]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/vfio/vfio_iommu_type1.c
Merge branches 'for-4.4/upstream-fixes', 'for-4.5/async-suspend', 'for-4.5/container...
[mirror_ubuntu-artful-kernel.git] / drivers / vfio / vfio_iommu_type1.c
1 /*
2 * VFIO: IOMMU DMA mapping support for Type1 IOMMU
3 *
4 * Copyright (C) 2012 Red Hat, Inc. All rights reserved.
5 * Author: Alex Williamson <alex.williamson@redhat.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * Derived from original vfio:
12 * Copyright 2010 Cisco Systems, Inc. All rights reserved.
13 * Author: Tom Lyon, pugs@cisco.com
14 *
15 * We arbitrarily define a Type1 IOMMU as one matching the below code.
16 * It could be called the x86 IOMMU as it's designed for AMD-Vi & Intel
17 * VT-d, but that makes it harder to re-use as theoretically anyone
18 * implementing a similar IOMMU could make use of this. We expect the
19 * IOMMU to support the IOMMU API and have few to no restrictions around
20 * the IOVA range that can be mapped. The Type1 IOMMU is currently
21 * optimized for relatively static mappings of a userspace process with
22 * userpsace pages pinned into memory. We also assume devices and IOMMU
23 * domains are PCI based as the IOMMU API is still centered around a
24 * device/bus interface rather than a group interface.
25 */
26
27 #include <linux/compat.h>
28 #include <linux/device.h>
29 #include <linux/fs.h>
30 #include <linux/iommu.h>
31 #include <linux/module.h>
32 #include <linux/mm.h>
33 #include <linux/rbtree.h>
34 #include <linux/sched.h>
35 #include <linux/slab.h>
36 #include <linux/uaccess.h>
37 #include <linux/vfio.h>
38 #include <linux/workqueue.h>
39
40 #define DRIVER_VERSION "0.2"
41 #define DRIVER_AUTHOR "Alex Williamson <alex.williamson@redhat.com>"
42 #define DRIVER_DESC "Type1 IOMMU driver for VFIO"
43
44 static bool allow_unsafe_interrupts;
45 module_param_named(allow_unsafe_interrupts,
46 allow_unsafe_interrupts, bool, S_IRUGO | S_IWUSR);
47 MODULE_PARM_DESC(allow_unsafe_interrupts,
48 "Enable VFIO IOMMU support for on platforms without interrupt remapping support.");
49
50 static bool disable_hugepages;
51 module_param_named(disable_hugepages,
52 disable_hugepages, bool, S_IRUGO | S_IWUSR);
53 MODULE_PARM_DESC(disable_hugepages,
54 "Disable VFIO IOMMU support for IOMMU hugepages.");
55
56 struct vfio_iommu {
57 struct list_head domain_list;
58 struct mutex lock;
59 struct rb_root dma_list;
60 bool v2;
61 bool nesting;
62 };
63
64 struct vfio_domain {
65 struct iommu_domain *domain;
66 struct list_head next;
67 struct list_head group_list;
68 int prot; /* IOMMU_CACHE */
69 bool fgsp; /* Fine-grained super pages */
70 };
71
72 struct vfio_dma {
73 struct rb_node node;
74 dma_addr_t iova; /* Device address */
75 unsigned long vaddr; /* Process virtual addr */
76 size_t size; /* Map size (bytes) */
77 int prot; /* IOMMU_READ/WRITE */
78 };
79
80 struct vfio_group {
81 struct iommu_group *iommu_group;
82 struct list_head next;
83 };
84
85 /*
86 * This code handles mapping and unmapping of user data buffers
87 * into DMA'ble space using the IOMMU
88 */
89
90 static struct vfio_dma *vfio_find_dma(struct vfio_iommu *iommu,
91 dma_addr_t start, size_t size)
92 {
93 struct rb_node *node = iommu->dma_list.rb_node;
94
95 while (node) {
96 struct vfio_dma *dma = rb_entry(node, struct vfio_dma, node);
97
98 if (start + size <= dma->iova)
99 node = node->rb_left;
100 else if (start >= dma->iova + dma->size)
101 node = node->rb_right;
102 else
103 return dma;
104 }
105
106 return NULL;
107 }
108
109 static void vfio_link_dma(struct vfio_iommu *iommu, struct vfio_dma *new)
110 {
111 struct rb_node **link = &iommu->dma_list.rb_node, *parent = NULL;
112 struct vfio_dma *dma;
113
114 while (*link) {
115 parent = *link;
116 dma = rb_entry(parent, struct vfio_dma, node);
