]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/video/aty/aty128fb.c
Remove obsolete #include <linux/config.h>
[mirror_ubuntu-jammy-kernel.git] / drivers / video / aty / aty128fb.c
1 /* $Id: aty128fb.c,v 1.1.1.1.36.1 1999/12/11 09:03:05 Exp $
2 * linux/drivers/video/aty128fb.c -- Frame buffer device for ATI Rage128
3 *
4 * Copyright (C) 1999-2003, Brad Douglas <brad@neruo.com>
5 * Copyright (C) 1999, Anthony Tong <atong@uiuc.edu>
6 *
7 * Ani Joshi / Jeff Garzik
8 * - Code cleanup
9 *
10 * Michel Danzer <michdaen@iiic.ethz.ch>
11 * - 15/16 bit cleanup
12 * - fix panning
13 *
14 * Benjamin Herrenschmidt
15 * - pmac-specific PM stuff
16 * - various fixes & cleanups
17 *
18 * Andreas Hundt <andi@convergence.de>
19 * - FB_ACTIVATE fixes
20 *
21 * Paul Mackerras <paulus@samba.org>
22 * - Convert to new framebuffer API,
23 * fix colormap setting at 16 bits/pixel (565)
24 *
25 * Paul Mundt
26 * - PCI hotplug
27 *
28 * Jon Smirl <jonsmirl@yahoo.com>
29 * - PCI ID update
30 * - replace ROM BIOS search
31 *
32 * Based off of Geert's atyfb.c and vfb.c.
33 *
34 * TODO:
35 * - monitor sensing (DDC)
36 * - virtual display
37 * - other platform support (only ppc/x86 supported)
38 * - hardware cursor support
39 *
40 * Please cc: your patches to brad@neruo.com.
41 */
42
43 /*
44 * A special note of gratitude to ATI's devrel for providing documentation,
45 * example code and hardware. Thanks Nitya. -atong and brad
46 */
47
48
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/kernel.h>
52 #include <linux/errno.h>
53 #include <linux/string.h>
54 #include <linux/mm.h>
55 #include <linux/tty.h>
56 #include <linux/slab.h>
57 #include <linux/vmalloc.h>
58 #include <linux/delay.h>
59 #include <linux/interrupt.h>
60 #include <asm/uaccess.h>
61 #include <linux/fb.h>
62 #include <linux/init.h>
63 #include <linux/pci.h>
64 #include <linux/ioport.h>
65 #include <linux/console.h>
66 #include <linux/backlight.h>
67 #include <asm/io.h>
68
69 #ifdef CONFIG_PPC_PMAC
70 #include <asm/machdep.h>
71 #include <asm/pmac_feature.h>
72 #include <asm/prom.h>
73 #include <asm/pci-bridge.h>
74 #include "../macmodes.h"
75 #endif
76
77 #ifdef CONFIG_PMAC_BACKLIGHT
78 #include <asm/backlight.h>
79 #endif
80
81 #ifdef CONFIG_BOOTX_TEXT
82 #include <asm/btext.h>
83 #endif /* CONFIG_BOOTX_TEXT */
84
85 #ifdef CONFIG_MTRR
86 #include <asm/mtrr.h>
87 #endif
88
89 #include <video/aty128.h>
90
91 /* Debug flag */
92 #undef DEBUG
93
94 #ifdef DEBUG
95 #define DBG(fmt, args...) printk(KERN_DEBUG "aty128fb: %s " fmt, __FUNCTION__, ##args);
96 #else
97 #define DBG(fmt, args...)
98 #endif
99
100 #ifndef CONFIG_PPC_PMAC
101 /* default mode */
102 static struct fb_var_screeninfo default_var __devinitdata = {
103 /* 640x480, 60 Hz, Non-Interlaced (25.175 MHz dotclock) */
104 640, 480, 640, 480, 0, 0, 8, 0,
105 {0, 8, 0}, {0, 8, 0}, {0, 8, 0}, {0, 0, 0},
106 0, 0, -1, -1, 0, 39722, 48, 16, 33, 10, 96, 2,
107 0, FB_VMODE_NONINTERLACED
108 };
109
110 #else /* CONFIG_PPC_PMAC */
111 /* default to 1024x768 at 75Hz on PPC - this will work
112 * on the iMac, the usual 640x480 @ 60Hz doesn't. */
113 static struct fb_var_screeninfo default_var = {
114 /* 1024x768, 75 Hz, Non-Interlaced (78.75 MHz dotclock) */
115 1024, 768, 1024, 768, 0, 0, 8, 0,
116 {0, 8, 0}, {0, 8, 0}, {0, 8, 0}, {0, 0, 0},
117 0, 0, -1, -1, 0, 12699, 160, 32, 28, 1, 96, 3,
118 FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
119 FB_VMODE_NONINTERLACED
120 };
121 #endif /* CONFIG_PPC_PMAC */
122
123 /* default modedb mode */
124 /* 640x480, 60 Hz, Non-Interlaced (25.172 MHz dotclock) */
125 static struct fb_videomode defaultmode __devinitdata = {
126 .refresh = 60,
127 .xres = 640,
128 .yres = 480,
129 .pixclock = 39722,
130 .left_margin = 48,
131 .right_margin = 16,
132 .upper_margin = 33,
133 .lower_margin = 10,
134 .hsync_len = 96,
135 .vsync_len = 2,
136 .sync = 0,
137 .vmode = FB_VMODE_NONINTERLACED
138 };
139
140 /* Chip generations */
141 enum {
142 rage_128,
143 rage_128_pci,
144 rage_128_pro,
145 rage_128_pro_pci,
146 rage_M3,
147 rage_M3_pci,
148 rage_M4,
149 rage_128_ultra,
150 };
151
152 /* Must match above enum */
153 static const char *r128_family[] __devinitdata = {
154 "AGP",
155 "PCI",
156 "PRO AGP",
157 "PRO PCI",
158 "M3 AGP",
159 "M3 PCI",
160 "M4 AGP",
161 "Ultra AGP",
162 };
163
164 /*
165 * PCI driver prototypes
166 */
167 static int aty128_probe(struct pci_dev *pdev,
168 const struct pci_device_id *ent);
169 static void aty128_remove(struct pci_dev *pdev);
170 static int aty128_pci_suspend(struct pci_dev *pdev, pm_message_t state);
171 static int aty128_pci_resume(struct pci_dev *pdev);
172 static int aty128_do_resume(struct pci_dev *pdev);
173
174 /* supported Rage128 chipsets */
175 static struct pci_device_id aty128_pci_tbl[] = {
176 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_LE,
177 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M3_pci },
178 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_LF,
179 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M3 },
180 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_MF,
181 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M4 },
182 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_ML,
183 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M4 },
184 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PA,
185 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
186 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PB,
187 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
188 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PC,
189 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
190 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PD,
191 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro_pci },
192 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PE,
193 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
194 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PF,
195 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
196 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PG,
197 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
198 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PH,
199 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
200 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PI,
201 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
202 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PJ,
203 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
204 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PK,
205 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
206 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PL,
207 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
208 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PM,
209 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
210 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PN,
211 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
212 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PO,
213 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
214 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PP,
215 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro_pci },
216 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PQ,
217 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
218 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PR,
219 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro_pci },
220 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PS,
221 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
222 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PT,
223 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
224 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PU,
225 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
226 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PV,
227 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
228 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PW,
229 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
230 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PX,
231 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
232 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RE,
233 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pci },
234 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RF,
235 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
236 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RG,
237 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
238 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RK,
239 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pci },
240 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RL,
241 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
242 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SE,
243 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
244 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SF,
245 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pci },
246 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SG,
247 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
248 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SH,
249 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
250 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SK,
251 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
252 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SL,
253 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
254 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SM,
255 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
256 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SN,
257 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
258 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TF,
259 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
260 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TL,
261 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
262 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TR,
263 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
264 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TS,
265 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
266 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TT,
267 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
268 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TU,
269 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
270 { 0, }
271 };
272
273 MODULE_DEVICE_TABLE(pci, aty128_pci_tbl);
274
275 static struct pci_driver aty128fb_driver = {
276 .name = "aty128fb",
277 .id_table = aty128_pci_tbl,
278 .probe = aty128_probe,
279 .remove = __devexit_p(aty128_remove),
280 .suspend = aty128_pci_suspend,
281 .resume = aty128_pci_resume,
282 };
283
284 /* packed BIOS settings */
285 #ifndef CONFIG_PPC
286 typedef struct {
287 u8 clock_chip_type;
288 u8 struct_size;
289 u8 accelerator_entry;
290 u8 VGA_entry;
291 u16 VGA_table_offset;
292 u16 POST_table_offset;
293 u16 XCLK;
294 u16 MCLK;
295 u8 num_PLL_blocks;
296 u8 size_PLL_blocks;
297 u16 PCLK_ref_freq;
298 u16 PCLK_ref_divider;
299 u32 PCLK_min_freq;
300 u32 PCLK_max_freq;
301 u16 MCLK_ref_freq;
302 u16 MCLK_ref_divider;
303 u32 MCLK_min_freq;
304 u32 MCLK_max_freq;
305 u16 XCLK_ref_freq;
306 u16 XCLK_ref_divider;
307 u32 XCLK_min_freq;
308 u32 XCLK_max_freq;
309 } __attribute__ ((packed)) PLL_BLOCK;
310 #endif /* !CONFIG_PPC */
311
312 /* onboard memory information */
313 struct aty128_meminfo {
314 u8 ML;
315 u8 MB;
316 u8 Trcd;
317 u8 Trp;
318 u8 Twr;
319 u8 CL;
320 u8 Tr2w;
321 u8 LoopLatency;
322 u8 DspOn;
323 u8 Rloop;
324 const char *name;
325 };
326
327 /* various memory configurations */
328 static const struct aty128_meminfo sdr_128 =
329 { 4, 4, 3, 3, 1, 3, 1, 16, 30, 16, "128-bit SDR SGRAM (1:1)" };
330 static const struct aty128_meminfo sdr_64 =
331 { 4, 8, 3, 3, 1, 3, 1, 17, 46, 17, "64-bit SDR SGRAM (1:1)" };
332 static const struct aty128_meminfo sdr_sgram =
333 { 4, 4, 1, 2, 1, 2, 1, 16, 24, 16, "64-bit SDR SGRAM (2:1)" };
334 static const struct aty128_meminfo ddr_sgram =
335 { 4, 4, 3, 3, 2, 3, 1, 16, 31, 16, "64-bit DDR SGRAM" };
336
337 static struct fb_fix_screeninfo aty128fb_fix __devinitdata = {
338 .id = "ATY Rage128",
339 .type = FB_TYPE_PACKED_PIXELS,
340 .visual = FB_VISUAL_PSEUDOCOLOR,
341 .xpanstep = 8,
342 .ypanstep = 1,
343 .mmio_len = 0x2000,
344 .accel = FB_ACCEL_ATI_RAGE128,
345 };
346
347 static char *mode_option __devinitdata = NULL;
348
349 #ifdef CONFIG_PPC_PMAC
350 static int default_vmode __devinitdata = VMODE_1024_768_60;
351 static int default_cmode __devinitdata = CMODE_8;
