]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/vfio/pci/vfio_pci_config.c
vfio: Add PCI device driver
[mirror_ubuntu-bionic-kernel.git] / drivers / vfio / pci / vfio_pci_config.c
1 /*
2 * VFIO PCI config space virtualization
3 *
4 * Copyright (C) 2012 Red Hat, Inc. All rights reserved.
5 * Author: Alex Williamson <alex.williamson@redhat.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * Derived from original vfio:
12 * Copyright 2010 Cisco Systems, Inc. All rights reserved.
13 * Author: Tom Lyon, pugs@cisco.com
14 */
15
16 /*
17 * This code handles reading and writing of PCI configuration registers.
18 * This is hairy because we want to allow a lot of flexibility to the
19 * user driver, but cannot trust it with all of the config fields.
20 * Tables determine which fields can be read and written, as well as
21 * which fields are 'virtualized' - special actions and translations to
22 * make it appear to the user that he has control, when in fact things
23 * must be negotiated with the underlying OS.
24 */
25
26 #include <linux/fs.h>
27 #include <linux/pci.h>
28 #include <linux/uaccess.h>
29 #include <linux/vfio.h>
30
31 #include "vfio_pci_private.h"
32
33 #define PCI_CFG_SPACE_SIZE 256
34
35 /* Useful "pseudo" capabilities */
36 #define PCI_CAP_ID_BASIC 0
37 #define PCI_CAP_ID_INVALID 0xFF
38
39 #define is_bar(offset) \
40 ((offset >= PCI_BASE_ADDRESS_0 && offset < PCI_BASE_ADDRESS_5 + 4) || \
41 (offset >= PCI_ROM_ADDRESS && offset < PCI_ROM_ADDRESS + 4))
42
43 /*
44 * Lengths of PCI Config Capabilities
45 * 0: Removed from the user visible capability list
46 * FF: Variable length
47 */
48 static u8 pci_cap_length[] = {
49 [PCI_CAP_ID_BASIC] = PCI_STD_HEADER_SIZEOF, /* pci config header */
50 [PCI_CAP_ID_PM] = PCI_PM_SIZEOF,
51 [PCI_CAP_ID_AGP] = PCI_AGP_SIZEOF,
52 [PCI_CAP_ID_VPD] = PCI_CAP_VPD_SIZEOF,
53 [PCI_CAP_ID_SLOTID] = 0, /* bridge - don't care */
54 [PCI_CAP_ID_MSI] = 0xFF, /* 10, 14, 20, or 24 */
55 [PCI_CAP_ID_CHSWP] = 0, /* cpci - not yet */
56 [PCI_CAP_ID_PCIX] = 0xFF, /* 8 or 24 */
57 [PCI_CAP_ID_HT] = 0xFF, /* hypertransport */
58 [PCI_CAP_ID_VNDR] = 0xFF, /* variable */
59 [PCI_CAP_ID_DBG] = 0, /* debug - don't care */
60 [PCI_CAP_ID_CCRC] = 0, /* cpci - not yet */
61 [PCI_CAP_ID_SHPC] = 0, /* hotswap - not yet */
62 [PCI_CAP_ID_SSVID] = 0, /* bridge - don't care */
63 [PCI_CAP_ID_AGP3] = 0, /* AGP8x - not yet */
64 [PCI_CAP_ID_SECDEV] = 0, /* secure device not yet */
65 [PCI_CAP_ID_EXP] = 0xFF, /* 20 or 44 */
66 [PCI_CAP_ID_MSIX] = PCI_CAP_MSIX_SIZEOF,
67 [PCI_CAP_ID_SATA] = 0xFF,
68 [PCI_CAP_ID_AF] = PCI_CAP_AF_SIZEOF,
69 };
70
71 /*
72 * Lengths of PCIe/PCI-X Extended Config Capabilities
73 * 0: Removed or masked from the user visible capabilty list
74 * FF: Variable length
75 */
76 static u16 pci_ext_cap_length[] = {
77 [PCI_EXT_CAP_ID_ERR] = PCI_ERR_ROOT_COMMAND,
78 [PCI_EXT_CAP_ID_VC] = 0xFF,
79 [PCI_EXT_CAP_ID_DSN] = PCI_EXT_CAP_DSN_SIZEOF,
80 [PCI_EXT_CAP_ID_PWR] = PCI_EXT_CAP_PWR_SIZEOF,
81 [PCI_EXT_CAP_ID_RCLD] = 0, /* root only - don't care */
82 [PCI_EXT_CAP_ID_RCILC] = 0, /* root only - don't care */
83 [PCI_EXT_CAP_ID_RCEC] = 0, /* root only - don't care */
84 [PCI_EXT_CAP_ID_MFVC] = 0xFF,
85 [PCI_EXT_CAP_ID_VC9] = 0xFF, /* same as CAP_ID_VC */
86 [PCI_EXT_CAP_ID_RCRB] = 0, /* root only - don't care */
87 [PCI_EXT_CAP_ID_VNDR] = 0xFF,
88 [PCI_EXT_CAP_ID_CAC] = 0, /* obsolete */
89 [PCI_EXT_CAP_ID_ACS] = 0xFF,
90 [PCI_EXT_CAP_ID_ARI] = PCI_EXT_CAP_ARI_SIZEOF,
91 [PCI_EXT_CAP_ID_ATS] = PCI_EXT_CAP_ATS_SIZEOF,
92 [PCI_EXT_CAP_ID_SRIOV] = PCI_EXT_CAP_SRIOV_SIZEOF,
93 [PCI_EXT_CAP_ID_MRIOV] = 0, /* not yet */
94 [PCI_EXT_CAP_ID_MCAST] = PCI_EXT_CAP_MCAST_ENDPOINT_SIZEOF,
95 [PCI_EXT_CAP_ID_PRI] = PCI_EXT_CAP_PRI_SIZEOF,
96 [PCI_EXT_CAP_ID_AMD_XXX] = 0, /* not yet */
97 [PCI_EXT_CAP_ID_REBAR] = 0xFF,
98 [PCI_EXT_CAP_ID_DPA] = 0xFF,
99 [PCI_EXT_CAP_ID_TPH] = 0xFF,
100 [PCI_EXT_CAP_ID_LTR] = PCI_EXT_CAP_LTR_SIZEOF,
101 [PCI_EXT_CAP_ID_SECPCI] = 0, /* not yet */
102 [PCI_EXT_CAP_ID_PMUX] = 0, /* not yet */
103 [PCI_EXT_CAP_ID_PASID] = 0, /* not yet */
104 };
105
106 /*
107 * Read/Write Permission Bits - one bit for each bit in capability
108 * Any field can be read if it exists, but what is read depends on
109 * whether the field is 'virtualized', or just pass thru to the
110 * hardware. Any virtualized field is also virtualized for writes.
111 * Writes are only permitted if they have a 1 bit here.
