]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/vfio/vfio_iommu_type1.c
Merge branch 'fix/sun8i' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie...
[mirror_ubuntu-bionic-kernel.git] / drivers / vfio / vfio_iommu_type1.c
1 /*
2 * VFIO: IOMMU DMA mapping support for Type1 IOMMU
3 *
4 * Copyright (C) 2012 Red Hat, Inc. All rights reserved.
5 * Author: Alex Williamson <alex.williamson@redhat.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * Derived from original vfio:
12 * Copyright 2010 Cisco Systems, Inc. All rights reserved.
13 * Author: Tom Lyon, pugs@cisco.com
14 *
15 * We arbitrarily define a Type1 IOMMU as one matching the below code.
16 * It could be called the x86 IOMMU as it's designed for AMD-Vi & Intel
17 * VT-d, but that makes it harder to re-use as theoretically anyone
18 * implementing a similar IOMMU could make use of this. We expect the
19 * IOMMU to support the IOMMU API and have few to no restrictions around
20 * the IOVA range that can be mapped. The Type1 IOMMU is currently
21 * optimized for relatively static mappings of a userspace process with
22 * userpsace pages pinned into memory. We also assume devices and IOMMU
23 * domains are PCI based as the IOMMU API is still centered around a
24 * device/bus interface rather than a group interface.
25 */
26
27 #include <linux/compat.h>
28 #include <linux/device.h>
29 #include <linux/fs.h>
30 #include <linux/iommu.h>
31 #include <linux/module.h>
32 #include <linux/mm.h>
33 #include <linux/rbtree.h>
34 #include <linux/sched/signal.h>
35 #include <linux/sched/mm.h>
36 #include <linux/slab.h>
37 #include <linux/uaccess.h>
38 #include <linux/vfio.h>
39 #include <linux/workqueue.h>
40 #include <linux/mdev.h>
41 #include <linux/notifier.h>
42 #include <linux/dma-iommu.h>
43 #include <linux/irqdomain.h>
44
45 #define DRIVER_VERSION "0.2"
46 #define DRIVER_AUTHOR "Alex Williamson <alex.williamson@redhat.com>"
47 #define DRIVER_DESC "Type1 IOMMU driver for VFIO"
48
49 static bool allow_unsafe_interrupts;
50 module_param_named(allow_unsafe_interrupts,
51 allow_unsafe_interrupts, bool, S_IRUGO | S_IWUSR);
52 MODULE_PARM_DESC(allow_unsafe_interrupts,
53 "Enable VFIO IOMMU support for on platforms without interrupt remapping support.");
54
55 static bool disable_hugepages;
56 module_param_named(disable_hugepages,
57 disable_hugepages, bool, S_IRUGO | S_IWUSR);
58 MODULE_PARM_DESC(disable_hugepages,
59 "Disable VFIO IOMMU support for IOMMU hugepages.");
60
61 struct vfio_iommu {
62 struct list_head domain_list;
63 struct vfio_domain *external_domain; /* domain for external user */
64 struct mutex lock;
65 struct rb_root dma_list;
66 struct blocking_notifier_head notifier;
67 bool v2;
68 bool nesting;
69 };
70
71 struct vfio_domain {
72 struct iommu_domain *domain;
73 struct list_head next;
74 struct list_head group_list;
75 int prot; /* IOMMU_CACHE */
76 bool fgsp; /* Fine-grained super pages */
77 };
78
79 struct vfio_dma {
80 struct rb_node node;
81 dma_addr_t iova; /* Device address */
82 unsigned long vaddr; /* Process virtual addr */
83 size_t size; /* Map size (bytes) */
84 int prot; /* IOMMU_READ/WRITE */
85 bool iommu_mapped;
86 struct task_struct *task;
87 struct rb_root pfn_list; /* Ex-user pinned pfn list */
88 };
89
90 struct vfio_group {
91 struct iommu_group *iommu_group;
92 struct list_head next;
93 };
94
95 /*
96 * Guest RAM pinning working set or DMA target
97 */
98 struct vfio_pfn {
99 struct rb_node node;
100 dma_addr_t iova; /* Device address */
101 unsigned long pfn; /* Host pfn */
102 atomic_t ref_count;
103 };
104
105 #define IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu) \
106 (!list_empty(&iommu->domain_list))
107
108 static int put_pfn(unsigned long pfn, int prot);
109
110 /*
111 * This code handles mapping and unmapping of user data buffers
112 * into DMA'ble space using the IOMMU
113 */
114
115 static struct vfio_dma *vfio_find_dma(struct vfio_iommu *iommu,
116 dma_addr_t start, size_t size)
117 {
118 struct rb_node *node = iommu->dma_list.rb_node;
119
120 while (node) {
121 struct vfio_dma *dma = rb_entry(node, struct vfio_dma, node);
122
123 if (start + size <= dma->iova)
124 node = node->rb_left;
125 else if (start >= dma->iova + dma->size)
126 node = node->rb_right;
127 else
128 return dma;
129 }
130
131 return NULL;
132 }
133
134 static void vfio_link_dma(struct vfio_iommu *iommu, struct vfio_dma *new)
135 {
136 struct rb_node **link = &iommu->dma_list.rb_node, *parent = NULL;
137 struct vfio_dma *dma;
138
139 while (*link) {
140 parent = *link;
141 dma = rb_entry(parent, struct vfio_dma, node);
142
143 if (new->iova + new->size <= dma->iova)
144 link = &(*link)->rb_left;
145 else
146 link = &(*link)->rb_right;
147 }
148
149 rb_link_node(&new->node, parent, link);
150 rb_insert_color(&new->node, &iommu->dma_list);
151 }
152
153 static void vfio_unlink_dma(struct vfio_iommu *iommu, struct vfio_dma *old)
154 {
155 rb_erase(&old->node, &iommu->dma_list);
156 }
157
158 /*
159 * Helper Functions for host iova-pfn list
160 */
161 static struct vfio_pfn *vfio_find_vpfn(struct vfio_dma *dma, dma_addr_t iova)
162 {
163 struct vfio_pfn *vpfn;
164 struct rb_node *node = dma->pfn_list.rb_node;
165
166 while (node) {
167 vpfn = rb_entry(node, struct vfio_pfn, node);
168
169 if (iova < vpfn->iova)
170 node = node->rb_left;
171 else if (iova > vpfn->iova)
172 node = node->rb_right;
173 else
174 return vpfn;
175 }
176 return NULL;
177 }
178
179 static void vfio_link_pfn(struct vfio_dma *dma,
180 struct vfio_pfn *new)
181 {
182 struct rb_node **link, *parent = NULL;
183 struct vfio_pfn *vpfn;
184
185 link = &dma->pfn_list.rb_node;
186 while (*link) {
187 parent = *link;
188 vpfn = rb_entry(parent, struct vfio_pfn, node);
189
190 if (new->iova < vpfn->iova)
191 link = &(*link)->rb_left;
192 else
193 link = &(*link)->rb_right;
194 }
195
