]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/usb/storage/alauda.c
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[mirror_ubuntu-artful-kernel.git] / drivers / usb / storage / alauda.c
1 /*
2 * Driver for Alauda-based card readers
3 *
4 * Current development and maintenance by:
5 * (c) 2005 Daniel Drake <dsd@gentoo.org>
6 *
7 * The 'Alauda' is a chip manufacturered by RATOC for OEM use.
8 *
9 * Alauda implements a vendor-specific command set to access two media reader
10 * ports (XD, SmartMedia). This driver converts SCSI commands to the commands
11 * which are accepted by these devices.
12 *
13 * The driver was developed through reverse-engineering, with the help of the
14 * sddr09 driver which has many similarities, and with some help from the
15 * (very old) vendor-supplied GPL sma03 driver.
16 *
17 * For protocol info, see http://alauda.sourceforge.net
18 *
19 * This program is free software; you can redistribute it and/or modify it
20 * under the terms of the GNU General Public License as published by the
21 * Free Software Foundation; either version 2, or (at your option) any
22 * later version.
23 *
24 * This program is distributed in the hope that it will be useful, but
25 * WITHOUT ANY WARRANTY; without even the implied warranty of
26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
27 * General Public License for more details.
28 *
29 * You should have received a copy of the GNU General Public License along
30 * with this program; if not, write to the Free Software Foundation, Inc.,
31 * 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
34 #include <linux/module.h>
35 #include <linux/slab.h>
36
37 #include <scsi/scsi.h>
38 #include <scsi/scsi_cmnd.h>
39 #include <scsi/scsi_device.h>
40
41 #include "usb.h"
42 #include "transport.h"
43 #include "protocol.h"
44 #include "debug.h"
45
46 MODULE_DESCRIPTION("Driver for Alauda-based card readers");
47 MODULE_AUTHOR("Daniel Drake <dsd@gentoo.org>");
48 MODULE_LICENSE("GPL");
49
50 /*
51 * Status bytes
52 */
53 #define ALAUDA_STATUS_ERROR 0x01
54 #define ALAUDA_STATUS_READY 0x40
55
56 /*
57 * Control opcodes (for request field)
58 */
59 #define ALAUDA_GET_XD_MEDIA_STATUS 0x08
60 #define ALAUDA_GET_SM_MEDIA_STATUS 0x98
61 #define ALAUDA_ACK_XD_MEDIA_CHANGE 0x0a
62 #define ALAUDA_ACK_SM_MEDIA_CHANGE 0x9a
63 #define ALAUDA_GET_XD_MEDIA_SIG 0x86
64 #define ALAUDA_GET_SM_MEDIA_SIG 0x96
65
66 /*
67 * Bulk command identity (byte 0)
68 */
69 #define ALAUDA_BULK_CMD 0x40
70
71 /*
72 * Bulk opcodes (byte 1)
73 */
74 #define ALAUDA_BULK_GET_REDU_DATA 0x85
75 #define ALAUDA_BULK_READ_BLOCK 0x94
76 #define ALAUDA_BULK_ERASE_BLOCK 0xa3
77 #define ALAUDA_BULK_WRITE_BLOCK 0xb4
78 #define ALAUDA_BULK_GET_STATUS2 0xb7
79 #define ALAUDA_BULK_RESET_MEDIA 0xe0
80
81 /*
82 * Port to operate on (byte 8)
83 */
84 #define ALAUDA_PORT_XD 0x00
85 #define ALAUDA_PORT_SM 0x01
86
87 /*
88 * LBA and PBA are unsigned ints. Special values.
89 */
90 #define UNDEF 0xffff
91 #define SPARE 0xfffe
92 #define UNUSABLE 0xfffd
93
94 struct alauda_media_info {
95 unsigned long capacity; /* total media size in bytes */
96 unsigned int pagesize; /* page size in bytes */
97 unsigned int blocksize; /* number of pages per block */
98 unsigned int uzonesize; /* number of usable blocks per zone */
99 unsigned int zonesize; /* number of blocks per zone */
100 unsigned int blockmask; /* mask to get page from address */
101
102 unsigned char pageshift;
103 unsigned char blockshift;
104 unsigned char zoneshift;
105
106 u16 **lba_to_pba; /* logical to physical block map */
107 u16 **pba_to_lba; /* physical to logical block map */
108 };
109
110 struct alauda_info {
111 struct alauda_media_info port[2];
112 int wr_ep; /* endpoint to write data out of */
113
114 unsigned char sense_key;
115 unsigned long sense_asc; /* additional sense code */
116 unsigned long sense_ascq; /* additional sense code qualifier */
117 };
118
119 #define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) )
120 #define LSB_of(s) ((s)&0xFF)
121 #define MSB_of(s) ((s)>>8)
122
123 #define MEDIA_PORT(us) us->srb->device->lun
124 #define MEDIA_INFO(us) ((struct alauda_info *)us->extra)->port[MEDIA_PORT(us)]
125
126 #define PBA_LO(pba) ((pba & 0xF) << 5)
127 #define PBA_HI(pba) (pba >> 3)
128 #define PBA_ZONE(pba) (pba >> 11)
129
130 static int init_alauda(struct us_data *us);
131
132
133 /*
134 * The table of devices
135 */
136 #define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \
137 vendorName, productName, useProtocol, useTransport, \
138 initFunction, flags) \
139 { USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \
140 .driver_info = (flags)|(USB_US_TYPE_STOR<<24) }
141
142 struct usb_device_id alauda_usb_ids[] = {
143 # include "unusual_alauda.h"
144 { } /* Terminating entry */
145 };
146 MODULE_DEVICE_TABLE(usb, alauda_usb_ids);
147
148 #undef UNUSUAL_DEV
149
150 /*
151 * The flags table
152 */
153 #define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \
