]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/usb/mon/mon_bin.c
Merge commit 'v2.6.35' into kbuild/kconfig
[mirror_ubuntu-jammy-kernel.git] / drivers / usb / mon / mon_bin.c
1 /*
2 * The USB Monitor, inspired by Dave Harding's USBMon.
3 *
4 * This is a binary format reader.
5 *
6 * Copyright (C) 2006 Paolo Abeni (paolo.abeni@email.it)
7 * Copyright (C) 2006,2007 Pete Zaitcev (zaitcev@redhat.com)
8 */
9
10 #include <linux/kernel.h>
11 #include <linux/types.h>
12 #include <linux/fs.h>
13 #include <linux/cdev.h>
14 #include <linux/usb.h>
15 #include <linux/poll.h>
16 #include <linux/compat.h>
17 #include <linux/mm.h>
18 #include <linux/smp_lock.h>
19 #include <linux/scatterlist.h>
20 #include <linux/slab.h>
21
22 #include <asm/uaccess.h>
23
24 #include "usb_mon.h"
25
26 /*
27 * Defined by USB 2.0 clause 9.3, table 9.2.
28 */
29 #define SETUP_LEN 8
30
31 /* ioctl macros */
32 #define MON_IOC_MAGIC 0x92
33
34 #define MON_IOCQ_URB_LEN _IO(MON_IOC_MAGIC, 1)
35 /* #2 used to be MON_IOCX_URB, removed before it got into Linus tree */
36 #define MON_IOCG_STATS _IOR(MON_IOC_MAGIC, 3, struct mon_bin_stats)
37 #define MON_IOCT_RING_SIZE _IO(MON_IOC_MAGIC, 4)
38 #define MON_IOCQ_RING_SIZE _IO(MON_IOC_MAGIC, 5)
39 #define MON_IOCX_GET _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get)
40 #define MON_IOCX_MFETCH _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch)
41 #define MON_IOCH_MFLUSH _IO(MON_IOC_MAGIC, 8)
42 /* #9 was MON_IOCT_SETAPI */
43 #define MON_IOCX_GETX _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get)
44
45 #ifdef CONFIG_COMPAT
46 #define MON_IOCX_GET32 _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get32)
47 #define MON_IOCX_MFETCH32 _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch32)
48 #define MON_IOCX_GETX32 _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get32)
49 #endif
50
51 /*
52 * Some architectures have enormous basic pages (16KB for ia64, 64KB for ppc).
53 * But it's all right. Just use a simple way to make sure the chunk is never
54 * smaller than a page.
55 *
56 * N.B. An application does not know our chunk size.
57 *
58 * Woops, get_zeroed_page() returns a single page. I guess we're stuck with
59 * page-sized chunks for the time being.
60 */
61 #define CHUNK_SIZE PAGE_SIZE
62 #define CHUNK_ALIGN(x) (((x)+CHUNK_SIZE-1) & ~(CHUNK_SIZE-1))
63
64 /*
65 * The magic limit was calculated so that it allows the monitoring
66 * application to pick data once in two ticks. This way, another application,
67 * which presumably drives the bus, gets to hog CPU, yet we collect our data.
68 * If HZ is 100, a 480 mbit/s bus drives 614 KB every jiffy. USB has an
69 * enormous overhead built into the bus protocol, so we need about 1000 KB.
70 *
71 * This is still too much for most cases, where we just snoop a few
72 * descriptor fetches for enumeration. So, the default is a "reasonable"
73 * amount for systems with HZ=250 and incomplete bus saturation.
74 *
75 * XXX What about multi-megabyte URBs which take minutes to transfer?
76 */
77 #define BUFF_MAX CHUNK_ALIGN(1200*1024)
78 #define BUFF_DFL CHUNK_ALIGN(300*1024)
79 #define BUFF_MIN CHUNK_ALIGN(8*1024)
80
81 /*
82 * The per-event API header (2 per URB).
83 *
84 * This structure is seen in userland as defined by the documentation.
85 */
86 struct mon_bin_hdr {
87 u64 id; /* URB ID - from submission to callback */
88 unsigned char type; /* Same as in text API; extensible. */
89 unsigned char xfer_type; /* ISO, Intr, Control, Bulk */
90 unsigned char epnum; /* Endpoint number and transfer direction */
91 unsigned char devnum; /* Device address */
92 unsigned short busnum; /* Bus number */
93 char flag_setup;
94 char flag_data;
95 s64 ts_sec; /* gettimeofday */
96 s32 ts_usec; /* gettimeofday */
97 int status;
98 unsigned int len_urb; /* Length of data (submitted or actual) */
99 unsigned int len_cap; /* Delivered length */
100 union {
101 unsigned char setup[SETUP_LEN]; /* Only for Control S-type */
102 struct iso_rec {
103 int error_count;
104 int numdesc;
105 } iso;
106 } s;
107 int interval;
108 int start_frame;
109 unsigned int xfer_flags;
110 unsigned int ndesc; /* Actual number of ISO descriptors */
111 };
112
113 /*
114 * ISO vector, packed into the head of data stream.
115 * This has to take 16 bytes to make sure that the end of buffer
116 * wrap is not happening in the middle of a descriptor.
117 */
118 struct mon_bin_isodesc {
119 int iso_status;
120 unsigned int iso_off;
121 unsigned int iso_len;
122 u32 _pad;
123 };
124
125 /* per file statistic */
126 struct mon_bin_stats {
127 u32 queued;
128 u32 dropped;
129 };
130
131 struct mon_bin_get {
132 struct mon_bin_hdr __user *hdr; /* Can be 48 bytes or 64. */
133 void __user *data;
134 size_t alloc; /* Length of data (can be zero) */
135 };
136
137 struct mon_bin_mfetch {
138 u32 __user *offvec; /* Vector of events fetched */
139 u32 nfetch; /* Number of events to fetch (out: fetched) */
140 u32 nflush; /* Number of events to flush */
141 };
142
143 #ifdef CONFIG_COMPAT
144 struct mon_bin_get32 {
145 u32 hdr32;
146 u32 data32;
147 u32 alloc32;
148 };
149
150 struct mon_bin_mfetch32 {
151 u32 offvec32;
152 u32 nfetch32;
153 u32 nflush32;
154 };
155 #endif
156
157 /* Having these two values same prevents wrapping of the mon_bin_hdr */
158 #define PKT_ALIGN 64
159 #define PKT_SIZE 64
160
161 #define PKT_SZ_API0 48 /* API 0 (2.6.20) size */
162 #define PKT_SZ_API1 64 /* API 1 size: extra fields */
163
164 #define ISODESC_MAX 128 /* Same number as usbfs allows, 2048 bytes. */
165
166 /* max number of USB bus supported */
167 #define MON_BIN_MAX_MINOR 128
168
169 /*
170 * The buffer: map of used pages.