117
118 if (new->iova + new->size <= dma->iova)
119 link = &(*link)->rb_left;
120 else
121 link = &(*link)->rb_right;
122 }
123
124 rb_link_node(&new->node, parent, link);
125 rb_insert_color(&new->node, &iommu->dma_list);
126 }
127
128 static void vfio_unlink_dma(struct vfio_iommu *iommu, struct vfio_dma *old)
129 {
130 rb_erase(&old->node, &iommu->dma_list);
131 }
132
133 struct vwork {
134 struct mm_struct *mm;
135 long npage;
136 struct work_struct work;
137 };
138
139 /* delayed decrement/increment for locked_vm */
140 static void vfio_lock_acct_bg(struct work_struct *work)
141 {
142 struct vwork *vwork = container_of(work, struct vwork, work);
143 struct mm_struct *mm;
144
145 mm = vwork->mm;
146 down_write(&mm->mmap_sem);
147 mm->locked_vm += vwork->npage;
148 up_write(&mm->mmap_sem);
149 mmput(mm);
150 kfree(vwork);
151 }
152
153 static void vfio_lock_acct(long npage)
154 {
155 struct vwork *vwork;
156 struct mm_struct *mm;
157
158 if (!current->mm || !npage)
159 return; /* process exited or nothing to do */
160
161 if (down_write_trylock(&current->mm->mmap_sem)) {
162 current->mm->locked_vm += npage;
163 up_write(&current->mm->mmap_sem);
164 return;
165 }
166
167 /*
168 * Couldn't get mmap_sem lock, so must setup to update
169 * mm->locked_vm later. If locked_vm were atomic, we
170 * wouldn't need this silliness
171 */
172 vwork = kmalloc(sizeof(struct vwork), GFP_KERNEL);
173 if (!vwork)
174 return;
175 mm = get_task_mm(current);
176 if (!mm) {
177 kfree(vwork);
178 return;
179 }
180 INIT_WORK(&vwork->work, vfio_lock_acct_bg);
181 vwork->mm = mm;
182 vwork->npage = npage;
183 schedule_work(&vwork->work);
184 }
185
186 /*
187 * Some mappings aren't backed by a struct page, for example an mmap'd
188 * MMIO range for our own or another device. These use a different
189 * pfn conversion and shouldn't be tracked as locked pages.
190 */
191 static bool is_invalid_reserved_pfn(unsigned long pfn)
192 {
193 if (pfn_valid(pfn)) {
194 bool reserved;
195 struct page *tail = pfn_to_page(pfn);
196 struct page *head = compound_head(tail);
197 reserved = !!(PageReserved(head));
198 if (head != tail) {
199 /*
200 * "head" is not a dangling pointer
201 * (compound_head takes care of that)
202 * but the hugepage may have been split
203 * from under us (and we may not hold a
204 * reference count on the head page so it can
205 * be reused before we run PageReferenced), so
206 * we've to check PageTail before returning
207 * what we just read.
208 */
209 smp_rmb();
210 if (PageTail(tail))
211 return reserved;
212 }
213 return PageReserved(tail);
214 }
215
216 return true;
217 }
218
219 static int put_pfn(unsigned long pfn, int prot)
220 {
221 if (!is_invalid_reserved_pfn(pfn)) {
222 struct page *page = pfn_to_page(pfn);
223 if (prot & IOMMU_WRITE)
224 SetPageDirty(page);
225 put_page(page);
226 return 1;
227 }
228 return 0;
229 }
230
231 static int vaddr_get_pfn(unsigned long vaddr, int prot, unsigned long *pfn)
232 {
233 struct page *page[1];
234 struct vm_area_struct *vma;
235 int ret = -EFAULT;
236
237 if (get_user_pages_fast(vaddr, 1, !!(prot & IOMMU_WRITE), page) == 1) {
238 *pfn = page_to_pfn(page[0]);
239 return 0;
240 }
241
242 down_read(&current->mm->mmap_sem);
243
244 vma = find_vma_intersection(current->mm, vaddr, vaddr + 1);
245
246 if (vma && vma->vm_flags & VM_PFNMAP) {
247 *pfn = ((vaddr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
248 if (is_invalid_reserved_pfn(*pfn))
249 ret = 0;
250 }
251
252 up_read(&current->mm->mmap_sem);
253
254 return ret;
255 }
256
257 /*
258 * Attempt to pin pages. We really don't want to track all the pfns and
259 * the iommu can only map chunks of consecutive pfns anyway, so get the
260 * first page and all consecutive pages with the same locking.
