]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/video/fbdev/aty/mach64_ct.c
Input: wm97xx: add new AC97 bus support
[mirror_ubuntu-focal-kernel.git] / drivers / video / fbdev / aty / mach64_ct.c
1
2 /*
3 * ATI Mach64 CT/VT/GT/LT Support
4 */
5
6 #include <linux/fb.h>
7 #include <linux/delay.h>
8 #include <asm/io.h>
9 #include <video/mach64.h>
10 #include "atyfb.h"
11 #ifdef CONFIG_PPC
12 #include <asm/machdep.h>
13 #endif
14
15 #undef DEBUG
16
17 static int aty_valid_pll_ct (const struct fb_info *info, u32 vclk_per, struct pll_ct *pll);
18 static int aty_dsp_gt (const struct fb_info *info, u32 bpp, struct pll_ct *pll);
19 static int aty_var_to_pll_ct(const struct fb_info *info, u32 vclk_per, u32 bpp, union aty_pll *pll);
20 static u32 aty_pll_to_var_ct(const struct fb_info *info, const union aty_pll *pll);
21
22 u8 aty_ld_pll_ct(int offset, const struct atyfb_par *par)
23 {
24 u8 res;
25
26 /* write addr byte */
27 aty_st_8(CLOCK_CNTL_ADDR, (offset << 2) & PLL_ADDR, par);
28 /* read the register value */
29 res = aty_ld_8(CLOCK_CNTL_DATA, par);
30 return res;
31 }
32
33 static void aty_st_pll_ct(int offset, u8 val, const struct atyfb_par *par)
34 {
35 /* write addr byte */
36 aty_st_8(CLOCK_CNTL_ADDR, ((offset << 2) & PLL_ADDR) | PLL_WR_EN, par);
37 /* write the register value */
38 aty_st_8(CLOCK_CNTL_DATA, val & PLL_DATA, par);
39 aty_st_8(CLOCK_CNTL_ADDR, ((offset << 2) & PLL_ADDR) & ~PLL_WR_EN, par);
40 }
41
42 /*
43 * by Daniel Mantione
44 * <daniel.mantione@freepascal.org>
45 *
46 *
47 * ATI Mach64 CT clock synthesis description.
48 *
49 * All clocks on the Mach64 can be calculated using the same principle:
50 *
51 * XTALIN * x * FB_DIV
52 * CLK = ----------------------
53 * PLL_REF_DIV * POST_DIV
54 *
55 * XTALIN is a fixed speed clock. Common speeds are 14.31 MHz and 29.50 MHz.
56 * PLL_REF_DIV can be set by the user, but is the same for all clocks.
57 * FB_DIV can be set by the user for each clock individually, it should be set
58 * between 128 and 255, the chip will generate a bad clock signal for too low
59 * values.
60 * x depends on the type of clock; usually it is 2, but for the MCLK it can also
61 * be set to 4.
62 * POST_DIV can be set by the user for each clock individually, Possible values
63 * are 1,2,4,8 and for some clocks other values are available too.
64 * CLK is of course the clock speed that is generated.
65 *
66 * The Mach64 has these clocks:
67 *
68 * MCLK The clock rate of the chip
69 * XCLK The clock rate of the on-chip memory
70 * VCLK0 First pixel clock of first CRT controller
71 * VCLK1 Second pixel clock of first CRT controller
72 * VCLK2 Third pixel clock of first CRT controller
73 * VCLK3 Fourth pixel clock of first CRT controller
74 * VCLK Selected pixel clock, one of VCLK0, VCLK1, VCLK2, VCLK3
75 * V2CLK Pixel clock of the second CRT controller.
76 * SCLK Multi-purpose clock
77 *
78 * - MCLK and XCLK use the same FB_DIV
79 * - VCLK0 .. VCLK3 use the same FB_DIV
80 * - V2CLK is needed when the second CRTC is used (can be used for dualhead);
81 * i.e. CRT monitor connected to laptop has different resolution than built
82 * in LCD monitor.