171 */
172 struct mon_pgmap {
173 struct page *pg;
174 unsigned char *ptr; /* XXX just use page_to_virt everywhere? */
175 };
176
177 /*
178 * This gets associated with an open file struct.
179 */
180 struct mon_reader_bin {
181 /* The buffer: one per open. */
182 spinlock_t b_lock; /* Protect b_cnt, b_in */
183 unsigned int b_size; /* Current size of the buffer - bytes */
184 unsigned int b_cnt; /* Bytes used */
185 unsigned int b_in, b_out; /* Offsets into buffer - bytes */
186 unsigned int b_read; /* Amount of read data in curr. pkt. */
187 struct mon_pgmap *b_vec; /* The map array */
188 wait_queue_head_t b_wait; /* Wait for data here */
189
190 struct mutex fetch_lock; /* Protect b_read, b_out */
191 int mmap_active;
192
193 /* A list of these is needed for "bus 0". Some time later. */
194 struct mon_reader r;
195
196 /* Stats */
197 unsigned int cnt_lost;
198 };
199
200 static inline struct mon_bin_hdr *MON_OFF2HDR(const struct mon_reader_bin *rp,
201 unsigned int offset)
202 {
203 return (struct mon_bin_hdr *)
204 (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE);
205 }
206
207 #define MON_RING_EMPTY(rp) ((rp)->b_cnt == 0)
208
209 static unsigned char xfer_to_pipe[4] = {
210 PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT
211 };
212
213 static struct class *mon_bin_class;
214 static dev_t mon_bin_dev0;
215 static struct cdev mon_bin_cdev;
216
217 static void mon_buff_area_fill(const struct mon_reader_bin *rp,
218 unsigned int offset, unsigned int size);
219 static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp);
220 static int mon_alloc_buff(struct mon_pgmap *map, int npages);
221 static void mon_free_buff(struct mon_pgmap *map, int npages);
222
223 /*
224 * This is a "chunked memcpy". It does not manipulate any counters.
225 */
226 static unsigned int mon_copy_to_buff(const struct mon_reader_bin *this,
227 unsigned int off, const unsigned char *from, unsigned int length)
228 {
229 unsigned int step_len;
230 unsigned char *buf;
231 unsigned int in_page;
232
233 while (length) {
234 /*
235 * Determine step_len.
236 */
237 step_len = length;
238 in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1));
239 if (in_page < step_len)
240 step_len = in_page;
241
242 /*
243 * Copy data and advance pointers.
244 */
245 buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE;
246 memcpy(buf, from, step_len);
247 if ((off += step_len) >= this->b_size) off = 0;
248 from += step_len;
249 length -= step_len;
250 }
251 return off;
252 }
253
254 /*
255 * This is a little worse than the above because it's "chunked copy_to_user".
256 * The return value is an error code, not an offset.
257 */
258 static int copy_from_buf(const struct mon_reader_bin *this, unsigned int off,
259 char __user *to, int length)
260 {
261 unsigned int step_len;
262 unsigned char *buf;
263 unsigned int in_page;
264
265 while (length) {
266 /*
267 * Determine step_len.
268 */
269 step_len = length;
270 in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1));
271 if (in_page < step_len)
272 step_len = in_page;
273
274 /*
275 * Copy data and advance pointers.
276 */
277 buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE;
278 if (copy_to_user(to, buf, step_len))
279 return -EINVAL;
280 if ((off += step_len) >= this->b_size) off = 0;
281 to += step_len;
282 length -= step_len;
283 }
284 return 0;
285 }
286
287 /*
288 * Allocate an (aligned) area in the buffer.
289 * This is called under b_lock.
290 * Returns ~0 on failure.
291 */
292 static unsigned int mon_buff_area_alloc(struct mon_reader_bin *rp,
293 unsigned int size)
294 {
295 unsigned int offset;
296
297 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
298 if (rp->b_cnt + size > rp->b_size)
299 return ~0;
300 offset = rp->b_in;
301 rp->b_cnt += size;
302 if ((rp->b_in += size) >= rp->b_size)
303 rp->b_in -= rp->b_size;
304 return offset;
305 }
306
307 /*
308 * This is the same thing as mon_buff_area_alloc, only it does not allow
309 * buffers to wrap. This is needed by applications which pass references
310 * into mmap-ed buffers up their stacks (libpcap can do that).
311 *
312 * Currently, we always have the header stuck with the data, although
313 * it is not strictly speaking necessary.
314 *
315 * When a buffer would wrap, we place a filler packet to mark the space.
316 */
317 static unsigned int mon_buff_area_alloc_contiguous(struct mon_reader_bin *rp,
318 unsigned int size)
319 {
320 unsigned int offset;
321 unsigned int fill_size;
322
323 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
324 if (rp->b_cnt + size > rp->b_size)
325 return ~0;
326 if (rp->b_in + size > rp->b_size) {
327 /*
328 * This would wrap. Find if we still have space after
329 * skipping to the end of the buffer. If we do, place
330 * a filler packet and allocate a new packet.