261 */
262 static long vfio_pin_pages(unsigned long vaddr, long npage,
263 int prot, unsigned long *pfn_base)
264 {
265 unsigned long limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
266 bool lock_cap = capable(CAP_IPC_LOCK);
267 long ret, i;
268 bool rsvd;
269
270 if (!current->mm)
271 return -ENODEV;
272
273 ret = vaddr_get_pfn(vaddr, prot, pfn_base);
274 if (ret)
275 return ret;
276
277 rsvd = is_invalid_reserved_pfn(*pfn_base);
278
279 if (!rsvd && !lock_cap && current->mm->locked_vm + 1 > limit) {
280 put_pfn(*pfn_base, prot);
281 pr_warn("%s: RLIMIT_MEMLOCK (%ld) exceeded\n", __func__,
282 limit << PAGE_SHIFT);
283 return -ENOMEM;
284 }
285
286 if (unlikely(disable_hugepages)) {
287 if (!rsvd)
288 vfio_lock_acct(1);
289 return 1;
290 }
291
292 /* Lock all the consecutive pages from pfn_base */
293 for (i = 1, vaddr += PAGE_SIZE; i < npage; i++, vaddr += PAGE_SIZE) {
294 unsigned long pfn = 0;
295
296 ret = vaddr_get_pfn(vaddr, prot, &pfn);
297 if (ret)
298 break;
299
300 if (pfn != *pfn_base + i ||
301 rsvd != is_invalid_reserved_pfn(pfn)) {
302 put_pfn(pfn, prot);
303 break;
304 }
305
306 if (!rsvd && !lock_cap &&
307 current->mm->locked_vm + i + 1 > limit) {
308 put_pfn(pfn, prot);
309 pr_warn("%s: RLIMIT_MEMLOCK (%ld) exceeded\n",
310 __func__, limit << PAGE_SHIFT);
311 break;
312 }
313 }
314
315 if (!rsvd)
316 vfio_lock_acct(i);
317
318 return i;
319 }
320
321 static long vfio_unpin_pages(unsigned long pfn, long npage,
322 int prot, bool do_accounting)
323 {
324 unsigned long unlocked = 0;
325 long i;
326
327 for (i = 0; i < npage; i++)
328 unlocked += put_pfn(pfn++, prot);
329
330 if (do_accounting)
331 vfio_lock_acct(-unlocked);
332
333 return unlocked;
334 }
335
336 static void vfio_unmap_unpin(struct vfio_iommu *iommu, struct vfio_dma *dma)
337 {
338 dma_addr_t iova = dma->iova, end = dma->iova + dma->size;
339 struct vfio_domain *domain, *d;
340 long unlocked = 0;
341
342 if (!dma->size)
343 return;
344 /*
345 * We use the IOMMU to track the physical addresses, otherwise we'd
346 * need a much more complicated tracking system. Unfortunately that
347 * means we need to use one of the iommu domains to figure out the
348 * pfns to unpin. The rest need to be unmapped in advance so we have
349 * no iommu translations remaining when the pages are unpinned.
350 */
351 domain = d = list_first_entry(&iommu->domain_list,
352 struct vfio_domain, next);
353
354 list_for_each_entry_continue(d, &iommu->domain_list, next) {
355 iommu_unmap(d->domain, dma->iova, dma->size);
356 cond_resched();
357 }
358
359 while (iova < end) {
360 size_t unmapped, len;
361 phys_addr_t phys, next;
362
363 phys = iommu_iova_to_phys(domain->domain, iova);
364 if (WARN_ON(!phys)) {
365 iova += PAGE_SIZE;
366 continue;
367 }
368
369 /*
370 * To optimize for fewer iommu_unmap() calls, each of which
371 * may require hardware cache flushing, try to find the
372 * largest contiguous physical memory chunk to unmap.
373 */
374 for (len = PAGE_SIZE;
375 !domain->fgsp && iova + len < end; len += PAGE_SIZE) {
376 next = iommu_iova_to_phys(domain->domain, iova + len);
377 if (next != phys + len)
378 break;
379 }
380
381 unmapped = iommu_unmap(domain->domain, iova, len);
382 if (WARN_ON(!unmapped))
383 break;
384
385 unlocked += vfio_unpin_pages(phys >> PAGE_SHIFT,
386 unmapped >> PAGE_SHIFT,
387 dma->prot, false);
388 iova += unmapped;
389
390 cond_resched();
391 }
392
393 vfio_lock_acct(-unlocked);
394 }
395
396 static void vfio_remove_dma(struct vfio_iommu *iommu, struct vfio_dma *dma)
397 {
398 vfio_unmap_unpin(iommu, dma);
399 vfio_unlink_dma(iommu, dma);
400 kfree(dma);
401 }
402
403 static unsigned long vfio_pgsize_bitmap(struct vfio_iommu *iommu)
404 {
405 struct vfio_domain *domain;
406 unsigned long bitmap = ULONG_MAX;
407
408 mutex_lock(&iommu->lock);
409 list_for_each_entry(domain, &iommu->domain_list, next)
410 bitmap &= domain->domain->ops->pgsize_bitmap;
411 mutex_unlock(&iommu->lock);
412
413 /*
414 * In case the IOMMU supports page sizes smaller than PAGE_SIZE
415 * we pretend PAGE_SIZE is supported and hide sub-PAGE_SIZE sizes.
