]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/vfio/pci/vfio_pci_config.c
Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[mirror_ubuntu-artful-kernel.git] / drivers / vfio / pci / vfio_pci_config.c
1 /*
2 * VFIO PCI config space virtualization
3 *
4 * Copyright (C) 2012 Red Hat, Inc. All rights reserved.
5 * Author: Alex Williamson <alex.williamson@redhat.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * Derived from original vfio:
12 * Copyright 2010 Cisco Systems, Inc. All rights reserved.
13 * Author: Tom Lyon, pugs@cisco.com
14 */
15
16 /*
17 * This code handles reading and writing of PCI configuration registers.
18 * This is hairy because we want to allow a lot of flexibility to the
19 * user driver, but cannot trust it with all of the config fields.
20 * Tables determine which fields can be read and written, as well as
21 * which fields are 'virtualized' - special actions and translations to
22 * make it appear to the user that he has control, when in fact things
23 * must be negotiated with the underlying OS.
24 */
25
26 #include <linux/fs.h>
27 #include <linux/pci.h>
28 #include <linux/uaccess.h>
29 #include <linux/vfio.h>
30 #include <linux/slab.h>
31
32 #include "vfio_pci_private.h"
33
34 #define PCI_CFG_SPACE_SIZE 256
35
36 /* Useful "pseudo" capabilities */
37 #define PCI_CAP_ID_BASIC 0
38 #define PCI_CAP_ID_INVALID 0xFF
39
40 #define is_bar(offset) \
41 ((offset >= PCI_BASE_ADDRESS_0 && offset < PCI_BASE_ADDRESS_5 + 4) || \
42 (offset >= PCI_ROM_ADDRESS && offset < PCI_ROM_ADDRESS + 4))
43
44 /*
45 * Lengths of PCI Config Capabilities
46 * 0: Removed from the user visible capability list
47 * FF: Variable length
48 */
49 static u8 pci_cap_length[] = {
50 [PCI_CAP_ID_BASIC] = PCI_STD_HEADER_SIZEOF, /* pci config header */
51 [PCI_CAP_ID_PM] = PCI_PM_SIZEOF,
52 [PCI_CAP_ID_AGP] = PCI_AGP_SIZEOF,
53 [PCI_CAP_ID_VPD] = PCI_CAP_VPD_SIZEOF,
54 [PCI_CAP_ID_SLOTID] = 0, /* bridge - don't care */
55 [PCI_CAP_ID_MSI] = 0xFF, /* 10, 14, 20, or 24 */
56 [PCI_CAP_ID_CHSWP] = 0, /* cpci - not yet */
57 [PCI_CAP_ID_PCIX] = 0xFF, /* 8 or 24 */
58 [PCI_CAP_ID_HT] = 0xFF, /* hypertransport */
59 [PCI_CAP_ID_VNDR] = 0xFF, /* variable */
60 [PCI_CAP_ID_DBG] = 0, /* debug - don't care */
61 [PCI_CAP_ID_CCRC] = 0, /* cpci - not yet */
62 [PCI_CAP_ID_SHPC] = 0, /* hotswap - not yet */
63 [PCI_CAP_ID_SSVID] = 0, /* bridge - don't care */
64 [PCI_CAP_ID_AGP3] = 0, /* AGP8x - not yet */
65 [PCI_CAP_ID_SECDEV] = 0, /* secure device not yet */
66 [PCI_CAP_ID_EXP] = 0xFF, /* 20 or 44 */
67 [PCI_CAP_ID_MSIX] = PCI_CAP_MSIX_SIZEOF,
68 [PCI_CAP_ID_SATA] = 0xFF,
69 [PCI_CAP_ID_AF] = PCI_CAP_AF_SIZEOF,
70 };
71
72 /*
73 * Lengths of PCIe/PCI-X Extended Config Capabilities
74 * 0: Removed or masked from the user visible capabilty list
75 * FF: Variable length
76 */
77 static u16 pci_ext_cap_length[] = {
78 [PCI_EXT_CAP_ID_ERR] = PCI_ERR_ROOT_COMMAND,
79 [PCI_EXT_CAP_ID_VC] = 0xFF,
80 [PCI_EXT_CAP_ID_DSN] = PCI_EXT_CAP_DSN_SIZEOF,
81 [PCI_EXT_CAP_ID_PWR] = PCI_EXT_CAP_PWR_SIZEOF,
82 [PCI_EXT_CAP_ID_RCLD] = 0, /* root only - don't care */
83 [PCI_EXT_CAP_ID_RCILC] = 0, /* root only - don't care */
84 [PCI_EXT_CAP_ID_RCEC] = 0, /* root only - don't care */
85 [PCI_EXT_CAP_ID_MFVC] = 0xFF,
86 [PCI_EXT_CAP_ID_VC9] = 0xFF, /* same as CAP_ID_VC */
87 [PCI_EXT_CAP_ID_RCRB] = 0, /* root only - don't care */
88 [PCI_EXT_CAP_ID_VNDR] = 0xFF,
89 [PCI_EXT_CAP_ID_CAC] = 0, /* obsolete */
90 [PCI_EXT_CAP_ID_ACS] = 0xFF,
91 [PCI_EXT_CAP_ID_ARI] = PCI_EXT_CAP_ARI_SIZEOF,
92 [PCI_EXT_CAP_ID_ATS] = PCI_EXT_CAP_ATS_SIZEOF,
93 [PCI_EXT_CAP_ID_SRIOV] = PCI_EXT_CAP_SRIOV_SIZEOF,
94 [PCI_EXT_CAP_ID_MRIOV] = 0, /* not yet */
95 [PCI_EXT_CAP_ID_MCAST] = PCI_EXT_CAP_MCAST_ENDPOINT_SIZEOF,
96 [PCI_EXT_CAP_ID_PRI] = PCI_EXT_CAP_PRI_SIZEOF,
97 [PCI_EXT_CAP_ID_AMD_XXX] = 0, /* not yet */
98 [PCI_EXT_CAP_ID_REBAR] = 0xFF,
99 [PCI_EXT_CAP_ID_DPA] = 0xFF,
100 [PCI_EXT_CAP_ID_TPH] = 0xFF,
101 [PCI_EXT_CAP_ID_LTR] = PCI_EXT_CAP_LTR_SIZEOF,
102 [PCI_EXT_CAP_ID_SECPCI] = 0, /* not yet */
103 [PCI_EXT_CAP_ID_PMUX] = 0, /* not yet */
104 [PCI_EXT_CAP_ID_PASID] = 0, /* not yet */
105 };
106
107 /*
108 * Read/Write Permission Bits - one bit for each bit in capability
109 * Any field can be read if it exists, but what is read depends on
110 * whether the field is 'virtualized', or just pass thru to the
111 * hardware. Any virtualized field is also virtualized for writes.
112 * Writes are only permitted if they have a 1 bit here.