196 rb_link_node(&new->node, parent, link);
197 rb_insert_color(&new->node, &dma->pfn_list);
198 }
199
200 static void vfio_unlink_pfn(struct vfio_dma *dma, struct vfio_pfn *old)
201 {
202 rb_erase(&old->node, &dma->pfn_list);
203 }
204
205 static int vfio_add_to_pfn_list(struct vfio_dma *dma, dma_addr_t iova,
206 unsigned long pfn)
207 {
208 struct vfio_pfn *vpfn;
209
210 vpfn = kzalloc(sizeof(*vpfn), GFP_KERNEL);
211 if (!vpfn)
212 return -ENOMEM;
213
214 vpfn->iova = iova;
215 vpfn->pfn = pfn;
216 atomic_set(&vpfn->ref_count, 1);
217 vfio_link_pfn(dma, vpfn);
218 return 0;
219 }
220
221 static void vfio_remove_from_pfn_list(struct vfio_dma *dma,
222 struct vfio_pfn *vpfn)
223 {
224 vfio_unlink_pfn(dma, vpfn);
225 kfree(vpfn);
226 }
227
228 static struct vfio_pfn *vfio_iova_get_vfio_pfn(struct vfio_dma *dma,
229 unsigned long iova)
230 {
231 struct vfio_pfn *vpfn = vfio_find_vpfn(dma, iova);
232
233 if (vpfn)
234 atomic_inc(&vpfn->ref_count);
235 return vpfn;
236 }
237
238 static int vfio_iova_put_vfio_pfn(struct vfio_dma *dma, struct vfio_pfn *vpfn)
239 {
240 int ret = 0;
241
242 if (atomic_dec_and_test(&vpfn->ref_count)) {
243 ret = put_pfn(vpfn->pfn, dma->prot);
244 vfio_remove_from_pfn_list(dma, vpfn);
245 }
246 return ret;
247 }
248
249 struct vwork {
250 struct mm_struct *mm;
251 long npage;
252 struct work_struct work;
253 };
254
255 /* delayed decrement/increment for locked_vm */
256 static void vfio_lock_acct_bg(struct work_struct *work)
257 {
258 struct vwork *vwork = container_of(work, struct vwork, work);
259 struct mm_struct *mm;
260
261 mm = vwork->mm;
262 down_write(&mm->mmap_sem);
263 mm->locked_vm += vwork->npage;
264 up_write(&mm->mmap_sem);
265 mmput(mm);
266 kfree(vwork);
267 }
268
269 static void vfio_lock_acct(struct task_struct *task, long npage)
270 {
271 struct vwork *vwork;
272 struct mm_struct *mm;
273 bool is_current;
274
275 if (!npage)
276 return;
277
278 is_current = (task->mm == current->mm);
279
280 mm = is_current ? task->mm : get_task_mm(task);
281 if (!mm)
282 return; /* process exited */
283
284 if (down_write_trylock(&mm->mmap_sem)) {
285 mm->locked_vm += npage;
286 up_write(&mm->mmap_sem);
287 if (!is_current)
288 mmput(mm);
289 return;
290 }
291
292 if (is_current) {
293 mm = get_task_mm(task);
294 if (!mm)
295 return;
296 }
297
298 /*
299 * Couldn't get mmap_sem lock, so must setup to update
300 * mm->locked_vm later. If locked_vm were atomic, we
301 * wouldn't need this silliness
302 */
303 vwork = kmalloc(sizeof(struct vwork), GFP_KERNEL);
304 if (WARN_ON(!vwork)) {
305 mmput(mm);
306 return;
307 }
308 INIT_WORK(&vwork->work, vfio_lock_acct_bg);
309 vwork->mm = mm;
310 vwork->npage = npage;
311 schedule_work(&vwork->work);
312 }
313
314 /*
315 * Some mappings aren't backed by a struct page, for example an mmap'd
316 * MMIO range for our own or another device. These use a different
317 * pfn conversion and shouldn't be tracked as locked pages.
318 */
319 static bool is_invalid_reserved_pfn(unsigned long pfn)
320 {
321 if (pfn_valid(pfn)) {
322 bool reserved;
323 struct page *tail = pfn_to_page(pfn);
324 struct page *head = compound_head(tail);
325 reserved = !!(PageReserved(head));
326 if (head != tail) {
327 /*
328 * "head" is not a dangling pointer
329 * (compound_head takes care of that)
330 * but the hugepage may have been split
331 * from under us (and we may not hold a
332 * reference count on the head page so it can
333 * be reused before we run PageReferenced), so
334 * we've to check PageTail before returning
335 * what we just read.
336 */
337 smp_rmb();
338 if (PageTail(tail))
339 return reserved;
340 }
341 return PageReserved(tail);
342 }
343
344 return true;
345 }
346
347 static int put_pfn(unsigned long pfn, int prot)
348 {
349 if (!is_invalid_reserved_pfn(pfn)) {
350 struct page *page = pfn_to_page(pfn);
351 if (prot & IOMMU_WRITE)
352 SetPageDirty(page);
353 put_page(page);
354 return 1;
355 }
356 return 0;
357 }
358
359 static int vaddr_get_pfn(struct mm_struct *mm, unsigned long vaddr,
360 int prot, unsigned long *pfn)
361 {
362 struct page *page[1];
363 struct vm_area_struct *vma;
364 int ret;
365
366 if (mm == current->mm) {
367 ret = get_user_pages_fast(vaddr, 1, !!(prot & IOMMU_WRITE),
368 page);
369 } else {
370 unsigned int flags = 0;
371
372 if (prot & IOMMU_WRITE)
373 flags |= FOLL_WRITE;
374
375 down_read(&mm->mmap_sem);
376 ret = get_user_pages_remote(NULL, mm, vaddr, 1, flags, page,
377 NULL, NULL);
378 up_read(&mm->mmap_sem);
379 }
380
381 if (ret == 1) {
382 *pfn = page_to_pfn(page[0]);
383 return 0;
384 }
385
386 down_read(&mm->mmap_sem);
387
388 vma = find_vma_intersection(mm, vaddr, vaddr + 1);
389
390 if (vma && vma->vm_flags & VM_PFNMAP) {
391 *pfn = ((vaddr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
392 if (is_invalid_reserved_pfn(*pfn))
393 ret = 0;
394 }
395
396 up_read(&mm->mmap_sem);
397 return ret;
398 }
399
400 /*
401 * Attempt to pin pages. We really don't want to track all the pfns and
402 * the iommu can only map chunks of consecutive pfns anyway, so get the
403 * first page and all consecutive pages with the same locking.
404 */
405 static long vfio_pin_pages_remote(struct vfio_dma *dma, unsigned long vaddr,
406 long npage, unsigned long *pfn_base)
407 {
408 unsigned long limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
409 bool lock_cap = capable(CAP_IPC_LOCK);
410 long ret, pinned = 0, lock_acct = 0;
411 bool rsvd;
412 dma_addr_t iova = vaddr - dma->vaddr + dma->iova;
413
414 /* This code path is only user initiated */
415 if (!current->mm)
416 return -ENODEV;
417
418 ret = vaddr_get_pfn(current->mm, vaddr, dma->prot, pfn_base);
419 if (ret)
420 return ret;
421
422 pinned++;
423 rsvd = is_invalid_reserved_pfn(*pfn_base);
424
425 /*
426 * Reserved pages aren't counted against the user, externally pinned
427 * pages are already counted against the user.