154 vendor_name, product_name, use_protocol, use_transport, \
155 init_function, Flags) \
156 { \
157 .vendorName = vendor_name, \
158 .productName = product_name, \
159 .useProtocol = use_protocol, \
160 .useTransport = use_transport, \
161 .initFunction = init_function, \
162 }
163
164 static struct us_unusual_dev alauda_unusual_dev_list[] = {
165 # include "unusual_alauda.h"
166 { } /* Terminating entry */
167 };
168
169 #undef UNUSUAL_DEV
170
171
172 /*
173 * Media handling
174 */
175
176 struct alauda_card_info {
177 unsigned char id; /* id byte */
178 unsigned char chipshift; /* 1<<cs bytes total capacity */
179 unsigned char pageshift; /* 1<<ps bytes in a page */
180 unsigned char blockshift; /* 1<<bs pages per block */
181 unsigned char zoneshift; /* 1<<zs blocks per zone */
182 };
183
184 static struct alauda_card_info alauda_card_ids[] = {
185 /* NAND flash */
186 { 0x6e, 20, 8, 4, 8}, /* 1 MB */
187 { 0xe8, 20, 8, 4, 8}, /* 1 MB */
188 { 0xec, 20, 8, 4, 8}, /* 1 MB */
189 { 0x64, 21, 8, 4, 9}, /* 2 MB */
190 { 0xea, 21, 8, 4, 9}, /* 2 MB */
191 { 0x6b, 22, 9, 4, 9}, /* 4 MB */
192 { 0xe3, 22, 9, 4, 9}, /* 4 MB */
193 { 0xe5, 22, 9, 4, 9}, /* 4 MB */
194 { 0xe6, 23, 9, 4, 10}, /* 8 MB */
195 { 0x73, 24, 9, 5, 10}, /* 16 MB */
196 { 0x75, 25, 9, 5, 10}, /* 32 MB */
197 { 0x76, 26, 9, 5, 10}, /* 64 MB */
198 { 0x79, 27, 9, 5, 10}, /* 128 MB */
199 { 0x71, 28, 9, 5, 10}, /* 256 MB */
200
201 /* MASK ROM */
202 { 0x5d, 21, 9, 4, 8}, /* 2 MB */
203 { 0xd5, 22, 9, 4, 9}, /* 4 MB */
204 { 0xd6, 23, 9, 4, 10}, /* 8 MB */
205 { 0x57, 24, 9, 4, 11}, /* 16 MB */
206 { 0x58, 25, 9, 4, 12}, /* 32 MB */
207 { 0,}
208 };
209
210 static struct alauda_card_info *alauda_card_find_id(unsigned char id) {
211 int i;
212
213 for (i = 0; alauda_card_ids[i].id != 0; i++)
214 if (alauda_card_ids[i].id == id)
215 return &(alauda_card_ids[i]);
216 return NULL;
217 }
218
219 /*
220 * ECC computation.
221 */
222
223 static unsigned char parity[256];
224 static unsigned char ecc2[256];
225
226 static void nand_init_ecc(void) {
227 int i, j, a;
228
229 parity[0] = 0;
230 for (i = 1; i < 256; i++)
231 parity[i] = (parity[i&(i-1)] ^ 1);
232
233 for (i = 0; i < 256; i++) {
234 a = 0;
235 for (j = 0; j < 8; j++) {
236 if (i & (1<<j)) {
237 if ((j & 1) == 0)
238 a ^= 0x04;
239 if ((j & 2) == 0)
240 a ^= 0x10;
241 if ((j & 4) == 0)
242 a ^= 0x40;
243 }
244 }
245 ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0));
246 }
247 }
248
249 /* compute 3-byte ecc on 256 bytes */
250 static void nand_compute_ecc(unsigned char *data, unsigned char *ecc) {
251 int i, j, a;
252 unsigned char par, bit, bits[8];
253
254 par = 0;
255 for (j = 0; j < 8; j++)
256 bits[j] = 0;
257
258 /* collect 16 checksum bits */
259 for (i = 0; i < 256; i++) {
260 par ^= data[i];
261 bit = parity[data[i]];
262 for (j = 0; j < 8; j++)
263 if ((i & (1<<j)) == 0)
264 bits[j] ^= bit;
265 }
266
267 /* put 4+4+4 = 12 bits in the ecc */
268 a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0];
269 ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
270
271 a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4];
272 ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
273
274 ecc[2] = ecc2[par];
275 }
276
277 static int nand_compare_ecc(unsigned char *data, unsigned char *ecc) {
278 return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]);
279 }
280
281 static void nand_store_ecc(unsigned char *data, unsigned char *ecc) {
282 memcpy(data, ecc, 3);
283 }
284
285 /*
286 * Alauda driver
287 */
288
289 /*
290 * Forget our PBA <---> LBA mappings for a particular port
291 */
292 static void alauda_free_maps (struct alauda_media_info *media_info)
293 {
294 unsigned int shift = media_info->zoneshift
295 + media_info->blockshift + media_info->pageshift;
296 unsigned int num_zones = media_info->capacity >> shift;
297 unsigned int i;
298
299 if (media_info->lba_to_pba != NULL)
300 for (i = 0; i < num_zones; i++) {
301 kfree(media_info->lba_to_pba[i]);
302 media_info->lba_to_pba[i] = NULL;
303 }
304
305 if (media_info->pba_to_lba != NULL)
306 for (i = 0; i < num_zones; i++) {
307 kfree(media_info->pba_to_lba[i]);
308 media_info->pba_to_lba[i] = NULL;
309 }
310 }
311
312 /*
313 * Returns 2 bytes of status data
314 * The first byte describes media status, and second byte describes door status
315 */
316 static int alauda_get_media_status(struct us_data *us, unsigned char *data)
317 {
318 int rc;
319 unsigned char command;
320
321 if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
322 command = ALAUDA_GET_XD_MEDIA_STATUS;
323 else
324 command = ALAUDA_GET_SM_MEDIA_STATUS;
325
326 rc = usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe,
327 command, 0xc0, 0, 1, data, 2);
328
329 US_DEBUGP("alauda_get_media_status: Media status %02X %02X\n",
330 data[0], data[1]);
331
332 return rc;
333 }
334
335 /*
336 * Clears the "media was changed" bit so that we know when it changes again
337 * in the future.