352 #endif
353
354 static int default_crt_on __devinitdata = 0;
355 static int default_lcd_on __devinitdata = 1;
356
357 #ifdef CONFIG_MTRR
358 static int mtrr = 1;
359 #endif
360
361 /* PLL constants */
362 struct aty128_constants {
363 u32 ref_clk;
364 u32 ppll_min;
365 u32 ppll_max;
366 u32 ref_divider;
367 u32 xclk;
368 u32 fifo_width;
369 u32 fifo_depth;
370 };
371
372 struct aty128_crtc {
373 u32 gen_cntl;
374 u32 h_total, h_sync_strt_wid;
375 u32 v_total, v_sync_strt_wid;
376 u32 pitch;
377 u32 offset, offset_cntl;
378 u32 xoffset, yoffset;
379 u32 vxres, vyres;
380 u32 depth, bpp;
381 };
382
383 struct aty128_pll {
384 u32 post_divider;
385 u32 feedback_divider;
386 u32 vclk;
387 };
388
389 struct aty128_ddafifo {
390 u32 dda_config;
391 u32 dda_on_off;
392 };
393
394 /* register values for a specific mode */
395 struct aty128fb_par {
396 struct aty128_crtc crtc;
397 struct aty128_pll pll;
398 struct aty128_ddafifo fifo_reg;
399 u32 accel_flags;
400 struct aty128_constants constants; /* PLL and others */
401 void __iomem *regbase; /* remapped mmio */
402 u32 vram_size; /* onboard video ram */
403 int chip_gen;
404 const struct aty128_meminfo *mem; /* onboard mem info */
405 #ifdef CONFIG_MTRR
406 struct { int vram; int vram_valid; } mtrr;
407 #endif
408 int blitter_may_be_busy;
409 int fifo_slots; /* free slots in FIFO (64 max) */
410
411 int pm_reg;
412 int crt_on, lcd_on;
413 struct pci_dev *pdev;
414 struct fb_info *next;
415 int asleep;
416 int lock_blank;
417
418 u8 red[32]; /* see aty128fb_setcolreg */
419 u8 green[64];
420 u8 blue[32];
421 u32 pseudo_palette[16]; /* used for TRUECOLOR */
422 };
423
424
425 #define round_div(n, d) ((n+(d/2))/d)
426
427 static int aty128fb_check_var(struct fb_var_screeninfo *var,
428 struct fb_info *info);
429 static int aty128fb_set_par(struct fb_info *info);
430 static int aty128fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
431 u_int transp, struct fb_info *info);
432 static int aty128fb_pan_display(struct fb_var_screeninfo *var,
433 struct fb_info *fb);
434 static int aty128fb_blank(int blank, struct fb_info *fb);
435 static int aty128fb_ioctl(struct fb_info *info, u_int cmd, unsigned long arg);
436 static int aty128fb_sync(struct fb_info *info);
437
438 /*
439 * Internal routines
440 */
441
442 static int aty128_encode_var(struct fb_var_screeninfo *var,
443 const struct aty128fb_par *par);
444 static int aty128_decode_var(struct fb_var_screeninfo *var,
445 struct aty128fb_par *par);
446 #if 0
447 static void __devinit aty128_get_pllinfo(struct aty128fb_par *par,
448 void __iomem *bios);
449 static void __devinit __iomem *aty128_map_ROM(struct pci_dev *pdev, const struct aty128fb_par *par);
450 #endif
451 static void aty128_timings(struct aty128fb_par *par);
452 static void aty128_init_engine(struct aty128fb_par *par);
453 static void aty128_reset_engine(const struct aty128fb_par *par);
454 static void aty128_flush_pixel_cache(const struct aty128fb_par *par);
455 static void do_wait_for_fifo(u16 entries, struct aty128fb_par *par);
456 static void wait_for_fifo(u16 entries, struct aty128fb_par *par);
457 static void wait_for_idle(struct aty128fb_par *par);
458 static u32 depth_to_dst(u32 depth);
459
460 #define BIOS_IN8(v) (readb(bios + (v)))
461 #define BIOS_IN16(v) (readb(bios + (v)) | \
462 (readb(bios + (v) + 1) << 8))
463 #define BIOS_IN32(v) (readb(bios + (v)) | \
464 (readb(bios + (v) + 1) << 8) | \
465 (readb(bios + (v) + 2) << 16) | \
466 (readb(bios + (v) + 3) << 24))
467
468
469 static struct fb_ops aty128fb_ops = {
470 .owner = THIS_MODULE,
471 .fb_check_var = aty128fb_check_var,
472 .fb_set_par = aty128fb_set_par,
473 .fb_setcolreg = aty128fb_setcolreg,
474 .fb_pan_display = aty128fb_pan_display,
475 .fb_blank = aty128fb_blank,
476 .fb_ioctl = aty128fb_ioctl,
477 .fb_sync = aty128fb_sync,
478 .fb_fillrect = cfb_fillrect,
479 .fb_copyarea = cfb_copyarea,
480 .fb_imageblit = cfb_imageblit,
481 };
482
483 /*
484 * Functions to read from/write to the mmio registers
485 * - endian conversions may possibly be avoided by
486 * using the other register aperture. TODO.
487 */
488 static inline u32 _aty_ld_le32(volatile unsigned int regindex,
489 const struct aty128fb_par *par)
490 {
491 return readl (par->regbase + regindex);
492 }
493
494 static inline void _aty_st_le32(volatile unsigned int regindex, u32 val,
495 const struct aty128fb_par *par)
496 {
497 writel (val, par->regbase + regindex);
498 }
499
500 static inline u8 _aty_ld_8(unsigned int regindex,
501 const struct aty128fb_par *par)
502 {
503 return readb (par->regbase + regindex);
504 }
505
506 static inline void _aty_st_8(unsigned int regindex, u8 val,
507 const struct aty128fb_par *par)
508 {
509 writeb (val, par->regbase + regindex);
510 }
511
512 #define aty_ld_le32(regindex) _aty_ld_le32(regindex, par)
513 #define aty_st_le32(regindex, val) _aty_st_le32(regindex, val, par)
514 #define aty_ld_8(regindex) _aty_ld_8(regindex, par)
515 #define aty_st_8(regindex, val) _aty_st_8(regindex, val, par)
516
517 /*
518 * Functions to read from/write to the pll registers
519 */
520
521 #define aty_ld_pll(pll_index) _aty_ld_pll(pll_index, par)
522 #define aty_st_pll(pll_index, val) _aty_st_pll(pll_index, val, par)
523
524
525 static u32 _aty_ld_pll(unsigned int pll_index,
526 const struct aty128fb_par *par)
527 {
528 aty_st_8(CLOCK_CNTL_INDEX, pll_index & 0x3F);
529 return aty_ld_le32(CLOCK_CNTL_DATA);
530 }
531
532
533 static void _aty_st_pll(unsigned int pll_index, u32 val,
534 const struct aty128fb_par *par)
535 {
536 aty_st_8(CLOCK_CNTL_INDEX, (pll_index & 0x3F) | PLL_WR_EN);
537 aty_st_le32(CLOCK_CNTL_DATA, val);
538 }
539
540
541 /* return true when the PLL has completed an atomic update */
542 static int aty_pll_readupdate(const struct aty128fb_par *par)
543 {
544 return !(aty_ld_pll(PPLL_REF_DIV) & PPLL_ATOMIC_UPDATE_R);
545 }
546
547
548 static void aty_pll_wait_readupdate(const struct aty128fb_par *par)
549 {
550 unsigned long timeout = jiffies + HZ/100; // should be more than enough
551 int reset = 1;
552
553 while (time_before(jiffies, timeout))
554 if (aty_pll_readupdate(par)) {
555 reset = 0;
556 break;
557 }
558
559 if (reset) /* reset engine?? */
560 printk(KERN_DEBUG "aty128fb: PLL write timeout!\n");
561 }
562
563
564 /* tell PLL to update */
565 static void aty_pll_writeupdate(const struct aty128fb_par *par)
566 {
567 aty_pll_wait_readupdate(par);
568
569 aty_st_pll(PPLL_REF_DIV,
570 aty_ld_pll(PPLL_REF_DIV) | PPLL_ATOMIC_UPDATE_W);
571 }
572
573
574 /* write to the scratch register to test r/w functionality */
575 static int __devinit register_test(const struct aty128fb_par *par)
576 {
577 u32 val;
578 int flag = 0;
579
580 val = aty_ld_le32(BIOS_0_SCRATCH);
581
582 aty_st_le32(BIOS_0_SCRATCH, 0x55555555);
583 if (aty_ld_le32(BIOS_0_SCRATCH) == 0x55555555) {
584 aty_st_le32(BIOS_0_SCRATCH, 0xAAAAAAAA);
585
586 if (aty_ld_le32(BIOS_0_SCRATCH) == 0xAAAAAAAA)
587 flag = 1;
588 }
589
590 aty_st_le32(BIOS_0_SCRATCH, val); // restore value
591 return flag;
592 }
593
594
595 /*
596 * Accelerator engine functions
597 */
598 static void do_wait_for_fifo(u16 entries, struct aty128fb_par *par)
599 {
600 int i;
601
602 for (;;) {
603 for (i = 0; i < 2000000; i++) {
604 par->fifo_slots = aty_ld_le32(GUI_STAT) & 0x0fff;
605 if (par->fifo_slots >= entries)
606 return;
607 }
608 aty128_reset_engine(par);
609 }
610 }
611
612
613 static void wait_for_idle(struct aty128fb_par *par)
614 {
615 int i;
616
617 do_wait_for_fifo(64, par);
618
619 for (;;) {
620 for (i = 0; i < 2000000; i++) {
621 if (!(aty_ld_le32(GUI_STAT) & (1 << 31))) {
622 aty128_flush_pixel_cache(par);
623 par->blitter_may_be_busy = 0;
624 return;
625 }
626 }
627 aty128_reset_engine(par);
628 }
629 }
630
631
632 static void wait_for_fifo(u16 entries, struct aty128fb_par *par)
633 {
634 if (par->fifo_slots < entries)
635 do_wait_for_fifo(64, par);
636 par->fifo_slots -= entries;
637 }
638
639
640 static void aty128_flush_pixel_cache(const struct aty128fb_par *par)
641 {
642 int i;
643 u32 tmp;
644
645 tmp = aty_ld_le32(PC_NGUI_CTLSTAT);
646 tmp &= ~(0x00ff);
647 tmp |= 0x00ff;
648 aty_st_le32(PC_NGUI_CTLSTAT, tmp);
649
650 for (i = 0; i < 2000000; i++)
651 if (!(aty_ld_le32(PC_NGUI_CTLSTAT) & PC_BUSY))
652 break;
653 }
654
655
656 static void aty128_reset_engine(const struct aty128fb_par *par)
657 {
658 u32 gen_reset_cntl, clock_cntl_index, mclk_cntl;
659
660 aty128_flush_pixel_cache(par);
661
662 clock_cntl_index = aty_ld_le32(CLOCK_CNTL_INDEX);
663 mclk_cntl = aty_ld_pll(MCLK_CNTL);
664
665 aty_st_pll(MCLK_CNTL, mclk_cntl | 0x00030000);
666
667 gen_reset_cntl = aty_ld_le32(GEN_RESET_CNTL);
668 aty_st_le32(GEN_RESET_CNTL, gen_reset_cntl | SOFT_RESET_GUI);
669 aty_ld_le32(GEN_RESET_CNTL);
670 aty_st_le32(GEN_RESET_CNTL, gen_reset_cntl & ~(SOFT_RESET_GUI));
671 aty_ld_le32(GEN_RESET_CNTL);
672
673 aty_st_pll(MCLK_CNTL, mclk_cntl);
674 aty_st_le32(CLOCK_CNTL_INDEX, clock_cntl_index);
675 aty_st_le32(GEN_RESET_CNTL, gen_reset_cntl);
676
677 /* use old pio mode */
678 aty_st_le32(PM4_BUFFER_CNTL, PM4_BUFFER_CNTL_NONPM4);
679
680 DBG("engine reset");
681 }
682
683
684 static void aty128_init_engine(struct aty128fb_par *par)
685 {
686 u32 pitch_value;
687
688 wait_for_idle(par);
689
690 /* 3D scaler not spoken here */
691 wait_for_fifo(1, par);
692 aty_st_le32(SCALE_3D_CNTL, 0x00000000);
693
694 aty128_reset_engine(par);
695
696 pitch_value = par->crtc.pitch;
697 if (par->crtc.bpp == 24) {
698 pitch_value = pitch_value * 3;
699 }
700
701 wait_for_fifo(4, par);
702 /* setup engine offset registers */
703 aty_st_le32(DEFAULT_OFFSET, 0x00000000);
704
705 /* setup engine pitch registers */
706 aty_st_le32(DEFAULT_PITCH, pitch_value);
707
708 /* set the default scissor register to max dimensions */
709 aty_st_le32(DEFAULT_SC_BOTTOM_RIGHT, (0x1FFF << 16) | 0x1FFF);
710
711 /* set the drawing controls registers */
712 aty_st_le32(DP_GUI_MASTER_CNTL,
713 GMC_SRC_PITCH_OFFSET_DEFAULT |
714 GMC_DST_PITCH_OFFSET_DEFAULT |
715 GMC_SRC_CLIP_DEFAULT |
716 GMC_DST_CLIP_DEFAULT |
717 GMC_BRUSH_SOLIDCOLOR |
718 (depth_to_dst(par->crtc.depth) << 8) |
719 GMC_SRC_DSTCOLOR |
720 GMC_BYTE_ORDER_MSB_TO_LSB |
721 GMC_DP_CONVERSION_TEMP_6500 |
722 ROP3_PATCOPY |
723 GMC_DP_SRC_RECT |
724 GMC_3D_FCN_EN_CLR |
725 GMC_DST_CLR_CMP_FCN_CLEAR |
726 GMC_AUX_CLIP_CLEAR |
727 GMC_WRITE_MASK_SET);
728
729 wait_for_fifo(8, par);
730 /* clear the line drawing registers */
731 aty_st_le32(DST_BRES_ERR, 0);
732 aty_st_le32(DST_BRES_INC, 0);
733 aty_st_le32(DST_BRES_DEC, 0);
734
735 /* set brush color registers */
736 aty_st_le32(DP_BRUSH_FRGD_CLR, 0xFFFFFFFF); /* white */
737 aty_st_le32(DP_BRUSH_BKGD_CLR, 0x00000000); /* black */
738
739 /* set source color registers */
740 aty_st_le32(DP_SRC_FRGD_CLR, 0xFFFFFFFF); /* white */
741 aty_st_le32(DP_SRC_BKGD_CLR, 0x00000000); /* black */
742
743 /* default write mask */
744 aty_st_le32(DP_WRITE_MASK, 0xFFFFFFFF);
745
746 /* Wait for all the writes to be completed before returning */
747 wait_for_idle(par);
748 }
749
750
751 /* convert depth values to their register representation */
752 static u32 depth_to_dst(u32 depth)
753 {
754 if (depth <= 8)
755 return DST_8BPP;
756 else if (depth <= 15)
757 return DST_15BPP;
758 else if (depth == 16)
759 return DST_16BPP;
760 else if (depth <= 24)
761 return DST_24BPP;
762 else if (depth <= 32)
763 return DST_32BPP;
764
765 return -EINVAL;
766 }
767
768 /*
769 * PLL informations retreival
770 */
771
772
773 #ifndef __sparc__
774 static void __iomem * __devinit aty128_map_ROM(const struct aty128fb_par *par, struct pci_dev *dev)
775 {
776 u16 dptr;
777 u8 rom_type;
778 void __iomem *bios;
779 size_t rom_size;
780
781 /* Fix from ATI for problem with Rage128 hardware not leaving ROM enabled */
782 unsigned int temp;
783 temp = aty_ld_le32(RAGE128_MPP_TB_CONFIG);
784 temp &= 0x00ffffffu;
785 temp |= 0x04 << 24;
786 aty_st_le32(RAGE128_MPP_TB_CONFIG, temp);
787 temp = aty_ld_le32(RAGE128_MPP_TB_CONFIG);
788
789 bios = pci_map_rom(dev, &rom_size);
790
791 if (!bios) {
792 printk(KERN_ERR "aty128fb: ROM failed to map\n");
793 return NULL;
794 }
795
796 /* Very simple test to make sure it appeared */
797 if (BIOS_IN16(0) != 0xaa55) {
798 printk(KERN_DEBUG "aty128fb: Invalid ROM signature %x should "
799 " be 0xaa55\n", BIOS_IN16(0));
800 goto failed;
801 }
802
803 /* Look for the PCI data to check the ROM type */
804 dptr = BIOS_IN16(0x18);
805
806 /* Check the PCI data signature. If it's wrong, we still assume a normal x86 ROM
807 * for now, until I've verified this works everywhere. The goal here is more
808 * to phase out Open Firmware images.
