]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/video/intelfb/intelfbhw.c
intelfbhw.c: intelfbhw_get_p1p2 defined but not used
[mirror_ubuntu-bionic-kernel.git] / drivers / video / intelfb / intelfbhw.c
1 /*
2 * intelfb
3 *
4 * Linux framebuffer driver for Intel(R) 865G integrated graphics chips.
5 *
6 * Copyright © 2002, 2003 David Dawes <dawes@xfree86.org>
7 * 2004 Sylvain Meyer
8 *
9 * This driver consists of two parts. The first part (intelfbdrv.c) provides
10 * the basic fbdev interfaces, is derived in part from the radeonfb and
11 * vesafb drivers, and is covered by the GPL. The second part (intelfbhw.c)
12 * provides the code to program the hardware. Most of it is derived from
13 * the i810/i830 XFree86 driver. The HW-specific code is covered here
14 * under a dual license (GPL and MIT/XFree86 license).
15 *
16 * Author: David Dawes
17 *
18 */
19
20 /* $DHD: intelfb/intelfbhw.c,v 1.9 2003/06/27 15:06:25 dawes Exp $ */
21
22 #include <linux/config.h>
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/errno.h>
26 #include <linux/string.h>
27 #include <linux/mm.h>
28 #include <linux/tty.h>
29 #include <linux/slab.h>
30 #include <linux/delay.h>
31 #include <linux/fb.h>
32 #include <linux/ioport.h>
33 #include <linux/init.h>
34 #include <linux/pci.h>
35 #include <linux/vmalloc.h>
36 #include <linux/pagemap.h>
37 #include <linux/interrupt.h>
38
39 #include <asm/io.h>
40
41 #include "intelfb.h"
42 #include "intelfbhw.h"
43
44 struct pll_min_max {
45 int min_m, max_m, min_m1, max_m1;
46 int min_m2, max_m2, min_n, max_n;
47 int min_p, max_p, min_p1, max_p1;
48 int min_vco, max_vco, p_transition_clk, ref_clk;
49 int p_inc_lo, p_inc_hi;
50 };
51
52 #define PLLS_I8xx 0
53 #define PLLS_I9xx 1
54 #define PLLS_MAX 2
55
56 static struct pll_min_max plls[PLLS_MAX] = {
57 { 108, 140, 18, 26,
58 6, 16, 3, 16,
59 4, 128, 0, 31,
60 930000, 1400000, 165000, 48000,
61 4, 2 }, //I8xx
62
63 { 75, 120, 10, 20,
64 5, 9, 4, 7,
65 5, 80, 1, 8,
66 1400000, 2800000, 200000, 96000,
67 10, 5 } //I9xx
68 };
69
70 int
71 intelfbhw_get_chipset(struct pci_dev *pdev, struct intelfb_info *dinfo)
72 {
73 u32 tmp;
74 if (!pdev || !dinfo)
75 return 1;
76
77 switch (pdev->device) {
78 case PCI_DEVICE_ID_INTEL_830M:
79 dinfo->name = "Intel(R) 830M";
80 dinfo->chipset = INTEL_830M;
81 dinfo->mobile = 1;
82 dinfo->pll_index = PLLS_I8xx;
83 return 0;
84 case PCI_DEVICE_ID_INTEL_845G:
85 dinfo->name = "Intel(R) 845G";
86 dinfo->chipset = INTEL_845G;
87 dinfo->mobile = 0;
88 dinfo->pll_index = PLLS_I8xx;
89 return 0;
90 case PCI_DEVICE_ID_INTEL_85XGM:
91 tmp = 0;
92 dinfo->mobile = 1;
93 dinfo->pll_index = PLLS_I8xx;
94 pci_read_config_dword(pdev, INTEL_85X_CAPID, &tmp);
95 switch ((tmp >> INTEL_85X_VARIANT_SHIFT) &
96 INTEL_85X_VARIANT_MASK) {
97 case INTEL_VAR_855GME:
98 dinfo->name = "Intel(R) 855GME";
99 dinfo->chipset = INTEL_855GME;
100 return 0;
101 case INTEL_VAR_855GM:
102 dinfo->name = "Intel(R) 855GM";
103 dinfo->chipset = INTEL_855GM;
104 return 0;
105 case INTEL_VAR_852GME:
106 dinfo->name = "Intel(R) 852GME";
107 dinfo->chipset = INTEL_852GME;
108 return 0;
109 case INTEL_VAR_852GM:
110 dinfo->name = "Intel(R) 852GM";
111 dinfo->chipset = INTEL_852GM;
112 return 0;
113 default:
114 dinfo->name = "Intel(R) 852GM/855GM";
115 dinfo->chipset = INTEL_85XGM;
116 return 0;
117 }
118 break;
119 case PCI_DEVICE_ID_INTEL_865G:
120 dinfo->name = "Intel(R) 865G";
121 dinfo->chipset = INTEL_865G;
122 dinfo->mobile = 0;
123 dinfo->pll_index = PLLS_I8xx;
124 return 0;
125 case PCI_DEVICE_ID_INTEL_915G:
126 dinfo->name = "Intel(R) 915G";
127 dinfo->chipset = INTEL_915G;
128 dinfo->mobile = 0;
129 dinfo->pll_index = PLLS_I9xx;
130 return 0;
131 case PCI_DEVICE_ID_INTEL_915GM:
132 dinfo->name = "Intel(R) 915GM";
133 dinfo->chipset = INTEL_915GM;
134 dinfo->mobile = 1;
135 dinfo->pll_index = PLLS_I9xx;
136 return 0;
137 case PCI_DEVICE_ID_INTEL_945G:
138 dinfo->name = "Intel(R) 945G";
139 dinfo->chipset = INTEL_945G;
140 dinfo->mobile = 0;
141 dinfo->pll_index = PLLS_I9xx;
142 return 0;
143 case PCI_DEVICE_ID_INTEL_945GM:
144 dinfo->name = "Intel(R) 945GM";
145 dinfo->chipset = INTEL_945GM;
146 dinfo->mobile = 1;
147 dinfo->pll_index = PLLS_I9xx;
148 return 0;
149 default:
150 return 1;
151 }
152 }
153
154 int
155 intelfbhw_get_memory(struct pci_dev *pdev, int *aperture_size,
156 int *stolen_size)
157 {
158 struct pci_dev *bridge_dev;
159 u16 tmp;
160 int stolen_overhead;
161
162 if (!pdev || !aperture_size || !stolen_size)
163 return 1;
164
165 /* Find the bridge device. It is always 0:0.0 */
166 if (!(bridge_dev = pci_find_slot(0, PCI_DEVFN(0, 0)))) {
167 ERR_MSG("cannot find bridge device\n");
168 return 1;
169 }
170
171 /* Get the fb aperture size and "stolen" memory amount. */
172 tmp = 0;
173 pci_read_config_word(bridge_dev, INTEL_GMCH_CTRL, &tmp);
174 switch (pdev->device) {
175 case PCI_DEVICE_ID_INTEL_915G:
176 case PCI_DEVICE_ID_INTEL_915GM:
177 case PCI_DEVICE_ID_INTEL_945G:
178 case PCI_DEVICE_ID_INTEL_945GM:
179 /* 915 and 945 chipsets support a 256MB aperture.
180 Aperture size is determined by inspected the
181 base address of the aperture. */
182 if (pci_resource_start(pdev, 2) & 0x08000000)
183 *aperture_size = MB(128);
184 else
185 *aperture_size = MB(256);
186 break;
187 default:
188 if ((tmp & INTEL_GMCH_MEM_MASK) == INTEL_GMCH_MEM_64M)
189 *aperture_size = MB(64);
190 else
191 *aperture_size = MB(128);
192 break;
193 }
194
195 /* Stolen memory size is reduced by the GTT and the popup.