338 */
339 static int alauda_ack_media(struct us_data *us)
340 {
341 unsigned char command;
342
343 if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
344 command = ALAUDA_ACK_XD_MEDIA_CHANGE;
345 else
346 command = ALAUDA_ACK_SM_MEDIA_CHANGE;
347
348 return usb_stor_ctrl_transfer(us, us->send_ctrl_pipe,
349 command, 0x40, 0, 1, NULL, 0);
350 }
351
352 /*
353 * Retrieves a 4-byte media signature, which indicates manufacturer, capacity,
354 * and some other details.
355 */
356 static int alauda_get_media_signature(struct us_data *us, unsigned char *data)
357 {
358 unsigned char command;
359
360 if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
361 command = ALAUDA_GET_XD_MEDIA_SIG;
362 else
363 command = ALAUDA_GET_SM_MEDIA_SIG;
364
365 return usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe,
366 command, 0xc0, 0, 0, data, 4);
367 }
368
369 /*
370 * Resets the media status (but not the whole device?)
371 */
372 static int alauda_reset_media(struct us_data *us)
373 {
374 unsigned char *command = us->iobuf;
375
376 memset(command, 0, 9);
377 command[0] = ALAUDA_BULK_CMD;
378 command[1] = ALAUDA_BULK_RESET_MEDIA;
379 command[8] = MEDIA_PORT(us);
380
381 return usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
382 command, 9, NULL);
383 }
384
385 /*
386 * Examines the media and deduces capacity, etc.
387 */
388 static int alauda_init_media(struct us_data *us)
389 {
390 unsigned char *data = us->iobuf;
391 int ready = 0;
392 struct alauda_card_info *media_info;
393 unsigned int num_zones;
394
395 while (ready == 0) {
396 msleep(20);
397
398 if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD)
399 return USB_STOR_TRANSPORT_ERROR;
400
401 if (data[0] & 0x10)
402 ready = 1;
403 }
404
405 US_DEBUGP("alauda_init_media: We are ready for action!\n");
406
407 if (alauda_ack_media(us) != USB_STOR_XFER_GOOD)
408 return USB_STOR_TRANSPORT_ERROR;
409
410 msleep(10);
411
412 if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD)
413 return USB_STOR_TRANSPORT_ERROR;
414
415 if (data[0] != 0x14) {
416 US_DEBUGP("alauda_init_media: Media not ready after ack\n");
417 return USB_STOR_TRANSPORT_ERROR;
418 }
419
420 if (alauda_get_media_signature(us, data) != USB_STOR_XFER_GOOD)
421 return USB_STOR_TRANSPORT_ERROR;
422
423 US_DEBUGP("alauda_init_media: Media signature: %02X %02X %02X %02X\n",
424 data[0], data[1], data[2], data[3]);
425 media_info = alauda_card_find_id(data[1]);
426 if (media_info == NULL) {
427 printk(KERN_WARNING
428 "alauda_init_media: Unrecognised media signature: "
429 "%02X %02X %02X %02X\n",
430 data[0], data[1], data[2], data[3]);
431 return USB_STOR_TRANSPORT_ERROR;
432 }
433
434 MEDIA_INFO(us).capacity = 1 << media_info->chipshift;
435 US_DEBUGP("Found media with capacity: %ldMB\n",
436 MEDIA_INFO(us).capacity >> 20);
437
438 MEDIA_INFO(us).pageshift = media_info->pageshift;
439 MEDIA_INFO(us).blockshift = media_info->blockshift;
440 MEDIA_INFO(us).zoneshift = media_info->zoneshift;
441
442 MEDIA_INFO(us).pagesize = 1 << media_info->pageshift;
443 MEDIA_INFO(us).blocksize = 1 << media_info->blockshift;
444 MEDIA_INFO(us).zonesize = 1 << media_info->zoneshift;
445
446 MEDIA_INFO(us).uzonesize = ((1 << media_info->zoneshift) / 128) * 125;
447 MEDIA_INFO(us).blockmask = MEDIA_INFO(us).blocksize - 1;
448
449 num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift
450 + MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift);
451 MEDIA_INFO(us).pba_to_lba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO);
452 MEDIA_INFO(us).lba_to_pba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO);
453
454 if (alauda_reset_media(us) != USB_STOR_XFER_GOOD)
455 return USB_STOR_TRANSPORT_ERROR;
456
457 return USB_STOR_TRANSPORT_GOOD;
458 }
459
460 /*
461 * Examines the media status and does the right thing when the media has gone,
462 * appeared, or changed.
463 */
464 static int alauda_check_media(struct us_data *us)
465 {
466 struct alauda_info *info = (struct alauda_info *) us->extra;
467 unsigned char status[2];
468 int rc;
469
470 rc = alauda_get_media_status(us, status);
471
472 /* Check for no media or door open */
473 if ((status[0] & 0x80) || ((status[0] & 0x1F) == 0x10)
474 || ((status[1] & 0x01) == 0)) {
475 US_DEBUGP("alauda_check_media: No media, or door open\n");
476 alauda_free_maps(&MEDIA_INFO(us));
477 info->sense_key = 0x02;
478 info->sense_asc = 0x3A;
479 info->sense_ascq = 0x00;
480 return USB_STOR_TRANSPORT_FAILED;
481 }
482
483 /* Check for media change */
484 if (status[0] & 0x08) {
485 US_DEBUGP("alauda_check_media: Media change detected\n");
486 alauda_free_maps(&MEDIA_INFO(us));
487 alauda_init_media(us);
488
489 info->sense_key = UNIT_ATTENTION;
490 info->sense_asc = 0x28;
491 info->sense_ascq = 0x00;
492 return USB_STOR_TRANSPORT_FAILED;
493 }
494
495 return USB_STOR_TRANSPORT_GOOD;
496 }
497
498 /*
499 * Checks the status from the 2nd status register
500 * Returns 3 bytes of status data, only the first is known
501 */
502 static int alauda_check_status2(struct us_data *us)
503 {
504 int rc;
505 unsigned char command[] = {
506 ALAUDA_BULK_CMD, ALAUDA_BULK_GET_STATUS2,
507 0, 0, 0, 0, 3, 0, MEDIA_PORT(us)
508 };
509 unsigned char data[3];
510
511 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
512 command, 9, NULL);
513 if (rc != USB_STOR_XFER_GOOD)
514 return rc;
515
516 rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
517 data, 3, NULL);
518 if (rc != USB_STOR_XFER_GOOD)
519 return rc;
520
521 US_DEBUGP("alauda_check_status2: %02X %02X %02X\n", data[0], data[1], data[2]);
522 if (data[0] & ALAUDA_STATUS_ERROR)
523 return USB_STOR_XFER_ERROR;
524
525 return USB_STOR_XFER_GOOD;
526 }
527
528 /*
529 * Gets the redundancy data for the first page of a PBA
530 * Returns 16 bytes.