809 *
810 * Currently, we only look at the first PCI data, we could iteratre and deal with
811 * them all, and we should use fb_bios_start relative to start of image and not
812 * relative start of ROM, but so far, I never found a dual-image ATI card
813 *
814 * typedef struct {
815 * u32 signature; + 0x00
816 * u16 vendor; + 0x04
817 * u16 device; + 0x06
818 * u16 reserved_1; + 0x08
819 * u16 dlen; + 0x0a
820 * u8 drevision; + 0x0c
821 * u8 class_hi; + 0x0d
822 * u16 class_lo; + 0x0e
823 * u16 ilen; + 0x10
824 * u16 irevision; + 0x12
825 * u8 type; + 0x14
826 * u8 indicator; + 0x15
827 * u16 reserved_2; + 0x16
828 * } pci_data_t;
829 */
830 if (BIOS_IN32(dptr) != (('R' << 24) | ('I' << 16) | ('C' << 8) | 'P')) {
831 printk(KERN_WARNING "aty128fb: PCI DATA signature in ROM incorrect: %08x\n",
832 BIOS_IN32(dptr));
833 goto anyway;
834 }
835 rom_type = BIOS_IN8(dptr + 0x14);
836 switch(rom_type) {
837 case 0:
838 printk(KERN_INFO "aty128fb: Found Intel x86 BIOS ROM Image\n");
839 break;
840 case 1:
841 printk(KERN_INFO "aty128fb: Found Open Firmware ROM Image\n");
842 goto failed;
843 case 2:
844 printk(KERN_INFO "aty128fb: Found HP PA-RISC ROM Image\n");
845 goto failed;
846 default:
847 printk(KERN_INFO "aty128fb: Found unknown type %d ROM Image\n", rom_type);
848 goto failed;
849 }
850 anyway:
851 return bios;
852
853 failed:
854 pci_unmap_rom(dev, bios);
855 return NULL;
856 }
857
858 static void __devinit aty128_get_pllinfo(struct aty128fb_par *par, unsigned char __iomem *bios)
859 {
860 unsigned int bios_hdr;
861 unsigned int bios_pll;
862
863 bios_hdr = BIOS_IN16(0x48);
864 bios_pll = BIOS_IN16(bios_hdr + 0x30);
865
866 par->constants.ppll_max = BIOS_IN32(bios_pll + 0x16);
867 par->constants.ppll_min = BIOS_IN32(bios_pll + 0x12);
868 par->constants.xclk = BIOS_IN16(bios_pll + 0x08);
869 par->constants.ref_divider = BIOS_IN16(bios_pll + 0x10);
870 par->constants.ref_clk = BIOS_IN16(bios_pll + 0x0e);
871
872 DBG("ppll_max %d ppll_min %d xclk %d ref_divider %d ref clock %d\n",
873 par->constants.ppll_max, par->constants.ppll_min,
874 par->constants.xclk, par->constants.ref_divider,
875 par->constants.ref_clk);
876
877 }
878
879 #ifdef CONFIG_X86
880 static void __iomem * __devinit aty128_find_mem_vbios(struct aty128fb_par *par)
881 {
882 /* I simplified this code as we used to miss the signatures in
883 * a lot of case. It's now closer to XFree, we just don't check
884 * for signatures at all... Something better will have to be done
885 * if we end up having conflicts
886 */
887 u32 segstart;
888 unsigned char __iomem *rom_base = NULL;
889
890 for (segstart=0x000c0000; segstart<0x000f0000; segstart+=0x00001000) {
891 rom_base = ioremap(segstart, 0x10000);
892 if (rom_base == NULL)
893 return NULL;
894 if (readb(rom_base) == 0x55 && readb(rom_base + 1) == 0xaa)
895 break;
896 iounmap(rom_base);
897 rom_base = NULL;
898 }
899 return rom_base;
900 }
901 #endif
902 #endif /* ndef(__sparc__) */
903
904 /* fill in known card constants if pll_block is not available */
905 static void __devinit aty128_timings(struct aty128fb_par *par)
906 {
907 #ifdef CONFIG_PPC_OF
908 /* instead of a table lookup, assume OF has properly
909 * setup the PLL registers and use their values
910 * to set the XCLK values and reference divider values */
911
912 u32 x_mpll_ref_fb_div;
913 u32 xclk_cntl;
914 u32 Nx, M;
915 unsigned PostDivSet[] = { 0, 1, 2, 4, 8, 3, 6, 12 };
916 #endif
917
918 if (!par->constants.ref_clk)
919 par->constants.ref_clk = 2950;
920
921 #ifdef CONFIG_PPC_OF
922 x_mpll_ref_fb_div = aty_ld_pll(X_MPLL_REF_FB_DIV);
923 xclk_cntl = aty_ld_pll(XCLK_CNTL) & 0x7;
924 Nx = (x_mpll_ref_fb_div & 0x00ff00) >> 8;
925 M = x_mpll_ref_fb_div & 0x0000ff;
926
927 par->constants.xclk = round_div((2 * Nx * par->constants.ref_clk),
928 (M * PostDivSet[xclk_cntl]));
929
930 par->constants.ref_divider =
931 aty_ld_pll(PPLL_REF_DIV) & PPLL_REF_DIV_MASK;
932 #endif
933
934 if (!par->constants.ref_divider) {
935 par->constants.ref_divider = 0x3b;
936
937 aty_st_pll(X_MPLL_REF_FB_DIV, 0x004c4c1e);
938 aty_pll_writeupdate(par);
939 }
940 aty_st_pll(PPLL_REF_DIV, par->constants.ref_divider);
941 aty_pll_writeupdate(par);
942
943 /* from documentation */
944 if (!par->constants.ppll_min)
945 par->constants.ppll_min = 12500;
946 if (!par->constants.ppll_max)
947 par->constants.ppll_max = 25000; /* 23000 on some cards? */
948 if (!par->constants.xclk)
949 par->constants.xclk = 0x1d4d; /* same as mclk */
950
951 par->constants.fifo_width = 128;
952 par->constants.fifo_depth = 32;
953
954 switch (aty_ld_le32(MEM_CNTL) & 0x3) {
955 case 0:
956 par->mem = &sdr_128;
957 break;
958 case 1:
959 par->mem = &sdr_sgram;
960 break;
961 case 2:
962 par->mem = &ddr_sgram;
963 break;
964 default:
965 par->mem = &sdr_sgram;
966 }
967 }
968
969
970
971 /*
972 * CRTC programming
973 */
974
975 /* Program the CRTC registers */
976 static void aty128_set_crtc(const struct aty128_crtc *crtc,
977 const struct aty128fb_par *par)
978 {
979 aty_st_le32(CRTC_GEN_CNTL, crtc->gen_cntl);
980 aty_st_le32(CRTC_H_TOTAL_DISP, crtc->h_total);
981 aty_st_le32(CRTC_H_SYNC_STRT_WID, crtc->h_sync_strt_wid);
982 aty_st_le32(CRTC_V_TOTAL_DISP, crtc->v_total);
983 aty_st_le32(CRTC_V_SYNC_STRT_WID, crtc->v_sync_strt_wid);
984 aty_st_le32(CRTC_PITCH, crtc->pitch);
985 aty_st_le32(CRTC_OFFSET, crtc->offset);
986 aty_st_le32(CRTC_OFFSET_CNTL, crtc->offset_cntl);
987 /* Disable ATOMIC updating. Is this the right place? */
988 aty_st_pll(PPLL_CNTL, aty_ld_pll(PPLL_CNTL) & ~(0x00030000));
989 }
990
991
992 static int aty128_var_to_crtc(const struct fb_var_screeninfo *var,
993 struct aty128_crtc *crtc,
994 const struct aty128fb_par *par)
995 {
996 u32 xres, yres, vxres, vyres, xoffset, yoffset, bpp, dst;
997 u32 left, right, upper, lower, hslen, vslen, sync, vmode;
998 u32 h_total, h_disp, h_sync_strt, h_sync_wid, h_sync_pol;
999 u32 v_total, v_disp, v_sync_strt, v_sync_wid, v_sync_pol, c_sync;
1000 u32 depth, bytpp;
1001 u8 mode_bytpp[7] = { 0, 0, 1, 2, 2, 3, 4 };
1002
1003 /* input */
1004 xres = var->xres;
1005 yres = var->yres;
1006 vxres = var->xres_virtual;
1007 vyres = var->yres_virtual;
1008 xoffset = var->xoffset;
1009 yoffset = var->yoffset;
1010 bpp = var->bits_per_pixel;
1011 left = var->left_margin;
1012 right = var->right_margin;
1013 upper = var->upper_margin;
1014 lower = var->lower_margin;
1015 hslen = var->hsync_len;
1016 vslen = var->vsync_len;
1017 sync = var->sync;
1018 vmode = var->vmode;
1019
1020 if (bpp != 16)
1021 depth = bpp;
1022 else
1023 depth = (var->green.length == 6) ? 16 : 15;
1024
1025 /* check for mode eligibility
1026 * accept only non interlaced modes */
1027 if ((vmode & FB_VMODE_MASK) != FB_VMODE_NONINTERLACED)
1028 return -EINVAL;
1029
1030 /* convert (and round up) and validate */
1031 xres = (xres + 7) & ~7;
1032 xoffset = (xoffset + 7) & ~7;
1033
1034 if (vxres < xres + xoffset)
1035 vxres = xres + xoffset;
1036
1037 if (vyres < yres + yoffset)
1038 vyres = yres + yoffset;
1039
1040 /* convert depth into ATI register depth */
1041 dst = depth_to_dst(depth);
1042
1043 if (dst == -EINVAL) {
1044 printk(KERN_ERR "aty128fb: Invalid depth or RGBA\n");
1045 return -EINVAL;
1046 }
1047
1048 /* convert register depth to bytes per pixel */
1049 bytpp = mode_bytpp[dst];
1050
1051 /* make sure there is enough video ram for the mode */
1052 if ((u32)(vxres * vyres * bytpp) > par->vram_size) {
1053 printk(KERN_ERR "aty128fb: Not enough memory for mode\n");
1054 return -EINVAL;
1055 }
1056
1057 h_disp = (xres >> 3) - 1;
1058 h_total = (((xres + right + hslen + left) >> 3) - 1) & 0xFFFFL;
1059
1060 v_disp = yres - 1;
1061 v_total = (yres + upper + vslen + lower - 1) & 0xFFFFL;
1062
1063 /* check to make sure h_total and v_total are in range */
1064 if (((h_total >> 3) - 1) > 0x1ff || (v_total - 1) > 0x7FF) {