428 */
429 if (!rsvd && !vfio_find_vpfn(dma, iova)) {
430 if (!lock_cap && current->mm->locked_vm + 1 > limit) {
431 put_pfn(*pfn_base, dma->prot);
432 pr_warn("%s: RLIMIT_MEMLOCK (%ld) exceeded\n", __func__,
433 limit << PAGE_SHIFT);
434 return -ENOMEM;
435 }
436 lock_acct++;
437 }
438
439 if (unlikely(disable_hugepages))
440 goto out;
441
442 /* Lock all the consecutive pages from pfn_base */
443 for (vaddr += PAGE_SIZE, iova += PAGE_SIZE; pinned < npage;
444 pinned++, vaddr += PAGE_SIZE, iova += PAGE_SIZE) {
445 unsigned long pfn = 0;
446
447 ret = vaddr_get_pfn(current->mm, vaddr, dma->prot, &pfn);
448 if (ret)
449 break;
450
451 if (pfn != *pfn_base + pinned ||
452 rsvd != is_invalid_reserved_pfn(pfn)) {
453 put_pfn(pfn, dma->prot);
454 break;
455 }
456
457 if (!rsvd && !vfio_find_vpfn(dma, iova)) {
458 if (!lock_cap &&
459 current->mm->locked_vm + lock_acct + 1 > limit) {
460 put_pfn(pfn, dma->prot);
461 pr_warn("%s: RLIMIT_MEMLOCK (%ld) exceeded\n",
462 __func__, limit << PAGE_SHIFT);
463 break;
464 }
465 lock_acct++;
466 }
467 }
468
469 out:
470 vfio_lock_acct(current, lock_acct);
471
472 return pinned;
473 }
474
475 static long vfio_unpin_pages_remote(struct vfio_dma *dma, dma_addr_t iova,
476 unsigned long pfn, long npage,
477 bool do_accounting)
478 {
479 long unlocked = 0, locked = 0;
480 long i;
481
482 for (i = 0; i < npage; i++, iova += PAGE_SIZE) {
483 if (put_pfn(pfn++, dma->prot)) {
484 unlocked++;
485 if (vfio_find_vpfn(dma, iova))
486 locked++;
487 }
488 }
489
490 if (do_accounting)
491 vfio_lock_acct(dma->task, locked - unlocked);
492
493 return unlocked;
494 }
495
496 static int vfio_pin_page_external(struct vfio_dma *dma, unsigned long vaddr,
497 unsigned long *pfn_base, bool do_accounting)
498 {
499 unsigned long limit;
500 bool lock_cap = has_capability(dma->task, CAP_IPC_LOCK);
501 struct mm_struct *mm;
502 int ret;
503 bool rsvd;
504
505 mm = get_task_mm(dma->task);
506 if (!mm)
507 return -ENODEV;
508
509 ret = vaddr_get_pfn(mm, vaddr, dma->prot, pfn_base);
510 if (ret)
511 goto pin_page_exit;
512
513 rsvd = is_invalid_reserved_pfn(*pfn_base);
514 limit = task_rlimit(dma->task, RLIMIT_MEMLOCK) >> PAGE_SHIFT;
515
516 if (!rsvd && !lock_cap && mm->locked_vm + 1 > limit) {
517 put_pfn(*pfn_base, dma->prot);
518 pr_warn("%s: Task %s (%d) RLIMIT_MEMLOCK (%ld) exceeded\n",
519 __func__, dma->task->comm, task_pid_nr(dma->task),
520 limit << PAGE_SHIFT);
521 ret = -ENOMEM;
522 goto pin_page_exit;
523 }
524
525 if (!rsvd && do_accounting)
526 vfio_lock_acct(dma->task, 1);
527 ret = 1;
528
529 pin_page_exit:
530 mmput(mm);
531 return ret;
532 }
533
534 static int vfio_unpin_page_external(struct vfio_dma *dma, dma_addr_t iova,
535 bool do_accounting)
536 {
537 int unlocked;
538 struct vfio_pfn *vpfn = vfio_find_vpfn(dma, iova);
539
540 if (!vpfn)
541 return 0;
542
543 unlocked = vfio_iova_put_vfio_pfn(dma, vpfn);
544
545 if (do_accounting)
546 vfio_lock_acct(dma->task, -unlocked);
547
548 return unlocked;
549 }
550
551 static int vfio_iommu_type1_pin_pages(void *iommu_data,
552 unsigned long *user_pfn,
553 int npage, int prot,
554 unsigned long *phys_pfn)
555 {
556 struct vfio_iommu *iommu = iommu_data;
557 int i, j, ret;
558 unsigned long remote_vaddr;
559 struct vfio_dma *dma;
560 bool do_accounting;
561
562 if (!iommu || !user_pfn || !phys_pfn)
563 return -EINVAL;
564
565 /* Supported for v2 version only */
566 if (!iommu->v2)
567 return -EACCES;
568
569 mutex_lock(&iommu->lock);
570
571 /* Fail if notifier list is empty */
572 if ((!iommu->external_domain) || (!iommu->notifier.head)) {
573 ret = -EINVAL;
574 goto pin_done;
575 }
576
577 /*
578 * If iommu capable domain exist in the container then all pages are
579 * already pinned and accounted. Accouting should be done if there is no
580 * iommu capable domain in the container.
581 */
582 do_accounting = !IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu);
583
584 for (i = 0; i < npage; i++) {
585 dma_addr_t iova;
586 struct vfio_pfn *vpfn;
587
588 iova = user_pfn[i] << PAGE_SHIFT;
589 dma = vfio_find_dma(iommu, iova, PAGE_SIZE);
590 if (!dma) {
591 ret = -EINVAL;
592 goto pin_unwind;
593 }
594
595 if ((dma->prot & prot) != prot) {
596 ret = -EPERM;
597 goto pin_unwind;
598 }
599
600 vpfn = vfio_iova_get_vfio_pfn(dma, iova);
601 if (vpfn) {
602 phys_pfn[i] = vpfn->pfn;
603 continue;
604 }
605
606 remote_vaddr = dma->vaddr + iova - dma->iova;
607 ret = vfio_pin_page_external(dma, remote_vaddr, &phys_pfn[i],
608 do_accounting);
609 if (ret <= 0) {
610 WARN_ON(!ret);
611 goto pin_unwind;
612 }
613
614 ret = vfio_add_to_pfn_list(dma, iova, phys_pfn[i]);
615 if (ret) {
616 vfio_unpin_page_external(dma, iova, do_accounting);
617 goto pin_unwind;
618 }
619 }
620
621 ret = i;
622 goto pin_done;
623
624 pin_unwind:
625 phys_pfn[i] = 0;
626 for (j = 0; j < i; j++) {
627 dma_addr_t iova;
628
629 iova = user_pfn[j] << PAGE_SHIFT;
630 dma = vfio_find_dma(iommu, iova, PAGE_SIZE);
631 vfio_unpin_page_external(dma, iova, do_accounting);
632 phys_pfn[j] = 0;
633 }
634 pin_done:
635 mutex_unlock(&iommu->lock);
636 return ret;
637 }
638
639 static int vfio_iommu_type1_unpin_pages(void *iommu_data,
640 unsigned long *user_pfn,
641 int npage)
642 {
643 struct vfio_iommu *iommu = iommu_data;
644 bool do_accounting;
645 int i;
646
647 if (!iommu || !user_pfn)
648 return -EINVAL;
649
650 /* Supported for v2 version only */
651 if (!iommu->v2)
652 return -EACCES;
653
654 mutex_lock(&iommu->lock);
655
656 if (!iommu->external_domain) {
657 mutex_unlock(&iommu->lock);
658 return -EINVAL;
659 }
660
661 do_accounting = !IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu);
662 for (i = 0; i < npage; i++) {
663 struct vfio_dma *dma;
664 dma_addr_t iova;
665
666 iova = user_pfn[i] << PAGE_SHIFT;
667 dma = vfio_find_dma(iommu, iova, PAGE_SIZE);
668 if (!dma)
669 goto unpin_exit;
670 vfio_unpin_page_external(dma, iova, do_accounting);
671 }
672
673 unpin_exit:
674 mutex_unlock(&iommu->lock);
675 return i > npage ? npage : (i > 0 ? i : -EINVAL);
676 }
677
678 static long vfio_unmap_unpin(struct vfio_iommu *iommu, struct vfio_dma *dma,
679 bool do_accounting)
680 {
681 dma_addr_t iova = dma->iova, end = dma->iova + dma->size;
682 struct vfio_domain *domain, *d;
683 long unlocked = 0;
684
685 if (!dma->size)
686 return 0;
687
688 if (!IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu))
689 return 0;
690
691 /*
692 * We use the IOMMU to track the physical addresses, otherwise we'd
693 * need a much more complicated tracking system. Unfortunately that
694 * means we need to use one of the iommu domains to figure out the
695 * pfns to unpin. The rest need to be unmapped in advance so we have
696 * no iommu translations remaining when the pages are unpinned.