531 */
532 static int alauda_get_redu_data(struct us_data *us, u16 pba, unsigned char *data)
533 {
534 int rc;
535 unsigned char command[] = {
536 ALAUDA_BULK_CMD, ALAUDA_BULK_GET_REDU_DATA,
537 PBA_HI(pba), PBA_ZONE(pba), 0, PBA_LO(pba), 0, 0, MEDIA_PORT(us)
538 };
539
540 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
541 command, 9, NULL);
542 if (rc != USB_STOR_XFER_GOOD)
543 return rc;
544
545 return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
546 data, 16, NULL);
547 }
548
549 /*
550 * Finds the first unused PBA in a zone
551 * Returns the absolute PBA of an unused PBA, or 0 if none found.
552 */
553 static u16 alauda_find_unused_pba(struct alauda_media_info *info,
554 unsigned int zone)
555 {
556 u16 *pba_to_lba = info->pba_to_lba[zone];
557 unsigned int i;
558
559 for (i = 0; i < info->zonesize; i++)
560 if (pba_to_lba[i] == UNDEF)
561 return (zone << info->zoneshift) + i;
562
563 return 0;
564 }
565
566 /*
567 * Reads the redundancy data for all PBA's in a zone
568 * Produces lba <--> pba mappings
569 */
570 static int alauda_read_map(struct us_data *us, unsigned int zone)
571 {
572 unsigned char *data = us->iobuf;
573 int result;
574 int i, j;
575 unsigned int zonesize = MEDIA_INFO(us).zonesize;
576 unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
577 unsigned int lba_offset, lba_real, blocknum;
578 unsigned int zone_base_lba = zone * uzonesize;
579 unsigned int zone_base_pba = zone * zonesize;
580 u16 *lba_to_pba = kcalloc(zonesize, sizeof(u16), GFP_NOIO);
581 u16 *pba_to_lba = kcalloc(zonesize, sizeof(u16), GFP_NOIO);
582 if (lba_to_pba == NULL || pba_to_lba == NULL) {
583 result = USB_STOR_TRANSPORT_ERROR;
584 goto error;
585 }
586
587 US_DEBUGP("alauda_read_map: Mapping blocks for zone %d\n", zone);
588
589 /* 1024 PBA's per zone */
590 for (i = 0; i < zonesize; i++)
591 lba_to_pba[i] = pba_to_lba[i] = UNDEF;
592
593 for (i = 0; i < zonesize; i++) {
594 blocknum = zone_base_pba + i;
595
596 result = alauda_get_redu_data(us, blocknum, data);
597 if (result != USB_STOR_XFER_GOOD) {
598 result = USB_STOR_TRANSPORT_ERROR;
599 goto error;
600 }
601
602 /* special PBAs have control field 0^16 */
603 for (j = 0; j < 16; j++)
604 if (data[j] != 0)
605 goto nonz;
606 pba_to_lba[i] = UNUSABLE;
607 US_DEBUGP("alauda_read_map: PBA %d has no logical mapping\n", blocknum);
608 continue;
609
610 nonz:
611 /* unwritten PBAs have control field FF^16 */
612 for (j = 0; j < 16; j++)
613 if (data[j] != 0xff)
614 goto nonff;
615 continue;
616
617 nonff:
618 /* normal PBAs start with six FFs */
619 if (j < 6) {
620 US_DEBUGP("alauda_read_map: PBA %d has no logical mapping: "
621 "reserved area = %02X%02X%02X%02X "
622 "data status %02X block status %02X\n",
623 blocknum, data[0], data[1], data[2], data[3],
624 data[4], data[5]);
625 pba_to_lba[i] = UNUSABLE;
626 continue;
627 }
628
629 if ((data[6] >> 4) != 0x01) {
630 US_DEBUGP("alauda_read_map: PBA %d has invalid address "
631 "field %02X%02X/%02X%02X\n",
632 blocknum, data[6], data[7], data[11], data[12]);
633 pba_to_lba[i] = UNUSABLE;
634 continue;
635 }
636
637 /* check even parity */
638 if (parity[data[6] ^ data[7]]) {
639 printk(KERN_WARNING
640 "alauda_read_map: Bad parity in LBA for block %d"
641 " (%02X %02X)\n", i, data[6], data[7]);
642 pba_to_lba[i] = UNUSABLE;
643 continue;
644 }
645
646 lba_offset = short_pack(data[7], data[6]);
647 lba_offset = (lba_offset & 0x07FF) >> 1;
648 lba_real = lba_offset + zone_base_lba;
649
650 /*
651 * Every 1024 physical blocks ("zone"), the LBA numbers
652 * go back to zero, but are within a higher block of LBA's.
653 * Also, there is a maximum of 1000 LBA's per zone.
654 * In other words, in PBA 1024-2047 you will find LBA 0-999
655 * which are really LBA 1000-1999. This allows for 24 bad
656 * or special physical blocks per zone.