113 */
114 struct perm_bits {
115 u8 *virt; /* read/write virtual data, not hw */
116 u8 *write; /* writeable bits */
117 int (*readfn)(struct vfio_pci_device *vdev, int pos, int count,
118 struct perm_bits *perm, int offset, __le32 *val);
119 int (*writefn)(struct vfio_pci_device *vdev, int pos, int count,
120 struct perm_bits *perm, int offset, __le32 val);
121 };
122
123 #define NO_VIRT 0
124 #define ALL_VIRT 0xFFFFFFFFU
125 #define NO_WRITE 0
126 #define ALL_WRITE 0xFFFFFFFFU
127
128 static int vfio_user_config_read(struct pci_dev *pdev, int offset,
129 __le32 *val, int count)
130 {
131 int ret = -EINVAL;
132 u32 tmp_val = 0;
133
134 switch (count) {
135 case 1:
136 {
137 u8 tmp;
138 ret = pci_user_read_config_byte(pdev, offset, &tmp);
139 tmp_val = tmp;
140 break;
141 }
142 case 2:
143 {
144 u16 tmp;
145 ret = pci_user_read_config_word(pdev, offset, &tmp);
146 tmp_val = tmp;
147 break;
148 }
149 case 4:
150 ret = pci_user_read_config_dword(pdev, offset, &tmp_val);
151 break;
152 }
153
154 *val = cpu_to_le32(tmp_val);
155
156 return pcibios_err_to_errno(ret);
157 }
158
159 static int vfio_user_config_write(struct pci_dev *pdev, int offset,
160 __le32 val, int count)
161 {
162 int ret = -EINVAL;
163 u32 tmp_val = le32_to_cpu(val);
164
165 switch (count) {
166 case 1:
167 ret = pci_user_write_config_byte(pdev, offset, tmp_val);
168 break;
169 case 2:
170 ret = pci_user_write_config_word(pdev, offset, tmp_val);
171 break;
172 case 4:
173 ret = pci_user_write_config_dword(pdev, offset, tmp_val);
174 break;
175 }
176
177 return pcibios_err_to_errno(ret);
178 }
179
180 static int vfio_default_config_read(struct vfio_pci_device *vdev, int pos,
181 int count, struct perm_bits *perm,
182 int offset, __le32 *val)
183 {
184 __le32 virt = 0;
185
186 memcpy(val, vdev->vconfig + pos, count);
187
188 memcpy(&virt, perm->virt + offset, count);
189
190 /* Any non-virtualized bits? */
191 if (cpu_to_le32(~0U >> (32 - (count * 8))) != virt) {
192 struct pci_dev *pdev = vdev->pdev;
193 __le32 phys_val = 0;
194 int ret;
195
196 ret = vfio_user_config_read(pdev, pos, &phys_val, count);
197 if (ret)
198 return ret;
199
200 *val = (phys_val & ~virt) | (*val & virt);
201 }
202
203 return count;
204 }
205
206 static int vfio_default_config_write(struct vfio_pci_device *vdev, int pos,
207 int count, struct perm_bits *perm,
208 int offset, __le32 val)
209 {
210 __le32 virt = 0, write = 0;
211
212 memcpy(&write, perm->write + offset, count);
213
214 if (!write)
215 return count; /* drop, no writable bits */
216
217 memcpy(&virt, perm->virt + offset, count);
218
219 /* Virtualized and writable bits go to vconfig */
220 if (write & virt) {
221 __le32 virt_val = 0;
222
223 memcpy(&virt_val, vdev->vconfig + pos, count);
224
225 virt_val &= ~(write & virt);
226 virt_val |= (val & (write & virt));
227
228 memcpy(vdev->vconfig + pos, &virt_val, count);
229 }
230
231 /* Non-virtualzed and writable bits go to hardware */
232 if (write & ~virt) {
233 struct pci_dev *pdev = vdev->pdev;
234 __le32 phys_val = 0;
235 int ret;
236
237 ret = vfio_user_config_read(pdev, pos, &phys_val, count);
238 if (ret)
239 return ret;
240
241 phys_val &= ~(write & ~virt);
242 phys_val |= (val & (write & ~virt));
243
244 ret = vfio_user_config_write(pdev, pos, phys_val, count);
245 if (ret)
246 return ret;
247 }
248
249 return count;
250 }
251
252 /* Allow direct read from hardware, except for capability next pointer */
253 static int vfio_direct_config_read(struct vfio_pci_device *vdev, int pos,
254 int count, struct perm_bits *perm,
255 int offset, __le32 *val)
256 {
257 int ret;
258
259 ret = vfio_user_config_read(vdev->pdev, pos, val, count);
260 if (ret)
261 return pcibios_err_to_errno(ret);
262
263 if (pos >= PCI_CFG_SPACE_SIZE) { /* Extended cap header mangling */
264 if (offset < 4)
265 memcpy(val, vdev->vconfig + pos, count);
266 } else if (pos >= PCI_STD_HEADER_SIZEOF) { /* Std cap mangling */
267 if (offset == PCI_CAP_LIST_ID && count > 1)
268 memcpy(val, vdev->vconfig + pos,
269 min(PCI_CAP_FLAGS, count));
270 else if (offset == PCI_CAP_LIST_NEXT)
271 memcpy(val, vdev->vconfig + pos, 1);
272 }
273
274 return count;
275 }
276
277 static int vfio_direct_config_write(struct vfio_pci_device *vdev, int pos,
278 int count, struct perm_bits *perm,
279 int offset, __le32 val)
280 {
281 int ret;
282
283 ret = vfio_user_config_write(vdev->pdev, pos, val, count);
284 if (ret)
285 return ret;
286
287 return count;
288 }
289
290 /* Default all regions to read-only, no-virtualization */
291 static struct perm_bits cap_perms[PCI_CAP_ID_MAX + 1] = {
292 [0 ... PCI_CAP_ID_MAX] = { .readfn = vfio_direct_config_read }
293 };
294 static struct perm_bits ecap_perms[PCI_EXT_CAP_ID_MAX + 1] = {
295 [0 ... PCI_EXT_CAP_ID_MAX] = { .readfn = vfio_direct_config_read }
296 };
297
298 static void free_perm_bits(struct perm_bits *perm)
299 {
300 kfree(perm->virt);
301 kfree(perm->write);
302 perm->virt = NULL;
303 perm->write = NULL;
304 }
305
306 static int alloc_perm_bits(struct perm_bits *perm, int size)
307 {
308 /*
309 * Round up all permission bits to the next dword, this lets us
310 * ignore whether a read/write exceeds the defined capability
311 * structure. We can do this because:
312 * - Standard config space is already dword aligned
313 * - Capabilities are all dword alinged (bits 0:1 of next reserved)
314 * - Express capabilities defined as dword aligned
315 */
316 size = round_up(size, 4);
317
318 /*
319 * Zero state is
320 * - All Readable, None Writeable, None Virtualized
321 */
322 perm->virt = kzalloc(size, GFP_KERNEL);
323 perm->write = kzalloc(size, GFP_KERNEL);
324 if (!perm->virt || !perm->write) {
325 free_perm_bits(perm);
326 return -ENOMEM;
327 }
328
329 perm->readfn = vfio_default_config_read;
330 perm->writefn = vfio_default_config_write;
331
332 return 0;
333 }
334
335 /*
336 * Helper functions for filling in permission tables
337 */
338 static inline void p_setb(struct perm_bits *p, int off, u8 virt, u8 write)
339 {
340 p->virt[off] = virt;
341 p->write[off] = write;
342 }
343
344 /* Handle endian-ness - pci and tables are little-endian */
345 static inline void p_setw(struct perm_bits *p, int off, u16 virt, u16 write)
346 {
347 *(__le16 *)(&p->virt[off]) = cpu_to_le16(virt);
348 *(__le16 *)(&p->write[off]) = cpu_to_le16(write);
349 }
350
351 /* Handle endian-ness - pci and tables are little-endian */
352 static inline void p_setd(struct perm_bits *p, int off, u32 virt, u32 write)
353 {
354 *(__le32 *)(&p->virt[off]) = cpu_to_le32(virt);
355 *(__le32 *)(&p->write[off]) = cpu_to_le32(write);
356 }
357
358 /*
359 * Restore the *real* BARs after we detect a FLR or backdoor reset.
360 * (backdoor = some device specific technique that we didn't catch)
361 */
362 static void vfio_bar_restore(struct vfio_pci_device *vdev)
363 {
364 struct pci_dev *pdev = vdev->pdev;
365 u32 *rbar = vdev->rbar;
366 int i;
367
368 if (pdev->is_virtfn)
369 return;
370
371 pr_info("%s: %s reset recovery - restoring bars\n",
372 __func__, dev_name(&pdev->dev));
373
374 for (i = PCI_BASE_ADDRESS_0; i <= PCI_BASE_ADDRESS_5; i += 4, rbar++)
375 pci_user_write_config_dword(pdev, i, *rbar);
376
377 pci_user_write_config_dword(pdev, PCI_ROM_ADDRESS, *rbar);
378 }
379
380 static __le32 vfio_generate_bar_flags(struct pci_dev *pdev, int bar)
381 {
382 unsigned long flags = pci_resource_flags(pdev, bar);
383 u32 val;
384
385 if (flags & IORESOURCE_IO)
386 return cpu_to_le32(PCI_BASE_ADDRESS_SPACE_IO);
387
388 val = PCI_BASE_ADDRESS_SPACE_MEMORY;
389
390 if (flags & IORESOURCE_PREFETCH)
391 val |= PCI_BASE_ADDRESS_MEM_PREFETCH;
392
393 if (flags & IORESOURCE_MEM_64)
394 val |= PCI_BASE_ADDRESS_MEM_TYPE_64;
395
396 return cpu_to_le32(val);
397 }
398
399 /*
400 * Pretend we're hardware and tweak the values of the *virtual* PCI BARs
401 * to reflect the hardware capabilities. This implements BAR sizing.
