]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/video/fbdev/vermilion/vermilion.c
Merge branch 'mediatek-drm-fixes-5.2' of https://github.com/ckhu-mediatek/linux.git...
[mirror_ubuntu-jammy-kernel.git] / drivers / video / fbdev / vermilion / vermilion.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (c) Intel Corp. 2007.
4 * All Rights Reserved.
5 *
6 * Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
7 * develop this driver.
8 *
9 * This file is part of the Vermilion Range fb driver.
10 *
11 * Authors:
12 * Thomas Hellström <thomas-at-tungstengraphics-dot-com>
13 * Michel Dänzer <michel-at-tungstengraphics-dot-com>
14 * Alan Hourihane <alanh-at-tungstengraphics-dot-com>
15 */
16
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/errno.h>
20 #include <linux/string.h>
21 #include <linux/delay.h>
22 #include <linux/slab.h>
23 #include <linux/mm.h>
24 #include <linux/fb.h>
25 #include <linux/pci.h>
26 #include <asm/set_memory.h>
27 #include <asm/tlbflush.h>
28 #include <linux/mmzone.h>
29
30 /* #define VERMILION_DEBUG */
31
32 #include "vermilion.h"
33
34 #define MODULE_NAME "vmlfb"
35
36 #define VML_TOHW(_val, _width) ((((_val) << (_width)) + 0x7FFF - (_val)) >> 16)
37
38 static struct mutex vml_mutex;
39 static struct list_head global_no_mode;
40 static struct list_head global_has_mode;
41 static struct fb_ops vmlfb_ops;
42 static struct vml_sys *subsys = NULL;
43 static char *vml_default_mode = "1024x768@60";
44 static const struct fb_videomode defaultmode = {
45 NULL, 60, 1024, 768, 12896, 144, 24, 29, 3, 136, 6,
46 0, FB_VMODE_NONINTERLACED
47 };
48
49 static u32 vml_mem_requested = (10 * 1024 * 1024);
50 static u32 vml_mem_contig = (4 * 1024 * 1024);
51 static u32 vml_mem_min = (4 * 1024 * 1024);
52
53 static u32 vml_clocks[] = {
54 6750,
55 13500,
56 27000,
57 29700,
58 37125,
59 54000,
60 59400,
61 74250,
62 120000,
63 148500
64 };
65
66 static u32 vml_num_clocks = ARRAY_SIZE(vml_clocks);
67
68 /*
69 * Allocate a contiguous vram area and make its linear kernel map
70 * uncached.
71 */
72
73 static int vmlfb_alloc_vram_area(struct vram_area *va, unsigned max_order,
74 unsigned min_order)
75 {
76 gfp_t flags;
77 unsigned long i;
78
79 max_order++;
80 do {
81 /*
82 * Really try hard to get the needed memory.
83 * We need memory below the first 32MB, so we
84 * add the __GFP_DMA flag that guarantees that we are
85 * below the first 16MB.
86 */
87
88 flags = __GFP_DMA | __GFP_HIGH | __GFP_KSWAPD_RECLAIM;
89 va->logical =
90 __get_free_pages(flags, --max_order);
91 } while (va->logical == 0 && max_order > min_order);
92
93 if (!va->logical)
94 return -ENOMEM;
95
96 va->phys = virt_to_phys((void *)va->logical);
97 va->size = PAGE_SIZE << max_order;
98 va->order = max_order;
99
100 /*
101 * It seems like __get_free_pages only ups the usage count
102 * of the first page. This doesn't work with fault mapping, so
103 * up the usage count once more (XXX: should use split_page or
104 * compound page).
105 */
106
107 memset((void *)va->logical, 0x00, va->size);
108 for (i = va->logical; i < va->logical + va->size; i += PAGE_SIZE) {
109 get_page(virt_to_page(i));
110 }
111
112 /*
113 * Change caching policy of the linear kernel map to avoid
114 * mapping type conflicts with user-space mappings.
115 */
116 set_pages_uc(virt_to_page(va->logical), va->size >> PAGE_SHIFT);
117
118 printk(KERN_DEBUG MODULE_NAME
119 ": Allocated %ld bytes vram area at 0x%08lx\n",
120 va->size, va->phys);
121
122 return 0;
123 }
124
125 /*
126 * Free a contiguous vram area and reset its linear kernel map
127 * mapping type.
128 */
129
130 static void vmlfb_free_vram_area(struct vram_area *va)
131 {
132 unsigned long j;
133
134 if (va->logical) {
135
136 /*
137 * Reset the linear kernel map caching policy.
138 */
139
140 set_pages_wb(virt_to_page(va->logical),
141 va->size >> PAGE_SHIFT);
142
143 /*
144 * Decrease the usage count on the pages we've used
145 * to compensate for upping when allocating.
146 */
147
148 for (j = va->logical; j < va->logical + va->size;
149 j += PAGE_SIZE) {
150 (void)put_page_testzero(virt_to_page(j));
151 }
152
153 printk(KERN_DEBUG MODULE_NAME
154 ": Freeing %ld bytes vram area at 0x%08lx\n",
155 va->size, va->phys);
156 free_pages(va->logical, va->order);
157
158 va->logical = 0;
159 }
160 }
161
162 /*
163 * Free allocated vram.