112 */
113 struct perm_bits {
114 u8 *virt; /* read/write virtual data, not hw */
115 u8 *write; /* writeable bits */
116 int (*readfn)(struct vfio_pci_device *vdev, int pos, int count,
117 struct perm_bits *perm, int offset, __le32 *val);
118 int (*writefn)(struct vfio_pci_device *vdev, int pos, int count,
119 struct perm_bits *perm, int offset, __le32 val);
120 };
121
122 #define NO_VIRT 0
123 #define ALL_VIRT 0xFFFFFFFFU
124 #define NO_WRITE 0
125 #define ALL_WRITE 0xFFFFFFFFU
126
127 static int vfio_user_config_read(struct pci_dev *pdev, int offset,
128 __le32 *val, int count)
129 {
130 int ret = -EINVAL;
131 u32 tmp_val = 0;
132
133 switch (count) {
134 case 1:
135 {
136 u8 tmp;
137 ret = pci_user_read_config_byte(pdev, offset, &tmp);
138 tmp_val = tmp;
139 break;
140 }
141 case 2:
142 {
143 u16 tmp;
144 ret = pci_user_read_config_word(pdev, offset, &tmp);
145 tmp_val = tmp;
146 break;
147 }
148 case 4:
149 ret = pci_user_read_config_dword(pdev, offset, &tmp_val);
150 break;
151 }
152
153 *val = cpu_to_le32(tmp_val);
154
155 return pcibios_err_to_errno(ret);
156 }
157
158 static int vfio_user_config_write(struct pci_dev *pdev, int offset,
159 __le32 val, int count)
160 {
161 int ret = -EINVAL;
162 u32 tmp_val = le32_to_cpu(val);
163
164 switch (count) {
165 case 1:
166 ret = pci_user_write_config_byte(pdev, offset, tmp_val);
167 break;
168 case 2:
169 ret = pci_user_write_config_word(pdev, offset, tmp_val);
170 break;
171 case 4:
172 ret = pci_user_write_config_dword(pdev, offset, tmp_val);
173 break;
174 }
175
176 return pcibios_err_to_errno(ret);
177 }
178
179 static int vfio_default_config_read(struct vfio_pci_device *vdev, int pos,
180 int count, struct perm_bits *perm,
181 int offset, __le32 *val)
182 {
183 __le32 virt = 0;
184
185 memcpy(val, vdev->vconfig + pos, count);
186
187 memcpy(&virt, perm->virt + offset, count);
188
189 /* Any non-virtualized bits? */
190 if (cpu_to_le32(~0U >> (32 - (count * 8))) != virt) {
191 struct pci_dev *pdev = vdev->pdev;
192 __le32 phys_val = 0;
193 int ret;
194
195 ret = vfio_user_config_read(pdev, pos, &phys_val, count);
196 if (ret)
197 return ret;
198
199 *val = (phys_val & ~virt) | (*val & virt);
200 }
201
202 return count;
203 }
204
205 static int vfio_default_config_write(struct vfio_pci_device *vdev, int pos,
206 int count, struct perm_bits *perm,
207 int offset, __le32 val)
208 {
209 __le32 virt = 0, write = 0;
210
211 memcpy(&write, perm->write + offset, count);
212
213 if (!write)
214 return count; /* drop, no writable bits */
215
216 memcpy(&virt, perm->virt + offset, count);
217
218 /* Virtualized and writable bits go to vconfig */
219 if (write & virt) {
220 __le32 virt_val = 0;
221
222 memcpy(&virt_val, vdev->vconfig + pos, count);
223
224 virt_val &= ~(write & virt);
225 virt_val |= (val & (write & virt));
226
227 memcpy(vdev->vconfig + pos, &virt_val, count);
228 }
229
230 /* Non-virtualzed and writable bits go to hardware */
231 if (write & ~virt) {
232 struct pci_dev *pdev = vdev->pdev;
233 __le32 phys_val = 0;
234 int ret;
235
236 ret = vfio_user_config_read(pdev, pos, &phys_val, count);
237 if (ret)
238 return ret;
239
240 phys_val &= ~(write & ~virt);
241 phys_val |= (val & (write & ~virt));
242
243 ret = vfio_user_config_write(pdev, pos, phys_val, count);
244 if (ret)
245 return ret;
246 }
247
248 return count;
249 }
250
251 /* Allow direct read from hardware, except for capability next pointer */
252 static int vfio_direct_config_read(struct vfio_pci_device *vdev, int pos,
253 int count, struct perm_bits *perm,
254 int offset, __le32 *val)
255 {
256 int ret;
257
258 ret = vfio_user_config_read(vdev->pdev, pos, val, count);
259 if (ret)
260 return pcibios_err_to_errno(ret);
261
262 if (pos >= PCI_CFG_SPACE_SIZE) { /* Extended cap header mangling */
263 if (offset < 4)
264 memcpy(val, vdev->vconfig + pos, count);
265 } else if (pos >= PCI_STD_HEADER_SIZEOF) { /* Std cap mangling */
266 if (offset == PCI_CAP_LIST_ID && count > 1)
267 memcpy(val, vdev->vconfig + pos,
268 min(PCI_CAP_FLAGS, count));
269 else if (offset == PCI_CAP_LIST_NEXT)
270 memcpy(val, vdev->vconfig + pos, 1);
271 }
272
273 return count;
274 }
275
276 static int vfio_direct_config_write(struct vfio_pci_device *vdev, int pos,
277 int count, struct perm_bits *perm,
278 int offset, __le32 val)
279 {
280 int ret;
281
282 ret = vfio_user_config_write(vdev->pdev, pos, val, count);
283 if (ret)
284 return ret;
285
286 return count;
287 }
288
289 /* Default all regions to read-only, no-virtualization */
290 static struct perm_bits cap_perms[PCI_CAP_ID_MAX + 1] = {
291 [0 ... PCI_CAP_ID_MAX] = { .readfn = vfio_direct_config_read }
292 };
293 static struct perm_bits ecap_perms[PCI_EXT_CAP_ID_MAX + 1] = {
294 [0 ... PCI_EXT_CAP_ID_MAX] = { .readfn = vfio_direct_config_read }
295 };
296
297 static void free_perm_bits(struct perm_bits *perm)
298 {
299 kfree(perm->virt);
300 kfree(perm->write);
301 perm->virt = NULL;
302 perm->write = NULL;
303 }
304
305 static int alloc_perm_bits(struct perm_bits *perm, int size)
306 {
307 /*
308 * Round up all permission bits to the next dword, this lets us
309 * ignore whether a read/write exceeds the defined capability
310 * structure. We can do this because:
311 * - Standard config space is already dword aligned
312 * - Capabilities are all dword alinged (bits 0:1 of next reserved)
313 * - Express capabilities defined as dword aligned
314 */
315 size = round_up(size, 4);
316
317 /*
318 * Zero state is
319 * - All Readable, None Writeable, None Virtualized
320 */
321 perm->virt = kzalloc(size, GFP_KERNEL);
322 perm->write = kzalloc(size, GFP_KERNEL);
323 if (!perm->virt || !perm->write) {
324 free_perm_bits(perm);
325 return -ENOMEM;
326 }
327
328 perm->readfn = vfio_default_config_read;
329 perm->writefn = vfio_default_config_write;
330
331 return 0;
332 }
333
334 /*
335 * Helper functions for filling in permission tables
336 */
337 static inline void p_setb(struct perm_bits *p, int off, u8 virt, u8 write)
338 {
339 p->virt[off] = virt;
340 p->write[off] = write;
341 }
342
343 /* Handle endian-ness - pci and tables are little-endian */
344 static inline void p_setw(struct perm_bits *p, int off, u16 virt, u16 write)
345 {
346 *(__le16 *)(&p->virt[off]) = cpu_to_le16(virt);
347 *(__le16 *)(&p->write[off]) = cpu_to_le16(write);
348 }
349
350 /* Handle endian-ness - pci and tables are little-endian */
351 static inline void p_setd(struct perm_bits *p, int off, u32 virt, u32 write)
352 {
353 *(__le32 *)(&p->virt[off]) = cpu_to_le32(virt);
354 *(__le32 *)(&p->write[off]) = cpu_to_le32(write);
355 }
356
357 /*
358 * Restore the *real* BARs after we detect a FLR or backdoor reset.
