]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/video/fbdev/sa1100fb.c
Merge tag 'sh-for-5.9' of git://git.libc.org/linux-sh
[mirror_ubuntu-jammy-kernel.git] / drivers / video / fbdev / sa1100fb.c
1 /*
2 * linux/drivers/video/sa1100fb.c
3 *
4 * Copyright (C) 1999 Eric A. Thomas
5 * Based on acornfb.c Copyright (C) Russell King.
6 *
7 * This file is subject to the terms and conditions of the GNU General Public
8 * License. See the file COPYING in the main directory of this archive for
9 * more details.
10 *
11 * StrongARM 1100 LCD Controller Frame Buffer Driver
12 *
13 * Please direct your questions and comments on this driver to the following
14 * email address:
15 *
16 * linux-arm-kernel@lists.arm.linux.org.uk
17 *
18 * Clean patches should be sent to the ARM Linux Patch System. Please see the
19 * following web page for more information:
20 *
21 * https://www.arm.linux.org.uk/developer/patches/info.shtml
22 *
23 * Thank you.
24 *
25 * Known problems:
26 * - With the Neponset plugged into an Assabet, LCD powerdown
27 * doesn't work (LCD stays powered up). Therefore we shouldn't
28 * blank the screen.
29 * - We don't limit the CPU clock rate nor the mode selection
30 * according to the available SDRAM bandwidth.
31 *
32 * Other notes:
33 * - Linear grayscale palettes and the kernel.
34 * Such code does not belong in the kernel. The kernel frame buffer
35 * drivers do not expect a linear colourmap, but a colourmap based on
36 * the VT100 standard mapping.
37 *
38 * If your _userspace_ requires a linear colourmap, then the setup of
39 * such a colourmap belongs _in userspace_, not in the kernel. Code
40 * to set the colourmap correctly from user space has been sent to
41 * David Neuer. It's around 8 lines of C code, plus another 4 to
42 * detect if we are using grayscale.
43 *
44 * - The following must never be specified in a panel definition:
45 * LCCR0_LtlEnd, LCCR3_PixClkDiv, LCCR3_VrtSnchL, LCCR3_HorSnchL
46 *
47 * - The following should be specified:
48 * either LCCR0_Color or LCCR0_Mono
49 * either LCCR0_Sngl or LCCR0_Dual
50 * either LCCR0_Act or LCCR0_Pas
51 * either LCCR3_OutEnH or LCCD3_OutEnL
52 * either LCCR3_PixRsEdg or LCCR3_PixFlEdg
53 * either LCCR3_ACBsDiv or LCCR3_ACBsCntOff
54 *
55 * Code Status:
56 * 1999/04/01:
57 * - Driver appears to be working for Brutus 320x200x8bpp mode. Other
58 * resolutions are working, but only the 8bpp mode is supported.
59 * Changes need to be made to the palette encode and decode routines
60 * to support 4 and 16 bpp modes.
61 * Driver is not designed to be a module. The FrameBuffer is statically
62 * allocated since dynamic allocation of a 300k buffer cannot be
63 * guaranteed.
64 *
65 * 1999/06/17:
66 * - FrameBuffer memory is now allocated at run-time when the
67 * driver is initialized.
68 *
69 * 2000/04/10: Nicolas Pitre <nico@fluxnic.net>
70 * - Big cleanup for dynamic selection of machine type at run time.
71 *
72 * 2000/07/19: Jamey Hicks <jamey@crl.dec.com>
73 * - Support for Bitsy aka Compaq iPAQ H3600 added.
74 *
75 * 2000/08/07: Tak-Shing Chan <tchan.rd@idthk.com>
76 * Jeff Sutherland <jsutherland@accelent.com>
77 * - Resolved an issue caused by a change made to the Assabet's PLD
78 * earlier this year which broke the framebuffer driver for newer
79 * Phase 4 Assabets. Some other parameters were changed to optimize
80 * for the Sharp display.
81 *
82 * 2000/08/09: Kunihiko IMAI <imai@vasara.co.jp>
83 * - XP860 support added
84 *
85 * 2000/08/19: Mark Huang <mhuang@livetoy.com>
86 * - Allows standard options to be passed on the kernel command line
87 * for most common passive displays.
88 *
89 * 2000/08/29:
90 * - s/save_flags_cli/local_irq_save/
91 * - remove unneeded extra save_flags_cli in sa1100fb_enable_lcd_controller
92 *
93 * 2000/10/10: Erik Mouw <J.A.K.Mouw@its.tudelft.nl>
94 * - Updated LART stuff. Fixed some minor bugs.
95 *
96 * 2000/10/30: Murphy Chen <murphy@mail.dialogue.com.tw>
97 * - Pangolin support added
98 *
99 * 2000/10/31: Roman Jordan <jor@hoeft-wessel.de>
100 * - Huw Webpanel support added
101 *
102 * 2000/11/23: Eric Peng <ericpeng@coventive.com>
103 * - Freebird add
104 *
105 * 2001/02/07: Jamey Hicks <jamey.hicks@compaq.com>
106 * Cliff Brake <cbrake@accelent.com>
107 * - Added PM callback
108 *
109 * 2001/05/26: <rmk@arm.linux.org.uk>
110 * - Fix 16bpp so that (a) we use the right colours rather than some
111 * totally random colour depending on what was in page 0, and (b)
112 * we don't de-reference a NULL pointer.
113 * - remove duplicated implementation of consistent_alloc()
114 * - convert dma address types to dma_addr_t
115 * - remove unused 'montype' stuff
116 * - remove redundant zero inits of init_var after the initial
117 * memset.
118 * - remove allow_modeset (acornfb idea does not belong here)
119 *
120 * 2001/05/28: <rmk@arm.linux.org.uk>
121 * - massive cleanup - move machine dependent data into structures
122 * - I've left various #warnings in - if you see one, and know
123 * the hardware concerned, please get in contact with me.
124 *
125 * 2001/05/31: <rmk@arm.linux.org.uk>
126 * - Fix LCCR1 HSW value, fix all machine type specifications to
127 * keep values in line. (Please check your machine type specs)
128 *
129 * 2001/06/10: <rmk@arm.linux.org.uk>
130 * - Fiddle with the LCD controller from task context only; mainly
131 * so that we can run with interrupts on, and sleep.
132 * - Convert #warnings into #errors. No pain, no gain. ;)
133 *
134 * 2001/06/14: <rmk@arm.linux.org.uk>
135 * - Make the palette BPS value for 12bpp come out correctly.
136 * - Take notice of "greyscale" on any colour depth.