164 */
165
166 static void vmlfb_free_vram(struct vml_info *vinfo)
167 {
168 int i;
169
170 for (i = 0; i < vinfo->num_areas; ++i) {
171 vmlfb_free_vram_area(&vinfo->vram[i]);
172 }
173 vinfo->num_areas = 0;
174 }
175
176 /*
177 * Allocate vram. Currently we try to allocate contiguous areas from the
178 * __GFP_DMA zone and puzzle them together. A better approach would be to
179 * allocate one contiguous area for scanout and use one-page allocations for
180 * offscreen areas. This requires user-space and GPU virtual mappings.
181 */
182
183 static int vmlfb_alloc_vram(struct vml_info *vinfo,
184 size_t requested,
185 size_t min_total, size_t min_contig)
186 {
187 int i, j;
188 int order;
189 int contiguous;
190 int err;
191 struct vram_area *va;
192 struct vram_area *va2;
193
194 vinfo->num_areas = 0;
195 for (i = 0; i < VML_VRAM_AREAS; ++i) {
196 va = &vinfo->vram[i];
197 order = 0;
198
199 while (requested > (PAGE_SIZE << order) && order < MAX_ORDER)
200 order++;
201
202 err = vmlfb_alloc_vram_area(va, order, 0);
203
204 if (err)
205 break;
206
207 if (i == 0) {
208 vinfo->vram_start = va->phys;
209 vinfo->vram_logical = (void __iomem *) va->logical;
210 vinfo->vram_contig_size = va->size;
211 vinfo->num_areas = 1;
212 } else {
213 contiguous = 0;
214
215 for (j = 0; j < i; ++j) {
216 va2 = &vinfo->vram[j];
217 if (va->phys + va->size == va2->phys ||
218 va2->phys + va2->size == va->phys) {
219 contiguous = 1;
220 break;
221 }
222 }
223
224 if (contiguous) {
225 vinfo->num_areas++;
226 if (va->phys < vinfo->vram_start) {
227 vinfo->vram_start = va->phys;
228 vinfo->vram_logical =
229 (void __iomem *)va->logical;
230 }
231 vinfo->vram_contig_size += va->size;
232 } else {
233 vmlfb_free_vram_area(va);
234 break;
235 }
236 }
237
238 if (requested < va->size)
239 break;
240 else
241 requested -= va->size;
242 }
243
244 if (vinfo->vram_contig_size > min_total &&
245 vinfo->vram_contig_size > min_contig) {
246
247 printk(KERN_DEBUG MODULE_NAME
248 ": Contiguous vram: %ld bytes at physical 0x%08lx.\n",
249 (unsigned long)vinfo->vram_contig_size,
250 (unsigned long)vinfo->vram_start);
251
252 return 0;
253 }
254
255 printk(KERN_ERR MODULE_NAME
256 ": Could not allocate requested minimal amount of vram.\n");
257
258 vmlfb_free_vram(vinfo);
259
260 return -ENOMEM;
261 }
262
263 /*
264 * Find the GPU to use with our display controller.
265 */
266
267 static int vmlfb_get_gpu(struct vml_par *par)
268 {
269 mutex_lock(&vml_mutex);
270
271 par->gpu = pci_get_device(PCI_VENDOR_ID_INTEL, VML_DEVICE_GPU, NULL);
272
273 if (!par->gpu) {
274 mutex_unlock(&vml_mutex);
275 return -ENODEV;
276 }
277
278 mutex_unlock(&vml_mutex);
279
280 if (pci_enable_device(par->gpu) < 0)
281 return -ENODEV;
282
283 return 0;
284 }
285
286 /*
287 * Find a contiguous vram area that contains a given offset from vram start.
288 */
289 static int vmlfb_vram_offset(struct vml_info *vinfo, unsigned long offset)
290 {
291 unsigned long aoffset;
292 unsigned i;
293
294 for (i = 0; i < vinfo->num_areas; ++i) {
295 aoffset = offset - (vinfo->vram[i].phys - vinfo->vram_start);
296
297 if (aoffset < vinfo->vram[i].size) {
298 return 0;
299 }
300 }
301
302 return -EINVAL;
303 }
304
305 /*
306 * Remap the MMIO register spaces of the VDC and the GPU.
307 */
308
309 static int vmlfb_enable_mmio(struct vml_par *par)
310 {
311 int err;
312
313 par->vdc_mem_base = pci_resource_start(par->vdc, 0);
314 par->vdc_mem_size = pci_resource_len(par->vdc, 0);
315 if (!request_mem_region(par->vdc_mem_base, par->vdc_mem_size, "vmlfb")) {
316 printk(KERN_ERR MODULE_NAME
317 ": Could not claim display controller MMIO.\n");
318 return -EBUSY;
319 }
320 par->vdc_mem = ioremap_nocache(par->vdc_mem_base, par->vdc_mem_size);
321 if (par->vdc_mem == NULL) {
322 printk(KERN_ERR MODULE_NAME
323 ": Could not map display controller MMIO.\n");
324 err = -ENOMEM;
325 goto out_err_0;
326 }
327
328 par->gpu_mem_base = pci_resource_start(par->gpu, 0);
329 par->gpu_mem_size = pci_resource_len(par->gpu, 0);
330 if (!request_mem_region(par->gpu_mem_base, par->gpu_mem_size, "vmlfb")) {
331 printk(KERN_ERR MODULE_NAME ": Could not claim GPU MMIO.\n");
332 err = -EBUSY;
333 goto out_err_1;
334 }
335 par->gpu_mem = ioremap_nocache(par->gpu_mem_base, par->gpu_mem_size);
336 if (par->gpu_mem == NULL) {
337 printk(KERN_ERR MODULE_NAME ": Could not map GPU MMIO.\n");
338 err = -ENOMEM;
339 goto out_err_2;
340 }
341
342 return 0;
343
344 out_err_2:
345 release_mem_region(par->gpu_mem_base, par->gpu_mem_size);
346 out_err_1:
347 iounmap(par->vdc_mem);
348 out_err_0:
349 release_mem_region(par->vdc_mem_base, par->vdc_mem_size);
350 return err;
351 }
352
353 /*
354 * Unmap the VDC and GPU register spaces.