359 * (backdoor = some device specific technique that we didn't catch)
360 */
361 static void vfio_bar_restore(struct vfio_pci_device *vdev)
362 {
363 struct pci_dev *pdev = vdev->pdev;
364 u32 *rbar = vdev->rbar;
365 int i;
366
367 if (pdev->is_virtfn)
368 return;
369
370 pr_info("%s: %s reset recovery - restoring bars\n",
371 __func__, dev_name(&pdev->dev));
372
373 for (i = PCI_BASE_ADDRESS_0; i <= PCI_BASE_ADDRESS_5; i += 4, rbar++)
374 pci_user_write_config_dword(pdev, i, *rbar);
375
376 pci_user_write_config_dword(pdev, PCI_ROM_ADDRESS, *rbar);
377 }
378
379 static __le32 vfio_generate_bar_flags(struct pci_dev *pdev, int bar)
380 {
381 unsigned long flags = pci_resource_flags(pdev, bar);
382 u32 val;
383
384 if (flags & IORESOURCE_IO)
385 return cpu_to_le32(PCI_BASE_ADDRESS_SPACE_IO);
386
387 val = PCI_BASE_ADDRESS_SPACE_MEMORY;
388
389 if (flags & IORESOURCE_PREFETCH)
390 val |= PCI_BASE_ADDRESS_MEM_PREFETCH;
391
392 if (flags & IORESOURCE_MEM_64)
393 val |= PCI_BASE_ADDRESS_MEM_TYPE_64;
394
395 return cpu_to_le32(val);
396 }
397
398 /*
399 * Pretend we're hardware and tweak the values of the *virtual* PCI BARs
400 * to reflect the hardware capabilities. This implements BAR sizing.
401 */
402 static void vfio_bar_fixup(struct vfio_pci_device *vdev)
403 {
404 struct pci_dev *pdev = vdev->pdev;
405 int i;
406 __le32 *bar;
407 u64 mask;
408
409 bar = (__le32 *)&vdev->vconfig[PCI_BASE_ADDRESS_0];
410
411 for (i = PCI_STD_RESOURCES; i <= PCI_STD_RESOURCE_END; i++, bar++) {
412 if (!pci_resource_start(pdev, i)) {
413 *bar = 0; /* Unmapped by host = unimplemented to user */
414 continue;
415 }
416
417 mask = ~(pci_resource_len(pdev, i) - 1);
418
419 *bar &= cpu_to_le32((u32)mask);
420 *bar |= vfio_generate_bar_flags(pdev, i);
421
422 if (*bar & cpu_to_le32(PCI_BASE_ADDRESS_MEM_TYPE_64)) {
423 bar++;
424 *bar &= cpu_to_le32((u32)(mask >> 32));
425 i++;
426 }
427 }
428
429 bar = (__le32 *)&vdev->vconfig[PCI_ROM_ADDRESS];
430
431 /*
432 * NB. we expose the actual BAR size here, regardless of whether
433 * we can read it. When we report the REGION_INFO for the ROM
434 * we report what PCI tells us is the actual ROM size.
435 */
436 if (pci_resource_start(pdev, PCI_ROM_RESOURCE)) {
437 mask = ~(pci_resource_len(pdev, PCI_ROM_RESOURCE) - 1);
438 mask |= PCI_ROM_ADDRESS_ENABLE;
439 *bar &= cpu_to_le32((u32)mask);
440 } else
441 *bar = 0;
442
443 vdev->bardirty = false;
444 }
445
446 static int vfio_basic_config_read(struct vfio_pci_device *vdev, int pos,
447 int count, struct perm_bits *perm,
448 int offset, __le32 *val)
449 {
450 if (is_bar(offset)) /* pos == offset for basic config */
451 vfio_bar_fixup(vdev);
452
453 count = vfio_default_config_read(vdev, pos, count, perm, offset, val);
454
455 /* Mask in virtual memory enable for SR-IOV devices */
456 if (offset == PCI_COMMAND && vdev->pdev->is_virtfn) {
457 u16 cmd = le16_to_cpu(*(__le16 *)&vdev->vconfig[PCI_COMMAND]);
458 u32 tmp_val = le32_to_cpu(*val);
459
460 tmp_val |= cmd & PCI_COMMAND_MEMORY;
461 *val = cpu_to_le32(tmp_val);
462 }
463
464 return count;
465 }
466
467 static int vfio_basic_config_write(struct vfio_pci_device *vdev, int pos,
468 int count, struct perm_bits *perm,
469 int offset, __le32 val)
470 {
471 struct pci_dev *pdev = vdev->pdev;
472 __le16 *virt_cmd;
473 u16 new_cmd = 0;
474 int ret;
475
476 virt_cmd = (__le16 *)&vdev->vconfig[PCI_COMMAND];
477
478 if (offset == PCI_COMMAND) {
479 bool phys_mem, virt_mem, new_mem, phys_io, virt_io, new_io;
480 u16 phys_cmd;
481
482 ret = pci_user_read_config_word(pdev, PCI_COMMAND, &phys_cmd);
483 if (ret)
484 return ret;
485
486 new_cmd = le32_to_cpu(val);
487
488 phys_mem = !!(phys_cmd & PCI_COMMAND_MEMORY);
489 virt_mem = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_MEMORY);
490 new_mem = !!(new_cmd & PCI_COMMAND_MEMORY);
491
492 phys_io = !!(phys_cmd & PCI_COMMAND_IO);
493 virt_io = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_IO);
494 new_io = !!(new_cmd & PCI_COMMAND_IO);
495
496 /*
497 * If the user is writing mem/io enable (new_mem/io) and we
498 * think it's already enabled (virt_mem/io), but the hardware
499 * shows it disabled (phys_mem/io, then the device has
500 * undergone some kind of backdoor reset and needs to be
501 * restored before we allow it to enable the bars.
502 * SR-IOV devices will trigger this, but we catch them later
503 */
504 if ((new_mem && virt_mem && !phys_mem) ||
505 (new_io && virt_io && !phys_io))
506 vfio_bar_restore(vdev);
507 }
508
509 count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
510 if (count < 0)
511 return count;
512
513 /*
514 * Save current memory/io enable bits in vconfig to allow for
515 * the test above next time.
516 */
517 if (offset == PCI_COMMAND) {
518 u16 mask = PCI_COMMAND_MEMORY | PCI_COMMAND_IO;
519
520 *virt_cmd &= cpu_to_le16(~mask);
521 *virt_cmd |= cpu_to_le16(new_cmd & mask);
522 }
523
524 /* Emulate INTx disable */
525 if (offset >= PCI_COMMAND && offset <= PCI_COMMAND + 1) {
526 bool virt_intx_disable;
527
528 virt_intx_disable = !!(le16_to_cpu(*virt_cmd) &
529 PCI_COMMAND_INTX_DISABLE);
530
531 if (virt_intx_disable && !vdev->virq_disabled) {
532 vdev->virq_disabled = true;
533 vfio_pci_intx_mask(vdev);
534 } else if (!virt_intx_disable && vdev->virq_disabled) {
535 vdev->virq_disabled = false;
536 vfio_pci_intx_unmask(vdev);
537 }
538 }
539
540 if (is_bar(offset))
541 vdev->bardirty = true;
542
543 return count;
544 }
545
546 /* Permissions for the Basic PCI Header */
547 static int __init init_pci_cap_basic_perm(struct perm_bits *perm)
548 {
549 if (alloc_perm_bits(perm, PCI_STD_HEADER_SIZEOF))
550 return -ENOMEM;
551
552 perm->readfn = vfio_basic_config_read;
553 perm->writefn = vfio_basic_config_write;
554
555 /* Virtualized for SR-IOV functions, which just have FFFF */
556 p_setw(perm, PCI_VENDOR_ID, (u16)ALL_VIRT, NO_WRITE);
557 p_setw(perm, PCI_DEVICE_ID, (u16)ALL_VIRT, NO_WRITE);
558
559 /*
560 * Virtualize INTx disable, we use it internally for interrupt
561 * control and can emulate it for non-PCI 2.3 devices.
