]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/vfio/vfio_iommu_type1.c
Merge tag 'for-linus-4.15-ofs1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-bionic-kernel.git] / drivers / vfio / vfio_iommu_type1.c
1 /*
2 * VFIO: IOMMU DMA mapping support for Type1 IOMMU
3 *
4 * Copyright (C) 2012 Red Hat, Inc. All rights reserved.
5 * Author: Alex Williamson <alex.williamson@redhat.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * Derived from original vfio:
12 * Copyright 2010 Cisco Systems, Inc. All rights reserved.
13 * Author: Tom Lyon, pugs@cisco.com
14 *
15 * We arbitrarily define a Type1 IOMMU as one matching the below code.
16 * It could be called the x86 IOMMU as it's designed for AMD-Vi & Intel
17 * VT-d, but that makes it harder to re-use as theoretically anyone
18 * implementing a similar IOMMU could make use of this. We expect the
19 * IOMMU to support the IOMMU API and have few to no restrictions around
20 * the IOVA range that can be mapped. The Type1 IOMMU is currently
21 * optimized for relatively static mappings of a userspace process with
22 * userpsace pages pinned into memory. We also assume devices and IOMMU
23 * domains are PCI based as the IOMMU API is still centered around a
24 * device/bus interface rather than a group interface.
25 */
26
27 #include <linux/compat.h>
28 #include <linux/device.h>
29 #include <linux/fs.h>
30 #include <linux/iommu.h>
31 #include <linux/module.h>
32 #include <linux/mm.h>
33 #include <linux/rbtree.h>
34 #include <linux/sched/signal.h>
35 #include <linux/sched/mm.h>
36 #include <linux/slab.h>
37 #include <linux/uaccess.h>
38 #include <linux/vfio.h>
39 #include <linux/workqueue.h>
40 #include <linux/mdev.h>
41 #include <linux/notifier.h>
42 #include <linux/dma-iommu.h>
43 #include <linux/irqdomain.h>
44
45 #define DRIVER_VERSION "0.2"
46 #define DRIVER_AUTHOR "Alex Williamson <alex.williamson@redhat.com>"
47 #define DRIVER_DESC "Type1 IOMMU driver for VFIO"
48
49 static bool allow_unsafe_interrupts;
50 module_param_named(allow_unsafe_interrupts,
51 allow_unsafe_interrupts, bool, S_IRUGO | S_IWUSR);
52 MODULE_PARM_DESC(allow_unsafe_interrupts,
53 "Enable VFIO IOMMU support for on platforms without interrupt remapping support.");
54
55 static bool disable_hugepages;
56 module_param_named(disable_hugepages,
57 disable_hugepages, bool, S_IRUGO | S_IWUSR);
58 MODULE_PARM_DESC(disable_hugepages,
59 "Disable VFIO IOMMU support for IOMMU hugepages.");
60
61 struct vfio_iommu {
62 struct list_head domain_list;
63 struct vfio_domain *external_domain; /* domain for external user */
64 struct mutex lock;
65 struct rb_root dma_list;
66 struct blocking_notifier_head notifier;
67 bool v2;
68 bool nesting;
69 };
70
71 struct vfio_domain {
72 struct iommu_domain *domain;
73 struct list_head next;
74 struct list_head group_list;
75 int prot; /* IOMMU_CACHE */
76 bool fgsp; /* Fine-grained super pages */
77 };
78
79 struct vfio_dma {
80 struct rb_node node;
81 dma_addr_t iova; /* Device address */
82 unsigned long vaddr; /* Process virtual addr */
83 size_t size; /* Map size (bytes) */
84 int prot; /* IOMMU_READ/WRITE */
85 bool iommu_mapped;
86 struct task_struct *task;
87 struct rb_root pfn_list; /* Ex-user pinned pfn list */
88 };
89
90 struct vfio_group {
91 struct iommu_group *iommu_group;
92 struct list_head next;
93 };
94
95 /*
96 * Guest RAM pinning working set or DMA target
97 */
98 struct vfio_pfn {
99 struct rb_node node;
100 dma_addr_t iova; /* Device address */
101 unsigned long pfn; /* Host pfn */
102 atomic_t ref_count;
103 };
104
105 #define IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu) \
106 (!list_empty(&iommu->domain_list))
107
108 static int put_pfn(unsigned long pfn, int prot);
109
110 /*
111 * This code handles mapping and unmapping of user data buffers
112 * into DMA'ble space using the IOMMU
113 */
114
115 static struct vfio_dma *vfio_find_dma(struct vfio_iommu *iommu,
116 dma_addr_t start, size_t size)
117 {
118 struct rb_node *node = iommu->dma_list.rb_node;
119
120 while (node) {
121 struct vfio_dma *dma = rb_entry(node, struct vfio_dma, node);
122
123 if (start + size <= dma->iova)
124 node = node->rb_left;
125 else if (start >= dma->iova + dma->size)
126 node = node->rb_right;
127 else
128 return dma;
129 }
130
131 return NULL;
132 }
133
134 static void vfio_link_dma(struct vfio_iommu *iommu, struct vfio_dma *new)
135 {
136 struct rb_node **link = &iommu->dma_list.rb_node, *parent = NULL;
137 struct vfio_dma *dma;
138
139 while (*link) {
140 parent = *link;
141 dma = rb_entry(parent, struct vfio_dma, node);
142
143 if (new->iova + new->size <= dma->iova)
144 link = &(*link)->rb_left;
145 else
146 link = &(*link)->rb_right;
147 }
148
149 rb_link_node(&new->node, parent, link);
150 rb_insert_color(&new->node, &iommu->dma_list);
151 }
152
153 static void vfio_unlink_dma(struct vfio_iommu *iommu, struct vfio_dma *old)
154 {
155 rb_erase(&old->node, &iommu->dma_list);
156 }
157
158 /*
159 * Helper Functions for host iova-pfn list
160 */
161 static struct vfio_pfn *vfio_find_vpfn(struct vfio_dma *dma, dma_addr_t iova)
162 {
163 struct vfio_pfn *vpfn;
164 struct rb_node *node = dma->pfn_list.rb_node;
165
166 while (node) {
167 vpfn = rb_entry(node, struct vfio_pfn, node);
168
169 if (iova < vpfn->iova)
170 node = node->rb_left;
171 else if (iova > vpfn->iova)
172 node = node->rb_right;
173 else
174 return vpfn;
175 }
176 return NULL;
177 }
178
179 static void vfio_link_pfn(struct vfio_dma *dma,
180 struct vfio_pfn *new)
