]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/vfio/vfio_iommu_type1.c
UBUNTU: [Config] drm: disable support for alien gpu (!BCM)
[mirror_ubuntu-artful-kernel.git] / drivers / vfio / vfio_iommu_type1.c
1 /*
2 * VFIO: IOMMU DMA mapping support for Type1 IOMMU
3 *
4 * Copyright (C) 2012 Red Hat, Inc. All rights reserved.
5 * Author: Alex Williamson <alex.williamson@redhat.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * Derived from original vfio:
12 * Copyright 2010 Cisco Systems, Inc. All rights reserved.
13 * Author: Tom Lyon, pugs@cisco.com
14 *
15 * We arbitrarily define a Type1 IOMMU as one matching the below code.
16 * It could be called the x86 IOMMU as it's designed for AMD-Vi & Intel
17 * VT-d, but that makes it harder to re-use as theoretically anyone
18 * implementing a similar IOMMU could make use of this. We expect the
19 * IOMMU to support the IOMMU API and have few to no restrictions around
20 * the IOVA range that can be mapped. The Type1 IOMMU is currently
21 * optimized for relatively static mappings of a userspace process with
22 * userpsace pages pinned into memory. We also assume devices and IOMMU
23 * domains are PCI based as the IOMMU API is still centered around a
24 * device/bus interface rather than a group interface.
25 */
26
27 #include <linux/compat.h>
28 #include <linux/device.h>
29 #include <linux/fs.h>
30 #include <linux/iommu.h>
31 #include <linux/module.h>
32 #include <linux/mm.h>
33 #include <linux/rbtree.h>
34 #include <linux/sched/signal.h>
35 #include <linux/sched/mm.h>
36 #include <linux/slab.h>
37 #include <linux/uaccess.h>
38 #include <linux/vfio.h>
39 #include <linux/workqueue.h>
40 #include <linux/mdev.h>
41 #include <linux/notifier.h>
42 #include <linux/dma-iommu.h>
43 #include <linux/irqdomain.h>
44
45 #define DRIVER_VERSION "0.2"
46 #define DRIVER_AUTHOR "Alex Williamson <alex.williamson@redhat.com>"
47 #define DRIVER_DESC "Type1 IOMMU driver for VFIO"
48
49 static bool allow_unsafe_interrupts;
50 module_param_named(allow_unsafe_interrupts,
51 allow_unsafe_interrupts, bool, S_IRUGO | S_IWUSR);
52 MODULE_PARM_DESC(allow_unsafe_interrupts,
53 "Enable VFIO IOMMU support for on platforms without interrupt remapping support.");
54
55 static bool disable_hugepages;
56 module_param_named(disable_hugepages,
57 disable_hugepages, bool, S_IRUGO | S_IWUSR);
58 MODULE_PARM_DESC(disable_hugepages,
59 "Disable VFIO IOMMU support for IOMMU hugepages.");
60
61 struct vfio_iommu {
62 struct list_head domain_list;
63 struct vfio_domain *external_domain; /* domain for external user */
64 struct mutex lock;
65 struct rb_root dma_list;
66 struct blocking_notifier_head notifier;
67 bool v2;
68 bool nesting;
69 };
70
71 struct vfio_domain {
72 struct iommu_domain *domain;
73 struct list_head next;
74 struct list_head group_list;
75 int prot; /* IOMMU_CACHE */
76 bool fgsp; /* Fine-grained super pages */
77 };
78
79 struct vfio_dma {
80 struct rb_node node;
81 dma_addr_t iova; /* Device address */
82 unsigned long vaddr; /* Process virtual addr */
83 size_t size; /* Map size (bytes) */
84 int prot; /* IOMMU_READ/WRITE */
85 bool iommu_mapped;
86 struct task_struct *task;
87 struct rb_root pfn_list; /* Ex-user pinned pfn list */
88 };
89
90 struct vfio_group {
91 struct iommu_group *iommu_group;
92 struct list_head next;
93 };
94
95 /*
96 * Guest RAM pinning working set or DMA target
97 */
98 struct vfio_pfn {
99 struct rb_node node;
100 dma_addr_t iova; /* Device address */
101 unsigned long pfn; /* Host pfn */
102 atomic_t ref_count;
103 };
104
105 #define IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu) \
106 (!list_empty(&iommu->domain_list))
107
108 static int put_pfn(unsigned long pfn, int prot);
109
110 /*
111 * This code handles mapping and unmapping of user data buffers
112 * into DMA'ble space using the IOMMU
113 */
114
115 static struct vfio_dma *vfio_find_dma(struct vfio_iommu *iommu,
116 dma_addr_t start, size_t size)
117 {
118 struct rb_node *node = iommu->dma_list.rb_node;
119
120 while (node) {
121 struct vfio_dma *dma = rb_entry(node, struct vfio_dma, node);
122
123 if (start + size <= dma->iova)
124 node = node->rb_left;
125 else if (start >= dma->iova + dma->size)
126 node = node->rb_right;
127 else
128 return dma;
129 }
130
131 return NULL;
132 }
133
134 static void vfio_link_dma(struct vfio_iommu *iommu, struct vfio_dma *new)
135 {
136 struct rb_node **link = &iommu->dma_list.rb_node, *parent = NULL;
137 struct vfio_dma *dma;
138
139 while (*link) {
140 parent = *link;
141 dma = rb_entry(parent, struct vfio_dma, node);
142
143 if (new->iova + new->size <= dma->iova)
144 link = &(*link)->rb_left;
145 else
146 link = &(*link)->rb_right;
147 }
148
149 rb_link_node(&new->node, parent, link);
150 rb_insert_color(&new->node, &iommu->dma_list);
151 }
152
153 static void vfio_unlink_dma(struct vfio_iommu *iommu, struct vfio_dma *old)
154 {
155 rb_erase(&old->node, &iommu->dma_list);
156 }
157
158 /*
159 * Helper Functions for host iova-pfn list
160 */
161 static struct vfio_pfn *vfio_find_vpfn(struct vfio_dma *dma, dma_addr_t iova)
162 {
163 struct vfio_pfn *vpfn;
164 struct rb_node *node = dma->pfn_list.rb_node;
165
166 while (node) {
167 vpfn = rb_entry(node, struct vfio_pfn, node);
168
169 if (iova < vpfn->iova)
170 node = node->rb_left;
171 else if (iova > vpfn->iova)
172 node = node->rb_right;
173 else
174 return vpfn;
175 }
176 return NULL;
177 }
178
179 static void vfio_link_pfn(struct vfio_dma *dma,
180 struct vfio_pfn *new)
181 {