562 */
563 p_setw(perm, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE, (u16)ALL_WRITE);
564
565 /* Virtualize capability list, we might want to skip/disable */
566 p_setw(perm, PCI_STATUS, PCI_STATUS_CAP_LIST, NO_WRITE);
567
568 /* No harm to write */
569 p_setb(perm, PCI_CACHE_LINE_SIZE, NO_VIRT, (u8)ALL_WRITE);
570 p_setb(perm, PCI_LATENCY_TIMER, NO_VIRT, (u8)ALL_WRITE);
571 p_setb(perm, PCI_BIST, NO_VIRT, (u8)ALL_WRITE);
572
573 /* Virtualize all bars, can't touch the real ones */
574 p_setd(perm, PCI_BASE_ADDRESS_0, ALL_VIRT, ALL_WRITE);
575 p_setd(perm, PCI_BASE_ADDRESS_1, ALL_VIRT, ALL_WRITE);
576 p_setd(perm, PCI_BASE_ADDRESS_2, ALL_VIRT, ALL_WRITE);
577 p_setd(perm, PCI_BASE_ADDRESS_3, ALL_VIRT, ALL_WRITE);
578 p_setd(perm, PCI_BASE_ADDRESS_4, ALL_VIRT, ALL_WRITE);
579 p_setd(perm, PCI_BASE_ADDRESS_5, ALL_VIRT, ALL_WRITE);
580 p_setd(perm, PCI_ROM_ADDRESS, ALL_VIRT, ALL_WRITE);
581
582 /* Allow us to adjust capability chain */
583 p_setb(perm, PCI_CAPABILITY_LIST, (u8)ALL_VIRT, NO_WRITE);
584
585 /* Sometimes used by sw, just virtualize */
586 p_setb(perm, PCI_INTERRUPT_LINE, (u8)ALL_VIRT, (u8)ALL_WRITE);
587 return 0;
588 }
589
590 /* Permissions for the Power Management capability */
591 static int __init init_pci_cap_pm_perm(struct perm_bits *perm)
592 {
593 if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_PM]))
594 return -ENOMEM;
595
596 /*
597 * We always virtualize the next field so we can remove
598 * capabilities from the chain if we want to.
599 */
600 p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
601
602 /*
603 * Power management is defined *per function*,
604 * so we let the user write this
605 */
606 p_setd(perm, PCI_PM_CTRL, NO_VIRT, ALL_WRITE);
607 return 0;
608 }
609
610 /* Permissions for PCI-X capability */
611 static int __init init_pci_cap_pcix_perm(struct perm_bits *perm)
612 {
613 /* Alloc 24, but only 8 are used in v0 */
614 if (alloc_perm_bits(perm, PCI_CAP_PCIX_SIZEOF_V2))
615 return -ENOMEM;
616
617 p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
618
619 p_setw(perm, PCI_X_CMD, NO_VIRT, (u16)ALL_WRITE);
620 p_setd(perm, PCI_X_ECC_CSR, NO_VIRT, ALL_WRITE);
621 return 0;
622 }
623
624 /* Permissions for PCI Express capability */
625 static int __init init_pci_cap_exp_perm(struct perm_bits *perm)
626 {
627 /* Alloc larger of two possible sizes */
628 if (alloc_perm_bits(perm, PCI_CAP_EXP_ENDPOINT_SIZEOF_V2))
629 return -ENOMEM;
630
631 p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
632
633 /*
634 * Allow writes to device control fields (includes FLR!)
635 * but not to devctl_phantom which could confuse IOMMU
636 * or to the ARI bit in devctl2 which is set at probe time
637 */
638 p_setw(perm, PCI_EXP_DEVCTL, NO_VIRT, ~PCI_EXP_DEVCTL_PHANTOM);
639 p_setw(perm, PCI_EXP_DEVCTL2, NO_VIRT, ~PCI_EXP_DEVCTL2_ARI);
640 return 0;
641 }
642
643 /* Permissions for Advanced Function capability */
644 static int __init init_pci_cap_af_perm(struct perm_bits *perm)
645 {
646 if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_AF]))
647 return -ENOMEM;
648
649 p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
650 p_setb(perm, PCI_AF_CTRL, NO_VIRT, PCI_AF_CTRL_FLR);
651 return 0;
652 }
653
654 /* Permissions for Advanced Error Reporting extended capability */
655 static int __init init_pci_ext_cap_err_perm(struct perm_bits *perm)
656 {
657 u32 mask;
658
659 if (alloc_perm_bits(perm, pci_ext_cap_length[PCI_EXT_CAP_ID_ERR]))
660 return -ENOMEM;
661
662 /*
663 * Virtualize the first dword of all express capabilities
664 * because it includes the next pointer. This lets us later
665 * remove capabilities from the chain if we need to.
666 */
667 p_setd(perm, 0, ALL_VIRT, NO_WRITE);
668
669 /* Writable bits mask */
670 mask = PCI_ERR_UNC_TRAIN | /* Training */
671 PCI_ERR_UNC_DLP | /* Data Link Protocol */
672 PCI_ERR_UNC_SURPDN | /* Surprise Down */
673 PCI_ERR_UNC_POISON_TLP | /* Poisoned TLP */
674 PCI_ERR_UNC_FCP | /* Flow Control Protocol */
675 PCI_ERR_UNC_COMP_TIME | /* Completion Timeout */
676 PCI_ERR_UNC_COMP_ABORT | /* Completer Abort */
677 PCI_ERR_UNC_UNX_COMP | /* Unexpected Completion */
678 PCI_ERR_UNC_RX_OVER | /* Receiver Overflow */
679 PCI_ERR_UNC_MALF_TLP | /* Malformed TLP */
680 PCI_ERR_UNC_ECRC | /* ECRC Error Status */
681 PCI_ERR_UNC_UNSUP | /* Unsupported Request */
682 PCI_ERR_UNC_ACSV | /* ACS Violation */
683 PCI_ERR_UNC_INTN | /* internal error */
684 PCI_ERR_UNC_MCBTLP | /* MC blocked TLP */
685 PCI_ERR_UNC_ATOMEG | /* Atomic egress blocked */
686 PCI_ERR_UNC_TLPPRE; /* TLP prefix blocked */
687 p_setd(perm, PCI_ERR_UNCOR_STATUS, NO_VIRT, mask);
688 p_setd(perm, PCI_ERR_UNCOR_MASK, NO_VIRT, mask);
689 p_setd(perm, PCI_ERR_UNCOR_SEVER, NO_VIRT, mask);
690
691 mask = PCI_ERR_COR_RCVR | /* Receiver Error Status */
692 PCI_ERR_COR_BAD_TLP | /* Bad TLP Status */
693 PCI_ERR_COR_BAD_DLLP | /* Bad DLLP Status */
694 PCI_ERR_COR_REP_ROLL | /* REPLAY_NUM Rollover */
695 PCI_ERR_COR_REP_TIMER | /* Replay Timer Timeout */
696 PCI_ERR_COR_ADV_NFAT | /* Advisory Non-Fatal */
697 PCI_ERR_COR_INTERNAL | /* Corrected Internal */
698 PCI_ERR_COR_LOG_OVER; /* Header Log Overflow */
699 p_setd(perm, PCI_ERR_COR_STATUS, NO_VIRT, mask);
700 p_setd(perm, PCI_ERR_COR_MASK, NO_VIRT, mask);
701
702 mask = PCI_ERR_CAP_ECRC_GENE | /* ECRC Generation Enable */
703 PCI_ERR_CAP_ECRC_CHKE; /* ECRC Check Enable */
704 p_setd(perm, PCI_ERR_CAP, NO_VIRT, mask);
705 return 0;
706 }
707
708 /* Permissions for Power Budgeting extended capability */
709 static int __init init_pci_ext_cap_pwr_perm(struct perm_bits *perm)
710 {
711 if (alloc_perm_bits(perm, pci_ext_cap_length[PCI_EXT_CAP_ID_PWR]))
712 return -ENOMEM;
713
714 p_setd(perm, 0, ALL_VIRT, NO_WRITE);
715
716 /* Writing the data selector is OK, the info is still read-only */
717 p_setb(perm, PCI_PWR_DATA, NO_VIRT, (u8)ALL_WRITE);
718 return 0;
719 }
720
721 /*
722 * Initialize the shared permission tables
723 */
724 void vfio_pci_uninit_perm_bits(void)
725 {
726 free_perm_bits(&cap_perms[PCI_CAP_ID_BASIC]);
727
728 free_perm_bits(&cap_perms[PCI_CAP_ID_PM]);
729 free_perm_bits(&cap_perms[PCI_CAP_ID_PCIX]);
730 free_perm_bits(&cap_perms[PCI_CAP_ID_EXP]);
731 free_perm_bits(&cap_perms[PCI_CAP_ID_AF]);