355 */
356
357 static void vmlfb_disable_mmio(struct vml_par *par)
358 {
359 iounmap(par->gpu_mem);
360 release_mem_region(par->gpu_mem_base, par->gpu_mem_size);
361 iounmap(par->vdc_mem);
362 release_mem_region(par->vdc_mem_base, par->vdc_mem_size);
363 }
364
365 /*
366 * Release and uninit the VDC and GPU.
367 */
368
369 static void vmlfb_release_devices(struct vml_par *par)
370 {
371 if (atomic_dec_and_test(&par->refcount)) {
372 pci_disable_device(par->gpu);
373 pci_disable_device(par->vdc);
374 }
375 }
376
377 /*
378 * Free up allocated resources for a device.
379 */
380
381 static void vml_pci_remove(struct pci_dev *dev)
382 {
383 struct fb_info *info;
384 struct vml_info *vinfo;
385 struct vml_par *par;
386
387 info = pci_get_drvdata(dev);
388 if (info) {
389 vinfo = container_of(info, struct vml_info, info);
390 par = vinfo->par;
391 mutex_lock(&vml_mutex);
392 unregister_framebuffer(info);
393 fb_dealloc_cmap(&info->cmap);
394 vmlfb_free_vram(vinfo);
395 vmlfb_disable_mmio(par);
396 vmlfb_release_devices(par);
397 kfree(vinfo);
398 kfree(par);
399 mutex_unlock(&vml_mutex);
400 }
401 }
402
403 static void vmlfb_set_pref_pixel_format(struct fb_var_screeninfo *var)
404 {
405 switch (var->bits_per_pixel) {
406 case 16:
407 var->blue.offset = 0;
408 var->blue.length = 5;
409 var->green.offset = 5;
410 var->green.length = 5;
411 var->red.offset = 10;
412 var->red.length = 5;
413 var->transp.offset = 15;
414 var->transp.length = 1;
415 break;
416 case 32:
417 var->blue.offset = 0;
418 var->blue.length = 8;
419 var->green.offset = 8;
420 var->green.length = 8;
421 var->red.offset = 16;
422 var->red.length = 8;
423 var->transp.offset = 24;
424 var->transp.length = 0;
425 break;
426 default:
427 break;
428 }
429
430 var->blue.msb_right = var->green.msb_right =
431 var->red.msb_right = var->transp.msb_right = 0;
432 }
433
434 /*
435 * Device initialization.
436 * We initialize one vml_par struct per device and one vml_info
437 * struct per pipe. Currently we have only one pipe.
438 */
439
440 static int vml_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
441 {
442 struct vml_info *vinfo;
443 struct fb_info *info;
444 struct vml_par *par;
445 int err = 0;
446
447 par = kzalloc(sizeof(*par), GFP_KERNEL);
448 if (par == NULL)
449 return -ENOMEM;
450
451 vinfo = kzalloc(sizeof(*vinfo), GFP_KERNEL);
452 if (vinfo == NULL) {
453 err = -ENOMEM;
454 goto out_err_0;
455 }
456
457 vinfo->par = par;
458 par->vdc = dev;
459 atomic_set(&par->refcount, 1);
460
461 switch (id->device) {
462 case VML_DEVICE_VDC:
463 if ((err = vmlfb_get_gpu(par)))
464 goto out_err_1;
465 pci_set_drvdata(dev, &vinfo->info);
466 break;
467 default:
468 err = -ENODEV;
469 goto out_err_1;
470 }
471
472 info = &vinfo->info;
473 info->flags = FBINFO_DEFAULT | FBINFO_PARTIAL_PAN_OK;
474
475 err = vmlfb_enable_mmio(par);
476 if (err)
477 goto out_err_2;
478
479 err = vmlfb_alloc_vram(vinfo, vml_mem_requested,
480 vml_mem_contig, vml_mem_min);
481 if (err)
482 goto out_err_3;
483
484 strcpy(info->fix.id, "Vermilion Range");
485 info->fix.mmio_start = 0;
486 info->fix.mmio_len = 0;
487 info->fix.smem_start = vinfo->vram_start;
488 info->fix.smem_len = vinfo->vram_contig_size;
489 info->fix.type = FB_TYPE_PACKED_PIXELS;
490 info->fix.visual = FB_VISUAL_TRUECOLOR;
491 info->fix.ypanstep = 1;
492 info->fix.xpanstep = 1;
493 info->fix.ywrapstep = 0;
494 info->fix.accel = FB_ACCEL_NONE;
495 info->screen_base = vinfo->vram_logical;
496 info->pseudo_palette = vinfo->pseudo_palette;
497 info->par = par;
498 info->fbops = &vmlfb_ops;
499 info->device = &dev->dev;
500
501 INIT_LIST_HEAD(&vinfo->head);
502 vinfo->pipe_disabled = 1;
503 vinfo->cur_blank_mode = FB_BLANK_UNBLANK;
504