137 * - Make truecolor visuals use the RGB channel encoding information.
138 *
139 * 2001/07/02: <rmk@arm.linux.org.uk>
140 * - Fix colourmap problems.
141 *
142 * 2001/07/13: <abraham@2d3d.co.za>
143 * - Added support for the ICP LCD-Kit01 on LART. This LCD is
144 * manufactured by Prime View, model no V16C6448AB
145 *
146 * 2001/07/23: <rmk@arm.linux.org.uk>
147 * - Hand merge version from handhelds.org CVS tree. See patch
148 * notes for 595/1 for more information.
149 * - Drop 12bpp (it's 16bpp with different colour register mappings).
150 * - This hardware can not do direct colour. Therefore we don't
151 * support it.
152 *
153 * 2001/07/27: <rmk@arm.linux.org.uk>
154 * - Halve YRES on dual scan LCDs.
155 *
156 * 2001/08/22: <rmk@arm.linux.org.uk>
157 * - Add b/w iPAQ pixclock value.
158 *
159 * 2001/10/12: <rmk@arm.linux.org.uk>
160 * - Add patch 681/1 and clean up stork definitions.
161 */
162
163 #include <linux/module.h>
164 #include <linux/kernel.h>
165 #include <linux/sched.h>
166 #include <linux/errno.h>
167 #include <linux/string.h>
168 #include <linux/interrupt.h>
169 #include <linux/slab.h>
170 #include <linux/mm.h>
171 #include <linux/fb.h>
172 #include <linux/delay.h>
173 #include <linux/init.h>
174 #include <linux/ioport.h>
175 #include <linux/cpufreq.h>
176 #include <linux/gpio/consumer.h>
177 #include <linux/platform_device.h>
178 #include <linux/dma-mapping.h>
179 #include <linux/mutex.h>
180 #include <linux/io.h>
181 #include <linux/clk.h>
182
183 #include <video/sa1100fb.h>
184
185 #include <mach/hardware.h>
186 #include <asm/mach-types.h>
187 #include <mach/shannon.h>
188
189 /*
190 * Complain if VAR is out of range.
191 */
192 #define DEBUG_VAR 1
193
194 #include "sa1100fb.h"
195
196 static const struct sa1100fb_rgb rgb_4 = {
197 .red = { .offset = 0, .length = 4, },
198 .green = { .offset = 0, .length = 4, },
199 .blue = { .offset = 0, .length = 4, },
200 .transp = { .offset = 0, .length = 0, },
201 };
202
203 static const struct sa1100fb_rgb rgb_8 = {
204 .red = { .offset = 0, .length = 8, },
205 .green = { .offset = 0, .length = 8, },
206 .blue = { .offset = 0, .length = 8, },
207 .transp = { .offset = 0, .length = 0, },
208 };
209
210 static const struct sa1100fb_rgb def_rgb_16 = {
211 .red = { .offset = 11, .length = 5, },
212 .green = { .offset = 5, .length = 6, },
213 .blue = { .offset = 0, .length = 5, },
214 .transp = { .offset = 0, .length = 0, },
215 };
216
217
218
219 static int sa1100fb_activate_var(struct fb_var_screeninfo *var, struct sa1100fb_info *);
220 static void set_ctrlr_state(struct sa1100fb_info *fbi, u_int state);
221
222 static inline void sa1100fb_schedule_work(struct sa1100fb_info *fbi, u_int state)
223 {
224 unsigned long flags;
225
226 local_irq_save(flags);
227 /*
228 * We need to handle two requests being made at the same time.
229 * There are two important cases:
230 * 1. When we are changing VT (C_REENABLE) while unblanking (C_ENABLE)
231 * We must perform the unblanking, which will do our REENABLE for us.
232 * 2. When we are blanking, but immediately unblank before we have
233 * blanked. We do the "REENABLE" thing here as well, just to be sure.
234 */
235 if (fbi->task_state == C_ENABLE && state == C_REENABLE)
236 state = (u_int) -1;
237 if (fbi->task_state == C_DISABLE && state == C_ENABLE)
238 state = C_REENABLE;
239
240 if (state != (u_int)-1) {
241 fbi->task_state = state;
242 schedule_work(&fbi->task);
243 }
244 local_irq_restore(flags);
245 }
246
247 static inline u_int chan_to_field(u_int chan, struct fb_bitfield *bf)
248 {
249 chan &= 0xffff;
250 chan >>= 16 - bf->length;
251 return chan << bf->offset;
252 }
253
254 /*
255 * Convert bits-per-pixel to a hardware palette PBS value.
256 */
257 static inline u_int palette_pbs(struct fb_var_screeninfo *var)
258 {
259 int ret = 0;
260 switch (var->bits_per_pixel) {
261 case 4: ret = 0 << 12; break;
262 case 8: ret = 1 << 12; break;
263 case 16: ret = 2 << 12; break;
264 }
265 return ret;
266 }
267
268 static int
269 sa1100fb_setpalettereg(u_int regno, u_int red, u_int green, u_int blue,
270 u_int trans, struct fb_info *info)
271 {
272 struct sa1100fb_info *fbi =
273 container_of(info, struct sa1100fb_info, fb);
274 u_int val, ret = 1;
275
276 if (regno < fbi->palette_size) {
277 val = ((red >> 4) & 0xf00);
278 val |= ((green >> 8) & 0x0f0);
279 val |= ((blue >> 12) & 0x00f);
280
281 if (regno == 0)
282 val |= palette_pbs(&fbi->fb.var);
283
284 fbi->palette_cpu[regno] = val;
285 ret = 0;
286 }
287 return ret;
288 }
289
290 static int
291 sa1100fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
292 u_int trans, struct fb_info *info)
293 {
294 struct sa1100fb_info *fbi =
295 container_of(info, struct sa1100fb_info, fb);
296 unsigned int val;
297 int ret = 1;
298
299 /*
300 * If inverse mode was selected, invert all the colours
301 * rather than the register number. The register number
302 * is what you poke into the framebuffer to produce the
303 * colour you requested.
304 */
305 if (fbi->inf->cmap_inverse) {
306 red = 0xffff - red;
307 green = 0xffff - green;
308 blue = 0xffff - blue;
309 }
310
311 /*
312 * If greyscale is true, then we convert the RGB value
313 * to greyscale no mater what visual we are using.
314 */
315 if (fbi->fb.var.grayscale)
316 red = green = blue = (19595 * red + 38470 * green +
317 7471 * blue) >> 16;
318
319 switch (fbi->fb.fix.visual) {
320 case FB_VISUAL_TRUECOLOR:
321 /*
322 * 12 or 16-bit True Colour. We encode the RGB value
323 * according to the RGB bitfield information.
