hcpriv)
3207 return;
3208 udev = (struct usb_device *) host_ep->hcpriv;
3209 vdev = xhci->devs[udev->slot_id];
3210
3211 /*
3212 * vdev may be lost due to xHC restore error and re-initialization
3213 * during S3/S4 resume. A new vdev will be allocated later by
3214 * xhci_discover_or_reset_device()
3215 */
3216 if (!udev->slot_id || !vdev)
3217 return;
3218 ep_index = xhci_get_endpoint_index(&host_ep->desc);
3219 ep = &vdev->eps[ep_index];
3220 if (!ep)
3221 return;
3222
3223 /* Bail out if toggle is already being cleared by a endpoint reset */
3224 spin_lock_irqsave(&xhci->lock, flags);
3225 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3226 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3227 spin_unlock_irqrestore(&xhci->lock, flags);
3228 return;
3229 }
3230 spin_unlock_irqrestore(&xhci->lock, flags);
3231 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3232 if (usb_endpoint_xfer_control(&host_ep->desc) ||
3233 usb_endpoint_xfer_isoc(&host_ep->desc))
3234 return;
3235
3236 ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3237
3238 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3239 return;
3240
3241 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3242 if (!stop_cmd)
3243 return;
3244
3245 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3246 if (!cfg_cmd)
3247 goto cleanup;
3248
3249 spin_lock_irqsave(&xhci->lock, flags);
3250
3251 /* block queuing new trbs and ringing ep doorbell */
3252 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3253
3254 /*
3255 * Make sure endpoint ring is empty before resetting the toggle/seq.
3256 * Driver is required to synchronously cancel all transfer request.
3257 * Stop the endpoint to force xHC to update the output context
3258 */
3259
3260 if (!list_empty(&ep->ring->td_list)) {
3261 dev_err(&udev->dev, "EP not empty, refuse reset\n");
3262 spin_unlock_irqrestore(&xhci->lock, flags);
3263 xhci_free_command(xhci, cfg_cmd);
3264 goto cleanup;
3265 }
3266
3267 err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3268 ep_index, 0);
3269 if (err < 0) {
3270 spin_unlock_irqrestore(&xhci->lock, flags);
3271 xhci_free_command(xhci, cfg_cmd);
3272 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3273 __func__, err);
3274 goto cleanup;
3275 }
3276
3277 xhci_ring_cmd_db(xhci);
3278 spin_unlock_irqrestore(&xhci->lock, flags);
3279
3280 wait_for_completion(stop_cmd->completion);
3281
3282 spin_lock_irqsave(&xhci->lock, flags);
3283
3284 /* config ep command clears toggle if add and drop ep flags are set */
3285 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3286 if (!ctrl_ctx) {
3287 spin_unlock_irqrestore(&xhci->lock, flags);
3288 xhci_free_command(xhci, cfg_cmd);
3289 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3290 __func__);
3291 goto cleanup;
3292 }
3293
3294 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3295 ctrl_ctx, ep_flag, ep_flag);
3296 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3297
3298 err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3299 udev->slot_id, false);
3300 if (err < 0) {
3301 spin_unlock_irqrestore(&xhci->lock, flags);
3302 xhci_free_command(xhci, cfg_cmd);
3303 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3304 __func__, err);
3305 goto cleanup;
3306 }
3307
3308 xhci_ring_cmd_db(xhci);
3309 spin_unlock_irqrestore(&xhci->lock, flags);
3310
3311 wait_for_completion(cfg_cmd->completion);
3312
3313 xhci_free_command(xhci, cfg_cmd);
3314 cleanup:
3315 xhci_free_command(xhci, stop_cmd);
3316 spin_lock_irqsave(&xhci->lock, flags);
3317 if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3318 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3319 spin_unlock_irqrestore(&xhci->lock, flags);
3320 }
3321
3322 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3323 struct usb_device *udev, struct usb_host_endpoint *ep,
3324 unsigned int slot_id)
3325 {
3326 int ret;
3327 unsigned int ep_index;
3328 unsigned int ep_state;
3329
3330 if (!ep)
3331 return -EINVAL;
3332 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3333 if (ret <= 0)
3334 return ret ? ret : -EINVAL;
3335 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3336 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3337 " descriptor for ep 0x%x does not support streams\n",
3338 ep->desc.bEndpointAddress);
3339 return -EINVAL;
3340 }
3341
3342 ep_index = xhci_get_endpoint_index(&ep->desc);
3343 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3344 if (ep_state & EP_HAS_STREAMS ||
3345 ep_state & EP_GETTING_STREAMS) {
3346 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3347 "already has streams set up.\n",
3348 ep->desc.bEndpointAddress);
3349 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3350 "dynamic stream context array reallocation.\n");
3351 return -EINVAL;
3352 }
3353 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3354 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3355 "endpoint 0x%x; URBs are pending.\n",
3356 ep->desc.bEndpointAddress);
3357 return -EINVAL;
3358 }
3359 return 0;
3360 }
3361
3362 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3363 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3364 {
3365 unsigned int max_streams;
3366
3367 /* The stream context array size must be a power of two */
3368 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3369 /*
3370 * Find out how many primary stream array entries the host controller
3371 * supports. Later we may use secondary stream arrays (similar to 2nd
3372 * level page entries), but that's an optional feature for xHCI host
3373 * controllers. xHCs must support at least 4 stream IDs.
3374 */
3375 max_streams = HCC_MAX_PSA(xhci->hcc_params);
3376 if (*num_stream_ctxs > max_streams) {
3377 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3378 max_streams);
3379 *num_stream_ctxs = max_streams;
3380 *num_streams = max_streams;
3381 }
3382 }
3383
3384 /* Returns an error code if one of the endpoint already has streams.
3385 * This does not change any data structures, it only checks and gathers
3386 * information.
3387 */
3388 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3389 struct usb_device *udev,
3390 struct usb_host_endpoint **eps, unsigned int num_eps,
3391 unsigned int *num_streams, u32 *changed_ep_bitmask)
3392 {
3393 unsigned int max_streams;
3394 unsigned int endpoint_flag;
3395 int i;
3396 int ret;
3397
3398 for (i = 0; i < num_eps; i++) {
3399 ret = xhci_check_streams_endpoint(xhci, udev,
3400 eps[i], udev->slot_id);
3401 if (ret < 0)
3402 return ret;
3403
3404 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3405 if (max_streams < (*num_streams - 1)) {
3406 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3407 eps[i]->desc.bEndpointAddress,
3408 max_streams);
3409 *num_streams = max_streams+1;
3410 }
3411
3412 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3413 if (*changed_ep_bitmask & endpoint_flag)
3414 return -EINVAL;
3415 *changed_ep_bitmask |= endpoint_flag;
3416 }
3417 return 0;
3418 }
3419
3420 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3421 struct usb_device *udev,
3422 struct usb_host_endpoint **eps, unsigned int num_eps)
3423 {
3424 u32 changed_ep_bitmask = 0;
3425 unsigned int slot_id;
3426 unsigned int ep_index;
3427 unsigned int ep_state;
3428 int i;
3429
3430 slot_id = udev->slot_id;
3431 if (!xhci->devs[slot_id])
3432 return 0;
3433
3434 for (i = 0; i < num_eps; i++) {
3435 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3436 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3437 /* Are streams already being freed for the endpoint? */
3438 if (ep_state & EP_GETTING_NO_STREAMS) {
3439 xhci_warn(xhci, "WARN Can't disable streams for "
3440 "endpoint 0x%x, "
3441 "streams are being disabled already\n",
3442 eps[i]->desc.bEndpointAddress);
3443 return 0;
3444 }
3445 /* Are there actually any streams to free? */
3446 if (!(ep_state & EP_HAS_STREAMS) &&
3447 !(ep_state & EP_GETTING_STREAMS)) {
3448 xhci_warn(xhci, "WARN Can't disable streams for "
3449 "endpoint 0x%x, "
3450 "streams are already disabled!\n",
3451 eps[i]->desc.bEndpointAddress);
3452 xhci_warn(xhci, "WARN xhci_free_streams() called "
3453 "with non-streams endpoint\n");
3454 return 0;
3455 }
3456 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3457 }
3458 return changed_ep_bitmask;
3459 }
3460
3461 /*
3462 * The USB device drivers use this function (through the HCD interface in USB
3463 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
3464 * coordinate mass storage command queueing across multiple endpoints (basically
3465 * a stream ID == a task ID).
3466 *
3467 * Setting up streams involves allocating the same size stream context array
3468 * for each endpoint and issuing a configure endpoint command for all endpoints.
3469 *
3470 * Don't allow the call to succeed if one endpoint only supports one stream
3471 * (which means it doesn't support streams at all).
3472 *
3473 * Drivers may get less stream IDs than they asked for, if the host controller
3474 * hardware or endpoints claim they can't support the number of requested
3475 * stream IDs.