196 GTT is 1K per MB of aperture size, and popup is 4K. */
197 stolen_overhead = (*aperture_size / MB(1)) + 4;
198 switch(pdev->device) {
199 case PCI_DEVICE_ID_INTEL_830M:
200 case PCI_DEVICE_ID_INTEL_845G:
201 switch (tmp & INTEL_830_GMCH_GMS_MASK) {
202 case INTEL_830_GMCH_GMS_STOLEN_512:
203 *stolen_size = KB(512) - KB(stolen_overhead);
204 return 0;
205 case INTEL_830_GMCH_GMS_STOLEN_1024:
206 *stolen_size = MB(1) - KB(stolen_overhead);
207 return 0;
208 case INTEL_830_GMCH_GMS_STOLEN_8192:
209 *stolen_size = MB(8) - KB(stolen_overhead);
210 return 0;
211 case INTEL_830_GMCH_GMS_LOCAL:
212 ERR_MSG("only local memory found\n");
213 return 1;
214 case INTEL_830_GMCH_GMS_DISABLED:
215 ERR_MSG("video memory is disabled\n");
216 return 1;
217 default:
218 ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
219 tmp & INTEL_830_GMCH_GMS_MASK);
220 return 1;
221 }
222 break;
223 default:
224 switch (tmp & INTEL_855_GMCH_GMS_MASK) {
225 case INTEL_855_GMCH_GMS_STOLEN_1M:
226 *stolen_size = MB(1) - KB(stolen_overhead);
227 return 0;
228 case INTEL_855_GMCH_GMS_STOLEN_4M:
229 *stolen_size = MB(4) - KB(stolen_overhead);
230 return 0;
231 case INTEL_855_GMCH_GMS_STOLEN_8M:
232 *stolen_size = MB(8) - KB(stolen_overhead);
233 return 0;
234 case INTEL_855_GMCH_GMS_STOLEN_16M:
235 *stolen_size = MB(16) - KB(stolen_overhead);
236 return 0;
237 case INTEL_855_GMCH_GMS_STOLEN_32M:
238 *stolen_size = MB(32) - KB(stolen_overhead);
239 return 0;
240 case INTEL_915G_GMCH_GMS_STOLEN_48M:
241 *stolen_size = MB(48) - KB(stolen_overhead);
242 return 0;
243 case INTEL_915G_GMCH_GMS_STOLEN_64M:
244 *stolen_size = MB(64) - KB(stolen_overhead);
245 return 0;
246 case INTEL_855_GMCH_GMS_DISABLED:
247 ERR_MSG("video memory is disabled\n");
248 return 0;
249 default:
250 ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
251 tmp & INTEL_855_GMCH_GMS_MASK);
252 return 1;
253 }
254 }
255 }
256
257 int
258 intelfbhw_check_non_crt(struct intelfb_info *dinfo)
259 {
260 int dvo = 0;
261
262 if (INREG(LVDS) & PORT_ENABLE)
263 dvo |= LVDS_PORT;
264 if (INREG(DVOA) & PORT_ENABLE)
265 dvo |= DVOA_PORT;
266 if (INREG(DVOB) & PORT_ENABLE)
267 dvo |= DVOB_PORT;
268 if (INREG(DVOC) & PORT_ENABLE)
269 dvo |= DVOC_PORT;
270
271 return dvo;
272 }
273
274 const char *
275 intelfbhw_dvo_to_string(int dvo)
276 {
277 if (dvo & DVOA_PORT)
278 return "DVO port A";
279 else if (dvo & DVOB_PORT)
280 return "DVO port B";
281 else if (dvo & DVOC_PORT)
282 return "DVO port C";
283 else if (dvo & LVDS_PORT)
284 return "LVDS port";
285 else
286 return NULL;
287 }
288
289
290 int
291 intelfbhw_validate_mode(struct intelfb_info *dinfo,
292 struct fb_var_screeninfo *var)
293 {
294 int bytes_per_pixel;
295 int tmp;
296
297 #if VERBOSE > 0
298 DBG_MSG("intelfbhw_validate_mode\n");
299 #endif
300
301 bytes_per_pixel = var->bits_per_pixel / 8;
302 if (bytes_per_pixel == 3)
303 bytes_per_pixel = 4;
304
305 /* Check if enough video memory. */
306 tmp = var->yres_virtual * var->xres_virtual * bytes_per_pixel;
307 if (tmp > dinfo->fb.size) {
308 WRN_MSG("Not enough video ram for mode "
309 "(%d KByte vs %d KByte).\n",
310 BtoKB(tmp), BtoKB(dinfo->fb.size));
311 return 1;
312 }
313
314 /* Check if x/y limits are OK. */
315 if (var->xres - 1 > HACTIVE_MASK) {
316 WRN_MSG("X resolution too large (%d vs %d).\n",
317 var->xres, HACTIVE_MASK + 1);
318 return 1;
319 }
320 if (var->yres - 1 > VACTIVE_MASK) {
321 WRN_MSG("Y resolution too large (%d vs %d).\n",
322 var->yres, VACTIVE_MASK + 1);
323 return 1;
324 }
325
326 /* Check for interlaced/doublescan modes. */
327 if (var->vmode & FB_VMODE_INTERLACED) {
328 WRN_MSG("Mode is interlaced.\n");
329 return 1;
330 }
331 if (var->vmode & FB_VMODE_DOUBLE) {
332 WRN_MSG("Mode is double-scan.\n");
333 return 1;
334 }
335
336 /* Check if clock is OK. */
337 tmp = 1000000000 / var->pixclock;
338 if (tmp < MIN_CLOCK) {
339 WRN_MSG("Pixel clock is too low (%d MHz vs %d MHz).\n",
340 (tmp + 500) / 1000, MIN_CLOCK / 1000);
341 return 1;
342 }
343 if (tmp > MAX_CLOCK) {
344 WRN_MSG("Pixel clock is too high (%d MHz vs %d MHz).\n",
345 (tmp + 500) / 1000, MAX_CLOCK / 1000);
346 return 1;
347 }
348
349 return 0;
350 }
351
352 int
353 intelfbhw_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
354 {
355 struct intelfb_info *dinfo = GET_DINFO(info);
356 u32 offset, xoffset, yoffset;
357
358 #if VERBOSE > 0
359 DBG_MSG("intelfbhw_pan_display\n");
360 #endif
361
362 xoffset = ROUND_DOWN_TO(var->xoffset, 8);
363 yoffset = var->yoffset;
364
365 if ((xoffset + var->xres > var->xres_virtual) ||
366 (yoffset + var->yres > var->yres_virtual))
367 return -EINVAL;
368
369 offset = (yoffset * dinfo->pitch) +
370 (xoffset * var->bits_per_pixel) / 8;
371
372 offset += dinfo->fb.offset << 12;
373
374 dinfo->vsync.pan_offset = offset;
375 if ((var->activate & FB_ACTIVATE_VBL) && !intelfbhw_enable_irq(dinfo, 0)) {
376 dinfo->vsync.pan_display = 1;
377 } else {
378 dinfo->vsync.pan_display = 0;
379 OUTREG(DSPABASE, offset);
380 }
381
382 return 0;
383 }
384
385 /* Blank the screen. */
386 void
387 intelfbhw_do_blank(int blank, struct fb_info *info)
388 {
389 struct intelfb_info *dinfo = GET_DINFO(info);
390 u32 tmp;
391
392 #if VERBOSE > 0
393 DBG_MSG("intelfbhw_do_blank: blank is %d\n", blank);
394 #endif
395
396 /* Turn plane A on or off */
397 tmp = INREG(DSPACNTR);
398 if (blank)
399 tmp &= ~DISPPLANE_PLANE_ENABLE;
400 else
401 tmp |= DISPPLANE_PLANE_ENABLE;
402 OUTREG(DSPACNTR, tmp);
403 /* Flush */
404 tmp = INREG(DSPABASE);
405 OUTREG(DSPABASE, tmp);
406
407 /* Turn off/on the HW cursor */
408 #if VERBOSE > 0
409 DBG_MSG("cursor_on is %d\n", dinfo->cursor_on);
410 #endif
411 if (dinfo->cursor_on) {
412 if (blank) {
413 intelfbhw_cursor_hide(dinfo);
414 } else {
415 intelfbhw_cursor_show(dinfo);
416 }
417 dinfo->cursor_on = 1;
418 }
419 dinfo->cursor_blanked = blank;
420
421 /* Set DPMS level */
422 tmp = INREG(ADPA) & ~ADPA_DPMS_CONTROL_MASK;
423 switch (blank) {
424 case FB_BLANK_UNBLANK:
425 case FB_BLANK_NORMAL:
426 tmp |= ADPA_DPMS_D0;
427 break;
428 case FB_BLANK_VSYNC_SUSPEND:
429 tmp |= ADPA_DPMS_D1;
430 break;
431 case FB_BLANK_HSYNC_SUSPEND:
432 tmp |= ADPA_DPMS_D2;
433 break;
434 case FB_BLANK_POWERDOWN:
435 tmp |= ADPA_DPMS_D3;
436 break;
437 }
438 OUTREG(ADPA, tmp);
439
440 return;
441 }
442
443
444 void
445 intelfbhw_setcolreg(struct intelfb_info *dinfo, unsigned regno,
446 unsigned red, unsigned green, unsigned blue,
447 unsigned transp)
448 {
449 #if VERBOSE > 0
450 DBG_MSG("intelfbhw_setcolreg: %d: (%d, %d, %d)\n",
451 regno, red, green, blue);
452 #endif
453
454 u32 palette_reg = (dinfo->pipe == PIPE_A) ?
455 PALETTE_A : PALETTE_B;
456
457 OUTREG(palette_reg + (regno << 2),
458 (red << PALETTE_8_RED_SHIFT) |
459 (green << PALETTE_8_GREEN_SHIFT) |
460 (blue << PALETTE_8_BLUE_SHIFT));
461 }
462
463
464 int
465 intelfbhw_read_hw_state(struct intelfb_info *dinfo, struct intelfb_hwstate *hw,
466 int flag)
467 {
468 int i;
469
470 #if VERBOSE > 0
471 DBG_MSG("intelfbhw_read_hw_state\n");
472 #endif
473
474 if (!hw || !dinfo)
475 return -1;
476
477 /* Read in as much of the HW state as possible. */
478 hw->vga0_divisor = INREG(VGA0_DIVISOR);
479 hw->vga1_divisor = INREG(VGA1_DIVISOR);
480 hw->vga_pd = INREG(VGAPD);
481 hw->dpll_a = INREG(DPLL_A);
482 hw->dpll_b = INREG(DPLL_B);
483 hw->fpa0 = INREG(FPA0);
484 hw->fpa1 = INREG(FPA1);
485 hw->fpb0 = INREG(FPB0);
486 hw->fpb1 = INREG(FPB1);
487
488 if (flag == 1)
489 return flag;
490
491 #if 0
492 /* This seems to be a problem with the 852GM/855GM */
493 for (i = 0; i < PALETTE_8_ENTRIES; i++) {
494 hw->palette_a[i] = INREG(PALETTE_A + (i << 2));
495 hw->palette_b[i] = INREG(PALETTE_B + (i << 2));
496 }
497 #endif
498
499 if (flag == 2)
500 return flag;
501
502 hw->htotal_a = INREG(HTOTAL_A);
503 hw->hblank_a = INREG(HBLANK_A);