181 {
182 struct rb_node **link, *parent = NULL;
183 struct vfio_pfn *vpfn;
184
185 link = &dma->pfn_list.rb_node;
186 while (*link) {
187 parent = *link;
188 vpfn = rb_entry(parent, struct vfio_pfn, node);
189
190 if (new->iova < vpfn->iova)
191 link = &(*link)->rb_left;
192 else
193 link = &(*link)->rb_right;
194 }
195
196 rb_link_node(&new->node, parent, link);
197 rb_insert_color(&new->node, &dma->pfn_list);
198 }
199
200 static void vfio_unlink_pfn(struct vfio_dma *dma, struct vfio_pfn *old)
201 {
202 rb_erase(&old->node, &dma->pfn_list);
203 }
204
205 static int vfio_add_to_pfn_list(struct vfio_dma *dma, dma_addr_t iova,
206 unsigned long pfn)
207 {
208 struct vfio_pfn *vpfn;
209
210 vpfn = kzalloc(sizeof(*vpfn), GFP_KERNEL);
211 if (!vpfn)
212 return -ENOMEM;
213
214 vpfn->iova = iova;
215 vpfn->pfn = pfn;
216 atomic_set(&vpfn->ref_count, 1);
217 vfio_link_pfn(dma, vpfn);
218 return 0;
219 }
220
221 static void vfio_remove_from_pfn_list(struct vfio_dma *dma,
222 struct vfio_pfn *vpfn)
223 {
224 vfio_unlink_pfn(dma, vpfn);
225 kfree(vpfn);
226 }
227
228 static struct vfio_pfn *vfio_iova_get_vfio_pfn(struct vfio_dma *dma,
229 unsigned long iova)
230 {
231 struct vfio_pfn *vpfn = vfio_find_vpfn(dma, iova);
232
233 if (vpfn)
234 atomic_inc(&vpfn->ref_count);
235 return vpfn;
236 }
237
238 static int vfio_iova_put_vfio_pfn(struct vfio_dma *dma, struct vfio_pfn *vpfn)
239 {
240 int ret = 0;
241
242 if (atomic_dec_and_test(&vpfn->ref_count)) {
243 ret = put_pfn(vpfn->pfn, dma->prot);
244 vfio_remove_from_pfn_list(dma, vpfn);
245 }
246 return ret;
247 }
248
249 static int vfio_lock_acct(struct task_struct *task, long npage, bool *lock_cap)
250 {
251 struct mm_struct *mm;
252 bool is_current;
253 int ret;
254
255 if (!npage)
256 return 0;
257
258 is_current = (task->mm == current->mm);
259
260 mm = is_current ? task->mm : get_task_mm(task);
261 if (!mm)
262 return -ESRCH; /* process exited */
263
264 ret = down_write_killable(&mm->mmap_sem);
265 if (!ret) {
266 if (npage > 0) {
267 if (lock_cap ? !*lock_cap :
268 !has_capability(task, CAP_IPC_LOCK)) {
269 unsigned long limit;
270
271 limit = task_rlimit(task,
272 RLIMIT_MEMLOCK) >> PAGE_SHIFT;
273
274 if (mm->locked_vm + npage > limit)
275 ret = -ENOMEM;
276 }
277 }
278
279 if (!ret)
280 mm->locked_vm += npage;
281
282 up_write(&mm->mmap_sem);
283 }
284
285 if (!is_current)
286 mmput(mm);
287
288 return ret;
289 }
290
291 /*
292 * Some mappings aren't backed by a struct page, for example an mmap'd
293 * MMIO range for our own or another device. These use a different
294 * pfn conversion and shouldn't be tracked as locked pages.
295 */
296 static bool is_invalid_reserved_pfn(unsigned long pfn)
297 {
298 if (pfn_valid(pfn)) {
299 bool reserved;
300 struct page *tail = pfn_to_page(pfn);
301 struct page *head = compound_head(tail);
302 reserved = !!(PageReserved(head));
303 if (head != tail) {
304 /*
305 * "head" is not a dangling pointer
306 * (compound_head takes care of that)
307 * but the hugepage may have been split
308 * from under us (and we may not hold a
309 * reference count on the head page so it can
310 * be reused before we run PageReferenced), so
311 * we've to check PageTail before returning
312 * what we just read.
313 */
314 smp_rmb();
315 if (PageTail(tail))
316 return reserved;
317 }
318 return PageReserved(tail);
319 }
320
321 return true;
322 }
323
324 static int put_pfn(unsigned long pfn, int prot)
325 {
326 if (!is_invalid_reserved_pfn(pfn)) {
327 struct page *page = pfn_to_page(pfn);
328 if (prot & IOMMU_WRITE)
329 SetPageDirty(page);
330 put_page(page);
331 return 1;
332 }
333 return 0;
334 }
335
336 static int vaddr_get_pfn(struct mm_struct *mm, unsigned long vaddr,
337 int prot, unsigned long *pfn)
338 {
339 struct page *page[1];
340 struct vm_area_struct *vma;
341 int ret;
342
343 if (mm == current->mm) {
344 ret = get_user_pages_fast(vaddr, 1, !!(prot & IOMMU_WRITE),
345 page);
346 } else {
347 unsigned int flags = 0;
348
349 if (prot & IOMMU_WRITE)
350 flags |= FOLL_WRITE;
351
352 down_read(&mm->mmap_sem);
353 ret = get_user_pages_remote(NULL, mm, vaddr, 1, flags, page,
354 NULL, NULL);
355 up_read(&mm->mmap_sem);
356 }
357
358 if (ret == 1) {
359 *pfn = page_to_pfn(page[0]);
360 return 0;
361 }
362
363 down_read(&mm->mmap_sem);
364
365 vma = find_vma_intersection(mm, vaddr, vaddr + 1);
366
367 if (vma && vma->vm_flags & VM_PFNMAP) {
368 *pfn = ((vaddr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
369 if (is_invalid_reserved_pfn(*pfn))
370 ret = 0;
371 }
372
373 up_read(&mm->mmap_sem);
374 return ret;
375 }
376
377 /*
378 * Attempt to pin pages. We really don't want to track all the pfns and
379 * the iommu can only map chunks of consecutive pfns anyway, so get the
380 * first page and all consecutive pages with the same locking.
381 */
382 static long vfio_pin_pages_remote(struct vfio_dma *dma, unsigned long vaddr,
383 long npage, unsigned long *pfn_base,
384 bool lock_cap, unsigned long limit)
385 {
386 unsigned long pfn = 0;
387 long ret, pinned = 0, lock_acct = 0;
388 bool rsvd;
389 dma_addr_t iova = vaddr - dma->vaddr + dma->iova;
390
391 /* This code path is only user initiated */
392 if (!current->mm)
393 return -ENODEV;
394
395 ret = vaddr_get_pfn(current->mm, vaddr, dma->prot, pfn_base);
396 if (ret)
397 return ret;
398
399 pinned++;
400 rsvd = is_invalid_reserved_pfn(*pfn_base);
401
402 /*
403 * Reserved pages aren't counted against the user, externally pinned
404 * pages are already counted against the user.