182 struct rb_node **link, *parent = NULL;
183 struct vfio_pfn *vpfn;
184
185 link = &dma->pfn_list.rb_node;
186 while (*link) {
187 parent = *link;
188 vpfn = rb_entry(parent, struct vfio_pfn, node);
189
190 if (new->iova < vpfn->iova)
191 link = &(*link)->rb_left;
192 else
193 link = &(*link)->rb_right;
194 }
195
196 rb_link_node(&new->node, parent, link);
197 rb_insert_color(&new->node, &dma->pfn_list);
198 }
199
200 static void vfio_unlink_pfn(struct vfio_dma *dma, struct vfio_pfn *old)
201 {
202 rb_erase(&old->node, &dma->pfn_list);
203 }
204
205 static int vfio_add_to_pfn_list(struct vfio_dma *dma, dma_addr_t iova,
206 unsigned long pfn)
207 {
208 struct vfio_pfn *vpfn;
209
210 vpfn = kzalloc(sizeof(*vpfn), GFP_KERNEL);
211 if (!vpfn)
212 return -ENOMEM;
213
214 vpfn->iova = iova;
215 vpfn->pfn = pfn;
216 atomic_set(&vpfn->ref_count, 1);
217 vfio_link_pfn(dma, vpfn);
218 return 0;
219 }
220
221 static void vfio_remove_from_pfn_list(struct vfio_dma *dma,
222 struct vfio_pfn *vpfn)
223 {
224 vfio_unlink_pfn(dma, vpfn);
225 kfree(vpfn);
226 }
227
228 static struct vfio_pfn *vfio_iova_get_vfio_pfn(struct vfio_dma *dma,
229 unsigned long iova)
230 {
231 struct vfio_pfn *vpfn = vfio_find_vpfn(dma, iova);
232
233 if (vpfn)
234 atomic_inc(&vpfn->ref_count);
235 return vpfn;
236 }
237
238 static int vfio_iova_put_vfio_pfn(struct vfio_dma *dma, struct vfio_pfn *vpfn)
239 {
240 int ret = 0;
241
242 if (atomic_dec_and_test(&vpfn->ref_count)) {
243 ret = put_pfn(vpfn->pfn, dma->prot);
244 vfio_remove_from_pfn_list(dma, vpfn);
245 }
246 return ret;
247 }
248
249 static int vfio_lock_acct(struct task_struct *task, long npage, bool *lock_cap)
250 {
251 struct mm_struct *mm;
252 bool is_current;
253 int ret;
254
255 if (!npage)
256 return 0;
257
258 is_current = (task->mm == current->mm);
259
260 mm = is_current ? task->mm : get_task_mm(task);
261 if (!mm)
262 return -ESRCH; /* process exited */
263
264 ret = down_write_killable(&mm->mmap_sem);
265 if (!ret) {
266 if (npage > 0) {
267 if (lock_cap ? !*lock_cap :
268 !has_capability(task, CAP_IPC_LOCK)) {
269 unsigned long limit;
270
271 limit = task_rlimit(task,
272 RLIMIT_MEMLOCK) >> PAGE_SHIFT;
273
274 if (mm->locked_vm + npage > limit)
275 ret = -ENOMEM;
276 }
277 }
278
279 if (!ret)
280 mm->locked_vm += npage;
281
282 up_write(&mm->mmap_sem);
283 }
284
285 if (!is_current)
286 mmput(mm);
287
288 return ret;
289 }
290
291 /*
292 * Some mappings aren't backed by a struct page, for example an mmap'd
293 * MMIO range for our own or another device. These use a different
294 * pfn conversion and shouldn't be tracked as locked pages.
295 */
296 static bool is_invalid_reserved_pfn(unsigned long pfn)
297 {
298 if (pfn_valid(pfn)) {
299 bool reserved;
300 struct page *tail = pfn_to_page(pfn);
301 struct page *head = compound_head(tail);
302 reserved = !!(PageReserved(head));
303 if (head != tail) {
304 /*
305 * "head" is not a dangling pointer
306 * (compound_head takes care of that)
307 * but the hugepage may have been split
308 * from under us (and we may not hold a
309 * reference count on the head page so it can
310 * be reused before we run PageReferenced), so
311 * we've to check PageTail before returning
312 * what we just read.
313 */
314 smp_rmb();
315 if (PageTail(tail))
316 return reserved;
317 }
318 return PageReserved(tail);
319 }
320
321 return true;
322 }
323
324 static int put_pfn(unsigned long pfn, int prot)
325 {
326 if (!is_invalid_reserved_pfn(pfn)) {
327 struct page *page = pfn_to_page(pfn);
328 if (prot & IOMMU_WRITE)
329 SetPageDirty(page);
330 put_page(page);
331 return 1;
332 }
333 return 0;
334 }
335
336 static int vaddr_get_pfn(struct mm_struct *mm, unsigned long vaddr,
337 int prot, unsigned long *pfn)
338 {
339 struct page *page[1];
340 struct vm_area_struct *vma;
341 int ret;
342
343 if (mm == current->mm) {
344 ret = get_user_pages_fast(vaddr, 1, !!(prot & IOMMU_WRITE),
345 page);
346 } else {
347 unsigned int flags = 0;
348
349 if (prot & IOMMU_WRITE)
350 flags |= FOLL_WRITE;
351
352 down_read(&mm->mmap_sem);
353 ret = get_user_pages_remote(NULL, mm, vaddr, 1, flags, page,
354 NULL, NULL);
355 up_read(&mm->mmap_sem);
356 }
357
358 if (ret == 1) {
359 *pfn = page_to_pfn(page[0]);
360 return 0;
361 }
362
363 down_read(&mm->mmap_sem);
364
365 vma = find_vma_intersection(mm, vaddr, vaddr + 1);
366
367 if (vma && vma->vm_flags & VM_PFNMAP) {
368 *pfn = ((vaddr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
369 if (is_invalid_reserved_pfn(*pfn))
370 ret = 0;
371 }
372
373 up_read(&mm->mmap_sem);
374 return ret;
375 }
376
377 /*
378 * Attempt to pin pages. We really don't want to track all the pfns and
379 * the iommu can only map chunks of consecutive pfns anyway, so get the
380 * first page and all consecutive pages with the same locking.
381 */
382 static long vfio_pin_pages_remote(struct vfio_dma *dma, unsigned long vaddr,
383 long npage, unsigned long *pfn_base,
384 bool lock_cap, unsigned long limit)
385 {
386 unsigned long pfn = 0;
387 long ret, pinned = 0, lock_acct = 0;
388 bool rsvd;
389 dma_addr_t iova = vaddr - dma->vaddr + dma->iova;
390
391 /* This code path is only user initiated */
392 if (!current->mm)
393 return -ENODEV;
394
395 ret = vaddr_get_pfn(current->mm, vaddr, dma->prot, pfn_base);
396 if (ret)
397 return ret;
398
399 pinned++;
400 rsvd = is_invalid_reserved_pfn(*pfn_base);
401
402 /*
403 * Reserved pages aren't counted against the user, externally pinned
404 * pages are already counted against the user.