504 hw->hsync_a = INREG(HSYNC_A);
505 hw->vtotal_a = INREG(VTOTAL_A);
506 hw->vblank_a = INREG(VBLANK_A);
507 hw->vsync_a = INREG(VSYNC_A);
508 hw->src_size_a = INREG(SRC_SIZE_A);
509 hw->bclrpat_a = INREG(BCLRPAT_A);
510 hw->htotal_b = INREG(HTOTAL_B);
511 hw->hblank_b = INREG(HBLANK_B);
512 hw->hsync_b = INREG(HSYNC_B);
513 hw->vtotal_b = INREG(VTOTAL_B);
514 hw->vblank_b = INREG(VBLANK_B);
515 hw->vsync_b = INREG(VSYNC_B);
516 hw->src_size_b = INREG(SRC_SIZE_B);
517 hw->bclrpat_b = INREG(BCLRPAT_B);
518
519 if (flag == 3)
520 return flag;
521
522 hw->adpa = INREG(ADPA);
523 hw->dvoa = INREG(DVOA);
524 hw->dvob = INREG(DVOB);
525 hw->dvoc = INREG(DVOC);
526 hw->dvoa_srcdim = INREG(DVOA_SRCDIM);
527 hw->dvob_srcdim = INREG(DVOB_SRCDIM);
528 hw->dvoc_srcdim = INREG(DVOC_SRCDIM);
529 hw->lvds = INREG(LVDS);
530
531 if (flag == 4)
532 return flag;
533
534 hw->pipe_a_conf = INREG(PIPEACONF);
535 hw->pipe_b_conf = INREG(PIPEBCONF);
536 hw->disp_arb = INREG(DISPARB);
537
538 if (flag == 5)
539 return flag;
540
541 hw->cursor_a_control = INREG(CURSOR_A_CONTROL);
542 hw->cursor_b_control = INREG(CURSOR_B_CONTROL);
543 hw->cursor_a_base = INREG(CURSOR_A_BASEADDR);
544 hw->cursor_b_base = INREG(CURSOR_B_BASEADDR);
545
546 if (flag == 6)
547 return flag;
548
549 for (i = 0; i < 4; i++) {
550 hw->cursor_a_palette[i] = INREG(CURSOR_A_PALETTE0 + (i << 2));
551 hw->cursor_b_palette[i] = INREG(CURSOR_B_PALETTE0 + (i << 2));
552 }
553
554 if (flag == 7)
555 return flag;
556
557 hw->cursor_size = INREG(CURSOR_SIZE);
558
559 if (flag == 8)
560 return flag;
561
562 hw->disp_a_ctrl = INREG(DSPACNTR);
563 hw->disp_b_ctrl = INREG(DSPBCNTR);
564 hw->disp_a_base = INREG(DSPABASE);
565 hw->disp_b_base = INREG(DSPBBASE);
566 hw->disp_a_stride = INREG(DSPASTRIDE);
567 hw->disp_b_stride = INREG(DSPBSTRIDE);
568
569 if (flag == 9)
570 return flag;
571
572 hw->vgacntrl = INREG(VGACNTRL);
573
574 if (flag == 10)
575 return flag;
576
577 hw->add_id = INREG(ADD_ID);
578
579 if (flag == 11)
580 return flag;
581
582 for (i = 0; i < 7; i++) {
583 hw->swf0x[i] = INREG(SWF00 + (i << 2));
584 hw->swf1x[i] = INREG(SWF10 + (i << 2));
585 if (i < 3)
586 hw->swf3x[i] = INREG(SWF30 + (i << 2));
587 }
588
589 for (i = 0; i < 8; i++)
590 hw->fence[i] = INREG(FENCE + (i << 2));
591
592 hw->instpm = INREG(INSTPM);
593 hw->mem_mode = INREG(MEM_MODE);
594 hw->fw_blc_0 = INREG(FW_BLC_0);
595 hw->fw_blc_1 = INREG(FW_BLC_1);
596
597 hw->hwstam = INREG16(HWSTAM);
598 hw->ier = INREG16(IER);
599 hw->iir = INREG16(IIR);
600 hw->imr = INREG16(IMR);
601
602 return 0;
603 }
604
605
606 static int calc_vclock3(int index, int m, int n, int p)
607 {
608 if (p == 0 || n == 0)
609 return 0;
610 return plls[index].ref_clk * m / n / p;
611 }
612
613 static int calc_vclock(int index, int m1, int m2, int n, int p1, int p2, int lvds)
614 {
615 struct pll_min_max *pll = &plls[index];
616 u32 m, vco, p;
617
618 m = (5 * (m1 + 2)) + (m2 + 2);
619 n += 2;
620 vco = pll->ref_clk * m / n;
621
622 if (index == PLLS_I8xx) {
623 p = ((p1 + 2) * (1 << (p2 + 1)));
624 } else {
625 p = ((p1) * (p2 ? 5 : 10));
626 }
627 return vco / p;
628 }
629
630 #if REGDUMP
631 static void
632 intelfbhw_get_p1p2(struct intelfb_info *dinfo, int dpll, int *o_p1, int *o_p2)
633 {
634 int p1, p2;
635
636 if (IS_I9XX(dinfo)) {
637 if (dpll & DPLL_P1_FORCE_DIV2)
638 p1 = 1;
639 else
640 p1 = (dpll >> DPLL_P1_SHIFT) & 0xff;
641
642 p1 = ffs(p1);
643
644 p2 = (dpll >> DPLL_I9XX_P2_SHIFT) & DPLL_P2_MASK;
645 } else {
646 if (dpll & DPLL_P1_FORCE_DIV2)
647 p1 = 0;
648 else
649 p1 = (dpll >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
650 p2 = (dpll >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
651 }
652
653 *o_p1 = p1;
654 *o_p2 = p2;
655 }
656 #endif
657
658
659 void
660 intelfbhw_print_hw_state(struct intelfb_info *dinfo, struct intelfb_hwstate *hw)
661 {
662 #if REGDUMP
663 int i, m1, m2, n, p1, p2;
664 int index = dinfo->pll_index;
665 DBG_MSG("intelfbhw_print_hw_state\n");
666
667 if (!hw || !dinfo)
668 return;
669 /* Read in as much of the HW state as possible. */
670 printk("hw state dump start\n");
671 printk(" VGA0_DIVISOR: 0x%08x\n", hw->vga0_divisor);
672 printk(" VGA1_DIVISOR: 0x%08x\n", hw->vga1_divisor);
673 printk(" VGAPD: 0x%08x\n", hw->vga_pd);
674 n = (hw->vga0_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
675 m1 = (hw->vga0_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
676 m2 = (hw->vga0_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
677
678 intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
679
680 printk(" VGA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
681 m1, m2, n, p1, p2);
682 printk(" VGA0: clock is %d\n",
683 calc_vclock(index, m1, m2, n, p1, p2, 0));
684
685 n = (hw->vga1_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
686 m1 = (hw->vga1_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
687 m2 = (hw->vga1_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
688
689 intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
690 printk(" VGA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
691 m1, m2, n, p1, p2);
692 printk(" VGA1: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2, 0));
693
694 printk(" DPLL_A: 0x%08x\n", hw->dpll_a);
695 printk(" DPLL_B: 0x%08x\n", hw->dpll_b);
696 printk(" FPA0: 0x%08x\n", hw->fpa0);
697 printk(" FPA1: 0x%08x\n", hw->fpa1);
698 printk(" FPB0: 0x%08x\n", hw->fpb0);
699 printk(" FPB1: 0x%08x\n", hw->fpb1);
700
701 n = (hw->fpa0 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
702 m1 = (hw->fpa0 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
703 m2 = (hw->fpa0 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
704
705 intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
706
707 printk(" PLLA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
708 m1, m2, n, p1, p2);
709 printk(" PLLA0: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2, 0));
710
711 n = (hw->fpa1 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
712 m1 = (hw->fpa1 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
713 m2 = (hw->fpa1 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
714
715 intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
716
717 printk(" PLLA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
718 m1, m2, n, p1, p2);
719 printk(" PLLA1: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2, 0));
720
721 #if 0
722 printk(" PALETTE_A:\n");
723 for (i = 0; i < PALETTE_8_ENTRIES)
724 printk(" %3d: 0x%08x\n", i, hw->palette_a[i]);
725 printk(" PALETTE_B:\n");
726 for (i = 0; i < PALETTE_8_ENTRIES)
727 printk(" %3d: 0x%08x\n", i, hw->palette_b[i]);
728 #endif
729
730 printk(" HTOTAL_A: 0x%08x\n", hw->htotal_a);
731 printk(" HBLANK_A: 0x%08x\n", hw->hblank_a);
732 printk(" HSYNC_A: 0x%08x\n", hw->hsync_a);
733 printk(" VTOTAL_A: 0x%08x\n", hw->vtotal_a);
734 printk(" VBLANK_A: 0x%08x\n", hw->vblank_a);
735 printk(" VSYNC_A: 0x%08x\n", hw->vsync_a);
736 printk(" SRC_SIZE_A: 0x%08x\n", hw->src_size_a);
737 printk(" BCLRPAT_A: 0x%08x\n", hw->bclrpat_a);
738 printk(" HTOTAL_B: 0x%08x\n", hw->htotal_b);
739 printk(" HBLANK_B: 0x%08x\n", hw->hblank_b);
740 printk(" HSYNC_B: 0x%08x\n", hw->hsync_b);
741 printk(" VTOTAL_B: 0x%08x\n", hw->vtotal_b);
742 printk(" VBLANK_B: 0x%08x\n", hw->vblank_b);
743 printk(" VSYNC_B: 0x%08x\n", hw->vsync_b);
744 printk(" SRC_SIZE_B: 0x%08x\n", hw->src_size_b);
745 printk(" BCLRPAT_B: 0x%08x\n", hw->bclrpat_b);
746
747 printk(" ADPA: 0x%08x\n", hw->adpa);
748 printk(" DVOA: 0x%08x\n", hw->dvoa);
749 printk(" DVOB: 0x%08x\n", hw->dvob);
750 printk(" DVOC: 0x%08x\n", hw->dvoc);
751 printk(" DVOA_SRCDIM: 0x%08x\n", hw->dvoa_srcdim);
752 printk(" DVOB_SRCDIM: 0x%08x\n", hw->dvob_srcdim);
753 printk(" DVOC_SRCDIM: 0x%08x\n", hw->dvoc_srcdim);
754 printk(" LVDS: 0x%08x\n", hw->lvds);
755