83 * - SCLK is not available on all cards; it is know to exist on the Rage LT-PRO,
84 * Rage XL and Rage Mobility. It is know not to exist on the Mach64 VT.
85 * - V2CLK is not available on all cards, most likely only the Rage LT-PRO,
86 * the Rage XL and the Rage Mobility
87 *
88 * SCLK can be used to:
89 * - Clock the chip instead of MCLK
90 * - Replace XTALIN with a user defined frequency
91 * - Generate the pixel clock for the LCD monitor (instead of VCLK)
92 */
93
94 /*
95 * It can be quite hard to calculate XCLK and MCLK if they don't run at the
96 * same frequency. Luckily, until now all cards that need asynchrone clock
97 * speeds seem to have SCLK.
98 * So this driver uses SCLK to clock the chip and XCLK to clock the memory.
99 */
100
101 /* ------------------------------------------------------------------------- */
102
103 /*
104 * PLL programming (Mach64 CT family)
105 *
106 *
107 * This procedure sets the display fifo. The display fifo is a buffer that
108 * contains data read from the video memory that waits to be processed by
109 * the CRT controller.
110 *
111 * On the more modern Mach64 variants, the chip doesn't calculate the
112 * interval after which the display fifo has to be reloaded from memory
113 * automatically, the driver has to do it instead.
114 */
115
116 #define Maximum_DSP_PRECISION 7
117 static u8 postdividers[] = {1,2,4,8,3};
118
119 static int aty_dsp_gt(const struct fb_info *info, u32 bpp, struct pll_ct *pll)
120 {
121 u32 dsp_off, dsp_on, dsp_xclks;
122 u32 multiplier, divider, ras_multiplier, ras_divider, tmp;
123 u8 vshift, xshift;
124 s8 dsp_precision;
125
126 multiplier = ((u32)pll->mclk_fb_div) * pll->vclk_post_div_real;
127 divider = ((u32)pll->vclk_fb_div) * pll->xclk_ref_div;
128
129 ras_multiplier = pll->xclkmaxrasdelay;
130 ras_divider = 1;
131
132 if (bpp>=8)
133 divider = divider * (bpp >> 2);
134
135 vshift = (6 - 2) - pll->xclk_post_div; /* FIFO is 64 bits wide in accelerator mode ... */
136
137 if (bpp == 0)
138 vshift--; /* ... but only 32 bits in VGA mode. */
139
140 #ifdef CONFIG_FB_ATY_GENERIC_LCD
141 if (pll->xres != 0) {
142 struct atyfb_par *par = (struct atyfb_par *) info->par;
143
144 multiplier = multiplier * par->lcd_width;
145 divider = divider * pll->xres & ~7;
146
147 ras_multiplier = ras_multiplier * par->lcd_width;
148 ras_divider = ras_divider * pll->xres & ~7;
149 }
150 #endif
151 /* If we don't do this, 32 bits for multiplier & divider won't be
152 enough in certain situations! */
153 while (((multiplier | divider) & 1) == 0) {
154 multiplier = multiplier >> 1;
155 divider = divider >> 1;
156 }
157
158 /* Determine DSP precision first */