405 */
406 if (!rsvd && !vfio_find_vpfn(dma, iova)) {
407 if (!lock_cap && current->mm->locked_vm + 1 > limit) {
408 put_pfn(*pfn_base, dma->prot);
409 pr_warn("%s: RLIMIT_MEMLOCK (%ld) exceeded\n", __func__,
410 limit << PAGE_SHIFT);
411 return -ENOMEM;
412 }
413 lock_acct++;
414 }
415
416 if (unlikely(disable_hugepages))
417 goto out;
418
419 /* Lock all the consecutive pages from pfn_base */
420 for (vaddr += PAGE_SIZE, iova += PAGE_SIZE; pinned < npage;
421 pinned++, vaddr += PAGE_SIZE, iova += PAGE_SIZE) {
422 ret = vaddr_get_pfn(current->mm, vaddr, dma->prot, &pfn);
423 if (ret)
424 break;
425
426 if (pfn != *pfn_base + pinned ||
427 rsvd != is_invalid_reserved_pfn(pfn)) {
428 put_pfn(pfn, dma->prot);
429 break;
430 }
431
432 if (!rsvd && !vfio_find_vpfn(dma, iova)) {
433 if (!lock_cap &&
434 current->mm->locked_vm + lock_acct + 1 > limit) {
435 put_pfn(pfn, dma->prot);
436 pr_warn("%s: RLIMIT_MEMLOCK (%ld) exceeded\n",
437 __func__, limit << PAGE_SHIFT);
438 ret = -ENOMEM;
439 goto unpin_out;
440 }
441 lock_acct++;
442 }
443 }
444
445 out:
446 ret = vfio_lock_acct(current, lock_acct, &lock_cap);
447
448 unpin_out:
449 if (ret) {
450 if (!rsvd) {
451 for (pfn = *pfn_base ; pinned ; pfn++, pinned--)
452 put_pfn(pfn, dma->prot);
453 }
454
455 return ret;
456 }
457
458 return pinned;
459 }
460
461 static long vfio_unpin_pages_remote(struct vfio_dma *dma, dma_addr_t iova,
462 unsigned long pfn, long npage,
463 bool do_accounting)
464 {
465 long unlocked = 0, locked = 0;
466 long i;
467
468 for (i = 0; i < npage; i++, iova += PAGE_SIZE) {
469 if (put_pfn(pfn++, dma->prot)) {
470 unlocked++;
471 if (vfio_find_vpfn(dma, iova))
472 locked++;
473 }
474 }
475
476 if (do_accounting)
477 vfio_lock_acct(dma->task, locked - unlocked, NULL);
478
479 return unlocked;
480 }
481
482 static int vfio_pin_page_external(struct vfio_dma *dma, unsigned long vaddr,
483 unsigned long *pfn_base, bool do_accounting)
484 {
485 struct mm_struct *mm;
486 int ret;
487
488 mm = get_task_mm(dma->task);
489 if (!mm)
490 return -ENODEV;
491
492 ret = vaddr_get_pfn(mm, vaddr, dma->prot, pfn_base);
493 if (!ret && do_accounting && !is_invalid_reserved_pfn(*pfn_base)) {
494 ret = vfio_lock_acct(dma->task, 1, NULL);
495 if (ret) {
496 put_pfn(*pfn_base, dma->prot);
497 if (ret == -ENOMEM)
498 pr_warn("%s: Task %s (%d) RLIMIT_MEMLOCK "
499 "(%ld) exceeded\n", __func__,
500 dma->task->comm, task_pid_nr(dma->task),
501 task_rlimit(dma->task, RLIMIT_MEMLOCK));
502 }
503 }
504
505 mmput(mm);
506 return ret;
507 }
508
509 static int vfio_unpin_page_external(struct vfio_dma *dma, dma_addr_t iova,
510 bool do_accounting)
511 {
512 int unlocked;
513 struct vfio_pfn *vpfn = vfio_find_vpfn(dma, iova);
514
515 if (!vpfn)
516 return 0;
517
518 unlocked = vfio_iova_put_vfio_pfn(dma, vpfn);
519
520 if (do_accounting)
521 vfio_lock_acct(dma->task, -unlocked, NULL);
522
523 return unlocked;
524 }
525
526 static int vfio_iommu_type1_pin_pages(void *iommu_data,
527 unsigned long *user_pfn,
528 int npage, int prot,
529 unsigned long *phys_pfn)
530 {
531 struct vfio_iommu *iommu = iommu_data;
532 int i, j, ret;
533 unsigned long remote_vaddr;
534 struct vfio_dma *dma;
535 bool do_accounting;
536
537 if (!iommu || !user_pfn || !phys_pfn)
538 return -EINVAL;
539
540 /* Supported for v2 version only */
541 if (!iommu->v2)
542 return -EACCES;
543
544 mutex_lock(&iommu->lock);
545
546 /* Fail if notifier list is empty */
547 if ((!iommu->external_domain) || (!iommu->notifier.head)) {
548 ret = -EINVAL;
549 goto pin_done;
550 }
551
552 /*
553 * If iommu capable domain exist in the container then all pages are
554 * already pinned and accounted. Accouting should be done if there is no
555 * iommu capable domain in the container.
556 */
557 do_accounting = !IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu);
558
559 for (i = 0; i < npage; i++) {
560 dma_addr_t iova;
561 struct vfio_pfn *vpfn;
562
563 iova = user_pfn[i] << PAGE_SHIFT;
564 dma = vfio_find_dma(iommu, iova, PAGE_SIZE);
565 if (!dma) {
566 ret = -EINVAL;
567 goto pin_unwind;
568 }
569
570 if ((dma->prot & prot) != prot) {
571 ret = -EPERM;
572 goto pin_unwind;
573 }
574
575 vpfn = vfio_iova_get_vfio_pfn(dma, iova);
576 if (vpfn) {
577 phys_pfn[i] = vpfn->pfn;
578 continue;
579 }
580
581 remote_vaddr = dma->vaddr + iova - dma->iova;
582 ret = vfio_pin_page_external(dma, remote_vaddr, &phys_pfn[i],
583 do_accounting);
584 if (ret)
585 goto pin_unwind;
586
587 ret = vfio_add_to_pfn_list(dma, iova, phys_pfn[i]);
588 if (ret) {
589 vfio_unpin_page_external(dma, iova, do_accounting);
590 goto pin_unwind;
591 }
592 }
593
594 ret = i;
595 goto pin_done;
596
597 pin_unwind:
598 phys_pfn[i] = 0;
599 for (j = 0; j < i; j++) {
600 dma_addr_t iova;
601
602 iova = user_pfn[j] << PAGE_SHIFT;
603 dma = vfio_find_dma(iommu, iova, PAGE_SIZE);
604 vfio_unpin_page_external(dma, iova, do_accounting);
605 phys_pfn[j] = 0;
606 }
607 pin_done:
608 mutex_unlock(&iommu->lock);
609 return ret;
610 }
611
612 static int vfio_iommu_type1_unpin_pages(void *iommu_data,
613 unsigned long *user_pfn,
614 int npage)
615 {
616 struct vfio_iommu *iommu = iommu_data;
617 bool do_accounting;
618 int i;
619
620 if (!iommu || !user_pfn)
621 return -EINVAL;
622
623 /* Supported for v2 version only */
624 if (!iommu->v2)
625 return -EACCES;
626
627 mutex_lock(&iommu->lock);
628
629 if (!iommu->external_domain) {
630 mutex_unlock(&iommu->lock);
631 return -EINVAL;
632 }
633
634 do_accounting = !IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu);
635 for (i = 0; i < npage; i++) {
636 struct vfio_dma *dma;
637 dma_addr_t iova;
638
639 iova = user_pfn[i] << PAGE_SHIFT;
640 dma = vfio_find_dma(iommu, iova, PAGE_SIZE);
641 if (!dma)
642 goto unpin_exit;
643 vfio_unpin_page_external(dma, iova, do_accounting);
644 }
645
646 unpin_exit:
647 mutex_unlock(&iommu->lock);
648 return i > npage ? npage : (i > 0 ? i : -EINVAL);
649 }
650
651 static long vfio_unmap_unpin(struct vfio_iommu *iommu, struct vfio_dma *dma,
652 bool do_accounting)
653 {
654 dma_addr_t iova = dma->iova, end = dma->iova + dma->size;
655 struct vfio_domain *domain, *d;
656 long unlocked = 0;
657
658 if (!dma->size)
659 return 0;
660
661 if (!IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu))
662 return 0;
663
664 /*
665 * We use the IOMMU to track the physical addresses, otherwise we'd
666 * need a much more complicated tracking system. Unfortunately that
667 * means we need to use one of the iommu domains to figure out the
668 * pfns to unpin. The rest need to be unmapped in advance so we have
669 * no iommu translations remaining when the pages are unpinned.