697 */
698 domain = d = list_first_entry(&iommu->domain_list,
699 struct vfio_domain, next);
700
701 list_for_each_entry_continue(d, &iommu->domain_list, next) {
702 iommu_unmap(d->domain, dma->iova, dma->size);
703 cond_resched();
704 }
705
706 while (iova < end) {
707 size_t unmapped, len;
708 phys_addr_t phys, next;
709
710 phys = iommu_iova_to_phys(domain->domain, iova);
711 if (WARN_ON(!phys)) {
712 iova += PAGE_SIZE;
713 continue;
714 }
715
716 /*
717 * To optimize for fewer iommu_unmap() calls, each of which
718 * may require hardware cache flushing, try to find the
719 * largest contiguous physical memory chunk to unmap.
720 */
721 for (len = PAGE_SIZE;
722 !domain->fgsp && iova + len < end; len += PAGE_SIZE) {
723 next = iommu_iova_to_phys(domain->domain, iova + len);
724 if (next != phys + len)
725 break;
726 }
727
728 unmapped = iommu_unmap(domain->domain, iova, len);
729 if (WARN_ON(!unmapped))
730 break;
731
732 unlocked += vfio_unpin_pages_remote(dma, iova,
733 phys >> PAGE_SHIFT,
734 unmapped >> PAGE_SHIFT,
735 false);
736 iova += unmapped;
737
738 cond_resched();
739 }
740
741 dma->iommu_mapped = false;
742 if (do_accounting) {
743 vfio_lock_acct(dma->task, -unlocked);
744 return 0;
745 }
746 return unlocked;
747 }
748
749 static void vfio_remove_dma(struct vfio_iommu *iommu, struct vfio_dma *dma)
750 {
751 vfio_unmap_unpin(iommu, dma, true);
752 vfio_unlink_dma(iommu, dma);
753 put_task_struct(dma->task);
754 kfree(dma);
755 }
756
757 static unsigned long vfio_pgsize_bitmap(struct vfio_iommu *iommu)
758 {
759 struct vfio_domain *domain;
760 unsigned long bitmap = ULONG_MAX;
761
762 mutex_lock(&iommu->lock);
763 list_for_each_entry(domain, &iommu->domain_list, next)
764 bitmap &= domain->domain->pgsize_bitmap;
765 mutex_unlock(&iommu->lock);
766
767 /*
768 * In case the IOMMU supports page sizes smaller than PAGE_SIZE
769 * we pretend PAGE_SIZE is supported and hide sub-PAGE_SIZE sizes.
770 * That way the user will be able to map/unmap buffers whose size/
771 * start address is aligned with PAGE_SIZE. Pinning code uses that
772 * granularity while iommu driver can use the sub-PAGE_SIZE size
773 * to map the buffer.
774 */
775 if (bitmap & ~PAGE_MASK) {
776 bitmap &= PAGE_MASK;
777 bitmap |= PAGE_SIZE;
778 }
779
780 return bitmap;
781 }
782
783 static int vfio_dma_do_unmap(struct vfio_iommu *iommu,
784 struct vfio_iommu_type1_dma_unmap *unmap)
785 {
786 uint64_t mask;
787 struct vfio_dma *dma, *dma_last = NULL;
788 size_t unmapped = 0;
789 int ret = 0, retries = 0;
790
791 mask = ((uint64_t)1 << __ffs(vfio_pgsize_bitmap(iommu))) - 1;
792
793 if (unmap->iova & mask)
794 return -EINVAL;
795 if (!unmap->size || unmap->size & mask)
796 return -EINVAL;
797
798 WARN_ON(mask & PAGE_MASK);
799 again:
800 mutex_lock(&iommu->lock);
801
802 /*
803 * vfio-iommu-type1 (v1) - User mappings were coalesced together to
804 * avoid tracking individual mappings. This means that the granularity
805 * of the original mapping was lost and the user was allowed to attempt
806 * to unmap any range. Depending on the contiguousness of physical
807 * memory and page sizes supported by the IOMMU, arbitrary unmaps may
808 * or may not have worked. We only guaranteed unmap granularity
809 * matching the original mapping; even though it was untracked here,
810 * the original mappings are reflected in IOMMU mappings. This
811 * resulted in a couple unusual behaviors. First, if a range is not
812 * able to be unmapped, ex. a set of 4k pages that was mapped as a
813 * 2M hugepage into the IOMMU, the unmap ioctl returns success but with
814 * a zero sized unmap. Also, if an unmap request overlaps the first
815 * address of a hugepage, the IOMMU will unmap the entire hugepage.
816 * This also returns success and the returned unmap size reflects the
817 * actual size unmapped.
818 *
819 * We attempt to maintain compatibility with this "v1" interface, but
820 * we take control out of the hands of the IOMMU. Therefore, an unmap
821 * request offset from the beginning of the original mapping will
822 * return success with zero sized unmap. And an unmap request covering
823 * the first iova of mapping will unmap the entire range.
824 *
825 * The v2 version of this interface intends to be more deterministic.
826 * Unmap requests must fully cover previous mappings. Multiple
827 * mappings may still be unmaped by specifying large ranges, but there
828 * must not be any previous mappings bisected by the range. An error
829 * will be returned if these conditions are not met. The v2 interface
830 * will only return success and a size of zero if there were no
831 * mappings within the range.
832 */
833 if (iommu->v2) {
834 dma = vfio_find_dma(iommu, unmap->iova, 1);
835 if (dma && dma->iova != unmap->iova) {
836 ret = -EINVAL;
837 goto unlock;
838 }
839 dma = vfio_find_dma(iommu, unmap->iova + unmap->size - 1, 0);
840 if (dma && dma->iova + dma->size != unmap->iova + unmap->size) {
841 ret = -EINVAL;
842 goto unlock;
843 }
844 }
845
846 while ((dma = vfio_find_dma(iommu, unmap->iova, unmap->size))) {
847 if (!iommu->v2 && unmap->iova > dma->iova)
848 break;
849 /*
850 * Task with same address space who mapped this iova range is
851 * allowed to unmap the iova range.