3476 */
3477 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3478 struct usb_host_endpoint **eps, unsigned int num_eps,
3479 unsigned int num_streams, gfp_t mem_flags)
3480 {
3481 int i, ret;
3482 struct xhci_hcd *xhci;
3483 struct xhci_virt_device *vdev;
3484 struct xhci_command *config_cmd;
3485 struct xhci_input_control_ctx *ctrl_ctx;
3486 unsigned int ep_index;
3487 unsigned int num_stream_ctxs;
3488 unsigned int max_packet;
3489 unsigned long flags;
3490 u32 changed_ep_bitmask = 0;
3491
3492 if (!eps)
3493 return -EINVAL;
3494
3495 /* Add one to the number of streams requested to account for
3496 * stream 0 that is reserved for xHCI usage.
3497 */
3498 num_streams += 1;
3499 xhci = hcd_to_xhci(hcd);
3500 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3501 num_streams);
3502
3503 /* MaxPSASize value 0 (2 streams) means streams are not supported */
3504 if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3505 HCC_MAX_PSA(xhci->hcc_params) < 4) {
3506 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3507 return -ENOSYS;
3508 }
3509
3510 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3511 if (!config_cmd)
3512 return -ENOMEM;
3513
3514 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3515 if (!ctrl_ctx) {
3516 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3517 __func__);
3518 xhci_free_command(xhci, config_cmd);
3519 return -ENOMEM;
3520 }
3521
3522 /* Check to make sure all endpoints are not already configured for
3523 * streams. While we're at it, find the maximum number of streams that
3524 * all the endpoints will support and check for duplicate endpoints.
3525 */
3526 spin_lock_irqsave(&xhci->lock, flags);
3527 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3528 num_eps, &num_streams, &changed_ep_bitmask);
3529 if (ret < 0) {
3530 xhci_free_command(xhci, config_cmd);
3531 spin_unlock_irqrestore(&xhci->lock, flags);
3532 return ret;
3533 }
3534 if (num_streams <= 1) {
3535 xhci_warn(xhci, "WARN: endpoints can't handle "
3536 "more than one stream.\n");
3537 xhci_free_command(xhci, config_cmd);
3538 spin_unlock_irqrestore(&xhci->lock, flags);
3539 return -EINVAL;
3540 }
3541 vdev = xhci->devs[udev->slot_id];
3542 /* Mark each endpoint as being in transition, so
3543 * xhci_urb_enqueue() will reject all URBs.
3544 */
3545 for (i = 0; i < num_eps; i++) {
3546 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3547 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3548 }
3549 spin_unlock_irqrestore(&xhci->lock, flags);
3550
3551 /* Setup internal data structures and allocate HW data structures for
3552 * streams (but don't install the HW structures in the input context
3553 * until we're sure all memory allocation succeeded).
3554 */
3555 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3556 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3557 num_stream_ctxs, num_streams);
3558
3559 for (i = 0; i < num_eps; i++) {
3560 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3561 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3562 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3563 num_stream_ctxs,
3564 num_streams,
3565 max_packet, mem_flags);
3566 if (!vdev->eps[ep_index].stream_info)
3567 goto cleanup;
3568 /* Set maxPstreams in endpoint context and update deq ptr to
3569 * point to stream context array. FIXME
3570 */
3571 }
3572
3573 /* Set up the input context for a configure endpoint command. */
3574 for (i = 0; i < num_eps; i++) {
3575 struct xhci_ep_ctx *ep_ctx;
3576
3577 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3578 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3579
3580 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3581 vdev->out_ctx, ep_index);
3582 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3583 vdev->eps[ep_index].stream_info);
3584 }
3585 /* Tell the HW to drop its old copy of the endpoint context info
3586 * and add the updated copy from the input context.
3587 */
3588 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3589 vdev->out_ctx, ctrl_ctx,
3590 changed_ep_bitmask, changed_ep_bitmask);
3591
3592 /* Issue and wait for the configure endpoint command */
3593 ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3594 false, false);
3595
3596 /* xHC rejected the configure endpoint command for some reason, so we
3597 * leave the old ring intact and free our internal streams data
3598 * structure.
3599 */
3600 if (ret < 0)
3601 goto cleanup;
3602
3603 spin_lock_irqsave(&xhci->lock, flags);
3604 for (i = 0; i < num_eps; i++) {
3605 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3606 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3607 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3608 udev->slot_id, ep_index);
3609 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3610 }
3611 xhci_free_command(xhci, config_cmd);
3612 spin_unlock_irqrestore(&xhci->lock, flags);
3613
3614 for (i = 0; i < num_eps; i++) {
3615 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3616 xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3617 }
3618 /* Subtract 1 for stream 0, which drivers can't use */
3619 return num_streams - 1;
3620
3621 cleanup:
3622 /* If it didn't work, free the streams! */
3623 for (i = 0; i < num_eps; i++) {
3624 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3625 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3626 vdev->eps[ep_index].stream_info = NULL;
3627 /* FIXME Unset maxPstreams in endpoint context and
3628 * update deq ptr to point to normal string ring.
3629 */
3630 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3631 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3632 xhci_endpoint_zero(xhci, vdev, eps[i]);
3633 }
3634 xhci_free_command(xhci, config_cmd);
3635 return -ENOMEM;
3636 }
3637
3638 /* Transition the endpoint from using streams to being a "normal" endpoint
3639 * without streams.
3640 *
3641 * Modify the endpoint context state, submit a configure endpoint command,
3642 * and free all endpoint rings for streams if that completes successfully.
3643 */
3644 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3645 struct usb_host_endpoint **eps, unsigned int num_eps,
3646 gfp_t mem_flags)
3647 {
3648 int i, ret;
3649 struct xhci_hcd *xhci;
3650 struct xhci_virt_device *vdev;
3651 struct xhci_command *command;
3652 struct xhci_input_control_ctx *ctrl_ctx;
3653 unsigned int ep_index;
3654 unsigned long flags;
3655 u32 changed_ep_bitmask;
3656
3657 xhci = hcd_to_xhci(hcd);
3658 vdev = xhci->devs[udev->slot_id];
3659
3660 /* Set up a configure endpoint command to remove the streams rings */
3661 spin_lock_irqsave(&xhci->lock, flags);
3662 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3663 udev, eps, num_eps);
3664 if (changed_ep_bitmask == 0) {
3665 spin_unlock_irqrestore(&xhci->lock, flags);
3666 return -EINVAL;
3667 }
3668
3669 /* Use the xhci_command structure from the first endpoint. We may have
3670 * allocated too many, but the driver may call xhci_free_streams() for
3671 * each endpoint it grouped into one call to xhci_alloc_streams().
3672 */
3673 ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3674 command = vdev->eps[ep_index].stream_info->free_streams_command;
3675 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3676 if (!ctrl_ctx) {
3677 spin_unlock_irqrestore(&xhci->lock, flags);
3678 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3679 __func__);
3680 return -EINVAL;
3681 }
3682
3683 for (i = 0; i < num_eps; i++) {
3684 struct xhci_ep_ctx *ep_ctx;
3685
3686 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3687 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3688 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3689 EP_GETTING_NO_STREAMS;
3690
3691 xhci_endpoint_copy(xhci, command->in_ctx,
3692 vdev->out_ctx, ep_index);
3693 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3694 &vdev->eps[ep_index]);
3695 }
3696 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3697 vdev->out_ctx, ctrl_ctx,
3698 changed_ep_bitmask, changed_ep_bitmask);
3699 spin_unlock_irqrestore(&xhci->lock, flags);
3700
3701 /* Issue and wait for the configure endpoint command,
3702 * which must succeed.
3703 */
3704 ret = xhci_configure_endpoint(xhci, udev, command,
3705 false, true);
3706
3707 /* xHC rejected the configure endpoint command for some reason, so we
3708 * leave the streams rings intact.
3709 */
3710 if (ret < 0)
3711 return ret;
3712
3713 spin_lock_irqsave(&xhci->lock, flags);
3714 for (i = 0; i < num_eps; i++) {
3715 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3716 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3717 vdev->eps[ep_index].stream_info = NULL;
3718 /* FIXME Unset maxPstreams in endpoint context and
3719 * update deq ptr to point to normal string ring.
3720 */
3721 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3722 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3723 }
3724 spin_unlock_irqrestore(&xhci->lock, flags);
3725
3726 return 0;
3727 }
3728
3729 /*
3730 * Deletes endpoint resources for endpoints that were active before a Reset
3731 * Device command, or a Disable Slot command. The Reset Device command leaves
3732 * the control endpoint intact, whereas the Disable Slot command deletes it.
3733 *
3734 * Must be called with xhci->lock held.
3735 */
3736 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3737 struct xhci_virt_device *virt_dev, bool drop_control_ep)
3738 {
3739 int i;
3740 unsigned int num_dropped_eps = 0;
3741 unsigned int drop_flags = 0;
3742
3743 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3744 if (virt_dev->eps[i].ring) {
3745 drop_flags |= 1 << i;
3746 num_dropped_eps++;
3747 }
3748 }
3749 xhci->num_active_eps -= num_dropped_eps;
3750 if (num_dropped_eps)
3751 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3752 "Dropped %u ep ctxs, flags = 0x%x, "
3753 "%u now active.",
3754 num_dropped_eps, drop_flags,
3755 xhci->num_active_eps);
3756 }
3757
3758 /*
3759 * This submits a Reset Device Command, which will set the device state to 0,
3760 * set the device address to 0, and disable all the endpoints except the default
3761 * control endpoint. The USB core should come back and call
3762 * xhci_address_device(), and then re-set up the configuration. If this is
3763 * called because of a usb_reset_and_verify_device(), then the old alternate
3764 * settings will be re-installed through the normal bandwidth allocation
3765 * functions.