657 */
658
659 if (lba_offset >= uzonesize) {
660 printk(KERN_WARNING
661 "alauda_read_map: Bad low LBA %d for block %d\n",
662 lba_real, blocknum);
663 continue;
664 }
665
666 if (lba_to_pba[lba_offset] != UNDEF) {
667 printk(KERN_WARNING
668 "alauda_read_map: "
669 "LBA %d seen for PBA %d and %d\n",
670 lba_real, lba_to_pba[lba_offset], blocknum);
671 continue;
672 }
673
674 pba_to_lba[i] = lba_real;
675 lba_to_pba[lba_offset] = blocknum;
676 continue;
677 }
678
679 MEDIA_INFO(us).lba_to_pba[zone] = lba_to_pba;
680 MEDIA_INFO(us).pba_to_lba[zone] = pba_to_lba;
681 result = 0;
682 goto out;
683
684 error:
685 kfree(lba_to_pba);
686 kfree(pba_to_lba);
687 out:
688 return result;
689 }
690
691 /*
692 * Checks to see whether we have already mapped a certain zone
693 * If we haven't, the map is generated
694 */
695 static void alauda_ensure_map_for_zone(struct us_data *us, unsigned int zone)
696 {
697 if (MEDIA_INFO(us).lba_to_pba[zone] == NULL
698 || MEDIA_INFO(us).pba_to_lba[zone] == NULL)
699 alauda_read_map(us, zone);
700 }
701
702 /*
703 * Erases an entire block
704 */
705 static int alauda_erase_block(struct us_data *us, u16 pba)
706 {
707 int rc;
708 unsigned char command[] = {
709 ALAUDA_BULK_CMD, ALAUDA_BULK_ERASE_BLOCK, PBA_HI(pba),
710 PBA_ZONE(pba), 0, PBA_LO(pba), 0x02, 0, MEDIA_PORT(us)
711 };
712 unsigned char buf[2];
713
714 US_DEBUGP("alauda_erase_block: Erasing PBA %d\n", pba);
715
716 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
717 command, 9, NULL);
718 if (rc != USB_STOR_XFER_GOOD)
719 return rc;
720
721 rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
722 buf, 2, NULL);
723 if (rc != USB_STOR_XFER_GOOD)
724 return rc;
725
726 US_DEBUGP("alauda_erase_block: Erase result: %02X %02X\n",
727 buf[0], buf[1]);
728 return rc;
729 }
730
731 /*
732 * Reads data from a certain offset page inside a PBA, including interleaved
733 * redundancy data. Returns (pagesize+64)*pages bytes in data.
734 */
735 static int alauda_read_block_raw(struct us_data *us, u16 pba,
736 unsigned int page, unsigned int pages, unsigned char *data)
737 {
738 int rc;
739 unsigned char command[] = {
740 ALAUDA_BULK_CMD, ALAUDA_BULK_READ_BLOCK, PBA_HI(pba),
741 PBA_ZONE(pba), 0, PBA_LO(pba) + page, pages, 0, MEDIA_PORT(us)
742 };
743
744 US_DEBUGP("alauda_read_block: pba %d page %d count %d\n",
745 pba, page, pages);
746
747 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
748 command, 9, NULL);
749 if (rc != USB_STOR_XFER_GOOD)
750 return rc;
751
752 return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
753 data, (MEDIA_INFO(us).pagesize + 64) * pages, NULL);
754 }
755
756 /*
757 * Reads data from a certain offset page inside a PBA, excluding redundancy
758 * data. Returns pagesize*pages bytes in data. Note that data must be big enough
759 * to hold (pagesize+64)*pages bytes of data, but you can ignore those 'extra'
760 * trailing bytes outside this function.
761 */
762 static int alauda_read_block(struct us_data *us, u16 pba,
763 unsigned int page, unsigned int pages, unsigned char *data)
764 {
765 int i, rc;
766 unsigned int pagesize = MEDIA_INFO(us).pagesize;
767
768 rc = alauda_read_block_raw(us, pba, page, pages, data);
769 if (rc != USB_STOR_XFER_GOOD)
770 return rc;
771
772 /* Cut out the redundancy data */
773 for (i = 0; i < pages; i++) {
774 int dest_offset = i * pagesize;
775 int src_offset = i * (pagesize + 64);
776 memmove(data + dest_offset, data + src_offset, pagesize);
777 }
778
779 return rc;
780 }
781
782 /*
783 * Writes an entire block of data and checks status after write.
784 * Redundancy data must be already included in data. Data should be
785 * (pagesize+64)*blocksize bytes in length.
786 */
787 static int alauda_write_block(struct us_data *us, u16 pba, unsigned char *data)
788 {
789 int rc;
790 struct alauda_info *info = (struct alauda_info *) us->extra;
791 unsigned char command[] = {
792 ALAUDA_BULK_CMD, ALAUDA_BULK_WRITE_BLOCK, PBA_HI(pba),
793 PBA_ZONE(pba), 0, PBA_LO(pba), 32, 0, MEDIA_PORT(us)
794 };
795
796 US_DEBUGP("alauda_write_block: pba %d\n", pba);
797
798 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
799 command, 9, NULL);
800 if (rc != USB_STOR_XFER_GOOD)
801 return rc;
802
803 rc = usb_stor_bulk_transfer_buf(us, info->wr_ep, data,
804 (MEDIA_INFO(us).pagesize + 64) * MEDIA_INFO(us).blocksize,
805 NULL);
806 if (rc != USB_STOR_XFER_GOOD)
807 return rc;
808
809 return alauda_check_status2(us);
810 }
811
812 /*
813 * Write some data to a specific LBA.