324 */
325 if (regno < 16) {
326 val = chan_to_field(red, &fbi->fb.var.red);
327 val |= chan_to_field(green, &fbi->fb.var.green);
328 val |= chan_to_field(blue, &fbi->fb.var.blue);
329
330 fbi->pseudo_palette[regno] = val;
331 ret = 0;
332 }
333 break;
334
335 case FB_VISUAL_STATIC_PSEUDOCOLOR:
336 case FB_VISUAL_PSEUDOCOLOR:
337 ret = sa1100fb_setpalettereg(regno, red, green, blue, trans, info);
338 break;
339 }
340
341 return ret;
342 }
343
344 #ifdef CONFIG_CPU_FREQ
345 /*
346 * sa1100fb_display_dma_period()
347 * Calculate the minimum period (in picoseconds) between two DMA
348 * requests for the LCD controller. If we hit this, it means we're
349 * doing nothing but LCD DMA.
350 */
351 static inline unsigned int sa1100fb_display_dma_period(struct fb_var_screeninfo *var)
352 {
353 /*
354 * Period = pixclock * bits_per_byte * bytes_per_transfer
355 * / memory_bits_per_pixel;
356 */
357 return var->pixclock * 8 * 16 / var->bits_per_pixel;
358 }
359 #endif
360
361 /*
362 * sa1100fb_check_var():
363 * Round up in the following order: bits_per_pixel, xres,
364 * yres, xres_virtual, yres_virtual, xoffset, yoffset, grayscale,
365 * bitfields, horizontal timing, vertical timing.
366 */
367 static int
368 sa1100fb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
369 {
370 struct sa1100fb_info *fbi =
371 container_of(info, struct sa1100fb_info, fb);
372 int rgbidx;
373
374 if (var->xres < MIN_XRES)
375 var->xres = MIN_XRES;
376 if (var->yres < MIN_YRES)
377 var->yres = MIN_YRES;
378 if (var->xres > fbi->inf->xres)
379 var->xres = fbi->inf->xres;
380 if (var->yres > fbi->inf->yres)
381 var->yres = fbi->inf->yres;
382 var->xres_virtual = max(var->xres_virtual, var->xres);
383 var->yres_virtual = max(var->yres_virtual, var->yres);
384
385 dev_dbg(fbi->dev, "var->bits_per_pixel=%d\n", var->bits_per_pixel);
386 switch (var->bits_per_pixel) {
387 case 4:
388 rgbidx = RGB_4;
389 break;
390 case 8:
391 rgbidx = RGB_8;
392 break;
393 case 16:
394 rgbidx = RGB_16;
395 break;
396 default:
397 return -EINVAL;
398 }
399
400 /*
401 * Copy the RGB parameters for this display
402 * from the machine specific parameters.
403 */
404 var->red = fbi->rgb[rgbidx]->red;
405 var->green = fbi->rgb[rgbidx]->green;
406 var->blue = fbi->rgb[rgbidx]->blue;
407 var->transp = fbi->rgb[rgbidx]->transp;
408
409 dev_dbg(fbi->dev, "RGBT length = %d:%d:%d:%d\n",
410 var->red.length, var->green.length, var->blue.length,
411 var->transp.length);
412
413 dev_dbg(fbi->dev, "RGBT offset = %d:%d:%d:%d\n",
414 var->red.offset, var->green.offset, var->blue.offset,
415 var->transp.offset);
416
417 #ifdef CONFIG_CPU_FREQ
418 dev_dbg(fbi->dev, "dma period = %d ps, clock = %ld kHz\n",
419 sa1100fb_display_dma_period(var),
420 clk_get_rate(fbi->clk) / 1000);
421 #endif
422
423 return 0;
424 }
425
426 static void sa1100fb_set_visual(struct sa1100fb_info *fbi, u32 visual)
427 {
428 if (fbi->inf->set_visual)
429 fbi->inf->set_visual(visual);
430 }
431
432 /*
433 * sa1100fb_set_par():
434 * Set the user defined part of the display for the specified console
435 */
436 static int sa1100fb_set_par(struct fb_info *info)
437 {
438 struct sa1100fb_info *fbi =
439 container_of(info, struct sa1100fb_info, fb);
440 struct fb_var_screeninfo *var = &info->var;
441 unsigned long palette_mem_size;
442
443 dev_dbg(fbi->dev, "set_par\n");
444
445 if (var->bits_per_pixel == 16)
446 fbi->fb.fix.visual = FB_VISUAL_TRUECOLOR;
447 else if (!fbi->inf->cmap_static)
448 fbi->fb.fix.visual = FB_VISUAL_PSEUDOCOLOR;
449 else {
450 /*
451 * Some people have weird ideas about wanting static
452 * pseudocolor maps. I suspect their user space
453 * applications are broken.
454 */
455 fbi->fb.fix.visual = FB_VISUAL_STATIC_PSEUDOCOLOR;
456 }
457
458 fbi->fb.fix.line_length = var->xres_virtual *
459 var->bits_per_pixel / 8;
460 fbi->palette_size = var->bits_per_pixel == 8 ? 256 : 16;
461
462 palette_mem_size = fbi->palette_size * sizeof(u16);
463
464 dev_dbg(fbi->dev, "palette_mem_size = 0x%08lx\n", palette_mem_size);
465
466 fbi->palette_cpu = (u16 *)(fbi->map_cpu + PAGE_SIZE - palette_mem_size);
467 fbi->palette_dma = fbi->map_dma + PAGE_SIZE - palette_mem_size;
468
469 /*
470 * Set (any) board control register to handle new color depth
471 */
472 sa1100fb_set_visual(fbi, fbi->fb.fix.visual);
473 sa1100fb_activate_var(var, fbi);
474
475 return 0;
476 }
477
478 #if 0
479 static int
480 sa1100fb_set_cmap(struct fb_cmap *cmap, int kspc, int con,
481 struct fb_info *info)
482 {
483 struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
484
485 /*
486 * Make sure the user isn't doing something stupid.