852 */
853 if (dma->task->mm != current->mm)
854 break;
855
856 if (!RB_EMPTY_ROOT(&dma->pfn_list)) {
857 struct vfio_iommu_type1_dma_unmap nb_unmap;
858
859 if (dma_last == dma) {
860 BUG_ON(++retries > 10);
861 } else {
862 dma_last = dma;
863 retries = 0;
864 }
865
866 nb_unmap.iova = dma->iova;
867 nb_unmap.size = dma->size;
868
869 /*
870 * Notify anyone (mdev vendor drivers) to invalidate and
871 * unmap iovas within the range we're about to unmap.
872 * Vendor drivers MUST unpin pages in response to an
873 * invalidation.
874 */
875 mutex_unlock(&iommu->lock);
876 blocking_notifier_call_chain(&iommu->notifier,
877 VFIO_IOMMU_NOTIFY_DMA_UNMAP,
878 &nb_unmap);
879 goto again;
880 }
881 unmapped += dma->size;
882 vfio_remove_dma(iommu, dma);
883 }
884
885 unlock:
886 mutex_unlock(&iommu->lock);
887
888 /* Report how much was unmapped */
889 unmap->size = unmapped;
890
891 return ret;
892 }
893
894 /*
895 * Turns out AMD IOMMU has a page table bug where it won't map large pages
896 * to a region that previously mapped smaller pages. This should be fixed
897 * soon, so this is just a temporary workaround to break mappings down into
898 * PAGE_SIZE. Better to map smaller pages than nothing.
899 */
900 static int map_try_harder(struct vfio_domain *domain, dma_addr_t iova,
901 unsigned long pfn, long npage, int prot)
902 {
903 long i;
904 int ret = 0;
905
906 for (i = 0; i < npage; i++, pfn++, iova += PAGE_SIZE) {
907 ret = iommu_map(domain->domain, iova,
908 (phys_addr_t)pfn << PAGE_SHIFT,
909 PAGE_SIZE, prot | domain->prot);
910 if (ret)
911 break;
912 }
913
914 for (; i < npage && i > 0; i--, iova -= PAGE_SIZE)
915 iommu_unmap(domain->domain, iova, PAGE_SIZE);
916
917 return ret;
918 }
919
920 static int vfio_iommu_map(struct vfio_iommu *iommu, dma_addr_t iova,
921 unsigned long pfn, long npage, int prot)
922 {
923 struct vfio_domain *d;
924 int ret;
925
926 list_for_each_entry(d, &iommu->domain_list, next) {
927 ret = iommu_map(d->domain, iova, (phys_addr_t)pfn << PAGE_SHIFT,
928 npage << PAGE_SHIFT, prot | d->prot);
929 if (ret) {
930 if (ret != -EBUSY ||
931 map_try_harder(d, iova, pfn, npage, prot))
932 goto unwind;
933 }
934
935 cond_resched();
936 }
937
938 return 0;
939
940 unwind:
941 list_for_each_entry_continue_reverse(d, &iommu->domain_list, next)
942 iommu_unmap(d->domain, iova, npage << PAGE_SHIFT);
943
944 return ret;
945 }
946
947 static int vfio_pin_map_dma(struct vfio_iommu *iommu, struct vfio_dma *dma,
948 size_t map_size)
949 {
950 dma_addr_t iova = dma->iova;
951 unsigned long vaddr = dma->vaddr;
952 size_t size = map_size;
953 long npage;
954 unsigned long pfn;
955 int ret = 0;
956
957 while (size) {
958 /* Pin a contiguous chunk of memory */
959 npage = vfio_pin_pages_remote(dma, vaddr + dma->size,
960 size >> PAGE_SHIFT, &pfn);
961 if (npage <= 0) {
962 WARN_ON(!npage);
963 ret = (int)npage;
964 break;
965 }
966
967 /* Map it! */
968 ret = vfio_iommu_map(iommu, iova + dma->size, pfn, npage,
969 dma->prot);
970 if (ret) {
971 vfio_unpin_pages_remote(dma, iova + dma->size, pfn,
972 npage, true);
973 break;
974 }
975
976 size -= npage << PAGE_SHIFT;
977 dma->size += npage << PAGE_SHIFT;
978 }
979
980 dma->iommu_mapped = true;
981
982 if (ret)
983 vfio_remove_dma(iommu, dma);
984
985 return ret;
986 }
987
988 static int vfio_dma_do_map(struct vfio_iommu *iommu,
989 struct vfio_iommu_type1_dma_map *map)
990 {
991 dma_addr_t iova = map->iova;
992 unsigned long vaddr = map->vaddr;
993 size_t size = map->size;
994 int ret = 0, prot = 0;
995 uint64_t mask;
996 struct vfio_dma *dma;
997
998 /* Verify that none of our __u64 fields overflow */
999 if (map->size != size || map->vaddr != vaddr || map->iova != iova)
1000 return -EINVAL;
1001
1002 mask = ((uint64_t)1 << __ffs(vfio_pgsize_bitmap(iommu))) - 1;
1003
1004 WARN_ON(mask & PAGE_MASK);
1005
1006 /* READ/WRITE from device perspective */
1007 if (map->flags & VFIO_DMA_MAP_FLAG_WRITE)
1008 prot |= IOMMU_WRITE;
1009 if (map->flags & VFIO_DMA_MAP_FLAG_READ)
1010 prot |= IOMMU_READ;
1011
1012 if (!prot || !size || (size | iova | vaddr) & mask)
1013 return -EINVAL;
1014
1015 /* Don't allow IOVA or virtual address wrap */
1016 if (iova + size - 1 < iova || vaddr + size - 1 < vaddr)
1017 return -EINVAL;
1018
1019 mutex_lock(&iommu->lock);
1020
1021 if (vfio_find_dma(iommu, iova, size)) {
1022 ret = -EEXIST;
1023 goto out_unlock;
1024 }
1025
1026 dma = kzalloc(sizeof(*dma), GFP_KERNEL);
1027 if (!dma) {
1028 ret = -ENOMEM;
1029 goto out_unlock;
1030 }
1031
1032 dma->iova = iova;
1033 dma->vaddr = vaddr;
1034 dma->prot = prot;
1035 get_task_struct(current);
1036 dma->task = current;
1037 dma->pfn_list = RB_ROOT;
1038
1039 /* Insert zero-sized and grow as we map chunks of it */
1040 vfio_link_dma(iommu, dma);
1041
1042 /* Don't pin and map if container doesn't contain IOMMU capable domain*/
1043 if (!IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu))
1044 dma->size = size;
1045 else
1046 ret = vfio_pin_map_dma(iommu, dma, size);
1047
1048 out_unlock:
1049 mutex_unlock(&iommu->lock);
1050 return ret;
1051 }
1052
1053 static int vfio_bus_type(struct device *dev, void *data)
1054 {
1055 struct bus_type **bus = data;
1056
1057 if (*bus && *bus != dev->bus)
1058 return -EINVAL;
1059
1060 *bus = dev->bus;
1061
1062 return 0;
1063 }
1064
1065 static int vfio_iommu_replay(struct vfio_iommu *iommu,
1066 struct vfio_domain *domain)
1067 {
1068 struct vfio_domain *d;
1069 struct rb_node *n;
1070 int ret;
1071
1072 /* Arbitrarily pick the first domain in the list for lookups */
1073 d = list_first_entry(&iommu->domain_list, struct vfio_domain, next);
1074 n = rb_first(&iommu->dma_list);
1075
1076 for (; n; n = rb_next(n)) {
1077 struct vfio_dma *dma;
1078 dma_addr_t iova;
1079
1080 dma = rb_entry(n, struct vfio_dma, node);
1081 iova = dma->iova;
1082
1083 while (iova < dma->iova + dma->size) {
1084 phys_addr_t phys;
1085 size_t size;
1086
1087 if (dma->iommu_mapped) {
1088 phys_addr_t p;
1089 dma_addr_t i;
1090
1091 phys = iommu_iova_to_phys(d->domain, iova);
1092
1093 if (WARN_ON(!phys)) {
1094 iova += PAGE_SIZE;