402 */
403 static void vfio_bar_fixup(struct vfio_pci_device *vdev)
404 {
405 struct pci_dev *pdev = vdev->pdev;
406 int i;
407 __le32 *bar;
408 u64 mask;
409
410 bar = (__le32 *)&vdev->vconfig[PCI_BASE_ADDRESS_0];
411
412 for (i = PCI_STD_RESOURCES; i <= PCI_STD_RESOURCE_END; i++, bar++) {
413 if (!pci_resource_start(pdev, i)) {
414 *bar = 0; /* Unmapped by host = unimplemented to user */
415 continue;
416 }
417
418 mask = ~(pci_resource_len(pdev, i) - 1);
419
420 *bar &= cpu_to_le32((u32)mask);
421 *bar |= vfio_generate_bar_flags(pdev, i);
422
423 if (*bar & cpu_to_le32(PCI_BASE_ADDRESS_MEM_TYPE_64)) {
424 bar++;
425 *bar &= cpu_to_le32((u32)(mask >> 32));
426 i++;
427 }
428 }
429
430 bar = (__le32 *)&vdev->vconfig[PCI_ROM_ADDRESS];
431
432 /*
433 * NB. we expose the actual BAR size here, regardless of whether
434 * we can read it. When we report the REGION_INFO for the ROM
435 * we report what PCI tells us is the actual ROM size.
436 */
437 if (pci_resource_start(pdev, PCI_ROM_RESOURCE)) {
438 mask = ~(pci_resource_len(pdev, PCI_ROM_RESOURCE) - 1);
439 mask |= PCI_ROM_ADDRESS_ENABLE;
440 *bar &= cpu_to_le32((u32)mask);
441 } else
442 *bar = 0;
443
444 vdev->bardirty = false;
445 }
446
447 static int vfio_basic_config_read(struct vfio_pci_device *vdev, int pos,
448 int count, struct perm_bits *perm,
449 int offset, __le32 *val)
450 {
451 if (is_bar(offset)) /* pos == offset for basic config */
452 vfio_bar_fixup(vdev);
453
454 count = vfio_default_config_read(vdev, pos, count, perm, offset, val);
455
456 /* Mask in virtual memory enable for SR-IOV devices */
457 if (offset == PCI_COMMAND && vdev->pdev->is_virtfn) {
458 u16 cmd = le16_to_cpu(*(__le16 *)&vdev->vconfig[PCI_COMMAND]);
459 u32 tmp_val = le32_to_cpu(*val);
460
461 tmp_val |= cmd & PCI_COMMAND_MEMORY;
462 *val = cpu_to_le32(tmp_val);
463 }
464
465 return count;
466 }
467
468 static int vfio_basic_config_write(struct vfio_pci_device *vdev, int pos,
469 int count, struct perm_bits *perm,
470 int offset, __le32 val)
471 {
472 struct pci_dev *pdev = vdev->pdev;
473 __le16 *virt_cmd;
474 u16 new_cmd = 0;
475 int ret;
476
477 virt_cmd = (__le16 *)&vdev->vconfig[PCI_COMMAND];
478
479 if (offset == PCI_COMMAND) {
480 bool phys_mem, virt_mem, new_mem, phys_io, virt_io, new_io;
481 u16 phys_cmd;
482
483 ret = pci_user_read_config_word(pdev, PCI_COMMAND, &phys_cmd);
484 if (ret)
485 return ret;
486
487 new_cmd = le32_to_cpu(val);
488
489 phys_mem = !!(phys_cmd & PCI_COMMAND_MEMORY);
490 virt_mem = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_MEMORY);
491 new_mem = !!(new_cmd & PCI_COMMAND_MEMORY);
492
493 phys_io = !!(phys_cmd & PCI_COMMAND_IO);
494 virt_io = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_IO);
495 new_io = !!(new_cmd & PCI_COMMAND_IO);
496
497 /*
498 * If the user is writing mem/io enable (new_mem/io) and we
499 * think it's already enabled (virt_mem/io), but the hardware
500 * shows it disabled (phys_mem/io, then the device has
501 * undergone some kind of backdoor reset and needs to be
502 * restored before we allow it to enable the bars.
503 * SR-IOV devices will trigger this, but we catch them later
504 */
505 if ((new_mem && virt_mem && !phys_mem) ||
506 (new_io && virt_io && !phys_io))
507 vfio_bar_restore(vdev);
508 }
509
510 count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
511 if (count < 0)
512 return count;
513
514 /*
515 * Save current memory/io enable bits in vconfig to allow for
516 * the test above next time.
517 */
518 if (offset == PCI_COMMAND) {
519 u16 mask = PCI_COMMAND_MEMORY | PCI_COMMAND_IO;
520
521 *virt_cmd &= cpu_to_le16(~mask);
522 *virt_cmd |= cpu_to_le16(new_cmd & mask);
523 }
524
525 /* Emulate INTx disable */
526 if (offset >= PCI_COMMAND && offset <= PCI_COMMAND + 1) {
527 bool virt_intx_disable;
528
529 virt_intx_disable = !!(le16_to_cpu(*virt_cmd) &
530 PCI_COMMAND_INTX_DISABLE);
531
532 if (virt_intx_disable && !vdev->virq_disabled) {
533 vdev->virq_disabled = true;
534 vfio_pci_intx_mask(vdev);
535 } else if (!virt_intx_disable && vdev->virq_disabled) {
536 vdev->virq_disabled = false;
537 vfio_pci_intx_unmask(vdev);
538 }
539 }
540
541 if (is_bar(offset))
542 vdev->bardirty = true;
543
544 return count;
545 }
546
547 /* Permissions for the Basic PCI Header */
548 static int __init init_pci_cap_basic_perm(struct perm_bits *perm)
549 {
550 if (alloc_perm_bits(perm, PCI_STD_HEADER_SIZEOF))
551 return -ENOMEM;
552
553 perm->readfn = vfio_basic_config_read;
554 perm->writefn = vfio_basic_config_write;
555
556 /* Virtualized for SR-IOV functions, which just have FFFF */
557 p_setw(perm, PCI_VENDOR_ID, (u16)ALL_VIRT, NO_WRITE);
558 p_setw(perm, PCI_DEVICE_ID, (u16)ALL_VIRT, NO_WRITE);
559
560 /*
561 * Virtualize INTx disable, we use it internally for interrupt
562 * control and can emulate it for non-PCI 2.3 devices.