487 */
488 if (!kspc && (fbi->fb.var.bits_per_pixel == 16 || fbi->inf->cmap_static))
489 return -EINVAL;
490
491 return gen_set_cmap(cmap, kspc, con, info);
492 }
493 #endif
494
495 /*
496 * Formal definition of the VESA spec:
497 * On
498 * This refers to the state of the display when it is in full operation
499 * Stand-By
500 * This defines an optional operating state of minimal power reduction with
501 * the shortest recovery time
502 * Suspend
503 * This refers to a level of power management in which substantial power
504 * reduction is achieved by the display. The display can have a longer
505 * recovery time from this state than from the Stand-by state
506 * Off
507 * This indicates that the display is consuming the lowest level of power
508 * and is non-operational. Recovery from this state may optionally require
509 * the user to manually power on the monitor
510 *
511 * Now, the fbdev driver adds an additional state, (blank), where they
512 * turn off the video (maybe by colormap tricks), but don't mess with the
513 * video itself: think of it semantically between on and Stand-By.
514 *
515 * So here's what we should do in our fbdev blank routine:
516 *
517 * VESA_NO_BLANKING (mode 0) Video on, front/back light on
518 * VESA_VSYNC_SUSPEND (mode 1) Video on, front/back light off
519 * VESA_HSYNC_SUSPEND (mode 2) Video on, front/back light off
520 * VESA_POWERDOWN (mode 3) Video off, front/back light off
521 *
522 * This will match the matrox implementation.
523 */
524 /*
525 * sa1100fb_blank():
526 * Blank the display by setting all palette values to zero. Note, the
527 * 12 and 16 bpp modes don't really use the palette, so this will not
528 * blank the display in all modes.
529 */
530 static int sa1100fb_blank(int blank, struct fb_info *info)
531 {
532 struct sa1100fb_info *fbi =
533 container_of(info, struct sa1100fb_info, fb);
534 int i;
535
536 dev_dbg(fbi->dev, "sa1100fb_blank: blank=%d\n", blank);
537
538 switch (blank) {
539 case FB_BLANK_POWERDOWN:
540 case FB_BLANK_VSYNC_SUSPEND:
541 case FB_BLANK_HSYNC_SUSPEND:
542 case FB_BLANK_NORMAL:
543 if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
544 fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
545 for (i = 0; i < fbi->palette_size; i++)
546 sa1100fb_setpalettereg(i, 0, 0, 0, 0, info);
547 sa1100fb_schedule_work(fbi, C_DISABLE);
548 break;
549
550 case FB_BLANK_UNBLANK:
551 if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
552 fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
553 fb_set_cmap(&fbi->fb.cmap, info);
554 sa1100fb_schedule_work(fbi, C_ENABLE);
555 }
556 return 0;
557 }
558
559 static int sa1100fb_mmap(struct fb_info *info,
560 struct vm_area_struct *vma)
561 {
562 struct sa1100fb_info *fbi =
563 container_of(info, struct sa1100fb_info, fb);
564 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
565
566 if (off < info->fix.smem_len) {
567 vma->vm_pgoff += 1; /* skip over the palette */
568 return dma_mmap_wc(fbi->dev, vma, fbi->map_cpu, fbi->map_dma,
569 fbi->map_size);
570 }
571
572 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
573
574 return vm_iomap_memory(vma, info->fix.mmio_start, info->fix.mmio_len);
575 }
576
577 static const struct fb_ops sa1100fb_ops = {
578 .owner = THIS_MODULE,
579 .fb_check_var = sa1100fb_check_var,
580 .fb_set_par = sa1100fb_set_par,
581 // .fb_set_cmap = sa1100fb_set_cmap,
582 .fb_setcolreg = sa1100fb_setcolreg,
583 .fb_fillrect = cfb_fillrect,
584 .fb_copyarea = cfb_copyarea,
585 .fb_imageblit = cfb_imageblit,
586 .fb_blank = sa1100fb_blank,
587 .fb_mmap = sa1100fb_mmap,
588 };
589
590 /*
591 * Calculate the PCD value from the clock rate (in picoseconds).
592 * We take account of the PPCR clock setting.
593 */
594 static inline unsigned int get_pcd(struct sa1100fb_info *fbi,
595 unsigned int pixclock)
596 {
597 unsigned int pcd = clk_get_rate(fbi->clk) / 100 / 1000;
598
599 pcd *= pixclock;
600 pcd /= 10000000;
601
602 return pcd + 1; /* make up for integer math truncations */
603 }
604
605 /*
606 * sa1100fb_activate_var():
607 * Configures LCD Controller based on entries in var parameter. Settings are
608 * only written to the controller if changes were made.
609 */
610 static int sa1100fb_activate_var(struct fb_var_screeninfo *var, struct sa1100fb_info *fbi)
611 {
612 struct sa1100fb_lcd_reg new_regs;
613 u_int half_screen_size, yres, pcd;
614 u_long flags;
615
616 dev_dbg(fbi->dev, "Configuring SA1100 LCD\n");
617
618 dev_dbg(fbi->dev, "var: xres=%d hslen=%d lm=%d rm=%d\n",
619 var->xres, var->hsync_len,
620 var->left_margin, var->right_margin);
621 dev_dbg(fbi->dev, "var: yres=%d vslen=%d um=%d bm=%d\n",
622 var->yres, var->vsync_len,
623 var->upper_margin, var->lower_margin);
624
625 #if DEBUG_VAR
626 if (var->xres < 16 || var->xres > 1024)
627 dev_err(fbi->dev, "%s: invalid xres %d\n",
628 fbi->fb.fix.id, var->xres);
629 if (var->hsync_len < 1 || var->hsync_len > 64)
630 dev_err(fbi->dev, "%s: invalid hsync_len %d\n",
631 fbi->fb.fix.id, var->hsync_len);
632 if (var->left_margin < 1 || var->left_margin > 255)
633 dev_err(fbi->dev, "%s: invalid left_margin %d\n",
634 fbi->fb.fix.id, var->left_margin);
635 if (var->right_margin < 1 || var->right_margin > 255)
636 dev_err(fbi->dev, "%s: invalid right_margin %d\n",
637 fbi->fb.fix.id, var->right_margin);
638 if (var->yres < 1 || var->yres > 1024)
639 dev_err(fbi->dev, "%s: invalid yres %d\n",
640 fbi->fb.fix.id, var->yres);
641 if (var->vsync_len < 1 || var->vsync_len > 64)
642 dev_err(fbi->dev, "%s: invalid vsync_len %d\n",
643 fbi->fb.fix.id, var->vsync_len);
644 if (var->upper_margin < 0 || var->upper_margin > 255)
645 dev_err(fbi->dev, "%s: invalid upper_margin %d\n",
646 fbi->fb.fix.id, var->upper_margin);
647 if (var->lower_margin < 0 || var->lower_margin > 255)
648 dev_err(fbi->dev, "%s: invalid lower_margin %d\n",
649 fbi->fb.fix.id, var->lower_margin);
650 #endif
651
652 new_regs.lccr0 = fbi->inf->lccr0 |
653 LCCR0_LEN | LCCR0_LDM | LCCR0_BAM |
654 LCCR0_ERM | LCCR0_LtlEnd | LCCR0_DMADel(0);
655
656 new_regs.lccr1 =
657 LCCR1_DisWdth(var->xres) +
658 LCCR1_HorSnchWdth(var->hsync_len) +
659 LCCR1_BegLnDel(var->left_margin) +
660 LCCR1_EndLnDel(var->right_margin);
661
662 /*
663 * If we have a dual scan LCD, then we need to halve
664 * the YRES parameter.