1095 continue;
1096 }
1097
1098 size = PAGE_SIZE;
1099 p = phys + size;
1100 i = iova + size;
1101 while (i < dma->iova + dma->size &&
1102 p == iommu_iova_to_phys(d->domain, i)) {
1103 size += PAGE_SIZE;
1104 p += PAGE_SIZE;
1105 i += PAGE_SIZE;
1106 }
1107 } else {
1108 unsigned long pfn;
1109 unsigned long vaddr = dma->vaddr +
1110 (iova - dma->iova);
1111 size_t n = dma->iova + dma->size - iova;
1112 long npage;
1113
1114 npage = vfio_pin_pages_remote(dma, vaddr,
1115 n >> PAGE_SHIFT,
1116 &pfn);
1117 if (npage <= 0) {
1118 WARN_ON(!npage);
1119 ret = (int)npage;
1120 return ret;
1121 }
1122
1123 phys = pfn << PAGE_SHIFT;
1124 size = npage << PAGE_SHIFT;
1125 }
1126
1127 ret = iommu_map(domain->domain, iova, phys,
1128 size, dma->prot | domain->prot);
1129 if (ret)
1130 return ret;
1131
1132 iova += size;
1133 }
1134 dma->iommu_mapped = true;
1135 }
1136 return 0;
1137 }
1138
1139 /*
1140 * We change our unmap behavior slightly depending on whether the IOMMU
1141 * supports fine-grained superpages. IOMMUs like AMD-Vi will use a superpage
1142 * for practically any contiguous power-of-two mapping we give it. This means
1143 * we don't need to look for contiguous chunks ourselves to make unmapping
1144 * more efficient. On IOMMUs with coarse-grained super pages, like Intel VT-d
1145 * with discrete 2M/1G/512G/1T superpages, identifying contiguous chunks
1146 * significantly boosts non-hugetlbfs mappings and doesn't seem to hurt when
1147 * hugetlbfs is in use.
1148 */
1149 static void vfio_test_domain_fgsp(struct vfio_domain *domain)
1150 {
1151 struct page *pages;
1152 int ret, order = get_order(PAGE_SIZE * 2);
1153
1154 pages = alloc_pages(GFP_KERNEL | __GFP_ZERO, order);
1155 if (!pages)
1156 return;
1157
1158 ret = iommu_map(domain->domain, 0, page_to_phys(pages), PAGE_SIZE * 2,
1159 IOMMU_READ | IOMMU_WRITE | domain->prot);
1160 if (!ret) {
1161 size_t unmapped = iommu_unmap(domain->domain, 0, PAGE_SIZE);
1162
1163 if (unmapped == PAGE_SIZE)
1164 iommu_unmap(domain->domain, PAGE_SIZE, PAGE_SIZE);
1165 else
1166 domain->fgsp = true;
1167 }
1168
1169 __free_pages(pages, order);
1170 }
1171
1172 static struct vfio_group *find_iommu_group(struct vfio_domain *domain,
1173 struct iommu_group *iommu_group)
1174 {
1175 struct vfio_group *g;
1176
1177 list_for_each_entry(g, &domain->group_list, next) {
1178 if (g->iommu_group == iommu_group)
1179 return g;
1180 }
1181
1182 return NULL;
1183 }
1184
1185 static bool vfio_iommu_has_resv_msi(struct iommu_group *group,
1186 phys_addr_t *base)
1187 {
1188 struct list_head group_resv_regions;
1189 struct iommu_resv_region *region, *next;
1190 bool ret = false;
1191
1192 INIT_LIST_HEAD(&group_resv_regions);
1193 iommu_get_group_resv_regions(group, &group_resv_regions);
1194 list_for_each_entry(region, &group_resv_regions, list) {
1195 if (region->type & IOMMU_RESV_MSI) {
1196 *base = region->start;
1197 ret = true;
1198 goto out;
1199 }
1200 }
1201 out:
1202 list_for_each_entry_safe(region, next, &group_resv_regions, list)
1203 kfree(region);
1204 return ret;
1205 }
1206
1207 static int vfio_iommu_type1_attach_group(void *iommu_data,
1208 struct iommu_group *iommu_group)
1209 {
1210 struct vfio_iommu *iommu = iommu_data;
1211 struct vfio_group *group;
1212 struct vfio_domain *domain, *d;
1213 struct bus_type *bus = NULL, *mdev_bus;
1214 int ret;
1215 bool resv_msi, msi_remap;
1216 phys_addr_t resv_msi_base;
1217
1218 mutex_lock(&iommu->lock);
1219
1220 list_for_each_entry(d, &iommu->domain_list, next) {
1221 if (find_iommu_group(d, iommu_group)) {
1222 mutex_unlock(&iommu->lock);
1223 return -EINVAL;
1224 }
1225 }
1226
1227 if (iommu->external_domain) {
1228 if (find_iommu_group(iommu->external_domain, iommu_group)) {
1229 mutex_unlock(&iommu->lock);
1230 return -EINVAL;
1231 }
1232 }
1233
1234 group = kzalloc(sizeof(*group), GFP_KERNEL);
1235 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
1236 if (!group || !domain) {
1237 ret = -ENOMEM;
1238 goto out_free;
1239 }
1240
1241 group->iommu_group = iommu_group;
1242
1243 /* Determine bus_type in order to allocate a domain */
1244 ret = iommu_group_for_each_dev(iommu_group, &bus, vfio_bus_type);
1245 if (ret)
1246 goto out_free;
1247
1248 mdev_bus = symbol_get(mdev_bus_type);
1249
1250 if (mdev_bus) {
1251 if ((bus == mdev_bus) && !iommu_present(bus)) {
1252 symbol_put(mdev_bus_type);
1253 if (!iommu->external_domain) {
1254 INIT_LIST_HEAD(&domain->group_list);
1255 iommu->external_domain = domain;
1256 } else
1257 kfree(domain);
1258
1259 list_add(&group->next,
1260 &iommu->external_domain->group_list);
1261 mutex_unlock(&iommu->lock);
1262 return 0;
1263 }
1264 symbol_put(mdev_bus_type);
1265 }
1266
1267 domain->domain = iommu_domain_alloc(bus);
1268 if (!domain->domain) {
1269 ret = -EIO;
1270 goto out_free;
1271 }
1272
1273 if (iommu->nesting) {
1274 int attr = 1;
1275
1276 ret = iommu_domain_set_attr(domain->domain, DOMAIN_ATTR_NESTING,
1277 &attr);
1278 if (ret)
1279 goto out_domain;
1280 }
1281
1282 ret = iommu_attach_group(domain->domain, iommu_group);
1283 if (ret)
1284 goto out_domain;
1285
1286 resv_msi = vfio_iommu_has_resv_msi(iommu_group, &resv_msi_base);
1287
1288 INIT_LIST_HEAD(&domain->group_list);
1289 list_add(&group->next, &domain->group_list);
1290
1291 msi_remap = resv_msi ? irq_domain_check_msi_remap() :
1292 iommu_capable(bus, IOMMU_CAP_INTR_REMAP);
1293
1294 if (!allow_unsafe_interrupts && !msi_remap) {
1295 pr_warn("%s: No interrupt remapping support. Use the module param \"allow_unsafe_interrupts\" to enable VFIO IOMMU support on this platform\n",
1296 __func__);
1297 ret = -EPERM;
1298 goto out_detach;
1299 }
1300
1301 if (iommu_capable(bus, IOMMU_CAP_CACHE_COHERENCY))
1302 domain->prot |= IOMMU_CACHE;
1303
1304 /*
1305 * Try to match an existing compatible domain. We don't want to
1306 * preclude an IOMMU driver supporting multiple bus_types and being
1307 * able to include different bus_types in the same IOMMU domain, so
1308 * we test whether the domains use the same iommu_ops rather than
1309 * testing if they're on the same bus_type.