814 */
815 static int alauda_write_lba(struct us_data *us, u16 lba,
816 unsigned int page, unsigned int pages,
817 unsigned char *ptr, unsigned char *blockbuffer)
818 {
819 u16 pba, lbap, new_pba;
820 unsigned char *bptr, *cptr, *xptr;
821 unsigned char ecc[3];
822 int i, result;
823 unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
824 unsigned int zonesize = MEDIA_INFO(us).zonesize;
825 unsigned int pagesize = MEDIA_INFO(us).pagesize;
826 unsigned int blocksize = MEDIA_INFO(us).blocksize;
827 unsigned int lba_offset = lba % uzonesize;
828 unsigned int new_pba_offset;
829 unsigned int zone = lba / uzonesize;
830
831 alauda_ensure_map_for_zone(us, zone);
832
833 pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset];
834 if (pba == 1) {
835 /* Maybe it is impossible to write to PBA 1.
836 Fake success, but don't do anything. */
837 printk(KERN_WARNING
838 "alauda_write_lba: avoid writing to pba 1\n");
839 return USB_STOR_TRANSPORT_GOOD;
840 }
841
842 new_pba = alauda_find_unused_pba(&MEDIA_INFO(us), zone);
843 if (!new_pba) {
844 printk(KERN_WARNING
845 "alauda_write_lba: Out of unused blocks\n");
846 return USB_STOR_TRANSPORT_ERROR;
847 }
848
849 /* read old contents */
850 if (pba != UNDEF) {
851 result = alauda_read_block_raw(us, pba, 0,
852 blocksize, blockbuffer);
853 if (result != USB_STOR_XFER_GOOD)
854 return result;
855 } else {
856 memset(blockbuffer, 0, blocksize * (pagesize + 64));
857 }
858
859 lbap = (lba_offset << 1) | 0x1000;
860 if (parity[MSB_of(lbap) ^ LSB_of(lbap)])
861 lbap ^= 1;
862
863 /* check old contents and fill lba */
864 for (i = 0; i < blocksize; i++) {
865 bptr = blockbuffer + (i * (pagesize + 64));
866 cptr = bptr + pagesize;
867 nand_compute_ecc(bptr, ecc);
868 if (!nand_compare_ecc(cptr+13, ecc)) {
869 US_DEBUGP("Warning: bad ecc in page %d- of pba %d\n",
870 i, pba);
871 nand_store_ecc(cptr+13, ecc);
872 }
873 nand_compute_ecc(bptr + (pagesize / 2), ecc);
874 if (!nand_compare_ecc(cptr+8, ecc)) {
875 US_DEBUGP("Warning: bad ecc in page %d+ of pba %d\n",
876 i, pba);
877 nand_store_ecc(cptr+8, ecc);
878 }
879 cptr[6] = cptr[11] = MSB_of(lbap);
880 cptr[7] = cptr[12] = LSB_of(lbap);
881 }
882
883 /* copy in new stuff and compute ECC */
884 xptr = ptr;
885 for (i = page; i < page+pages; i++) {
886 bptr = blockbuffer + (i * (pagesize + 64));
887 cptr = bptr + pagesize;
888 memcpy(bptr, xptr, pagesize);
889 xptr += pagesize;
890 nand_compute_ecc(bptr, ecc);
891 nand_store_ecc(cptr+13, ecc);
892 nand_compute_ecc(bptr + (pagesize / 2), ecc);
893 nand_store_ecc(cptr+8, ecc);
894 }
895
896 result = alauda_write_block(us, new_pba, blockbuffer);
897 if (result != USB_STOR_XFER_GOOD)
898 return result;
899
900 new_pba_offset = new_pba - (zone * zonesize);
901 MEDIA_INFO(us).pba_to_lba[zone][new_pba_offset] = lba;
902 MEDIA_INFO(us).lba_to_pba[zone][lba_offset] = new_pba;
903 US_DEBUGP("alauda_write_lba: Remapped LBA %d to PBA %d\n",
904 lba, new_pba);
905
906 if (pba != UNDEF) {
907 unsigned int pba_offset = pba - (zone * zonesize);
908 result = alauda_erase_block(us, pba);
909 if (result != USB_STOR_XFER_GOOD)
910 return result;
911 MEDIA_INFO(us).pba_to_lba[zone][pba_offset] = UNDEF;
912 }
913
914 return USB_STOR_TRANSPORT_GOOD;
915 }
916
917 /*
918 * Read data from a specific sector address
919 */
920 static int alauda_read_data(struct us_data *us, unsigned long address,
921 unsigned int sectors)
922 {
923 unsigned char *buffer;
924 u16 lba, max_lba;
925 unsigned int page, len, offset;
926 unsigned int blockshift = MEDIA_INFO(us).blockshift;
927 unsigned int pageshift = MEDIA_INFO(us).pageshift;
928 unsigned int blocksize = MEDIA_INFO(us).blocksize;
929 unsigned int pagesize = MEDIA_INFO(us).pagesize;
930 unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
931 struct scatterlist *sg;
932 int result;
933
934 /*
935 * Since we only read in one block at a time, we have to create
936 * a bounce buffer and move the data a piece at a time between the
937 * bounce buffer and the actual transfer buffer.
938 * We make this buffer big enough to hold temporary redundancy data,
939 * which we use when reading the data blocks.
940 */
941
942 len = min(sectors, blocksize) * (pagesize + 64);
943 buffer = kmalloc(len, GFP_NOIO);
944 if (buffer == NULL) {
945 printk(KERN_WARNING "alauda_read_data: Out of memory\n");
946 return USB_STOR_TRANSPORT_ERROR;
947 }
948
949 /* Figure out the initial LBA and page */
950 lba = address >> blockshift;
951 page = (address & MEDIA_INFO(us).blockmask);
952 max_lba = MEDIA_INFO(us).capacity >> (blockshift + pageshift);
953
954 result = USB_STOR_TRANSPORT_GOOD;
955 offset = 0;
956 sg = NULL;
957
958 while (sectors > 0) {
959 unsigned int zone = lba / uzonesize; /* integer division */
960 unsigned int lba_offset = lba - (zone * uzonesize);
961 unsigned int pages;
962 u16 pba;
963 alauda_ensure_map_for_zone(us, zone);
964
965 /* Not overflowing capacity? */
966 if (lba >= max_lba) {
967 US_DEBUGP("Error: Requested lba %u exceeds "
968 "maximum %u\n", lba, max_lba);
969 result = USB_STOR_TRANSPORT_ERROR;
970 break;
971 }
972
973 /* Find number of pages we can read in this block */
974 pages = min(sectors, blocksize - page);
975 len = pages << pageshift;
976
977 /* Find where this lba lives on disk */
978 pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset];
979
980 if (pba == UNDEF) { /* this lba was never written */
981 US_DEBUGP("Read %d zero pages (LBA %d) page %d\n",
982 pages, lba, page);
983
984 /* This is not really an error. It just means
985 that the block has never been written.