665 */
666 yres = var->yres;
667 if (fbi->inf->lccr0 & LCCR0_Dual)
668 yres /= 2;
669
670 new_regs.lccr2 =
671 LCCR2_DisHght(yres) +
672 LCCR2_VrtSnchWdth(var->vsync_len) +
673 LCCR2_BegFrmDel(var->upper_margin) +
674 LCCR2_EndFrmDel(var->lower_margin);
675
676 pcd = get_pcd(fbi, var->pixclock);
677 new_regs.lccr3 = LCCR3_PixClkDiv(pcd) | fbi->inf->lccr3 |
678 (var->sync & FB_SYNC_HOR_HIGH_ACT ? LCCR3_HorSnchH : LCCR3_HorSnchL) |
679 (var->sync & FB_SYNC_VERT_HIGH_ACT ? LCCR3_VrtSnchH : LCCR3_VrtSnchL);
680
681 dev_dbg(fbi->dev, "nlccr0 = 0x%08lx\n", new_regs.lccr0);
682 dev_dbg(fbi->dev, "nlccr1 = 0x%08lx\n", new_regs.lccr1);
683 dev_dbg(fbi->dev, "nlccr2 = 0x%08lx\n", new_regs.lccr2);
684 dev_dbg(fbi->dev, "nlccr3 = 0x%08lx\n", new_regs.lccr3);
685
686 half_screen_size = var->bits_per_pixel;
687 half_screen_size = half_screen_size * var->xres * var->yres / 16;
688
689 /* Update shadow copy atomically */
690 local_irq_save(flags);
691 fbi->dbar1 = fbi->palette_dma;
692 fbi->dbar2 = fbi->screen_dma + half_screen_size;
693
694 fbi->reg_lccr0 = new_regs.lccr0;
695 fbi->reg_lccr1 = new_regs.lccr1;
696 fbi->reg_lccr2 = new_regs.lccr2;
697 fbi->reg_lccr3 = new_regs.lccr3;
698 local_irq_restore(flags);
699
700 /*
701 * Only update the registers if the controller is enabled
702 * and something has changed.
703 */
704 if (readl_relaxed(fbi->base + LCCR0) != fbi->reg_lccr0 ||
705 readl_relaxed(fbi->base + LCCR1) != fbi->reg_lccr1 ||
706 readl_relaxed(fbi->base + LCCR2) != fbi->reg_lccr2 ||
707 readl_relaxed(fbi->base + LCCR3) != fbi->reg_lccr3 ||
708 readl_relaxed(fbi->base + DBAR1) != fbi->dbar1 ||
709 readl_relaxed(fbi->base + DBAR2) != fbi->dbar2)
710 sa1100fb_schedule_work(fbi, C_REENABLE);
711
712 return 0;
713 }
714
715 /*
716 * NOTE! The following functions are purely helpers for set_ctrlr_state.
717 * Do not call them directly; set_ctrlr_state does the correct serialisation
718 * to ensure that things happen in the right way 100% of time time.
719 * -- rmk
720 */
721 static inline void __sa1100fb_backlight_power(struct sa1100fb_info *fbi, int on)
722 {
723 dev_dbg(fbi->dev, "backlight o%s\n", on ? "n" : "ff");
724
725 if (fbi->inf->backlight_power)
726 fbi->inf->backlight_power(on);
727 }
728
729 static inline void __sa1100fb_lcd_power(struct sa1100fb_info *fbi, int on)
730 {
731 dev_dbg(fbi->dev, "LCD power o%s\n", on ? "n" : "ff");
732
733 if (fbi->inf->lcd_power)
734 fbi->inf->lcd_power(on);
735 }
736
737 static void sa1100fb_setup_gpio(struct sa1100fb_info *fbi)
738 {
739 u_int mask = 0;
740
741 /*
742 * Enable GPIO<9:2> for LCD use if:
743 * 1. Active display, or
744 * 2. Color Dual Passive display
745 *
746 * see table 11.8 on page 11-27 in the SA1100 manual
747 * -- Erik.
748 *
749 * SA1110 spec update nr. 25 says we can and should
750 * clear LDD15 to 12 for 4 or 8bpp modes with active
751 * panels.
752 */
753 if ((fbi->reg_lccr0 & LCCR0_CMS) == LCCR0_Color &&
754 (fbi->reg_lccr0 & (LCCR0_Dual|LCCR0_Act)) != 0) {
755 mask = GPIO_LDD11 | GPIO_LDD10 | GPIO_LDD9 | GPIO_LDD8;
756
757 if (fbi->fb.var.bits_per_pixel > 8 ||
758 (fbi->reg_lccr0 & (LCCR0_Dual|LCCR0_Act)) == LCCR0_Dual)
759 mask |= GPIO_LDD15 | GPIO_LDD14 | GPIO_LDD13 | GPIO_LDD12;
760
761 }
762
763 if (mask) {
764 unsigned long flags;
765
766 /*
767 * SA-1100 requires the GPIO direction register set
768 * appropriately for the alternate function. Hence
769 * we set it here via bitmask rather than excessive
770 * fiddling via the GPIO subsystem - and even then
771 * we'll still have to deal with GAFR.