159 tmp = ((multiplier * pll->fifo_size) << vshift) / divider;
160
161 for (dsp_precision = -5; tmp; dsp_precision++)
162 tmp >>= 1;
163 if (dsp_precision < 0)
164 dsp_precision = 0;
165 else if (dsp_precision > Maximum_DSP_PRECISION)
166 dsp_precision = Maximum_DSP_PRECISION;
167
168 xshift = 6 - dsp_precision;
169 vshift += xshift;
170
171 /* Move on to dsp_off */
172 dsp_off = ((multiplier * (pll->fifo_size - 1)) << vshift) / divider -
173 (1 << (vshift - xshift));
174
175 /* if (bpp == 0)
176 dsp_on = ((multiplier * 20 << vshift) + divider) / divider;
177 else */
178 {
179 dsp_on = ((multiplier << vshift) + divider) / divider;
180 tmp = ((ras_multiplier << xshift) + ras_divider) / ras_divider;
181 if (dsp_on < tmp)
182 dsp_on = tmp;
183 dsp_on = dsp_on + (tmp * 2) + (pll->xclkpagefaultdelay << xshift);
184 }
185
186 /* Calculate rounding factor and apply it to dsp_on */
187 tmp = ((1 << (Maximum_DSP_PRECISION - dsp_precision)) - 1) >> 1;
188 dsp_on = ((dsp_on + tmp) / (tmp + 1)) * (tmp + 1);
189
190 if (dsp_on >= ((dsp_off / (tmp + 1)) * (tmp + 1))) {
191 dsp_on = dsp_off - (multiplier << vshift) / divider;
192 dsp_on = (dsp_on / (tmp + 1)) * (tmp + 1);
193 }
194
195 /* Last but not least: dsp_xclks */
196 dsp_xclks = ((multiplier << (vshift + 5)) + divider) / divider;
197
198 /* Get register values. */
199 pll->dsp_on_off = (dsp_on << 16) + dsp_off;
200 pll->dsp_config = (dsp_precision << 20) | (pll->dsp_loop_latency << 16) | dsp_xclks;
201 #ifdef DEBUG
202 printk("atyfb(%s): dsp_config 0x%08x, dsp_on_off 0x%08x\n",
203 __func__, pll->dsp_config, pll->dsp_on_off);
204 #endif
205 return 0;
206 }
207
208 static int aty_valid_pll_ct(const struct fb_info *info, u32 vclk_per, struct pll_ct *pll)
209 {
210 u32 q;
211 struct atyfb_par *par = (struct atyfb_par *) info->par;
212 int pllvclk;
213
214 /* FIXME: use the VTB/GTB /{3,6,12} post dividers if they're better suited */
215 q = par->ref_clk_per * pll->pll_ref_div * 4 / vclk_per;
216 if (q < 16*8 || q > 255*8) {
217 printk(KERN_CRIT "atyfb: vclk out of range\n");
218 return -EINVAL;
219 } else {
220 pll->vclk_post_div = (q < 128*8);
221 pll->vclk_post_div += (q < 64*8);
222 pll->vclk_post_div += (q < 32*8);
223 }
224 pll->vclk_post_div_real = postdividers[pll->vclk_post_div];
225 // pll->vclk_post_div <<= 6;
226 pll->vclk_fb_div = q * pll->vclk_post_div_real / 8;
227 pllvclk = (1000000 * 2 * pll->vclk_fb_div) /
228 (par->ref_clk_per * pll->pll_ref_div);
229 #ifdef DEBUG
230 printk("atyfb(%s): pllvclk=%d MHz, vclk=%d MHz\n",
231 __func__, pllvclk, pllvclk / pll->vclk_post_div_real);
232 #endif
233 pll->pll_vclk_cntl = 0x03; /* VCLK = PLL_VCLK/VCLKx_POST */
234
235 /* Set ECP (scaler/overlay clock) divider */