563 */
564 p_setw(perm, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE, (u16)ALL_WRITE);
565
566 /* Virtualize capability list, we might want to skip/disable */
567 p_setw(perm, PCI_STATUS, PCI_STATUS_CAP_LIST, NO_WRITE);
568
569 /* No harm to write */
570 p_setb(perm, PCI_CACHE_LINE_SIZE, NO_VIRT, (u8)ALL_WRITE);
571 p_setb(perm, PCI_LATENCY_TIMER, NO_VIRT, (u8)ALL_WRITE);
572 p_setb(perm, PCI_BIST, NO_VIRT, (u8)ALL_WRITE);
573
574 /* Virtualize all bars, can't touch the real ones */
575 p_setd(perm, PCI_BASE_ADDRESS_0, ALL_VIRT, ALL_WRITE);
576 p_setd(perm, PCI_BASE_ADDRESS_1, ALL_VIRT, ALL_WRITE);
577 p_setd(perm, PCI_BASE_ADDRESS_2, ALL_VIRT, ALL_WRITE);
578 p_setd(perm, PCI_BASE_ADDRESS_3, ALL_VIRT, ALL_WRITE);
579 p_setd(perm, PCI_BASE_ADDRESS_4, ALL_VIRT, ALL_WRITE);
580 p_setd(perm, PCI_BASE_ADDRESS_5, ALL_VIRT, ALL_WRITE);
581 p_setd(perm, PCI_ROM_ADDRESS, ALL_VIRT, ALL_WRITE);
582
583 /* Allow us to adjust capability chain */
584 p_setb(perm, PCI_CAPABILITY_LIST, (u8)ALL_VIRT, NO_WRITE);
585
586 /* Sometimes used by sw, just virtualize */
587 p_setb(perm, PCI_INTERRUPT_LINE, (u8)ALL_VIRT, (u8)ALL_WRITE);
588 return 0;
589 }
590
591 static int vfio_pm_config_write(struct vfio_pci_device *vdev, int pos,
592 int count, struct perm_bits *perm,
593 int offset, __le32 val)
594 {
595 count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
596 if (count < 0)
597 return count;
598
599 if (offset == PCI_PM_CTRL) {
600 pci_power_t state;
601
602 switch (le32_to_cpu(val) & PCI_PM_CTRL_STATE_MASK) {
603 case 0:
604 state = PCI_D0;
605 break;
606 case 1:
607 state = PCI_D1;
608 break;
609 case 2:
610 state = PCI_D2;
611 break;
612 case 3:
613 state = PCI_D3hot;
614 break;
615 }
616
617 pci_set_power_state(vdev->pdev, state);
618 }
619
620 return count;
621 }
622
623 /* Permissions for the Power Management capability */
624 static int __init init_pci_cap_pm_perm(struct perm_bits *perm)
625 {
626 if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_PM]))
627 return -ENOMEM;
628
629 perm->writefn = vfio_pm_config_write;
630
631 /*
632 * We always virtualize the next field so we can remove
633 * capabilities from the chain if we want to.
634 */
635 p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
636
637 /*
638 * Power management is defined *per function*, so we can let
639 * the user change power state, but we trap and initiate the
640 * change ourselves, so the state bits are read-only.
641 */
642 p_setd(perm, PCI_PM_CTRL, NO_VIRT, ~PCI_PM_CTRL_STATE_MASK);
643 return 0;
644 }
645
646 /* Permissions for PCI-X capability */
647 static int __init init_pci_cap_pcix_perm(struct perm_bits *perm)
648 {
649 /* Alloc 24, but only 8 are used in v0 */
650 if (alloc_perm_bits(perm, PCI_CAP_PCIX_SIZEOF_V2))
651 return -ENOMEM;
652
653 p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
654
655 p_setw(perm, PCI_X_CMD, NO_VIRT, (u16)ALL_WRITE);
656 p_setd(perm, PCI_X_ECC_CSR, NO_VIRT, ALL_WRITE);
657 return 0;
658 }
659
660 /* Permissions for PCI Express capability */
661 static int __init init_pci_cap_exp_perm(struct perm_bits *perm)
662 {
663 /* Alloc larger of two possible sizes */
664 if (alloc_perm_bits(perm, PCI_CAP_EXP_ENDPOINT_SIZEOF_V2))
665 return -ENOMEM;
666
667 p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
668
669 /*
670 * Allow writes to device control fields (includes FLR!)
671 * but not to devctl_phantom which could confuse IOMMU
672 * or to the ARI bit in devctl2 which is set at probe time
673 */
674 p_setw(perm, PCI_EXP_DEVCTL, NO_VIRT, ~PCI_EXP_DEVCTL_PHANTOM);
675 p_setw(perm, PCI_EXP_DEVCTL2, NO_VIRT, ~PCI_EXP_DEVCTL2_ARI);
676 return 0;
677 }
678
679 /* Permissions for Advanced Function capability */
680 static int __init init_pci_cap_af_perm(struct perm_bits *perm)
681 {
682 if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_AF]))
683 return -ENOMEM;
684
685 p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
686 p_setb(perm, PCI_AF_CTRL, NO_VIRT, PCI_AF_CTRL_FLR);
687 return 0;
688 }
689
690 /* Permissions for Advanced Error Reporting extended capability */
691 static int __init init_pci_ext_cap_err_perm(struct perm_bits *perm)
692 {
693 u32 mask;
694
695 if (alloc_perm_bits(perm, pci_ext_cap_length[PCI_EXT_CAP_ID_ERR]))
696 return -ENOMEM;
697
698 /*
699 * Virtualize the first dword of all express capabilities
700 * because it includes the next pointer. This lets us later
701 * remove capabilities from the chain if we need to.
702 */
703 p_setd(perm, 0, ALL_VIRT, NO_WRITE);
704
705 /* Writable bits mask */
706 mask = PCI_ERR_UNC_TRAIN | /* Training */
707 PCI_ERR_UNC_DLP | /* Data Link Protocol */
708 PCI_ERR_UNC_SURPDN | /* Surprise Down */
709 PCI_ERR_UNC_POISON_TLP | /* Poisoned TLP */
710 PCI_ERR_UNC_FCP | /* Flow Control Protocol */
711 PCI_ERR_UNC_COMP_TIME | /* Completion Timeout */
712 PCI_ERR_UNC_COMP_ABORT | /* Completer Abort */
713 PCI_ERR_UNC_UNX_COMP | /* Unexpected Completion */
714 PCI_ERR_UNC_RX_OVER | /* Receiver Overflow */
715 PCI_ERR_UNC_MALF_TLP | /* Malformed TLP */
716 PCI_ERR_UNC_ECRC | /* ECRC Error Status */
717 PCI_ERR_UNC_UNSUP | /* Unsupported Request */
718 PCI_ERR_UNC_ACSV | /* ACS Violation */
719 PCI_ERR_UNC_INTN | /* internal error */
720 PCI_ERR_UNC_MCBTLP | /* MC blocked TLP */
721 PCI_ERR_UNC_ATOMEG | /* Atomic egress blocked */
722 PCI_ERR_UNC_TLPPRE; /* TLP prefix blocked */
723 p_setd(perm, PCI_ERR_UNCOR_STATUS, NO_VIRT, mask);
724 p_setd(perm, PCI_ERR_UNCOR_MASK, NO_VIRT, mask);
725 p_setd(perm, PCI_ERR_UNCOR_SEVER, NO_VIRT, mask);
726
727 mask = PCI_ERR_COR_RCVR | /* Receiver Error Status */
728 PCI_ERR_COR_BAD_TLP | /* Bad TLP Status */
729 PCI_ERR_COR_BAD_DLLP | /* Bad DLLP Status */
730 PCI_ERR_COR_REP_ROLL | /* REPLAY_NUM Rollover */
731 PCI_ERR_COR_REP_TIMER | /* Replay Timer Timeout */
732 PCI_ERR_COR_ADV_NFAT | /* Advisory Non-Fatal */
733 PCI_ERR_COR_INTERNAL | /* Corrected Internal */
734 PCI_ERR_COR_LOG_OVER; /* Header Log Overflow */
735 p_setd(perm, PCI_ERR_COR_STATUS, NO_VIRT, mask);
736 p_setd(perm, PCI_ERR_COR_MASK, NO_VIRT, mask);
737
738 mask = PCI_ERR_CAP_ECRC_GENE | /* ECRC Generation Enable */
739 PCI_ERR_CAP_ECRC_CHKE; /* ECRC Check Enable */
740 p_setd(perm, PCI_ERR_CAP, NO_VIRT, mask);
741 return 0;
742 }
743
744 /* Permissions for Power Budgeting extended capability */
745 static int __init init_pci_ext_cap_pwr_perm(struct perm_bits *perm)
746 {
747 if (alloc_perm_bits(perm, pci_ext_cap_length[PCI_EXT_CAP_ID_PWR]))
748 return -ENOMEM;
749
750 p_setd(perm, 0, ALL_VIRT, NO_WRITE);
751
752 /* Writing the data selector is OK, the info is still read-only */