756 printk(" PIPEACONF: 0x%08x\n", hw->pipe_a_conf);
757 printk(" PIPEBCONF: 0x%08x\n", hw->pipe_b_conf);
758 printk(" DISPARB: 0x%08x\n", hw->disp_arb);
759
760 printk(" CURSOR_A_CONTROL: 0x%08x\n", hw->cursor_a_control);
761 printk(" CURSOR_B_CONTROL: 0x%08x\n", hw->cursor_b_control);
762 printk(" CURSOR_A_BASEADDR: 0x%08x\n", hw->cursor_a_base);
763 printk(" CURSOR_B_BASEADDR: 0x%08x\n", hw->cursor_b_base);
764
765 printk(" CURSOR_A_PALETTE: ");
766 for (i = 0; i < 4; i++) {
767 printk("0x%08x", hw->cursor_a_palette[i]);
768 if (i < 3)
769 printk(", ");
770 }
771 printk("\n");
772 printk(" CURSOR_B_PALETTE: ");
773 for (i = 0; i < 4; i++) {
774 printk("0x%08x", hw->cursor_b_palette[i]);
775 if (i < 3)
776 printk(", ");
777 }
778 printk("\n");
779
780 printk(" CURSOR_SIZE: 0x%08x\n", hw->cursor_size);
781
782 printk(" DSPACNTR: 0x%08x\n", hw->disp_a_ctrl);
783 printk(" DSPBCNTR: 0x%08x\n", hw->disp_b_ctrl);
784 printk(" DSPABASE: 0x%08x\n", hw->disp_a_base);
785 printk(" DSPBBASE: 0x%08x\n", hw->disp_b_base);
786 printk(" DSPASTRIDE: 0x%08x\n", hw->disp_a_stride);
787 printk(" DSPBSTRIDE: 0x%08x\n", hw->disp_b_stride);
788
789 printk(" VGACNTRL: 0x%08x\n", hw->vgacntrl);
790 printk(" ADD_ID: 0x%08x\n", hw->add_id);
791
792 for (i = 0; i < 7; i++) {
793 printk(" SWF0%d 0x%08x\n", i,
794 hw->swf0x[i]);
795 }
796 for (i = 0; i < 7; i++) {
797 printk(" SWF1%d 0x%08x\n", i,
798 hw->swf1x[i]);
799 }
800 for (i = 0; i < 3; i++) {
801 printk(" SWF3%d 0x%08x\n", i,
802 hw->swf3x[i]);
803 }
804 for (i = 0; i < 8; i++)
805 printk(" FENCE%d 0x%08x\n", i,
806 hw->fence[i]);
807
808 printk(" INSTPM 0x%08x\n", hw->instpm);
809 printk(" MEM_MODE 0x%08x\n", hw->mem_mode);
810 printk(" FW_BLC_0 0x%08x\n", hw->fw_blc_0);
811 printk(" FW_BLC_1 0x%08x\n", hw->fw_blc_1);
812
813 printk(" HWSTAM 0x%04x\n", hw->hwstam);
814 printk(" IER 0x%04x\n", hw->ier);
815 printk(" IIR 0x%04x\n", hw->iir);
816 printk(" IMR 0x%04x\n", hw->imr);
817 printk("hw state dump end\n");
818 #endif
819 }
820
821
822
823 /* Split the M parameter into M1 and M2. */
824 static int
825 splitm(int index, unsigned int m, unsigned int *retm1, unsigned int *retm2)
826 {
827 int m1, m2;
828 int testm;
829 struct pll_min_max *pll = &plls[index];
830
831 /* no point optimising too much - brute force m */
832 for (m1 = pll->min_m1; m1 < pll->max_m1 + 1; m1++) {
833 for (m2 = pll->min_m2; m2 < pll->max_m2 + 1; m2++) {
834 testm = (5 * (m1 + 2)) + (m2 + 2);
835 if (testm == m) {
836 *retm1 = (unsigned int)m1;
837 *retm2 = (unsigned int)m2;
838 return 0;
839 }
840 }
841 }
842 return 1;
843 }
844
845 /* Split the P parameter into P1 and P2. */
846 static int
847 splitp(int index, unsigned int p, unsigned int *retp1, unsigned int *retp2)
848 {
849 int p1, p2;
850 struct pll_min_max *pll = &plls[index];
851
852 if (index == PLLS_I9xx) {
853 p2 = (p % 10) ? 1 : 0;
854
855 p1 = p / (p2 ? 5 : 10);
856
857 *retp1 = (unsigned int)p1;
858 *retp2 = (unsigned int)p2;
859 return 0;
860 }
861
862 if (p % 4 == 0)
863 p2 = 1;
864 else
865 p2 = 0;
866 p1 = (p / (1 << (p2 + 1))) - 2;
867 if (p % 4 == 0 && p1 < pll->min_p1) {
868 p2 = 0;
869 p1 = (p / (1 << (p2 + 1))) - 2;
870 }
871 if (p1 < pll->min_p1 || p1 > pll->max_p1 ||
872 (p1 + 2) * (1 << (p2 + 1)) != p) {
873 return 1;
874 } else {
875 *retp1 = (unsigned int)p1;
876 *retp2 = (unsigned int)p2;
877 return 0;
878 }
879 }
880
881 static int
882 calc_pll_params(int index, int clock, u32 *retm1, u32 *retm2, u32 *retn, u32 *retp1,
883 u32 *retp2, u32 *retclock)
884 {
885 u32 m1, m2, n, p1, p2, n1, testm;
886 u32 f_vco, p, p_best = 0, m, f_out = 0;
887 u32 err_max, err_target, err_best = 10000000;
888 u32 n_best = 0, m_best = 0, f_best, f_err;
889 u32 p_min, p_max, p_inc, div_max;
890 struct pll_min_max *pll = &plls[index];
891
892 /* Accept 0.5% difference, but aim for 0.1% */
893 err_max = 5 * clock / 1000;
894 err_target = clock / 1000;
895
896 DBG_MSG("Clock is %d\n", clock);
897
898 div_max = pll->max_vco / clock;
899
900 p_inc = (clock <= pll->p_transition_clk) ? pll->p_inc_lo : pll->p_inc_hi;
901 p_min = p_inc;
902 p_max = ROUND_DOWN_TO(div_max, p_inc);
903 if (p_min < pll->min_p)
904 p_min = pll->min_p;
905 if (p_max > pll->max_p)
906 p_max = pll->max_p;
907
908 DBG_MSG("p range is %d-%d (%d)\n", p_min, p_max, p_inc);
909
910 p = p_min;
911 do {
912 if (splitp(index, p, &p1, &p2)) {
913 WRN_MSG("cannot split p = %d\n", p);
914 p += p_inc;
915 continue;
916 }
917 n = pll->min_n;
918 f_vco = clock * p;
919
920 do {
921 m = ROUND_UP_TO(f_vco * n, pll->ref_clk) / pll->ref_clk;
922 if (m < pll->min_m)
923 m = pll->min_m + 1;
924 if (m > pll->max_m)
925 m = pll->max_m - 1;
926 for (testm = m - 1; testm <= m; testm++) {
927 f_out = calc_vclock3(index, m, n, p);
928 if (splitm(index, testm, &m1, &m2)) {
929 WRN_MSG("cannot split m = %d\n", m);
930 n++;
931 continue;
932 }
933 if (clock > f_out)
934 f_err = clock - f_out;
935 else/* slightly bias the error for bigger clocks */
936 f_err = f_out - clock + 1;
937
938 if (f_err < err_best) {
939 m_best = testm;
940 n_best = n;
941 p_best = p;
942 f_best = f_out;
943 err_best = f_err;
944 }
945 }
946 n++;
947 } while ((n <= pll->max_n) && (f_out >= clock));
948 p += p_inc;
949 } while ((p <= p_max));
950
951 if (!m_best) {
952 WRN_MSG("cannot find parameters for clock %d\n", clock);
953 return 1;
954 }
955 m = m_best;
956 n = n_best;
957 p = p_best;
958 splitm(index, m, &m1, &m2);
959 splitp(index, p, &p1, &p2);
960 n1 = n - 2;
961
962 DBG_MSG("m, n, p: %d (%d,%d), %d (%d), %d (%d,%d), "
963 "f: %d (%d), VCO: %d\n",
964 m, m1, m2, n, n1, p, p1, p2,
965 calc_vclock3(index, m, n, p),
966 calc_vclock(index, m1, m2, n1, p1, p2, 0),
967 calc_vclock3(index, m, n, p) * p);
968 *retm1 = m1;
969 *retm2 = m2;
970 *retn = n1;
971 *retp1 = p1;
972 *retp2 = p2;
973 *retclock = calc_vclock(index, m1, m2, n1, p1, p2, 0);
974
975 return 0;
976 }
977
978 static __inline__ int
979 check_overflow(u32 value, u32 limit, const char *description)
980 {
981 if (value > limit) {
982 WRN_MSG("%s value %d exceeds limit %d\n",
983 description, value, limit);
984 return 1;
985 }
986 return 0;
987 }
988
989 /* It is assumed that hw is filled in with the initial state information. */
990 int
991 intelfbhw_mode_to_hw(struct intelfb_info *dinfo, struct intelfb_hwstate *hw,
992 struct fb_var_screeninfo *var)
993 {
994 int pipe = PIPE_A;
995 u32 *dpll, *fp0, *fp1;
996 u32 m1, m2, n, p1, p2, clock_target, clock;
997 u32 hsync_start, hsync_end, hblank_start, hblank_end, htotal, hactive;
998 u32 vsync_start, vsync_end, vblank_start, vblank_end, vtotal, vactive;
999 u32 vsync_pol, hsync_pol;
1000 u32 *vs, *vb, *vt, *hs, *hb, *ht, *ss, *pipe_conf;
1001 u32 stride_alignment;
1002
1003 DBG_MSG("intelfbhw_mode_to_hw\n");
1004
1005 /* Disable VGA */
1006 hw->vgacntrl |= VGA_DISABLE;
1007
1008 /* Check whether pipe A or pipe B is enabled. */
1009 if (hw->pipe_a_conf & PIPECONF_ENABLE)
1010 pipe = PIPE_A;
1011 else if (hw->pipe_b_conf & PIPECONF_ENABLE)
1012 pipe = PIPE_B;
1013
1014 /* Set which pipe's registers will be set. */
1015 if (pipe == PIPE_B) {
1016 dpll = &hw->dpll_b;
1017 fp0 = &hw->fpb0;
1018 fp1 = &hw->fpb1;
1019 hs = &hw->hsync_b;
1020 hb = &hw->hblank_b;
1021 ht = &hw->htotal_b;
1022 vs = &hw->vsync_b;
1023 vb = &hw->vblank_b;
1024 vt = &hw->vtotal_b;
1025 ss = &hw->src_size_b;
1026 pipe_conf = &hw->pipe_b_conf;
1027 } else {
1028 dpll = &hw->dpll_a;
1029 fp0 = &hw->fpa0;
1030 fp1 = &hw->fpa1;
1031 hs = &hw->hsync_a;
1032 hb = &hw->hblank_a;
1033 ht = &hw->htotal_a;
1034 vs = &hw->vsync_a;
1035 vb = &hw->vblank_a;
1036 vt = &hw->vtotal_a;
1037 ss = &hw->src_size_a;
1038 pipe_conf = &hw->pipe_a_conf;
1039 }
1040
1041 /* Use ADPA register for sync control. */
1042 hw->adpa &= ~ADPA_USE_VGA_HVPOLARITY;
1043
1044 /* sync polarity */
1045 hsync_pol = (var->sync & FB_SYNC_HOR_HIGH_ACT) ?