236 if (par->pll_limits.ecp_max) {
237 int ecp = pllvclk / pll->vclk_post_div_real;
238 int ecp_div = 0;
239
240 while (ecp > par->pll_limits.ecp_max && ecp_div < 2) {
241 ecp >>= 1;
242 ecp_div++;
243 }
244 pll->pll_vclk_cntl |= ecp_div << 4;
245 }
246
247 return 0;
248 }
249
250 static int aty_var_to_pll_ct(const struct fb_info *info, u32 vclk_per, u32 bpp, union aty_pll *pll)
251 {
252 struct atyfb_par *par = (struct atyfb_par *) info->par;
253 int err;
254
255 if ((err = aty_valid_pll_ct(info, vclk_per, &pll->ct)))
256 return err;
257 if (M64_HAS(GTB_DSP) && (err = aty_dsp_gt(info, bpp, &pll->ct)))
258 return err;
259 /*aty_calc_pll_ct(info, &pll->ct);*/
260 return 0;
261 }
262
263 static u32 aty_pll_to_var_ct(const struct fb_info *info, const union aty_pll *pll)
264 {
265 struct atyfb_par *par = (struct atyfb_par *) info->par;
266 u32 ret;
267 ret = par->ref_clk_per * pll->ct.pll_ref_div * pll->ct.vclk_post_div_real / pll->ct.vclk_fb_div / 2;
268 #ifdef CONFIG_FB_ATY_GENERIC_LCD
269 if(pll->ct.xres > 0) {
270 ret *= par->lcd_width;
271 ret /= pll->ct.xres;
272 }
273 #endif
274 #ifdef DEBUG
275 printk("atyfb(%s): calculated 0x%08X(%i)\n", __func__, ret, ret);
276 #endif
277 return ret;
278 }
279
280 void aty_set_pll_ct(const struct fb_info *info, const union aty_pll *pll)
281 {
282 struct atyfb_par *par = (struct atyfb_par *) info->par;
283 u32 crtc_gen_cntl, lcd_gen_cntrl;
284 u8 tmp, tmp2;
285
286 lcd_gen_cntrl = 0;
287 #ifdef DEBUG
288 printk("atyfb(%s): about to program:\n"
289 "pll_ext_cntl=0x%02x pll_gen_cntl=0x%02x pll_vclk_cntl=0x%02x\n",
290 __func__,
291 pll->ct.pll_ext_cntl, pll->ct.pll_gen_cntl, pll->ct.pll_vclk_cntl);
292
293 printk("atyfb(%s): setting clock %lu for FeedBackDivider %i, ReferenceDivider %i, PostDivider %i(%i)\n",
294 __func__,
295 par->clk_wr_offset, pll->ct.vclk_fb_div,
296 pll->ct.pll_ref_div, pll->ct.vclk_post_div, pll->ct.vclk_post_div_real);
297 #endif
298 #ifdef CONFIG_FB_ATY_GENERIC_LCD
299 if (par->lcd_table != 0) {
300 /* turn off LCD */
301 lcd_gen_cntrl = aty_ld_lcd(LCD_GEN_CNTL, par);
302 aty_st_lcd(LCD_GEN_CNTL, lcd_gen_cntrl & ~LCD_ON, par);
303 }
304 #endif
305 aty_st_8(CLOCK_CNTL, par->clk_wr_offset | CLOCK_STROBE, par);
306
307 /* Temporarily switch to accelerator mode */
308 crtc_gen_cntl = aty_ld_le32(CRTC_GEN_CNTL, par);
309 if (!(crtc_gen_cntl & CRTC_EXT_DISP_EN))
310 aty_st_le32(CRTC_GEN_CNTL, crtc_gen_cntl | CRTC_EXT_DISP_EN, par);
311
312 /* Reset VCLK generator */
313 aty_st_pll_ct(PLL_VCLK_CNTL, pll->ct.pll_vclk_cntl, par);
314
315 /* Set post-divider */
316 tmp2 = par->clk_wr_offset << 1;
317 tmp = aty_ld_pll_ct(VCLK_POST_DIV, par);
318 tmp &= ~(0x03U << tmp2);
319 tmp |= ((pll->ct.vclk_post_div & 0x03U) << tmp2);