753 p_setb(perm, PCI_PWR_DATA, NO_VIRT, (u8)ALL_WRITE);
754 return 0;
755 }
756
757 /*
758 * Initialize the shared permission tables
759 */
760 void vfio_pci_uninit_perm_bits(void)
761 {
762 free_perm_bits(&cap_perms[PCI_CAP_ID_BASIC]);
763
764 free_perm_bits(&cap_perms[PCI_CAP_ID_PM]);
765 free_perm_bits(&cap_perms[PCI_CAP_ID_PCIX]);
766 free_perm_bits(&cap_perms[PCI_CAP_ID_EXP]);
767 free_perm_bits(&cap_perms[PCI_CAP_ID_AF]);
768
769 free_perm_bits(&ecap_perms[PCI_EXT_CAP_ID_ERR]);
770 free_perm_bits(&ecap_perms[PCI_EXT_CAP_ID_PWR]);
771 }
772
773 int __init vfio_pci_init_perm_bits(void)
774 {
775 int ret;
776
777 /* Basic config space */
778 ret = init_pci_cap_basic_perm(&cap_perms[PCI_CAP_ID_BASIC]);
779
780 /* Capabilities */
781 ret |= init_pci_cap_pm_perm(&cap_perms[PCI_CAP_ID_PM]);
782 cap_perms[PCI_CAP_ID_VPD].writefn = vfio_direct_config_write;
783 ret |= init_pci_cap_pcix_perm(&cap_perms[PCI_CAP_ID_PCIX]);
784 cap_perms[PCI_CAP_ID_VNDR].writefn = vfio_direct_config_write;
785 ret |= init_pci_cap_exp_perm(&cap_perms[PCI_CAP_ID_EXP]);
786 ret |= init_pci_cap_af_perm(&cap_perms[PCI_CAP_ID_AF]);
787
788 /* Extended capabilities */
789 ret |= init_pci_ext_cap_err_perm(&ecap_perms[PCI_EXT_CAP_ID_ERR]);
790 ret |= init_pci_ext_cap_pwr_perm(&ecap_perms[PCI_EXT_CAP_ID_PWR]);
791 ecap_perms[PCI_EXT_CAP_ID_VNDR].writefn = vfio_direct_config_write;
792
793 if (ret)
794 vfio_pci_uninit_perm_bits();
795
796 return ret;
797 }
798
799 static int vfio_find_cap_start(struct vfio_pci_device *vdev, int pos)
800 {
801 u8 cap;
802 int base = (pos >= PCI_CFG_SPACE_SIZE) ? PCI_CFG_SPACE_SIZE :
803 PCI_STD_HEADER_SIZEOF;
804 base /= 4;
805 pos /= 4;
806
807 cap = vdev->pci_config_map[pos];
808
809 if (cap == PCI_CAP_ID_BASIC)
810 return 0;
811
812 /* XXX Can we have to abutting capabilities of the same type? */
813 while (pos - 1 >= base && vdev->pci_config_map[pos - 1] == cap)
814 pos--;
815
816 return pos * 4;
817 }
818
819 static int vfio_msi_config_read(struct vfio_pci_device *vdev, int pos,
820 int count, struct perm_bits *perm,
821 int offset, __le32 *val)
822 {
823 /* Update max available queue size from msi_qmax */
824 if (offset <= PCI_MSI_FLAGS && offset + count >= PCI_MSI_FLAGS) {
825 __le16 *flags;
826 int start;
827
828 start = vfio_find_cap_start(vdev, pos);
829
830 flags = (__le16 *)&vdev->vconfig[start];
831
832 *flags &= cpu_to_le16(~PCI_MSI_FLAGS_QMASK);
833 *flags |= cpu_to_le16(vdev->msi_qmax << 1);
834 }
835
836 return vfio_default_config_read(vdev, pos, count, perm, offset, val);
837 }
838
839 static int vfio_msi_config_write(struct vfio_pci_device *vdev, int pos,
840 int count, struct perm_bits *perm,
841 int offset, __le32 val)
842 {
843 count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
844 if (count < 0)
845 return count;
846
847 /* Fixup and write configured queue size and enable to hardware */
848 if (offset <= PCI_MSI_FLAGS && offset + count >= PCI_MSI_FLAGS) {
849 __le16 *pflags;
850 u16 flags;
851 int start, ret;
852
853 start = vfio_find_cap_start(vdev, pos);
854
855 pflags = (__le16 *)&vdev->vconfig[start + PCI_MSI_FLAGS];
856
857 flags = le16_to_cpu(*pflags);
858
859 /* MSI is enabled via ioctl */
860 if (!is_msi(vdev))
861 flags &= ~PCI_MSI_FLAGS_ENABLE;
862
863 /* Check queue size */
864 if ((flags & PCI_MSI_FLAGS_QSIZE) >> 4 > vdev->msi_qmax) {
865 flags &= ~PCI_MSI_FLAGS_QSIZE;
866 flags |= vdev->msi_qmax << 4;
867 }
868
869 /* Write back to virt and to hardware */
870 *pflags = cpu_to_le16(flags);
871 ret = pci_user_write_config_word(vdev->pdev,
872 start + PCI_MSI_FLAGS,
873 flags);
874 if (ret)
875 return pcibios_err_to_errno(ret);
876 }
877
878 return count;
879 }
880
881 /*
882 * MSI determination is per-device, so this routine gets used beyond
883 * initialization time. Don't add __init
884 */
885 static int init_pci_cap_msi_perm(struct perm_bits *perm, int len, u16 flags)
886 {
887 if (alloc_perm_bits(perm, len))
888 return -ENOMEM;
889
890 perm->readfn = vfio_msi_config_read;
891 perm->writefn = vfio_msi_config_write;
892
893 p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
894
895 /*
896 * The upper byte of the control register is reserved,
897 * just setup the lower byte.
898 */
899 p_setb(perm, PCI_MSI_FLAGS, (u8)ALL_VIRT, (u8)ALL_WRITE);
900 p_setd(perm, PCI_MSI_ADDRESS_LO, ALL_VIRT, ALL_WRITE);
901 if (flags & PCI_MSI_FLAGS_64BIT) {
902 p_setd(perm, PCI_MSI_ADDRESS_HI, ALL_VIRT, ALL_WRITE);
903 p_setw(perm, PCI_MSI_DATA_64, (u16)ALL_VIRT, (u16)ALL_WRITE);
904 if (flags & PCI_MSI_FLAGS_MASKBIT) {
905 p_setd(perm, PCI_MSI_MASK_64, NO_VIRT, ALL_WRITE);
906 p_setd(perm, PCI_MSI_PENDING_64, NO_VIRT, ALL_WRITE);
907 }
908 } else {
909 p_setw(perm, PCI_MSI_DATA_32, (u16)ALL_VIRT, (u16)ALL_WRITE);
910 if (flags & PCI_MSI_FLAGS_MASKBIT) {
911 p_setd(perm, PCI_MSI_MASK_32, NO_VIRT, ALL_WRITE);
912 p_setd(perm, PCI_MSI_PENDING_32, NO_VIRT, ALL_WRITE);
913 }
914 }
915 return 0;
916 }
917
918 /* Determine MSI CAP field length; initialize msi_perms on 1st call per vdev */
919 static int vfio_msi_cap_len(struct vfio_pci_device *vdev, u8 pos)
920 {
921 struct pci_dev *pdev = vdev->pdev;
922 int len, ret;
923 u16 flags;
924
925 ret = pci_read_config_word(pdev, pos + PCI_MSI_FLAGS, &flags);
926 if (ret)
927 return pcibios_err_to_errno(ret);
928
929 len = 10; /* Minimum size */
930 if (flags & PCI_MSI_FLAGS_64BIT)
931 len += 4;
932 if (flags & PCI_MSI_FLAGS_MASKBIT)
933 len += 10;
934
935 if (vdev->msi_perm)
936 return len;
937
938 vdev->msi_perm = kmalloc(sizeof(struct perm_bits), GFP_KERNEL);
939 if (!vdev->msi_perm)
940 return -ENOMEM;
941
942 ret = init_pci_cap_msi_perm(vdev->msi_perm, len, flags);
943 if (ret)
944 return ret;
945
946 return len;
947 }
948
949 /* Determine extended capability length for VC (2 & 9) and MFVC */
950 static int vfio_vc_cap_len(struct vfio_pci_device *vdev, u16 pos)
951 {
952 struct pci_dev *pdev = vdev->pdev;
953 u32 tmp;
954 int ret, evcc, phases, vc_arb;
955 int len = PCI_CAP_VC_BASE_SIZEOF;
956
957 ret = pci_read_config_dword(pdev, pos + PCI_VC_PORT_REG1, &tmp);
958 if (ret)
959 return pcibios_err_to_errno(ret);
960
961 evcc = tmp & PCI_VC_REG1_EVCC; /* extended vc count */
962 ret = pci_read_config_dword(pdev, pos + PCI_VC_PORT_REG2, &tmp);
963 if (ret)
964 return pcibios_err_to_errno(ret);
965
966 if (tmp & PCI_VC_REG2_128_PHASE)
967 phases = 128;
968 else if (tmp & PCI_VC_REG2_64_PHASE)
969 phases = 64;
970 else if (tmp & PCI_VC_REG2_32_PHASE)
971 phases = 32;
972 else
973 phases = 0;
974
975 vc_arb = phases * 4;
976
977 /*
978 * Port arbitration tables are root & switch only;
979 * function arbitration tables are function 0 only.