331 */
332 fill_size = rp->b_size - rp->b_in;
333 if (rp->b_cnt + size + fill_size > rp->b_size)
334 return ~0;
335 mon_buff_area_fill(rp, rp->b_in, fill_size);
336
337 offset = 0;
338 rp->b_in = size;
339 rp->b_cnt += size + fill_size;
340 } else if (rp->b_in + size == rp->b_size) {
341 offset = rp->b_in;
342 rp->b_in = 0;
343 rp->b_cnt += size;
344 } else {
345 offset = rp->b_in;
346 rp->b_in += size;
347 rp->b_cnt += size;
348 }
349 return offset;
350 }
351
352 /*
353 * Return a few (kilo-)bytes to the head of the buffer.
354 * This is used if a data fetch fails.
355 */
356 static void mon_buff_area_shrink(struct mon_reader_bin *rp, unsigned int size)
357 {
358
359 /* size &= ~(PKT_ALIGN-1); -- we're called with aligned size */
360 rp->b_cnt -= size;
361 if (rp->b_in < size)
362 rp->b_in += rp->b_size;
363 rp->b_in -= size;
364 }
365
366 /*
367 * This has to be called under both b_lock and fetch_lock, because
368 * it accesses both b_cnt and b_out.
369 */
370 static void mon_buff_area_free(struct mon_reader_bin *rp, unsigned int size)
371 {
372
373 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
374 rp->b_cnt -= size;
375 if ((rp->b_out += size) >= rp->b_size)
376 rp->b_out -= rp->b_size;
377 }
378
379 static void mon_buff_area_fill(const struct mon_reader_bin *rp,
380 unsigned int offset, unsigned int size)
381 {
382 struct mon_bin_hdr *ep;
383
384 ep = MON_OFF2HDR(rp, offset);
385 memset(ep, 0, PKT_SIZE);
386 ep->type = '@';
387 ep->len_cap = size - PKT_SIZE;
388 }
389
390 static inline char mon_bin_get_setup(unsigned char *setupb,
391 const struct urb *urb, char ev_type)
392 {
393
394 if (urb->setup_packet == NULL)
395 return 'Z';
396 memcpy(setupb, urb->setup_packet, SETUP_LEN);
397 return 0;
398 }
399
400 static unsigned int mon_bin_get_data(const struct mon_reader_bin *rp,
401 unsigned int offset, struct urb *urb, unsigned int length,
402 char *flag)
403 {
404 int i;
405 struct scatterlist *sg;
406 unsigned int this_len;
407
408 *flag = 0;
409 if (urb->num_sgs == 0) {
410 if (urb->transfer_buffer == NULL) {
411 *flag = 'Z';
412 return length;
413 }
414 mon_copy_to_buff(rp, offset, urb->transfer_buffer, length);
415 length = 0;
416
417 } else {
418 /* If IOMMU coalescing occurred, we cannot trust sg_page */
419 if (urb->transfer_flags & URB_DMA_SG_COMBINED) {
420 *flag = 'D';
421 return length;
422 }
423
424 /* Copy up to the first non-addressable segment */
425 for_each_sg(urb->sg, sg, urb->num_sgs, i) {
426 if (length == 0 || PageHighMem(sg_page(sg)))
427 break;
428 this_len = min_t(unsigned int, sg->length, length);
429 offset = mon_copy_to_buff(rp, offset, sg_virt(sg),
430 this_len);
431 length -= this_len;
432 }
433 if (i == 0)
434 *flag = 'D';
435 }
436
437 return length;
438 }
439
440 static void mon_bin_get_isodesc(const struct mon_reader_bin *rp,
441 unsigned int offset, struct urb *urb, char ev_type, unsigned int ndesc)
442 {
443 struct mon_bin_isodesc *dp;
444 struct usb_iso_packet_descriptor *fp;
445
446 fp = urb->iso_frame_desc;
447 while (ndesc-- != 0) {
448 dp = (struct mon_bin_isodesc *)
449 (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE);
450 dp->iso_status = fp->status;
451 dp->iso_off = fp->offset;
452 dp->iso_len = (ev_type == 'S') ? fp->length : fp->actual_length;
453 dp->_pad = 0;
454 if ((offset += sizeof(struct mon_bin_isodesc)) >= rp->b_size)
455 offset = 0;
456 fp++;
457 }
458 }
459
460 static void mon_bin_event(struct mon_reader_bin *rp, struct urb *urb,
461 char ev_type, int status)
462 {
463 const struct usb_endpoint_descriptor *epd = &urb->ep->desc;
464 struct timeval ts;
465 unsigned long flags;
466 unsigned int urb_length;
467 unsigned int offset;
468 unsigned int length;
469 unsigned int delta;
470 unsigned int ndesc, lendesc;
471 unsigned char dir;
472 struct mon_bin_hdr *ep;
473 char data_tag = 0;
474
475 do_gettimeofday(&ts);
476
477 spin_lock_irqsave(&rp->b_lock, flags);
478
479 /*
480 * Find the maximum allowable length, then allocate space.
481 */
482 if (usb_endpoint_xfer_isoc(epd)) {
483 if (urb->number_of_packets < 0) {
484 ndesc = 0;
485 } else if (urb->number_of_packets >= ISODESC_MAX) {
486 ndesc = ISODESC_MAX;
487 } else {
488 ndesc = urb->number_of_packets;
489 }
490 } else {
491 ndesc = 0;
492 }
493 lendesc = ndesc*sizeof(struct mon_bin_isodesc);
494
495 urb_length = (ev_type == 'S') ?
496 urb->transfer_buffer_length : urb->actual_length;
497 length = urb_length;
498
499 if (length >= rp->b_size/5)
500 length = rp->b_size/5;
501
502 if (usb_urb_dir_in(urb)) {
503 if (ev_type == 'S') {
504 length = 0;
505 data_tag = '<';
506 }
507 /* Cannot rely on endpoint number in case of control ep.0 */
508 dir = USB_DIR_IN;
509 } else {
510 if (ev_type == 'C') {
511 length = 0;
512 data_tag = '>';
513 }
514 dir = 0;
515 }
516
517 if (rp->mmap_active) {
518 offset = mon_buff_area_alloc_contiguous(rp,
519 length + PKT_SIZE + lendesc);
520 } else {
521 offset = mon_buff_area_alloc(rp, length + PKT_SIZE + lendesc);
522 }
523 if (offset == ~0) {
524 rp->cnt_lost++;
525 spin_unlock_irqrestore(&rp->b_lock, flags);
526 return;
527 }
528
529 ep = MON_OFF2HDR(rp, offset);
530 if ((offset += PKT_SIZE) >= rp->b_size) offset = 0;
531
532 /*
533 * Fill the allocated area.