1065 printk(KERN_ERR "aty128fb: invalid width ranges\n");
1066 return -EINVAL;
1067 }
1068
1069 h_sync_wid = (hslen + 7) >> 3;
1070 if (h_sync_wid == 0)
1071 h_sync_wid = 1;
1072 else if (h_sync_wid > 0x3f) /* 0x3f = max hwidth */
1073 h_sync_wid = 0x3f;
1074
1075 h_sync_strt = (h_disp << 3) + right;
1076
1077 v_sync_wid = vslen;
1078 if (v_sync_wid == 0)
1079 v_sync_wid = 1;
1080 else if (v_sync_wid > 0x1f) /* 0x1f = max vwidth */
1081 v_sync_wid = 0x1f;
1082
1083 v_sync_strt = v_disp + lower;
1084
1085 h_sync_pol = sync & FB_SYNC_HOR_HIGH_ACT ? 0 : 1;
1086 v_sync_pol = sync & FB_SYNC_VERT_HIGH_ACT ? 0 : 1;
1087
1088 c_sync = sync & FB_SYNC_COMP_HIGH_ACT ? (1 << 4) : 0;
1089
1090 crtc->gen_cntl = 0x3000000L | c_sync | (dst << 8);
1091
1092 crtc->h_total = h_total | (h_disp << 16);
1093 crtc->v_total = v_total | (v_disp << 16);
1094
1095 crtc->h_sync_strt_wid = h_sync_strt | (h_sync_wid << 16) |
1096 (h_sync_pol << 23);
1097 crtc->v_sync_strt_wid = v_sync_strt | (v_sync_wid << 16) |
1098 (v_sync_pol << 23);
1099
1100 crtc->pitch = vxres >> 3;
1101
1102 crtc->offset = 0;
1103
1104 if ((var->activate & FB_ACTIVATE_MASK) == FB_ACTIVATE_NOW)
1105 crtc->offset_cntl = 0x00010000;
1106 else
1107 crtc->offset_cntl = 0;
1108
1109 crtc->vxres = vxres;
1110 crtc->vyres = vyres;
1111 crtc->xoffset = xoffset;
1112 crtc->yoffset = yoffset;
1113 crtc->depth = depth;
1114 crtc->bpp = bpp;
1115
1116 return 0;
1117 }
1118
1119
1120 static int aty128_pix_width_to_var(int pix_width, struct fb_var_screeninfo *var)
1121 {
1122
1123 /* fill in pixel info */
1124 var->red.msb_right = 0;
1125 var->green.msb_right = 0;
1126 var->blue.offset = 0;
1127 var->blue.msb_right = 0;
1128 var->transp.offset = 0;
1129 var->transp.length = 0;
1130 var->transp.msb_right = 0;
1131 switch (pix_width) {
1132 case CRTC_PIX_WIDTH_8BPP:
1133 var->bits_per_pixel = 8;
1134 var->red.offset = 0;
1135 var->red.length = 8;
1136 var->green.offset = 0;
1137 var->green.length = 8;
1138 var->blue.length = 8;
1139 break;
1140 case CRTC_PIX_WIDTH_15BPP:
1141 var->bits_per_pixel = 16;
1142 var->red.offset = 10;
1143 var->red.length = 5;
1144 var->green.offset = 5;
1145 var->green.length = 5;
1146 var->blue.length = 5;
1147 break;
1148 case CRTC_PIX_WIDTH_16BPP:
1149 var->bits_per_pixel = 16;
1150 var->red.offset = 11;
1151 var->red.length = 5;
1152 var->green.offset = 5;
1153 var->green.length = 6;
1154 var->blue.length = 5;
1155 break;
1156 case CRTC_PIX_WIDTH_24BPP:
1157 var->bits_per_pixel = 24;
1158 var->red.offset = 16;
1159 var->red.length = 8;
1160 var->green.offset = 8;
1161 var->green.length = 8;
1162 var->blue.length = 8;
1163 break;
1164 case CRTC_PIX_WIDTH_32BPP:
1165 var->bits_per_pixel = 32;
1166 var->red.offset = 16;
1167 var->red.length = 8;
1168 var->green.offset = 8;
1169 var->green.length = 8;
1170 var->blue.length = 8;
1171 var->transp.offset = 24;
1172 var->transp.length = 8;
1173 break;
1174 default:
1175 printk(KERN_ERR "aty128fb: Invalid pixel width\n");
1176 return -EINVAL;
1177 }
1178
1179 return 0;
1180 }
1181
1182
1183 static int aty128_crtc_to_var(const struct aty128_crtc *crtc,
1184 struct fb_var_screeninfo *var)
1185 {
1186 u32 xres, yres, left, right, upper, lower, hslen, vslen, sync;
1187 u32 h_total, h_disp, h_sync_strt, h_sync_dly, h_sync_wid, h_sync_pol;
1188 u32 v_total, v_disp, v_sync_strt, v_sync_wid, v_sync_pol, c_sync;
1189 u32 pix_width;
1190
1191 /* fun with masking */
1192 h_total = crtc->h_total & 0x1ff;
1193 h_disp = (crtc->h_total >> 16) & 0xff;
1194 h_sync_strt = (crtc->h_sync_strt_wid >> 3) & 0x1ff;
1195 h_sync_dly = crtc->h_sync_strt_wid & 0x7;
1196 h_sync_wid = (crtc->h_sync_strt_wid >> 16) & 0x3f;
1197 h_sync_pol = (crtc->h_sync_strt_wid >> 23) & 0x1;
1198 v_total = crtc->v_total & 0x7ff;
1199 v_disp = (crtc->v_total >> 16) & 0x7ff;
1200 v_sync_strt = crtc->v_sync_strt_wid & 0x7ff;
1201 v_sync_wid = (crtc->v_sync_strt_wid >> 16) & 0x1f;
1202 v_sync_pol = (crtc->v_sync_strt_wid >> 23) & 0x1;
1203 c_sync = crtc->gen_cntl & CRTC_CSYNC_EN ? 1 : 0;
1204 pix_width = crtc->gen_cntl & CRTC_PIX_WIDTH_MASK;
1205
1206 /* do conversions */
1207 xres = (h_disp + 1) << 3;
1208 yres = v_disp + 1;
1209 left = ((h_total - h_sync_strt - h_sync_wid) << 3) - h_sync_dly;
1210 right = ((h_sync_strt - h_disp) << 3) + h_sync_dly;
1211 hslen = h_sync_wid << 3;
1212 upper = v_total - v_sync_strt - v_sync_wid;
1213 lower = v_sync_strt - v_disp;
1214 vslen = v_sync_wid;
1215 sync = (h_sync_pol ? 0 : FB_SYNC_HOR_HIGH_ACT) |
1216 (v_sync_pol ? 0 : FB_SYNC_VERT_HIGH_ACT) |
1217 (c_sync ? FB_SYNC_COMP_HIGH_ACT : 0);
1218
1219 aty128_pix_width_to_var(pix_width, var);
1220
1221 var->xres = xres;
1222 var->yres = yres;
1223 var->xres_virtual = crtc->vxres;
1224 var->yres_virtual = crtc->vyres;
1225 var->xoffset = crtc->xoffset;
1226 var->yoffset = crtc->yoffset;
1227 var->left_margin = left;
1228 var->right_margin = right;
1229 var->upper_margin = upper;
1230 var->lower_margin = lower;
1231 var->hsync_len = hslen;
1232 var->vsync_len = vslen;
1233 var->sync = sync;
1234 var->vmode = FB_VMODE_NONINTERLACED;
1235
1236 return 0;
1237 }
1238
1239 static void aty128_set_crt_enable(struct aty128fb_par *par, int on)
1240 {
1241 if (on) {
1242 aty_st_le32(CRTC_EXT_CNTL, aty_ld_le32(CRTC_EXT_CNTL) | CRT_CRTC_ON);
1243 aty_st_le32(DAC_CNTL, (aty_ld_le32(DAC_CNTL) | DAC_PALETTE2_SNOOP_EN));
1244 } else
1245 aty_st_le32(CRTC_EXT_CNTL, aty_ld_le32(CRTC_EXT_CNTL) & ~CRT_CRTC_ON);
1246 }
1247
1248 static void aty128_set_lcd_enable(struct aty128fb_par *par, int on)
1249 {
1250 u32 reg;
1251 #ifdef CONFIG_FB_ATY128_BACKLIGHT
1252 struct fb_info *info = pci_get_drvdata(par->pdev);
1253 #endif
1254
1255 if (on) {
1256 reg = aty_ld_le32(LVDS_GEN_CNTL);
1257 reg |= LVDS_ON | LVDS_EN | LVDS_BLON | LVDS_DIGION;
1258 reg &= ~LVDS_DISPLAY_DIS;
1259 aty_st_le32(LVDS_GEN_CNTL, reg);
1260 #ifdef CONFIG_FB_ATY128_BACKLIGHT
1261 mutex_lock(&info->bl_mutex);
1262 if (info->bl_dev) {
1263 down(&info->bl_dev->sem);
1264 info->bl_dev->props->update_status(info->bl_dev);
1265 up(&info->bl_dev->sem);
1266 }
1267 mutex_unlock(&info->bl_mutex);
1268 #endif
1269 } else {
1270 #ifdef CONFIG_FB_ATY128_BACKLIGHT
1271 mutex_lock(&info->bl_mutex);
1272 if (info->bl_dev) {
1273 down(&info->bl_dev->sem);
1274 info->bl_dev->props->brightness = 0;
1275 info->bl_dev->props->power = FB_BLANK_POWERDOWN;
1276 info->bl_dev->props->update_status(info->bl_dev);
1277 up(&info->bl_dev->sem);
1278 }
1279 mutex_unlock(&info->bl_mutex);
1280 #endif
1281 reg = aty_ld_le32(LVDS_GEN_CNTL);
1282 reg |= LVDS_DISPLAY_DIS;
1283 aty_st_le32(LVDS_GEN_CNTL, reg);
1284 mdelay(100);
1285 reg &= ~(LVDS_ON /*| LVDS_EN*/);
1286 aty_st_le32(LVDS_GEN_CNTL, reg);
1287 }
1288 }
1289
1290 static void aty128_set_pll(struct aty128_pll *pll, const struct aty128fb_par *par)
1291 {
1292 u32 div3;
1293
1294 unsigned char post_conv[] = /* register values for post dividers */
1295 { 2, 0, 1, 4, 2, 2, 6, 2, 3, 2, 2, 2, 7 };
1296
1297 /* select PPLL_DIV_3 */
1298 aty_st_le32(CLOCK_CNTL_INDEX, aty_ld_le32(CLOCK_CNTL_INDEX) | (3 << 8));
1299
1300 /* reset PLL */
1301 aty_st_pll(PPLL_CNTL,
1302 aty_ld_pll(PPLL_CNTL) | PPLL_RESET | PPLL_ATOMIC_UPDATE_EN);
1303
1304 /* write the reference divider */
1305 aty_pll_wait_readupdate(par);
1306 aty_st_pll(PPLL_REF_DIV, par->constants.ref_divider & 0x3ff);
1307 aty_pll_writeupdate(par);
1308
1309 div3 = aty_ld_pll(PPLL_DIV_3);
1310 div3 &= ~PPLL_FB3_DIV_MASK;
1311 div3 |= pll->feedback_divider;
1312 div3 &= ~PPLL_POST3_DIV_MASK;
1313 div3 |= post_conv[pll->post_divider] << 16;
1314
1315 /* write feedback and post dividers */
1316 aty_pll_wait_readupdate(par);
1317 aty_st_pll(PPLL_DIV_3, div3);
1318 aty_pll_writeupdate(par);
1319
1320 aty_pll_wait_readupdate(par);
1321 aty_st_pll(HTOTAL_CNTL, 0); /* no horiz crtc adjustment */
1322 aty_pll_writeupdate(par);
1323
1324 /* clear the reset, just in case */