405 */
406 if (!rsvd && !vfio_find_vpfn(dma, iova)) {
407 if (!lock_cap && current->mm->locked_vm + 1 > limit) {
408 put_pfn(*pfn_base, dma->prot);
409 pr_warn("%s: RLIMIT_MEMLOCK (%ld) exceeded\n", __func__,
410 limit << PAGE_SHIFT);
411 return -ENOMEM;
412 }
413 lock_acct++;
414 }
415
416 if (unlikely(disable_hugepages))
417 goto out;
418
419 /* Lock all the consecutive pages from pfn_base */
420 for (vaddr += PAGE_SIZE, iova += PAGE_SIZE; pinned < npage;
421 pinned++, vaddr += PAGE_SIZE, iova += PAGE_SIZE) {
422 ret = vaddr_get_pfn(current->mm, vaddr, dma->prot, &pfn);
423 if (ret)
424 break;
425
426 if (pfn != *pfn_base + pinned ||
427 rsvd != is_invalid_reserved_pfn(pfn)) {
428 put_pfn(pfn, dma->prot);
429 break;
430 }
431
432 if (!rsvd && !vfio_find_vpfn(dma, iova)) {
433 if (!lock_cap &&
434 current->mm->locked_vm + lock_acct + 1 > limit) {
435 put_pfn(pfn, dma->prot);
436 pr_warn("%s: RLIMIT_MEMLOCK (%ld) exceeded\n",
437 __func__, limit << PAGE_SHIFT);
438 ret = -ENOMEM;
439 goto unpin_out;
440 }
441 lock_acct++;
442 }
443 }
444
445 out:
446 ret = vfio_lock_acct(current, lock_acct, &lock_cap);
447
448 unpin_out:
449 if (ret) {
450 if (!rsvd) {
451 for (pfn = *pfn_base ; pinned ; pfn++, pinned--)
452 put_pfn(pfn, dma->prot);
453 }
454
455 return ret;
456 }
457
458 return pinned;
459 }
460
461 static long vfio_unpin_pages_remote(struct vfio_dma *dma, dma_addr_t iova,
462 unsigned long pfn, long npage,
463 bool do_accounting)
464 {
465 long unlocked = 0, locked = 0;
466 long i;
467
468 for (i = 0; i < npage; i++, iova += PAGE_SIZE) {
469 if (put_pfn(pfn++, dma->prot)) {
470 unlocked++;
471 if (vfio_find_vpfn(dma, iova))
472 locked++;
473 }
474 }
475
476 if (do_accounting)
477 vfio_lock_acct(dma->task, locked - unlocked, NULL);
478
479 return unlocked;
480 }
481
482 static int vfio_pin_page_external(struct vfio_dma *dma, unsigned long vaddr,
483 unsigned long *pfn_base, bool do_accounting)
484 {
485 struct mm_struct *mm;
486 int ret;
487
488 mm = get_task_mm(dma->task);
489 if (!mm)
490 return -ENODEV;
491
492 ret = vaddr_get_pfn(mm, vaddr, dma->prot, pfn_base);
493 if (!ret && do_accounting && !is_invalid_reserved_pfn(*pfn_base)) {
494 ret = vfio_lock_acct(dma->task, 1, NULL);
495 if (ret) {
496 put_pfn(*pfn_base, dma->prot);
497 if (ret == -ENOMEM)
498 pr_warn("%s: Task %s (%d) RLIMIT_MEMLOCK "
499 "(%ld) exceeded\n", __func__,
500 dma->task->comm, task_pid_nr(dma->task),
501 task_rlimit(dma->task, RLIMIT_MEMLOCK));
502 }
503 }
504
505 mmput(mm);
506 return ret;
507 }
508
509 static int vfio_unpin_page_external(struct vfio_dma *dma, dma_addr_t iova,
510 bool do_accounting)
511 {
512 int unlocked;
513 struct vfio_pfn *vpfn = vfio_find_vpfn(dma, iova);
514
515 if (!vpfn)
516 return 0;
517
518 unlocked = vfio_iova_put_vfio_pfn(dma, vpfn);
519
520 if (do_accounting)
521 vfio_lock_acct(dma->task, -unlocked, NULL);
522
523 return unlocked;
524 }
525
526 static int vfio_iommu_type1_pin_pages(void *iommu_data,
527 unsigned long *user_pfn,
528 int npage, int prot,
529 unsigned long *phys_pfn)
530 {
531 struct vfio_iommu *iommu = iommu_data;
532 int i, j, ret;
533 unsigned long remote_vaddr;
534 struct vfio_dma *dma;
535 bool do_accounting;
536
537 if (!iommu || !user_pfn || !phys_pfn)
538 return -EINVAL;
539
540 /* Supported for v2 version only */
541 if (!iommu->v2)
542 return -EACCES;
543
544 mutex_lock(&iommu->lock);
545
546 /* Fail if notifier list is empty */
547 if ((!iommu->external_domain) || (!iommu->notifier.head)) {
548 ret = -EINVAL;
549 goto pin_done;
550 }
551
552 /*
553 * If iommu capable domain exist in the container then all pages are
554 * already pinned and accounted. Accouting should be done if there is no
555 * iommu capable domain in the container.
556 */
557 do_accounting = !IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu);
558
559 for (i = 0; i < npage; i++) {
560 dma_addr_t iova;
561 struct vfio_pfn *vpfn;
562
563 iova = user_pfn[i] << PAGE_SHIFT;
564 dma = vfio_find_dma(iommu, iova, PAGE_SIZE);
565 if (!dma) {
566 ret = -EINVAL;
567 goto pin_unwind;
568 }
569
570 if ((dma->prot & prot) != prot) {
571 ret = -EPERM;
572 goto pin_unwind;
573 }
574
575 vpfn = vfio_iova_get_vfio_pfn(dma, iova);
576 if (vpfn) {
577 phys_pfn[i] = vpfn->pfn;
578 continue;
579 }
580
581 remote_vaddr = dma->vaddr + iova - dma->iova;
582 ret = vfio_pin_page_external(dma, remote_vaddr, &phys_pfn[i],
583 do_accounting);
584 if (ret)
585 goto pin_unwind;
586
587 ret = vfio_add_to_pfn_list(dma, iova, phys_pfn[i]);
588 if (ret) {
589 vfio_unpin_page_external(dma, iova, do_accounting);
590 goto pin_unwind;
591 }
592 }
593
594 ret = i;
595 goto pin_done;
596
597 pin_unwind:
598 phys_pfn[i] = 0;
599 for (j = 0; j < i; j++) {
600 dma_addr_t iova;
601
602 iova = user_pfn[j] << PAGE_SHIFT;
603 dma = vfio_find_dma(iommu, iova, PAGE_SIZE);
604 vfio_unpin_page_external(dma, iova, do_accounting);
605 phys_pfn[j] = 0;
606 }
607 pin_done:
608 mutex_unlock(&iommu->lock);
609 return ret;
610 }
611
612 static int vfio_iommu_type1_unpin_pages(void *iommu_data,
613 unsigned long *user_pfn,
614 int npage)
615 {
616 struct vfio_iommu *iommu = iommu_data;
617 bool do_accounting;
618 int i;
619
620 if (!iommu || !user_pfn)
621 return -EINVAL;
622
623 /* Supported for v2 version only */
624 if (!iommu->v2)
625 return -EACCES;
626
627 mutex_lock(&iommu->lock);
628
629 if (!iommu->external_domain) {
630 mutex_unlock(&iommu->lock);
631 return -EINVAL;
632 }
633
634 do_accounting = !IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu);
635 for (i = 0; i < npage; i++) {
636 struct vfio_dma *dma;
637 dma_addr_t iova;
638
639 iova = user_pfn[i] << PAGE_SHIFT;
640 dma = vfio_find_dma(iommu, iova, PAGE_SIZE);
641 if (!dma)
642 goto unpin_exit;
643 vfio_unpin_page_external(dma, iova, do_accounting);
644 }
645
646 unpin_exit:
647 mutex_unlock(&iommu->lock);
648 return i > npage ? npage : (i > 0 ? i : -EINVAL);
649 }
650
651 static long vfio_unmap_unpin(struct vfio_iommu *iommu, struct vfio_dma *dma,
652 bool do_accounting)
653 {
654 dma_addr_t iova = dma->iova, end = dma->iova + dma->size;
655 struct vfio_domain *domain, *d;
656 long unlocked = 0;
657
658 if (!dma->size)
659 return 0;
660
661 if (!IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu))
662 return 0;
663
664 /*
665 * We use the IOMMU to track the physical addresses, otherwise we'd
666 * need a much more complicated tracking system. Unfortunately that
667 * means we need to use one of the iommu domains to figure out the
668 * pfns to unpin. The rest need to be unmapped in advance so we have
669 * no iommu translations remaining when the pages are unpinned.