1046 ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
1047 vsync_pol = (var->sync & FB_SYNC_VERT_HIGH_ACT) ?
1048 ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
1049 hw->adpa &= ~((ADPA_SYNC_ACTIVE_MASK << ADPA_VSYNC_ACTIVE_SHIFT) |
1050 (ADPA_SYNC_ACTIVE_MASK << ADPA_HSYNC_ACTIVE_SHIFT));
1051 hw->adpa |= (hsync_pol << ADPA_HSYNC_ACTIVE_SHIFT) |
1052 (vsync_pol << ADPA_VSYNC_ACTIVE_SHIFT);
1053
1054 /* Connect correct pipe to the analog port DAC */
1055 hw->adpa &= ~(PIPE_MASK << ADPA_PIPE_SELECT_SHIFT);
1056 hw->adpa |= (pipe << ADPA_PIPE_SELECT_SHIFT);
1057
1058 /* Set DPMS state to D0 (on) */
1059 hw->adpa &= ~ADPA_DPMS_CONTROL_MASK;
1060 hw->adpa |= ADPA_DPMS_D0;
1061
1062 hw->adpa |= ADPA_DAC_ENABLE;
1063
1064 *dpll |= (DPLL_VCO_ENABLE | DPLL_VGA_MODE_DISABLE);
1065 *dpll &= ~(DPLL_RATE_SELECT_MASK | DPLL_REFERENCE_SELECT_MASK);
1066 *dpll |= (DPLL_REFERENCE_DEFAULT | DPLL_RATE_SELECT_FP0);
1067
1068 /* Desired clock in kHz */
1069 clock_target = 1000000000 / var->pixclock;
1070
1071 if (calc_pll_params(dinfo->pll_index, clock_target, &m1, &m2,
1072 &n, &p1, &p2, &clock)) {
1073 WRN_MSG("calc_pll_params failed\n");
1074 return 1;
1075 }
1076
1077 /* Check for overflow. */
1078 if (check_overflow(p1, DPLL_P1_MASK, "PLL P1 parameter"))
1079 return 1;
1080 if (check_overflow(p2, DPLL_P2_MASK, "PLL P2 parameter"))
1081 return 1;
1082 if (check_overflow(m1, FP_DIVISOR_MASK, "PLL M1 parameter"))
1083 return 1;
1084 if (check_overflow(m2, FP_DIVISOR_MASK, "PLL M2 parameter"))
1085 return 1;
1086 if (check_overflow(n, FP_DIVISOR_MASK, "PLL N parameter"))
1087 return 1;
1088
1089 *dpll &= ~DPLL_P1_FORCE_DIV2;
1090 *dpll &= ~((DPLL_P2_MASK << DPLL_P2_SHIFT) |
1091 (DPLL_P1_MASK << DPLL_P1_SHIFT));
1092
1093 if (IS_I9XX(dinfo)) {
1094 *dpll |= (p2 << DPLL_I9XX_P2_SHIFT);
1095 *dpll |= (1 << (p1 - 1)) << DPLL_P1_SHIFT;
1096 } else {
1097 *dpll |= (p2 << DPLL_P2_SHIFT) | (p1 << DPLL_P1_SHIFT);
1098 }
1099
1100 *fp0 = (n << FP_N_DIVISOR_SHIFT) |
1101 (m1 << FP_M1_DIVISOR_SHIFT) |
1102 (m2 << FP_M2_DIVISOR_SHIFT);
1103 *fp1 = *fp0;
1104
1105 hw->dvob &= ~PORT_ENABLE;
1106 hw->dvoc &= ~PORT_ENABLE;
1107
1108 /* Use display plane A. */
1109 hw->disp_a_ctrl |= DISPPLANE_PLANE_ENABLE;
1110 hw->disp_a_ctrl &= ~DISPPLANE_GAMMA_ENABLE;
1111 hw->disp_a_ctrl &= ~DISPPLANE_PIXFORMAT_MASK;
1112 switch (intelfb_var_to_depth(var)) {
1113 case 8:
1114 hw->disp_a_ctrl |= DISPPLANE_8BPP | DISPPLANE_GAMMA_ENABLE;
1115 break;
1116 case 15:
1117 hw->disp_a_ctrl |= DISPPLANE_15_16BPP;
1118 break;
1119 case 16:
1120 hw->disp_a_ctrl |= DISPPLANE_16BPP;
1121 break;
1122 case 24:
1123 hw->disp_a_ctrl |= DISPPLANE_32BPP_NO_ALPHA;
1124 break;
1125 }
1126 hw->disp_a_ctrl &= ~(PIPE_MASK << DISPPLANE_SEL_PIPE_SHIFT);
1127 hw->disp_a_ctrl |= (pipe << DISPPLANE_SEL_PIPE_SHIFT);
1128
1129 /* Set CRTC registers. */
1130 hactive = var->xres;
1131 hsync_start = hactive + var->right_margin;
1132 hsync_end = hsync_start + var->hsync_len;
1133 htotal = hsync_end + var->left_margin;
1134 hblank_start = hactive;
1135 hblank_end = htotal;
1136
1137 DBG_MSG("H: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
1138 hactive, hsync_start, hsync_end, htotal, hblank_start,
1139 hblank_end);
1140
1141 vactive = var->yres;
1142 vsync_start = vactive + var->lower_margin;
1143 vsync_end = vsync_start + var->vsync_len;
1144 vtotal = vsync_end + var->upper_margin;
1145 vblank_start = vactive;
1146 vblank_end = vtotal;
1147 vblank_end = vsync_end + 1;
1148
1149 DBG_MSG("V: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
1150 vactive, vsync_start, vsync_end, vtotal, vblank_start,
1151 vblank_end);
1152
1153 /* Adjust for register values, and check for overflow. */
1154 hactive--;
1155 if (check_overflow(hactive, HACTIVE_MASK, "CRTC hactive"))
1156 return 1;
1157 hsync_start--;
1158 if (check_overflow(hsync_start, HSYNCSTART_MASK, "CRTC hsync_start"))
1159 return 1;
1160 hsync_end--;
1161 if (check_overflow(hsync_end, HSYNCEND_MASK, "CRTC hsync_end"))
1162 return 1;
1163 htotal--;
1164 if (check_overflow(htotal, HTOTAL_MASK, "CRTC htotal"))
1165 return 1;
1166 hblank_start--;
1167 if (check_overflow(hblank_start, HBLANKSTART_MASK, "CRTC hblank_start"))
1168 return 1;
1169 hblank_end--;
1170 if (check_overflow(hblank_end, HBLANKEND_MASK, "CRTC hblank_end"))
1171 return 1;
1172
1173 vactive--;
1174 if (check_overflow(vactive, VACTIVE_MASK, "CRTC vactive"))
1175 return 1;
1176 vsync_start--;
1177 if (check_overflow(vsync_start, VSYNCSTART_MASK, "CRTC vsync_start"))
1178 return 1;
1179 vsync_end--;
1180 if (check_overflow(vsync_end, VSYNCEND_MASK, "CRTC vsync_end"))
1181 return 1;
1182 vtotal--;
1183 if (check_overflow(vtotal, VTOTAL_MASK, "CRTC vtotal"))
1184 return 1;
1185 vblank_start--;
1186 if (check_overflow(vblank_start, VBLANKSTART_MASK, "CRTC vblank_start"))
1187 return 1;
1188 vblank_end--;
1189 if (check_overflow(vblank_end, VBLANKEND_MASK, "CRTC vblank_end"))
1190 return 1;
1191
1192 *ht = (htotal << HTOTAL_SHIFT) | (hactive << HACTIVE_SHIFT);
1193 *hb = (hblank_start << HBLANKSTART_SHIFT) |
1194 (hblank_end << HSYNCEND_SHIFT);
1195 *hs = (hsync_start << HSYNCSTART_SHIFT) | (hsync_end << HSYNCEND_SHIFT);
1196
1197 *vt = (vtotal << VTOTAL_SHIFT) | (vactive << VACTIVE_SHIFT);
1198 *vb = (vblank_start << VBLANKSTART_SHIFT) |
1199 (vblank_end << VSYNCEND_SHIFT);
1200 *vs = (vsync_start << VSYNCSTART_SHIFT) | (vsync_end << VSYNCEND_SHIFT);
1201 *ss = (hactive << SRC_SIZE_HORIZ_SHIFT) |
1202 (vactive << SRC_SIZE_VERT_SHIFT);
1203
1204 hw->disp_a_stride = dinfo->pitch;
1205 DBG_MSG("pitch is %d\n", hw->disp_a_stride);
1206
1207 hw->disp_a_base = hw->disp_a_stride * var->yoffset +
1208 var->xoffset * var->bits_per_pixel / 8;
1209
1210 hw->disp_a_base += dinfo->fb.offset << 12;
1211
1212 /* Check stride alignment. */
1213 stride_alignment = IS_I9XX(dinfo) ? STRIDE_ALIGNMENT_I9XX :
1214 STRIDE_ALIGNMENT;
1215 if (hw->disp_a_stride % stride_alignment != 0) {
1216 WRN_MSG("display stride %d has bad alignment %d\n",
1217 hw->disp_a_stride, stride_alignment);
1218 return 1;
1219 }
1220
1221 /* Set the palette to 8-bit mode. */
1222 *pipe_conf &= ~PIPECONF_GAMMA;
1223 return 0;
1224 }
1225
1226 /* Program a (non-VGA) video mode. */
1227 int
1228 intelfbhw_program_mode(struct intelfb_info *dinfo,
1229 const struct intelfb_hwstate *hw, int blank)
1230 {
1231 int pipe = PIPE_A;
1232 u32 tmp;
1233 const u32 *dpll, *fp0, *fp1, *pipe_conf;
1234 const u32 *hs, *ht, *hb, *vs, *vt, *vb, *ss;
1235 u32 dpll_reg, fp0_reg, fp1_reg, pipe_conf_reg;
1236 u32 hsync_reg, htotal_reg, hblank_reg;
1237 u32 vsync_reg, vtotal_reg, vblank_reg;
1238 u32 src_size_reg;
1239 u32 count, tmp_val[3];
1240
1241 /* Assume single pipe, display plane A, analog CRT. */
1242
1243 #if VERBOSE > 0
1244 DBG_MSG("intelfbhw_program_mode\n");