1325 aty_st_pll(PPLL_CNTL, aty_ld_pll(PPLL_CNTL) & ~PPLL_RESET);
1326 }
1327
1328
1329 static int aty128_var_to_pll(u32 period_in_ps, struct aty128_pll *pll,
1330 const struct aty128fb_par *par)
1331 {
1332 const struct aty128_constants c = par->constants;
1333 unsigned char post_dividers[] = {1,2,4,8,3,6,12};
1334 u32 output_freq;
1335 u32 vclk; /* in .01 MHz */
1336 int i = 0;
1337 u32 n, d;
1338
1339 vclk = 100000000 / period_in_ps; /* convert units to 10 kHz */
1340
1341 /* adjust pixel clock if necessary */
1342 if (vclk > c.ppll_max)
1343 vclk = c.ppll_max;
1344 if (vclk * 12 < c.ppll_min)
1345 vclk = c.ppll_min/12;
1346
1347 /* now, find an acceptable divider */
1348 for (i = 0; i < sizeof(post_dividers); i++) {
1349 output_freq = post_dividers[i] * vclk;
1350 if (output_freq >= c.ppll_min && output_freq <= c.ppll_max) {
1351 pll->post_divider = post_dividers[i];
1352 break;
1353 }
1354 }
1355
1356 /* calculate feedback divider */
1357 n = c.ref_divider * output_freq;
1358 d = c.ref_clk;
1359
1360 pll->feedback_divider = round_div(n, d);
1361 pll->vclk = vclk;
1362
1363 DBG("post %d feedback %d vlck %d output %d ref_divider %d "
1364 "vclk_per: %d\n", pll->post_divider,
1365 pll->feedback_divider, vclk, output_freq,
1366 c.ref_divider, period_in_ps);
1367
1368 return 0;
1369 }
1370
1371
1372 static int aty128_pll_to_var(const struct aty128_pll *pll, struct fb_var_screeninfo *var)
1373 {
1374 var->pixclock = 100000000 / pll->vclk;
1375
1376 return 0;
1377 }
1378
1379
1380 static void aty128_set_fifo(const struct aty128_ddafifo *dsp,
1381 const struct aty128fb_par *par)
1382 {
1383 aty_st_le32(DDA_CONFIG, dsp->dda_config);
1384 aty_st_le32(DDA_ON_OFF, dsp->dda_on_off);
1385 }
1386
1387
1388 static int aty128_ddafifo(struct aty128_ddafifo *dsp,
1389 const struct aty128_pll *pll,
1390 u32 depth,
1391 const struct aty128fb_par *par)
1392 {
1393 const struct aty128_meminfo *m = par->mem;
1394 u32 xclk = par->constants.xclk;
1395 u32 fifo_width = par->constants.fifo_width;
1396 u32 fifo_depth = par->constants.fifo_depth;
1397 s32 x, b, p, ron, roff;
1398 u32 n, d, bpp;
1399
1400 /* round up to multiple of 8 */
1401 bpp = (depth+7) & ~7;
1402
1403 n = xclk * fifo_width;
1404 d = pll->vclk * bpp;
1405 x = round_div(n, d);
1406
1407 ron = 4 * m->MB +
1408 3 * ((m->Trcd - 2 > 0) ? m->Trcd - 2 : 0) +
1409 2 * m->Trp +
1410 m->Twr +
1411 m->CL +
1412 m->Tr2w +
1413 x;
1414
1415 DBG("x %x\n", x);
1416
1417 b = 0;
1418 while (x) {
1419 x >>= 1;
1420 b++;
1421 }
1422 p = b + 1;
1423
1424 ron <<= (11 - p);
1425
1426 n <<= (11 - p);
1427 x = round_div(n, d);
1428 roff = x * (fifo_depth - 4);
1429
1430 if ((ron + m->Rloop) >= roff) {
1431 printk(KERN_ERR "aty128fb: Mode out of range!\n");
1432 return -EINVAL;
1433 }
1434
1435 DBG("p: %x rloop: %x x: %x ron: %x roff: %x\n",
1436 p, m->Rloop, x, ron, roff);
1437
1438 dsp->dda_config = p << 16 | m->Rloop << 20 | x;
1439 dsp->dda_on_off = ron << 16 | roff;
1440
1441 return 0;
1442 }
1443
1444
1445 /*
1446 * This actually sets the video mode.
1447 */
1448 static int aty128fb_set_par(struct fb_info *info)
1449 {
1450 struct aty128fb_par *par = info->par;
1451 u32 config;
1452 int err;
1453
1454 if ((err = aty128_decode_var(&info->var, par)) != 0)
1455 return err;
1456
1457 if (par->blitter_may_be_busy)
1458 wait_for_idle(par);
1459
1460 /* clear all registers that may interfere with mode setting */
1461 aty_st_le32(OVR_CLR, 0);
1462 aty_st_le32(OVR_WID_LEFT_RIGHT, 0);
1463 aty_st_le32(OVR_WID_TOP_BOTTOM, 0);
1464 aty_st_le32(OV0_SCALE_CNTL, 0);
1465 aty_st_le32(MPP_TB_CONFIG, 0);
1466 aty_st_le32(MPP_GP_CONFIG, 0);
1467 aty_st_le32(SUBPIC_CNTL, 0);
1468 aty_st_le32(VIPH_CONTROL, 0);
1469 aty_st_le32(I2C_CNTL_1, 0); /* turn off i2c */
1470 aty_st_le32(GEN_INT_CNTL, 0); /* turn off interrupts */
1471 aty_st_le32(CAP0_TRIG_CNTL, 0);
1472 aty_st_le32(CAP1_TRIG_CNTL, 0);
1473
1474 aty_st_8(CRTC_EXT_CNTL + 1, 4); /* turn video off */
1475
1476 aty128_set_crtc(&par->crtc, par);
1477 aty128_set_pll(&par->pll, par);
1478 aty128_set_fifo(&par->fifo_reg, par);
1479
1480 config = aty_ld_le32(CONFIG_CNTL) & ~3;
1481
1482 #if defined(__BIG_ENDIAN)
1483 if (par->crtc.bpp == 32)
1484 config |= 2; /* make aperture do 32 bit swapping */
1485 else if (par->crtc.bpp == 16)
1486 config |= 1; /* make aperture do 16 bit swapping */
1487 #endif
1488
1489 aty_st_le32(CONFIG_CNTL, config);
1490 aty_st_8(CRTC_EXT_CNTL + 1, 0); /* turn the video back on */
1491
1492 info->fix.line_length = (par->crtc.vxres * par->crtc.bpp) >> 3;
1493 info->fix.visual = par->crtc.bpp == 8 ? FB_VISUAL_PSEUDOCOLOR
1494 : FB_VISUAL_DIRECTCOLOR;
1495
1496 if (par->chip_gen == rage_M3) {
1497 aty128_set_crt_enable(par, par->crt_on);
1498 aty128_set_lcd_enable(par, par->lcd_on);
1499 }
1500 if (par->accel_flags & FB_ACCELF_TEXT)
1501 aty128_init_engine(par);
1502
1503 #ifdef CONFIG_BOOTX_TEXT
1504 btext_update_display(info->fix.smem_start,
1505 (((par->crtc.h_total>>16) & 0xff)+1)*8,
1506 ((par->crtc.v_total>>16) & 0x7ff)+1,
1507 par->crtc.bpp,
1508 par->crtc.vxres*par->crtc.bpp/8);
1509 #endif /* CONFIG_BOOTX_TEXT */
1510
1511 return 0;
1512 }
1513
1514 /*
1515 * encode/decode the User Defined Part of the Display
1516 */
1517
1518 static int aty128_decode_var(struct fb_var_screeninfo *var, struct aty128fb_par *par)
1519 {
1520 int err;
1521 struct aty128_crtc crtc;
1522 struct aty128_pll pll;
1523 struct aty128_ddafifo fifo_reg;
1524
1525 if ((err = aty128_var_to_crtc(var, &crtc, par)))
1526 return err;
1527
1528 if ((err = aty128_var_to_pll(var->pixclock, &pll, par)))
1529 return err;
1530
1531 if ((err = aty128_ddafifo(&fifo_reg, &pll, crtc.depth, par)))
1532 return err;
1533
1534 par->crtc = crtc;
1535 par->pll = pll;
1536 par->fifo_reg = fifo_reg;
1537 par->accel_flags = var->accel_flags;
1538
1539 return 0;
1540 }
1541
1542
1543 static int aty128_encode_var(struct fb_var_screeninfo *var,
1544 const struct aty128fb_par *par)
1545 {
1546 int err;
1547
1548 if ((err = aty128_crtc_to_var(&par->crtc, var)))
1549 return err;
1550
1551 if ((err = aty128_pll_to_var(&par->pll, var)))
1552 return err;
1553
1554 var->nonstd = 0;
1555 var->activate = 0;
1556
1557 var->height = -1;
1558 var->width = -1;
1559 var->accel_flags = par->accel_flags;
1560
1561 return 0;
1562 }
1563
1564
1565 static int aty128fb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
1566 {
1567 struct aty128fb_par par;
1568 int err;
1569
1570 par = *(struct aty128fb_par *)info->par;
1571 if ((err = aty128_decode_var(var, &par)) != 0)
1572 return err;
1573 aty128_encode_var(var, &par);
1574 return 0;
1575 }
1576
1577
1578 /*
1579 * Pan or Wrap the Display
1580 */
1581 static int aty128fb_pan_display(struct fb_var_screeninfo *var, struct fb_info *fb)
1582 {
1583 struct aty128fb_par *par = fb->par;
1584 u32 xoffset, yoffset;
1585 u32 offset;
1586 u32 xres, yres;
1587
1588 xres = (((par->crtc.h_total >> 16) & 0xff) + 1) << 3;
1589 yres = ((par->crtc.v_total >> 16) & 0x7ff) + 1;
1590
1591 xoffset = (var->xoffset +7) & ~7;
1592 yoffset = var->yoffset;
1593
1594 if (xoffset+xres > par->crtc.vxres || yoffset+yres > par->crtc.vyres)
1595 return -EINVAL;
1596
1597 par->crtc.xoffset = xoffset;
1598 par->crtc.yoffset = yoffset;
1599
1600 offset = ((yoffset * par->crtc.vxres + xoffset)*(par->crtc.bpp >> 3)) & ~7;
1601
1602 if (par->crtc.bpp == 24)
1603 offset += 8 * (offset % 3); /* Must be multiple of 8 and 3 */
1604
1605 aty_st_le32(CRTC_OFFSET, offset);
1606
1607 return 0;
1608 }
1609
1610
1611 /*
1612 * Helper function to store a single palette register
1613 */
1614 static void aty128_st_pal(u_int regno, u_int red, u_int green, u_int blue,
1615 struct aty128fb_par *par)
1616 {
1617 if (par->chip_gen == rage_M3) {
1618 #if 0
1619 /* Note: For now, on M3, we set palette on both heads, which may
1620 * be useless. Can someone with a M3 check this ?