670 */
671 domain = d = list_first_entry(&iommu->domain_list,
672 struct vfio_domain, next);
673
674 list_for_each_entry_continue(d, &iommu->domain_list, next) {
675 iommu_unmap(d->domain, dma->iova, dma->size);
676 cond_resched();
677 }
678
679 while (iova < end) {
680 size_t unmapped, len;
681 phys_addr_t phys, next;
682
683 phys = iommu_iova_to_phys(domain->domain, iova);
684 if (WARN_ON(!phys)) {
685 iova += PAGE_SIZE;
686 continue;
687 }
688
689 /*
690 * To optimize for fewer iommu_unmap() calls, each of which
691 * may require hardware cache flushing, try to find the
692 * largest contiguous physical memory chunk to unmap.
693 */
694 for (len = PAGE_SIZE;
695 !domain->fgsp && iova + len < end; len += PAGE_SIZE) {
696 next = iommu_iova_to_phys(domain->domain, iova + len);
697 if (next != phys + len)
698 break;
699 }
700
701 unmapped = iommu_unmap(domain->domain, iova, len);
702 if (WARN_ON(!unmapped))
703 break;
704
705 unlocked += vfio_unpin_pages_remote(dma, iova,
706 phys >> PAGE_SHIFT,
707 unmapped >> PAGE_SHIFT,
708 false);
709 iova += unmapped;
710
711 cond_resched();
712 }
713
714 dma->iommu_mapped = false;
715 if (do_accounting) {
716 vfio_lock_acct(dma->task, -unlocked, NULL);
717 return 0;
718 }
719 return unlocked;
720 }
721
722 static void vfio_remove_dma(struct vfio_iommu *iommu, struct vfio_dma *dma)
723 {
724 vfio_unmap_unpin(iommu, dma, true);
725 vfio_unlink_dma(iommu, dma);
726 put_task_struct(dma->task);
727 kfree(dma);
728 }
729
730 static unsigned long vfio_pgsize_bitmap(struct vfio_iommu *iommu)
731 {
732 struct vfio_domain *domain;
733 unsigned long bitmap = ULONG_MAX;
734
735 mutex_lock(&iommu->lock);
736 list_for_each_entry(domain, &iommu->domain_list, next)
737 bitmap &= domain->domain->pgsize_bitmap;
738 mutex_unlock(&iommu->lock);
739
740 /*
741 * In case the IOMMU supports page sizes smaller than PAGE_SIZE
742 * we pretend PAGE_SIZE is supported and hide sub-PAGE_SIZE sizes.
743 * That way the user will be able to map/unmap buffers whose size/
744 * start address is aligned with PAGE_SIZE. Pinning code uses that
745 * granularity while iommu driver can use the sub-PAGE_SIZE size
746 * to map the buffer.
747 */
748 if (bitmap & ~PAGE_MASK) {
749 bitmap &= PAGE_MASK;
750 bitmap |= PAGE_SIZE;
751 }
752
753 return bitmap;
754 }
755
756 static int vfio_dma_do_unmap(struct vfio_iommu *iommu,
757 struct vfio_iommu_type1_dma_unmap *unmap)
758 {
759 uint64_t mask;
760 struct vfio_dma *dma, *dma_last = NULL;
761 size_t unmapped = 0;
762 int ret = 0, retries = 0;
763
764 mask = ((uint64_t)1 << __ffs(vfio_pgsize_bitmap(iommu))) - 1;
765
766 if (unmap->iova & mask)
767 return -EINVAL;
768 if (!unmap->size || unmap->size & mask)
769 return -EINVAL;
770 if (unmap->iova + unmap->size < unmap->iova ||
771 unmap->size > SIZE_MAX)
772 return -EINVAL;
773
774 WARN_ON(mask & PAGE_MASK);
775 again:
776 mutex_lock(&iommu->lock);
777
778 /*
779 * vfio-iommu-type1 (v1) - User mappings were coalesced together to
780 * avoid tracking individual mappings. This means that the granularity
781 * of the original mapping was lost and the user was allowed to attempt
782 * to unmap any range. Depending on the contiguousness of physical
783 * memory and page sizes supported by the IOMMU, arbitrary unmaps may
784 * or may not have worked. We only guaranteed unmap granularity
785 * matching the original mapping; even though it was untracked here,
786 * the original mappings are reflected in IOMMU mappings. This
787 * resulted in a couple unusual behaviors. First, if a range is not
788 * able to be unmapped, ex. a set of 4k pages that was mapped as a
789 * 2M hugepage into the IOMMU, the unmap ioctl returns success but with
790 * a zero sized unmap. Also, if an unmap request overlaps the first
791 * address of a hugepage, the IOMMU will unmap the entire hugepage.
792 * This also returns success and the returned unmap size reflects the
793 * actual size unmapped.
794 *
795 * We attempt to maintain compatibility with this "v1" interface, but
796 * we take control out of the hands of the IOMMU. Therefore, an unmap
797 * request offset from the beginning of the original mapping will
798 * return success with zero sized unmap. And an unmap request covering
799 * the first iova of mapping will unmap the entire range.
800 *
801 * The v2 version of this interface intends to be more deterministic.
802 * Unmap requests must fully cover previous mappings. Multiple
803 * mappings may still be unmaped by specifying large ranges, but there
804 * must not be any previous mappings bisected by the range. An error
805 * will be returned if these conditions are not met. The v2 interface
806 * will only return success and a size of zero if there were no
807 * mappings within the range.
808 */
809 if (iommu->v2) {
810 dma = vfio_find_dma(iommu, unmap->iova, 1);
811 if (dma && dma->iova != unmap->iova) {
812 ret = -EINVAL;
813 goto unlock;
814 }
815 dma = vfio_find_dma(iommu, unmap->iova + unmap->size - 1, 0);
816 if (dma && dma->iova + dma->size != unmap->iova + unmap->size) {
817 ret = -EINVAL;
818 goto unlock;
819 }
820 }
821
822 while ((dma = vfio_find_dma(iommu, unmap->iova, unmap->size))) {
823 if (!iommu->v2 && unmap->iova > dma->iova)
824 break;
825 /*
826 * Task with same address space who mapped this iova range is
827 * allowed to unmap the iova range.
828 */
829 if (dma->task->mm != current->mm)
830 break;
831
832 if (!RB_EMPTY_ROOT(&dma->pfn_list)) {
833 struct vfio_iommu_type1_dma_unmap nb_unmap;
834
835 if (dma_last == dma) {
836 BUG_ON(++retries > 10);
837 } else {
838 dma_last = dma;
839 retries = 0;
840 }
841
842 nb_unmap.iova = dma->iova;
843 nb_unmap.size = dma->size;
844
845 /*
846 * Notify anyone (mdev vendor drivers) to invalidate and
847 * unmap iovas within the range we're about to unmap.