320 aty_st_pll_ct(VCLK_POST_DIV, tmp, par);
321
322 /* Set extended post-divider */
323 tmp = aty_ld_pll_ct(PLL_EXT_CNTL, par);
324 tmp &= ~(0x10U << par->clk_wr_offset);
325 tmp &= 0xF0U;
326 tmp |= pll->ct.pll_ext_cntl;
327 aty_st_pll_ct(PLL_EXT_CNTL, tmp, par);
328
329 /* Set feedback divider */
330 tmp = VCLK0_FB_DIV + par->clk_wr_offset;
331 aty_st_pll_ct(tmp, (pll->ct.vclk_fb_div & 0xFFU), par);
332
333 aty_st_pll_ct(PLL_GEN_CNTL, (pll->ct.pll_gen_cntl & (~(PLL_OVERRIDE | PLL_MCLK_RST))) | OSC_EN, par);
334
335 /* End VCLK generator reset */
336 aty_st_pll_ct(PLL_VCLK_CNTL, pll->ct.pll_vclk_cntl & ~(PLL_VCLK_RST), par);
337 mdelay(5);
338
339 aty_st_pll_ct(PLL_GEN_CNTL, pll->ct.pll_gen_cntl, par);
340 aty_st_pll_ct(PLL_VCLK_CNTL, pll->ct.pll_vclk_cntl, par);
341 mdelay(1);
342
343 /* Restore mode register */
344 if (!(crtc_gen_cntl & CRTC_EXT_DISP_EN))
345 aty_st_le32(CRTC_GEN_CNTL, crtc_gen_cntl, par);
346
347 if (M64_HAS(GTB_DSP)) {
348 u8 dll_cntl;
349
350 if (M64_HAS(XL_DLL))
351 dll_cntl = 0x80;
352 else if (par->ram_type >= SDRAM)
353 dll_cntl = 0xa6;
354 else
355 dll_cntl = 0xa0;
356 aty_st_pll_ct(DLL_CNTL, dll_cntl, par);
357 aty_st_pll_ct(VFC_CNTL, 0x1b, par);
358 aty_st_le32(DSP_CONFIG, pll->ct.dsp_config, par);
359 aty_st_le32(DSP_ON_OFF, pll->ct.dsp_on_off, par);
360
361 mdelay(10);
362 aty_st_pll_ct(DLL_CNTL, dll_cntl, par);
363 mdelay(10);
364 aty_st_pll_ct(DLL_CNTL, dll_cntl | 0x40, par);
365 mdelay(10);
366 aty_st_pll_ct(DLL_CNTL, dll_cntl & ~0x40, par);
367 }
368 #ifdef CONFIG_FB_ATY_GENERIC_LCD
369 if (par->lcd_table != 0) {
370 /* restore LCD */
371 aty_st_lcd(LCD_GEN_CNTL, lcd_gen_cntrl, par);
372 }
373 #endif
374 }
375
376 static void aty_get_pll_ct(const struct fb_info *info, union aty_pll *pll)
377 {
378 struct atyfb_par *par = (struct atyfb_par *) info->par;
379 u8 tmp, clock;
380
381 clock = aty_ld_8(CLOCK_CNTL, par) & 0x03U;
382 tmp = clock << 1;
383 pll->ct.vclk_post_div = (aty_ld_pll_ct(VCLK_POST_DIV, par) >> tmp) & 0x03U;
384
385 pll->ct.pll_ext_cntl = aty_ld_pll_ct(PLL_EXT_CNTL, par) & 0x0FU;
386 pll->ct.vclk_fb_div = aty_ld_pll_ct(VCLK0_FB_DIV + clock, par) & 0xFFU;
387 pll->ct.pll_ref_div = aty_ld_pll_ct(PLL_REF_DIV, par);
388 pll->ct.mclk_fb_div = aty_ld_pll_ct(MCLK_FB_DIV, par);
389
390 pll->ct.pll_gen_cntl = aty_ld_pll_ct(PLL_GEN_CNTL, par);
391 pll->ct.pll_vclk_cntl = aty_ld_pll_ct(PLL_VCLK_CNTL, par);
392
393 if (M64_HAS(GTB_DSP)) {
394 pll->ct.dsp_config = aty_ld_le32(DSP_CONFIG, par);
395 pll->ct.dsp_on_off = aty_ld_le32(DSP_ON_OFF, par);
396 }
397 }
398
399 static int aty_init_pll_ct(const struct fb_info *info, union aty_pll *pll)
400 {
401 struct atyfb_par *par = (struct atyfb_par *) info->par;