1245 #endif
1246
1247 /* Disable VGA */
1248 tmp = INREG(VGACNTRL);
1249 tmp |= VGA_DISABLE;
1250 OUTREG(VGACNTRL, tmp);
1251
1252 /* Check whether pipe A or pipe B is enabled. */
1253 if (hw->pipe_a_conf & PIPECONF_ENABLE)
1254 pipe = PIPE_A;
1255 else if (hw->pipe_b_conf & PIPECONF_ENABLE)
1256 pipe = PIPE_B;
1257
1258 dinfo->pipe = pipe;
1259
1260 if (pipe == PIPE_B) {
1261 dpll = &hw->dpll_b;
1262 fp0 = &hw->fpb0;
1263 fp1 = &hw->fpb1;
1264 pipe_conf = &hw->pipe_b_conf;
1265 hs = &hw->hsync_b;
1266 hb = &hw->hblank_b;
1267 ht = &hw->htotal_b;
1268 vs = &hw->vsync_b;
1269 vb = &hw->vblank_b;
1270 vt = &hw->vtotal_b;
1271 ss = &hw->src_size_b;
1272 dpll_reg = DPLL_B;
1273 fp0_reg = FPB0;
1274 fp1_reg = FPB1;
1275 pipe_conf_reg = PIPEBCONF;
1276 hsync_reg = HSYNC_B;
1277 htotal_reg = HTOTAL_B;
1278 hblank_reg = HBLANK_B;
1279 vsync_reg = VSYNC_B;
1280 vtotal_reg = VTOTAL_B;
1281 vblank_reg = VBLANK_B;
1282 src_size_reg = SRC_SIZE_B;
1283 } else {
1284 dpll = &hw->dpll_a;
1285 fp0 = &hw->fpa0;
1286 fp1 = &hw->fpa1;
1287 pipe_conf = &hw->pipe_a_conf;
1288 hs = &hw->hsync_a;
1289 hb = &hw->hblank_a;
1290 ht = &hw->htotal_a;
1291 vs = &hw->vsync_a;
1292 vb = &hw->vblank_a;
1293 vt = &hw->vtotal_a;
1294 ss = &hw->src_size_a;
1295 dpll_reg = DPLL_A;
1296 fp0_reg = FPA0;
1297 fp1_reg = FPA1;
1298 pipe_conf_reg = PIPEACONF;
1299 hsync_reg = HSYNC_A;
1300 htotal_reg = HTOTAL_A;
1301 hblank_reg = HBLANK_A;
1302 vsync_reg = VSYNC_A;
1303 vtotal_reg = VTOTAL_A;
1304 vblank_reg = VBLANK_A;
1305 src_size_reg = SRC_SIZE_A;
1306 }
1307
1308 /* turn off pipe */
1309 tmp = INREG(pipe_conf_reg);
1310 tmp &= ~PIPECONF_ENABLE;
1311 OUTREG(pipe_conf_reg, tmp);
1312
1313 count = 0;
1314 do {
1315 tmp_val[count%3] = INREG(0x70000);
1316 if ((tmp_val[0] == tmp_val[1]) && (tmp_val[1]==tmp_val[2]))
1317 break;
1318 count++;
1319 udelay(1);
1320 if (count % 200 == 0) {
1321 tmp = INREG(pipe_conf_reg);
1322 tmp &= ~PIPECONF_ENABLE;
1323 OUTREG(pipe_conf_reg, tmp);
1324 }
1325 } while(count < 2000);
1326
1327 OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
1328
1329 /* Disable planes A and B. */
1330 tmp = INREG(DSPACNTR);
1331 tmp &= ~DISPPLANE_PLANE_ENABLE;
1332 OUTREG(DSPACNTR, tmp);
1333 tmp = INREG(DSPBCNTR);
1334 tmp &= ~DISPPLANE_PLANE_ENABLE;
1335 OUTREG(DSPBCNTR, tmp);
1336
1337 /* Wait for vblank. For now, just wait for a 50Hz cycle (20ms)) */
1338 mdelay(20);
1339
1340 OUTREG(DVOB, INREG(DVOB) & ~PORT_ENABLE);
1341 OUTREG(DVOC, INREG(DVOC) & ~PORT_ENABLE);
1342 OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
1343
1344 /* Disable Sync */
1345 tmp = INREG(ADPA);
1346 tmp &= ~ADPA_DPMS_CONTROL_MASK;
1347 tmp |= ADPA_DPMS_D3;
1348 OUTREG(ADPA, tmp);
1349
1350 /* do some funky magic - xyzzy */
1351 OUTREG(0x61204, 0xabcd0000);
1352
1353 /* turn off PLL */
1354 tmp = INREG(dpll_reg);
1355 dpll_reg &= ~DPLL_VCO_ENABLE;
1356 OUTREG(dpll_reg, tmp);
1357
1358 /* Set PLL parameters */
1359 OUTREG(fp0_reg, *fp0);
1360 OUTREG(fp1_reg, *fp1);
1361
1362 /* Enable PLL */
1363 OUTREG(dpll_reg, *dpll);
1364
1365 /* Set DVOs B/C */
1366 OUTREG(DVOB, hw->dvob);
1367 OUTREG(DVOC, hw->dvoc);
1368
1369 /* undo funky magic */
1370 OUTREG(0x61204, 0x00000000);
1371
1372 /* Set ADPA */
1373 OUTREG(ADPA, INREG(ADPA) | ADPA_DAC_ENABLE);
1374 OUTREG(ADPA, (hw->adpa & ~(ADPA_DPMS_CONTROL_MASK)) | ADPA_DPMS_D3);
1375
1376 /* Set pipe parameters */
1377 OUTREG(hsync_reg, *hs);
1378 OUTREG(hblank_reg, *hb);
1379 OUTREG(htotal_reg, *ht);
1380 OUTREG(vsync_reg, *vs);
1381 OUTREG(vblank_reg, *vb);
1382 OUTREG(vtotal_reg, *vt);
1383 OUTREG(src_size_reg, *ss);
1384
1385 /* Enable pipe */
1386 OUTREG(pipe_conf_reg, *pipe_conf | PIPECONF_ENABLE);
1387
1388 /* Enable sync */
1389 tmp = INREG(ADPA);
1390 tmp &= ~ADPA_DPMS_CONTROL_MASK;
1391 tmp |= ADPA_DPMS_D0;
1392 OUTREG(ADPA, tmp);
1393
1394 /* setup display plane */
1395 if (dinfo->pdev->device == PCI_DEVICE_ID_INTEL_830M) {
1396 /*
1397 * i830M errata: the display plane must be enabled
1398 * to allow writes to the other bits in the plane
1399 * control register.
1400 */
1401 tmp = INREG(DSPACNTR);
1402 if ((tmp & DISPPLANE_PLANE_ENABLE) != DISPPLANE_PLANE_ENABLE) {
1403 tmp |= DISPPLANE_PLANE_ENABLE;
1404 OUTREG(DSPACNTR, tmp);
1405 OUTREG(DSPACNTR,
1406 hw->disp_a_ctrl|DISPPLANE_PLANE_ENABLE);
1407 mdelay(1);
1408 }
1409 }
1410
1411 OUTREG(DSPACNTR, hw->disp_a_ctrl & ~DISPPLANE_PLANE_ENABLE);
1412 OUTREG(DSPASTRIDE, hw->disp_a_stride);
1413 OUTREG(DSPABASE, hw->disp_a_base);
1414
1415 /* Enable plane */
1416 if (!blank) {
1417 tmp = INREG(DSPACNTR);
1418 tmp |= DISPPLANE_PLANE_ENABLE;
1419 OUTREG(DSPACNTR, tmp);
1420 OUTREG(DSPABASE, hw->disp_a_base);
1421 }
1422
1423 return 0;
1424 }
1425
1426 /* forward declarations */
1427 static void refresh_ring(struct intelfb_info *dinfo);
1428 static void reset_state(struct intelfb_info *dinfo);
1429 static void do_flush(struct intelfb_info *dinfo);
1430
1431 static int
1432 wait_ring(struct intelfb_info *dinfo, int n)
1433 {
1434 int i = 0;
1435 unsigned long end;
1436 u32 last_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1437
1438 #if VERBOSE > 0
1439 DBG_MSG("wait_ring: %d\n", n);
1440 #endif
1441
1442 end = jiffies + (HZ * 3);
1443 while (dinfo->ring_space < n) {
1444 dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1445 if (dinfo->ring_tail + RING_MIN_FREE < dinfo->ring_head)
1446 dinfo->ring_space = dinfo->ring_head
1447 - (dinfo->ring_tail + RING_MIN_FREE);
1448 else
1449 dinfo->ring_space = (dinfo->ring.size +
1450 dinfo->ring_head)
1451 - (dinfo->ring_tail + RING_MIN_FREE);
1452 if (dinfo->ring_head != last_head) {
1453 end = jiffies + (HZ * 3);
1454 last_head = dinfo->ring_head;
1455 }
1456 i++;
1457 if (time_before(end, jiffies)) {
1458 if (!i) {
1459 /* Try again */
1460 reset_state(dinfo);
1461 refresh_ring(dinfo);
1462 do_flush(dinfo);
1463 end = jiffies + (HZ * 3);
1464 i = 1;
1465 } else {
1466 WRN_MSG("ring buffer : space: %d wanted %d\n",
1467 dinfo->ring_space, n);
1468 WRN_MSG("lockup - turning off hardware "
1469 "acceleration\n");
1470 dinfo->ring_lockup = 1;
1471 break;
1472 }
1473 }
1474 udelay(1);
1475 }
1476 return i;
1477 }
1478
1479 static void
1480 do_flush(struct intelfb_info *dinfo) {
1481 START_RING(2);
1482 OUT_RING(MI_FLUSH | MI_WRITE_DIRTY_STATE | MI_INVALIDATE_MAP_CACHE);
1483 OUT_RING(MI_NOOP);
1484 ADVANCE_RING();
1485 }
1486
1487 void
1488 intelfbhw_do_sync(struct intelfb_info *dinfo)
1489 {
1490 #if VERBOSE > 0
1491 DBG_MSG("intelfbhw_do_sync\n");
1492 #endif
1493
1494 if (!dinfo->accel)
1495 return;
1496
1497 /*
1498 * Send a flush, then wait until the ring is empty. This is what
1499 * the XFree86 driver does, and actually it doesn't seem a lot worse
1500 * than the recommended method (both have problems).