416 * That way the user will be able to map/unmap buffers whose size/
417 * start address is aligned with PAGE_SIZE. Pinning code uses that
418 * granularity while iommu driver can use the sub-PAGE_SIZE size
419 * to map the buffer.
420 */
421 if (bitmap & ~PAGE_MASK) {
422 bitmap &= PAGE_MASK;
423 bitmap |= PAGE_SIZE;
424 }
425
426 return bitmap;
427 }
428
429 static int vfio_dma_do_unmap(struct vfio_iommu *iommu,
430 struct vfio_iommu_type1_dma_unmap *unmap)
431 {
432 uint64_t mask;
433 struct vfio_dma *dma;
434 size_t unmapped = 0;
435 int ret = 0;
436
437 mask = ((uint64_t)1 << __ffs(vfio_pgsize_bitmap(iommu))) - 1;
438
439 if (unmap->iova & mask)
440 return -EINVAL;
441 if (!unmap->size || unmap->size & mask)
442 return -EINVAL;
443
444 WARN_ON(mask & PAGE_MASK);
445
446 mutex_lock(&iommu->lock);
447
448 /*
449 * vfio-iommu-type1 (v1) - User mappings were coalesced together to
450 * avoid tracking individual mappings. This means that the granularity
451 * of the original mapping was lost and the user was allowed to attempt
452 * to unmap any range. Depending on the contiguousness of physical
453 * memory and page sizes supported by the IOMMU, arbitrary unmaps may
454 * or may not have worked. We only guaranteed unmap granularity
455 * matching the original mapping; even though it was untracked here,
456 * the original mappings are reflected in IOMMU mappings. This
457 * resulted in a couple unusual behaviors. First, if a range is not
458 * able to be unmapped, ex. a set of 4k pages that was mapped as a
459 * 2M hugepage into the IOMMU, the unmap ioctl returns success but with
460 * a zero sized unmap. Also, if an unmap request overlaps the first
461 * address of a hugepage, the IOMMU will unmap the entire hugepage.
462 * This also returns success and the returned unmap size reflects the
463 * actual size unmapped.
464 *
465 * We attempt to maintain compatibility with this "v1" interface, but
466 * we take control out of the hands of the IOMMU. Therefore, an unmap
467 * request offset from the beginning of the original mapping will
468 * return success with zero sized unmap. And an unmap request covering
469 * the first iova of mapping will unmap the entire range.
470 *
471 * The v2 version of this interface intends to be more deterministic.
472 * Unmap requests must fully cover previous mappings. Multiple
473 * mappings may still be unmaped by specifying large ranges, but there
474 * must not be any previous mappings bisected by the range. An error
475 * will be returned if these conditions are not met. The v2 interface
476 * will only return success and a size of zero if there were no
477 * mappings within the range.
478 */
479 if (iommu->v2) {
480 dma = vfio_find_dma(iommu, unmap->iova, 0);
481 if (dma && dma->iova != unmap->iova) {
482 ret = -EINVAL;
483 goto unlock;
484 }
485 dma = vfio_find_dma(iommu, unmap->iova + unmap->size - 1, 0);
486 if (dma && dma->iova + dma->size != unmap->iova + unmap->size) {
487 ret = -EINVAL;
488 goto unlock;
489 }
490 }
491
492 while ((dma = vfio_find_dma(iommu, unmap->iova, unmap->size))) {
493 if (!iommu->v2 && unmap->iova > dma->iova)
494 break;
495 unmapped += dma->size;
496 vfio_remove_dma(iommu, dma);
497 }
498
499 unlock:
500 mutex_unlock(&iommu->lock);
501
502 /* Report how much was unmapped */
503 unmap->size = unmapped;
504
505 return ret;
506 }
507
508 /*
509 * Turns out AMD IOMMU has a page table bug where it won't map large pages
510 * to a region that previously mapped smaller pages. This should be fixed
511 * soon, so this is just a temporary workaround to break mappings down into
512 * PAGE_SIZE. Better to map smaller pages than nothing.