848 * Vendor drivers MUST unpin pages in response to an
849 * invalidation.
850 */
851 mutex_unlock(&iommu->lock);
852 blocking_notifier_call_chain(&iommu->notifier,
853 VFIO_IOMMU_NOTIFY_DMA_UNMAP,
854 &nb_unmap);
855 goto again;
856 }
857 unmapped += dma->size;
858 vfio_remove_dma(iommu, dma);
859 }
860
861 unlock:
862 mutex_unlock(&iommu->lock);
863
864 /* Report how much was unmapped */
865 unmap->size = unmapped;
866
867 return ret;
868 }
869
870 /*
871 * Turns out AMD IOMMU has a page table bug where it won't map large pages
872 * to a region that previously mapped smaller pages. This should be fixed
873 * soon, so this is just a temporary workaround to break mappings down into
874 * PAGE_SIZE. Better to map smaller pages than nothing.
875 */
876 static int map_try_harder(struct vfio_domain *domain, dma_addr_t iova,
877 unsigned long pfn, long npage, int prot)
878 {
879 long i;
880 int ret = 0;
881
882 for (i = 0; i < npage; i++, pfn++, iova += PAGE_SIZE) {
883 ret = iommu_map(domain->domain, iova,
884 (phys_addr_t)pfn << PAGE_SHIFT,
885 PAGE_SIZE, prot | domain->prot);
886 if (ret)
887 break;
888 }
889
890 for (; i < npage && i > 0; i--, iova -= PAGE_SIZE)
891 iommu_unmap(domain->domain, iova, PAGE_SIZE);
892
893 return ret;
894 }
895
896 static int vfio_iommu_map(struct vfio_iommu *iommu, dma_addr_t iova,
897 unsigned long pfn, long npage, int prot)
898 {
899 struct vfio_domain *d;
900 int ret;
901
902 list_for_each_entry(d, &iommu->domain_list, next) {
903 ret = iommu_map(d->domain, iova, (phys_addr_t)pfn << PAGE_SHIFT,
904 npage << PAGE_SHIFT, prot | d->prot);
905 if (ret) {
906 if (ret != -EBUSY ||
907 map_try_harder(d, iova, pfn, npage, prot))
908 goto unwind;
909 }
910
911 cond_resched();
912 }
913
914 return 0;
915
916 unwind:
917 list_for_each_entry_continue_reverse(d, &iommu->domain_list, next)
918 iommu_unmap(d->domain, iova, npage << PAGE_SHIFT);
919
920 return ret;
921 }
922
923 static int vfio_pin_map_dma(struct vfio_iommu *iommu, struct vfio_dma *dma,
924 size_t map_size)
925 {
926 dma_addr_t iova = dma->iova;
927 unsigned long vaddr = dma->vaddr;
928 size_t size = map_size;
929 long npage;
930 unsigned long pfn, limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
931 bool lock_cap = capable(CAP_IPC_LOCK);
932 int ret = 0;
933
934 while (size) {
935 /* Pin a contiguous chunk of memory */
936 npage = vfio_pin_pages_remote(dma, vaddr + dma->size,
937 size >> PAGE_SHIFT, &pfn,
938 lock_cap, limit);
939 if (npage <= 0) {
940 WARN_ON(!npage);
941 ret = (int)npage;
942 break;
943 }
944
945 /* Map it! */
946 ret = vfio_iommu_map(iommu, iova + dma->size, pfn, npage,
947 dma->prot);
948 if (ret) {
949 vfio_unpin_pages_remote(dma, iova + dma->size, pfn,
950 npage, true);
951 break;
952 }
953
954 size -= npage << PAGE_SHIFT;
955 dma->size += npage << PAGE_SHIFT;
956 }
957
958 dma->iommu_mapped = true;
959
960 if (ret)
961 vfio_remove_dma(iommu, dma);
962
963 return ret;
964 }
965
966 static int vfio_dma_do_map(struct vfio_iommu *iommu,
967 struct vfio_iommu_type1_dma_map *map)
968 {
969 dma_addr_t iova = map->iova;
970 unsigned long vaddr = map->vaddr;
971 size_t size = map->size;
972 int ret = 0, prot = 0;
973 uint64_t mask;
974 struct vfio_dma *dma;
975
976 /* Verify that none of our __u64 fields overflow */
977 if (map->size != size || map->vaddr != vaddr || map->iova != iova)
978 return -EINVAL;
979
980 mask = ((uint64_t)1 << __ffs(vfio_pgsize_bitmap(iommu))) - 1;
981
982 WARN_ON(mask & PAGE_MASK);
983
984 /* READ/WRITE from device perspective */
985 if (map->flags & VFIO_DMA_MAP_FLAG_WRITE)
986 prot |= IOMMU_WRITE;
987 if (map->flags & VFIO_DMA_MAP_FLAG_READ)
988 prot |= IOMMU_READ;
989
990 if (!prot || !size || (size | iova | vaddr) & mask)
991 return -EINVAL;
992
993 /* Don't allow IOVA or virtual address wrap */
994 if (iova + size - 1 < iova || vaddr + size - 1 < vaddr)
995 return -EINVAL;
996
997 mutex_lock(&iommu->lock);
998
999 if (vfio_find_dma(iommu, iova, size)) {
1000 ret = -EEXIST;
1001 goto out_unlock;
1002 }
1003
1004 dma = kzalloc(sizeof(*dma), GFP_KERNEL);
1005 if (!dma) {
1006 ret = -ENOMEM;
1007 goto out_unlock;
1008 }
1009
1010 dma->iova = iova;
1011 dma->vaddr = vaddr;
1012 dma->prot = prot;
1013 get_task_struct(current);
1014 dma->task = current;
1015 dma->pfn_list = RB_ROOT;
1016
1017 /* Insert zero-sized and grow as we map chunks of it */
1018 vfio_link_dma(iommu, dma);
1019
1020 /* Don't pin and map if container doesn't contain IOMMU capable domain*/
1021 if (!IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu))
1022 dma->size = size;
1023 else
1024 ret = vfio_pin_map_dma(iommu, dma, size);
1025
1026 out_unlock:
1027 mutex_unlock(&iommu->lock);
1028 return ret;
1029 }
1030
1031 static int vfio_bus_type(struct device *dev, void *data)
1032 {
1033 struct bus_type **bus = data;
1034
1035 if (*bus && *bus != dev->bus)
1036 return -EINVAL;
1037
1038 *bus = dev->bus;
1039
1040 return 0;
1041 }
1042
1043 static int vfio_iommu_replay(struct vfio_iommu *iommu,
1044 struct vfio_domain *domain)
1045 {
1046 struct vfio_domain *d;
1047 struct rb_node *n;
1048 unsigned long limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1049 bool lock_cap = capable(CAP_IPC_LOCK);
1050 int ret;
1051
1052 /* Arbitrarily pick the first domain in the list for lookups */
1053 d = list_first_entry(&iommu->domain_list, struct vfio_domain, next);
1054 n = rb_first(&iommu->dma_list);
1055
1056 for (; n; n = rb_next(n)) {
1057 struct vfio_dma *dma;
1058 dma_addr_t iova;
1059
1060 dma = rb_entry(n, struct vfio_dma, node);
1061 iova = dma->iova;
1062
1063 while (iova < dma->iova + dma->size) {
1064 phys_addr_t phys;
1065 size_t size;
1066
1067 if (dma->iommu_mapped) {
1068 phys_addr_t p;
1069 dma_addr_t i;
1070
1071 phys = iommu_iova_to_phys(d->domain, iova);
1072
1073 if (WARN_ON(!phys)) {
1074 iova += PAGE_SIZE;
1075 continue;
1076 }
1077
1078 size = PAGE_SIZE;
1079 p = phys + size;
1080 i = iova + size;
1081 while (i < dma->iova + dma->size &&
1082 p == iommu_iova_to_phys(d->domain, i)) {
1083 size += PAGE_SIZE;
1084 p += PAGE_SIZE;
1085 i += PAGE_SIZE;