772 */
773 local_irq_save(flags);
774 GPDR |= mask;
775 GAFR |= mask;
776 local_irq_restore(flags);
777 }
778 }
779
780 static void sa1100fb_enable_controller(struct sa1100fb_info *fbi)
781 {
782 dev_dbg(fbi->dev, "Enabling LCD controller\n");
783
784 /*
785 * Make sure the mode bits are present in the first palette entry
786 */
787 fbi->palette_cpu[0] &= 0xcfff;
788 fbi->palette_cpu[0] |= palette_pbs(&fbi->fb.var);
789
790 /* enable LCD controller clock */
791 clk_prepare_enable(fbi->clk);
792
793 /* Sequence from 11.7.10 */
794 writel_relaxed(fbi->reg_lccr3, fbi->base + LCCR3);
795 writel_relaxed(fbi->reg_lccr2, fbi->base + LCCR2);
796 writel_relaxed(fbi->reg_lccr1, fbi->base + LCCR1);
797 writel_relaxed(fbi->reg_lccr0 & ~LCCR0_LEN, fbi->base + LCCR0);
798 writel_relaxed(fbi->dbar1, fbi->base + DBAR1);
799 writel_relaxed(fbi->dbar2, fbi->base + DBAR2);
800 writel_relaxed(fbi->reg_lccr0 | LCCR0_LEN, fbi->base + LCCR0);
801
802 if (fbi->shannon_lcden)
803 gpiod_set_value(fbi->shannon_lcden, 1);
804
805 dev_dbg(fbi->dev, "DBAR1: 0x%08x\n", readl_relaxed(fbi->base + DBAR1));
806 dev_dbg(fbi->dev, "DBAR2: 0x%08x\n", readl_relaxed(fbi->base + DBAR2));
807 dev_dbg(fbi->dev, "LCCR0: 0x%08x\n", readl_relaxed(fbi->base + LCCR0));
808 dev_dbg(fbi->dev, "LCCR1: 0x%08x\n", readl_relaxed(fbi->base + LCCR1));
809 dev_dbg(fbi->dev, "LCCR2: 0x%08x\n", readl_relaxed(fbi->base + LCCR2));
810 dev_dbg(fbi->dev, "LCCR3: 0x%08x\n", readl_relaxed(fbi->base + LCCR3));
811 }
812
813 static void sa1100fb_disable_controller(struct sa1100fb_info *fbi)
814 {
815 DECLARE_WAITQUEUE(wait, current);
816 u32 lccr0;
817
818 dev_dbg(fbi->dev, "Disabling LCD controller\n");
819
820 if (fbi->shannon_lcden)
821 gpiod_set_value(fbi->shannon_lcden, 0);
822
823 set_current_state(TASK_UNINTERRUPTIBLE);
824 add_wait_queue(&fbi->ctrlr_wait, &wait);
825
826 /* Clear LCD Status Register */
827 writel_relaxed(~0, fbi->base + LCSR);
828
829 lccr0 = readl_relaxed(fbi->base + LCCR0);
830 lccr0 &= ~LCCR0_LDM; /* Enable LCD Disable Done Interrupt */
831 writel_relaxed(lccr0, fbi->base + LCCR0);
832 lccr0 &= ~LCCR0_LEN; /* Disable LCD Controller */
833 writel_relaxed(lccr0, fbi->base + LCCR0);
834
835 schedule_timeout(20 * HZ / 1000);
836 remove_wait_queue(&fbi->ctrlr_wait, &wait);
837
838 /* disable LCD controller clock */
839 clk_disable_unprepare(fbi->clk);
840 }
841
842 /*
843 * sa1100fb_handle_irq: Handle 'LCD DONE' interrupts.
844 */
845 static irqreturn_t sa1100fb_handle_irq(int irq, void *dev_id)
846 {
847 struct sa1100fb_info *fbi = dev_id;
848 unsigned int lcsr = readl_relaxed(fbi->base + LCSR);
849
850 if (lcsr & LCSR_LDD) {
851 u32 lccr0 = readl_relaxed(fbi->base + LCCR0) | LCCR0_LDM;
852 writel_relaxed(lccr0, fbi->base + LCCR0);
853 wake_up(&fbi->ctrlr_wait);
854 }
855
856 writel_relaxed(lcsr, fbi->base + LCSR);
857 return IRQ_HANDLED;
858 }
859
860 /*
861 * This function must be called from task context only, since it will
862 * sleep when disabling the LCD controller, or if we get two contending
863 * processes trying to alter state.
864 */
865 static void set_ctrlr_state(struct sa1100fb_info *fbi, u_int state)
866 {
867 u_int old_state;
868
869 mutex_lock(&fbi->ctrlr_lock);
870
871 old_state = fbi->state;
872
873 /*
874 * Hack around fbcon initialisation.
875 */
876 if (old_state == C_STARTUP && state == C_REENABLE)
877 state = C_ENABLE;
878
879 switch (state) {
880 case C_DISABLE_CLKCHANGE:
881 /*
882 * Disable controller for clock change. If the
883 * controller is already disabled, then do nothing.
884 */
885 if (old_state != C_DISABLE && old_state != C_DISABLE_PM) {
886 fbi->state = state;
887 sa1100fb_disable_controller(fbi);
888 }
889 break;
890
891 case C_DISABLE_PM:
892 case C_DISABLE:
893 /*
894 * Disable controller
895 */
896 if (old_state != C_DISABLE) {
897 fbi->state = state;
898
899 __sa1100fb_backlight_power(fbi, 0);
900 if (old_state != C_DISABLE_CLKCHANGE)
901 sa1100fb_disable_controller(fbi);
902 __sa1100fb_lcd_power(fbi, 0);
903 }
904 break;
905
906 case C_ENABLE_CLKCHANGE:
907 /*
908 * Enable the controller after clock change. Only
909 * do this if we were disabled for the clock change.
910 */
911 if (old_state == C_DISABLE_CLKCHANGE) {
912 fbi->state = C_ENABLE;
913 sa1100fb_enable_controller(fbi);
914 }
915 break;
916
917 case C_REENABLE:
918 /*
919 * Re-enable the controller only if it was already
920 * enabled. This is so we reprogram the control
921 * registers.
922 */
923 if (old_state == C_ENABLE) {
924 sa1100fb_disable_controller(fbi);
925 sa1100fb_setup_gpio(fbi);
926 sa1100fb_enable_controller(fbi);
927 }
928 break;
929
930 case C_ENABLE_PM:
931 /*
932 * Re-enable the controller after PM. This is not
933 * perfect - think about the case where we were doing
934 * a clock change, and we suspended half-way through.
935 */
936 if (old_state != C_DISABLE_PM)
937 break;
938 /* fall through */
939
940 case C_ENABLE:
941 /*
942 * Power up the LCD screen, enable controller, and
943 * turn on the backlight.
944 */
945 if (old_state != C_ENABLE) {
946 fbi->state = C_ENABLE;
947 sa1100fb_setup_gpio(fbi);
948 __sa1100fb_lcd_power(fbi, 1);
949 sa1100fb_enable_controller(fbi);
950 __sa1100fb_backlight_power(fbi, 1);
951 }
952 break;
953 }
954 mutex_unlock(&fbi->ctrlr_lock);
955 }
956
957 /*
958 * Our LCD controller task (which is called when we blank or unblank)
959 * via keventd.