513 */
514 static int map_try_harder(struct vfio_domain *domain, dma_addr_t iova,
515 unsigned long pfn, long npage, int prot)
516 {
517 long i;
518 int ret;
519
520 for (i = 0; i < npage; i++, pfn++, iova += PAGE_SIZE) {
521 ret = iommu_map(domain->domain, iova,
522 (phys_addr_t)pfn << PAGE_SHIFT,
523 PAGE_SIZE, prot | domain->prot);
524 if (ret)
525 break;
526 }
527
528 for (; i < npage && i > 0; i--, iova -= PAGE_SIZE)
529 iommu_unmap(domain->domain, iova, PAGE_SIZE);
530
531 return ret;
532 }
533
534 static int vfio_iommu_map(struct vfio_iommu *iommu, dma_addr_t iova,
535 unsigned long pfn, long npage, int prot)
536 {
537 struct vfio_domain *d;
538 int ret;
539
540 list_for_each_entry(d, &iommu->domain_list, next) {
541 ret = iommu_map(d->domain, iova, (phys_addr_t)pfn << PAGE_SHIFT,
542 npage << PAGE_SHIFT, prot | d->prot);
543 if (ret) {
544 if (ret != -EBUSY ||
545 map_try_harder(d, iova, pfn, npage, prot))
546 goto unwind;
547 }
548
549 cond_resched();
550 }
551
552 return 0;
553
554 unwind:
555 list_for_each_entry_continue_reverse(d, &iommu->domain_list, next)
556 iommu_unmap(d->domain, iova, npage << PAGE_SHIFT);
557
558 return ret;
559 }
560
561 static int vfio_dma_do_map(struct vfio_iommu *iommu,
562 struct vfio_iommu_type1_dma_map *map)
563 {
564 dma_addr_t iova = map->iova;
565 unsigned long vaddr = map->vaddr;
566 size_t size = map->size;
567 long npage;
568 int ret = 0, prot = 0;
569 uint64_t mask;
570 struct vfio_dma *dma;
571 unsigned long pfn;
572
573 /* Verify that none of our __u64 fields overflow */
574 if (map->size != size || map->vaddr != vaddr || map->iova != iova)
575 return -EINVAL;
576
577 mask = ((uint64_t)1 << __ffs(vfio_pgsize_bitmap(iommu))) - 1;
578
579 WARN_ON(mask & PAGE_MASK);
580
581 /* READ/WRITE from device perspective */
582 if (map->flags & VFIO_DMA_MAP_FLAG_WRITE)
583 prot |= IOMMU_WRITE;
584 if (map->flags & VFIO_DMA_MAP_FLAG_READ)
585 prot |= IOMMU_READ;
586
587 if (!prot || !size || (size | iova | vaddr) & mask)
588 return -EINVAL;
589
590 /* Don't allow IOVA or virtual address wrap */
591 if (iova + size - 1 < iova || vaddr + size - 1 < vaddr)
592 return -EINVAL;
593
594 mutex_lock(&iommu->lock);
595
596 if (vfio_find_dma(iommu, iova, size)) {
597 mutex_unlock(&iommu->lock);
598 return -EEXIST;
599 }
600
601 dma = kzalloc(sizeof(*dma), GFP_KERNEL);
602 if (!dma) {
603 mutex_unlock(&iommu->lock);
604 return -ENOMEM;
605 }
606
607 dma->iova = iova;
608 dma->vaddr = vaddr;
609 dma->prot = prot;
610
611 /* Insert zero-sized and grow as we map chunks of it */
612 vfio_link_dma(iommu, dma);
613
614 while (size) {
615 /* Pin a contiguous chunk of memory */
616 npage = vfio_pin_pages(vaddr + dma->size,
617 size >> PAGE_SHIFT, prot, &pfn);
618 if (npage <= 0) {
619 WARN_ON(!npage);
620 ret = (int)npage;
621 break;
622 }
623
624 /* Map it! */
625 ret = vfio_iommu_map(iommu, iova + dma->size, pfn, npage, prot);
626 if (ret) {
627 vfio_unpin_pages(pfn, npage, prot, true);
628 break;
629 }
630
631 size -= npage << PAGE_SHIFT;
632 dma->size += npage << PAGE_SHIFT;
633 }
634
635 if (ret)
636 vfio_remove_dma(iommu, dma);
637
638 mutex_unlock(&iommu->lock);
639 return ret;
640 }
641
642 static int vfio_bus_type(struct device *dev, void *data)
643 {
644 struct bus_type **bus = data;
645
646 if (*bus && *bus != dev->bus)
647 return -EINVAL;
648
649 *bus = dev->bus;
650
651 return 0;
652 }
653
654 static int vfio_iommu_replay(struct vfio_iommu *iommu,
655 struct vfio_domain *domain)
656 {
657 struct vfio_domain *d;
658 struct rb_node *n;
659 int ret;
660
661 /* Arbitrarily pick the first domain in the list for lookups */
662 d = list_first_entry(&iommu->domain_list, struct vfio_domain, next);
663 n = rb_first(&iommu->dma_list);
664
665 /* If there's not a domain, there better not be any mappings */
666 if (WARN_ON(n && !d))
667 return -EINVAL;
668
669 for (; n; n = rb_next(n)) {
670 struct vfio_dma *dma;
671 dma_addr_t iova;
672