1621 *
1622 * This code would still be useful if using the second CRTC to
1623 * do mirroring
1624 */
1625
1626 aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) | DAC_PALETTE_ACCESS_CNTL);
1627 aty_st_8(PALETTE_INDEX, regno);
1628 aty_st_le32(PALETTE_DATA, (red<<16)|(green<<8)|blue);
1629 #endif
1630 aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) & ~DAC_PALETTE_ACCESS_CNTL);
1631 }
1632
1633 aty_st_8(PALETTE_INDEX, regno);
1634 aty_st_le32(PALETTE_DATA, (red<<16)|(green<<8)|blue);
1635 }
1636
1637 static int aty128fb_sync(struct fb_info *info)
1638 {
1639 struct aty128fb_par *par = info->par;
1640
1641 if (par->blitter_may_be_busy)
1642 wait_for_idle(par);
1643 return 0;
1644 }
1645
1646 #ifndef MODULE
1647 static int __devinit aty128fb_setup(char *options)
1648 {
1649 char *this_opt;
1650
1651 if (!options || !*options)
1652 return 0;
1653
1654 while ((this_opt = strsep(&options, ",")) != NULL) {
1655 if (!strncmp(this_opt, "lcd:", 4)) {
1656 default_lcd_on = simple_strtoul(this_opt+4, NULL, 0);
1657 continue;
1658 } else if (!strncmp(this_opt, "crt:", 4)) {
1659 default_crt_on = simple_strtoul(this_opt+4, NULL, 0);
1660 continue;
1661 }
1662 #ifdef CONFIG_MTRR
1663 if(!strncmp(this_opt, "nomtrr", 6)) {
1664 mtrr = 0;
1665 continue;
1666 }
1667 #endif
1668 #ifdef CONFIG_PPC_PMAC
1669 /* vmode and cmode deprecated */
1670 if (!strncmp(this_opt, "vmode:", 6)) {
1671 unsigned int vmode = simple_strtoul(this_opt+6, NULL, 0);
1672 if (vmode > 0 && vmode <= VMODE_MAX)
1673 default_vmode = vmode;
1674 continue;
1675 } else if (!strncmp(this_opt, "cmode:", 6)) {
1676 unsigned int cmode = simple_strtoul(this_opt+6, NULL, 0);
1677 switch (cmode) {
1678 case 0:
1679 case 8:
1680 default_cmode = CMODE_8;
1681 break;
1682 case 15:
1683 case 16:
1684 default_cmode = CMODE_16;
1685 break;
1686 case 24:
1687 case 32:
1688 default_cmode = CMODE_32;
1689 break;
1690 }
1691 continue;
1692 }
1693 #endif /* CONFIG_PPC_PMAC */
1694 mode_option = this_opt;
1695 }
1696 return 0;
1697 }
1698 #endif /* MODULE */
1699
1700 /* Backlight */
1701 #ifdef CONFIG_FB_ATY128_BACKLIGHT
1702 #define MAX_LEVEL 0xFF
1703
1704 static struct backlight_properties aty128_bl_data;
1705
1706 static int aty128_bl_get_level_brightness(struct aty128fb_par *par,
1707 int level)
1708 {
1709 struct fb_info *info = pci_get_drvdata(par->pdev);
1710 int atylevel;
1711
1712 /* Get and convert the value */
1713 mutex_lock(&info->bl_mutex);
1714 atylevel = MAX_LEVEL -
1715 (info->bl_curve[level] * FB_BACKLIGHT_MAX / MAX_LEVEL);
1716 mutex_unlock(&info->bl_mutex);
1717
1718 if (atylevel < 0)
1719 atylevel = 0;
1720 else if (atylevel > MAX_LEVEL)
1721 atylevel = MAX_LEVEL;
1722
1723 return atylevel;
1724 }
1725
1726 /* We turn off the LCD completely instead of just dimming the backlight.
1727 * This provides greater power saving and the display is useless without
1728 * backlight anyway
1729 */
1730 #define BACKLIGHT_LVDS_OFF
1731 /* That one prevents proper CRT output with LCD off */
1732 #undef BACKLIGHT_DAC_OFF
1733
1734 static int aty128_bl_update_status(struct backlight_device *bd)
1735 {
1736 struct aty128fb_par *par = class_get_devdata(&bd->class_dev);
1737 unsigned int reg = aty_ld_le32(LVDS_GEN_CNTL);
1738 int level;
1739
1740 if (bd->props->power != FB_BLANK_UNBLANK ||
1741 bd->props->fb_blank != FB_BLANK_UNBLANK ||
1742 !par->lcd_on)
1743 level = 0;
1744 else
1745 level = bd->props->brightness;
1746
1747 reg |= LVDS_BL_MOD_EN | LVDS_BLON;
1748 if (level > 0) {
1749 reg |= LVDS_DIGION;
1750 if (!(reg & LVDS_ON)) {
1751 reg &= ~LVDS_BLON;
1752 aty_st_le32(LVDS_GEN_CNTL, reg);
1753 aty_ld_le32(LVDS_GEN_CNTL);
1754 mdelay(10);
1755 reg |= LVDS_BLON;
1756 aty_st_le32(LVDS_GEN_CNTL, reg);
1757 }
1758 reg &= ~LVDS_BL_MOD_LEVEL_MASK;
1759 reg |= (aty128_bl_get_level_brightness(par, level) << LVDS_BL_MOD_LEVEL_SHIFT);
1760 #ifdef BACKLIGHT_LVDS_OFF
1761 reg |= LVDS_ON | LVDS_EN;
1762 reg &= ~LVDS_DISPLAY_DIS;
1763 #endif
1764 aty_st_le32(LVDS_GEN_CNTL, reg);
1765 #ifdef BACKLIGHT_DAC_OFF
1766 aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) & (~DAC_PDWN));
1767 #endif
1768 } else {
1769 reg &= ~LVDS_BL_MOD_LEVEL_MASK;
1770 reg |= (aty128_bl_get_level_brightness(par, 0) << LVDS_BL_MOD_LEVEL_SHIFT);
1771 #ifdef BACKLIGHT_LVDS_OFF
1772 reg |= LVDS_DISPLAY_DIS;
1773 aty_st_le32(LVDS_GEN_CNTL, reg);
1774 aty_ld_le32(LVDS_GEN_CNTL);
1775 udelay(10);
1776 reg &= ~(LVDS_ON | LVDS_EN | LVDS_BLON | LVDS_DIGION);
1777 #endif
1778 aty_st_le32(LVDS_GEN_CNTL, reg);
1779 #ifdef BACKLIGHT_DAC_OFF
1780 aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) | DAC_PDWN);
1781 #endif
1782 }
1783
1784 return 0;
1785 }
1786
1787 static int aty128_bl_get_brightness(struct backlight_device *bd)
1788 {
1789 return bd->props->brightness;
1790 }
1791
1792 static struct backlight_properties aty128_bl_data = {
1793 .owner = THIS_MODULE,
1794 .get_brightness = aty128_bl_get_brightness,
1795 .update_status = aty128_bl_update_status,
1796 .max_brightness = (FB_BACKLIGHT_LEVELS - 1),
1797 };
1798
1799 static void aty128_bl_init(struct aty128fb_par *par)
1800 {
1801 struct fb_info *info = pci_get_drvdata(par->pdev);
1802 struct backlight_device *bd;
1803 char name[12];
1804
1805 /* Could be extended to Rage128Pro LVDS output too */
1806 if (par->chip_gen != rage_M3)
1807 return;
1808
1809 #ifdef CONFIG_PMAC_BACKLIGHT
1810 if (!pmac_has_backlight_type("ati"))
1811 return;
1812 #endif
1813
1814 snprintf(name, sizeof(name), "aty128bl%d", info->node);
1815
1816 bd = backlight_device_register(name, par, &aty128_bl_data);
1817 if (IS_ERR(bd)) {
1818 info->bl_dev = NULL;
1819 printk("aty128: Backlight registration failed\n");
1820 goto error;
1821 }
1822
1823 mutex_lock(&info->bl_mutex);
1824 info->bl_dev = bd;
1825 fb_bl_default_curve(info, 0,
1826 63 * FB_BACKLIGHT_MAX / MAX_LEVEL,
1827 219 * FB_BACKLIGHT_MAX / MAX_LEVEL);
1828 mutex_unlock(&info->bl_mutex);
1829
1830 up(&bd->sem);
1831 bd->props->brightness = aty128_bl_data.max_brightness;
1832 bd->props->power = FB_BLANK_UNBLANK;
1833 bd->props->update_status(bd);
1834 down(&bd->sem);
1835
1836 #ifdef CONFIG_PMAC_BACKLIGHT
1837 mutex_lock(&pmac_backlight_mutex);
1838 if (!pmac_backlight)
1839 pmac_backlight = bd;
1840 mutex_unlock(&pmac_backlight_mutex);
1841 #endif
1842
1843 printk("aty128: Backlight initialized (%s)\n", name);
1844
1845 return;
1846
1847 error:
1848 return;
1849 }
1850
1851 static void aty128_bl_exit(struct aty128fb_par *par)
1852 {
1853 struct fb_info *info = pci_get_drvdata(par->pdev);
1854
1855 #ifdef CONFIG_PMAC_BACKLIGHT
1856 mutex_lock(&pmac_backlight_mutex);
1857 #endif
1858
1859 mutex_lock(&info->bl_mutex);
1860 if (info->bl_dev) {
1861 #ifdef CONFIG_PMAC_BACKLIGHT
1862 if (pmac_backlight == info->bl_dev)
1863 pmac_backlight = NULL;
1864 #endif
1865
1866 backlight_device_unregister(info->bl_dev);
1867 info->bl_dev = NULL;
1868
1869 printk("aty128: Backlight unloaded\n");
1870 }
1871 mutex_unlock(&info->bl_mutex);
1872
1873 #ifdef CONFIG_PMAC_BACKLIGHT
1874 mutex_unlock(&pmac_backlight_mutex);
1875 #endif
1876 }
1877 #endif /* CONFIG_FB_ATY128_BACKLIGHT */
1878
1879 /*
1880 * Initialisation
1881 */
1882
1883 #ifdef CONFIG_PPC_PMAC
1884 static void aty128_early_resume(void *data)
1885 {
1886 struct aty128fb_par *par = data;
1887
1888 if (try_acquire_console_sem())
1889 return;
1890 aty128_do_resume(par->pdev);
1891 release_console_sem();
1892 }
1893 #endif /* CONFIG_PPC_PMAC */
1894
1895 static int __devinit aty128_init(struct pci_dev *pdev, const struct pci_device_id *ent)
1896 {
1897 struct fb_info *info = pci_get_drvdata(pdev);
1898 struct aty128fb_par *par = info->par;
1899 struct fb_var_screeninfo var;
1900 char video_card[DEVICE_NAME_SIZE];
1901 u8 chip_rev;
1902 u32 dac;
1903
1904 if (!par->vram_size) /* may have already been probed */
1905 par->vram_size = aty_ld_le32(CONFIG_MEMSIZE) & 0x03FFFFFF;
1906
1907 /* Get the chip revision */
1908 chip_rev = (aty_ld_le32(CONFIG_CNTL) >> 16) & 0x1F;
1909
1910 strcpy(video_card, "Rage128 XX ");
1911 video_card[8] = ent->device >> 8;
1912 video_card[9] = ent->device & 0xFF;
1913
1914 /* range check to make sure */
1915 if (ent->driver_data < ARRAY_SIZE(r128_family))
1916 strncat(video_card, r128_family[ent->driver_data], sizeof(video_card));
1917
1918 printk(KERN_INFO "aty128fb: %s [chip rev 0x%x] ", video_card, chip_rev);
1919
1920 if (par->vram_size % (1024 * 1024) == 0)
1921 printk("%dM %s\n", par->vram_size / (1024*1024), par->mem->name);
1922 else
1923 printk("%dk %s\n", par->vram_size / 1024, par->mem->name);
1924
1925 par->chip_gen = ent->driver_data;
1926
1927 /* fill in info */
1928 info->fbops = &aty128fb_ops;
1929 info->flags = FBINFO_FLAG_DEFAULT;
1930
1931 par->lcd_on = default_lcd_on;
1932 par->crt_on = default_crt_on;
1933
1934 var = default_var;
1935 #ifdef CONFIG_PPC_PMAC
1936 if (machine_is(powermac)) {
1937 /* Indicate sleep capability */
1938 if (par->chip_gen == rage_M3) {
1939 pmac_call_feature(PMAC_FTR_DEVICE_CAN_WAKE, NULL, 0, 1);
1940 pmac_set_early_video_resume(aty128_early_resume, par);
1941 }
1942
1943 /* Find default mode */
1944 if (mode_option) {
1945 if (!mac_find_mode(&var, info, mode_option, 8))
1946 var = default_var;
1947 } else {
1948 if (default_vmode <= 0 || default_vmode > VMODE_MAX)