402 u8 mpost_div, xpost_div, sclk_post_div_real;
403 u32 q, memcntl, trp;
404 u32 dsp_config, dsp_on_off, vga_dsp_config, vga_dsp_on_off;
405 #ifdef DEBUG
406 int pllmclk, pllsclk;
407 #endif
408 pll->ct.pll_ext_cntl = aty_ld_pll_ct(PLL_EXT_CNTL, par);
409 pll->ct.xclk_post_div = pll->ct.pll_ext_cntl & 0x07;
410 pll->ct.xclk_ref_div = 1;
411 switch (pll->ct.xclk_post_div) {
412 case 0: case 1: case 2: case 3:
413 break;
414
415 case 4:
416 pll->ct.xclk_ref_div = 3;
417 pll->ct.xclk_post_div = 0;
418 break;
419
420 default:
421 printk(KERN_CRIT "atyfb: Unsupported xclk source: %d.\n", pll->ct.xclk_post_div);
422 return -EINVAL;
423 }
424 pll->ct.mclk_fb_mult = 2;
425 if(pll->ct.pll_ext_cntl & PLL_MFB_TIMES_4_2B) {
426 pll->ct.mclk_fb_mult = 4;
427 pll->ct.xclk_post_div -= 1;
428 }
429
430 #ifdef DEBUG
431 printk("atyfb(%s): mclk_fb_mult=%d, xclk_post_div=%d\n",
432 __func__, pll->ct.mclk_fb_mult, pll->ct.xclk_post_div);
433 #endif
434
435 memcntl = aty_ld_le32(MEM_CNTL, par);
436 trp = (memcntl & 0x300) >> 8;
437
438 pll->ct.xclkpagefaultdelay = ((memcntl & 0xc00) >> 10) + ((memcntl & 0x1000) >> 12) + trp + 2;
439 pll->ct.xclkmaxrasdelay = ((memcntl & 0x70000) >> 16) + trp + 2;
440
441 if (M64_HAS(FIFO_32)) {
442 pll->ct.fifo_size = 32;
443 } else {
444 pll->ct.fifo_size = 24;
445 pll->ct.xclkpagefaultdelay += 2;
446 pll->ct.xclkmaxrasdelay += 3;
447 }
448
449 switch (par->ram_type) {
450 case DRAM:
451 if (info->fix.smem_len<=ONE_MB) {
452 pll->ct.dsp_loop_latency = 10;
453 } else {
454 pll->ct.dsp_loop_latency = 8;
455 pll->ct.xclkpagefaultdelay += 2;
456 }
457 break;
458 case EDO:
459 case PSEUDO_EDO:
460 if (info->fix.smem_len<=ONE_MB) {
461 pll->ct.dsp_loop_latency = 9;
462 } else {
463 pll->ct.dsp_loop_latency = 8;
464 pll->ct.xclkpagefaultdelay += 1;
465 }
466 break;
467 case SDRAM:
468 if (info->fix.smem_len<=ONE_MB) {
469 pll->ct.dsp_loop_latency = 11;
470 } else {
471 pll->ct.dsp_loop_latency = 10;
472 pll->ct.xclkpagefaultdelay += 1;
473 }
474 break;
475 case SGRAM:
476 pll->ct.dsp_loop_latency = 8;
477 pll->ct.xclkpagefaultdelay += 3;
478 break;
479 default:
480 pll->ct.dsp_loop_latency = 11;
481 pll->ct.xclkpagefaultdelay += 3;
482 break;
483 }
484
485 if (pll->ct.xclkmaxrasdelay <= pll->ct.xclkpagefaultdelay)
486 pll->ct.xclkmaxrasdelay = pll->ct.xclkpagefaultdelay + 1;
487
488 /* Allow BIOS to override */
489 dsp_config = aty_ld_le32(DSP_CONFIG, par);
490 dsp_on_off = aty_ld_le32(DSP_ON_OFF, par);
491 vga_dsp_config = aty_ld_le32(VGA_DSP_CONFIG, par);
492 vga_dsp_on_off = aty_ld_le32(VGA_DSP_ON_OFF, par);
493
494 if (dsp_config)
495 pll->ct.dsp_loop_latency = (dsp_config & DSP_LOOP_LATENCY) >> 16;