3766 *
3767 * Wait for the Reset Device command to finish. Remove all structures
3768 * associated with the endpoints that were disabled. Clear the input device
3769 * structure? Reset the control endpoint 0 max packet size?
3770 *
3771 * If the virt_dev to be reset does not exist or does not match the udev,
3772 * it means the device is lost, possibly due to the xHC restore error and
3773 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3774 * re-allocate the device.
3775 */
3776 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3777 struct usb_device *udev)
3778 {
3779 int ret, i;
3780 unsigned long flags;
3781 struct xhci_hcd *xhci;
3782 unsigned int slot_id;
3783 struct xhci_virt_device *virt_dev;
3784 struct xhci_command *reset_device_cmd;
3785 struct xhci_slot_ctx *slot_ctx;
3786 int old_active_eps = 0;
3787
3788 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3789 if (ret <= 0)
3790 return ret;
3791 xhci = hcd_to_xhci(hcd);
3792 slot_id = udev->slot_id;
3793 virt_dev = xhci->devs[slot_id];
3794 if (!virt_dev) {
3795 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3796 "not exist. Re-allocate the device\n", slot_id);
3797 ret = xhci_alloc_dev(hcd, udev);
3798 if (ret == 1)
3799 return 0;
3800 else
3801 return -EINVAL;
3802 }
3803
3804 if (virt_dev->tt_info)
3805 old_active_eps = virt_dev->tt_info->active_eps;
3806
3807 if (virt_dev->udev != udev) {
3808 /* If the virt_dev and the udev does not match, this virt_dev
3809 * may belong to another udev.
3810 * Re-allocate the device.
3811 */
3812 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3813 "not match the udev. Re-allocate the device\n",
3814 slot_id);
3815 ret = xhci_alloc_dev(hcd, udev);
3816 if (ret == 1)
3817 return 0;
3818 else
3819 return -EINVAL;
3820 }
3821
3822 /* If device is not setup, there is no point in resetting it */
3823 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3824 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3825 SLOT_STATE_DISABLED)
3826 return 0;
3827
3828 trace_xhci_discover_or_reset_device(slot_ctx);
3829
3830 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3831 /* Allocate the command structure that holds the struct completion.
3832 * Assume we're in process context, since the normal device reset
3833 * process has to wait for the device anyway. Storage devices are
3834 * reset as part of error handling, so use GFP_NOIO instead of
3835 * GFP_KERNEL.
3836 */
3837 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3838 if (!reset_device_cmd) {
3839 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3840 return -ENOMEM;
3841 }
3842
3843 /* Attempt to submit the Reset Device command to the command ring */
3844 spin_lock_irqsave(&xhci->lock, flags);
3845
3846 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3847 if (ret) {
3848 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3849 spin_unlock_irqrestore(&xhci->lock, flags);
3850 goto command_cleanup;
3851 }
3852 xhci_ring_cmd_db(xhci);
3853 spin_unlock_irqrestore(&xhci->lock, flags);
3854
3855 /* Wait for the Reset Device command to finish */
3856 wait_for_completion(reset_device_cmd->completion);
3857
3858 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3859 * unless we tried to reset a slot ID that wasn't enabled,
3860 * or the device wasn't in the addressed or configured state.
3861 */
3862 ret = reset_device_cmd->status;
3863 switch (ret) {
3864 case COMP_COMMAND_ABORTED:
3865 case COMP_COMMAND_RING_STOPPED:
3866 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3867 ret = -ETIME;
3868 goto command_cleanup;
3869 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3870 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3871 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3872 slot_id,
3873 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3874 xhci_dbg(xhci, "Not freeing device rings.\n");
3875 /* Don't treat this as an error. May change my mind later. */
3876 ret = 0;
3877 goto command_cleanup;
3878 case COMP_SUCCESS:
3879 xhci_dbg(xhci, "Successful reset device command.\n");
3880 break;
3881 default:
3882 if (xhci_is_vendor_info_code(xhci, ret))
3883 break;
3884 xhci_warn(xhci, "Unknown completion code %u for "
3885 "reset device command.\n", ret);
3886 ret = -EINVAL;
3887 goto command_cleanup;
3888 }
3889
3890 /* Free up host controller endpoint resources */
3891 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3892 spin_lock_irqsave(&xhci->lock, flags);
3893 /* Don't delete the default control endpoint resources */
3894 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3895 spin_unlock_irqrestore(&xhci->lock, flags);
3896 }
3897
3898 /* Everything but endpoint 0 is disabled, so free the rings. */
3899 for (i = 1; i < 31; i++) {
3900 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3901
3902 if (ep->ep_state & EP_HAS_STREAMS) {
3903 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3904 xhci_get_endpoint_address(i));
3905 xhci_free_stream_info(xhci, ep->stream_info);
3906 ep->stream_info = NULL;
3907 ep->ep_state &= ~EP_HAS_STREAMS;
3908 }
3909
3910 if (ep->ring) {
3911 xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3912 xhci_free_endpoint_ring(xhci, virt_dev, i);
3913 }
3914 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3915 xhci_drop_ep_from_interval_table(xhci,
3916 &virt_dev->eps[i].bw_info,
3917 virt_dev->bw_table,
3918 udev,
3919 &virt_dev->eps[i],
3920 virt_dev->tt_info);
3921 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3922 }
3923 /* If necessary, update the number of active TTs on this root port */
3924 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3925 virt_dev->flags = 0;
3926 ret = 0;
3927
3928 command_cleanup:
3929 xhci_free_command(xhci, reset_device_cmd);
3930 return ret;
3931 }
3932
3933 /*
3934 * At this point, the struct usb_device is about to go away, the device has
3935 * disconnected, and all traffic has been stopped and the endpoints have been
3936 * disabled. Free any HC data structures associated with that device.
3937 */
3938 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3939 {
3940 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3941 struct xhci_virt_device *virt_dev;
3942 struct xhci_slot_ctx *slot_ctx;
3943 int i, ret;
3944
3945 /*
3946 * We called pm_runtime_get_noresume when the device was attached.
3947 * Decrement the counter here to allow controller to runtime suspend
3948 * if no devices remain.
3949 */
3950 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3951 pm_runtime_put_noidle(hcd->self.controller);
3952
3953 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3954 /* If the host is halted due to driver unload, we still need to free the
3955 * device.
3956 */
3957 if (ret <= 0 && ret != -ENODEV)
3958 return;
3959
3960 virt_dev = xhci->devs[udev->slot_id];
3961 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3962 trace_xhci_free_dev(slot_ctx);
3963
3964 /* Stop any wayward timer functions (which may grab the lock) */
3965 for (i = 0; i < 31; i++) {
3966 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3967 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3968 }
3969 virt_dev->udev = NULL;
3970 xhci_disable_slot(xhci, udev->slot_id);
3971 xhci_free_virt_device(xhci, udev->slot_id);
3972 }
3973
3974 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3975 {
3976 struct xhci_command *command;
3977 unsigned long flags;
3978 u32 state;
3979 int ret = 0;
3980
3981 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3982 if (!command)
3983 return -ENOMEM;
3984
3985 xhci_debugfs_remove_slot(xhci, slot_id);
3986
3987 spin_lock_irqsave(&xhci->lock, flags);
3988 /* Don't disable the slot if the host controller is dead. */
3989 state = readl(&xhci->op_regs->status);
3990 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3991 (xhci->xhc_state & XHCI_STATE_HALTED)) {
3992 spin_unlock_irqrestore(&xhci->lock, flags);
3993 kfree(command);
3994 return -ENODEV;
3995 }
3996
3997 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3998 slot_id);
3999 if (ret) {
4000 spin_unlock_irqrestore(&xhci->lock, flags);
4001 kfree(command);
4002 return ret;
4003 }
4004 xhci_ring_cmd_db(xhci);
4005 spin_unlock_irqrestore(&xhci->lock, flags);
4006
4007 wait_for_completion(command->completion);
4008
4009 if (command->status != COMP_SUCCESS)
4010 xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n",
4011 slot_id, command->status);
4012
4013 xhci_free_command(xhci, command);
4014
4015 return ret;
4016 }
4017
4018 /*
4019 * Checks if we have enough host controller resources for the default control
4020 * endpoint.
4021 *
4022 * Must be called with xhci->lock held.
4023 */
4024 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
4025 {
4026 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
4027 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4028 "Not enough ep ctxs: "
4029 "%u active, need to add 1, limit is %u.",
4030 xhci->num_active_eps, xhci->limit_active_eps);
4031 return -ENOMEM;
4032 }
4033 xhci->num_active_eps += 1;
4034 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4035 "Adding 1 ep ctx, %u now active.",
4036 xhci->num_active_eps);
4037 return 0;
4038 }
4039
4040
4041 /*
4042 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
4043 * timed out, or allocating memory failed. Returns 1 on success.