534 */
535 memset(ep, 0, PKT_SIZE);
536 ep->type = ev_type;
537 ep->xfer_type = xfer_to_pipe[usb_endpoint_type(epd)];
538 ep->epnum = dir | usb_endpoint_num(epd);
539 ep->devnum = urb->dev->devnum;
540 ep->busnum = urb->dev->bus->busnum;
541 ep->id = (unsigned long) urb;
542 ep->ts_sec = ts.tv_sec;
543 ep->ts_usec = ts.tv_usec;
544 ep->status = status;
545 ep->len_urb = urb_length;
546 ep->len_cap = length + lendesc;
547 ep->xfer_flags = urb->transfer_flags;
548
549 if (usb_endpoint_xfer_int(epd)) {
550 ep->interval = urb->interval;
551 } else if (usb_endpoint_xfer_isoc(epd)) {
552 ep->interval = urb->interval;
553 ep->start_frame = urb->start_frame;
554 ep->s.iso.error_count = urb->error_count;
555 ep->s.iso.numdesc = urb->number_of_packets;
556 }
557
558 if (usb_endpoint_xfer_control(epd) && ev_type == 'S') {
559 ep->flag_setup = mon_bin_get_setup(ep->s.setup, urb, ev_type);
560 } else {
561 ep->flag_setup = '-';
562 }
563
564 if (ndesc != 0) {
565 ep->ndesc = ndesc;
566 mon_bin_get_isodesc(rp, offset, urb, ev_type, ndesc);
567 if ((offset += lendesc) >= rp->b_size)
568 offset -= rp->b_size;
569 }
570
571 if (length != 0) {
572 length = mon_bin_get_data(rp, offset, urb, length,
573 &ep->flag_data);
574 if (length > 0) {
575 delta = (ep->len_cap + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
576 ep->len_cap -= length;
577 delta -= (ep->len_cap + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
578 mon_buff_area_shrink(rp, delta);
579 }
580 } else {
581 ep->flag_data = data_tag;
582 }
583
584 spin_unlock_irqrestore(&rp->b_lock, flags);
585
586 wake_up(&rp->b_wait);
587 }
588
589 static void mon_bin_submit(void *data, struct urb *urb)
590 {
591 struct mon_reader_bin *rp = data;
592 mon_bin_event(rp, urb, 'S', -EINPROGRESS);
593 }
594
595 static void mon_bin_complete(void *data, struct urb *urb, int status)
596 {
597 struct mon_reader_bin *rp = data;
598 mon_bin_event(rp, urb, 'C', status);
599 }
600
601 static void mon_bin_error(void *data, struct urb *urb, int error)
602 {
603 struct mon_reader_bin *rp = data;
604 struct timeval ts;
605 unsigned long flags;
606 unsigned int offset;
607 struct mon_bin_hdr *ep;
608
609 do_gettimeofday(&ts);
610
611 spin_lock_irqsave(&rp->b_lock, flags);
612
613 offset = mon_buff_area_alloc(rp, PKT_SIZE);
614 if (offset == ~0) {
615 /* Not incrementing cnt_lost. Just because. */
616 spin_unlock_irqrestore(&rp->b_lock, flags);
617 return;
618 }
619
620 ep = MON_OFF2HDR(rp, offset);
621
622 memset(ep, 0, PKT_SIZE);
623 ep->type = 'E';
624 ep->xfer_type = xfer_to_pipe[usb_endpoint_type(&urb->ep->desc)];
625 ep->epnum = usb_urb_dir_in(urb) ? USB_DIR_IN : 0;
626 ep->epnum |= usb_endpoint_num(&urb->ep->desc);
627 ep->devnum = urb->dev->devnum;
628 ep->busnum = urb->dev->bus->busnum;
629 ep->id = (unsigned long) urb;
630 ep->ts_sec = ts.tv_sec;
631 ep->ts_usec = ts.tv_usec;
632 ep->status = error;
633
634 ep->flag_setup = '-';
635 ep->flag_data = 'E';
636
637 spin_unlock_irqrestore(&rp->b_lock, flags);
638
639 wake_up(&rp->b_wait);
640 }
641
642 static int mon_bin_open(struct inode *inode, struct file *file)
643 {
644 struct mon_bus *mbus;
645 struct mon_reader_bin *rp;
646 size_t size;
647 int rc;
648
649 lock_kernel();
650 mutex_lock(&mon_lock);
651 if ((mbus = mon_bus_lookup(iminor(inode))) == NULL) {
652 mutex_unlock(&mon_lock);
653 unlock_kernel();
654 return -ENODEV;
655 }
656 if (mbus != &mon_bus0 && mbus->u_bus == NULL) {
657 printk(KERN_ERR TAG ": consistency error on open\n");
658 mutex_unlock(&mon_lock);
659 unlock_kernel();
660 return -ENODEV;
661 }
662
663 rp = kzalloc(sizeof(struct mon_reader_bin), GFP_KERNEL);
664 if (rp == NULL) {
665 rc = -ENOMEM;
666 goto err_alloc;
667 }
668 spin_lock_init(&rp->b_lock);
669 init_waitqueue_head(&rp->b_wait);
670 mutex_init(&rp->fetch_lock);
671 rp->b_size = BUFF_DFL;
672
673 size = sizeof(struct mon_pgmap) * (rp->b_size/CHUNK_SIZE);
674 if ((rp->b_vec = kzalloc(size, GFP_KERNEL)) == NULL) {
675 rc = -ENOMEM;
676 goto err_allocvec;
677 }
678
679 if ((rc = mon_alloc_buff(rp->b_vec, rp->b_size/CHUNK_SIZE)) < 0)
680 goto err_allocbuff;
681
682 rp->r.m_bus = mbus;
683 rp->r.r_data = rp;
684 rp->r.rnf_submit = mon_bin_submit;
685 rp->r.rnf_error = mon_bin_error;
686 rp->r.rnf_complete = mon_bin_complete;
687
688 mon_reader_add(mbus, &rp->r);
689
690 file->private_data = rp;
691 mutex_unlock(&mon_lock);
692 unlock_kernel();
693 return 0;
694
695 err_allocbuff:
696 kfree(rp->b_vec);
697 err_allocvec:
698 kfree(rp);
699 err_alloc:
700 mutex_unlock(&mon_lock);
701 unlock_kernel();
702 return rc;
703 }
704
705 /*
706 * Extract an event from buffer and copy it to user space.