732
733 free_perm_bits(&ecap_perms[PCI_EXT_CAP_ID_ERR]);
734 free_perm_bits(&ecap_perms[PCI_EXT_CAP_ID_PWR]);
735 }
736
737 int __init vfio_pci_init_perm_bits(void)
738 {
739 int ret;
740
741 /* Basic config space */
742 ret = init_pci_cap_basic_perm(&cap_perms[PCI_CAP_ID_BASIC]);
743
744 /* Capabilities */
745 ret |= init_pci_cap_pm_perm(&cap_perms[PCI_CAP_ID_PM]);
746 cap_perms[PCI_CAP_ID_VPD].writefn = vfio_direct_config_write;
747 ret |= init_pci_cap_pcix_perm(&cap_perms[PCI_CAP_ID_PCIX]);
748 cap_perms[PCI_CAP_ID_VNDR].writefn = vfio_direct_config_write;
749 ret |= init_pci_cap_exp_perm(&cap_perms[PCI_CAP_ID_EXP]);
750 ret |= init_pci_cap_af_perm(&cap_perms[PCI_CAP_ID_AF]);
751
752 /* Extended capabilities */
753 ret |= init_pci_ext_cap_err_perm(&ecap_perms[PCI_EXT_CAP_ID_ERR]);
754 ret |= init_pci_ext_cap_pwr_perm(&ecap_perms[PCI_EXT_CAP_ID_PWR]);
755 ecap_perms[PCI_EXT_CAP_ID_VNDR].writefn = vfio_direct_config_write;
756
757 if (ret)
758 vfio_pci_uninit_perm_bits();
759
760 return ret;
761 }
762
763 static int vfio_find_cap_start(struct vfio_pci_device *vdev, int pos)
764 {
765 u8 cap;
766 int base = (pos >= PCI_CFG_SPACE_SIZE) ? PCI_CFG_SPACE_SIZE :
767 PCI_STD_HEADER_SIZEOF;
768 base /= 4;
769 pos /= 4;
770
771 cap = vdev->pci_config_map[pos];
772
773 if (cap == PCI_CAP_ID_BASIC)
774 return 0;
775
776 /* XXX Can we have to abutting capabilities of the same type? */
777 while (pos - 1 >= base && vdev->pci_config_map[pos - 1] == cap)
778 pos--;
779
780 return pos * 4;
781 }
782
783 static int vfio_msi_config_read(struct vfio_pci_device *vdev, int pos,
784 int count, struct perm_bits *perm,
785 int offset, __le32 *val)
786 {
787 /* Update max available queue size from msi_qmax */
788 if (offset <= PCI_MSI_FLAGS && offset + count >= PCI_MSI_FLAGS) {
789 __le16 *flags;
790 int start;
791
792 start = vfio_find_cap_start(vdev, pos);
793
794 flags = (__le16 *)&vdev->vconfig[start];
795
796 *flags &= cpu_to_le16(~PCI_MSI_FLAGS_QMASK);
797 *flags |= cpu_to_le16(vdev->msi_qmax << 1);
798 }
799
800 return vfio_default_config_read(vdev, pos, count, perm, offset, val);
801 }
802
803 static int vfio_msi_config_write(struct vfio_pci_device *vdev, int pos,
804 int count, struct perm_bits *perm,
805 int offset, __le32 val)
806 {
807 count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
808 if (count < 0)
809 return count;
810
811 /* Fixup and write configured queue size and enable to hardware */
812 if (offset <= PCI_MSI_FLAGS && offset + count >= PCI_MSI_FLAGS) {
813 __le16 *pflags;
814 u16 flags;
815 int start, ret;
816
817 start = vfio_find_cap_start(vdev, pos);
818
819 pflags = (__le16 *)&vdev->vconfig[start + PCI_MSI_FLAGS];
820
821 flags = le16_to_cpu(*pflags);
822
823 /* MSI is enabled via ioctl */
824 if (!is_msi(vdev))
825 flags &= ~PCI_MSI_FLAGS_ENABLE;
826
827 /* Check queue size */
828 if ((flags & PCI_MSI_FLAGS_QSIZE) >> 4 > vdev->msi_qmax) {
829 flags &= ~PCI_MSI_FLAGS_QSIZE;
830 flags |= vdev->msi_qmax << 4;
831 }
832
833 /* Write back to virt and to hardware */
834 *pflags = cpu_to_le16(flags);
835 ret = pci_user_write_config_word(vdev->pdev,
836 start + PCI_MSI_FLAGS,
837 flags);
838 if (ret)
839 return pcibios_err_to_errno(ret);
840 }
841
842 return count;
843 }
844
845 /*
846 * MSI determination is per-device, so this routine gets used beyond
847 * initialization time. Don't add __init
848 */
849 static int init_pci_cap_msi_perm(struct perm_bits *perm, int len, u16 flags)
850 {
851 if (alloc_perm_bits(perm, len))
852 return -ENOMEM;
853
854 perm->readfn = vfio_msi_config_read;
855 perm->writefn = vfio_msi_config_write;
856
857 p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
858
859 /*
860 * The upper byte of the control register is reserved,
861 * just setup the lower byte.
862 */
863 p_setb(perm, PCI_MSI_FLAGS, (u8)ALL_VIRT, (u8)ALL_WRITE);
864 p_setd(perm, PCI_MSI_ADDRESS_LO, ALL_VIRT, ALL_WRITE);
865 if (flags & PCI_MSI_FLAGS_64BIT) {
866 p_setd(perm, PCI_MSI_ADDRESS_HI, ALL_VIRT, ALL_WRITE);
867 p_setw(perm, PCI_MSI_DATA_64, (u16)ALL_VIRT, (u16)ALL_WRITE);
868 if (flags & PCI_MSI_FLAGS_MASKBIT) {
869 p_setd(perm, PCI_MSI_MASK_64, NO_VIRT, ALL_WRITE);
870 p_setd(perm, PCI_MSI_PENDING_64, NO_VIRT, ALL_WRITE);
871 }
872 } else {
873 p_setw(perm, PCI_MSI_DATA_32, (u16)ALL_VIRT, (u16)ALL_WRITE);
874 if (flags & PCI_MSI_FLAGS_MASKBIT) {
875 p_setd(perm, PCI_MSI_MASK_32, NO_VIRT, ALL_WRITE);
876 p_setd(perm, PCI_MSI_PENDING_32, NO_VIRT, ALL_WRITE);
877 }
878 }
879 return 0;
880 }
881
882 /* Determine MSI CAP field length; initialize msi_perms on 1st call per vdev */
883 static int vfio_msi_cap_len(struct vfio_pci_device *vdev, u8 pos)
884 {
885 struct pci_dev *pdev = vdev->pdev;
886 int len, ret;
887 u16 flags;
888
889 ret = pci_read_config_word(pdev, pos + PCI_MSI_FLAGS, &flags);
890 if (ret)
891 return pcibios_err_to_errno(ret);
892
893 len = 10; /* Minimum size */
894 if (flags & PCI_MSI_FLAGS_64BIT)
895 len += 4;
896 if (flags & PCI_MSI_FLAGS_MASKBIT)
897 len += 10;
898
899 if (vdev->msi_perm)
900 return len;
901
902 vdev->msi_perm = kmalloc(sizeof(struct perm_bits), GFP_KERNEL);
903 if (!vdev->msi_perm)
904 return -ENOMEM;
905
906 ret = init_pci_cap_msi_perm(vdev->msi_perm, len, flags);
907 if (ret)
908 return ret;
909
910 return len;
911 }
912
913 /* Determine extended capability length for VC (2 & 9) and MFVC */
914 static int vfio_vc_cap_len(struct vfio_pci_device *vdev, u16 pos)
915 {
916 struct pci_dev *pdev = vdev->pdev;
917 u32 tmp;
918 int ret, evcc, phases, vc_arb;
919 int len = PCI_CAP_VC_BASE_SIZEOF;
920
921 ret = pci_read_config_dword(pdev, pos + PCI_VC_PORT_REG1, &tmp);
922 if (ret)
923 return pcibios_err_to_errno(ret);
924
925 evcc = tmp & PCI_VC_REG1_EVCC; /* extended vc count */
926 ret = pci_read_config_dword(pdev, pos + PCI_VC_PORT_REG2, &tmp);
927 if (ret)
928 return pcibios_err_to_errno(ret);
929
930 if (tmp & PCI_VC_REG2_128_PHASE)
931 phases = 128;
932 else if (tmp & PCI_VC_REG2_64_PHASE)
933 phases = 64;
934 else if (tmp & PCI_VC_REG2_32_PHASE)
935 phases = 32;
936 else
937 phases = 0;
938
939 vc_arb = phases * 4;
940
941 /*
942 * Port arbitration tables are root & switch only;
943 * function arbitration tables are function 0 only.