496 #if 0
497 FIXME: is it relevant for us?
498 if ((!dsp_on_off && !M64_HAS(RESET_3D)) ||
499 ((dsp_on_off == vga_dsp_on_off) &&
500 (!dsp_config || !((dsp_config ^ vga_dsp_config) & DSP_XCLKS_PER_QW)))) {
501 vga_dsp_on_off &= VGA_DSP_OFF;
502 vga_dsp_config &= VGA_DSP_XCLKS_PER_QW;
503 if (ATIDivide(vga_dsp_on_off, vga_dsp_config, 5, 1) > 24)
504 pll->ct.fifo_size = 32;
505 else
506 pll->ct.fifo_size = 24;
507 }
508 #endif
509 /* Exit if the user does not want us to tamper with the clock
510 rates of her chip. */
511 if (par->mclk_per == 0) {
512 u8 mclk_fb_div, pll_ext_cntl;
513 pll->ct.pll_ref_div = aty_ld_pll_ct(PLL_REF_DIV, par);
514 pll_ext_cntl = aty_ld_pll_ct(PLL_EXT_CNTL, par);
515 pll->ct.xclk_post_div_real = postdividers[pll_ext_cntl & 0x07];
516 mclk_fb_div = aty_ld_pll_ct(MCLK_FB_DIV, par);
517 if (pll_ext_cntl & PLL_MFB_TIMES_4_2B)
518 mclk_fb_div <<= 1;
519 pll->ct.mclk_fb_div = mclk_fb_div;
520 return 0;
521 }
522
523 pll->ct.pll_ref_div = par->pll_per * 2 * 255 / par->ref_clk_per;
524
525 /* FIXME: use the VTB/GTB /3 post divider if it's better suited */
526 q = par->ref_clk_per * pll->ct.pll_ref_div * 8 /
527 (pll->ct.mclk_fb_mult * par->xclk_per);
528
529 if (q < 16*8 || q > 255*8) {
530 printk(KERN_CRIT "atxfb: xclk out of range\n");
531 return -EINVAL;
532 } else {
533 xpost_div = (q < 128*8);
534 xpost_div += (q < 64*8);
535 xpost_div += (q < 32*8);
536 }
537 pll->ct.xclk_post_div_real = postdividers[xpost_div];
538 pll->ct.mclk_fb_div = q * pll->ct.xclk_post_div_real / 8;
539
540 #ifdef CONFIG_PPC
541 if (machine_is(powermac)) {
542 /* Override PLL_EXT_CNTL & 0x07. */
543 pll->ct.xclk_post_div = xpost_div;
544 pll->ct.xclk_ref_div = 1;
545 }
546 #endif
547
548 #ifdef DEBUG
549 pllmclk = (1000000 * pll->ct.mclk_fb_mult * pll->ct.mclk_fb_div) /
550 (par->ref_clk_per * pll->ct.pll_ref_div);
551 printk("atyfb(%s): pllmclk=%d MHz, xclk=%d MHz\n",
552 __func__, pllmclk, pllmclk / pll->ct.xclk_post_div_real);
553 #endif
554
555 if (M64_HAS(SDRAM_MAGIC_PLL) && (par->ram_type >= SDRAM))
556 pll->ct.pll_gen_cntl = OSC_EN;
557 else
558 pll->ct.pll_gen_cntl = OSC_EN | DLL_PWDN /* | FORCE_DCLK_TRI_STATE */;
559
560 if (M64_HAS(MAGIC_POSTDIV))
561 pll->ct.pll_ext_cntl = 0;
562 else
563 pll->ct.pll_ext_cntl = xpost_div;
564
565 if (pll->ct.mclk_fb_mult == 4)
566 pll->ct.pll_ext_cntl |= PLL_MFB_TIMES_4_2B;
567
568 if (par->mclk_per == par->xclk_per) {
569 pll->ct.pll_gen_cntl |= (xpost_div << 4); /* mclk == xclk */
570 } else {
571 /*
572 * The chip clock is not equal to the memory clock.