4044 */
4045 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
4046 {
4047 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4048 struct xhci_virt_device *vdev;
4049 struct xhci_slot_ctx *slot_ctx;
4050 unsigned long flags;
4051 int ret, slot_id;
4052 struct xhci_command *command;
4053
4054 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4055 if (!command)
4056 return 0;
4057
4058 spin_lock_irqsave(&xhci->lock, flags);
4059 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
4060 if (ret) {
4061 spin_unlock_irqrestore(&xhci->lock, flags);
4062 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
4063 xhci_free_command(xhci, command);
4064 return 0;
4065 }
4066 xhci_ring_cmd_db(xhci);
4067 spin_unlock_irqrestore(&xhci->lock, flags);
4068
4069 wait_for_completion(command->completion);
4070 slot_id = command->slot_id;
4071
4072 if (!slot_id || command->status != COMP_SUCCESS) {
4073 xhci_err(xhci, "Error while assigning device slot ID\n");
4074 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4075 HCS_MAX_SLOTS(
4076 readl(&xhci->cap_regs->hcs_params1)));
4077 xhci_free_command(xhci, command);
4078 return 0;
4079 }
4080
4081 xhci_free_command(xhci, command);
4082
4083 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4084 spin_lock_irqsave(&xhci->lock, flags);
4085 ret = xhci_reserve_host_control_ep_resources(xhci);
4086 if (ret) {
4087 spin_unlock_irqrestore(&xhci->lock, flags);
4088 xhci_warn(xhci, "Not enough host resources, "
4089 "active endpoint contexts = %u\n",
4090 xhci->num_active_eps);
4091 goto disable_slot;
4092 }
4093 spin_unlock_irqrestore(&xhci->lock, flags);
4094 }
4095 /* Use GFP_NOIO, since this function can be called from
4096 * xhci_discover_or_reset_device(), which may be called as part of
4097 * mass storage driver error handling.
4098 */
4099 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4100 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4101 goto disable_slot;
4102 }
4103 vdev = xhci->devs[slot_id];
4104 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4105 trace_xhci_alloc_dev(slot_ctx);
4106
4107 udev->slot_id = slot_id;
4108
4109 xhci_debugfs_create_slot(xhci, slot_id);
4110
4111 /*
4112 * If resetting upon resume, we can't put the controller into runtime
4113 * suspend if there is a device attached.
4114 */
4115 if (xhci->quirks & XHCI_RESET_ON_RESUME)
4116 pm_runtime_get_noresume(hcd->self.controller);
4117
4118 /* Is this a LS or FS device under a HS hub? */
4119 /* Hub or peripherial? */
4120 return 1;
4121
4122 disable_slot:
4123 xhci_disable_slot(xhci, udev->slot_id);
4124 xhci_free_virt_device(xhci, udev->slot_id);
4125
4126 return 0;
4127 }
4128
4129 /*
4130 * Issue an Address Device command and optionally send a corresponding
4131 * SetAddress request to the device.
4132 */
4133 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4134 enum xhci_setup_dev setup)
4135 {
4136 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4137 unsigned long flags;
4138 struct xhci_virt_device *virt_dev;
4139 int ret = 0;
4140 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4141 struct xhci_slot_ctx *slot_ctx;
4142 struct xhci_input_control_ctx *ctrl_ctx;
4143 u64 temp_64;
4144 struct xhci_command *command = NULL;
4145
4146 mutex_lock(&xhci->mutex);
4147
4148 if (xhci->xhc_state) { /* dying, removing or halted */
4149 ret = -ESHUTDOWN;
4150 goto out;
4151 }
4152
4153 if (!udev->slot_id) {
4154 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4155 "Bad Slot ID %d", udev->slot_id);
4156 ret = -EINVAL;
4157 goto out;
4158 }
4159
4160 virt_dev = xhci->devs[udev->slot_id];
4161
4162 if (WARN_ON(!virt_dev)) {
4163 /*
4164 * In plug/unplug torture test with an NEC controller,
4165 * a zero-dereference was observed once due to virt_dev = 0.
4166 * Print useful debug rather than crash if it is observed again!
4167 */
4168 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4169 udev->slot_id);
4170 ret = -EINVAL;
4171 goto out;
4172 }
4173 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4174 trace_xhci_setup_device_slot(slot_ctx);
4175
4176 if (setup == SETUP_CONTEXT_ONLY) {
4177 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4178 SLOT_STATE_DEFAULT) {
4179 xhci_dbg(xhci, "Slot already in default state\n");
4180 goto out;
4181 }
4182 }
4183
4184 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4185 if (!command) {
4186 ret = -ENOMEM;
4187 goto out;
4188 }
4189
4190 command->in_ctx = virt_dev->in_ctx;
4191
4192 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4193 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4194 if (!ctrl_ctx) {
4195 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4196 __func__);
4197 ret = -EINVAL;
4198 goto out;
4199 }
4200 /*
4201 * If this is the first Set Address since device plug-in or
4202 * virt_device realloaction after a resume with an xHCI power loss,
4203 * then set up the slot context.
4204 */
4205 if (!slot_ctx->dev_info)
4206 xhci_setup_addressable_virt_dev(xhci, udev);
4207 /* Otherwise, update the control endpoint ring enqueue pointer. */
4208 else
4209 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4210 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4211 ctrl_ctx->drop_flags = 0;
4212
4213 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4214 le32_to_cpu(slot_ctx->dev_info) >> 27);
4215
4216 trace_xhci_address_ctrl_ctx(ctrl_ctx);
4217 spin_lock_irqsave(&xhci->lock, flags);
4218 trace_xhci_setup_device(virt_dev);
4219 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4220 udev->slot_id, setup);
4221 if (ret) {
4222 spin_unlock_irqrestore(&xhci->lock, flags);
4223 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4224 "FIXME: allocate a command ring segment");
4225 goto out;
4226 }
4227 xhci_ring_cmd_db(xhci);
4228 spin_unlock_irqrestore(&xhci->lock, flags);
4229
4230 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4231 wait_for_completion(command->completion);
4232
4233 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
4234 * the SetAddress() "recovery interval" required by USB and aborting the
4235 * command on a timeout.
4236 */
4237 switch (command->status) {
4238 case COMP_COMMAND_ABORTED:
4239 case COMP_COMMAND_RING_STOPPED:
4240 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4241 ret = -ETIME;
4242 break;
4243 case COMP_CONTEXT_STATE_ERROR:
4244 case COMP_SLOT_NOT_ENABLED_ERROR:
4245 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4246 act, udev->slot_id);
4247 ret = -EINVAL;
4248 break;
4249 case COMP_USB_TRANSACTION_ERROR:
4250 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4251
4252 mutex_unlock(&xhci->mutex);
4253 ret = xhci_disable_slot(xhci, udev->slot_id);
4254 xhci_free_virt_device(xhci, udev->slot_id);
4255 if (!ret)
4256 xhci_alloc_dev(hcd, udev);
4257 kfree(command->completion);
4258 kfree(command);
4259 return -EPROTO;
4260 case COMP_INCOMPATIBLE_DEVICE_ERROR:
4261 dev_warn(&udev->dev,
4262 "ERROR: Incompatible device for setup %s command\n", act);
4263 ret = -ENODEV;
4264 break;
4265 case COMP_SUCCESS:
4266 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4267 "Successful setup %s command", act);
4268 break;
4269 default:
4270 xhci_err(xhci,
4271 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4272 act, command->status);
4273 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4274 ret = -EINVAL;
4275 break;
4276 }
4277 if (ret)
4278 goto out;
4279 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4280 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4281 "Op regs DCBAA ptr = %#016llx", temp_64);
4282 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4283 "Slot ID %d dcbaa entry @%p = %#016llx",
4284 udev->slot_id,
4285 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4286 (unsigned long long)
4287 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4288 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4289 "Output Context DMA address = %#08llx",
4290 (unsigned long long)virt_dev->out_ctx->dma);
4291 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4292 le32_to_cpu(slot_ctx->dev_info) >> 27);
4293 /*
4294 * USB core uses address 1 for the roothubs, so we add one to the
4295 * address given back to us by the HC.
4296 */
4297 trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4298 le32_to_cpu(slot_ctx->dev_info) >> 27);
4299 /* Zero the input context control for later use */
4300 ctrl_ctx->add_flags = 0;
4301 ctrl_ctx->drop_flags = 0;
4302 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4303 udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4304
4305 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4306 "Internal device address = %d",
4307 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4308 out:
4309 mutex_unlock(&xhci->mutex);
4310 if (command) {
4311 kfree(command->completion);
4312 kfree(command);
4313 }
4314 return ret;
4315 }
4316
4317 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4318 {
4319 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4320 }
4321
4322 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4323 {
4324 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4325 }
4326
4327 /*
4328 * Transfer the port index into real index in the HW port status
4329 * registers. Caculate offset between the port's PORTSC register
4330 * and port status base. Divide the number of per port register
4331 * to get the real index. The raw port number bases 1.