960 */
961 static void sa1100fb_task(struct work_struct *w)
962 {
963 struct sa1100fb_info *fbi = container_of(w, struct sa1100fb_info, task);
964 u_int state = xchg(&fbi->task_state, -1);
965
966 set_ctrlr_state(fbi, state);
967 }
968
969 #ifdef CONFIG_CPU_FREQ
970 /*
971 * CPU clock speed change handler. We need to adjust the LCD timing
972 * parameters when the CPU clock is adjusted by the power management
973 * subsystem.
974 */
975 static int
976 sa1100fb_freq_transition(struct notifier_block *nb, unsigned long val,
977 void *data)
978 {
979 struct sa1100fb_info *fbi = TO_INF(nb, freq_transition);
980 u_int pcd;
981
982 switch (val) {
983 case CPUFREQ_PRECHANGE:
984 set_ctrlr_state(fbi, C_DISABLE_CLKCHANGE);
985 break;
986
987 case CPUFREQ_POSTCHANGE:
988 pcd = get_pcd(fbi, fbi->fb.var.pixclock);
989 fbi->reg_lccr3 = (fbi->reg_lccr3 & ~0xff) | LCCR3_PixClkDiv(pcd);
990 set_ctrlr_state(fbi, C_ENABLE_CLKCHANGE);
991 break;
992 }
993 return 0;
994 }
995 #endif
996
997 #ifdef CONFIG_PM
998 /*
999 * Power management hooks. Note that we won't be called from IRQ context,
1000 * unlike the blank functions above, so we may sleep.
1001 */
1002 static int sa1100fb_suspend(struct platform_device *dev, pm_message_t state)
1003 {
1004 struct sa1100fb_info *fbi = platform_get_drvdata(dev);
1005
1006 set_ctrlr_state(fbi, C_DISABLE_PM);
1007 return 0;
1008 }
1009
1010 static int sa1100fb_resume(struct platform_device *dev)
1011 {
1012 struct sa1100fb_info *fbi = platform_get_drvdata(dev);
1013
1014 set_ctrlr_state(fbi, C_ENABLE_PM);
1015 return 0;
1016 }
1017 #else
1018 #define sa1100fb_suspend NULL
1019 #define sa1100fb_resume NULL
1020 #endif
1021
1022 /*
1023 * sa1100fb_map_video_memory():
1024 * Allocates the DRAM memory for the frame buffer. This buffer is
1025 * remapped into a non-cached, non-buffered, memory region to
1026 * allow palette and pixel writes to occur without flushing the
1027 * cache. Once this area is remapped, all virtual memory
1028 * access to the video memory should occur at the new region.
1029 */
1030 static int sa1100fb_map_video_memory(struct sa1100fb_info *fbi)
1031 {
1032 /*
1033 * We reserve one page for the palette, plus the size
1034 * of the framebuffer.
1035 */
1036 fbi->map_size = PAGE_ALIGN(fbi->fb.fix.smem_len + PAGE_SIZE);
1037 fbi->map_cpu = dma_alloc_wc(fbi->dev, fbi->map_size, &fbi->map_dma,
1038 GFP_KERNEL);
1039
1040 if (fbi->map_cpu) {
1041 fbi->fb.screen_base = fbi->map_cpu + PAGE_SIZE;
1042 fbi->screen_dma = fbi->map_dma + PAGE_SIZE;
1043 /*
1044 * FIXME: this is actually the wrong thing to place in
1045 * smem_start. But fbdev suffers from the problem that
1046 * it needs an API which doesn't exist (in this case,
1047 * dma_writecombine_mmap)
1048 */
1049 fbi->fb.fix.smem_start = fbi->screen_dma;
1050 }
1051
1052 return fbi->map_cpu ? 0 : -ENOMEM;
1053 }
1054
1055 /* Fake monspecs to fill in fbinfo structure */
1056 static const struct fb_monspecs monspecs = {
1057 .hfmin = 30000,
1058 .hfmax = 70000,
1059 .vfmin = 50,
1060 .vfmax = 65,
1061 };
1062
1063
1064 static struct sa1100fb_info *sa1100fb_init_fbinfo(struct device *dev)
1065 {
1066 struct sa1100fb_mach_info *inf = dev_get_platdata(dev);
1067 struct sa1100fb_info *fbi;
1068 unsigned i;
1069
1070 fbi = devm_kzalloc(dev, sizeof(struct sa1100fb_info), GFP_KERNEL);
1071 if (!fbi)
1072 return NULL;
1073
1074 fbi->dev = dev;
1075
1076 strcpy(fbi->fb.fix.id, SA1100_NAME);
1077
1078 fbi->fb.fix.type = FB_TYPE_PACKED_PIXELS;
1079 fbi->fb.fix.type_aux = 0;
1080 fbi->fb.fix.xpanstep = 0;
1081 fbi->fb.fix.ypanstep = 0;
1082 fbi->fb.fix.ywrapstep = 0;
1083 fbi->fb.fix.accel = FB_ACCEL_NONE;
1084
1085 fbi->fb.var.nonstd = 0;
1086 fbi->fb.var.activate = FB_ACTIVATE_NOW;
1087 fbi->fb.var.height = -1;
1088 fbi->fb.var.width = -1;
1089 fbi->fb.var.accel_flags = 0;
1090 fbi->fb.var.vmode = FB_VMODE_NONINTERLACED;
1091
1092 fbi->fb.fbops = &sa1100fb_ops;
1093 fbi->fb.flags = FBINFO_DEFAULT;
1094 fbi->fb.monspecs = monspecs;
1095 fbi->fb.pseudo_palette = fbi->pseudo_palette;
1096
1097 fbi->rgb[RGB_4] = &rgb_4;
1098 fbi->rgb[RGB_8] = &rgb_8;
1099 fbi->rgb[RGB_16] = &def_rgb_16;
1100
1101 /*
1102 * People just don't seem to get this. We don't support
1103 * anything but correct entries now, so panic if someone
1104 * does something stupid.