573 * Therefore we will use sclk to clock the chip.
574 */
575 pll->ct.pll_gen_cntl |= (6 << 4); /* mclk == sclk */
576
577 q = par->ref_clk_per * pll->ct.pll_ref_div * 4 / par->mclk_per;
578 if (q < 16*8 || q > 255*8) {
579 printk(KERN_CRIT "atyfb: mclk out of range\n");
580 return -EINVAL;
581 } else {
582 mpost_div = (q < 128*8);
583 mpost_div += (q < 64*8);
584 mpost_div += (q < 32*8);
585 }
586 sclk_post_div_real = postdividers[mpost_div];
587 pll->ct.sclk_fb_div = q * sclk_post_div_real / 8;
588 pll->ct.spll_cntl2 = mpost_div << 4;
589 #ifdef DEBUG
590 pllsclk = (1000000 * 2 * pll->ct.sclk_fb_div) /
591 (par->ref_clk_per * pll->ct.pll_ref_div);
592 printk("atyfb(%s): use sclk, pllsclk=%d MHz, sclk=mclk=%d MHz\n",
593 __func__, pllsclk, pllsclk / sclk_post_div_real);
594 #endif
595 }
596
597 /* Disable the extra precision pixel clock controls since we do not use them. */
598 pll->ct.ext_vpll_cntl = aty_ld_pll_ct(EXT_VPLL_CNTL, par);
599 pll->ct.ext_vpll_cntl &= ~(EXT_VPLL_EN | EXT_VPLL_VGA_EN | EXT_VPLL_INSYNC);
600
601 return 0;
602 }
603
604 static void aty_resume_pll_ct(const struct fb_info *info,
605 union aty_pll *pll)
606 {
607 struct atyfb_par *par = info->par;
608
609 if (par->mclk_per != par->xclk_per) {
610 /*
611 * This disables the sclk, crashes the computer as reported:
612 * aty_st_pll_ct(SPLL_CNTL2, 3, info);
613 *
614 * So it seems the sclk must be enabled before it is used;
615 * so PLL_GEN_CNTL must be programmed *after* the sclk.
616 */
617 aty_st_pll_ct(SCLK_FB_DIV, pll->ct.sclk_fb_div, par);
618 aty_st_pll_ct(SPLL_CNTL2, pll->ct.spll_cntl2, par);
619 /*
620 * SCLK has been started. Wait for the PLL to lock. 5 ms
621 * should be enough according to mach64 programmer's guide.
622 */
623 mdelay(5);
624 }
625
626 aty_st_pll_ct(PLL_REF_DIV, pll->ct.pll_ref_div, par);
627 aty_st_pll_ct(PLL_GEN_CNTL, pll->ct.pll_gen_cntl, par);
628 aty_st_pll_ct(MCLK_FB_DIV, pll->ct.mclk_fb_div, par);
629 aty_st_pll_ct(PLL_EXT_CNTL, pll->ct.pll_ext_cntl, par);
630 aty_st_pll_ct(EXT_VPLL_CNTL, pll->ct.ext_vpll_cntl, par);
631 }
632
633 static int dummy(void)
634 {
635 return 0;
636 }
637
638 const struct aty_dac_ops aty_dac_ct = {
639 .set_dac = (void *) dummy,
640 };
641
642 const struct aty_pll_ops aty_pll_ct = {
643 .var_to_pll = aty_var_to_pll_ct,
644 .pll_to_var = aty_pll_to_var_ct,
645 .set_pll = aty_set_pll_ct,
646 .get_pll = aty_get_pll_ct,
647 .init_pll = aty_init_pll_ct,
648 .resume_pll = aty_resume_pll_ct,
649 };