670 */
671 domain = d = list_first_entry(&iommu->domain_list,
672 struct vfio_domain, next);
673
674 list_for_each_entry_continue(d, &iommu->domain_list, next) {
675 iommu_unmap(d->domain, dma->iova, dma->size);
676 cond_resched();
677 }
678
679 while (iova < end) {
680 size_t unmapped, len;
681 phys_addr_t phys, next;
682
683 phys = iommu_iova_to_phys(domain->domain, iova);
684 if (WARN_ON(!phys)) {
685 iova += PAGE_SIZE;
686 continue;
687 }
688
689 /*
690 * To optimize for fewer iommu_unmap() calls, each of which
691 * may require hardware cache flushing, try to find the
692 * largest contiguous physical memory chunk to unmap.
693 */
694 for (len = PAGE_SIZE;
695 !domain->fgsp && iova + len < end; len += PAGE_SIZE) {
696 next = iommu_iova_to_phys(domain->domain, iova + len);
697 if (next != phys + len)
698 break;
699 }
700
701 unmapped = iommu_unmap(domain->domain, iova, len);
702 if (WARN_ON(!unmapped))
703 break;
704
705 unlocked += vfio_unpin_pages_remote(dma, iova,
706 phys >> PAGE_SHIFT,
707 unmapped >> PAGE_SHIFT,
708 false);
709 iova += unmapped;
710
711 cond_resched();
712 }
713
714 dma->iommu_mapped = false;
715 if (do_accounting) {
716 vfio_lock_acct(dma->task, -unlocked, NULL);
717 return 0;
718 }
719 return unlocked;
720 }
721
722 static void vfio_remove_dma(struct vfio_iommu *iommu, struct vfio_dma *dma)
723 {
724 vfio_unmap_unpin(iommu, dma, true);
725 vfio_unlink_dma(iommu, dma);
726 put_task_struct(dma->task);
727 kfree(dma);
728 }
729
730 static unsigned long vfio_pgsize_bitmap(struct vfio_iommu *iommu)
731 {
732 struct vfio_domain *domain;
733 unsigned long bitmap = ULONG_MAX;
734
735 mutex_lock(&iommu->lock);
736 list_for_each_entry(domain, &iommu->domain_list, next)
737 bitmap &= domain->domain->pgsize_bitmap;
738 mutex_unlock(&iommu->lock);
739
740 /*
741 * In case the IOMMU supports page sizes smaller than PAGE_SIZE
742 * we pretend PAGE_SIZE is supported and hide sub-PAGE_SIZE sizes.
743 * That way the user will be able to map/unmap buffers whose size/
744 * start address is aligned with PAGE_SIZE. Pinning code uses that
745 * granularity while iommu driver can use the sub-PAGE_SIZE size
746 * to map the buffer.
747 */
748 if (bitmap & ~PAGE_MASK) {
749 bitmap &= PAGE_MASK;
750 bitmap |= PAGE_SIZE;
751 }
752
753 return bitmap;
754 }
755
756 static int vfio_dma_do_unmap(struct vfio_iommu *iommu,
757 struct vfio_iommu_type1_dma_unmap *unmap)
758 {
759 uint64_t mask;
760 struct vfio_dma *dma, *dma_last = NULL;
761 size_t unmapped = 0;
762 int ret = 0, retries = 0;
763
764 mask = ((uint64_t)1 << __ffs(vfio_pgsize_bitmap(iommu))) - 1;
765
766 if (unmap->iova & mask)
767 return -EINVAL;
768 if (!unmap->size || unmap->size & mask)
769 return -EINVAL;
770
771 WARN_ON(mask & PAGE_MASK);
772 again:
773 mutex_lock(&iommu->lock);
774
775 /*
776 * vfio-iommu-type1 (v1) - User mappings were coalesced together to
777 * avoid tracking individual mappings. This means that the granularity
778 * of the original mapping was lost and the user was allowed to attempt
779 * to unmap any range. Depending on the contiguousness of physical
780 * memory and page sizes supported by the IOMMU, arbitrary unmaps may
781 * or may not have worked. We only guaranteed unmap granularity
782 * matching the original mapping; even though it was untracked here,
783 * the original mappings are reflected in IOMMU mappings. This
784 * resulted in a couple unusual behaviors. First, if a range is not
785 * able to be unmapped, ex. a set of 4k pages that was mapped as a
786 * 2M hugepage into the IOMMU, the unmap ioctl returns success but with
787 * a zero sized unmap. Also, if an unmap request overlaps the first
788 * address of a hugepage, the IOMMU will unmap the entire hugepage.
789 * This also returns success and the returned unmap size reflects the
790 * actual size unmapped.
791 *
792 * We attempt to maintain compatibility with this "v1" interface, but
793 * we take control out of the hands of the IOMMU. Therefore, an unmap
794 * request offset from the beginning of the original mapping will
795 * return success with zero sized unmap. And an unmap request covering
796 * the first iova of mapping will unmap the entire range.
797 *
798 * The v2 version of this interface intends to be more deterministic.
799 * Unmap requests must fully cover previous mappings. Multiple
800 * mappings may still be unmaped by specifying large ranges, but there
801 * must not be any previous mappings bisected by the range. An error
802 * will be returned if these conditions are not met. The v2 interface
803 * will only return success and a size of zero if there were no
804 * mappings within the range.
805 */
806 if (iommu->v2) {
807 dma = vfio_find_dma(iommu, unmap->iova, 1);
808 if (dma && dma->iova != unmap->iova) {
809 ret = -EINVAL;
810 goto unlock;
811 }
812 dma = vfio_find_dma(iommu, unmap->iova + unmap->size - 1, 0);
813 if (dma && dma->iova + dma->size != unmap->iova + unmap->size) {
814 ret = -EINVAL;
815 goto unlock;
816 }
817 }
818
819 while ((dma = vfio_find_dma(iommu, unmap->iova, unmap->size))) {
820 if (!iommu->v2 && unmap->iova > dma->iova)
821 break;
822 /*
823 * Task with same address space who mapped this iova range is
824 * allowed to unmap the iova range.
825 */
826 if (dma->task->mm != current->mm)
827 break;
828
829 if (!RB_EMPTY_ROOT(&dma->pfn_list)) {
830 struct vfio_iommu_type1_dma_unmap nb_unmap;
831
832 if (dma_last == dma) {
833 BUG_ON(++retries > 10);
834 } else {
835 dma_last = dma;
836 retries = 0;
837 }
838
839 nb_unmap.iova = dma->iova;
840 nb_unmap.size = dma->size;
841
842 /*
843 * Notify anyone (mdev vendor drivers) to invalidate and
844 * unmap iovas within the range we're about to unmap.