4332 */
4333 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4334 {
4335 struct xhci_hub *rhub;
4336
4337 rhub = xhci_get_rhub(hcd);
4338 return rhub->ports[port1 - 1]->hw_portnum + 1;
4339 }
4340
4341 /*
4342 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4343 * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
4344 */
4345 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4346 struct usb_device *udev, u16 max_exit_latency)
4347 {
4348 struct xhci_virt_device *virt_dev;
4349 struct xhci_command *command;
4350 struct xhci_input_control_ctx *ctrl_ctx;
4351 struct xhci_slot_ctx *slot_ctx;
4352 unsigned long flags;
4353 int ret;
4354
4355 spin_lock_irqsave(&xhci->lock, flags);
4356
4357 virt_dev = xhci->devs[udev->slot_id];
4358
4359 /*
4360 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4361 * xHC was re-initialized. Exit latency will be set later after
4362 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4363 */
4364
4365 if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4366 spin_unlock_irqrestore(&xhci->lock, flags);
4367 return 0;
4368 }
4369
4370 /* Attempt to issue an Evaluate Context command to change the MEL. */
4371 command = xhci->lpm_command;
4372 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4373 if (!ctrl_ctx) {
4374 spin_unlock_irqrestore(&xhci->lock, flags);
4375 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4376 __func__);
4377 return -ENOMEM;
4378 }
4379
4380 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4381 spin_unlock_irqrestore(&xhci->lock, flags);
4382
4383 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4384 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4385 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4386 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4387 slot_ctx->dev_state = 0;
4388
4389 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4390 "Set up evaluate context for LPM MEL change.");
4391
4392 /* Issue and wait for the evaluate context command. */
4393 ret = xhci_configure_endpoint(xhci, udev, command,
4394 true, true);
4395
4396 if (!ret) {
4397 spin_lock_irqsave(&xhci->lock, flags);
4398 virt_dev->current_mel = max_exit_latency;
4399 spin_unlock_irqrestore(&xhci->lock, flags);
4400 }
4401 return ret;
4402 }
4403
4404 #ifdef CONFIG_PM
4405
4406 /* BESL to HIRD Encoding array for USB2 LPM */
4407 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4408 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4409
4410 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4411 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4412 struct usb_device *udev)
4413 {
4414 int u2del, besl, besl_host;
4415 int besl_device = 0;
4416 u32 field;
4417
4418 u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4419 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4420
4421 if (field & USB_BESL_SUPPORT) {
4422 for (besl_host = 0; besl_host < 16; besl_host++) {
4423 if (xhci_besl_encoding[besl_host] >= u2del)
4424 break;
4425 }
4426 /* Use baseline BESL value as default */
4427 if (field & USB_BESL_BASELINE_VALID)
4428 besl_device = USB_GET_BESL_BASELINE(field);
4429 else if (field & USB_BESL_DEEP_VALID)
4430 besl_device = USB_GET_BESL_DEEP(field);
4431 } else {
4432 if (u2del <= 50)
4433 besl_host = 0;
4434 else
4435 besl_host = (u2del - 51) / 75 + 1;
4436 }
4437
4438 besl = besl_host + besl_device;
4439 if (besl > 15)
4440 besl = 15;
4441
4442 return besl;
4443 }
4444
4445 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4446 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4447 {
4448 u32 field;
4449 int l1;
4450 int besld = 0;
4451 int hirdm = 0;
4452
4453 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4454
4455 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4456 l1 = udev->l1_params.timeout / 256;
4457
4458 /* device has preferred BESLD */
4459 if (field & USB_BESL_DEEP_VALID) {
4460 besld = USB_GET_BESL_DEEP(field);
4461 hirdm = 1;
4462 }
4463
4464 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4465 }
4466
4467 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4468 struct usb_device *udev, int enable)
4469 {
4470 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4471 struct xhci_port **ports;
4472 __le32 __iomem *pm_addr, *hlpm_addr;
4473 u32 pm_val, hlpm_val, field;
4474 unsigned int port_num;
4475 unsigned long flags;
4476 int hird, exit_latency;
4477 int ret;
4478
4479 if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4480 return -EPERM;
4481
4482 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4483 !udev->lpm_capable)
4484 return -EPERM;
4485
4486 if (!udev->parent || udev->parent->parent ||
4487 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4488 return -EPERM;
4489
4490 if (udev->usb2_hw_lpm_capable != 1)
4491 return -EPERM;
4492
4493 spin_lock_irqsave(&xhci->lock, flags);
4494
4495 ports = xhci->usb2_rhub.ports;
4496 port_num = udev->portnum - 1;
4497 pm_addr = ports[port_num]->addr + PORTPMSC;
4498 pm_val = readl(pm_addr);
4499 hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4500
4501 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4502 enable ? "enable" : "disable", port_num + 1);
4503
4504 if (enable) {
4505 /* Host supports BESL timeout instead of HIRD */
4506 if (udev->usb2_hw_lpm_besl_capable) {
4507 /* if device doesn't have a preferred BESL value use a
4508 * default one which works with mixed HIRD and BESL
4509 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4510 */
4511 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4512 if ((field & USB_BESL_SUPPORT) &&
4513 (field & USB_BESL_BASELINE_VALID))
4514 hird = USB_GET_BESL_BASELINE(field);
4515 else
4516 hird = udev->l1_params.besl;
4517
4518 exit_latency = xhci_besl_encoding[hird];
4519 spin_unlock_irqrestore(&xhci->lock, flags);
4520
4521 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4522 * input context for link powermanagement evaluate
4523 * context commands. It is protected by hcd->bandwidth
4524 * mutex and is shared by all devices. We need to set
4525 * the max ext latency in USB 2 BESL LPM as well, so
4526 * use the same mutex and xhci_change_max_exit_latency()
4527 */
4528 mutex_lock(hcd->bandwidth_mutex);
4529 ret = xhci_change_max_exit_latency(xhci, udev,
4530 exit_latency);
4531 mutex_unlock(hcd->bandwidth_mutex);
4532
4533 if (ret < 0)
4534 return ret;
4535 spin_lock_irqsave(&xhci->lock, flags);
4536
4537 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4538 writel(hlpm_val, hlpm_addr);
4539 /* flush write */
4540 readl(hlpm_addr);
4541 } else {
4542 hird = xhci_calculate_hird_besl(xhci, udev);
4543 }
4544
4545 pm_val &= ~PORT_HIRD_MASK;
4546 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4547 writel(pm_val, pm_addr);
4548 pm_val = readl(pm_addr);
4549 pm_val |= PORT_HLE;
4550 writel(pm_val, pm_addr);
4551 /* flush write */
4552 readl(pm_addr);
4553 } else {
4554 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4555 writel(pm_val, pm_addr);
4556 /* flush write */
4557 readl(pm_addr);
4558 if (udev->usb2_hw_lpm_besl_capable) {
4559 spin_unlock_irqrestore(&xhci->lock, flags);
4560 mutex_lock(hcd->bandwidth_mutex);
4561 xhci_change_max_exit_latency(xhci, udev, 0);
4562 mutex_unlock(hcd->bandwidth_mutex);
4563 readl_poll_timeout(ports[port_num]->addr, pm_val,
4564 (pm_val & PORT_PLS_MASK) == XDEV_U0,
4565 100, 10000);
4566 return 0;
4567 }
4568 }
4569
4570 spin_unlock_irqrestore(&xhci->lock, flags);
4571 return 0;
4572 }
4573
4574 /* check if a usb2 port supports a given extened capability protocol
4575 * only USB2 ports extended protocol capability values are cached.