944 * In either case, we'll never let user write them so
945 * we don't care how big they are
946 */
947 len += (1 + evcc) * PCI_CAP_VC_PER_VC_SIZEOF;
948 if (vc_arb) {
949 len = round_up(len, 16);
950 len += vc_arb / 8;
951 }
952 return len;
953 }
954
955 static int vfio_cap_len(struct vfio_pci_device *vdev, u8 cap, u8 pos)
956 {
957 struct pci_dev *pdev = vdev->pdev;
958 u16 word;
959 u8 byte;
960 int ret;
961
962 switch (cap) {
963 case PCI_CAP_ID_MSI:
964 return vfio_msi_cap_len(vdev, pos);
965 case PCI_CAP_ID_PCIX:
966 ret = pci_read_config_word(pdev, pos + PCI_X_CMD, &word);
967 if (ret)
968 return pcibios_err_to_errno(ret);
969
970 if (PCI_X_CMD_VERSION(word)) {
971 vdev->extended_caps = true;
972 return PCI_CAP_PCIX_SIZEOF_V2;
973 } else
974 return PCI_CAP_PCIX_SIZEOF_V0;
975 case PCI_CAP_ID_VNDR:
976 /* length follows next field */
977 ret = pci_read_config_byte(pdev, pos + PCI_CAP_FLAGS, &byte);
978 if (ret)
979 return pcibios_err_to_errno(ret);
980
981 return byte;
982 case PCI_CAP_ID_EXP:
983 /* length based on version */
984 ret = pci_read_config_word(pdev, pos + PCI_EXP_FLAGS, &word);
985 if (ret)
986 return pcibios_err_to_errno(ret);
987
988 if ((word & PCI_EXP_FLAGS_VERS) == 1)
989 return PCI_CAP_EXP_ENDPOINT_SIZEOF_V1;
990 else {
991 vdev->extended_caps = true;
992 return PCI_CAP_EXP_ENDPOINT_SIZEOF_V2;
993 }
994 case PCI_CAP_ID_HT:
995 ret = pci_read_config_byte(pdev, pos + 3, &byte);
996 if (ret)
997 return pcibios_err_to_errno(ret);
998
999 return (byte & HT_3BIT_CAP_MASK) ?
1000 HT_CAP_SIZEOF_SHORT : HT_CAP_SIZEOF_LONG;
1001 case PCI_CAP_ID_SATA:
1002 ret = pci_read_config_byte(pdev, pos + PCI_SATA_REGS, &byte);
1003 if (ret)
1004 return pcibios_err_to_errno(ret);
1005
1006 byte &= PCI_SATA_REGS_MASK;
1007 if (byte == PCI_SATA_REGS_INLINE)
1008 return PCI_SATA_SIZEOF_LONG;
1009 else
1010 return PCI_SATA_SIZEOF_SHORT;
1011 default:
1012 pr_warn("%s: %s unknown length for pci cap 0x%x@0x%x\n",
1013 dev_name(&pdev->dev), __func__, cap, pos);
1014 }
1015
1016 return 0;
1017 }
1018
1019 static int vfio_ext_cap_len(struct vfio_pci_device *vdev, u16 ecap, u16 epos)
1020 {
1021 struct pci_dev *pdev = vdev->pdev;
1022 u8 byte;
1023 u32 dword;
1024 int ret;
1025
1026 switch (ecap) {
1027 case PCI_EXT_CAP_ID_VNDR:
1028 ret = pci_read_config_dword(pdev, epos + PCI_VSEC_HDR, &dword);
1029 if (ret)
1030 return pcibios_err_to_errno(ret);
1031
1032 return dword >> PCI_VSEC_HDR_LEN_SHIFT;
1033 case PCI_EXT_CAP_ID_VC:
1034 case PCI_EXT_CAP_ID_VC9:
1035 case PCI_EXT_CAP_ID_MFVC:
1036 return vfio_vc_cap_len(vdev, epos);
1037 case PCI_EXT_CAP_ID_ACS:
1038 ret = pci_read_config_byte(pdev, epos + PCI_ACS_CAP, &byte);
1039 if (ret)
1040 return pcibios_err_to_errno(ret);
1041
1042 if (byte & PCI_ACS_EC) {
1043 int bits;
1044
1045 ret = pci_read_config_byte(pdev,
1046 epos + PCI_ACS_EGRESS_BITS,
1047 &byte);
1048 if (ret)
1049 return pcibios_err_to_errno(ret);
1050
1051 bits = byte ? round_up(byte, 32) : 256;
1052 return 8 + (bits / 8);
1053 }
1054 return 8;
1055
1056 case PCI_EXT_CAP_ID_REBAR:
1057 ret = pci_read_config_byte(pdev, epos + PCI_REBAR_CTRL, &byte);
1058 if (ret)
1059 return pcibios_err_to_errno(ret);
1060
1061 byte &= PCI_REBAR_CTRL_NBAR_MASK;
1062 byte >>= PCI_REBAR_CTRL_NBAR_SHIFT;
1063
1064 return 4 + (byte * 8);
1065 case PCI_EXT_CAP_ID_DPA:
1066 ret = pci_read_config_byte(pdev, epos + PCI_DPA_CAP, &byte);
1067 if (ret)
1068 return pcibios_err_to_errno(ret);
1069
1070 byte &= PCI_DPA_CAP_SUBSTATE_MASK;
1071 byte = round_up(byte + 1, 4);
1072 return PCI_DPA_BASE_SIZEOF + byte;
1073 case PCI_EXT_CAP_ID_TPH:
1074 ret = pci_read_config_dword(pdev, epos + PCI_TPH_CAP, &dword);
1075 if (ret)
1076 return pcibios_err_to_errno(ret);
1077
1078 if ((dword & PCI_TPH_CAP_LOC_MASK) == PCI_TPH_LOC_CAP) {
1079 int sts;
1080
1081 sts = byte & PCI_TPH_CAP_ST_MASK;
1082 sts >>= PCI_TPH_CAP_ST_SHIFT;
1083 return PCI_TPH_BASE_SIZEOF + round_up(sts * 2, 4);
1084 }
1085 return PCI_TPH_BASE_SIZEOF;
1086 default:
1087 pr_warn("%s: %s unknown length for pci ecap 0x%x@0x%x\n",
1088 dev_name(&pdev->dev), __func__, ecap, epos);
1089 }
1090
1091 return 0;
1092 }
1093
1094 static int vfio_fill_vconfig_bytes(struct vfio_pci_device *vdev,
1095 int offset, int size)
1096 {
1097 struct pci_dev *pdev = vdev->pdev;
1098 int ret = 0;
1099
1100 /*
1101 * We try to read physical config space in the largest chunks
1102 * we can, assuming that all of the fields support dword access.
1103 * pci_save_state() makes this same assumption and seems to do ok.