845 * Vendor drivers MUST unpin pages in response to an
846 * invalidation.
847 */
848 mutex_unlock(&iommu->lock);
849 blocking_notifier_call_chain(&iommu->notifier,
850 VFIO_IOMMU_NOTIFY_DMA_UNMAP,
851 &nb_unmap);
852 goto again;
853 }
854 unmapped += dma->size;
855 vfio_remove_dma(iommu, dma);
856 }
857
858 unlock:
859 mutex_unlock(&iommu->lock);
860
861 /* Report how much was unmapped */
862 unmap->size = unmapped;
863
864 return ret;
865 }
866
867 /*
868 * Turns out AMD IOMMU has a page table bug where it won't map large pages
869 * to a region that previously mapped smaller pages. This should be fixed
870 * soon, so this is just a temporary workaround to break mappings down into
871 * PAGE_SIZE. Better to map smaller pages than nothing.
872 */
873 static int map_try_harder(struct vfio_domain *domain, dma_addr_t iova,
874 unsigned long pfn, long npage, int prot)
875 {
876 long i;
877 int ret = 0;
878
879 for (i = 0; i < npage; i++, pfn++, iova += PAGE_SIZE) {
880 ret = iommu_map(domain->domain, iova,
881 (phys_addr_t)pfn << PAGE_SHIFT,
882 PAGE_SIZE, prot | domain->prot);
883 if (ret)
884 break;
885 }
886
887 for (; i < npage && i > 0; i--, iova -= PAGE_SIZE)
888 iommu_unmap(domain->domain, iova, PAGE_SIZE);
889
890 return ret;
891 }
892
893 static int vfio_iommu_map(struct vfio_iommu *iommu, dma_addr_t iova,
894 unsigned long pfn, long npage, int prot)
895 {
896 struct vfio_domain *d;
897 int ret;
898
899 list_for_each_entry(d, &iommu->domain_list, next) {
900 ret = iommu_map(d->domain, iova, (phys_addr_t)pfn << PAGE_SHIFT,
901 npage << PAGE_SHIFT, prot | d->prot);
902 if (ret) {
903 if (ret != -EBUSY ||
904 map_try_harder(d, iova, pfn, npage, prot))
905 goto unwind;
906 }
907
908 cond_resched();
909 }
910
911 return 0;
912
913 unwind:
914 list_for_each_entry_continue_reverse(d, &iommu->domain_list, next)
915 iommu_unmap(d->domain, iova, npage << PAGE_SHIFT);
916
917 return ret;
918 }
919
920 static int vfio_pin_map_dma(struct vfio_iommu *iommu, struct vfio_dma *dma,
921 size_t map_size)
922 {
923 dma_addr_t iova = dma->iova;
924 unsigned long vaddr = dma->vaddr;
925 size_t size = map_size;
926 long npage;
927 unsigned long pfn, limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
928 bool lock_cap = capable(CAP_IPC_LOCK);
929 int ret = 0;
930
931 while (size) {
932 /* Pin a contiguous chunk of memory */
933 npage = vfio_pin_pages_remote(dma, vaddr + dma->size,
934 size >> PAGE_SHIFT, &pfn,
935 lock_cap, limit);
936 if (npage <= 0) {
937 WARN_ON(!npage);
938 ret = (int)npage;
939 break;
940 }
941
942 /* Map it! */
943 ret = vfio_iommu_map(iommu, iova + dma->size, pfn, npage,
944 dma->prot);
945 if (ret) {
946 vfio_unpin_pages_remote(dma, iova + dma->size, pfn,
947 npage, true);
948 break;
949 }
950
951 size -= npage << PAGE_SHIFT;
952 dma->size += npage << PAGE_SHIFT;
953 }
954
955 dma->iommu_mapped = true;
956
957 if (ret)
958 vfio_remove_dma(iommu, dma);
959
960 return ret;
961 }
962
963 static int vfio_dma_do_map(struct vfio_iommu *iommu,
964 struct vfio_iommu_type1_dma_map *map)
965 {
966 dma_addr_t iova = map->iova;
967 unsigned long vaddr = map->vaddr;
968 size_t size = map->size;
969 int ret = 0, prot = 0;
970 uint64_t mask;
971 struct vfio_dma *dma;
972
973 /* Verify that none of our __u64 fields overflow */
974 if (map->size != size || map->vaddr != vaddr || map->iova != iova)
975 return -EINVAL;
976
977 mask = ((uint64_t)1 << __ffs(vfio_pgsize_bitmap(iommu))) - 1;
978
979 WARN_ON(mask & PAGE_MASK);
980
981 /* READ/WRITE from device perspective */
982 if (map->flags & VFIO_DMA_MAP_FLAG_WRITE)
983 prot |= IOMMU_WRITE;
984 if (map->flags & VFIO_DMA_MAP_FLAG_READ)
985 prot |= IOMMU_READ;
986
987 if (!prot || !size || (size | iova | vaddr) & mask)
988 return -EINVAL;
989
990 /* Don't allow IOVA or virtual address wrap */
991 if (iova + size - 1 < iova || vaddr + size - 1 < vaddr)
992 return -EINVAL;
993
994 mutex_lock(&iommu->lock);
995
996 if (vfio_find_dma(iommu, iova, size)) {
997 ret = -EEXIST;
998 goto out_unlock;
999 }
1000
1001 dma = kzalloc(sizeof(*dma), GFP_KERNEL);
1002 if (!dma) {
1003 ret = -ENOMEM;
1004 goto out_unlock;
1005 }
1006
1007 dma->iova = iova;
1008 dma->vaddr = vaddr;
1009 dma->prot = prot;
1010 get_task_struct(current);
1011 dma->task = current;
1012 dma->pfn_list = RB_ROOT;
1013
1014 /* Insert zero-sized and grow as we map chunks of it */
1015 vfio_link_dma(iommu, dma);
1016
1017 /* Don't pin and map if container doesn't contain IOMMU capable domain*/
1018 if (!IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu))
1019 dma->size = size;
1020 else
1021 ret = vfio_pin_map_dma(iommu, dma, size);
1022
1023 out_unlock:
1024 mutex_unlock(&iommu->lock);
1025 return ret;
1026 }
1027
1028 static int vfio_bus_type(struct device *dev, void *data)
1029 {
1030 struct bus_type **bus = data;
1031
1032 if (*bus && *bus != dev->bus)
1033 return -EINVAL;
1034
1035 *bus = dev->bus;
1036
1037 return 0;
1038 }
1039
1040 static int vfio_iommu_replay(struct vfio_iommu *iommu,
1041 struct vfio_domain *domain)
1042 {
1043 struct vfio_domain *d;
1044 struct rb_node *n;
1045 unsigned long limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1046 bool lock_cap = capable(CAP_IPC_LOCK);
1047 int ret;
1048
1049 /* Arbitrarily pick the first domain in the list for lookups */
1050 d = list_first_entry(&iommu->domain_list, struct vfio_domain, next);
1051 n = rb_first(&iommu->dma_list);
1052
1053 for (; n; n = rb_next(n)) {
1054 struct vfio_dma *dma;
1055 dma_addr_t iova;
1056
1057 dma = rb_entry(n, struct vfio_dma, node);
1058 iova = dma->iova;
1059
1060 while (iova < dma->iova + dma->size) {
1061 phys_addr_t phys;
1062 size_t size;
1063
1064 if (dma->iommu_mapped) {
1065 phys_addr_t p;
1066 dma_addr_t i;
1067
1068 phys = iommu_iova_to_phys(d->domain, iova);
1069
1070 if (WARN_ON(!phys)) {
1071 iova += PAGE_SIZE;
1072 continue;
1073 }
1074
1075 size = PAGE_SIZE;
1076 p = phys + size;
1077 i = iova + size;
1078 while (i < dma->iova + dma->size &&