1501 */
1502 do_flush(dinfo);
1503 wait_ring(dinfo, dinfo->ring.size - RING_MIN_FREE);
1504 dinfo->ring_space = dinfo->ring.size - RING_MIN_FREE;
1505 }
1506
1507 static void
1508 refresh_ring(struct intelfb_info *dinfo)
1509 {
1510 #if VERBOSE > 0
1511 DBG_MSG("refresh_ring\n");
1512 #endif
1513
1514 dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1515 dinfo->ring_tail = INREG(PRI_RING_TAIL) & RING_TAIL_MASK;
1516 if (dinfo->ring_tail + RING_MIN_FREE < dinfo->ring_head)
1517 dinfo->ring_space = dinfo->ring_head
1518 - (dinfo->ring_tail + RING_MIN_FREE);
1519 else
1520 dinfo->ring_space = (dinfo->ring.size + dinfo->ring_head)
1521 - (dinfo->ring_tail + RING_MIN_FREE);
1522 }
1523
1524 static void
1525 reset_state(struct intelfb_info *dinfo)
1526 {
1527 int i;
1528 u32 tmp;
1529
1530 #if VERBOSE > 0
1531 DBG_MSG("reset_state\n");
1532 #endif
1533
1534 for (i = 0; i < FENCE_NUM; i++)
1535 OUTREG(FENCE + (i << 2), 0);
1536
1537 /* Flush the ring buffer if it's enabled. */
1538 tmp = INREG(PRI_RING_LENGTH);
1539 if (tmp & RING_ENABLE) {
1540 #if VERBOSE > 0
1541 DBG_MSG("reset_state: ring was enabled\n");
1542 #endif
1543 refresh_ring(dinfo);
1544 intelfbhw_do_sync(dinfo);
1545 DO_RING_IDLE();
1546 }
1547
1548 OUTREG(PRI_RING_LENGTH, 0);
1549 OUTREG(PRI_RING_HEAD, 0);
1550 OUTREG(PRI_RING_TAIL, 0);
1551 OUTREG(PRI_RING_START, 0);
1552 }
1553
1554 /* Stop the 2D engine, and turn off the ring buffer. */
1555 void
1556 intelfbhw_2d_stop(struct intelfb_info *dinfo)
1557 {
1558 #if VERBOSE > 0
1559 DBG_MSG("intelfbhw_2d_stop: accel: %d, ring_active: %d\n", dinfo->accel,
1560 dinfo->ring_active);
1561 #endif
1562
1563 if (!dinfo->accel)
1564 return;
1565
1566 dinfo->ring_active = 0;
1567 reset_state(dinfo);
1568 }
1569
1570 /*
1571 * Enable the ring buffer, and initialise the 2D engine.
1572 * It is assumed that the graphics engine has been stopped by previously
1573 * calling intelfb_2d_stop().
1574 */
1575 void
1576 intelfbhw_2d_start(struct intelfb_info *dinfo)
1577 {
1578 #if VERBOSE > 0
1579 DBG_MSG("intelfbhw_2d_start: accel: %d, ring_active: %d\n",
1580 dinfo->accel, dinfo->ring_active);
1581 #endif
1582
1583 if (!dinfo->accel)
1584 return;
1585
1586 /* Initialise the primary ring buffer. */
1587 OUTREG(PRI_RING_LENGTH, 0);
1588 OUTREG(PRI_RING_TAIL, 0);
1589 OUTREG(PRI_RING_HEAD, 0);
1590
1591 OUTREG(PRI_RING_START, dinfo->ring.physical & RING_START_MASK);
1592 OUTREG(PRI_RING_LENGTH,
1593 ((dinfo->ring.size - GTT_PAGE_SIZE) & RING_LENGTH_MASK) |
1594 RING_NO_REPORT | RING_ENABLE);
1595 refresh_ring(dinfo);
1596 dinfo->ring_active = 1;
1597 }
1598
1599 /* 2D fillrect (solid fill or invert) */
1600 void
1601 intelfbhw_do_fillrect(struct intelfb_info *dinfo, u32 x, u32 y, u32 w, u32 h,
1602 u32 color, u32 pitch, u32 bpp, u32 rop)
1603 {
1604 u32 br00, br09, br13, br14, br16;
1605
1606 #if VERBOSE > 0
1607 DBG_MSG("intelfbhw_do_fillrect: (%d,%d) %dx%d, c 0x%06x, p %d bpp %d, "
1608 "rop 0x%02x\n", x, y, w, h, color, pitch, bpp, rop);
1609 #endif
1610
1611 br00 = COLOR_BLT_CMD;
1612 br09 = dinfo->fb_start + (y * pitch + x * (bpp / 8));
1613 br13 = (rop << ROP_SHIFT) | pitch;
1614 br14 = (h << HEIGHT_SHIFT) | ((w * (bpp / 8)) << WIDTH_SHIFT);
1615 br16 = color;
1616
1617 switch (bpp) {
1618 case 8:
1619 br13 |= COLOR_DEPTH_8;
1620 break;
1621 case 16:
1622 br13 |= COLOR_DEPTH_16;
1623 break;
1624 case 32:
1625 br13 |= COLOR_DEPTH_32;
1626 br00 |= WRITE_ALPHA | WRITE_RGB;
1627 break;
1628 }
1629
1630 START_RING(6);
1631 OUT_RING(br00);
1632 OUT_RING(br13);
1633 OUT_RING(br14);
1634 OUT_RING(br09);
1635 OUT_RING(br16);
1636 OUT_RING(MI_NOOP);
1637 ADVANCE_RING();
1638
1639 #if VERBOSE > 0
1640 DBG_MSG("ring = 0x%08x, 0x%08x (%d)\n", dinfo->ring_head,
1641 dinfo->ring_tail, dinfo->ring_space);
1642 #endif
1643 }
1644
1645 void
1646 intelfbhw_do_bitblt(struct intelfb_info *dinfo, u32 curx, u32 cury,
1647 u32 dstx, u32 dsty, u32 w, u32 h, u32 pitch, u32 bpp)
1648 {
1649 u32 br00, br09, br11, br12, br13, br22, br23, br26;
1650
1651 #if VERBOSE > 0
1652 DBG_MSG("intelfbhw_do_bitblt: (%d,%d)->(%d,%d) %dx%d, p %d bpp %d\n",
1653 curx, cury, dstx, dsty, w, h, pitch, bpp);
1654 #endif
1655
1656 br00 = XY_SRC_COPY_BLT_CMD;
1657 br09 = dinfo->fb_start;
1658 br11 = (pitch << PITCH_SHIFT);
1659 br12 = dinfo->fb_start;
1660 br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
1661 br22 = (dstx << WIDTH_SHIFT) | (dsty << HEIGHT_SHIFT);
1662 br23 = ((dstx + w) << WIDTH_SHIFT) |
1663 ((dsty + h) << HEIGHT_SHIFT);
1664 br26 = (curx << WIDTH_SHIFT) | (cury << HEIGHT_SHIFT);
1665
1666 switch (bpp) {
1667 case 8:
1668 br13 |= COLOR_DEPTH_8;
1669 break;
1670 case 16:
1671 br13 |= COLOR_DEPTH_16;
1672 break;
1673 case 32:
1674 br13 |= COLOR_DEPTH_32;
1675 br00 |= WRITE_ALPHA | WRITE_RGB;
1676 break;
1677 }
1678
1679 START_RING(8);
1680 OUT_RING(br00);
1681 OUT_RING(br13);
1682 OUT_RING(br22);
1683 OUT_RING(br23);
1684 OUT_RING(br09);
1685 OUT_RING(br26);
1686 OUT_RING(br11);
1687 OUT_RING(br12);
1688 ADVANCE_RING();
1689 }
1690
1691 int
1692 intelfbhw_do_drawglyph(struct intelfb_info *dinfo, u32 fg, u32 bg, u32 w,
1693 u32 h, const u8* cdat, u32 x, u32 y, u32 pitch, u32 bpp)
1694 {
1695 int nbytes, ndwords, pad, tmp;
1696 u32 br00, br09, br13, br18, br19, br22, br23;
1697 int dat, ix, iy, iw;
1698 int i, j;
1699
1700 #if VERBOSE > 0
1701 DBG_MSG("intelfbhw_do_drawglyph: (%d,%d) %dx%d\n", x, y, w, h);
1702 #endif
1703
1704 /* size in bytes of a padded scanline */
1705 nbytes = ROUND_UP_TO(w, 16) / 8;
1706
1707 /* Total bytes of padded scanline data to write out. */
1708 nbytes = nbytes * h;
1709
1710 /*
1711 * Check if the glyph data exceeds the immediate mode limit.
1712 * It would take a large font (1K pixels) to hit this limit.