505 info->var.grayscale = 0;
506 info->var.bits_per_pixel = 16;
507 vmlfb_set_pref_pixel_format(&info->var);
508
509 if (!fb_find_mode
510 (&info->var, info, vml_default_mode, NULL, 0, &defaultmode, 16)) {
511 printk(KERN_ERR MODULE_NAME ": Could not find initial mode\n");
512 }
513
514 if (fb_alloc_cmap(&info->cmap, 256, 1) < 0) {
515 err = -ENOMEM;
516 goto out_err_4;
517 }
518
519 err = register_framebuffer(info);
520 if (err) {
521 printk(KERN_ERR MODULE_NAME ": Register framebuffer error.\n");
522 goto out_err_5;
523 }
524
525 printk("Initialized vmlfb\n");
526
527 return 0;
528
529 out_err_5:
530 fb_dealloc_cmap(&info->cmap);
531 out_err_4:
532 vmlfb_free_vram(vinfo);
533 out_err_3:
534 vmlfb_disable_mmio(par);
535 out_err_2:
536 vmlfb_release_devices(par);
537 out_err_1:
538 kfree(vinfo);
539 out_err_0:
540 kfree(par);
541 return err;
542 }
543
544 static int vmlfb_open(struct fb_info *info, int user)
545 {
546 /*
547 * Save registers here?
548 */
549 return 0;
550 }
551
552 static int vmlfb_release(struct fb_info *info, int user)
553 {
554 /*
555 * Restore registers here.
556 */
557
558 return 0;
559 }
560
561 static int vml_nearest_clock(int clock)
562 {
563
564 int i;
565 int cur_index;
566 int cur_diff;
567 int diff;
568
569 cur_index = 0;
570 cur_diff = clock - vml_clocks[0];
571 cur_diff = (cur_diff < 0) ? -cur_diff : cur_diff;
572 for (i = 1; i < vml_num_clocks; ++i) {
573 diff = clock - vml_clocks[i];
574 diff = (diff < 0) ? -diff : diff;
575 if (diff < cur_diff) {
576 cur_index = i;
577 cur_diff = diff;
578 }
579 }
580 return vml_clocks[cur_index];
581 }
582
583 static int vmlfb_check_var_locked(struct fb_var_screeninfo *var,
584 struct vml_info *vinfo)
585 {
586 u32 pitch;
587 u64 mem;
588 int nearest_clock;
589 int clock;
590 int clock_diff;
591 struct fb_var_screeninfo v;
592
593 v = *var;
594 clock = PICOS2KHZ(var->pixclock);
595
596 if (subsys && subsys->nearest_clock) {
597 nearest_clock = subsys->nearest_clock(subsys, clock);
598 } else {
599 nearest_clock = vml_nearest_clock(clock);
600 }
601
602 /*
603 * Accept a 20% diff.
604 */
605
606 clock_diff = nearest_clock - clock;
607 clock_diff = (clock_diff < 0) ? -clock_diff : clock_diff;
608 if (clock_diff > clock / 5) {
609 #if 0
610 printk(KERN_DEBUG MODULE_NAME ": Diff failure. %d %d\n",clock_diff,clock);
611 #endif
612 return -EINVAL;
613 }
614
615 v.pixclock = KHZ2PICOS(nearest_clock);
616
617 if (var->xres > VML_MAX_XRES || var->yres > VML_MAX_YRES) {
618 printk(KERN_DEBUG MODULE_NAME ": Resolution failure.\n");
619 return -EINVAL;
620 }
621 if (var->xres_virtual > VML_MAX_XRES_VIRTUAL) {
622 printk(KERN_DEBUG MODULE_NAME
623 ": Virtual resolution failure.\n");
624 return -EINVAL;
625 }
626 switch (v.bits_per_pixel) {
627 case 0 ... 16:
628 v.bits_per_pixel = 16;
629 break;
630 case 17 ... 32:
631 v.bits_per_pixel = 32;
632 break;
633 default:
634 printk(KERN_DEBUG MODULE_NAME ": Invalid bpp: %d.\n",
635 var->bits_per_pixel);
636 return -EINVAL;
637 }
638
639 pitch = ALIGN((var->xres * var->bits_per_pixel) >> 3, 0x40);
640 mem = (u64)pitch * var->yres_virtual;
641 if (mem > vinfo->vram_contig_size) {
642 return -ENOMEM;
643 }
644
645 switch (v.bits_per_pixel) {
646 case 16:
647 if (var->blue.offset != 0 ||
648 var->blue.length != 5 ||
649 var->green.offset != 5 ||
650 var->green.length != 5 ||
651 var->red.offset != 10 ||
652 var->red.length != 5 ||
653 var->transp.offset != 15 || var->transp.length != 1) {
654 vmlfb_set_pref_pixel_format(&v);
655 }
656 break;
657 case 32:
658 if (var->blue.offset != 0 ||
659 var->blue.length != 8 ||
660 var->green.offset != 8 ||
661 var->green.length != 8 ||
662 var->red.offset != 16 ||
663 var->red.length != 8 ||