1104 */
1105 while (size) {
1106 int filled;
1107
1108 if (size >= 4 && !(offset % 4)) {
1109 __le32 *dwordp = (__le32 *)&vdev->vconfig[offset];
1110 u32 dword;
1111
1112 ret = pci_read_config_dword(pdev, offset, &dword);
1113 if (ret)
1114 return ret;
1115 *dwordp = cpu_to_le32(dword);
1116 filled = 4;
1117 } else if (size >= 2 && !(offset % 2)) {
1118 __le16 *wordp = (__le16 *)&vdev->vconfig[offset];
1119 u16 word;
1120
1121 ret = pci_read_config_word(pdev, offset, &word);
1122 if (ret)
1123 return ret;
1124 *wordp = cpu_to_le16(word);
1125 filled = 2;
1126 } else {
1127 u8 *byte = &vdev->vconfig[offset];
1128 ret = pci_read_config_byte(pdev, offset, byte);
1129 if (ret)
1130 return ret;
1131 filled = 1;
1132 }
1133
1134 offset += filled;
1135 size -= filled;
1136 }
1137
1138 return ret;
1139 }
1140
1141 static int vfio_cap_init(struct vfio_pci_device *vdev)
1142 {
1143 struct pci_dev *pdev = vdev->pdev;
1144 u8 *map = vdev->pci_config_map;
1145 u16 status;
1146 u8 pos, *prev, cap;
1147 int loops, ret, caps = 0;
1148
1149 /* Any capabilities? */
1150 ret = pci_read_config_word(pdev, PCI_STATUS, &status);
1151 if (ret)
1152 return ret;
1153
1154 if (!(status & PCI_STATUS_CAP_LIST))
1155 return 0; /* Done */
1156
1157 ret = pci_read_config_byte(pdev, PCI_CAPABILITY_LIST, &pos);
1158 if (ret)
1159 return ret;
1160
1161 /* Mark the previous position in case we want to skip a capability */
1162 prev = &vdev->vconfig[PCI_CAPABILITY_LIST];
1163
1164 /* We can bound our loop, capabilities are dword aligned */
1165 loops = (PCI_CFG_SPACE_SIZE - PCI_STD_HEADER_SIZEOF) / PCI_CAP_SIZEOF;
1166 while (pos && loops--) {
1167 u8 next;
1168 int i, len = 0;
1169
1170 ret = pci_read_config_byte(pdev, pos, &cap);
1171 if (ret)
1172 return ret;
1173
1174 ret = pci_read_config_byte(pdev,
1175 pos + PCI_CAP_LIST_NEXT, &next);
1176 if (ret)
1177 return ret;
1178
1179 if (cap <= PCI_CAP_ID_MAX) {
1180 len = pci_cap_length[cap];
1181 if (len == 0xFF) { /* Variable length */
1182 len = vfio_cap_len(vdev, cap, pos);
1183 if (len < 0)
1184 return len;
1185 }
1186 }
1187
1188 if (!len) {
1189 pr_info("%s: %s hiding cap 0x%x\n",
1190 __func__, dev_name(&pdev->dev), cap);
1191 *prev = next;
1192 pos = next;
1193 continue;
1194 }
1195
1196 /* Sanity check, do we overlap other capabilities? */
1197 for (i = 0; i < len; i += 4) {
1198 if (likely(map[(pos + i) / 4] == PCI_CAP_ID_INVALID))
1199 continue;
1200
1201 pr_warn("%s: %s pci config conflict @0x%x, was cap 0x%x now cap 0x%x\n",
1202 __func__, dev_name(&pdev->dev),
1203 pos + i, map[pos + i], cap);
1204 }
1205
1206 memset(map + (pos / 4), cap, len / 4);
1207 ret = vfio_fill_vconfig_bytes(vdev, pos, len);
1208 if (ret)
1209 return ret;
1210
1211 prev = &vdev->vconfig[pos + PCI_CAP_LIST_NEXT];
1212 pos = next;
1213 caps++;
1214 }
1215
1216 /* If we didn't fill any capabilities, clear the status flag */
1217 if (!caps) {
1218 __le16 *vstatus = (__le16 *)&vdev->vconfig[PCI_STATUS];
1219 *vstatus &= ~cpu_to_le16(PCI_STATUS_CAP_LIST);
1220 }
1221
1222 return 0;
1223 }
1224
1225 static int vfio_ecap_init(struct vfio_pci_device *vdev)
1226 {
1227 struct pci_dev *pdev = vdev->pdev;
1228 u8 *map = vdev->pci_config_map;
1229 u16 epos;
1230 __le32 *prev = NULL;
1231 int loops, ret, ecaps = 0;
1232
1233 if (!vdev->extended_caps)
1234 return 0;
1235
1236 epos = PCI_CFG_SPACE_SIZE;
1237
1238 loops = (pdev->cfg_size - PCI_CFG_SPACE_SIZE) / PCI_CAP_SIZEOF;
1239
1240 while (loops-- && epos >= PCI_CFG_SPACE_SIZE) {
1241 u32 header;
1242 u16 ecap;
1243 int i, len = 0;
1244 bool hidden = false;
1245
1246 ret = pci_read_config_dword(pdev, epos, &header);
1247 if (ret)
1248 return ret;
1249
1250 ecap = PCI_EXT_CAP_ID(header);
1251
1252 if (ecap <= PCI_EXT_CAP_ID_MAX) {
1253 len = pci_ext_cap_length[ecap];
1254 if (len == 0xFF) {
1255 len = vfio_ext_cap_len(vdev, ecap, epos);
1256 if (len < 0)
1257 return ret;
1258 }
1259 }
1260
1261 if (!len) {
1262 pr_info("%s: %s hiding ecap 0x%x@0x%x\n",
1263 __func__, dev_name(&pdev->dev), ecap, epos);
1264
1265 /* If not the first in the chain, we can skip over it */
1266 if (prev) {
1267 u32 val = epos = PCI_EXT_CAP_NEXT(header);
1268 *prev &= cpu_to_le32(~(0xffcU << 20));
1269 *prev |= cpu_to_le32(val << 20);
1270 continue;
1271 }
1272
1273 /*
1274 * Otherwise, fill in a placeholder, the direct
1275 * readfn will virtualize this automatically
1276 */
1277 len = PCI_CAP_SIZEOF;
1278 hidden = true;
1279 }
1280
1281 for (i = 0; i < len; i += 4) {
1282 if (likely(map[(epos + i) / 4] == PCI_CAP_ID_INVALID))
1283 continue;
1284
1285 pr_warn("%s: %s pci config conflict @0x%x, was ecap 0x%x now ecap 0x%x\n",
1286 __func__, dev_name(&pdev->dev),
1287 epos + i, map[epos + i], ecap);
1288 }
1289
1290 /*
1291 * Even though ecap is 2 bytes, we're currently a long way
1292 * from exceeding 1 byte capabilities. If we ever make it
1293 * up to 0xFF we'll need to up this to a two-byte, byte map.
1294 */
1295 BUILD_BUG_ON(PCI_EXT_CAP_ID_MAX >= PCI_CAP_ID_INVALID);
1296
1297 memset(map + (epos / 4), ecap, len / 4);
1298 ret = vfio_fill_vconfig_bytes(vdev, epos, len);
1299 if (ret)
1300 return ret;
1301
1302 /*
1303 * If we're just using this capability to anchor the list,
1304 * hide the real ID. Only count real ecaps. XXX PCI spec
1305 * indicates to use cap id = 0, version = 0, next = 0 if
1306 * ecaps are absent, hope users check all the way to next.
1307 */
1308 if (hidden)
1309 *(__le32 *)&vdev->vconfig[epos] &=
1310 cpu_to_le32((0xffcU << 20));
1311 else
1312 ecaps++;
1313
1314 prev = (__le32 *)&vdev->vconfig[epos];
1315 epos = PCI_EXT_CAP_NEXT(header);
1316 }
1317
1318 if (!ecaps)
1319 *(u32 *)&vdev->vconfig[PCI_CFG_SPACE_SIZE] = 0;
1320
1321 return 0;
1322 }
1323
1324 /*
1325 * For each device we allocate a pci_config_map that indicates the
1326 * capability occupying each dword and thus the struct perm_bits we
1327 * use for read and write. We also allocate a virtualized config
1328 * space which tracks reads and writes to bits that we emulate for
1329 * the user. Initial values filled from device.