986 Instead of returning USB_STOR_TRANSPORT_ERROR
987 it is better to return all zero data. */
988
989 memset(buffer, 0, len);
990 } else {
991 US_DEBUGP("Read %d pages, from PBA %d"
992 " (LBA %d) page %d\n",
993 pages, pba, lba, page);
994
995 result = alauda_read_block(us, pba, page, pages, buffer);
996 if (result != USB_STOR_TRANSPORT_GOOD)
997 break;
998 }
999
1000 /* Store the data in the transfer buffer */
1001 usb_stor_access_xfer_buf(buffer, len, us->srb,
1002 &sg, &offset, TO_XFER_BUF);
1003
1004 page = 0;
1005 lba++;
1006 sectors -= pages;
1007 }
1008
1009 kfree(buffer);
1010 return result;
1011 }
1012
1013 /*
1014 * Write data to a specific sector address
1015 */
1016 static int alauda_write_data(struct us_data *us, unsigned long address,
1017 unsigned int sectors)
1018 {
1019 unsigned char *buffer, *blockbuffer;
1020 unsigned int page, len, offset;
1021 unsigned int blockshift = MEDIA_INFO(us).blockshift;
1022 unsigned int pageshift = MEDIA_INFO(us).pageshift;
1023 unsigned int blocksize = MEDIA_INFO(us).blocksize;
1024 unsigned int pagesize = MEDIA_INFO(us).pagesize;
1025 struct scatterlist *sg;
1026 u16 lba, max_lba;
1027 int result;
1028
1029 /*
1030 * Since we don't write the user data directly to the device,
1031 * we have to create a bounce buffer and move the data a piece
1032 * at a time between the bounce buffer and the actual transfer buffer.
1033 */
1034
1035 len = min(sectors, blocksize) * pagesize;
1036 buffer = kmalloc(len, GFP_NOIO);
1037 if (buffer == NULL) {
1038 printk(KERN_WARNING "alauda_write_data: Out of memory\n");
1039 return USB_STOR_TRANSPORT_ERROR;
1040 }
1041
1042 /*
1043 * We also need a temporary block buffer, where we read in the old data,
1044 * overwrite parts with the new data, and manipulate the redundancy data
1045 */
1046 blockbuffer = kmalloc((pagesize + 64) * blocksize, GFP_NOIO);
1047 if (blockbuffer == NULL) {
1048 printk(KERN_WARNING "alauda_write_data: Out of memory\n");
1049 kfree(buffer);
1050 return USB_STOR_TRANSPORT_ERROR;
1051 }
1052
1053 /* Figure out the initial LBA and page */
1054 lba = address >> blockshift;
1055 page = (address & MEDIA_INFO(us).blockmask);
1056 max_lba = MEDIA_INFO(us).capacity >> (pageshift + blockshift);
1057
1058 result = USB_STOR_TRANSPORT_GOOD;
1059 offset = 0;
1060 sg = NULL;
1061
1062 while (sectors > 0) {
1063 /* Write as many sectors as possible in this block */
1064 unsigned int pages = min(sectors, blocksize - page);
1065 len = pages << pageshift;
1066
1067 /* Not overflowing capacity? */
1068 if (lba >= max_lba) {
1069 US_DEBUGP("alauda_write_data: Requested lba %u exceeds "
1070 "maximum %u\n", lba, max_lba);
1071 result = USB_STOR_TRANSPORT_ERROR;
1072 break;
1073 }
1074
1075 /* Get the data from the transfer buffer */
1076 usb_stor_access_xfer_buf(buffer, len, us->srb,
1077 &sg, &offset, FROM_XFER_BUF);
1078
1079 result = alauda_write_lba(us, lba, page, pages, buffer,
1080 blockbuffer);
1081 if (result != USB_STOR_TRANSPORT_GOOD)
1082 break;
1083
1084 page = 0;
1085 lba++;
1086 sectors -= pages;
1087 }
1088
1089 kfree(buffer);
1090 kfree(blockbuffer);
1091 return result;
1092 }
1093
1094 /*
1095 * Our interface with the rest of the world
1096 */
1097
1098 static void alauda_info_destructor(void *extra)
1099 {
1100 struct alauda_info *info = (struct alauda_info *) extra;
1101 int port;
1102
1103 if (!info)
1104 return;
1105
1106 for (port = 0; port < 2; port++) {
1107 struct alauda_media_info *media_info = &info->port[port];
1108
1109 alauda_free_maps(media_info);
1110 kfree(media_info->lba_to_pba);
1111 kfree(media_info->pba_to_lba);
1112 }
1113 }
1114
1115 /*
1116 * Initialize alauda_info struct and find the data-write endpoint
1117 */
1118 static int init_alauda(struct us_data *us)
1119 {
1120 struct alauda_info *info;
1121 struct usb_host_interface *altsetting = us->pusb_intf->cur_altsetting;
1122 nand_init_ecc();
1123
1124 us->extra = kzalloc(sizeof(struct alauda_info), GFP_NOIO);
1125 if (!us->extra) {
1126 US_DEBUGP("init_alauda: Gah! Can't allocate storage for"
1127 "alauda info struct!\n");
1128 return USB_STOR_TRANSPORT_ERROR;
1129 }
1130 info = (struct alauda_info *) us->extra;
1131 us->extra_destructor = alauda_info_destructor;
1132
1133 info->wr_ep = usb_sndbulkpipe(us->pusb_dev,
1134 altsetting->endpoint[0].desc.bEndpointAddress
1135 & USB_ENDPOINT_NUMBER_MASK);
1136
1137 return USB_STOR_TRANSPORT_GOOD;
1138 }
1139