1949 default_vmode = VMODE_1024_768_60;
1950
1951 /* iMacs need that resolution
1952 * PowerMac2,1 first r128 iMacs
1953 * PowerMac2,2 summer 2000 iMacs
1954 * PowerMac4,1 january 2001 iMacs "flower power"
1955 */
1956 if (machine_is_compatible("PowerMac2,1") ||
1957 machine_is_compatible("PowerMac2,2") ||
1958 machine_is_compatible("PowerMac4,1"))
1959 default_vmode = VMODE_1024_768_75;
1960
1961 /* iBook SE */
1962 if (machine_is_compatible("PowerBook2,2"))
1963 default_vmode = VMODE_800_600_60;
1964
1965 /* PowerBook Firewire (Pismo), iBook Dual USB */
1966 if (machine_is_compatible("PowerBook3,1") ||
1967 machine_is_compatible("PowerBook4,1"))
1968 default_vmode = VMODE_1024_768_60;
1969
1970 /* PowerBook Titanium */
1971 if (machine_is_compatible("PowerBook3,2"))
1972 default_vmode = VMODE_1152_768_60;
1973
1974 if (default_cmode > 16)
1975 default_cmode = CMODE_32;
1976 else if (default_cmode > 8)
1977 default_cmode = CMODE_16;
1978 else
1979 default_cmode = CMODE_8;
1980
1981 if (mac_vmode_to_var(default_vmode, default_cmode, &var))
1982 var = default_var;
1983 }
1984 } else
1985 #endif /* CONFIG_PPC_PMAC */
1986 {
1987 if (mode_option)
1988 if (fb_find_mode(&var, info, mode_option, NULL,
1989 0, &defaultmode, 8) == 0)
1990 var = default_var;
1991 }
1992
1993 var.accel_flags &= ~FB_ACCELF_TEXT;
1994 // var.accel_flags |= FB_ACCELF_TEXT;/* FIXME Will add accel later */
1995
1996 if (aty128fb_check_var(&var, info)) {
1997 printk(KERN_ERR "aty128fb: Cannot set default mode.\n");
1998 return 0;
1999 }
2000
2001 /* setup the DAC the way we like it */
2002 dac = aty_ld_le32(DAC_CNTL);
2003 dac |= (DAC_8BIT_EN | DAC_RANGE_CNTL);
2004 dac |= DAC_MASK;
2005 if (par->chip_gen == rage_M3)
2006 dac |= DAC_PALETTE2_SNOOP_EN;
2007 aty_st_le32(DAC_CNTL, dac);
2008
2009 /* turn off bus mastering, just in case */
2010 aty_st_le32(BUS_CNTL, aty_ld_le32(BUS_CNTL) | BUS_MASTER_DIS);
2011
2012 info->var = var;
2013 fb_alloc_cmap(&info->cmap, 256, 0);
2014
2015 var.activate = FB_ACTIVATE_NOW;
2016
2017 aty128_init_engine(par);
2018
2019 if (register_framebuffer(info) < 0)
2020 return 0;
2021
2022 par->pm_reg = pci_find_capability(pdev, PCI_CAP_ID_PM);
2023 par->pdev = pdev;
2024 par->asleep = 0;
2025 par->lock_blank = 0;
2026
2027 #ifdef CONFIG_FB_ATY128_BACKLIGHT
2028 aty128_bl_init(par);
2029 #endif
2030
2031 printk(KERN_INFO "fb%d: %s frame buffer device on %s\n",
2032 info->node, info->fix.id, video_card);
2033
2034 return 1; /* success! */
2035 }
2036
2037 #ifdef CONFIG_PCI
2038 /* register a card ++ajoshi */
2039 static int __devinit aty128_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2040 {
2041 unsigned long fb_addr, reg_addr;
2042 struct aty128fb_par *par;
2043 struct fb_info *info;
2044 int err;
2045 #ifndef __sparc__
2046 void __iomem *bios = NULL;
2047 #endif
2048
2049 /* Enable device in PCI config */
2050 if ((err = pci_enable_device(pdev))) {
2051 printk(KERN_ERR "aty128fb: Cannot enable PCI device: %d\n",
2052 err);
2053 return -ENODEV;
2054 }
2055
2056 fb_addr = pci_resource_start(pdev, 0);
2057 if (!request_mem_region(fb_addr, pci_resource_len(pdev, 0),
2058 "aty128fb FB")) {
2059 printk(KERN_ERR "aty128fb: cannot reserve frame "
2060 "buffer memory\n");
2061 return -ENODEV;
2062 }
2063
2064 reg_addr = pci_resource_start(pdev, 2);
2065 if (!request_mem_region(reg_addr, pci_resource_len(pdev, 2),
2066 "aty128fb MMIO")) {
2067 printk(KERN_ERR "aty128fb: cannot reserve MMIO region\n");
2068 goto err_free_fb;
2069 }
2070
2071 /* We have the resources. Now virtualize them */
2072 info = framebuffer_alloc(sizeof(struct aty128fb_par), &pdev->dev);
2073 if (info == NULL) {
2074 printk(KERN_ERR "aty128fb: can't alloc fb_info_aty128\n");
2075 goto err_free_mmio;
2076 }
2077 par = info->par;
2078
2079 info->pseudo_palette = par->pseudo_palette;
2080 info->fix = aty128fb_fix;
2081
2082 /* Virtualize mmio region */
2083 info->fix.mmio_start = reg_addr;
2084 par->regbase = ioremap(reg_addr, pci_resource_len(pdev, 2));
2085 if (!par->regbase)
2086 goto err_free_info;
2087
2088 /* Grab memory size from the card */
2089 // How does this relate to the resource length from the PCI hardware?
2090 par->vram_size = aty_ld_le32(CONFIG_MEMSIZE) & 0x03FFFFFF;
2091
2092 /* Virtualize the framebuffer */
2093 info->screen_base = ioremap(fb_addr, par->vram_size);
2094 if (!info->screen_base)
2095 goto err_unmap_out;
2096
2097 /* Set up info->fix */
2098 info->fix = aty128fb_fix;
2099 info->fix.smem_start = fb_addr;
2100 info->fix.smem_len = par->vram_size;
2101 info->fix.mmio_start = reg_addr;
2102
2103 /* If we can't test scratch registers, something is seriously wrong */
2104 if (!register_test(par)) {
2105 printk(KERN_ERR "aty128fb: Can't write to video register!\n");
2106 goto err_out;
2107 }
2108
2109 #ifndef __sparc__
2110 bios = aty128_map_ROM(par, pdev);
2111 #ifdef CONFIG_X86
2112 if (bios == NULL)
2113 bios = aty128_find_mem_vbios(par);
2114 #endif
2115 if (bios == NULL)
2116 printk(KERN_INFO "aty128fb: BIOS not located, guessing timings.\n");
2117 else {
2118 printk(KERN_INFO "aty128fb: Rage128 BIOS located\n");
2119 aty128_get_pllinfo(par, bios);
2120 pci_unmap_rom(pdev, bios);
2121 }
2122 #endif /* __sparc__ */
2123
2124 aty128_timings(par);
2125 pci_set_drvdata(pdev, info);
2126
2127 if (!aty128_init(pdev, ent))
2128 goto err_out;
2129
2130 #ifdef CONFIG_MTRR
2131 if (mtrr) {
2132 par->mtrr.vram = mtrr_add(info->fix.smem_start,
2133 par->vram_size, MTRR_TYPE_WRCOMB, 1);
2134 par->mtrr.vram_valid = 1;
2135 /* let there be speed */
2136 printk(KERN_INFO "aty128fb: Rage128 MTRR set to ON\n");
2137 }
2138 #endif /* CONFIG_MTRR */
2139 return 0;
2140
2141 err_out:
2142 iounmap(info->screen_base);
2143 err_unmap_out:
2144 iounmap(par->regbase);
2145 err_free_info:
2146 framebuffer_release(info);
2147 err_free_mmio:
2148 release_mem_region(pci_resource_start(pdev, 2),
2149 pci_resource_len(pdev, 2));
2150 err_free_fb:
2151 release_mem_region(pci_resource_start(pdev, 0),
2152 pci_resource_len(pdev, 0));
2153 return -ENODEV;
2154 }
2155
2156 static void __devexit aty128_remove(struct pci_dev *pdev)
2157 {
2158 struct fb_info *info = pci_get_drvdata(pdev);
2159 struct aty128fb_par *par;
2160
2161 if (!info)
2162 return;
2163
2164 par = info->par;
2165
2166 #ifdef CONFIG_FB_ATY128_BACKLIGHT
2167 aty128_bl_exit(par);
2168 #endif
2169
2170 unregister_framebuffer(info);
2171 #ifdef CONFIG_MTRR
2172 if (par->mtrr.vram_valid)
2173 mtrr_del(par->mtrr.vram, info->fix.smem_start,
2174 par->vram_size);
2175 #endif /* CONFIG_MTRR */
2176 iounmap(par->regbase);
2177 iounmap(info->screen_base);
2178
2179 release_mem_region(pci_resource_start(pdev, 0),
2180 pci_resource_len(pdev, 0));
2181 release_mem_region(pci_resource_start(pdev, 2),
2182 pci_resource_len(pdev, 2));
2183 framebuffer_release(info);
2184 }
2185 #endif /* CONFIG_PCI */
2186
2187
2188
2189 /*
2190 * Blank the display.
2191 */
2192 static int aty128fb_blank(int blank, struct fb_info *fb)
2193 {
2194 struct aty128fb_par *par = fb->par;
2195 u8 state = 0;
2196
2197 if (par->lock_blank || par->asleep)
2198 return 0;
2199
2200 #ifdef CONFIG_FB_ATY128_BACKLIGHT
2201 if (machine_is(powermac) && blank) {
2202 down(&fb->bl_dev->sem);
2203 fb->bl_dev->props->power = FB_BLANK_POWERDOWN;
2204 fb->bl_dev->props->update_status(fb->bl_dev);
2205 up(&fb->bl_dev->sem);
2206 }
2207 #endif
2208
2209 if (blank & FB_BLANK_VSYNC_SUSPEND)
2210 state |= 2;
2211 if (blank & FB_BLANK_HSYNC_SUSPEND)
2212 state |= 1;
2213 if (blank & FB_BLANK_POWERDOWN)
2214 state |= 4;
2215
2216 aty_st_8(CRTC_EXT_CNTL+1, state);
2217
2218 if (par->chip_gen == rage_M3) {
2219 aty128_set_crt_enable(par, par->crt_on && !blank);
2220 aty128_set_lcd_enable(par, par->lcd_on && !blank);
2221 }
2222 #ifdef CONFIG_FB_ATY128_BACKLIGHT
2223 if (machine_is(powermac) && !blank) {
2224 down(&fb->bl_dev->sem);
2225 fb->bl_dev->props->power = FB_BLANK_UNBLANK;
2226 fb->bl_dev->props->update_status(fb->bl_dev);
2227 up(&fb->bl_dev->sem);
2228 }
2229 #endif
2230 return 0;
2231 }
2232
2233 /*
2234 * Set a single color register. The values supplied are already
2235 * rounded down to the hardware's capabilities (according to the
2236 * entries in the var structure). Return != 0 for invalid regno.
2237 */
2238 static int aty128fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
2239 u_int transp, struct fb_info *info)
2240 {
2241 struct aty128fb_par *par = info->par;
2242
2243 if (regno > 255
2244 || (par->crtc.depth == 16 && regno > 63)
2245 || (par->crtc.depth == 15 && regno > 31))
2246 return 1;
2247
2248 red >>= 8;
2249 green >>= 8;
2250 blue >>= 8;
2251
2252 if (regno < 16) {
2253 int i;
2254 u32 *pal = info->pseudo_palette;
2255
2256 switch (par->crtc.depth) {
2257 case 15:
2258 pal[regno] = (regno << 10) | (regno << 5) | regno;
2259 break;
2260 case 16:
2261 pal[regno] = (regno << 11) | (regno << 6) | regno;
2262 break;
2263 case 24:
2264 pal[regno] = (regno << 16) | (regno << 8) | regno;
2265 break;
2266 case 32:
2267 i = (regno << 8) | regno;
2268 pal[regno] = (i << 16) | i;
2269 break;
2270 }
2271 }
2272
2273 if (par->crtc.depth == 16 && regno > 0) {
2274 /*
2275 * With the 5-6-5 split of bits for RGB at 16 bits/pixel, we
2276 * have 32 slots for R and B values but 64 slots for G values.