1330 *
1331 * Using shared stuct perm_bits between all vfio-pci devices saves
1332 * us from allocating cfg_size buffers for virt and write for every
1333 * device. We could remove vconfig and allocate individual buffers
1334 * for each area requring emulated bits, but the array of pointers
1335 * would be comparable in size (at least for standard config space).
1336 */
1337 int vfio_config_init(struct vfio_pci_device *vdev)
1338 {
1339 struct pci_dev *pdev = vdev->pdev;
1340 u8 *map, *vconfig;
1341 int ret;
1342
1343 /*
1344 * Config space, caps and ecaps are all dword aligned, so we can
1345 * use one byte per dword to record the type.
1346 */
1347 map = kmalloc(pdev->cfg_size / 4, GFP_KERNEL);
1348 if (!map)
1349 return -ENOMEM;
1350
1351 vconfig = kmalloc(pdev->cfg_size, GFP_KERNEL);
1352 if (!vconfig) {
1353 kfree(map);
1354 return -ENOMEM;
1355 }
1356
1357 vdev->pci_config_map = map;
1358 vdev->vconfig = vconfig;
1359
1360 memset(map, PCI_CAP_ID_BASIC, PCI_STD_HEADER_SIZEOF / 4);
1361 memset(map + (PCI_STD_HEADER_SIZEOF / 4), PCI_CAP_ID_INVALID,
1362 (pdev->cfg_size - PCI_STD_HEADER_SIZEOF) / 4);
1363
1364 ret = vfio_fill_vconfig_bytes(vdev, 0, PCI_STD_HEADER_SIZEOF);
1365 if (ret)
1366 goto out;
1367
1368 vdev->bardirty = true;
1369
1370 /*
1371 * XXX can we just pci_load_saved_state/pci_restore_state?
1372 * may need to rebuild vconfig after that
1373 */
1374
1375 /* For restore after reset */
1376 vdev->rbar[0] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_0]);
1377 vdev->rbar[1] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_1]);
1378 vdev->rbar[2] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_2]);
1379 vdev->rbar[3] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_3]);
1380 vdev->rbar[4] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_4]);
1381 vdev->rbar[5] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_5]);
1382 vdev->rbar[6] = le32_to_cpu(*(__le32 *)&vconfig[PCI_ROM_ADDRESS]);
1383
1384 if (pdev->is_virtfn) {
1385 *(__le16 *)&vconfig[PCI_VENDOR_ID] = cpu_to_le16(pdev->vendor);
1386 *(__le16 *)&vconfig[PCI_DEVICE_ID] = cpu_to_le16(pdev->device);
1387 }
1388
1389 ret = vfio_cap_init(vdev);
1390 if (ret)
1391 goto out;
1392
1393 ret = vfio_ecap_init(vdev);
1394 if (ret)
1395 goto out;
1396
1397 return 0;
1398
1399 out:
1400 kfree(map);
1401 vdev->pci_config_map = NULL;
1402 kfree(vconfig);
1403 vdev->vconfig = NULL;
1404 return pcibios_err_to_errno(ret);
1405 }
1406
1407 void vfio_config_free(struct vfio_pci_device *vdev)
1408 {
1409 kfree(vdev->vconfig);
1410 vdev->vconfig = NULL;
1411 kfree(vdev->pci_config_map);
1412 vdev->pci_config_map = NULL;
1413 kfree(vdev->msi_perm);
1414 vdev->msi_perm = NULL;
1415 }
1416
1417 static ssize_t vfio_config_do_rw(struct vfio_pci_device *vdev, char __user *buf,
1418 size_t count, loff_t *ppos, bool iswrite)
1419 {
1420 struct pci_dev *pdev = vdev->pdev;
1421 struct perm_bits *perm;
1422 __le32 val = 0;
1423 int cap_start = 0, offset;
1424 u8 cap_id;
1425 ssize_t ret = count;
1426
1427 if (*ppos < 0 || *ppos + count > pdev->cfg_size)
1428 return -EFAULT;
1429
1430 /*
1431 * gcc can't seem to figure out we're a static function, only called
1432 * with count of 1/2/4 and hits copy_from_user_overflow without this.
1433 */
1434 if (count > sizeof(val))
1435 return -EINVAL;
1436
1437 cap_id = vdev->pci_config_map[*ppos / 4];
1438
1439 if (cap_id == PCI_CAP_ID_INVALID) {
1440 if (iswrite)
1441 return ret; /* drop */
1442
1443 /*
1444 * Per PCI spec 3.0, section 6.1, reads from reserved and
1445 * unimplemented registers return 0
1446 */
1447 if (copy_to_user(buf, &val, count))
1448 return -EFAULT;
1449
1450 return ret;
1451 }
1452
1453 /*
1454 * All capabilities are minimum 4 bytes and aligned on dword
1455 * boundaries. Since we don't support unaligned accesses, we're
1456 * only ever accessing a single capability.
1457 */
1458 if (*ppos >= PCI_CFG_SPACE_SIZE) {
1459 WARN_ON(cap_id > PCI_EXT_CAP_ID_MAX);
1460
1461 perm = &ecap_perms[cap_id];
1462 cap_start = vfio_find_cap_start(vdev, *ppos);
1463
1464 } else {
1465 WARN_ON(cap_id > PCI_CAP_ID_MAX);
1466
1467 perm = &cap_perms[cap_id];
1468
1469 if (cap_id == PCI_CAP_ID_MSI)
1470 perm = vdev->msi_perm;
1471
1472 if (cap_id > PCI_CAP_ID_BASIC)
1473 cap_start = vfio_find_cap_start(vdev, *ppos);
1474 }
1475
1476 WARN_ON(!cap_start && cap_id != PCI_CAP_ID_BASIC);
1477 WARN_ON(cap_start > *ppos);
1478
1479 offset = *ppos - cap_start;
1480
1481 if (iswrite) {
1482 if (!perm->writefn)
1483 return ret;
1484
1485 if (copy_from_user(&val, buf, count))
1486 return -EFAULT;
1487
1488 ret = perm->writefn(vdev, *ppos, count, perm, offset, val);
1489 } else {
1490 if (perm->readfn) {
1491 ret = perm->readfn(vdev, *ppos, count,
1492 perm, offset, &val);
1493 if (ret < 0)
1494 return ret;
1495 }
1496
1497 if (copy_to_user(buf, &val, count))
1498 return -EFAULT;
1499 }
1500
1501 return ret;
1502 }
1503
1504 ssize_t vfio_pci_config_readwrite(struct vfio_pci_device *vdev,
1505 char __user *buf, size_t count,
1506 loff_t *ppos, bool iswrite)
1507 {
1508 size_t done = 0;
1509 int ret = 0;
1510 loff_t pos = *ppos;
1511
1512 pos &= VFIO_PCI_OFFSET_MASK;
1513
1514 /*
1515 * We want to both keep the access size the caller users as well as
1516 * support reading large chunks of config space in a single call.
1517 * PCI doesn't support unaligned accesses, so we can safely break
1518 * those apart.
1519 */
1520 while (count) {
1521 if (count >= 4 && !(pos % 4))
1522 ret = vfio_config_do_rw(vdev, buf, 4, &pos, iswrite);
1523 else if (count >= 2 && !(pos % 2))
1524 ret = vfio_config_do_rw(vdev, buf, 2, &pos, iswrite);
1525 else
1526 ret = vfio_config_do_rw(vdev, buf, 1, &pos, iswrite);
1527
1528 if (ret < 0)
1529 return ret;
1530
1531 count -= ret;
1532 done += ret;
1533 buf += ret;
1534 pos += ret;
1535 }
1536
1537 *ppos += done;
1538
1539 return done;
1540 }