673 dma = rb_entry(n, struct vfio_dma, node);
674 iova = dma->iova;
675
676 while (iova < dma->iova + dma->size) {
677 phys_addr_t phys = iommu_iova_to_phys(d->domain, iova);
678 size_t size;
679
680 if (WARN_ON(!phys)) {
681 iova += PAGE_SIZE;
682 continue;
683 }
684
685 size = PAGE_SIZE;
686
687 while (iova + size < dma->iova + dma->size &&
688 phys + size == iommu_iova_to_phys(d->domain,
689 iova + size))
690 size += PAGE_SIZE;
691
692 ret = iommu_map(domain->domain, iova, phys,
693 size, dma->prot | domain->prot);
694 if (ret)
695 return ret;
696
697 iova += size;
698 }
699 }
700
701 return 0;
702 }
703
704 /*
705 * We change our unmap behavior slightly depending on whether the IOMMU
706 * supports fine-grained superpages. IOMMUs like AMD-Vi will use a superpage
707 * for practically any contiguous power-of-two mapping we give it. This means
708 * we don't need to look for contiguous chunks ourselves to make unmapping
709 * more efficient. On IOMMUs with coarse-grained super pages, like Intel VT-d
710 * with discrete 2M/1G/512G/1T superpages, identifying contiguous chunks
711 * significantly boosts non-hugetlbfs mappings and doesn't seem to hurt when
712 * hugetlbfs is in use.
713 */
714 static void vfio_test_domain_fgsp(struct vfio_domain *domain)
715 {
716 struct page *pages;
717 int ret, order = get_order(PAGE_SIZE * 2);
718
719 pages = alloc_pages(GFP_KERNEL | __GFP_ZERO, order);
720 if (!pages)
721 return;
722
723 ret = iommu_map(domain->domain, 0, page_to_phys(pages), PAGE_SIZE * 2,
724 IOMMU_READ | IOMMU_WRITE | domain->prot);
725 if (!ret) {
726 size_t unmapped = iommu_unmap(domain->domain, 0, PAGE_SIZE);
727
728 if (unmapped == PAGE_SIZE)
729 iommu_unmap(domain->domain, PAGE_SIZE, PAGE_SIZE);
730 else
731 domain->fgsp = true;
732 }
733
734 __free_pages(pages, order);
735 }
736
737 static int vfio_iommu_type1_attach_group(void *iommu_data,
738 struct iommu_group *iommu_group)
739 {
740 struct vfio_iommu *iommu = iommu_data;
741 struct vfio_group *group, *g;
742 struct vfio_domain *domain, *d;
743 struct bus_type *bus = NULL;
744 int ret;
745
746 mutex_lock(&iommu->lock);
747
748 list_for_each_entry(d, &iommu->domain_list, next) {
749 list_for_each_entry(g, &d->group_list, next) {
750 if (g->iommu_group != iommu_group)
751 continue;
752
753 mutex_unlock(&iommu->lock);
754 return -EINVAL;
755 }
756 }
757
758 group = kzalloc(sizeof(*group), GFP_KERNEL);
759 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
760 if (!group || !domain) {
761 ret = -ENOMEM;
762 goto out_free;
763 }
764
765 group->iommu_group = iommu_group;
766
767 /* Determine bus_type in order to allocate a domain */
768 ret = iommu_group_for_each_dev(iommu_group, &bus, vfio_bus_type);
769 if (ret)
770 goto out_free;
771
772 domain->domain = iommu_domain_alloc(bus);
773 if (!domain->domain) {
774 ret = -EIO;
775 goto out_free;
776 }
777
778 if (iommu->nesting) {
779 int attr = 1;
780
781 ret = iommu_domain_set_attr(domain->domain, DOMAIN_ATTR_NESTING,
782 &attr);
783 if (ret)
784 goto out_domain;
785 }
786
787 ret = iommu_attach_group(domain->domain, iommu_group);
788 if (ret)
789 goto out_domain;
790
791 INIT_LIST_HEAD(&domain->group_list);
792 list_add(&group->next, &domain->group_list);
793
794 if (!allow_unsafe_interrupts &&
795 !iommu_capable(bus, IOMMU_CAP_INTR_REMAP)) {
796 pr_warn("%s: No interrupt remapping support. Use the module param \"allow_unsafe_interrupts\" to enable VFIO IOMMU support on this platform\n",
797 __func__);
798 ret = -EPERM;
799 goto out_detach;
800 }
801
802 if (iommu_capable(bus, IOMMU_CAP_CACHE_COHERENCY))
803 domain->prot |= IOMMU_CACHE;
804
805 /*
806 * Try to match an existing compatible domain. We don't want to
807 * preclude an IOMMU driver supporting multiple bus_types and being
808 * able to include different bus_types in the same IOMMU domain, so
809 * we test whether the domains use the same iommu_ops rather than
810 * testing if they're on the same bus_type.