1079 p == iommu_iova_to_phys(d->domain, i)) {
1080 size += PAGE_SIZE;
1081 p += PAGE_SIZE;
1082 i += PAGE_SIZE;
1083 }
1084 } else {
1085 unsigned long pfn;
1086 unsigned long vaddr = dma->vaddr +
1087 (iova - dma->iova);
1088 size_t n = dma->iova + dma->size - iova;
1089 long npage;
1090
1091 npage = vfio_pin_pages_remote(dma, vaddr,
1092 n >> PAGE_SHIFT,
1093 &pfn, lock_cap,
1094 limit);
1095 if (npage <= 0) {
1096 WARN_ON(!npage);
1097 ret = (int)npage;
1098 return ret;
1099 }
1100
1101 phys = pfn << PAGE_SHIFT;
1102 size = npage << PAGE_SHIFT;
1103 }
1104
1105 ret = iommu_map(domain->domain, iova, phys,
1106 size, dma->prot | domain->prot);
1107 if (ret)
1108 return ret;
1109
1110 iova += size;
1111 }
1112 dma->iommu_mapped = true;
1113 }
1114 return 0;
1115 }
1116
1117 /*
1118 * We change our unmap behavior slightly depending on whether the IOMMU
1119 * supports fine-grained superpages. IOMMUs like AMD-Vi will use a superpage
1120 * for practically any contiguous power-of-two mapping we give it. This means
1121 * we don't need to look for contiguous chunks ourselves to make unmapping
1122 * more efficient. On IOMMUs with coarse-grained super pages, like Intel VT-d
1123 * with discrete 2M/1G/512G/1T superpages, identifying contiguous chunks
1124 * significantly boosts non-hugetlbfs mappings and doesn't seem to hurt when
1125 * hugetlbfs is in use.
1126 */
1127 static void vfio_test_domain_fgsp(struct vfio_domain *domain)
1128 {
1129 struct page *pages;
1130 int ret, order = get_order(PAGE_SIZE * 2);
1131
1132 pages = alloc_pages(GFP_KERNEL | __GFP_ZERO, order);
1133 if (!pages)
1134 return;
1135
1136 ret = iommu_map(domain->domain, 0, page_to_phys(pages), PAGE_SIZE * 2,
1137 IOMMU_READ | IOMMU_WRITE | domain->prot);
1138 if (!ret) {
1139 size_t unmapped = iommu_unmap(domain->domain, 0, PAGE_SIZE);
1140
1141 if (unmapped == PAGE_SIZE)
1142 iommu_unmap(domain->domain, PAGE_SIZE, PAGE_SIZE);
1143 else
1144 domain->fgsp = true;
1145 }
1146
1147 __free_pages(pages, order);
1148 }
1149
1150 static struct vfio_group *find_iommu_group(struct vfio_domain *domain,
1151 struct iommu_group *iommu_group)
1152 {
1153 struct vfio_group *g;
1154
1155 list_for_each_entry(g, &domain->group_list, next) {
1156 if (g->iommu_group == iommu_group)
1157 return g;
1158 }
1159
1160 return NULL;
1161 }
1162
1163 static bool vfio_iommu_has_sw_msi(struct iommu_group *group, phys_addr_t *base)
1164 {
1165 struct list_head group_resv_regions;
1166 struct iommu_resv_region *region, *next;
1167 bool ret = false;
1168
1169 INIT_LIST_HEAD(&group_resv_regions);
1170 iommu_get_group_resv_regions(group, &group_resv_regions);
1171 list_for_each_entry(region, &group_resv_regions, list) {
1172 if (region->type == IOMMU_RESV_SW_MSI) {
1173 *base = region->start;
1174 ret = true;
1175 goto out;
1176 }
1177 }
1178 out:
1179 list_for_each_entry_safe(region, next, &group_resv_regions, list)
1180 kfree(region);
1181 return ret;
1182 }
1183
1184 static int vfio_iommu_type1_attach_group(void *iommu_data,
1185 struct iommu_group *iommu_group)
1186 {
1187 struct vfio_iommu *iommu = iommu_data;
1188 struct vfio_group *group;
1189 struct vfio_domain *domain, *d;
1190 struct bus_type *bus = NULL, *mdev_bus;
1191 int ret;
1192 bool resv_msi, msi_remap;
1193 phys_addr_t resv_msi_base;
1194
1195 mutex_lock(&iommu->lock);
1196
1197 list_for_each_entry(d, &iommu->domain_list, next) {
1198 if (find_iommu_group(d, iommu_group)) {
1199 mutex_unlock(&iommu->lock);
1200 return -EINVAL;
1201 }
1202 }
1203
1204 if (iommu->external_domain) {
1205 if (find_iommu_group(iommu->external_domain, iommu_group)) {
1206 mutex_unlock(&iommu->lock);
1207 return -EINVAL;
1208 }
1209 }
1210
1211 group = kzalloc(sizeof(*group), GFP_KERNEL);
1212 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
1213 if (!group || !domain) {
1214 ret = -ENOMEM;
1215 goto out_free;
1216 }
1217
1218 group->iommu_group = iommu_group;
1219
1220 /* Determine bus_type in order to allocate a domain */
1221 ret = iommu_group_for_each_dev(iommu_group, &bus, vfio_bus_type);
1222 if (ret)
1223 goto out_free;
1224
1225 mdev_bus = symbol_get(mdev_bus_type);
1226
1227 if (mdev_bus) {
1228 if ((bus == mdev_bus) && !iommu_present(bus)) {
1229 symbol_put(mdev_bus_type);
1230 if (!iommu->external_domain) {
1231 INIT_LIST_HEAD(&domain->group_list);
1232 iommu->external_domain = domain;
1233 } else
1234 kfree(domain);
1235
1236 list_add(&group->next,
1237 &iommu->external_domain->group_list);
1238 mutex_unlock(&iommu->lock);
1239 return 0;
1240 }
1241 symbol_put(mdev_bus_type);
1242 }
1243
1244 domain->domain = iommu_domain_alloc(bus);
1245 if (!domain->domain) {
1246 ret = -EIO;
1247 goto out_free;
1248 }
1249
1250 if (iommu->nesting) {
1251 int attr = 1;
1252
1253 ret = iommu_domain_set_attr(domain->domain, DOMAIN_ATTR_NESTING,
1254 &attr);
1255 if (ret)
1256 goto out_domain;
1257 }
1258
1259 ret = iommu_attach_group(domain->domain, iommu_group);
1260 if (ret)
1261 goto out_domain;
1262
1263 resv_msi = vfio_iommu_has_sw_msi(iommu_group, &resv_msi_base);
1264
1265 INIT_LIST_HEAD(&domain->group_list);
1266 list_add(&group->next, &domain->group_list);
1267
1268 msi_remap = resv_msi ? irq_domain_check_msi_remap() :
1269 iommu_capable(bus, IOMMU_CAP_INTR_REMAP);
1270
1271 if (!allow_unsafe_interrupts && !msi_remap) {
1272 pr_warn("%s: No interrupt remapping support. Use the module param \"allow_unsafe_interrupts\" to enable VFIO IOMMU support on this platform\n",
1273 __func__);
1274 ret = -EPERM;
1275 goto out_detach;
1276 }
1277
1278 if (iommu_capable(bus, IOMMU_CAP_CACHE_COHERENCY))
1279 domain->prot |= IOMMU_CACHE;
1280
1281 /*
1282 * Try to match an existing compatible domain. We don't want to
1283 * preclude an IOMMU driver supporting multiple bus_types and being
1284 * able to include different bus_types in the same IOMMU domain, so
1285 * we test whether the domains use the same iommu_ops rather than
1286 * testing if they're on the same bus_type.