664 (var->transp.length != 0 && var->transp.length != 8) ||
665 (var->transp.length == 8 && var->transp.offset != 24)) {
666 vmlfb_set_pref_pixel_format(&v);
667 }
668 break;
669 default:
670 return -EINVAL;
671 }
672
673 *var = v;
674
675 return 0;
676 }
677
678 static int vmlfb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
679 {
680 struct vml_info *vinfo = container_of(info, struct vml_info, info);
681 int ret;
682
683 mutex_lock(&vml_mutex);
684 ret = vmlfb_check_var_locked(var, vinfo);
685 mutex_unlock(&vml_mutex);
686
687 return ret;
688 }
689
690 static void vml_wait_vblank(struct vml_info *vinfo)
691 {
692 /* Wait for vblank. For now, just wait for a 50Hz cycle (20ms)) */
693 mdelay(20);
694 }
695
696 static void vmlfb_disable_pipe(struct vml_info *vinfo)
697 {
698 struct vml_par *par = vinfo->par;
699
700 /* Disable the MDVO pad */
701 VML_WRITE32(par, VML_RCOMPSTAT, 0);
702 while (!(VML_READ32(par, VML_RCOMPSTAT) & VML_MDVO_VDC_I_RCOMP)) ;
703
704 /* Disable display planes */
705 VML_WRITE32(par, VML_DSPCCNTR,
706 VML_READ32(par, VML_DSPCCNTR) & ~VML_GFX_ENABLE);
707 (void)VML_READ32(par, VML_DSPCCNTR);
708 /* Wait for vblank for the disable to take effect */
709 vml_wait_vblank(vinfo);
710
711 /* Next, disable display pipes */
712 VML_WRITE32(par, VML_PIPEACONF, 0);
713 (void)VML_READ32(par, VML_PIPEACONF);
714
715 vinfo->pipe_disabled = 1;
716 }
717
718 #ifdef VERMILION_DEBUG
719 static void vml_dump_regs(struct vml_info *vinfo)
720 {
721 struct vml_par *par = vinfo->par;
722
723 printk(KERN_DEBUG MODULE_NAME ": Modesetting register dump:\n");
724 printk(KERN_DEBUG MODULE_NAME ": \tHTOTAL_A : 0x%08x\n",
725 (unsigned)VML_READ32(par, VML_HTOTAL_A));
726 printk(KERN_DEBUG MODULE_NAME ": \tHBLANK_A : 0x%08x\n",
727 (unsigned)VML_READ32(par, VML_HBLANK_A));
728 printk(KERN_DEBUG MODULE_NAME ": \tHSYNC_A : 0x%08x\n",
729 (unsigned)VML_READ32(par, VML_HSYNC_A));
730 printk(KERN_DEBUG MODULE_NAME ": \tVTOTAL_A : 0x%08x\n",
731 (unsigned)VML_READ32(par, VML_VTOTAL_A));
732 printk(KERN_DEBUG MODULE_NAME ": \tVBLANK_A : 0x%08x\n",
733 (unsigned)VML_READ32(par, VML_VBLANK_A));
734 printk(KERN_DEBUG MODULE_NAME ": \tVSYNC_A : 0x%08x\n",
735 (unsigned)VML_READ32(par, VML_VSYNC_A));
736 printk(KERN_DEBUG MODULE_NAME ": \tDSPCSTRIDE : 0x%08x\n",
737 (unsigned)VML_READ32(par, VML_DSPCSTRIDE));
738 printk(KERN_DEBUG MODULE_NAME ": \tDSPCSIZE : 0x%08x\n",
739 (unsigned)VML_READ32(par, VML_DSPCSIZE));
740 printk(KERN_DEBUG MODULE_NAME ": \tDSPCPOS : 0x%08x\n",
741 (unsigned)VML_READ32(par, VML_DSPCPOS));
742 printk(KERN_DEBUG MODULE_NAME ": \tDSPARB : 0x%08x\n",
743 (unsigned)VML_READ32(par, VML_DSPARB));
744 printk(KERN_DEBUG MODULE_NAME ": \tDSPCADDR : 0x%08x\n",
745 (unsigned)VML_READ32(par, VML_DSPCADDR));
746 printk(KERN_DEBUG MODULE_NAME ": \tBCLRPAT_A : 0x%08x\n",
747 (unsigned)VML_READ32(par, VML_BCLRPAT_A));
748 printk(KERN_DEBUG MODULE_NAME ": \tCANVSCLR_A : 0x%08x\n",
749 (unsigned)VML_READ32(par, VML_CANVSCLR_A));
750 printk(KERN_DEBUG MODULE_NAME ": \tPIPEASRC : 0x%08x\n",
751 (unsigned)VML_READ32(par, VML_PIPEASRC));
752 printk(KERN_DEBUG MODULE_NAME ": \tPIPEACONF : 0x%08x\n",
753 (unsigned)VML_READ32(par, VML_PIPEACONF));
754 printk(KERN_DEBUG MODULE_NAME ": \tDSPCCNTR : 0x%08x\n",
755 (unsigned)VML_READ32(par, VML_DSPCCNTR));
756 printk(KERN_DEBUG MODULE_NAME ": \tRCOMPSTAT : 0x%08x\n",
757 (unsigned)VML_READ32(par, VML_RCOMPSTAT));
758 printk(KERN_DEBUG MODULE_NAME ": End of modesetting register dump.\n");
759 }
760 #endif
761
762 static int vmlfb_set_par_locked(struct vml_info *vinfo)
763 {
764 struct vml_par *par = vinfo->par;
765 struct fb_info *info = &vinfo->info;
766 struct fb_var_screeninfo *var = &info->var;