707 * Wait if there is no event ready.
708 * Returns zero or error.
709 */
710 static int mon_bin_get_event(struct file *file, struct mon_reader_bin *rp,
711 struct mon_bin_hdr __user *hdr, unsigned int hdrbytes,
712 void __user *data, unsigned int nbytes)
713 {
714 unsigned long flags;
715 struct mon_bin_hdr *ep;
716 size_t step_len;
717 unsigned int offset;
718 int rc;
719
720 mutex_lock(&rp->fetch_lock);
721
722 if ((rc = mon_bin_wait_event(file, rp)) < 0) {
723 mutex_unlock(&rp->fetch_lock);
724 return rc;
725 }
726
727 ep = MON_OFF2HDR(rp, rp->b_out);
728
729 if (copy_to_user(hdr, ep, hdrbytes)) {
730 mutex_unlock(&rp->fetch_lock);
731 return -EFAULT;
732 }
733
734 step_len = min(ep->len_cap, nbytes);
735 if ((offset = rp->b_out + PKT_SIZE) >= rp->b_size) offset = 0;
736
737 if (copy_from_buf(rp, offset, data, step_len)) {
738 mutex_unlock(&rp->fetch_lock);
739 return -EFAULT;
740 }
741
742 spin_lock_irqsave(&rp->b_lock, flags);
743 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
744 spin_unlock_irqrestore(&rp->b_lock, flags);
745 rp->b_read = 0;
746
747 mutex_unlock(&rp->fetch_lock);
748 return 0;
749 }
750
751 static int mon_bin_release(struct inode *inode, struct file *file)
752 {
753 struct mon_reader_bin *rp = file->private_data;
754 struct mon_bus* mbus = rp->r.m_bus;
755
756 mutex_lock(&mon_lock);
757
758 if (mbus->nreaders <= 0) {
759 printk(KERN_ERR TAG ": consistency error on close\n");
760 mutex_unlock(&mon_lock);
761 return 0;
762 }
763 mon_reader_del(mbus, &rp->r);
764
765 mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE);
766 kfree(rp->b_vec);
767 kfree(rp);
768
769 mutex_unlock(&mon_lock);
770 return 0;
771 }
772
773 static ssize_t mon_bin_read(struct file *file, char __user *buf,
774 size_t nbytes, loff_t *ppos)
775 {
776 struct mon_reader_bin *rp = file->private_data;
777 unsigned int hdrbytes = PKT_SZ_API0;
778 unsigned long flags;
779 struct mon_bin_hdr *ep;
780 unsigned int offset;
781 size_t step_len;
782 char *ptr;
783 ssize_t done = 0;
784 int rc;
785
786 mutex_lock(&rp->fetch_lock);
787
788 if ((rc = mon_bin_wait_event(file, rp)) < 0) {
789 mutex_unlock(&rp->fetch_lock);
790 return rc;
791 }
792
793 ep = MON_OFF2HDR(rp, rp->b_out);
794
795 if (rp->b_read < hdrbytes) {
796 step_len = min(nbytes, (size_t)(hdrbytes - rp->b_read));
797 ptr = ((char *)ep) + rp->b_read;
798 if (step_len && copy_to_user(buf, ptr, step_len)) {
799 mutex_unlock(&rp->fetch_lock);
800 return -EFAULT;
801 }
802 nbytes -= step_len;
803 buf += step_len;
804 rp->b_read += step_len;
805 done += step_len;
806 }
807
808 if (rp->b_read >= hdrbytes) {
809 step_len = ep->len_cap;
810 step_len -= rp->b_read - hdrbytes;
811 if (step_len > nbytes)
812 step_len = nbytes;
813 offset = rp->b_out + PKT_SIZE;
814 offset += rp->b_read - hdrbytes;
815 if (offset >= rp->b_size)
816 offset -= rp->b_size;
817 if (copy_from_buf(rp, offset, buf, step_len)) {
818 mutex_unlock(&rp->fetch_lock);
819 return -EFAULT;
820 }
821 nbytes -= step_len;
822 buf += step_len;
823 rp->b_read += step_len;
824 done += step_len;
825 }
826
827 /*
828 * Check if whole packet was read, and if so, jump to the next one.
829 */
830 if (rp->b_read >= hdrbytes + ep->len_cap) {
831 spin_lock_irqsave(&rp->b_lock, flags);
832 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
833 spin_unlock_irqrestore(&rp->b_lock, flags);
834 rp->b_read = 0;
835 }
836
837 mutex_unlock(&rp->fetch_lock);
838 return done;
839 }
840
841 /*
842 * Remove at most nevents from chunked buffer.
843 * Returns the number of removed events.
844 */
845 static int mon_bin_flush(struct mon_reader_bin *rp, unsigned nevents)
846 {
847 unsigned long flags;
848 struct mon_bin_hdr *ep;
849 int i;
850
851 mutex_lock(&rp->fetch_lock);
852 spin_lock_irqsave(&rp->b_lock, flags);
853 for (i = 0; i < nevents; ++i) {
854 if (MON_RING_EMPTY(rp))
855 break;
856
857 ep = MON_OFF2HDR(rp, rp->b_out);
858 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
859 }
860 spin_unlock_irqrestore(&rp->b_lock, flags);
861 rp->b_read = 0;
862 mutex_unlock(&rp->fetch_lock);
863 return i;
864 }
865
866 /*
867 * Fetch at most max event offsets into the buffer and put them into vec.