1287 */
1288 list_for_each_entry(d, &iommu->domain_list, next) {
1289 if (d->domain->ops == domain->domain->ops &&
1290 d->prot == domain->prot) {
1291 iommu_detach_group(domain->domain, iommu_group);
1292 if (!iommu_attach_group(d->domain, iommu_group)) {
1293 list_add(&group->next, &d->group_list);
1294 iommu_domain_free(domain->domain);
1295 kfree(domain);
1296 mutex_unlock(&iommu->lock);
1297 return 0;
1298 }
1299
1300 ret = iommu_attach_group(domain->domain, iommu_group);
1301 if (ret)
1302 goto out_domain;
1303 }
1304 }
1305
1306 vfio_test_domain_fgsp(domain);
1307
1308 /* replay mappings on new domains */
1309 ret = vfio_iommu_replay(iommu, domain);
1310 if (ret)
1311 goto out_detach;
1312
1313 if (resv_msi) {
1314 ret = iommu_get_msi_cookie(domain->domain, resv_msi_base);
1315 if (ret)
1316 goto out_detach;
1317 }
1318
1319 list_add(&domain->next, &iommu->domain_list);
1320
1321 mutex_unlock(&iommu->lock);
1322
1323 return 0;
1324
1325 out_detach:
1326 iommu_detach_group(domain->domain, iommu_group);
1327 out_domain:
1328 iommu_domain_free(domain->domain);
1329 out_free:
1330 kfree(domain);
1331 kfree(group);
1332 mutex_unlock(&iommu->lock);
1333 return ret;
1334 }
1335
1336 static void vfio_iommu_unmap_unpin_all(struct vfio_iommu *iommu)
1337 {
1338 struct rb_node *node;
1339
1340 while ((node = rb_first(&iommu->dma_list)))
1341 vfio_remove_dma(iommu, rb_entry(node, struct vfio_dma, node));
1342 }
1343
1344 static void vfio_iommu_unmap_unpin_reaccount(struct vfio_iommu *iommu)
1345 {
1346 struct rb_node *n, *p;
1347
1348 n = rb_first(&iommu->dma_list);
1349 for (; n; n = rb_next(n)) {
1350 struct vfio_dma *dma;
1351 long locked = 0, unlocked = 0;
1352
1353 dma = rb_entry(n, struct vfio_dma, node);
1354 unlocked += vfio_unmap_unpin(iommu, dma, false);
1355 p = rb_first(&dma->pfn_list);
1356 for (; p; p = rb_next(p)) {
1357 struct vfio_pfn *vpfn = rb_entry(p, struct vfio_pfn,
1358 node);
1359
1360 if (!is_invalid_reserved_pfn(vpfn->pfn))
1361 locked++;
1362 }
1363 vfio_lock_acct(dma->task, locked - unlocked, NULL);
1364 }
1365 }
1366
1367 static void vfio_sanity_check_pfn_list(struct vfio_iommu *iommu)
1368 {
1369 struct rb_node *n;
1370
1371 n = rb_first(&iommu->dma_list);
1372 for (; n; n = rb_next(n)) {
1373 struct vfio_dma *dma;
1374
1375 dma = rb_entry(n, struct vfio_dma, node);
1376
1377 if (WARN_ON(!RB_EMPTY_ROOT(&dma->pfn_list)))
1378 break;
1379 }
1380 /* mdev vendor driver must unregister notifier */
1381 WARN_ON(iommu->notifier.head);
1382 }
1383
1384 static void vfio_iommu_type1_detach_group(void *iommu_data,
1385 struct iommu_group *iommu_group)
1386 {
1387 struct vfio_iommu *iommu = iommu_data;
1388 struct vfio_domain *domain;
1389 struct vfio_group *group;
1390
1391 mutex_lock(&iommu->lock);
1392
1393 if (iommu->external_domain) {
1394 group = find_iommu_group(iommu->external_domain, iommu_group);
1395 if (group) {
1396 list_del(&group->next);
1397 kfree(group);
1398
1399 if (list_empty(&iommu->external_domain->group_list)) {
1400 vfio_sanity_check_pfn_list(iommu);
1401
1402 if (!IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu))
1403 vfio_iommu_unmap_unpin_all(iommu);
1404
1405 kfree(iommu->external_domain);
1406 iommu->external_domain = NULL;
1407 }
1408 goto detach_group_done;
1409 }
1410 }
1411
1412 list_for_each_entry(domain, &iommu->domain_list, next) {
1413 group = find_iommu_group(domain, iommu_group);
1414 if (!group)
1415 continue;
1416
1417 iommu_detach_group(domain->domain, iommu_group);
1418 list_del(&group->next);
1419 kfree(group);
1420 /*
1421 * Group ownership provides privilege, if the group list is
1422 * empty, the domain goes away. If it's the last domain with
1423 * iommu and external domain doesn't exist, then all the
1424 * mappings go away too. If it's the last domain with iommu and
1425 * external domain exist, update accounting
1426 */
1427 if (list_empty(&domain->group_list)) {
1428 if (list_is_singular(&iommu->domain_list)) {
1429 if (!iommu->external_domain)
1430 vfio_iommu_unmap_unpin_all(iommu);
1431 else
1432 vfio_iommu_unmap_unpin_reaccount(iommu);
1433 }
1434 iommu_domain_free(domain->domain);
1435 list_del(&domain->next);
1436 kfree(domain);
1437 }
1438 break;
1439 }
1440
1441 detach_group_done:
1442 mutex_unlock(&iommu->lock);
1443 }
1444
1445 static void *vfio_iommu_type1_open(unsigned long arg)
1446 {
1447 struct vfio_iommu *iommu;
1448
1449 iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
1450 if (!iommu)
1451 return ERR_PTR(-ENOMEM);
1452
1453 switch (arg) {
1454 case VFIO_TYPE1_IOMMU:
1455 break;
1456 case VFIO_TYPE1_NESTING_IOMMU:
1457 iommu->nesting = true;
1458 case VFIO_TYPE1v2_IOMMU:
1459 iommu->v2 = true;
1460 break;
1461 default:
1462 kfree(iommu);
1463 return ERR_PTR(-EINVAL);
1464 }
1465
1466 INIT_LIST_HEAD(&iommu->domain_list);
1467 iommu->dma_list = RB_ROOT;
1468 mutex_init(&iommu->lock);
1469 BLOCKING_INIT_NOTIFIER_HEAD(&iommu->notifier);
1470
1471 return iommu;
1472 }
1473
1474 static void vfio_release_domain(struct vfio_domain *domain, bool external)
1475 {
1476 struct vfio_group *group, *group_tmp;