767 u32 htotal, hactive, hblank_start, hblank_end, hsync_start, hsync_end;
768 u32 vtotal, vactive, vblank_start, vblank_end, vsync_start, vsync_end;
769 u32 dspcntr;
770 int clock;
771
772 vinfo->bytes_per_pixel = var->bits_per_pixel >> 3;
773 vinfo->stride = ALIGN(var->xres_virtual * vinfo->bytes_per_pixel, 0x40);
774 info->fix.line_length = vinfo->stride;
775
776 if (!subsys)
777 return 0;
778
779 htotal =
780 var->xres + var->right_margin + var->hsync_len + var->left_margin;
781 hactive = var->xres;
782 hblank_start = var->xres;
783 hblank_end = htotal;
784 hsync_start = hactive + var->right_margin;
785 hsync_end = hsync_start + var->hsync_len;
786
787 vtotal =
788 var->yres + var->lower_margin + var->vsync_len + var->upper_margin;
789 vactive = var->yres;
790 vblank_start = var->yres;
791 vblank_end = vtotal;
792 vsync_start = vactive + var->lower_margin;
793 vsync_end = vsync_start + var->vsync_len;
794
795 dspcntr = VML_GFX_ENABLE | VML_GFX_GAMMABYPASS;
796 clock = PICOS2KHZ(var->pixclock);
797
798 if (subsys->nearest_clock) {
799 clock = subsys->nearest_clock(subsys, clock);
800 } else {
801 clock = vml_nearest_clock(clock);
802 }
803 printk(KERN_DEBUG MODULE_NAME
804 ": Set mode Hfreq : %d kHz, Vfreq : %d Hz.\n", clock / htotal,
805 ((clock / htotal) * 1000) / vtotal);
806
807 switch (var->bits_per_pixel) {
808 case 16:
809 dspcntr |= VML_GFX_ARGB1555;
810 break;
811 case 32:
812 if (var->transp.length == 8)
813 dspcntr |= VML_GFX_ARGB8888 | VML_GFX_ALPHAMULT;
814 else
815 dspcntr |= VML_GFX_RGB0888;
816 break;
817 default:
818 return -EINVAL;
819 }
820
821 vmlfb_disable_pipe(vinfo);
822 mb();
823
824 if (subsys->set_clock)
825 subsys->set_clock(subsys, clock);
826 else
827 return -EINVAL;
828
829 VML_WRITE32(par, VML_HTOTAL_A, ((htotal - 1) << 16) | (hactive - 1));
830 VML_WRITE32(par, VML_HBLANK_A,
831 ((hblank_end - 1) << 16) | (hblank_start - 1));
832 VML_WRITE32(par, VML_HSYNC_A,
833 ((hsync_end - 1) << 16) | (hsync_start - 1));
834 VML_WRITE32(par, VML_VTOTAL_A, ((vtotal - 1) << 16) | (vactive - 1));
835 VML_WRITE32(par, VML_VBLANK_A,
836 ((vblank_end - 1) << 16) | (vblank_start - 1));
837 VML_WRITE32(par, VML_VSYNC_A,
838 ((vsync_end - 1) << 16) | (vsync_start - 1));
839 VML_WRITE32(par, VML_DSPCSTRIDE, vinfo->stride);
840 VML_WRITE32(par, VML_DSPCSIZE,
841 ((var->yres - 1) << 16) | (var->xres - 1));
842 VML_WRITE32(par, VML_DSPCPOS, 0x00000000);
843 VML_WRITE32(par, VML_DSPARB, VML_FIFO_DEFAULT);
844 VML_WRITE32(par, VML_BCLRPAT_A, 0x00000000);
845 VML_WRITE32(par, VML_CANVSCLR_A, 0x00000000);
846 VML_WRITE32(par, VML_PIPEASRC,
847 ((var->xres - 1) << 16) | (var->yres - 1));
848
849 wmb();
850 VML_WRITE32(par, VML_PIPEACONF, VML_PIPE_ENABLE);
851 wmb();
852 VML_WRITE32(par, VML_DSPCCNTR, dspcntr);
853 wmb();
854 VML_WRITE32(par, VML_DSPCADDR, (u32) vinfo->vram_start +
855 var->yoffset * vinfo->stride +
856 var->xoffset * vinfo->bytes_per_pixel);
857
858 VML_WRITE32(par, VML_RCOMPSTAT, VML_MDVO_PAD_ENABLE);
859
860 while (!(VML_READ32(par, VML_RCOMPSTAT) &
861 (VML_MDVO_VDC_I_RCOMP | VML_MDVO_PAD_ENABLE))) ;
862
863 vinfo->pipe_disabled = 0;
864 #ifdef VERMILION_DEBUG
865 vml_dump_regs(vinfo);
866 #endif
867
868 return 0;
869 }
870
871 static int vmlfb_set_par(struct fb_info *info)
872 {
873 struct vml_info *vinfo = container_of(info, struct vml_info, info);
874 int ret;
875
876 mutex_lock(&vml_mutex);
877 list_move(&vinfo->head, (subsys) ? &global_has_mode : &global_no_mode);
878 ret = vmlfb_set_par_locked(vinfo);
879
880 mutex_unlock(&vml_mutex);
881 return ret;
882 }
883
884 static int vmlfb_blank_locked(struct vml_info *vinfo)
885 {
886 struct vml_par *par = vinfo->par;
887 u32 cur = VML_READ32(par, VML_PIPEACONF);
888
889 switch (vinfo->cur_blank_mode) {