1086 }
1087 } else {
1088 unsigned long pfn;
1089 unsigned long vaddr = dma->vaddr +
1090 (iova - dma->iova);
1091 size_t n = dma->iova + dma->size - iova;
1092 long npage;
1093
1094 npage = vfio_pin_pages_remote(dma, vaddr,
1095 n >> PAGE_SHIFT,
1096 &pfn, lock_cap,
1097 limit);
1098 if (npage <= 0) {
1099 WARN_ON(!npage);
1100 ret = (int)npage;
1101 return ret;
1102 }
1103
1104 phys = pfn << PAGE_SHIFT;
1105 size = npage << PAGE_SHIFT;
1106 }
1107
1108 ret = iommu_map(domain->domain, iova, phys,
1109 size, dma->prot | domain->prot);
1110 if (ret)
1111 return ret;
1112
1113 iova += size;
1114 }
1115 dma->iommu_mapped = true;
1116 }
1117 return 0;
1118 }
1119
1120 /*
1121 * We change our unmap behavior slightly depending on whether the IOMMU
1122 * supports fine-grained superpages. IOMMUs like AMD-Vi will use a superpage
1123 * for practically any contiguous power-of-two mapping we give it. This means
1124 * we don't need to look for contiguous chunks ourselves to make unmapping
1125 * more efficient. On IOMMUs with coarse-grained super pages, like Intel VT-d
1126 * with discrete 2M/1G/512G/1T superpages, identifying contiguous chunks
1127 * significantly boosts non-hugetlbfs mappings and doesn't seem to hurt when
1128 * hugetlbfs is in use.
1129 */
1130 static void vfio_test_domain_fgsp(struct vfio_domain *domain)
1131 {
1132 struct page *pages;
1133 int ret, order = get_order(PAGE_SIZE * 2);
1134
1135 pages = alloc_pages(GFP_KERNEL | __GFP_ZERO, order);
1136 if (!pages)
1137 return;
1138
1139 ret = iommu_map(domain->domain, 0, page_to_phys(pages), PAGE_SIZE * 2,
1140 IOMMU_READ | IOMMU_WRITE | domain->prot);
1141 if (!ret) {
1142 size_t unmapped = iommu_unmap(domain->domain, 0, PAGE_SIZE);
1143
1144 if (unmapped == PAGE_SIZE)
1145 iommu_unmap(domain->domain, PAGE_SIZE, PAGE_SIZE);
1146 else
1147 domain->fgsp = true;
1148 }
1149
1150 __free_pages(pages, order);
1151 }
1152
1153 static struct vfio_group *find_iommu_group(struct vfio_domain *domain,
1154 struct iommu_group *iommu_group)
1155 {
1156 struct vfio_group *g;
1157
1158 list_for_each_entry(g, &domain->group_list, next) {
1159 if (g->iommu_group == iommu_group)
1160 return g;
1161 }
1162
1163 return NULL;
1164 }
1165
1166 static bool vfio_iommu_has_sw_msi(struct iommu_group *group, phys_addr_t *base)
1167 {
1168 struct list_head group_resv_regions;
1169 struct iommu_resv_region *region, *next;
1170 bool ret = false;
1171
1172 INIT_LIST_HEAD(&group_resv_regions);
1173 iommu_get_group_resv_regions(group, &group_resv_regions);
1174 list_for_each_entry(region, &group_resv_regions, list) {
1175 /*
1176 * The presence of any 'real' MSI regions should take
1177 * precedence over the software-managed one if the
1178 * IOMMU driver happens to advertise both types.
1179 */
1180 if (region->type == IOMMU_RESV_MSI) {
1181 ret = false;
1182 break;
1183 }
1184
1185 if (region->type == IOMMU_RESV_SW_MSI) {
1186 *base = region->start;
1187 ret = true;
1188 }
1189 }
1190 list_for_each_entry_safe(region, next, &group_resv_regions, list)
1191 kfree(region);
1192 return ret;
1193 }
1194
1195 static int vfio_iommu_type1_attach_group(void *iommu_data,
1196 struct iommu_group *iommu_group)
1197 {
1198 struct vfio_iommu *iommu = iommu_data;
1199 struct vfio_group *group;
1200 struct vfio_domain *domain, *d;
1201 struct bus_type *bus = NULL, *mdev_bus;
1202 int ret;
1203 bool resv_msi, msi_remap;
1204 phys_addr_t resv_msi_base;
1205
1206 mutex_lock(&iommu->lock);
1207
1208 list_for_each_entry(d, &iommu->domain_list, next) {
1209 if (find_iommu_group(d, iommu_group)) {
1210 mutex_unlock(&iommu->lock);
1211 return -EINVAL;
1212 }
1213 }
1214
1215 if (iommu->external_domain) {
1216 if (find_iommu_group(iommu->external_domain, iommu_group)) {
1217 mutex_unlock(&iommu->lock);
1218 return -EINVAL;
1219 }
1220 }
1221
1222 group = kzalloc(sizeof(*group), GFP_KERNEL);
1223 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
1224 if (!group || !domain) {
1225 ret = -ENOMEM;
1226 goto out_free;
1227 }
1228
1229 group->iommu_group = iommu_group;
1230
1231 /* Determine bus_type in order to allocate a domain */
1232 ret = iommu_group_for_each_dev(iommu_group, &bus, vfio_bus_type);
1233 if (ret)
1234 goto out_free;
1235
1236 mdev_bus = symbol_get(mdev_bus_type);
1237
1238 if (mdev_bus) {
1239 if ((bus == mdev_bus) && !iommu_present(bus)) {
1240 symbol_put(mdev_bus_type);
1241 if (!iommu->external_domain) {
1242 INIT_LIST_HEAD(&domain->group_list);
1243 iommu->external_domain = domain;
1244 } else
1245 kfree(domain);
1246
1247 list_add(&group->next,
1248 &iommu->external_domain->group_list);
1249 mutex_unlock(&iommu->lock);
1250 return 0;
1251 }
1252 symbol_put(mdev_bus_type);
1253 }
1254
1255 domain->domain = iommu_domain_alloc(bus);
1256 if (!domain->domain) {
1257 ret = -EIO;
1258 goto out_free;
1259 }
1260
1261 if (iommu->nesting) {
1262 int attr = 1;
1263
1264 ret = iommu_domain_set_attr(domain->domain, DOMAIN_ATTR_NESTING,
1265 &attr);
1266 if (ret)
1267 goto out_domain;
1268 }
1269
1270 ret = iommu_attach_group(domain->domain, iommu_group);
1271 if (ret)
1272 goto out_domain;
1273
1274 resv_msi = vfio_iommu_has_sw_msi(iommu_group, &resv_msi_base);
1275
1276 INIT_LIST_HEAD(&domain->group_list);
1277 list_add(&group->next, &domain->group_list);
1278
1279 msi_remap = irq_domain_check_msi_remap() ||
1280 iommu_capable(bus, IOMMU_CAP_INTR_REMAP);
1281
1282 if (!allow_unsafe_interrupts && !msi_remap) {
1283 pr_warn("%s: No interrupt remapping support. Use the module param \"allow_unsafe_interrupts\" to enable VFIO IOMMU support on this platform\n",
1284 __func__);
1285 ret = -EPERM;
1286 goto out_detach;
1287 }
1288
1289 if (iommu_capable(bus, IOMMU_CAP_CACHE_COHERENCY))
1290 domain->prot |= IOMMU_CACHE;
1291
1292 /*
1293 * Try to match an existing compatible domain. We don't want to
1294 * preclude an IOMMU driver supporting multiple bus_types and being
1295 * able to include different bus_types in the same IOMMU domain, so
1296 * we test whether the domains use the same iommu_ops rather than
1297 * testing if they're on the same bus_type.