1310 */
1311 list_for_each_entry(d, &iommu->domain_list, next) {
1312 if (d->domain->ops == domain->domain->ops &&
1313 d->prot == domain->prot) {
1314 iommu_detach_group(domain->domain, iommu_group);
1315 if (!iommu_attach_group(d->domain, iommu_group)) {
1316 list_add(&group->next, &d->group_list);
1317 iommu_domain_free(domain->domain);
1318 kfree(domain);
1319 mutex_unlock(&iommu->lock);
1320 return 0;
1321 }
1322
1323 ret = iommu_attach_group(domain->domain, iommu_group);
1324 if (ret)
1325 goto out_domain;
1326 }
1327 }
1328
1329 vfio_test_domain_fgsp(domain);
1330
1331 /* replay mappings on new domains */
1332 ret = vfio_iommu_replay(iommu, domain);
1333 if (ret)
1334 goto out_detach;
1335
1336 if (resv_msi) {
1337 ret = iommu_get_msi_cookie(domain->domain, resv_msi_base);
1338 if (ret)
1339 goto out_detach;
1340 }
1341
1342 list_add(&domain->next, &iommu->domain_list);
1343
1344 mutex_unlock(&iommu->lock);
1345
1346 return 0;
1347
1348 out_detach:
1349 iommu_detach_group(domain->domain, iommu_group);
1350 out_domain:
1351 iommu_domain_free(domain->domain);
1352 out_free:
1353 kfree(domain);
1354 kfree(group);
1355 mutex_unlock(&iommu->lock);
1356 return ret;
1357 }
1358
1359 static void vfio_iommu_unmap_unpin_all(struct vfio_iommu *iommu)
1360 {
1361 struct rb_node *node;
1362
1363 while ((node = rb_first(&iommu->dma_list)))
1364 vfio_remove_dma(iommu, rb_entry(node, struct vfio_dma, node));
1365 }
1366
1367 static void vfio_iommu_unmap_unpin_reaccount(struct vfio_iommu *iommu)
1368 {
1369 struct rb_node *n, *p;
1370
1371 n = rb_first(&iommu->dma_list);
1372 for (; n; n = rb_next(n)) {
1373 struct vfio_dma *dma;
1374 long locked = 0, unlocked = 0;
1375
1376 dma = rb_entry(n, struct vfio_dma, node);
1377 unlocked += vfio_unmap_unpin(iommu, dma, false);
1378 p = rb_first(&dma->pfn_list);
1379 for (; p; p = rb_next(p)) {
1380 struct vfio_pfn *vpfn = rb_entry(p, struct vfio_pfn,
1381 node);
1382
1383 if (!is_invalid_reserved_pfn(vpfn->pfn))
1384 locked++;
1385 }
1386 vfio_lock_acct(dma->task, locked - unlocked);
1387 }
1388 }
1389
1390 static void vfio_sanity_check_pfn_list(struct vfio_iommu *iommu)
1391 {
1392 struct rb_node *n;
1393
1394 n = rb_first(&iommu->dma_list);
1395 for (; n; n = rb_next(n)) {
1396 struct vfio_dma *dma;
1397
1398 dma = rb_entry(n, struct vfio_dma, node);
1399
1400 if (WARN_ON(!RB_EMPTY_ROOT(&dma->pfn_list)))
1401 break;
1402 }
1403 /* mdev vendor driver must unregister notifier */
1404 WARN_ON(iommu->notifier.head);
1405 }
1406
1407 static void vfio_iommu_type1_detach_group(void *iommu_data,
1408 struct iommu_group *iommu_group)
1409 {
1410 struct vfio_iommu *iommu = iommu_data;
1411 struct vfio_domain *domain;
1412 struct vfio_group *group;
1413
1414 mutex_lock(&iommu->lock);
1415
1416 if (iommu->external_domain) {
1417 group = find_iommu_group(iommu->external_domain, iommu_group);
1418 if (group) {
1419 list_del(&group->next);
1420 kfree(group);
1421
1422 if (list_empty(&iommu->external_domain->group_list)) {
1423 vfio_sanity_check_pfn_list(iommu);
1424
1425 if (!IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu))
1426 vfio_iommu_unmap_unpin_all(iommu);
1427
1428 kfree(iommu->external_domain);
1429 iommu->external_domain = NULL;
1430 }
1431 goto detach_group_done;
1432 }
1433 }
1434
1435 list_for_each_entry(domain, &iommu->domain_list, next) {
1436 group = find_iommu_group(domain, iommu_group);
1437 if (!group)
1438 continue;
1439
1440 iommu_detach_group(domain->domain, iommu_group);
1441 list_del(&group->next);
1442 kfree(group);
1443 /*
1444 * Group ownership provides privilege, if the group list is
1445 * empty, the domain goes away. If it's the last domain with
1446 * iommu and external domain doesn't exist, then all the
1447 * mappings go away too. If it's the last domain with iommu and
1448 * external domain exist, update accounting
1449 */
1450 if (list_empty(&domain->group_list)) {
1451 if (list_is_singular(&iommu->domain_list)) {
1452 if (!iommu->external_domain)
1453 vfio_iommu_unmap_unpin_all(iommu);
1454 else
1455 vfio_iommu_unmap_unpin_reaccount(iommu);
1456 }
1457 iommu_domain_free(domain->domain);
1458 list_del(&domain->next);
1459 kfree(domain);
1460 }
1461 break;
1462 }
1463
1464 detach_group_done:
1465 mutex_unlock(&iommu->lock);
1466 }
1467
1468 static void *vfio_iommu_type1_open(unsigned long arg)
1469 {
1470 struct vfio_iommu *iommu;
1471
1472 iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
1473 if (!iommu)
1474 return ERR_PTR(-ENOMEM);
1475
1476 switch (arg) {
1477 case VFIO_TYPE1_IOMMU:
1478 break;
1479 case VFIO_TYPE1_NESTING_IOMMU:
1480 iommu->nesting = true;
1481 case VFIO_TYPE1v2_IOMMU:
1482 iommu->v2 = true;
1483 break;
1484 default:
1485 kfree(iommu);
1486 return ERR_PTR(-EINVAL);
1487 }
1488
1489 INIT_LIST_HEAD(&iommu->domain_list);
1490 iommu->dma_list = RB_ROOT;
1491 mutex_init(&iommu->lock);
1492 BLOCKING_INIT_NOTIFIER_HEAD(&iommu->notifier);
1493
1494 return iommu;
1495 }
1496
1497 static void vfio_release_domain(struct vfio_domain *domain, bool external)
1498 {
1499 struct vfio_group *group, *group_tmp;