1105 */
1106 if (inf->lccr3 & (LCCR3_VrtSnchL|LCCR3_HorSnchL|0xff) ||
1107 inf->pixclock == 0)
1108 panic("sa1100fb error: invalid LCCR3 fields set or zero "
1109 "pixclock.");
1110
1111 fbi->fb.var.xres = inf->xres;
1112 fbi->fb.var.xres_virtual = inf->xres;
1113 fbi->fb.var.yres = inf->yres;
1114 fbi->fb.var.yres_virtual = inf->yres;
1115 fbi->fb.var.bits_per_pixel = inf->bpp;
1116 fbi->fb.var.pixclock = inf->pixclock;
1117 fbi->fb.var.hsync_len = inf->hsync_len;
1118 fbi->fb.var.left_margin = inf->left_margin;
1119 fbi->fb.var.right_margin = inf->right_margin;
1120 fbi->fb.var.vsync_len = inf->vsync_len;
1121 fbi->fb.var.upper_margin = inf->upper_margin;
1122 fbi->fb.var.lower_margin = inf->lower_margin;
1123 fbi->fb.var.sync = inf->sync;
1124 fbi->fb.var.grayscale = inf->cmap_greyscale;
1125 fbi->state = C_STARTUP;
1126 fbi->task_state = (u_char)-1;
1127 fbi->fb.fix.smem_len = inf->xres * inf->yres *
1128 inf->bpp / 8;
1129 fbi->inf = inf;
1130
1131 /* Copy the RGB bitfield overrides */
1132 for (i = 0; i < NR_RGB; i++)
1133 if (inf->rgb[i])
1134 fbi->rgb[i] = inf->rgb[i];
1135
1136 init_waitqueue_head(&fbi->ctrlr_wait);
1137 INIT_WORK(&fbi->task, sa1100fb_task);
1138 mutex_init(&fbi->ctrlr_lock);
1139
1140 return fbi;
1141 }
1142
1143 static int sa1100fb_probe(struct platform_device *pdev)
1144 {
1145 struct sa1100fb_info *fbi;
1146 int ret, irq;
1147
1148 if (!dev_get_platdata(&pdev->dev)) {
1149 dev_err(&pdev->dev, "no platform LCD data\n");
1150 return -EINVAL;
1151 }
1152
1153 irq = platform_get_irq(pdev, 0);
1154 if (irq < 0)
1155 return -EINVAL;
1156
1157 fbi = sa1100fb_init_fbinfo(&pdev->dev);
1158 if (!fbi)
1159 return -ENOMEM;
1160
1161 fbi->base = devm_platform_ioremap_resource(pdev, 0);
1162 if (IS_ERR(fbi->base))
1163 return PTR_ERR(fbi->base);
1164
1165 fbi->clk = devm_clk_get(&pdev->dev, NULL);
1166 if (IS_ERR(fbi->clk))
1167 return PTR_ERR(fbi->clk);
1168
1169 ret = devm_request_irq(&pdev->dev, irq, sa1100fb_handle_irq, 0,
1170 "LCD", fbi);
1171 if (ret) {
1172 dev_err(&pdev->dev, "request_irq failed: %d\n", ret);
1173 return ret;
1174 }
1175
1176 fbi->shannon_lcden = gpiod_get_optional(&pdev->dev, "shannon-lcden",
1177 GPIOD_OUT_LOW);
1178 if (IS_ERR(fbi->shannon_lcden))
1179 return PTR_ERR(fbi->shannon_lcden);
1180
1181 /* Initialize video memory */
1182 ret = sa1100fb_map_video_memory(fbi);
1183 if (ret)
1184 return ret;
1185
1186 /*
1187 * This makes sure that our colour bitfield
1188 * descriptors are correctly initialised.
1189 */
1190 sa1100fb_check_var(&fbi->fb.var, &fbi->fb);
1191
1192 platform_set_drvdata(pdev, fbi);
1193
1194 ret = register_framebuffer(&fbi->fb);
1195 if (ret < 0) {
1196 dma_free_wc(fbi->dev, fbi->map_size, fbi->map_cpu,
1197 fbi->map_dma);
1198 return ret;
1199 }
1200
1201 #ifdef CONFIG_CPU_FREQ
1202 fbi->freq_transition.notifier_call = sa1100fb_freq_transition;
1203 cpufreq_register_notifier(&fbi->freq_transition, CPUFREQ_TRANSITION_NOTIFIER);
1204 #endif
1205
1206 /* This driver cannot be unloaded at the moment */
1207 return 0;
1208 }
1209
1210 static struct platform_driver sa1100fb_driver = {
1211 .probe = sa1100fb_probe,
1212 .suspend = sa1100fb_suspend,
1213 .resume = sa1100fb_resume,
1214 .driver = {
1215 .name = "sa11x0-fb",
1216 },
1217 };
1218
1219 int __init sa1100fb_init(void)
1220 {
1221 if (fb_get_options("sa1100fb", NULL))
1222 return -ENODEV;
1223
1224 return platform_driver_register(&sa1100fb_driver);
1225 }
1226
1227 int __init sa1100fb_setup(char *options)
1228 {
1229 #if 0
1230 char *this_opt;
1231
1232 if (!options || !*options)
1233 return 0;
1234
1235 while ((this_opt = strsep(&options, ",")) != NULL) {
1236
1237 if (!strncmp(this_opt, "bpp:", 4))
1238 current_par.max_bpp =
1239 simple_strtoul(this_opt + 4, NULL, 0);
1240
1241 if (!strncmp(this_opt, "lccr0:", 6))
1242 lcd_shadow.lccr0 =
1243 simple_strtoul(this_opt + 6, NULL, 0);
1244 if (!strncmp(this_opt, "lccr1:", 6)) {
1245 lcd_shadow.lccr1 =
1246 simple_strtoul(this_opt + 6, NULL, 0);
1247 current_par.max_xres =
1248 (lcd_shadow.lccr1 & 0x3ff) + 16;
1249 }
1250 if (!strncmp(this_opt, "lccr2:", 6)) {
1251 lcd_shadow.lccr2 =
1252 simple_strtoul(this_opt + 6, NULL, 0);
1253 current_par.max_yres =
1254 (lcd_shadow.
1255 lccr0 & LCCR0_SDS) ? ((lcd_shadow.
1256 lccr2 & 0x3ff) +
1257 1) *
1258 2 : ((lcd_shadow.lccr2 & 0x3ff) + 1);
1259 }
1260 if (!strncmp(this_opt, "lccr3:", 6))
1261 lcd_shadow.lccr3 =
1262 simple_strtoul(this_opt + 6, NULL, 0);
1263 }
1264 #endif
1265 return 0;
1266 }
1267
1268 module_init(sa1100fb_init);
1269 MODULE_DESCRIPTION("StrongARM-1100/1110 framebuffer driver");
1270 MODULE_LICENSE("GPL");