1298 */
1299 list_for_each_entry(d, &iommu->domain_list, next) {
1300 if (d->domain->ops == domain->domain->ops &&
1301 d->prot == domain->prot) {
1302 iommu_detach_group(domain->domain, iommu_group);
1303 if (!iommu_attach_group(d->domain, iommu_group)) {
1304 list_add(&group->next, &d->group_list);
1305 iommu_domain_free(domain->domain);
1306 kfree(domain);
1307 mutex_unlock(&iommu->lock);
1308 return 0;
1309 }
1310
1311 ret = iommu_attach_group(domain->domain, iommu_group);
1312 if (ret)
1313 goto out_domain;
1314 }
1315 }
1316
1317 vfio_test_domain_fgsp(domain);
1318
1319 /* replay mappings on new domains */
1320 ret = vfio_iommu_replay(iommu, domain);
1321 if (ret)
1322 goto out_detach;
1323
1324 if (resv_msi) {
1325 ret = iommu_get_msi_cookie(domain->domain, resv_msi_base);
1326 if (ret)
1327 goto out_detach;
1328 }
1329
1330 list_add(&domain->next, &iommu->domain_list);
1331
1332 mutex_unlock(&iommu->lock);
1333
1334 return 0;
1335
1336 out_detach:
1337 iommu_detach_group(domain->domain, iommu_group);
1338 out_domain:
1339 iommu_domain_free(domain->domain);
1340 out_free:
1341 kfree(domain);
1342 kfree(group);
1343 mutex_unlock(&iommu->lock);
1344 return ret;
1345 }
1346
1347 static void vfio_iommu_unmap_unpin_all(struct vfio_iommu *iommu)
1348 {
1349 struct rb_node *node;
1350
1351 while ((node = rb_first(&iommu->dma_list)))
1352 vfio_remove_dma(iommu, rb_entry(node, struct vfio_dma, node));
1353 }
1354
1355 static void vfio_iommu_unmap_unpin_reaccount(struct vfio_iommu *iommu)
1356 {
1357 struct rb_node *n, *p;
1358
1359 n = rb_first(&iommu->dma_list);
1360 for (; n; n = rb_next(n)) {
1361 struct vfio_dma *dma;
1362 long locked = 0, unlocked = 0;
1363
1364 dma = rb_entry(n, struct vfio_dma, node);
1365 unlocked += vfio_unmap_unpin(iommu, dma, false);
1366 p = rb_first(&dma->pfn_list);
1367 for (; p; p = rb_next(p)) {
1368 struct vfio_pfn *vpfn = rb_entry(p, struct vfio_pfn,
1369 node);
1370
1371 if (!is_invalid_reserved_pfn(vpfn->pfn))
1372 locked++;
1373 }
1374 vfio_lock_acct(dma->task, locked - unlocked, NULL);
1375 }
1376 }
1377
1378 static void vfio_sanity_check_pfn_list(struct vfio_iommu *iommu)
1379 {
1380 struct rb_node *n;
1381
1382 n = rb_first(&iommu->dma_list);
1383 for (; n; n = rb_next(n)) {
1384 struct vfio_dma *dma;
1385
1386 dma = rb_entry(n, struct vfio_dma, node);
1387
1388 if (WARN_ON(!RB_EMPTY_ROOT(&dma->pfn_list)))
1389 break;
1390 }
1391 /* mdev vendor driver must unregister notifier */
1392 WARN_ON(iommu->notifier.head);
1393 }
1394
1395 static void vfio_iommu_type1_detach_group(void *iommu_data,
1396 struct iommu_group *iommu_group)
1397 {
1398 struct vfio_iommu *iommu = iommu_data;
1399 struct vfio_domain *domain;
1400 struct vfio_group *group;
1401
1402 mutex_lock(&iommu->lock);
1403
1404 if (iommu->external_domain) {
1405 group = find_iommu_group(iommu->external_domain, iommu_group);
1406 if (group) {
1407 list_del(&group->next);
1408 kfree(group);
1409
1410 if (list_empty(&iommu->external_domain->group_list)) {
1411 vfio_sanity_check_pfn_list(iommu);
1412
1413 if (!IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu))
1414 vfio_iommu_unmap_unpin_all(iommu);
1415
1416 kfree(iommu->external_domain);
1417 iommu->external_domain = NULL;
1418 }
1419 goto detach_group_done;
1420 }
1421 }
1422
1423 list_for_each_entry(domain, &iommu->domain_list, next) {
1424 group = find_iommu_group(domain, iommu_group);
1425 if (!group)
1426 continue;
1427
1428 iommu_detach_group(domain->domain, iommu_group);
1429 list_del(&group->next);
1430 kfree(group);
1431 /*
1432 * Group ownership provides privilege, if the group list is
1433 * empty, the domain goes away. If it's the last domain with
1434 * iommu and external domain doesn't exist, then all the
1435 * mappings go away too. If it's the last domain with iommu and
1436 * external domain exist, update accounting
1437 */
1438 if (list_empty(&domain->group_list)) {
1439 if (list_is_singular(&iommu->domain_list)) {
1440 if (!iommu->external_domain)
1441 vfio_iommu_unmap_unpin_all(iommu);
1442 else
1443 vfio_iommu_unmap_unpin_reaccount(iommu);
1444 }
1445 iommu_domain_free(domain->domain);
1446 list_del(&domain->next);
1447 kfree(domain);
1448 }
1449 break;
1450 }
1451
1452 detach_group_done:
1453 mutex_unlock(&iommu->lock);
1454 }
1455
1456 static void *vfio_iommu_type1_open(unsigned long arg)
1457 {
1458 struct vfio_iommu *iommu;
1459
1460 iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
1461 if (!iommu)
1462 return ERR_PTR(-ENOMEM);
1463
1464 switch (arg) {
1465 case VFIO_TYPE1_IOMMU:
1466 break;
1467 case VFIO_TYPE1_NESTING_IOMMU:
1468 iommu->nesting = true;
1469 case VFIO_TYPE1v2_IOMMU:
1470 iommu->v2 = true;
1471 break;
1472 default:
1473 kfree(iommu);
1474 return ERR_PTR(-EINVAL);
1475 }
1476
1477 INIT_LIST_HEAD(&iommu->domain_list);
1478 iommu->dma_list = RB_ROOT;
1479 mutex_init(&iommu->lock);
1480 BLOCKING_INIT_NOTIFIER_HEAD(&iommu->notifier);
1481
1482 return iommu;
1483 }
1484
1485 static void vfio_release_domain(struct vfio_domain *domain, bool external)
1486 {
1487 struct vfio_group *group, *group_tmp;