1500
1501 list_for_each_entry_safe(group, group_tmp,
1502 &domain->group_list, next) {
1503 if (!external)
1504 iommu_detach_group(domain->domain, group->iommu_group);
1505 list_del(&group->next);
1506 kfree(group);
1507 }
1508
1509 if (!external)
1510 iommu_domain_free(domain->domain);
1511 }
1512
1513 static void vfio_iommu_type1_release(void *iommu_data)
1514 {
1515 struct vfio_iommu *iommu = iommu_data;
1516 struct vfio_domain *domain, *domain_tmp;
1517
1518 if (iommu->external_domain) {
1519 vfio_release_domain(iommu->external_domain, true);
1520 vfio_sanity_check_pfn_list(iommu);
1521 kfree(iommu->external_domain);
1522 }
1523
1524 vfio_iommu_unmap_unpin_all(iommu);
1525
1526 list_for_each_entry_safe(domain, domain_tmp,
1527 &iommu->domain_list, next) {
1528 vfio_release_domain(domain, false);
1529 list_del(&domain->next);
1530 kfree(domain);
1531 }
1532 kfree(iommu);
1533 }
1534
1535 static int vfio_domains_have_iommu_cache(struct vfio_iommu *iommu)
1536 {
1537 struct vfio_domain *domain;
1538 int ret = 1;
1539
1540 mutex_lock(&iommu->lock);
1541 list_for_each_entry(domain, &iommu->domain_list, next) {
1542 if (!(domain->prot & IOMMU_CACHE)) {
1543 ret = 0;
1544 break;
1545 }
1546 }
1547 mutex_unlock(&iommu->lock);
1548
1549 return ret;
1550 }
1551
1552 static long vfio_iommu_type1_ioctl(void *iommu_data,
1553 unsigned int cmd, unsigned long arg)
1554 {
1555 struct vfio_iommu *iommu = iommu_data;
1556 unsigned long minsz;
1557
1558 if (cmd == VFIO_CHECK_EXTENSION) {
1559 switch (arg) {
1560 case VFIO_TYPE1_IOMMU:
1561 case VFIO_TYPE1v2_IOMMU:
1562 case VFIO_TYPE1_NESTING_IOMMU:
1563 return 1;
1564 case VFIO_DMA_CC_IOMMU:
1565 if (!iommu)
1566 return 0;
1567 return vfio_domains_have_iommu_cache(iommu);
1568 default:
1569 return 0;
1570 }
1571 } else if (cmd == VFIO_IOMMU_GET_INFO) {
1572 struct vfio_iommu_type1_info info;
1573
1574 minsz = offsetofend(struct vfio_iommu_type1_info, iova_pgsizes);
1575
1576 if (copy_from_user(&info, (void __user *)arg, minsz))
1577 return -EFAULT;
1578
1579 if (info.argsz < minsz)
1580 return -EINVAL;
1581
1582 info.flags = VFIO_IOMMU_INFO_PGSIZES;
1583
1584 info.iova_pgsizes = vfio_pgsize_bitmap(iommu);
1585
1586 return copy_to_user((void __user *)arg, &info, minsz) ?
1587 -EFAULT : 0;
1588
1589 } else if (cmd == VFIO_IOMMU_MAP_DMA) {
1590 struct vfio_iommu_type1_dma_map map;
1591 uint32_t mask = VFIO_DMA_MAP_FLAG_READ |
1592 VFIO_DMA_MAP_FLAG_WRITE;
1593
1594 minsz = offsetofend(struct vfio_iommu_type1_dma_map, size);
1595
1596 if (copy_from_user(&map, (void __user *)arg, minsz))
1597 return -EFAULT;
1598
1599 if (map.argsz < minsz || map.flags & ~mask)
1600 return -EINVAL;
1601
1602 return vfio_dma_do_map(iommu, &map);
1603
1604 } else if (cmd == VFIO_IOMMU_UNMAP_DMA) {
1605 struct vfio_iommu_type1_dma_unmap unmap;
1606 long ret;
1607
1608 minsz = offsetofend(struct vfio_iommu_type1_dma_unmap, size);
1609
1610 if (copy_from_user(&unmap, (void __user *)arg, minsz))
1611 return -EFAULT;
1612
1613 if (unmap.argsz < minsz || unmap.flags)
1614 return -EINVAL;
1615
1616 ret = vfio_dma_do_unmap(iommu, &unmap);
1617 if (ret)
1618 return ret;
1619
1620 return copy_to_user((void __user *)arg, &unmap, minsz) ?
1621 -EFAULT : 0;
1622 }
1623
1624 return -ENOTTY;
1625 }
1626
1627 static int vfio_iommu_type1_register_notifier(void *iommu_data,
1628 unsigned long *events,
1629 struct notifier_block *nb)
1630 {
1631 struct vfio_iommu *iommu = iommu_data;
1632
1633 /* clear known events */
1634 *events &= ~VFIO_IOMMU_NOTIFY_DMA_UNMAP;
1635
1636 /* refuse to register if still events remaining */
1637 if (*events)
1638 return -EINVAL;
1639
1640 return blocking_notifier_chain_register(&iommu->notifier, nb);
1641 }
1642
1643 static int vfio_iommu_type1_unregister_notifier(void *iommu_data,
1644 struct notifier_block *nb)
1645 {
1646 struct vfio_iommu *iommu = iommu_data;
1647
1648 return blocking_notifier_chain_unregister(&iommu->notifier, nb);
1649 }
1650
1651 static const struct vfio_iommu_driver_ops vfio_iommu_driver_ops_type1 = {
1652 .name = "vfio-iommu-type1",
1653 .owner = THIS_MODULE,
1654 .open = vfio_iommu_type1_open,
1655 .release = vfio_iommu_type1_release,
1656 .ioctl = vfio_iommu_type1_ioctl,
1657 .attach_group = vfio_iommu_type1_attach_group,
1658 .detach_group = vfio_iommu_type1_detach_group,
1659 .pin_pages = vfio_iommu_type1_pin_pages,
1660 .unpin_pages = vfio_iommu_type1_unpin_pages,
1661 .register_notifier = vfio_iommu_type1_register_notifier,
1662 .unregister_notifier = vfio_iommu_type1_unregister_notifier,
1663 };
1664
1665 static int __init vfio_iommu_type1_init(void)
1666 {
1667 return vfio_register_iommu_driver(&vfio_iommu_driver_ops_type1);
1668 }
1669
1670 static void __exit vfio_iommu_type1_cleanup(void)
1671 {
1672 vfio_unregister_iommu_driver(&vfio_iommu_driver_ops_type1);
1673 }
1674
1675 module_init(vfio_iommu_type1_init);
1676 module_exit(vfio_iommu_type1_cleanup);
1677
1678 MODULE_VERSION(DRIVER_VERSION);
1679 MODULE_LICENSE("GPL v2");
1680 MODULE_AUTHOR(DRIVER_AUTHOR);
1681 MODULE_DESCRIPTION(DRIVER_DESC);