4576 * Return 1 if capability is supported
4577 */
4578 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4579 unsigned capability)
4580 {
4581 u32 port_offset, port_count;
4582 int i;
4583
4584 for (i = 0; i < xhci->num_ext_caps; i++) {
4585 if (xhci->ext_caps[i] & capability) {
4586 /* port offsets starts at 1 */
4587 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4588 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4589 if (port >= port_offset &&
4590 port < port_offset + port_count)
4591 return 1;
4592 }
4593 }
4594 return 0;
4595 }
4596
4597 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4598 {
4599 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4600 int portnum = udev->portnum - 1;
4601
4602 if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4603 return 0;
4604
4605 /* we only support lpm for non-hub device connected to root hub yet */
4606 if (!udev->parent || udev->parent->parent ||
4607 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4608 return 0;
4609
4610 if (xhci->hw_lpm_support == 1 &&
4611 xhci_check_usb2_port_capability(
4612 xhci, portnum, XHCI_HLC)) {
4613 udev->usb2_hw_lpm_capable = 1;
4614 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4615 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4616 if (xhci_check_usb2_port_capability(xhci, portnum,
4617 XHCI_BLC))
4618 udev->usb2_hw_lpm_besl_capable = 1;
4619 }
4620
4621 return 0;
4622 }
4623
4624 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4625
4626 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4627 static unsigned long long xhci_service_interval_to_ns(
4628 struct usb_endpoint_descriptor *desc)
4629 {
4630 return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4631 }
4632
4633 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4634 enum usb3_link_state state)
4635 {
4636 unsigned long long sel;
4637 unsigned long long pel;
4638 unsigned int max_sel_pel;
4639 char *state_name;
4640
4641 switch (state) {
4642 case USB3_LPM_U1:
4643 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4644 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4645 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4646 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4647 state_name = "U1";
4648 break;
4649 case USB3_LPM_U2:
4650 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4651 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4652 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4653 state_name = "U2";
4654 break;
4655 default:
4656 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4657 __func__);
4658 return USB3_LPM_DISABLED;
4659 }
4660
4661 if (sel <= max_sel_pel && pel <= max_sel_pel)
4662 return USB3_LPM_DEVICE_INITIATED;
4663
4664 if (sel > max_sel_pel)
4665 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4666 "due to long SEL %llu ms\n",
4667 state_name, sel);
4668 else
4669 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4670 "due to long PEL %llu ms\n",
4671 state_name, pel);
4672 return USB3_LPM_DISABLED;
4673 }
4674
4675 /* The U1 timeout should be the maximum of the following values:
4676 * - For control endpoints, U1 system exit latency (SEL) * 3
4677 * - For bulk endpoints, U1 SEL * 5
4678 * - For interrupt endpoints:
4679 * - Notification EPs, U1 SEL * 3
4680 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4681 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4682 */
4683 static unsigned long long xhci_calculate_intel_u1_timeout(
4684 struct usb_device *udev,
4685 struct usb_endpoint_descriptor *desc)
4686 {
4687 unsigned long long timeout_ns;
4688 int ep_type;
4689 int intr_type;
4690
4691 ep_type = usb_endpoint_type(desc);
4692 switch (ep_type) {
4693 case USB_ENDPOINT_XFER_CONTROL:
4694 timeout_ns = udev->u1_params.sel * 3;
4695 break;
4696 case USB_ENDPOINT_XFER_BULK:
4697 timeout_ns = udev->u1_params.sel * 5;
4698 break;
4699 case USB_ENDPOINT_XFER_INT:
4700 intr_type = usb_endpoint_interrupt_type(desc);
4701 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4702 timeout_ns = udev->u1_params.sel * 3;
4703 break;
4704 }
4705 /* Otherwise the calculation is the same as isoc eps */
4706 fallthrough;
4707 case USB_ENDPOINT_XFER_ISOC:
4708 timeout_ns = xhci_service_interval_to_ns(desc);
4709 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4710 if (timeout_ns < udev->u1_params.sel * 2)
4711 timeout_ns = udev->u1_params.sel * 2;
4712 break;
4713 default:
4714 return 0;
4715 }
4716
4717 return timeout_ns;
4718 }
4719
4720 /* Returns the hub-encoded U1 timeout value. */
4721 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4722 struct usb_device *udev,
4723 struct usb_endpoint_descriptor *desc)
4724 {
4725 unsigned long long timeout_ns;
4726
4727 /* Prevent U1 if service interval is shorter than U1 exit latency */
4728 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4729 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4730 dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4731 return USB3_LPM_DISABLED;
4732 }
4733 }
4734
4735 if (xhci->quirks & XHCI_INTEL_HOST)
4736 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4737 else
4738 timeout_ns = udev->u1_params.sel;
4739
4740 /* The U1 timeout is encoded in 1us intervals.
4741 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4742 */
4743 if (timeout_ns == USB3_LPM_DISABLED)
4744 timeout_ns = 1;
4745 else
4746 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4747
4748 /* If the necessary timeout value is bigger than what we can set in the
4749 * USB 3.0 hub, we have to disable hub-initiated U1.
4750 */
4751 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4752 return timeout_ns;
4753 dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4754 "due to long timeout %llu ms\n", timeout_ns);
4755 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4756 }
4757
4758 /* The U2 timeout should be the maximum of:
4759 * - 10 ms (to avoid the bandwidth impact on the scheduler)
4760 * - largest bInterval of any active periodic endpoint (to avoid going
4761 * into lower power link states between intervals).
4762 * - the U2 Exit Latency of the device
4763 */
4764 static unsigned long long xhci_calculate_intel_u2_timeout(
4765 struct usb_device *udev,
4766 struct usb_endpoint_descriptor *desc)
4767 {
4768 unsigned long long timeout_ns;
4769 unsigned long long u2_del_ns;
4770
4771 timeout_ns = 10 * 1000 * 1000;
4772
4773 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4774 (xhci_service_interval_to_ns(desc) > timeout_ns))
4775 timeout_ns = xhci_service_interval_to_ns(desc);
4776
4777 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4778 if (u2_del_ns > timeout_ns)
4779 timeout_ns = u2_del_ns;
4780
4781 return timeout_ns;
4782 }
4783
4784 /* Returns the hub-encoded U2 timeout value. */
4785 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4786 struct usb_device *udev,
4787 struct usb_endpoint_descriptor *desc)
4788 {
4789 unsigned long long timeout_ns;
4790
4791 /* Prevent U2 if service interval is shorter than U2 exit latency */
4792 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4793 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4794 dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4795 return USB3_LPM_DISABLED;
4796 }
4797 }
4798
4799 if (xhci->quirks & XHCI_INTEL_HOST)
4800 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4801 else
4802 timeout_ns = udev->u2_params.sel;
4803
4804 /* The U2 timeout is encoded in 256us intervals */
4805 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4806 /* If the necessary timeout value is bigger than what we can set in the
4807 * USB 3.0 hub, we have to disable hub-initiated U2.
4808 */
4809 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4810 return timeout_ns;
4811 dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4812 "due to long timeout %llu ms\n", timeout_ns);
4813 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4814 }
4815
4816 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4817 struct usb_device *udev,
4818 struct usb_endpoint_descriptor *desc,
4819 enum usb3_link_state state,
4820 u16 *timeout)
4821 {
4822 if (state == USB3_LPM_U1)
4823 return xhci_calculate_u1_timeout(xhci, udev, desc);
4824 else if (state == USB3_LPM_U2)
4825 return xhci_calculate_u2_timeout(xhci, udev, desc);
4826
4827 return USB3_LPM_DISABLED;
4828 }
4829
4830 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4831 struct usb_device *udev,
4832 struct usb_endpoint_descriptor *desc,
4833 enum usb3_link_state state,
4834 u16 *timeout)
4835 {
4836 u16 alt_timeout;
4837
4838 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4839 desc, state, timeout);
4840
4841 /* If we found we can't enable hub-initiated LPM, and
4842 * the U1 or U2 exit latency was too high to allow
4843 * device-initiated LPM as well, then we will disable LPM
4844 * for this device, so stop searching any further.
4845 */
4846 if (alt_timeout == USB3_LPM_DISABLED) {
4847 *timeout = alt_timeout;
4848 return -E2BIG;
4849 }
4850 if (alt_timeout > *timeout)
4851 *timeout = alt_timeout;
4852 return 0;
4853 }
4854
4855 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4856 struct usb_device *udev,
4857 struct usb_host_interface *alt,
4858 enum usb3_link_state state,
4859 u16 *timeout)
4860 {
4861 int j;
4862
4863 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4864 if (xhci_update_timeout_for_endpoint(xhci, udev,
4865 &alt->endpoint[j].desc, state, timeout))
4866 return -E2BIG;
4867 }
4868 return 0;
4869 }
4870
4871 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4872 enum usb3_link_state state)
4873 {
4874 struct usb_device *parent;
4875 unsigned int num_hubs;
4876
4877 if (state == USB3_LPM_U2)
4878 return 0;
4879
4880 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4881 for (parent = udev->parent, num_hubs = 0; parent->parent;
4882 parent = parent->parent)
4883 num_hubs++;
4884
4885 if (num_hubs < 2)
4886 return 0;
4887
4888 dev_dbg(&udev->dev, "Disabling U1 link state for device"
4889 " below second-tier hub.\n");
4890 dev_dbg(&udev->dev, "Plug device into first-tier hub "
4891 "to decrease power consumption.\n");
4892 return -E2BIG;
4893 }
4894
4895 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4896 struct usb_device *udev,
4897 enum usb3_link_state state)
4898 {
4899 if (xhci->quirks & XHCI_INTEL_HOST)
4900 return xhci_check_intel_tier_policy(udev, state);
4901 else
4902 return 0;
4903 }
4904
4905 /* Returns the U1 or U2 timeout that should be enabled.
4906 * If the tier check or timeout setting functions return with a non-zero exit
4907 * code, that means the timeout value has been finalized and we shouldn't look
4908 * at any more endpoints.
4909 */
4910 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4911 struct usb_device *udev, enum usb3_link_state state)
4912 {
4913 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4914 struct usb_host_config *config;
4915 char *state_name;
4916 int i;
4917 u16 timeout = USB3_LPM_DISABLED;
4918
4919 if (state == USB3_LPM_U1)
4920 state_name = "U1";
4921 else if (state == USB3_LPM_U2)
4922 state_name = "U2";
4923 else {
4924 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4925 state);
4926 return timeout;
4927 }
4928
4929 if (xhci_check_tier_policy(xhci, udev, state) < 0)
4930 return timeout;
4931
4932 /* Gather some information about the currently installed configuration
4933 * and alternate interface settings.