980 * In either case, we'll never let user write them so
981 * we don't care how big they are
982 */
983 len += (1 + evcc) * PCI_CAP_VC_PER_VC_SIZEOF;
984 if (vc_arb) {
985 len = round_up(len, 16);
986 len += vc_arb / 8;
987 }
988 return len;
989 }
990
991 static int vfio_cap_len(struct vfio_pci_device *vdev, u8 cap, u8 pos)
992 {
993 struct pci_dev *pdev = vdev->pdev;
994 u16 word;
995 u8 byte;
996 int ret;
997
998 switch (cap) {
999 case PCI_CAP_ID_MSI:
1000 return vfio_msi_cap_len(vdev, pos);
1001 case PCI_CAP_ID_PCIX:
1002 ret = pci_read_config_word(pdev, pos + PCI_X_CMD, &word);
1003 if (ret)
1004 return pcibios_err_to_errno(ret);
1005
1006 if (PCI_X_CMD_VERSION(word)) {
1007 vdev->extended_caps = true;
1008 return PCI_CAP_PCIX_SIZEOF_V2;
1009 } else
1010 return PCI_CAP_PCIX_SIZEOF_V0;
1011 case PCI_CAP_ID_VNDR:
1012 /* length follows next field */
1013 ret = pci_read_config_byte(pdev, pos + PCI_CAP_FLAGS, &byte);
1014 if (ret)
1015 return pcibios_err_to_errno(ret);
1016
1017 return byte;
1018 case PCI_CAP_ID_EXP:
1019 /* length based on version */
1020 ret = pci_read_config_word(pdev, pos + PCI_EXP_FLAGS, &word);
1021 if (ret)
1022 return pcibios_err_to_errno(ret);
1023
1024 vdev->extended_caps = true;
1025
1026 if ((word & PCI_EXP_FLAGS_VERS) == 1)
1027 return PCI_CAP_EXP_ENDPOINT_SIZEOF_V1;
1028 else
1029 return PCI_CAP_EXP_ENDPOINT_SIZEOF_V2;
1030 case PCI_CAP_ID_HT:
1031 ret = pci_read_config_byte(pdev, pos + 3, &byte);
1032 if (ret)
1033 return pcibios_err_to_errno(ret);
1034
1035 return (byte & HT_3BIT_CAP_MASK) ?
1036 HT_CAP_SIZEOF_SHORT : HT_CAP_SIZEOF_LONG;
1037 case PCI_CAP_ID_SATA:
1038 ret = pci_read_config_byte(pdev, pos + PCI_SATA_REGS, &byte);
1039 if (ret)
1040 return pcibios_err_to_errno(ret);
1041
1042 byte &= PCI_SATA_REGS_MASK;
1043 if (byte == PCI_SATA_REGS_INLINE)
1044 return PCI_SATA_SIZEOF_LONG;
1045 else
1046 return PCI_SATA_SIZEOF_SHORT;
1047 default:
1048 pr_warn("%s: %s unknown length for pci cap 0x%x@0x%x\n",
1049 dev_name(&pdev->dev), __func__, cap, pos);
1050 }
1051
1052 return 0;
1053 }
1054
1055 static int vfio_ext_cap_len(struct vfio_pci_device *vdev, u16 ecap, u16 epos)
1056 {
1057 struct pci_dev *pdev = vdev->pdev;
1058 u8 byte;
1059 u32 dword;
1060 int ret;
1061
1062 switch (ecap) {
1063 case PCI_EXT_CAP_ID_VNDR:
1064 ret = pci_read_config_dword(pdev, epos + PCI_VSEC_HDR, &dword);
1065 if (ret)
1066 return pcibios_err_to_errno(ret);
1067
1068 return dword >> PCI_VSEC_HDR_LEN_SHIFT;
1069 case PCI_EXT_CAP_ID_VC:
1070 case PCI_EXT_CAP_ID_VC9:
1071 case PCI_EXT_CAP_ID_MFVC:
1072 return vfio_vc_cap_len(vdev, epos);
1073 case PCI_EXT_CAP_ID_ACS:
1074 ret = pci_read_config_byte(pdev, epos + PCI_ACS_CAP, &byte);
1075 if (ret)
1076 return pcibios_err_to_errno(ret);
1077
1078 if (byte & PCI_ACS_EC) {
1079 int bits;
1080
1081 ret = pci_read_config_byte(pdev,
1082 epos + PCI_ACS_EGRESS_BITS,
1083 &byte);
1084 if (ret)
1085 return pcibios_err_to_errno(ret);
1086
1087 bits = byte ? round_up(byte, 32) : 256;
1088 return 8 + (bits / 8);
1089 }
1090 return 8;
1091
1092 case PCI_EXT_CAP_ID_REBAR:
1093 ret = pci_read_config_byte(pdev, epos + PCI_REBAR_CTRL, &byte);
1094 if (ret)
1095 return pcibios_err_to_errno(ret);
1096
1097 byte &= PCI_REBAR_CTRL_NBAR_MASK;
1098 byte >>= PCI_REBAR_CTRL_NBAR_SHIFT;
1099
1100 return 4 + (byte * 8);
1101 case PCI_EXT_CAP_ID_DPA:
1102 ret = pci_read_config_byte(pdev, epos + PCI_DPA_CAP, &byte);
1103 if (ret)
1104 return pcibios_err_to_errno(ret);
1105
1106 byte &= PCI_DPA_CAP_SUBSTATE_MASK;
1107 byte = round_up(byte + 1, 4);
1108 return PCI_DPA_BASE_SIZEOF + byte;
1109 case PCI_EXT_CAP_ID_TPH:
1110 ret = pci_read_config_dword(pdev, epos + PCI_TPH_CAP, &dword);
1111 if (ret)
1112 return pcibios_err_to_errno(ret);
1113
1114 if ((dword & PCI_TPH_CAP_LOC_MASK) == PCI_TPH_LOC_CAP) {
1115 int sts;
1116
1117 sts = byte & PCI_TPH_CAP_ST_MASK;
1118 sts >>= PCI_TPH_CAP_ST_SHIFT;
1119 return PCI_TPH_BASE_SIZEOF + round_up(sts * 2, 4);
1120 }
1121 return PCI_TPH_BASE_SIZEOF;
1122 default:
1123 pr_warn("%s: %s unknown length for pci ecap 0x%x@0x%x\n",
1124 dev_name(&pdev->dev), __func__, ecap, epos);
1125 }
1126
1127 return 0;
1128 }
1129
1130 static int vfio_fill_vconfig_bytes(struct vfio_pci_device *vdev,
1131 int offset, int size)
1132 {
1133 struct pci_dev *pdev = vdev->pdev;
1134 int ret = 0;
1135
1136 /*
1137 * We try to read physical config space in the largest chunks
1138 * we can, assuming that all of the fields support dword access.