868 * The events are usually freed later with mon_bin_flush.
869 * Return the effective number of events fetched.
870 */
871 static int mon_bin_fetch(struct file *file, struct mon_reader_bin *rp,
872 u32 __user *vec, unsigned int max)
873 {
874 unsigned int cur_out;
875 unsigned int bytes, avail;
876 unsigned int size;
877 unsigned int nevents;
878 struct mon_bin_hdr *ep;
879 unsigned long flags;
880 int rc;
881
882 mutex_lock(&rp->fetch_lock);
883
884 if ((rc = mon_bin_wait_event(file, rp)) < 0) {
885 mutex_unlock(&rp->fetch_lock);
886 return rc;
887 }
888
889 spin_lock_irqsave(&rp->b_lock, flags);
890 avail = rp->b_cnt;
891 spin_unlock_irqrestore(&rp->b_lock, flags);
892
893 cur_out = rp->b_out;
894 nevents = 0;
895 bytes = 0;
896 while (bytes < avail) {
897 if (nevents >= max)
898 break;
899
900 ep = MON_OFF2HDR(rp, cur_out);
901 if (put_user(cur_out, &vec[nevents])) {
902 mutex_unlock(&rp->fetch_lock);
903 return -EFAULT;
904 }
905
906 nevents++;
907 size = ep->len_cap + PKT_SIZE;
908 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
909 if ((cur_out += size) >= rp->b_size)
910 cur_out -= rp->b_size;
911 bytes += size;
912 }
913
914 mutex_unlock(&rp->fetch_lock);
915 return nevents;
916 }
917
918 /*
919 * Count events. This is almost the same as the above mon_bin_fetch,
920 * only we do not store offsets into user vector, and we have no limit.
921 */
922 static int mon_bin_queued(struct mon_reader_bin *rp)
923 {
924 unsigned int cur_out;
925 unsigned int bytes, avail;
926 unsigned int size;
927 unsigned int nevents;
928 struct mon_bin_hdr *ep;
929 unsigned long flags;
930
931 mutex_lock(&rp->fetch_lock);
932
933 spin_lock_irqsave(&rp->b_lock, flags);
934 avail = rp->b_cnt;
935 spin_unlock_irqrestore(&rp->b_lock, flags);
936
937 cur_out = rp->b_out;
938 nevents = 0;
939 bytes = 0;
940 while (bytes < avail) {
941 ep = MON_OFF2HDR(rp, cur_out);
942
943 nevents++;
944 size = ep->len_cap + PKT_SIZE;
945 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
946 if ((cur_out += size) >= rp->b_size)
947 cur_out -= rp->b_size;
948 bytes += size;
949 }
950
951 mutex_unlock(&rp->fetch_lock);
952 return nevents;
953 }
954
955 /*
956 */
957 static int mon_bin_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
958 {
959 struct mon_reader_bin *rp = file->private_data;
960 // struct mon_bus* mbus = rp->r.m_bus;
961 int ret = 0;
962 struct mon_bin_hdr *ep;
963 unsigned long flags;
964
965 switch (cmd) {
966
967 case MON_IOCQ_URB_LEN:
968 /*
969 * N.B. This only returns the size of data, without the header.
970 */
971 spin_lock_irqsave(&rp->b_lock, flags);
972 if (!MON_RING_EMPTY(rp)) {
973 ep = MON_OFF2HDR(rp, rp->b_out);
974 ret = ep->len_cap;
975 }
976 spin_unlock_irqrestore(&rp->b_lock, flags);
977 break;
978
979 case MON_IOCQ_RING_SIZE:
980 ret = rp->b_size;
981 break;
982
983 case MON_IOCT_RING_SIZE:
984 /*
985 * Changing the buffer size will flush it's contents; the new
986 * buffer is allocated before releasing the old one to be sure
987 * the device will stay functional also in case of memory
988 * pressure.
989 */
990 {
991 int size;
992 struct mon_pgmap *vec;
993
994 if (arg < BUFF_MIN || arg > BUFF_MAX)
995 return -EINVAL;
996
997 size = CHUNK_ALIGN(arg);
998 if ((vec = kzalloc(sizeof(struct mon_pgmap) * (size/CHUNK_SIZE),
999 GFP_KERNEL)) == NULL) {
1000 ret = -ENOMEM;
1001 break;
1002 }
1003
1004 ret = mon_alloc_buff(vec, size/CHUNK_SIZE);
1005 if (ret < 0) {
1006 kfree(vec);
1007 break;
1008 }
1009
1010 mutex_lock(&rp->fetch_lock);
1011 spin_lock_irqsave(&rp->b_lock, flags);
1012 mon_free_buff(rp->b_vec, size/CHUNK_SIZE);
1013 kfree(rp->b_vec);
1014 rp->b_vec = vec;
1015 rp->b_size = size;
1016 rp->b_read = rp->b_in = rp->b_out = rp->b_cnt = 0;
1017 rp->cnt_lost = 0;
1018 spin_unlock_irqrestore(&rp->b_lock, flags);
1019 mutex_unlock(&rp->fetch_lock);
1020 }
1021 break;
1022
1023 case MON_IOCH_MFLUSH:
1024 ret = mon_bin_flush(rp, arg);
1025 break;
1026
1027 case MON_IOCX_GET:
1028 case MON_IOCX_GETX:
1029 {
1030 struct mon_bin_get getb;
1031
1032 if (copy_from_user(&getb, (void __user *)arg,
1033 sizeof(struct mon_bin_get)))
1034 return -EFAULT;
1035
1036 if (getb.alloc > 0x10000000) /* Want to cast to u32 */
1037 return -EINVAL;
1038 ret = mon_bin_get_event(file, rp, getb.hdr,