811 */
812 list_for_each_entry(d, &iommu->domain_list, next) {
813 if (d->domain->ops == domain->domain->ops &&
814 d->prot == domain->prot) {
815 iommu_detach_group(domain->domain, iommu_group);
816 if (!iommu_attach_group(d->domain, iommu_group)) {
817 list_add(&group->next, &d->group_list);
818 iommu_domain_free(domain->domain);
819 kfree(domain);
820 mutex_unlock(&iommu->lock);
821 return 0;
822 }
823
824 ret = iommu_attach_group(domain->domain, iommu_group);
825 if (ret)
826 goto out_domain;
827 }
828 }
829
830 vfio_test_domain_fgsp(domain);
831
832 /* replay mappings on new domains */
833 ret = vfio_iommu_replay(iommu, domain);
834 if (ret)
835 goto out_detach;
836
837 list_add(&domain->next, &iommu->domain_list);
838
839 mutex_unlock(&iommu->lock);
840
841 return 0;
842
843 out_detach:
844 iommu_detach_group(domain->domain, iommu_group);
845 out_domain:
846 iommu_domain_free(domain->domain);
847 out_free:
848 kfree(domain);
849 kfree(group);
850 mutex_unlock(&iommu->lock);
851 return ret;
852 }
853
854 static void vfio_iommu_unmap_unpin_all(struct vfio_iommu *iommu)
855 {
856 struct rb_node *node;
857
858 while ((node = rb_first(&iommu->dma_list)))
859 vfio_remove_dma(iommu, rb_entry(node, struct vfio_dma, node));
860 }
861
862 static void vfio_iommu_type1_detach_group(void *iommu_data,
863 struct iommu_group *iommu_group)
864 {
865 struct vfio_iommu *iommu = iommu_data;
866 struct vfio_domain *domain;
867 struct vfio_group *group;
868
869 mutex_lock(&iommu->lock);
870
871 list_for_each_entry(domain, &iommu->domain_list, next) {
872 list_for_each_entry(group, &domain->group_list, next) {
873 if (group->iommu_group != iommu_group)
874 continue;
875
876 iommu_detach_group(domain->domain, iommu_group);
877 list_del(&group->next);
878 kfree(group);
879 /*
880 * Group ownership provides privilege, if the group
881 * list is empty, the domain goes away. If it's the
882 * last domain, then all the mappings go away too.
883 */
884 if (list_empty(&domain->group_list)) {
885 if (list_is_singular(&iommu->domain_list))
886 vfio_iommu_unmap_unpin_all(iommu);
887 iommu_domain_free(domain->domain);
888 list_del(&domain->next);
889 kfree(domain);
890 }
891 goto done;
892 }
893 }
894
895 done:
896 mutex_unlock(&iommu->lock);
897 }
898
899 static void *vfio_iommu_type1_open(unsigned long arg)
900 {
901 struct vfio_iommu *iommu;
902
903 iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
904 if (!iommu)
905 return ERR_PTR(-ENOMEM);
906
907 switch (arg) {
908 case VFIO_TYPE1_IOMMU:
909 break;
910 case VFIO_TYPE1_NESTING_IOMMU:
911 iommu->nesting = true;
912 case VFIO_TYPE1v2_IOMMU:
913 iommu->v2 = true;
914 break;
915 default:
916 kfree(iommu);
917 return ERR_PTR(-EINVAL);
918 }
919
920 INIT_LIST_HEAD(&iommu->domain_list);
921 iommu->dma_list = RB_ROOT;
922 mutex_init(&iommu->lock);
923
924 return iommu;
925 }
926
927 static void vfio_iommu_type1_release(void *iommu_data)
928 {
929 struct vfio_iommu *iommu = iommu_data;
930 struct vfio_domain *domain, *domain_tmp;
931 struct vfio_group *group, *group_tmp;
932
933 vfio_iommu_unmap_unpin_all(iommu);
934
935 list_for_each_entry_safe(domain, domain_tmp,
936 &iommu->domain_list, next) {
937 list_for_each_entry_safe(group, group_tmp,
938 &domain->group_list, next) {
939 iommu_detach_group(domain->domain, group->iommu_group);