1139 * pci_save_state() makes this same assumption and seems to do ok.
1140 */
1141 while (size) {
1142 int filled;
1143
1144 if (size >= 4 && !(offset % 4)) {
1145 __le32 *dwordp = (__le32 *)&vdev->vconfig[offset];
1146 u32 dword;
1147
1148 ret = pci_read_config_dword(pdev, offset, &dword);
1149 if (ret)
1150 return ret;
1151 *dwordp = cpu_to_le32(dword);
1152 filled = 4;
1153 } else if (size >= 2 && !(offset % 2)) {
1154 __le16 *wordp = (__le16 *)&vdev->vconfig[offset];
1155 u16 word;
1156
1157 ret = pci_read_config_word(pdev, offset, &word);
1158 if (ret)
1159 return ret;
1160 *wordp = cpu_to_le16(word);
1161 filled = 2;
1162 } else {
1163 u8 *byte = &vdev->vconfig[offset];
1164 ret = pci_read_config_byte(pdev, offset, byte);
1165 if (ret)
1166 return ret;
1167 filled = 1;
1168 }
1169
1170 offset += filled;
1171 size -= filled;
1172 }
1173
1174 return ret;
1175 }
1176
1177 static int vfio_cap_init(struct vfio_pci_device *vdev)
1178 {
1179 struct pci_dev *pdev = vdev->pdev;
1180 u8 *map = vdev->pci_config_map;
1181 u16 status;
1182 u8 pos, *prev, cap;
1183 int loops, ret, caps = 0;
1184
1185 /* Any capabilities? */
1186 ret = pci_read_config_word(pdev, PCI_STATUS, &status);
1187 if (ret)
1188 return ret;
1189
1190 if (!(status & PCI_STATUS_CAP_LIST))
1191 return 0; /* Done */
1192
1193 ret = pci_read_config_byte(pdev, PCI_CAPABILITY_LIST, &pos);
1194 if (ret)
1195 return ret;
1196
1197 /* Mark the previous position in case we want to skip a capability */
1198 prev = &vdev->vconfig[PCI_CAPABILITY_LIST];
1199
1200 /* We can bound our loop, capabilities are dword aligned */
1201 loops = (PCI_CFG_SPACE_SIZE - PCI_STD_HEADER_SIZEOF) / PCI_CAP_SIZEOF;
1202 while (pos && loops--) {
1203 u8 next;
1204 int i, len = 0;
1205
1206 ret = pci_read_config_byte(pdev, pos, &cap);
1207 if (ret)
1208 return ret;
1209
1210 ret = pci_read_config_byte(pdev,
1211 pos + PCI_CAP_LIST_NEXT, &next);
1212 if (ret)
1213 return ret;
1214
1215 if (cap <= PCI_CAP_ID_MAX) {
1216 len = pci_cap_length[cap];
1217 if (len == 0xFF) { /* Variable length */
1218 len = vfio_cap_len(vdev, cap, pos);
1219 if (len < 0)
1220 return len;
1221 }
1222 }
1223
1224 if (!len) {
1225 pr_info("%s: %s hiding cap 0x%x\n",
1226 __func__, dev_name(&pdev->dev), cap);
1227 *prev = next;
1228 pos = next;
1229 continue;
1230 }
1231
1232 /* Sanity check, do we overlap other capabilities? */
1233 for (i = 0; i < len; i += 4) {
1234 if (likely(map[(pos + i) / 4] == PCI_CAP_ID_INVALID))
1235 continue;
1236
1237 pr_warn("%s: %s pci config conflict @0x%x, was cap 0x%x now cap 0x%x\n",
1238 __func__, dev_name(&pdev->dev),
1239 pos + i, map[pos + i], cap);
1240 }
1241
1242 memset(map + (pos / 4), cap, len / 4);
1243 ret = vfio_fill_vconfig_bytes(vdev, pos, len);
1244 if (ret)
1245 return ret;
1246
1247 prev = &vdev->vconfig[pos + PCI_CAP_LIST_NEXT];
1248 pos = next;
1249 caps++;
1250 }
1251
1252 /* If we didn't fill any capabilities, clear the status flag */
1253 if (!caps) {
1254 __le16 *vstatus = (__le16 *)&vdev->vconfig[PCI_STATUS];
1255 *vstatus &= ~cpu_to_le16(PCI_STATUS_CAP_LIST);
1256 }
1257
1258 return 0;
1259 }
1260
1261 static int vfio_ecap_init(struct vfio_pci_device *vdev)
1262 {
1263 struct pci_dev *pdev = vdev->pdev;
1264 u8 *map = vdev->pci_config_map;
1265 u16 epos;
1266 __le32 *prev = NULL;
1267 int loops, ret, ecaps = 0;
1268
1269 if (!vdev->extended_caps)
1270 return 0;
1271
1272 epos = PCI_CFG_SPACE_SIZE;
1273
1274 loops = (pdev->cfg_size - PCI_CFG_SPACE_SIZE) / PCI_CAP_SIZEOF;
1275
1276 while (loops-- && epos >= PCI_CFG_SPACE_SIZE) {
1277 u32 header;
1278 u16 ecap;
1279 int i, len = 0;
1280 bool hidden = false;
1281
1282 ret = pci_read_config_dword(pdev, epos, &header);
1283 if (ret)
1284 return ret;
1285
1286 ecap = PCI_EXT_CAP_ID(header);
1287
1288 if (ecap <= PCI_EXT_CAP_ID_MAX) {
1289 len = pci_ext_cap_length[ecap];
1290 if (len == 0xFF) {
1291 len = vfio_ext_cap_len(vdev, ecap, epos);
1292 if (len < 0)
1293 return ret;
1294 }
1295 }
1296
1297 if (!len) {
1298 pr_info("%s: %s hiding ecap 0x%x@0x%x\n",
1299 __func__, dev_name(&pdev->dev), ecap, epos);
1300
1301 /* If not the first in the chain, we can skip over it */
1302 if (prev) {
1303 u32 val = epos = PCI_EXT_CAP_NEXT(header);
1304 *prev &= cpu_to_le32(~(0xffcU << 20));
1305 *prev |= cpu_to_le32(val << 20);
1306 continue;
1307 }
1308
1309 /*
1310 * Otherwise, fill in a placeholder, the direct
1311 * readfn will virtualize this automatically
1312 */
1313 len = PCI_CAP_SIZEOF;
1314 hidden = true;
1315 }
1316
1317 for (i = 0; i < len; i += 4) {
1318 if (likely(map[(epos + i) / 4] == PCI_CAP_ID_INVALID))
1319 continue;
1320
1321 pr_warn("%s: %s pci config conflict @0x%x, was ecap 0x%x now ecap 0x%x\n",
1322 __func__, dev_name(&pdev->dev),
1323 epos + i, map[epos + i], ecap);
1324 }
1325
1326 /*
1327 * Even though ecap is 2 bytes, we're currently a long way
1328 * from exceeding 1 byte capabilities. If we ever make it
1329 * up to 0xFF we'll need to up this to a two-byte, byte map.
1330 */
1331 BUILD_BUG_ON(PCI_EXT_CAP_ID_MAX >= PCI_CAP_ID_INVALID);
1332
1333 memset(map + (epos / 4), ecap, len / 4);
1334 ret = vfio_fill_vconfig_bytes(vdev, epos, len);
1335 if (ret)
1336 return ret;
1337
1338 /*
1339 * If we're just using this capability to anchor the list,
1340 * hide the real ID. Only count real ecaps. XXX PCI spec
1341 * indicates to use cap id = 0, version = 0, next = 0 if
1342 * ecaps are absent, hope users check all the way to next.