1039 (cmd == MON_IOCX_GET)? PKT_SZ_API0: PKT_SZ_API1,
1040 getb.data, (unsigned int)getb.alloc);
1041 }
1042 break;
1043
1044 case MON_IOCX_MFETCH:
1045 {
1046 struct mon_bin_mfetch mfetch;
1047 struct mon_bin_mfetch __user *uptr;
1048
1049 uptr = (struct mon_bin_mfetch __user *)arg;
1050
1051 if (copy_from_user(&mfetch, uptr, sizeof(mfetch)))
1052 return -EFAULT;
1053
1054 if (mfetch.nflush) {
1055 ret = mon_bin_flush(rp, mfetch.nflush);
1056 if (ret < 0)
1057 return ret;
1058 if (put_user(ret, &uptr->nflush))
1059 return -EFAULT;
1060 }
1061 ret = mon_bin_fetch(file, rp, mfetch.offvec, mfetch.nfetch);
1062 if (ret < 0)
1063 return ret;
1064 if (put_user(ret, &uptr->nfetch))
1065 return -EFAULT;
1066 ret = 0;
1067 }
1068 break;
1069
1070 case MON_IOCG_STATS: {
1071 struct mon_bin_stats __user *sp;
1072 unsigned int nevents;
1073 unsigned int ndropped;
1074
1075 spin_lock_irqsave(&rp->b_lock, flags);
1076 ndropped = rp->cnt_lost;
1077 rp->cnt_lost = 0;
1078 spin_unlock_irqrestore(&rp->b_lock, flags);
1079 nevents = mon_bin_queued(rp);
1080
1081 sp = (struct mon_bin_stats __user *)arg;
1082 if (put_user(rp->cnt_lost, &sp->dropped))
1083 return -EFAULT;
1084 if (put_user(nevents, &sp->queued))
1085 return -EFAULT;
1086
1087 }
1088 break;
1089
1090 default:
1091 return -ENOTTY;
1092 }
1093
1094 return ret;
1095 }
1096
1097 static long mon_bin_unlocked_ioctl(struct file *file, unsigned int cmd,
1098 unsigned long arg)
1099 {
1100 int ret;
1101
1102 lock_kernel();
1103 ret = mon_bin_ioctl(file, cmd, arg);
1104 unlock_kernel();
1105
1106 return ret;
1107 }
1108
1109
1110 #ifdef CONFIG_COMPAT
1111 static long mon_bin_compat_ioctl(struct file *file,
1112 unsigned int cmd, unsigned long arg)
1113 {
1114 struct mon_reader_bin *rp = file->private_data;
1115 int ret;
1116
1117 switch (cmd) {
1118
1119 case MON_IOCX_GET32:
1120 case MON_IOCX_GETX32:
1121 {
1122 struct mon_bin_get32 getb;
1123
1124 if (copy_from_user(&getb, (void __user *)arg,
1125 sizeof(struct mon_bin_get32)))
1126 return -EFAULT;
1127
1128 ret = mon_bin_get_event(file, rp, compat_ptr(getb.hdr32),
1129 (cmd == MON_IOCX_GET32)? PKT_SZ_API0: PKT_SZ_API1,
1130 compat_ptr(getb.data32), getb.alloc32);
1131 if (ret < 0)
1132 return ret;
1133 }
1134 return 0;
1135
1136 case MON_IOCX_MFETCH32:
1137 {
1138 struct mon_bin_mfetch32 mfetch;
1139 struct mon_bin_mfetch32 __user *uptr;
1140
1141 uptr = (struct mon_bin_mfetch32 __user *) compat_ptr(arg);
1142
1143 if (copy_from_user(&mfetch, uptr, sizeof(mfetch)))
1144 return -EFAULT;
1145
1146 if (mfetch.nflush32) {
1147 ret = mon_bin_flush(rp, mfetch.nflush32);
1148 if (ret < 0)
1149 return ret;
1150 if (put_user(ret, &uptr->nflush32))
1151 return -EFAULT;
1152 }
1153 ret = mon_bin_fetch(file, rp, compat_ptr(mfetch.offvec32),
1154 mfetch.nfetch32);
1155 if (ret < 0)
1156 return ret;
1157 if (put_user(ret, &uptr->nfetch32))
1158 return -EFAULT;
1159 }
1160 return 0;
1161
1162 case MON_IOCG_STATS:
1163 return mon_bin_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
1164
1165 case MON_IOCQ_URB_LEN:
1166 case MON_IOCQ_RING_SIZE:
1167 case MON_IOCT_RING_SIZE:
1168 case MON_IOCH_MFLUSH:
1169 return mon_bin_ioctl(file, cmd, arg);
1170
1171 default:
1172 ;
1173 }
1174 return -ENOTTY;
1175 }
1176 #endif /* CONFIG_COMPAT */
1177
1178 static unsigned int
1179 mon_bin_poll(struct file *file, struct poll_table_struct *wait)
1180 {
1181 struct mon_reader_bin *rp = file->private_data;
1182 unsigned int mask = 0;
1183 unsigned long flags;
1184
1185 if (file->f_mode & FMODE_READ)
1186 poll_wait(file, &rp->b_wait, wait);
1187
1188 spin_lock_irqsave(&rp->b_lock, flags);
1189 if (!MON_RING_EMPTY(rp))
1190 mask |= POLLIN | POLLRDNORM; /* readable */
1191 spin_unlock_irqrestore(&rp->b_lock, flags);
1192 return mask;
1193 }
1194
1195 /*
1196 * open and close: just keep track of how many times the device is
1197 * mapped, to use the proper memory allocation function.
1198 */
1199 static void mon_bin_vma_open(struct vm_area_struct *vma)
1200 {
1201 struct mon_reader_bin *rp = vma->vm_private_data;
1202 rp->mmap_active++;
1203 }
1204
1205 static void mon_bin_vma_close(struct vm_area_struct *vma)
1206 {
1207 struct mon_reader_bin *rp = vma->vm_private_data;
1208 rp->mmap_active--;
1209 }
1210
1211 /*
1212 * Map ring pages to user space.