940 list_del(&group->next);
941 kfree(group);
942 }
943 iommu_domain_free(domain->domain);
944 list_del(&domain->next);
945 kfree(domain);
946 }
947
948 kfree(iommu);
949 }
950
951 static int vfio_domains_have_iommu_cache(struct vfio_iommu *iommu)
952 {
953 struct vfio_domain *domain;
954 int ret = 1;
955
956 mutex_lock(&iommu->lock);
957 list_for_each_entry(domain, &iommu->domain_list, next) {
958 if (!(domain->prot & IOMMU_CACHE)) {
959 ret = 0;
960 break;
961 }
962 }
963 mutex_unlock(&iommu->lock);
964
965 return ret;
966 }
967
968 static long vfio_iommu_type1_ioctl(void *iommu_data,
969 unsigned int cmd, unsigned long arg)
970 {
971 struct vfio_iommu *iommu = iommu_data;
972 unsigned long minsz;
973
974 if (cmd == VFIO_CHECK_EXTENSION) {
975 switch (arg) {
976 case VFIO_TYPE1_IOMMU:
977 case VFIO_TYPE1v2_IOMMU:
978 case VFIO_TYPE1_NESTING_IOMMU:
979 return 1;
980 case VFIO_DMA_CC_IOMMU:
981 if (!iommu)
982 return 0;
983 return vfio_domains_have_iommu_cache(iommu);
984 default:
985 return 0;
986 }
987 } else if (cmd == VFIO_IOMMU_GET_INFO) {
988 struct vfio_iommu_type1_info info;
989
990 minsz = offsetofend(struct vfio_iommu_type1_info, iova_pgsizes);
991
992 if (copy_from_user(&info, (void __user *)arg, minsz))
993 return -EFAULT;
994
995 if (info.argsz < minsz)
996 return -EINVAL;
997
998 info.flags = 0;
999
1000 info.iova_pgsizes = vfio_pgsize_bitmap(iommu);
1001
1002 return copy_to_user((void __user *)arg, &info, minsz);
1003
1004 } else if (cmd == VFIO_IOMMU_MAP_DMA) {
1005 struct vfio_iommu_type1_dma_map map;
1006 uint32_t mask = VFIO_DMA_MAP_FLAG_READ |
1007 VFIO_DMA_MAP_FLAG_WRITE;
1008
1009 minsz = offsetofend(struct vfio_iommu_type1_dma_map, size);
1010
1011 if (copy_from_user(&map, (void __user *)arg, minsz))
1012 return -EFAULT;
1013
1014 if (map.argsz < minsz || map.flags & ~mask)
1015 return -EINVAL;
1016
1017 return vfio_dma_do_map(iommu, &map);
1018
1019 } else if (cmd == VFIO_IOMMU_UNMAP_DMA) {
1020 struct vfio_iommu_type1_dma_unmap unmap;
1021 long ret;
1022
1023 minsz = offsetofend(struct vfio_iommu_type1_dma_unmap, size);
1024
1025 if (copy_from_user(&unmap, (void __user *)arg, minsz))
1026 return -EFAULT;
1027
1028 if (unmap.argsz < minsz || unmap.flags)
1029 return -EINVAL;
1030
1031 ret = vfio_dma_do_unmap(iommu, &unmap);
1032 if (ret)
1033 return ret;
1034
1035 return copy_to_user((void __user *)arg, &unmap, minsz);
1036 }
1037
1038 return -ENOTTY;
1039 }
1040
1041 static const struct vfio_iommu_driver_ops vfio_iommu_driver_ops_type1 = {
1042 .name = "vfio-iommu-type1",
1043 .owner = THIS_MODULE,
1044 .open = vfio_iommu_type1_open,
1045 .release = vfio_iommu_type1_release,
1046 .ioctl = vfio_iommu_type1_ioctl,
1047 .attach_group = vfio_iommu_type1_attach_group,
1048 .detach_group = vfio_iommu_type1_detach_group,
1049 };
1050
1051 static int __init vfio_iommu_type1_init(void)
1052 {
1053 return vfio_register_iommu_driver(&vfio_iommu_driver_ops_type1);
1054 }
1055
1056 static void __exit vfio_iommu_type1_cleanup(void)
1057 {
1058 vfio_unregister_iommu_driver(&vfio_iommu_driver_ops_type1);
1059 }
1060
1061 module_init(vfio_iommu_type1_init);
1062 module_exit(vfio_iommu_type1_cleanup);
1063
1064 MODULE_VERSION(DRIVER_VERSION);
1065 MODULE_LICENSE("GPL v2");
1066 MODULE_AUTHOR(DRIVER_AUTHOR);
1067 MODULE_DESCRIPTION(DRIVER_DESC);