1488
1489 list_for_each_entry_safe(group, group_tmp,
1490 &domain->group_list, next) {
1491 if (!external)
1492 iommu_detach_group(domain->domain, group->iommu_group);
1493 list_del(&group->next);
1494 kfree(group);
1495 }
1496
1497 if (!external)
1498 iommu_domain_free(domain->domain);
1499 }
1500
1501 static void vfio_iommu_type1_release(void *iommu_data)
1502 {
1503 struct vfio_iommu *iommu = iommu_data;
1504 struct vfio_domain *domain, *domain_tmp;
1505
1506 if (iommu->external_domain) {
1507 vfio_release_domain(iommu->external_domain, true);
1508 vfio_sanity_check_pfn_list(iommu);
1509 kfree(iommu->external_domain);
1510 }
1511
1512 vfio_iommu_unmap_unpin_all(iommu);
1513
1514 list_for_each_entry_safe(domain, domain_tmp,
1515 &iommu->domain_list, next) {
1516 vfio_release_domain(domain, false);
1517 list_del(&domain->next);
1518 kfree(domain);
1519 }
1520 kfree(iommu);
1521 }
1522
1523 static int vfio_domains_have_iommu_cache(struct vfio_iommu *iommu)
1524 {
1525 struct vfio_domain *domain;
1526 int ret = 1;
1527
1528 mutex_lock(&iommu->lock);
1529 list_for_each_entry(domain, &iommu->domain_list, next) {
1530 if (!(domain->prot & IOMMU_CACHE)) {
1531 ret = 0;
1532 break;
1533 }
1534 }
1535 mutex_unlock(&iommu->lock);
1536
1537 return ret;
1538 }
1539
1540 static long vfio_iommu_type1_ioctl(void *iommu_data,
1541 unsigned int cmd, unsigned long arg)
1542 {
1543 struct vfio_iommu *iommu = iommu_data;
1544 unsigned long minsz;
1545
1546 if (cmd == VFIO_CHECK_EXTENSION) {
1547 switch (arg) {
1548 case VFIO_TYPE1_IOMMU:
1549 case VFIO_TYPE1v2_IOMMU:
1550 case VFIO_TYPE1_NESTING_IOMMU:
1551 return 1;
1552 case VFIO_DMA_CC_IOMMU:
1553 if (!iommu)
1554 return 0;
1555 return vfio_domains_have_iommu_cache(iommu);
1556 default:
1557 return 0;
1558 }
1559 } else if (cmd == VFIO_IOMMU_GET_INFO) {
1560 struct vfio_iommu_type1_info info;
1561
1562 minsz = offsetofend(struct vfio_iommu_type1_info, iova_pgsizes);
1563
1564 if (copy_from_user(&info, (void __user *)arg, minsz))
1565 return -EFAULT;
1566
1567 if (info.argsz < minsz)
1568 return -EINVAL;
1569
1570 info.flags = VFIO_IOMMU_INFO_PGSIZES;
1571
1572 info.iova_pgsizes = vfio_pgsize_bitmap(iommu);
1573
1574 return copy_to_user((void __user *)arg, &info, minsz) ?
1575 -EFAULT : 0;
1576
1577 } else if (cmd == VFIO_IOMMU_MAP_DMA) {
1578 struct vfio_iommu_type1_dma_map map;
1579 uint32_t mask = VFIO_DMA_MAP_FLAG_READ |
1580 VFIO_DMA_MAP_FLAG_WRITE;
1581
1582 minsz = offsetofend(struct vfio_iommu_type1_dma_map, size);
1583
1584 if (copy_from_user(&map, (void __user *)arg, minsz))
1585 return -EFAULT;
1586
1587 if (map.argsz < minsz || map.flags & ~mask)
1588 return -EINVAL;
1589
1590 return vfio_dma_do_map(iommu, &map);
1591
1592 } else if (cmd == VFIO_IOMMU_UNMAP_DMA) {
1593 struct vfio_iommu_type1_dma_unmap unmap;
1594 long ret;
1595
1596 minsz = offsetofend(struct vfio_iommu_type1_dma_unmap, size);
1597
1598 if (copy_from_user(&unmap, (void __user *)arg, minsz))
1599 return -EFAULT;
1600
1601 if (unmap.argsz < minsz || unmap.flags)
1602 return -EINVAL;
1603
1604 ret = vfio_dma_do_unmap(iommu, &unmap);
1605 if (ret)
1606 return ret;
1607
1608 return copy_to_user((void __user *)arg, &unmap, minsz) ?
1609 -EFAULT : 0;
1610 }
1611
1612 return -ENOTTY;
1613 }
1614
1615 static int vfio_iommu_type1_register_notifier(void *iommu_data,
1616 unsigned long *events,
1617 struct notifier_block *nb)
1618 {
1619 struct vfio_iommu *iommu = iommu_data;
1620
1621 /* clear known events */
1622 *events &= ~VFIO_IOMMU_NOTIFY_DMA_UNMAP;
1623
1624 /* refuse to register if still events remaining */
1625 if (*events)
1626 return -EINVAL;
1627
1628 return blocking_notifier_chain_register(&iommu->notifier, nb);
1629 }
1630
1631 static int vfio_iommu_type1_unregister_notifier(void *iommu_data,
1632 struct notifier_block *nb)
1633 {
1634 struct vfio_iommu *iommu = iommu_data;
1635
1636 return blocking_notifier_chain_unregister(&iommu->notifier, nb);
1637 }
1638
1639 static const struct vfio_iommu_driver_ops vfio_iommu_driver_ops_type1 = {
1640 .name = "vfio-iommu-type1",
1641 .owner = THIS_MODULE,
1642 .open = vfio_iommu_type1_open,
1643 .release = vfio_iommu_type1_release,
1644 .ioctl = vfio_iommu_type1_ioctl,
1645 .attach_group = vfio_iommu_type1_attach_group,
1646 .detach_group = vfio_iommu_type1_detach_group,
1647 .pin_pages = vfio_iommu_type1_pin_pages,
1648 .unpin_pages = vfio_iommu_type1_unpin_pages,
1649 .register_notifier = vfio_iommu_type1_register_notifier,
1650 .unregister_notifier = vfio_iommu_type1_unregister_notifier,
1651 };
1652
1653 static int __init vfio_iommu_type1_init(void)
1654 {
1655 return vfio_register_iommu_driver(&vfio_iommu_driver_ops_type1);
1656 }
1657
1658 static void __exit vfio_iommu_type1_cleanup(void)
1659 {
1660 vfio_unregister_iommu_driver(&vfio_iommu_driver_ops_type1);
1661 }
1662
1663 module_init(vfio_iommu_type1_init);
1664 module_exit(vfio_iommu_type1_cleanup);
1665
1666 MODULE_VERSION(DRIVER_VERSION);
1667 MODULE_LICENSE("GPL v2");
1668 MODULE_AUTHOR(DRIVER_AUTHOR);
1669 MODULE_DESCRIPTION(DRIVER_DESC);