1213 */
1214 static int mon_bin_vma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1215 {
1216 struct mon_reader_bin *rp = vma->vm_private_data;
1217 unsigned long offset, chunk_idx;
1218 struct page *pageptr;
1219
1220 offset = vmf->pgoff << PAGE_SHIFT;
1221 if (offset >= rp->b_size)
1222 return VM_FAULT_SIGBUS;
1223 chunk_idx = offset / CHUNK_SIZE;
1224 pageptr = rp->b_vec[chunk_idx].pg;
1225 get_page(pageptr);
1226 vmf->page = pageptr;
1227 return 0;
1228 }
1229
1230 static const struct vm_operations_struct mon_bin_vm_ops = {
1231 .open = mon_bin_vma_open,
1232 .close = mon_bin_vma_close,
1233 .fault = mon_bin_vma_fault,
1234 };
1235
1236 static int mon_bin_mmap(struct file *filp, struct vm_area_struct *vma)
1237 {
1238 /* don't do anything here: "fault" will set up page table entries */
1239 vma->vm_ops = &mon_bin_vm_ops;
1240 vma->vm_flags |= VM_RESERVED;
1241 vma->vm_private_data = filp->private_data;
1242 mon_bin_vma_open(vma);
1243 return 0;
1244 }
1245
1246 static const struct file_operations mon_fops_binary = {
1247 .owner = THIS_MODULE,
1248 .open = mon_bin_open,
1249 .llseek = no_llseek,
1250 .read = mon_bin_read,
1251 /* .write = mon_text_write, */
1252 .poll = mon_bin_poll,
1253 .unlocked_ioctl = mon_bin_unlocked_ioctl,
1254 #ifdef CONFIG_COMPAT
1255 .compat_ioctl = mon_bin_compat_ioctl,
1256 #endif
1257 .release = mon_bin_release,
1258 .mmap = mon_bin_mmap,
1259 };
1260
1261 static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp)
1262 {
1263 DECLARE_WAITQUEUE(waita, current);
1264 unsigned long flags;
1265
1266 add_wait_queue(&rp->b_wait, &waita);
1267 set_current_state(TASK_INTERRUPTIBLE);
1268
1269 spin_lock_irqsave(&rp->b_lock, flags);
1270 while (MON_RING_EMPTY(rp)) {
1271 spin_unlock_irqrestore(&rp->b_lock, flags);
1272
1273 if (file->f_flags & O_NONBLOCK) {
1274 set_current_state(TASK_RUNNING);
1275 remove_wait_queue(&rp->b_wait, &waita);
1276 return -EWOULDBLOCK; /* Same as EAGAIN in Linux */
1277 }
1278 schedule();
1279 if (signal_pending(current)) {
1280 remove_wait_queue(&rp->b_wait, &waita);
1281 return -EINTR;
1282 }
1283 set_current_state(TASK_INTERRUPTIBLE);
1284
1285 spin_lock_irqsave(&rp->b_lock, flags);
1286 }
1287 spin_unlock_irqrestore(&rp->b_lock, flags);
1288
1289 set_current_state(TASK_RUNNING);
1290 remove_wait_queue(&rp->b_wait, &waita);
1291 return 0;
1292 }
1293
1294 static int mon_alloc_buff(struct mon_pgmap *map, int npages)
1295 {
1296 int n;
1297 unsigned long vaddr;
1298
1299 for (n = 0; n < npages; n++) {
1300 vaddr = get_zeroed_page(GFP_KERNEL);
1301 if (vaddr == 0) {
1302 while (n-- != 0)
1303 free_page((unsigned long) map[n].ptr);
1304 return -ENOMEM;
1305 }
1306 map[n].ptr = (unsigned char *) vaddr;
1307 map[n].pg = virt_to_page((void *) vaddr);
1308 }
1309 return 0;
1310 }
1311
1312 static void mon_free_buff(struct mon_pgmap *map, int npages)
1313 {
1314 int n;
1315
1316 for (n = 0; n < npages; n++)
1317 free_page((unsigned long) map[n].ptr);
1318 }
1319
1320 int mon_bin_add(struct mon_bus *mbus, const struct usb_bus *ubus)
1321 {
1322 struct device *dev;
1323 unsigned minor = ubus? ubus->busnum: 0;
1324
1325 if (minor >= MON_BIN_MAX_MINOR)
1326 return 0;
1327
1328 dev = device_create(mon_bin_class, ubus ? ubus->controller : NULL,
1329 MKDEV(MAJOR(mon_bin_dev0), minor), NULL,
1330 "usbmon%d", minor);
1331 if (IS_ERR(dev))
1332 return 0;
1333
1334 mbus->classdev = dev;
1335 return 1;
1336 }
1337
1338 void mon_bin_del(struct mon_bus *mbus)
1339 {
1340 device_destroy(mon_bin_class, mbus->classdev->devt);
1341 }
1342
1343 int __init mon_bin_init(void)
1344 {
1345 int rc;
1346
1347 mon_bin_class = class_create(THIS_MODULE, "usbmon");
1348 if (IS_ERR(mon_bin_class)) {
1349 rc = PTR_ERR(mon_bin_class);
1350 goto err_class;
1351 }
1352
1353 rc = alloc_chrdev_region(&mon_bin_dev0, 0, MON_BIN_MAX_MINOR, "usbmon");
1354 if (rc < 0)
1355 goto err_dev;
1356
1357 cdev_init(&mon_bin_cdev, &mon_fops_binary);
1358 mon_bin_cdev.owner = THIS_MODULE;
1359
1360 rc = cdev_add(&mon_bin_cdev, mon_bin_dev0, MON_BIN_MAX_MINOR);
1361 if (rc < 0)
1362 goto err_add;
1363
1364 return 0;
1365
1366 err_add:
1367 unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR);
1368 err_dev:
1369 class_destroy(mon_bin_class);
1370 err_class:
1371 return rc;
1372 }
1373
1374 void mon_bin_exit(void)
1375 {
1376 cdev_del(&mon_bin_cdev);
1377 unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR);
1378 class_destroy(mon_bin_class);
1379 }