4934 */
4935 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4936 state, &timeout))
4937 return timeout;
4938
4939 config = udev->actconfig;
4940 if (!config)
4941 return timeout;
4942
4943 for (i = 0; i < config->desc.bNumInterfaces; i++) {
4944 struct usb_driver *driver;
4945 struct usb_interface *intf = config->interface[i];
4946
4947 if (!intf)
4948 continue;
4949
4950 /* Check if any currently bound drivers want hub-initiated LPM
4951 * disabled.
4952 */
4953 if (intf->dev.driver) {
4954 driver = to_usb_driver(intf->dev.driver);
4955 if (driver && driver->disable_hub_initiated_lpm) {
4956 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4957 state_name, driver->name);
4958 timeout = xhci_get_timeout_no_hub_lpm(udev,
4959 state);
4960 if (timeout == USB3_LPM_DISABLED)
4961 return timeout;
4962 }
4963 }
4964
4965 /* Not sure how this could happen... */
4966 if (!intf->cur_altsetting)
4967 continue;
4968
4969 if (xhci_update_timeout_for_interface(xhci, udev,
4970 intf->cur_altsetting,
4971 state, &timeout))
4972 return timeout;
4973 }
4974 return timeout;
4975 }
4976
4977 static int calculate_max_exit_latency(struct usb_device *udev,
4978 enum usb3_link_state state_changed,
4979 u16 hub_encoded_timeout)
4980 {
4981 unsigned long long u1_mel_us = 0;
4982 unsigned long long u2_mel_us = 0;
4983 unsigned long long mel_us = 0;
4984 bool disabling_u1;
4985 bool disabling_u2;
4986 bool enabling_u1;
4987 bool enabling_u2;
4988
4989 disabling_u1 = (state_changed == USB3_LPM_U1 &&
4990 hub_encoded_timeout == USB3_LPM_DISABLED);
4991 disabling_u2 = (state_changed == USB3_LPM_U2 &&
4992 hub_encoded_timeout == USB3_LPM_DISABLED);
4993
4994 enabling_u1 = (state_changed == USB3_LPM_U1 &&
4995 hub_encoded_timeout != USB3_LPM_DISABLED);
4996 enabling_u2 = (state_changed == USB3_LPM_U2 &&
4997 hub_encoded_timeout != USB3_LPM_DISABLED);
4998
4999 /* If U1 was already enabled and we're not disabling it,
5000 * or we're going to enable U1, account for the U1 max exit latency.
5001 */
5002 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
5003 enabling_u1)
5004 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
5005 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
5006 enabling_u2)
5007 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
5008
5009 if (u1_mel_us > u2_mel_us)
5010 mel_us = u1_mel_us;
5011 else
5012 mel_us = u2_mel_us;
5013 /* xHCI host controller max exit latency field is only 16 bits wide. */
5014 if (mel_us > MAX_EXIT) {
5015 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
5016 "is too big.\n", mel_us);
5017 return -E2BIG;
5018 }
5019 return mel_us;
5020 }
5021
5022 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
5023 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5024 struct usb_device *udev, enum usb3_link_state state)
5025 {
5026 struct xhci_hcd *xhci;
5027 u16 hub_encoded_timeout;
5028 int mel;
5029 int ret;
5030
5031 xhci = hcd_to_xhci(hcd);
5032 /* The LPM timeout values are pretty host-controller specific, so don't
5033 * enable hub-initiated timeouts unless the vendor has provided
5034 * information about their timeout algorithm.
5035 */
5036 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5037 !xhci->devs[udev->slot_id])
5038 return USB3_LPM_DISABLED;
5039
5040 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
5041 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
5042 if (mel < 0) {
5043 /* Max Exit Latency is too big, disable LPM. */
5044 hub_encoded_timeout = USB3_LPM_DISABLED;
5045 mel = 0;
5046 }
5047
5048 ret = xhci_change_max_exit_latency(xhci, udev, mel);
5049 if (ret)
5050 return ret;
5051 return hub_encoded_timeout;
5052 }
5053
5054 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5055 struct usb_device *udev, enum usb3_link_state state)
5056 {
5057 struct xhci_hcd *xhci;
5058 u16 mel;
5059
5060 xhci = hcd_to_xhci(hcd);
5061 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5062 !xhci->devs[udev->slot_id])
5063 return 0;
5064
5065 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
5066 return xhci_change_max_exit_latency(xhci, udev, mel);
5067 }
5068 #else /* CONFIG_PM */
5069
5070 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
5071 struct usb_device *udev, int enable)
5072 {
5073 return 0;
5074 }
5075
5076 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5077 {
5078 return 0;
5079 }
5080
5081 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5082 struct usb_device *udev, enum usb3_link_state state)
5083 {
5084 return USB3_LPM_DISABLED;
5085 }
5086
5087 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5088 struct usb_device *udev, enum usb3_link_state state)
5089 {
5090 return 0;
5091 }
5092 #endif /* CONFIG_PM */
5093
5094 /*-------------------------------------------------------------------------*/
5095
5096 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5097 * internal data structures for the device.
5098 */
5099 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5100 struct usb_tt *tt, gfp_t mem_flags)
5101 {
5102 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5103 struct xhci_virt_device *vdev;
5104 struct xhci_command *config_cmd;
5105 struct xhci_input_control_ctx *ctrl_ctx;
5106 struct xhci_slot_ctx *slot_ctx;
5107 unsigned long flags;
5108 unsigned think_time;
5109 int ret;
5110
5111 /* Ignore root hubs */
5112 if (!hdev->parent)
5113 return 0;
5114
5115 vdev = xhci->devs[hdev->slot_id];
5116 if (!vdev) {
5117 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5118 return -EINVAL;
5119 }
5120
5121 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5122 if (!config_cmd)
5123 return -ENOMEM;
5124
5125 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5126 if (!ctrl_ctx) {
5127 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5128 __func__);
5129 xhci_free_command(xhci, config_cmd);
5130 return -ENOMEM;
5131 }
5132
5133 spin_lock_irqsave(&xhci->lock, flags);
5134 if (hdev->speed == USB_SPEED_HIGH &&
5135 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5136 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5137 xhci_free_command(xhci, config_cmd);
5138 spin_unlock_irqrestore(&xhci->lock, flags);
5139 return -ENOMEM;
5140 }
5141
5142 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5143 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5144 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5145 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5146 /*
5147 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5148 * but it may be already set to 1 when setup an xHCI virtual
5149 * device, so clear it anyway.
5150 */
5151 if (tt->multi)
5152 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5153 else if (hdev->speed == USB_SPEED_FULL)
5154 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5155
5156 if (xhci->hci_version > 0x95) {
5157 xhci_dbg(xhci, "xHCI version %x needs hub "
5158 "TT think time and number of ports\n",
5159 (unsigned int) xhci->hci_version);
5160 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5161 /* Set TT think time - convert from ns to FS bit times.
5162 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5163 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5164 *
5165 * xHCI 1.0: this field shall be 0 if the device is not a
5166 * High-spped hub.
5167 */
5168 think_time = tt->think_time;
5169 if (think_time != 0)
5170 think_time = (think_time / 666) - 1;
5171 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5172 slot_ctx->tt_info |=
5173 cpu_to_le32(TT_THINK_TIME(think_time));
5174 } else {
5175 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5176 "TT think time or number of ports\n",
5177 (unsigned int) xhci->hci_version);
5178 }
5179 slot_ctx->dev_state = 0;
5180 spin_unlock_irqrestore(&xhci->lock, flags);
5181
5182 xhci_dbg(xhci, "Set up %s for hub device.\n",
5183 (xhci->hci_version > 0x95) ?
5184 "configure endpoint" : "evaluate context");
5185
5186 /* Issue and wait for the configure endpoint or
5187 * evaluate context command.
5188 */
5189 if (xhci->hci_version > 0x95)
5190 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5191 false, false);
5192 else
5193 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5194 true, false);
5195
5196 xhci_free_command(xhci, config_cmd);
5197 return ret;
5198 }
5199
5200 static int xhci_get_frame(struct usb_hcd *hcd)
5201 {
5202 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5203 /* EHCI mods by the periodic size. Why? */
5204 return readl(&xhci->run_regs->microframe_index) >> 3;
5205 }
5206
5207 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5208 {
5209 struct xhci_hcd *xhci;
5210 /*
5211 * TODO: Check with DWC3 clients for sysdev according to
5212 * quirks
5213 */
5214 struct device *dev = hcd->self.sysdev;
5215 unsigned int minor_rev;
5216 int retval;
5217
5218 /* Accept arbitrarily long scatter-gather lists */
5219 hcd->self.sg_tablesize = ~0;
5220
5221 /* support to build packet from discontinuous buffers */
5222 hcd->self.no_sg_constraint = 1;
5223
5224 /* XHCI controllers don't stop the ep queue on short packets :| */
5225 hcd->self.no_stop_on_short = 1;
5226
5227 xhci = hcd_to_xhci(hcd);
5228
5229 if (usb_hcd_is_primary_hcd(hcd)) {
5230 xhci->main_hcd = hcd;
5231 xhci->usb2_rhub.hcd = hcd;
5232 /* Mark the first roothub as being USB 2.0.