1477
1478 list_for_each_entry_safe(group, group_tmp,
1479 &domain->group_list, next) {
1480 if (!external)
1481 iommu_detach_group(domain->domain, group->iommu_group);
1482 list_del(&group->next);
1483 kfree(group);
1484 }
1485
1486 if (!external)
1487 iommu_domain_free(domain->domain);
1488 }
1489
1490 static void vfio_iommu_type1_release(void *iommu_data)
1491 {
1492 struct vfio_iommu *iommu = iommu_data;
1493 struct vfio_domain *domain, *domain_tmp;
1494
1495 if (iommu->external_domain) {
1496 vfio_release_domain(iommu->external_domain, true);
1497 vfio_sanity_check_pfn_list(iommu);
1498 kfree(iommu->external_domain);
1499 }
1500
1501 vfio_iommu_unmap_unpin_all(iommu);
1502
1503 list_for_each_entry_safe(domain, domain_tmp,
1504 &iommu->domain_list, next) {
1505 vfio_release_domain(domain, false);
1506 list_del(&domain->next);
1507 kfree(domain);
1508 }
1509 kfree(iommu);
1510 }
1511
1512 static int vfio_domains_have_iommu_cache(struct vfio_iommu *iommu)
1513 {
1514 struct vfio_domain *domain;
1515 int ret = 1;
1516
1517 mutex_lock(&iommu->lock);
1518 list_for_each_entry(domain, &iommu->domain_list, next) {
1519 if (!(domain->prot & IOMMU_CACHE)) {
1520 ret = 0;
1521 break;
1522 }
1523 }
1524 mutex_unlock(&iommu->lock);
1525
1526 return ret;
1527 }
1528
1529 static long vfio_iommu_type1_ioctl(void *iommu_data,
1530 unsigned int cmd, unsigned long arg)
1531 {
1532 struct vfio_iommu *iommu = iommu_data;
1533 unsigned long minsz;
1534
1535 if (cmd == VFIO_CHECK_EXTENSION) {
1536 switch (arg) {
1537 case VFIO_TYPE1_IOMMU:
1538 case VFIO_TYPE1v2_IOMMU:
1539 case VFIO_TYPE1_NESTING_IOMMU:
1540 return 1;
1541 case VFIO_DMA_CC_IOMMU:
1542 if (!iommu)
1543 return 0;
1544 return vfio_domains_have_iommu_cache(iommu);
1545 default:
1546 return 0;
1547 }
1548 } else if (cmd == VFIO_IOMMU_GET_INFO) {
1549 struct vfio_iommu_type1_info info;
1550
1551 minsz = offsetofend(struct vfio_iommu_type1_info, iova_pgsizes);
1552
1553 if (copy_from_user(&info, (void __user *)arg, minsz))
1554 return -EFAULT;
1555
1556 if (info.argsz < minsz)
1557 return -EINVAL;
1558
1559 info.flags = VFIO_IOMMU_INFO_PGSIZES;
1560
1561 info.iova_pgsizes = vfio_pgsize_bitmap(iommu);
1562
1563 return copy_to_user((void __user *)arg, &info, minsz) ?
1564 -EFAULT : 0;
1565
1566 } else if (cmd == VFIO_IOMMU_MAP_DMA) {
1567 struct vfio_iommu_type1_dma_map map;
1568 uint32_t mask = VFIO_DMA_MAP_FLAG_READ |
1569 VFIO_DMA_MAP_FLAG_WRITE;
1570
1571 minsz = offsetofend(struct vfio_iommu_type1_dma_map, size);
1572
1573 if (copy_from_user(&map, (void __user *)arg, minsz))
1574 return -EFAULT;
1575
1576 if (map.argsz < minsz || map.flags & ~mask)
1577 return -EINVAL;
1578
1579 return vfio_dma_do_map(iommu, &map);
1580
1581 } else if (cmd == VFIO_IOMMU_UNMAP_DMA) {
1582 struct vfio_iommu_type1_dma_unmap unmap;
1583 long ret;
1584
1585 minsz = offsetofend(struct vfio_iommu_type1_dma_unmap, size);
1586
1587 if (copy_from_user(&unmap, (void __user *)arg, minsz))
1588 return -EFAULT;
1589
1590 if (unmap.argsz < minsz || unmap.flags)
1591 return -EINVAL;
1592
1593 ret = vfio_dma_do_unmap(iommu, &unmap);
1594 if (ret)
1595 return ret;
1596
1597 return copy_to_user((void __user *)arg, &unmap, minsz) ?
1598 -EFAULT : 0;
1599 }
1600
1601 return -ENOTTY;
1602 }
1603
1604 static int vfio_iommu_type1_register_notifier(void *iommu_data,
1605 unsigned long *events,
1606 struct notifier_block *nb)
1607 {
1608 struct vfio_iommu *iommu = iommu_data;
1609
1610 /* clear known events */
1611 *events &= ~VFIO_IOMMU_NOTIFY_DMA_UNMAP;
1612
1613 /* refuse to register if still events remaining */
1614 if (*events)
1615 return -EINVAL;
1616
1617 return blocking_notifier_chain_register(&iommu->notifier, nb);
1618 }
1619
1620 static int vfio_iommu_type1_unregister_notifier(void *iommu_data,
1621 struct notifier_block *nb)
1622 {
1623 struct vfio_iommu *iommu = iommu_data;
1624
1625 return blocking_notifier_chain_unregister(&iommu->notifier, nb);
1626 }
1627
1628 static const struct vfio_iommu_driver_ops vfio_iommu_driver_ops_type1 = {
1629 .name = "vfio-iommu-type1",
1630 .owner = THIS_MODULE,
1631 .open = vfio_iommu_type1_open,
1632 .release = vfio_iommu_type1_release,
1633 .ioctl = vfio_iommu_type1_ioctl,
1634 .attach_group = vfio_iommu_type1_attach_group,
1635 .detach_group = vfio_iommu_type1_detach_group,
1636 .pin_pages = vfio_iommu_type1_pin_pages,
1637 .unpin_pages = vfio_iommu_type1_unpin_pages,
1638 .register_notifier = vfio_iommu_type1_register_notifier,
1639 .unregister_notifier = vfio_iommu_type1_unregister_notifier,
1640 };
1641
1642 static int __init vfio_iommu_type1_init(void)
1643 {
1644 return vfio_register_iommu_driver(&vfio_iommu_driver_ops_type1);
1645 }
1646
1647 static void __exit vfio_iommu_type1_cleanup(void)
1648 {
1649 vfio_unregister_iommu_driver(&vfio_iommu_driver_ops_type1);
1650 }
1651
1652 module_init(vfio_iommu_type1_init);
1653 module_exit(vfio_iommu_type1_cleanup);
1654
1655 MODULE_VERSION(DRIVER_VERSION);
1656 MODULE_LICENSE("GPL v2");
1657 MODULE_AUTHOR(DRIVER_AUTHOR);
1658 MODULE_DESCRIPTION(DRIVER_DESC);