1140 static int alauda_transport(struct scsi_cmnd *srb, struct us_data *us)
1141 {
1142 int rc;
1143 struct alauda_info *info = (struct alauda_info *) us->extra;
1144 unsigned char *ptr = us->iobuf;
1145 static unsigned char inquiry_response[36] = {
1146 0x00, 0x80, 0x00, 0x01, 0x1F, 0x00, 0x00, 0x00
1147 };
1148
1149 if (srb->cmnd[0] == INQUIRY) {
1150 US_DEBUGP("alauda_transport: INQUIRY. "
1151 "Returning bogus response.\n");
1152 memcpy(ptr, inquiry_response, sizeof(inquiry_response));
1153 fill_inquiry_response(us, ptr, 36);
1154 return USB_STOR_TRANSPORT_GOOD;
1155 }
1156
1157 if (srb->cmnd[0] == TEST_UNIT_READY) {
1158 US_DEBUGP("alauda_transport: TEST_UNIT_READY.\n");
1159 return alauda_check_media(us);
1160 }
1161
1162 if (srb->cmnd[0] == READ_CAPACITY) {
1163 unsigned int num_zones;
1164 unsigned long capacity;
1165
1166 rc = alauda_check_media(us);
1167 if (rc != USB_STOR_TRANSPORT_GOOD)
1168 return rc;
1169
1170 num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift
1171 + MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift);
1172
1173 capacity = num_zones * MEDIA_INFO(us).uzonesize
1174 * MEDIA_INFO(us).blocksize;
1175
1176 /* Report capacity and page size */
1177 ((__be32 *) ptr)[0] = cpu_to_be32(capacity - 1);
1178 ((__be32 *) ptr)[1] = cpu_to_be32(512);
1179
1180 usb_stor_set_xfer_buf(ptr, 8, srb);
1181 return USB_STOR_TRANSPORT_GOOD;
1182 }
1183
1184 if (srb->cmnd[0] == READ_10) {
1185 unsigned int page, pages;
1186
1187 rc = alauda_check_media(us);
1188 if (rc != USB_STOR_TRANSPORT_GOOD)
1189 return rc;
1190
1191 page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1192 page <<= 16;
1193 page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1194 pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1195
1196 US_DEBUGP("alauda_transport: READ_10: page %d pagect %d\n",
1197 page, pages);
1198
1199 return alauda_read_data(us, page, pages);
1200 }
1201
1202 if (srb->cmnd[0] == WRITE_10) {
1203 unsigned int page, pages;
1204
1205 rc = alauda_check_media(us);
1206 if (rc != USB_STOR_TRANSPORT_GOOD)
1207 return rc;
1208
1209 page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1210 page <<= 16;
1211 page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1212 pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1213
1214 US_DEBUGP("alauda_transport: WRITE_10: page %d pagect %d\n",
1215 page, pages);
1216
1217 return alauda_write_data(us, page, pages);
1218 }
1219
1220 if (srb->cmnd[0] == REQUEST_SENSE) {
1221 US_DEBUGP("alauda_transport: REQUEST_SENSE.\n");
1222
1223 memset(ptr, 0, 18);
1224 ptr[0] = 0xF0;
1225 ptr[2] = info->sense_key;
1226 ptr[7] = 11;
1227 ptr[12] = info->sense_asc;
1228 ptr[13] = info->sense_ascq;
1229 usb_stor_set_xfer_buf(ptr, 18, srb);
1230
1231 return USB_STOR_TRANSPORT_GOOD;
1232 }
1233
1234 if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL) {
1235 /* sure. whatever. not like we can stop the user from popping
1236 the media out of the device (no locking doors, etc) */
1237 return USB_STOR_TRANSPORT_GOOD;
1238 }
1239
1240 US_DEBUGP("alauda_transport: Gah! Unknown command: %d (0x%x)\n",
1241 srb->cmnd[0], srb->cmnd[0]);
1242 info->sense_key = 0x05;
1243 info->sense_asc = 0x20;
1244 info->sense_ascq = 0x00;
1245 return USB_STOR_TRANSPORT_FAILED;
1246 }
1247
1248 static int alauda_probe(struct usb_interface *intf,
1249 const struct usb_device_id *id)
1250 {
1251 struct us_data *us;
1252 int result;
1253
1254 result = usb_stor_probe1(&us, intf, id,
1255 (id - alauda_usb_ids) + alauda_unusual_dev_list);
1256 if (result)
1257 return result;
1258
1259 us->transport_name = "Alauda Control/Bulk";
1260 us->transport = alauda_transport;
1261 us->transport_reset = usb_stor_Bulk_reset;
1262 us->max_lun = 1;
1263
1264 result = usb_stor_probe2(us);
1265 return result;
1266 }
1267
1268 static struct usb_driver alauda_driver = {
1269 .name = "ums-alauda",
1270 .probe = alauda_probe,
1271 .disconnect = usb_stor_disconnect,
1272 .suspend = usb_stor_suspend,
1273 .resume = usb_stor_resume,
1274 .reset_resume = usb_stor_reset_resume,
1275 .pre_reset = usb_stor_pre_reset,
1276 .post_reset = usb_stor_post_reset,
1277 .id_table = alauda_usb_ids,
1278 .soft_unbind = 1,
1279 };
1280
1281 static int __init alauda_init(void)
1282 {
1283 return usb_register(&alauda_driver);
1284 }
1285
1286 static void __exit alauda_exit(void)
1287 {
1288 usb_deregister(&alauda_driver);
1289 }
1290
1291 module_init(alauda_init);
1292 module_exit(alauda_exit);