5233 * The xHCI driver will register the USB 3.0 roothub.
5234 */
5235 hcd->speed = HCD_USB2;
5236 hcd->self.root_hub->speed = USB_SPEED_HIGH;
5237 /*
5238 * USB 2.0 roothub under xHCI has an integrated TT,
5239 * (rate matching hub) as opposed to having an OHCI/UHCI
5240 * companion controller.
5241 */
5242 hcd->has_tt = 1;
5243 } else {
5244 /*
5245 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5246 * should return 0x31 for sbrn, or that the minor revision
5247 * is a two digit BCD containig minor and sub-minor numbers.
5248 * This was later clarified in xHCI 1.2.
5249 *
5250 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5251 * minor revision set to 0x1 instead of 0x10.
5252 */
5253 if (xhci->usb3_rhub.min_rev == 0x1)
5254 minor_rev = 1;
5255 else
5256 minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5257
5258 switch (minor_rev) {
5259 case 2:
5260 hcd->speed = HCD_USB32;
5261 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5262 hcd->self.root_hub->rx_lanes = 2;
5263 hcd->self.root_hub->tx_lanes = 2;
5264 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2;
5265 break;
5266 case 1:
5267 hcd->speed = HCD_USB31;
5268 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5269 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1;
5270 break;
5271 }
5272 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5273 minor_rev,
5274 minor_rev ? "Enhanced " : "");
5275
5276 xhci->usb3_rhub.hcd = hcd;
5277 /* xHCI private pointer was set in xhci_pci_probe for the second
5278 * registered roothub.
5279 */
5280 return 0;
5281 }
5282
5283 mutex_init(&xhci->mutex);
5284 xhci->cap_regs = hcd->regs;
5285 xhci->op_regs = hcd->regs +
5286 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5287 xhci->run_regs = hcd->regs +
5288 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5289 /* Cache read-only capability registers */
5290 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5291 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5292 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5293 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
5294 xhci->hci_version = HC_VERSION(xhci->hcc_params);
5295 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5296 if (xhci->hci_version > 0x100)
5297 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5298
5299 xhci->quirks |= quirks;
5300
5301 get_quirks(dev, xhci);
5302
5303 /* In xhci controllers which follow xhci 1.0 spec gives a spurious
5304 * success event after a short transfer. This quirk will ignore such
5305 * spurious event.
5306 */
5307 if (xhci->hci_version > 0x96)
5308 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5309
5310 /* Make sure the HC is halted. */
5311 retval = xhci_halt(xhci);
5312 if (retval)
5313 return retval;
5314
5315 xhci_zero_64b_regs(xhci);
5316
5317 xhci_dbg(xhci, "Resetting HCD\n");
5318 /* Reset the internal HC memory state and registers. */
5319 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
5320 if (retval)
5321 return retval;
5322 xhci_dbg(xhci, "Reset complete\n");
5323
5324 /*
5325 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5326 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5327 * address memory pointers actually. So, this driver clears the AC64
5328 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5329 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5330 */
5331 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5332 xhci->hcc_params &= ~BIT(0);
5333
5334 /* Set dma_mask and coherent_dma_mask to 64-bits,
5335 * if xHC supports 64-bit addressing */
5336 if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5337 !dma_set_mask(dev, DMA_BIT_MASK(64))) {
5338 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5339 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5340 } else {
5341 /*
5342 * This is to avoid error in cases where a 32-bit USB
5343 * controller is used on a 64-bit capable system.
5344 */
5345 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5346 if (retval)
5347 return retval;
5348 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5349 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5350 }
5351
5352 xhci_dbg(xhci, "Calling HCD init\n");
5353 /* Initialize HCD and host controller data structures. */
5354 retval = xhci_init(hcd);
5355 if (retval)
5356 return retval;
5357 xhci_dbg(xhci, "Called HCD init\n");
5358
5359 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5360 xhci->hcc_params, xhci->hci_version, xhci->quirks);
5361
5362 return 0;
5363 }
5364 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5365
5366 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5367 struct usb_host_endpoint *ep)
5368 {
5369 struct xhci_hcd *xhci;
5370 struct usb_device *udev;
5371 unsigned int slot_id;
5372 unsigned int ep_index;
5373 unsigned long flags;
5374
5375 xhci = hcd_to_xhci(hcd);
5376
5377 spin_lock_irqsave(&xhci->lock, flags);
5378 udev = (struct usb_device *)ep->hcpriv;
5379 slot_id = udev->slot_id;
5380 ep_index = xhci_get_endpoint_index(&ep->desc);
5381
5382 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5383 xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5384 spin_unlock_irqrestore(&xhci->lock, flags);
5385 }
5386
5387 static const struct hc_driver xhci_hc_driver = {
5388 .description = "xhci-hcd",
5389 .product_desc = "xHCI Host Controller",
5390 .hcd_priv_size = sizeof(struct xhci_hcd),
5391
5392 /*
5393 * generic hardware linkage
5394 */
5395 .irq = xhci_irq,
5396 .flags = HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5397 HCD_BH,
5398
5399 /*
5400 * basic lifecycle operations
5401 */
5402 .reset = NULL, /* set in xhci_init_driver() */
5403 .start = xhci_run,
5404 .stop = xhci_stop,
5405 .shutdown = xhci_shutdown,
5406
5407 /*
5408 * managing i/o requests and associated device resources
5409 */
5410 .map_urb_for_dma = xhci_map_urb_for_dma,
5411 .unmap_urb_for_dma = xhci_unmap_urb_for_dma,
5412 .urb_enqueue = xhci_urb_enqueue,
5413 .urb_dequeue = xhci_urb_dequeue,
5414 .alloc_dev = xhci_alloc_dev,
5415 .free_dev = xhci_free_dev,
5416 .alloc_streams = xhci_alloc_streams,
5417 .free_streams = xhci_free_streams,
5418 .add_endpoint = xhci_add_endpoint,
5419 .drop_endpoint = xhci_drop_endpoint,
5420 .endpoint_disable = xhci_endpoint_disable,
5421 .endpoint_reset = xhci_endpoint_reset,
5422 .check_bandwidth = xhci_check_bandwidth,
5423 .reset_bandwidth = xhci_reset_bandwidth,
5424 .address_device = xhci_address_device,
5425 .enable_device = xhci_enable_device,
5426 .update_hub_device = xhci_update_hub_device,
5427 .reset_device = xhci_discover_or_reset_device,
5428
5429 /*
5430 * scheduling support
5431 */
5432 .get_frame_number = xhci_get_frame,
5433
5434 /*
5435 * root hub support
5436 */
5437 .hub_control = xhci_hub_control,
5438 .hub_status_data = xhci_hub_status_data,
5439 .bus_suspend = xhci_bus_suspend,
5440 .bus_resume = xhci_bus_resume,
5441 .get_resuming_ports = xhci_get_resuming_ports,
5442
5443 /*
5444 * call back when device connected and addressed
5445 */
5446 .update_device = xhci_update_device,
5447 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm,
5448 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout,
5449 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout,
5450 .find_raw_port_number = xhci_find_raw_port_number,
5451 .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5452 };
5453
5454 void xhci_init_driver(struct hc_driver *drv,
5455 const struct xhci_driver_overrides *over)
5456 {
5457 BUG_ON(!over);
5458
5459 /* Copy the generic table to drv then apply the overrides */
5460 *drv = xhci_hc_driver;
5461
5462 if (over) {
5463 drv->hcd_priv_size += over->extra_priv_size;
5464 if (over->reset)
5465 drv->reset = over->reset;
5466 if (over->start)
5467 drv->start = over->start;
5468 if (over->add_endpoint)
5469 drv->add_endpoint = over->add_endpoint;
5470 if (over->drop_endpoint)
5471 drv->drop_endpoint = over->drop_endpoint;
5472 if (over->check_bandwidth)
5473 drv->check_bandwidth = over->check_bandwidth;
5474 if (over->reset_bandwidth)
5475 drv->reset_bandwidth = over->reset_bandwidth;
5476 }
5477 }
5478 EXPORT_SYMBOL_GPL(xhci_init_driver);
5479
5480 MODULE_DESCRIPTION(DRIVER_DESC);
5481 MODULE_AUTHOR(DRIVER_AUTHOR);
5482 MODULE_LICENSE("GPL");
5483
5484 static int __init xhci_hcd_init(void)
5485 {
5486 /*
5487 * Check the compiler generated sizes of structures that must be laid
5488 * out in specific ways for hardware access.
5489 */
5490 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5491 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5492 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5493 /* xhci_device_control has eight fields, and also
5494 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5495 */
5496 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5497 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5498 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5499 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5500 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5501 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5502 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5503
5504 if (usb_disabled())
5505 return -ENODEV;
5506
5507 xhci_debugfs_create_root();
5508
5509 return 0;
5510 }
5511
5512 /*
5513 * If an init function is provided, an exit function must also be provided
5514 * to allow module unload.
5515 */
5516 static void __exit xhci_hcd_fini(void)
5517 {
5518 xhci_debugfs_remove_root();
5519 }
5520
5521 module_init(xhci_hcd_init);
5522 module_exit(xhci_hcd_fini);