2277 * Thus the R and B values go in one slot but the G value
2278 * goes in a different slot, and we have to avoid disturbing
2279 * the other fields in the slots we touch.
2280 */
2281 par->green[regno] = green;
2282 if (regno < 32) {
2283 par->red[regno] = red;
2284 par->blue[regno] = blue;
2285 aty128_st_pal(regno * 8, red, par->green[regno*2],
2286 blue, par);
2287 }
2288 red = par->red[regno/2];
2289 blue = par->blue[regno/2];
2290 regno <<= 2;
2291 } else if (par->crtc.bpp == 16)
2292 regno <<= 3;
2293 aty128_st_pal(regno, red, green, blue, par);
2294
2295 return 0;
2296 }
2297
2298 #define ATY_MIRROR_LCD_ON 0x00000001
2299 #define ATY_MIRROR_CRT_ON 0x00000002
2300
2301 /* out param: u32* backlight value: 0 to 15 */
2302 #define FBIO_ATY128_GET_MIRROR _IOR('@', 1, __u32)
2303 /* in param: u32* backlight value: 0 to 15 */
2304 #define FBIO_ATY128_SET_MIRROR _IOW('@', 2, __u32)
2305
2306 static int aty128fb_ioctl(struct fb_info *info, u_int cmd, u_long arg)
2307 {
2308 struct aty128fb_par *par = info->par;
2309 u32 value;
2310 int rc;
2311
2312 switch (cmd) {
2313 case FBIO_ATY128_SET_MIRROR:
2314 if (par->chip_gen != rage_M3)
2315 return -EINVAL;
2316 rc = get_user(value, (__u32 __user *)arg);
2317 if (rc)
2318 return rc;
2319 par->lcd_on = (value & 0x01) != 0;
2320 par->crt_on = (value & 0x02) != 0;
2321 if (!par->crt_on && !par->lcd_on)
2322 par->lcd_on = 1;
2323 aty128_set_crt_enable(par, par->crt_on);
2324 aty128_set_lcd_enable(par, par->lcd_on);
2325 return 0;
2326 case FBIO_ATY128_GET_MIRROR:
2327 if (par->chip_gen != rage_M3)
2328 return -EINVAL;
2329 value = (par->crt_on << 1) | par->lcd_on;
2330 return put_user(value, (__u32 __user *)arg);
2331 }
2332 return -EINVAL;
2333 }
2334
2335 #if 0
2336 /*
2337 * Accelerated functions
2338 */
2339
2340 static inline void aty128_rectcopy(int srcx, int srcy, int dstx, int dsty,
2341 u_int width, u_int height,
2342 struct fb_info_aty128 *par)
2343 {
2344 u32 save_dp_datatype, save_dp_cntl, dstval;
2345
2346 if (!width || !height)
2347 return;
2348
2349 dstval = depth_to_dst(par->current_par.crtc.depth);
2350 if (dstval == DST_24BPP) {
2351 srcx *= 3;
2352 dstx *= 3;
2353 width *= 3;
2354 } else if (dstval == -EINVAL) {
2355 printk("aty128fb: invalid depth or RGBA\n");
2356 return;
2357 }
2358
2359 wait_for_fifo(2, par);
2360 save_dp_datatype = aty_ld_le32(DP_DATATYPE);
2361 save_dp_cntl = aty_ld_le32(DP_CNTL);
2362
2363 wait_for_fifo(6, par);
2364 aty_st_le32(SRC_Y_X, (srcy << 16) | srcx);
2365 aty_st_le32(DP_MIX, ROP3_SRCCOPY | DP_SRC_RECT);
2366 aty_st_le32(DP_CNTL, DST_X_LEFT_TO_RIGHT | DST_Y_TOP_TO_BOTTOM);
2367 aty_st_le32(DP_DATATYPE, save_dp_datatype | dstval | SRC_DSTCOLOR);
2368
2369 aty_st_le32(DST_Y_X, (dsty << 16) | dstx);
2370 aty_st_le32(DST_HEIGHT_WIDTH, (height << 16) | width);
2371
2372 par->blitter_may_be_busy = 1;
2373
2374 wait_for_fifo(2, par);
2375 aty_st_le32(DP_DATATYPE, save_dp_datatype);
2376 aty_st_le32(DP_CNTL, save_dp_cntl);
2377 }
2378
2379
2380 /*
2381 * Text mode accelerated functions
2382 */
2383
2384 static void fbcon_aty128_bmove(struct display *p, int sy, int sx, int dy, int dx,
2385 int height, int width)
2386 {
2387 sx *= fontwidth(p);
2388 sy *= fontheight(p);
2389 dx *= fontwidth(p);
2390 dy *= fontheight(p);
2391 width *= fontwidth(p);
2392 height *= fontheight(p);
2393
2394 aty128_rectcopy(sx, sy, dx, dy, width, height,
2395 (struct fb_info_aty128 *)p->fb_info);
2396 }
2397 #endif /* 0 */
2398
2399 static void aty128_set_suspend(struct aty128fb_par *par, int suspend)
2400 {
2401 u32 pmgt;
2402 u16 pwr_command;
2403 struct pci_dev *pdev = par->pdev;
2404
2405 if (!par->pm_reg)
2406 return;
2407
2408 /* Set the chip into the appropriate suspend mode (we use D2,
2409 * D3 would require a complete re-initialisation of the chip,
2410 * including PCI config registers, clocks, AGP configuration, ...)
2411 */
2412 if (suspend) {
2413 /* Make sure CRTC2 is reset. Remove that the day we decide to
2414 * actually use CRTC2 and replace it with real code for disabling
2415 * the CRTC2 output during sleep
2416 */
2417 aty_st_le32(CRTC2_GEN_CNTL, aty_ld_le32(CRTC2_GEN_CNTL) &
2418 ~(CRTC2_EN));
2419
2420 /* Set the power management mode to be PCI based */
2421 /* Use this magic value for now */
2422 pmgt = 0x0c005407;
2423 aty_st_pll(POWER_MANAGEMENT, pmgt);
2424 (void)aty_ld_pll(POWER_MANAGEMENT);
2425 aty_st_le32(BUS_CNTL1, 0x00000010);
2426 aty_st_le32(MEM_POWER_MISC, 0x0c830000);
2427 mdelay(100);
2428 pci_read_config_word(pdev, par->pm_reg+PCI_PM_CTRL, &pwr_command);
2429 /* Switch PCI power management to D2 */
2430 pci_write_config_word(pdev, par->pm_reg+PCI_PM_CTRL,
2431 (pwr_command & ~PCI_PM_CTRL_STATE_MASK) | 2);
2432 pci_read_config_word(pdev, par->pm_reg+PCI_PM_CTRL, &pwr_command);
2433 } else {
2434 /* Switch back PCI power management to D0 */
2435 mdelay(100);
2436 pci_write_config_word(pdev, par->pm_reg+PCI_PM_CTRL, 0);
2437 pci_read_config_word(pdev, par->pm_reg+PCI_PM_CTRL, &pwr_command);
2438 mdelay(100);
2439 }
2440 }
2441
2442 static int aty128_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2443 {
2444 struct fb_info *info = pci_get_drvdata(pdev);
2445 struct aty128fb_par *par = info->par;
2446
2447 /* We don't do anything but D2, for now we return 0, but
2448 * we may want to change that. How do we know if the BIOS
2449 * can properly take care of D3 ? Also, with swsusp, we
2450 * know we'll be rebooted, ...
2451 */
2452 #ifndef CONFIG_PPC_PMAC
2453 /* HACK ALERT ! Once I find a proper way to say to each driver
2454 * individually what will happen with it's PCI slot, I'll change
2455 * that. On laptops, the AGP slot is just unclocked, so D2 is
2456 * expected, while on desktops, the card is powered off
2457 */
2458 return 0;
2459 #endif /* CONFIG_PPC_PMAC */
2460
2461 if (state.event == pdev->dev.power.power_state.event)
2462 return 0;
2463
2464 printk(KERN_DEBUG "aty128fb: suspending...\n");
2465
2466 acquire_console_sem();
2467
2468 fb_set_suspend(info, 1);
2469
2470 /* Make sure engine is reset */
2471 wait_for_idle(par);
2472 aty128_reset_engine(par);
2473 wait_for_idle(par);
2474
2475 /* Blank display and LCD */
2476 aty128fb_blank(VESA_POWERDOWN, info);
2477
2478 /* Sleep */
2479 par->asleep = 1;
2480 par->lock_blank = 1;
2481
2482 #ifdef CONFIG_PPC_PMAC
2483 /* On powermac, we have hooks to properly suspend/resume AGP now,
2484 * use them here. We'll ultimately need some generic support here,
2485 * but the generic code isn't quite ready for that yet
2486 */
2487 pmac_suspend_agp_for_card(pdev);
2488 #endif /* CONFIG_PPC_PMAC */
2489
2490 /* We need a way to make sure the fbdev layer will _not_ touch the
2491 * framebuffer before we put the chip to suspend state. On 2.4, I
2492 * used dummy fb ops, 2.5 need proper support for this at the
2493 * fbdev level
2494 */
2495 if (state.event != PM_EVENT_ON)
2496 aty128_set_suspend(par, 1);
2497
2498 release_console_sem();
2499
2500 pdev->dev.power.power_state = state;
2501
2502 return 0;
2503 }
2504
2505 static int aty128_do_resume(struct pci_dev *pdev)
2506 {
2507 struct fb_info *info = pci_get_drvdata(pdev);
2508 struct aty128fb_par *par = info->par;
2509
2510 if (pdev->dev.power.power_state.event == PM_EVENT_ON)
2511 return 0;
2512
2513 /* Wakeup chip */
2514 aty128_set_suspend(par, 0);
2515 par->asleep = 0;
2516
2517 /* Restore display & engine */
2518 aty128_reset_engine(par);
2519 wait_for_idle(par);
2520 aty128fb_set_par(info);
2521 fb_pan_display(info, &info->var);
2522 fb_set_cmap(&info->cmap, info);
2523
2524 /* Refresh */
2525 fb_set_suspend(info, 0);
2526
2527 /* Unblank */
2528 par->lock_blank = 0;
2529 aty128fb_blank(0, info);
2530
2531 #ifdef CONFIG_PPC_PMAC
2532 /* On powermac, we have hooks to properly suspend/resume AGP now,
2533 * use them here. We'll ultimately need some generic support here,
2534 * but the generic code isn't quite ready for that yet
2535 */
2536 pmac_resume_agp_for_card(pdev);
2537 #endif /* CONFIG_PPC_PMAC */
2538
2539 pdev->dev.power.power_state = PMSG_ON;
2540
2541 printk(KERN_DEBUG "aty128fb: resumed !\n");
2542
2543 return 0;
2544 }
2545
2546 static int aty128_pci_resume(struct pci_dev *pdev)
2547 {
2548 int rc;
2549
2550 acquire_console_sem();
2551 rc = aty128_do_resume(pdev);
2552 release_console_sem();
2553
2554 return rc;
2555 }
2556
2557
2558 static int __devinit aty128fb_init(void)
2559 {
2560 #ifndef MODULE
2561 char *option = NULL;
2562
2563 if (fb_get_options("aty128fb", &option))
2564 return -ENODEV;
2565 aty128fb_setup(option);
2566 #endif
2567
2568 return pci_register_driver(&aty128fb_driver);
2569 }
2570
2571 static void __exit aty128fb_exit(void)
2572 {
2573 pci_unregister_driver(&aty128fb_driver);
2574 }
2575
2576 module_init(aty128fb_init);
2577
2578 module_exit(aty128fb_exit);
2579
2580 MODULE_AUTHOR("(c)1999-2003 Brad Douglas <brad@neruo.com>");
2581 MODULE_DESCRIPTION("FBDev driver for ATI Rage128 / Pro cards");
2582 MODULE_LICENSE("GPL");
2583 module_param(mode_option, charp, 0);
2584 MODULE_PARM_DESC(mode_option, "Specify resolution as \"<xres>x<yres>[-<bpp>][@<refresh>]\" ");
2585 #ifdef CONFIG_MTRR
2586 module_param_named(nomtrr, mtrr, invbool, 0);
2587 MODULE_PARM_DESC(nomtrr, "bool: Disable MTRR support (0 or 1=disabled) (default=0)");
2588 #endif
2589