1343 */
1344 if (hidden)
1345 *(__le32 *)&vdev->vconfig[epos] &=
1346 cpu_to_le32((0xffcU << 20));
1347 else
1348 ecaps++;
1349
1350 prev = (__le32 *)&vdev->vconfig[epos];
1351 epos = PCI_EXT_CAP_NEXT(header);
1352 }
1353
1354 if (!ecaps)
1355 *(u32 *)&vdev->vconfig[PCI_CFG_SPACE_SIZE] = 0;
1356
1357 return 0;
1358 }
1359
1360 /*
1361 * For each device we allocate a pci_config_map that indicates the
1362 * capability occupying each dword and thus the struct perm_bits we
1363 * use for read and write. We also allocate a virtualized config
1364 * space which tracks reads and writes to bits that we emulate for
1365 * the user. Initial values filled from device.
1366 *
1367 * Using shared stuct perm_bits between all vfio-pci devices saves
1368 * us from allocating cfg_size buffers for virt and write for every
1369 * device. We could remove vconfig and allocate individual buffers
1370 * for each area requring emulated bits, but the array of pointers
1371 * would be comparable in size (at least for standard config space).
1372 */
1373 int vfio_config_init(struct vfio_pci_device *vdev)
1374 {
1375 struct pci_dev *pdev = vdev->pdev;
1376 u8 *map, *vconfig;
1377 int ret;
1378
1379 /*
1380 * Config space, caps and ecaps are all dword aligned, so we can
1381 * use one byte per dword to record the type.
1382 */
1383 map = kmalloc(pdev->cfg_size / 4, GFP_KERNEL);
1384 if (!map)
1385 return -ENOMEM;
1386
1387 vconfig = kmalloc(pdev->cfg_size, GFP_KERNEL);
1388 if (!vconfig) {
1389 kfree(map);
1390 return -ENOMEM;
1391 }
1392
1393 vdev->pci_config_map = map;
1394 vdev->vconfig = vconfig;
1395
1396 memset(map, PCI_CAP_ID_BASIC, PCI_STD_HEADER_SIZEOF / 4);
1397 memset(map + (PCI_STD_HEADER_SIZEOF / 4), PCI_CAP_ID_INVALID,
1398 (pdev->cfg_size - PCI_STD_HEADER_SIZEOF) / 4);
1399
1400 ret = vfio_fill_vconfig_bytes(vdev, 0, PCI_STD_HEADER_SIZEOF);
1401 if (ret)
1402 goto out;
1403
1404 vdev->bardirty = true;
1405
1406 /*
1407 * XXX can we just pci_load_saved_state/pci_restore_state?
1408 * may need to rebuild vconfig after that
1409 */
1410
1411 /* For restore after reset */
1412 vdev->rbar[0] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_0]);
1413 vdev->rbar[1] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_1]);
1414 vdev->rbar[2] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_2]);
1415 vdev->rbar[3] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_3]);
1416 vdev->rbar[4] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_4]);
1417 vdev->rbar[5] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_5]);
1418 vdev->rbar[6] = le32_to_cpu(*(__le32 *)&vconfig[PCI_ROM_ADDRESS]);
1419
1420 if (pdev->is_virtfn) {
1421 *(__le16 *)&vconfig[PCI_VENDOR_ID] = cpu_to_le16(pdev->vendor);
1422 *(__le16 *)&vconfig[PCI_DEVICE_ID] = cpu_to_le16(pdev->device);
1423 }
1424
1425 ret = vfio_cap_init(vdev);
1426 if (ret)
1427 goto out;
1428
1429 ret = vfio_ecap_init(vdev);
1430 if (ret)
1431 goto out;
1432
1433 return 0;
1434
1435 out:
1436 kfree(map);
1437 vdev->pci_config_map = NULL;
1438 kfree(vconfig);
1439 vdev->vconfig = NULL;
1440 return pcibios_err_to_errno(ret);
1441 }
1442
1443 void vfio_config_free(struct vfio_pci_device *vdev)
1444 {
1445 kfree(vdev->vconfig);
1446 vdev->vconfig = NULL;
1447 kfree(vdev->pci_config_map);
1448 vdev->pci_config_map = NULL;
1449 kfree(vdev->msi_perm);
1450 vdev->msi_perm = NULL;
1451 }
1452
1453 static ssize_t vfio_config_do_rw(struct vfio_pci_device *vdev, char __user *buf,
1454 size_t count, loff_t *ppos, bool iswrite)
1455 {
1456 struct pci_dev *pdev = vdev->pdev;
1457 struct perm_bits *perm;
1458 __le32 val = 0;
1459 int cap_start = 0, offset;
1460 u8 cap_id;
1461 ssize_t ret = count;
1462
1463 if (*ppos < 0 || *ppos + count > pdev->cfg_size)
1464 return -EFAULT;
1465
1466 /*
1467 * gcc can't seem to figure out we're a static function, only called
1468 * with count of 1/2/4 and hits copy_from_user_overflow without this.
1469 */
1470 if (count > sizeof(val))
1471 return -EINVAL;
1472
1473 cap_id = vdev->pci_config_map[*ppos / 4];
1474
1475 if (cap_id == PCI_CAP_ID_INVALID) {
1476 if (iswrite)
1477 return ret; /* drop */
1478
1479 /*
1480 * Per PCI spec 3.0, section 6.1, reads from reserved and
1481 * unimplemented registers return 0
1482 */
1483 if (copy_to_user(buf, &val, count))
1484 return -EFAULT;
1485
1486 return ret;
1487 }
1488
1489 /*
1490 * All capabilities are minimum 4 bytes and aligned on dword
1491 * boundaries. Since we don't support unaligned accesses, we're
1492 * only ever accessing a single capability.
1493 */
1494 if (*ppos >= PCI_CFG_SPACE_SIZE) {
1495 WARN_ON(cap_id > PCI_EXT_CAP_ID_MAX);
1496
1497 perm = &ecap_perms[cap_id];
1498 cap_start = vfio_find_cap_start(vdev, *ppos);
1499
1500 } else {
1501 WARN_ON(cap_id > PCI_CAP_ID_MAX);
1502
1503 perm = &cap_perms[cap_id];
1504
1505 if (cap_id == PCI_CAP_ID_MSI)
1506 perm = vdev->msi_perm;
1507
1508 if (cap_id > PCI_CAP_ID_BASIC)
1509 cap_start = vfio_find_cap_start(vdev, *ppos);
1510 }
1511
1512 WARN_ON(!cap_start && cap_id != PCI_CAP_ID_BASIC);
1513 WARN_ON(cap_start > *ppos);
1514
1515 offset = *ppos - cap_start;
1516
1517 if (iswrite) {
1518 if (!perm->writefn)
1519 return ret;
1520
1521 if (copy_from_user(&val, buf, count))
1522 return -EFAULT;
1523
1524 ret = perm->writefn(vdev, *ppos, count, perm, offset, val);
1525 } else {
1526 if (perm->readfn) {
1527 ret = perm->readfn(vdev, *ppos, count,
1528 perm, offset, &val);
1529 if (ret < 0)
1530 return ret;
1531 }
1532
1533 if (copy_to_user(buf, &val, count))
1534 return -EFAULT;
1535 }
1536
1537 return ret;
1538 }
1539
1540 ssize_t vfio_pci_config_rw(struct vfio_pci_device *vdev, char __user *buf,
1541 size_t count, loff_t *ppos, bool iswrite)
1542 {
1543 size_t done = 0;
1544 int ret = 0;
1545 loff_t pos = *ppos;
1546
1547 pos &= VFIO_PCI_OFFSET_MASK;
1548
1549 /*
1550 * We want to both keep the access size the caller users as well as
1551 * support reading large chunks of config space in a single call.
1552 * PCI doesn't support unaligned accesses, so we can safely break
1553 * those apart.
1554 */
1555 while (count) {
1556 if (count >= 4 && !(pos % 4))
1557 ret = vfio_config_do_rw(vdev, buf, 4, &pos, iswrite);
1558 else if (count >= 2 && !(pos % 2))
1559 ret = vfio_config_do_rw(vdev, buf, 2, &pos, iswrite);
1560 else
1561 ret = vfio_config_do_rw(vdev, buf, 1, &pos, iswrite);
1562
1563 if (ret < 0)
1564 return ret;
1565
1566 count -= ret;
1567 done += ret;
1568 buf += ret;
1569 pos += ret;
1570 }
1571
1572 *ppos += done;
1573
1574 return done;
1575 }