890 case FB_BLANK_UNBLANK:
891 if (vinfo->pipe_disabled) {
892 vmlfb_set_par_locked(vinfo);
893 }
894 VML_WRITE32(par, VML_PIPEACONF, cur & ~VML_PIPE_FORCE_BORDER);
895 (void)VML_READ32(par, VML_PIPEACONF);
896 break;
897 case FB_BLANK_NORMAL:
898 if (vinfo->pipe_disabled) {
899 vmlfb_set_par_locked(vinfo);
900 }
901 VML_WRITE32(par, VML_PIPEACONF, cur | VML_PIPE_FORCE_BORDER);
902 (void)VML_READ32(par, VML_PIPEACONF);
903 break;
904 case FB_BLANK_VSYNC_SUSPEND:
905 case FB_BLANK_HSYNC_SUSPEND:
906 if (!vinfo->pipe_disabled) {
907 vmlfb_disable_pipe(vinfo);
908 }
909 break;
910 case FB_BLANK_POWERDOWN:
911 if (!vinfo->pipe_disabled) {
912 vmlfb_disable_pipe(vinfo);
913 }
914 break;
915 default:
916 return -EINVAL;
917 }
918
919 return 0;
920 }
921
922 static int vmlfb_blank(int blank_mode, struct fb_info *info)
923 {
924 struct vml_info *vinfo = container_of(info, struct vml_info, info);
925 int ret;
926
927 mutex_lock(&vml_mutex);
928 vinfo->cur_blank_mode = blank_mode;
929 ret = vmlfb_blank_locked(vinfo);
930 mutex_unlock(&vml_mutex);
931 return ret;
932 }
933
934 static int vmlfb_pan_display(struct fb_var_screeninfo *var,
935 struct fb_info *info)
936 {
937 struct vml_info *vinfo = container_of(info, struct vml_info, info);
938 struct vml_par *par = vinfo->par;
939
940 mutex_lock(&vml_mutex);
941 VML_WRITE32(par, VML_DSPCADDR, (u32) vinfo->vram_start +
942 var->yoffset * vinfo->stride +
943 var->xoffset * vinfo->bytes_per_pixel);
944 (void)VML_READ32(par, VML_DSPCADDR);
945 mutex_unlock(&vml_mutex);
946
947 return 0;
948 }
949
950 static int vmlfb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
951 u_int transp, struct fb_info *info)
952 {
953 u32 v;
954
955 if (regno >= 16)
956 return -EINVAL;
957
958 if (info->var.grayscale) {
959 red = green = blue = (red * 77 + green * 151 + blue * 28) >> 8;
960 }
961
962 if (info->fix.visual != FB_VISUAL_TRUECOLOR)
963 return -EINVAL;
964
965 red = VML_TOHW(red, info->var.red.length);
966 blue = VML_TOHW(blue, info->var.blue.length);
967 green = VML_TOHW(green, info->var.green.length);
968 transp = VML_TOHW(transp, info->var.transp.length);
969
970 v = (red << info->var.red.offset) |
971 (green << info->var.green.offset) |
972 (blue << info->var.blue.offset) |
973 (transp << info->var.transp.offset);
974
975 switch (info->var.bits_per_pixel) {
976 case 16:
977 ((u32 *) info->pseudo_palette)[regno] = v;
978 break;
979 case 24:
980 case 32:
981 ((u32 *) info->pseudo_palette)[regno] = v;
982 break;
983 }
984 return 0;
985 }
986
987 static int vmlfb_mmap(struct fb_info *info, struct vm_area_struct *vma)
988 {
989 struct vml_info *vinfo = container_of(info, struct vml_info, info);
990 unsigned long offset = vma->vm_pgoff << PAGE_SHIFT;
991 int ret;
992 unsigned long prot;
993
994 ret = vmlfb_vram_offset(vinfo, offset);
995 if (ret)
996 return -EINVAL;
997
998 prot = pgprot_val(vma->vm_page_prot) & ~_PAGE_CACHE_MASK;
999 pgprot_val(vma->vm_page_prot) =
1000 prot | cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS);
1001
1002 return vm_iomap_memory(vma, vinfo->vram_start,
1003 vinfo->vram_contig_size);
1004 }
1005
1006 static int vmlfb_sync(struct fb_info *info)
1007 {
1008 return 0;
1009 }
1010
1011 static int vmlfb_cursor(struct fb_info *info, struct fb_cursor *cursor)
1012 {
1013 return -EINVAL; /* just to force soft_cursor() call */
1014 }
1015
1016 static struct fb_ops vmlfb_ops = {
1017 .owner = THIS_MODULE,
1018 .fb_open = vmlfb_open,
1019 .fb_release = vmlfb_release,
1020 .fb_check_var = vmlfb_check_var,
1021 .fb_set_par = vmlfb_set_par,
1022 .fb_blank = vmlfb_blank,
1023 .fb_pan_display = vmlfb_pan_display,
1024 .fb_fillrect = cfb_fillrect,
1025 .fb_copyarea = cfb_copyarea,
1026 .fb_imageblit = cfb_imageblit,
1027 .fb_cursor = vmlfb_cursor,
1028 .fb_sync = vmlfb_sync,
1029 .fb_mmap = vmlfb_mmap,
1030 .fb_setcolreg = vmlfb_setcolreg
1031 };
1032
1033 static const struct pci_device_id vml_ids[] = {
1034 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, VML_DEVICE_VDC)},
1035 {0}
1036 };
1037
1038 static struct pci_driver vmlfb_pci_driver = {
1039 .name = "vmlfb",
1040 .id_table = vml_ids,
1041 .probe = vml_pci_probe,
1042 .remove = vml_pci_remove,
1043 };
1044
1045 static void __exit vmlfb_cleanup(void)
1046 {
1047 pci_unregister_driver(&vmlfb_pci_driver);
1048 }
1049
1050 static int __init vmlfb_init(void)
1051 {
1052
1053 #ifndef MODULE
1054 char *option = NULL;
1055
1056 if (fb_get_options(MODULE_NAME, &option))
1057 return -ENODEV;
1058 #endif
1059
1060 printk(KERN_DEBUG MODULE_NAME ": initializing\n");
1061 mutex_init(&vml_mutex);
1062 INIT_LIST_HEAD(&global_no_mode);
1063 INIT_LIST_HEAD(&global_has_mode);
1064
1065 return pci_register_driver(&vmlfb_pci_driver);
1066 }
1067
1068 int vmlfb_register_subsys(struct vml_sys *sys)
1069 {
1070 struct vml_info *entry;
1071 struct list_head *list;
1072 u32 save_activate;
1073
1074 mutex_lock(&vml_mutex);
1075 if (subsys != NULL) {
1076 subsys->restore(subsys);
1077 }
1078 subsys = sys;
1079 subsys->save(subsys);
1080
1081 /*
1082 * We need to restart list traversal for each item, since we
1083 * release the list mutex in the loop.
1084 */
1085
1086 list = global_no_mode.next;
1087 while (list != &global_no_mode) {
1088 list_del_init(list);
1089 entry = list_entry(list, struct vml_info, head);
1090
1091 /*
1092 * First, try the current mode which might not be
1093 * completely validated with respect to the pixel clock.
1094 */
1095
1096 if (!vmlfb_check_var_locked(&entry->info.var, entry)) {
1097 vmlfb_set_par_locked(entry);
1098 list_add_tail(list, &global_has_mode);
1099 } else {
1100
1101 /*
1102 * Didn't work. Try to find another mode,
1103 * that matches this subsys.
1104 */
1105
1106 mutex_unlock(&vml_mutex);
1107 save_activate = entry->info.var.activate;
1108 entry->info.var.bits_per_pixel = 16;
1109 vmlfb_set_pref_pixel_format(&entry->info.var);
1110 if (fb_find_mode(&entry->info.var,
1111 &entry->info,
1112 vml_default_mode, NULL, 0, NULL, 16)) {
1113 entry->info.var.activate |=
1114 FB_ACTIVATE_FORCE | FB_ACTIVATE_NOW;
1115 fb_set_var(&entry->info, &entry->info.var);
1116 } else {
1117 printk(KERN_ERR MODULE_NAME
1118 ": Sorry. no mode found for this subsys.\n");
1119 }
1120 entry->info.var.activate = save_activate;
1121 mutex_lock(&vml_mutex);
1122 }
1123 vmlfb_blank_locked(entry);
1124 list = global_no_mode.next;
1125 }
1126 mutex_unlock(&vml_mutex);
1127
1128 printk(KERN_DEBUG MODULE_NAME ": Registered %s subsystem.\n",
1129 subsys->name ? subsys->name : "unknown");
1130 return 0;
1131 }
1132
1133 EXPORT_SYMBOL_GPL(vmlfb_register_subsys);
1134
1135 void vmlfb_unregister_subsys(struct vml_sys *sys)
1136 {
1137 struct vml_info *entry, *next;
1138
1139 mutex_lock(&vml_mutex);
1140 if (subsys != sys) {
1141 mutex_unlock(&vml_mutex);
1142 return;
1143 }
1144 subsys->restore(subsys);
1145 subsys = NULL;
1146 list_for_each_entry_safe(entry, next, &global_has_mode, head) {
1147 printk(KERN_DEBUG MODULE_NAME ": subsys disable pipe\n");
1148 vmlfb_disable_pipe(entry);
1149 list_move_tail(&entry->head, &global_no_mode);
1150 }
1151 mutex_unlock(&vml_mutex);
1152 }
1153
1154 EXPORT_SYMBOL_GPL(vmlfb_unregister_subsys);
1155
1156 module_init(vmlfb_init);
1157 module_exit(vmlfb_cleanup);
1158
1159 MODULE_AUTHOR("Tungsten Graphics");
1160 MODULE_DESCRIPTION("Initialization of the Vermilion display devices");
1161 MODULE_VERSION("1.0.0");
1162 MODULE_LICENSE("GPL");