1713 */
1714 if (nbytes > MAX_MONO_IMM_SIZE)
1715 return 0;
1716
1717 /* Src data is packaged a dword (32-bit) at a time. */
1718 ndwords = ROUND_UP_TO(nbytes, 4) / 4;
1719
1720 /*
1721 * Ring has to be padded to a quad word. But because the command starts
1722 with 7 bytes, pad only if there is an even number of ndwords
1723 */
1724 pad = !(ndwords % 2);
1725
1726 tmp = (XY_MONO_SRC_IMM_BLT_CMD & DW_LENGTH_MASK) + ndwords;
1727 br00 = (XY_MONO_SRC_IMM_BLT_CMD & ~DW_LENGTH_MASK) | tmp;
1728 br09 = dinfo->fb_start;
1729 br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
1730 br18 = bg;
1731 br19 = fg;
1732 br22 = (x << WIDTH_SHIFT) | (y << HEIGHT_SHIFT);
1733 br23 = ((x + w) << WIDTH_SHIFT) | ((y + h) << HEIGHT_SHIFT);
1734
1735 switch (bpp) {
1736 case 8:
1737 br13 |= COLOR_DEPTH_8;
1738 break;
1739 case 16:
1740 br13 |= COLOR_DEPTH_16;
1741 break;
1742 case 32:
1743 br13 |= COLOR_DEPTH_32;
1744 br00 |= WRITE_ALPHA | WRITE_RGB;
1745 break;
1746 }
1747
1748 START_RING(8 + ndwords);
1749 OUT_RING(br00);
1750 OUT_RING(br13);
1751 OUT_RING(br22);
1752 OUT_RING(br23);
1753 OUT_RING(br09);
1754 OUT_RING(br18);
1755 OUT_RING(br19);
1756 ix = iy = 0;
1757 iw = ROUND_UP_TO(w, 8) / 8;
1758 while (ndwords--) {
1759 dat = 0;
1760 for (j = 0; j < 2; ++j) {
1761 for (i = 0; i < 2; ++i) {
1762 if (ix != iw || i == 0)
1763 dat |= cdat[iy*iw + ix++] << (i+j*2)*8;
1764 }
1765 if (ix == iw && iy != (h-1)) {
1766 ix = 0;
1767 ++iy;
1768 }
1769 }
1770 OUT_RING(dat);
1771 }
1772 if (pad)
1773 OUT_RING(MI_NOOP);
1774 ADVANCE_RING();
1775
1776 return 1;
1777 }
1778
1779 /* HW cursor functions. */
1780 void
1781 intelfbhw_cursor_init(struct intelfb_info *dinfo)
1782 {
1783 u32 tmp;
1784
1785 #if VERBOSE > 0
1786 DBG_MSG("intelfbhw_cursor_init\n");
1787 #endif
1788
1789 if (dinfo->mobile || IS_I9XX(dinfo)) {
1790 if (!dinfo->cursor.physical)
1791 return;
1792 tmp = INREG(CURSOR_A_CONTROL);
1793 tmp &= ~(CURSOR_MODE_MASK | CURSOR_MOBILE_GAMMA_ENABLE |
1794 CURSOR_MEM_TYPE_LOCAL |
1795 (1 << CURSOR_PIPE_SELECT_SHIFT));
1796 tmp |= CURSOR_MODE_DISABLE;
1797 OUTREG(CURSOR_A_CONTROL, tmp);
1798 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1799 } else {
1800 tmp = INREG(CURSOR_CONTROL);
1801 tmp &= ~(CURSOR_FORMAT_MASK | CURSOR_GAMMA_ENABLE |
1802 CURSOR_ENABLE | CURSOR_STRIDE_MASK);
1803 tmp = CURSOR_FORMAT_3C;
1804 OUTREG(CURSOR_CONTROL, tmp);
1805 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.offset << 12);
1806 tmp = (64 << CURSOR_SIZE_H_SHIFT) |
1807 (64 << CURSOR_SIZE_V_SHIFT);
1808 OUTREG(CURSOR_SIZE, tmp);
1809 }
1810 }
1811
1812 void
1813 intelfbhw_cursor_hide(struct intelfb_info *dinfo)
1814 {
1815 u32 tmp;
1816
1817 #if VERBOSE > 0
1818 DBG_MSG("intelfbhw_cursor_hide\n");
1819 #endif
1820
1821 dinfo->cursor_on = 0;
1822 if (dinfo->mobile || IS_I9XX(dinfo)) {
1823 if (!dinfo->cursor.physical)
1824 return;
1825 tmp = INREG(CURSOR_A_CONTROL);
1826 tmp &= ~CURSOR_MODE_MASK;
1827 tmp |= CURSOR_MODE_DISABLE;
1828 OUTREG(CURSOR_A_CONTROL, tmp);
1829 /* Flush changes */
1830 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1831 } else {
1832 tmp = INREG(CURSOR_CONTROL);
1833 tmp &= ~CURSOR_ENABLE;
1834 OUTREG(CURSOR_CONTROL, tmp);
1835 }
1836 }
1837
1838 void
1839 intelfbhw_cursor_show(struct intelfb_info *dinfo)
1840 {
1841 u32 tmp;
1842
1843 #if VERBOSE > 0
1844 DBG_MSG("intelfbhw_cursor_show\n");
1845 #endif
1846
1847 dinfo->cursor_on = 1;
1848
1849 if (dinfo->cursor_blanked)
1850 return;
1851
1852 if (dinfo->mobile || IS_I9XX(dinfo)) {
1853 if (!dinfo->cursor.physical)
1854 return;
1855 tmp = INREG(CURSOR_A_CONTROL);
1856 tmp &= ~CURSOR_MODE_MASK;
1857 tmp |= CURSOR_MODE_64_4C_AX;
1858 OUTREG(CURSOR_A_CONTROL, tmp);
1859 /* Flush changes */
1860 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1861 } else {
1862 tmp = INREG(CURSOR_CONTROL);
1863 tmp |= CURSOR_ENABLE;
1864 OUTREG(CURSOR_CONTROL, tmp);
1865 }
1866 }
1867
1868 void
1869 intelfbhw_cursor_setpos(struct intelfb_info *dinfo, int x, int y)
1870 {
1871 u32 tmp;
1872
1873 #if VERBOSE > 0
1874 DBG_MSG("intelfbhw_cursor_setpos: (%d, %d)\n", x, y);
1875 #endif
1876
1877 /*
1878 * Sets the position. The coordinates are assumed to already
1879 * have any offset adjusted. Assume that the cursor is never
1880 * completely off-screen, and that x, y are always >= 0.
1881 */
1882
1883 tmp = ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT) |
1884 ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
1885 OUTREG(CURSOR_A_POSITION, tmp);
1886
1887 if (IS_I9XX(dinfo)) {
1888 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1889 }
1890 }
1891
1892 void
1893 intelfbhw_cursor_setcolor(struct intelfb_info *dinfo, u32 bg, u32 fg)
1894 {
1895 #if VERBOSE > 0
1896 DBG_MSG("intelfbhw_cursor_setcolor\n");
1897 #endif
1898
1899 OUTREG(CURSOR_A_PALETTE0, bg & CURSOR_PALETTE_MASK);
1900 OUTREG(CURSOR_A_PALETTE1, fg & CURSOR_PALETTE_MASK);
1901 OUTREG(CURSOR_A_PALETTE2, fg & CURSOR_PALETTE_MASK);
1902 OUTREG(CURSOR_A_PALETTE3, bg & CURSOR_PALETTE_MASK);
1903 }
1904
1905 void
1906 intelfbhw_cursor_load(struct intelfb_info *dinfo, int width, int height,
1907 u8 *data)
1908 {
1909 u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
1910 int i, j, w = width / 8;
1911 int mod = width % 8, t_mask, d_mask;
1912
1913 #if VERBOSE > 0
1914 DBG_MSG("intelfbhw_cursor_load\n");
1915 #endif
1916
1917 if (!dinfo->cursor.virtual)
1918 return;
1919
1920 t_mask = 0xff >> mod;
1921 d_mask = ~(0xff >> mod);
1922 for (i = height; i--; ) {
1923 for (j = 0; j < w; j++) {
1924 writeb(0x00, addr + j);
1925 writeb(*(data++), addr + j+8);
1926 }
1927 if (mod) {
1928 writeb(t_mask, addr + j);
1929 writeb(*(data++) & d_mask, addr + j+8);
1930 }
1931 addr += 16;
1932 }
1933 }
1934
1935 void
1936 intelfbhw_cursor_reset(struct intelfb_info *dinfo) {
1937 u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
1938 int i, j;
1939
1940 #if VERBOSE > 0
1941 DBG_MSG("intelfbhw_cursor_reset\n");
1942 #endif
1943
1944 if (!dinfo->cursor.virtual)
1945 return;
1946
1947 for (i = 64; i--; ) {
1948 for (j = 0; j < 8; j++) {
1949 writeb(0xff, addr + j+0);
1950 writeb(0x00, addr + j+8);
1951 }
1952 addr += 16;
1953 }
1954 }
1955
1956 static irqreturn_t
1957 intelfbhw_irq(int irq, void *dev_id, struct pt_regs *fp) {
1958 int handled = 0;
1959 u16 tmp;
1960 struct intelfb_info *dinfo = (struct intelfb_info *)dev_id;
1961
1962 spin_lock(&dinfo->int_lock);
1963
1964 tmp = INREG16(IIR);
1965 tmp &= VSYNC_PIPE_A_INTERRUPT;
1966
1967 if (tmp == 0) {
1968 spin_unlock(&dinfo->int_lock);
1969 return IRQ_RETVAL(handled);
1970 }
1971
1972 OUTREG16(IIR, tmp);
1973
1974 if (tmp & VSYNC_PIPE_A_INTERRUPT) {
1975 dinfo->vsync.count++;
1976 if (dinfo->vsync.pan_display) {
1977 dinfo->vsync.pan_display = 0;
1978 OUTREG(DSPABASE, dinfo->vsync.pan_offset);
1979 }
1980 wake_up_interruptible(&dinfo->vsync.wait);
1981 handled = 1;
1982 }
1983
1984 spin_unlock(&dinfo->int_lock);
1985
1986 return IRQ_RETVAL(handled);
1987 }
1988
1989 int
1990 intelfbhw_enable_irq(struct intelfb_info *dinfo, int reenable) {
1991
1992 if (!test_and_set_bit(0, &dinfo->irq_flags)) {
1993 if (request_irq(dinfo->pdev->irq, intelfbhw_irq, SA_SHIRQ, "intelfb", dinfo)) {
1994 clear_bit(0, &dinfo->irq_flags);
1995 return -EINVAL;
1996 }
1997
1998 spin_lock_irq(&dinfo->int_lock);
1999 OUTREG16(HWSTAM, 0xfffe);
2000 OUTREG16(IMR, 0x0);
2001 OUTREG16(IER, VSYNC_PIPE_A_INTERRUPT);
2002 spin_unlock_irq(&dinfo->int_lock);
2003 } else if (reenable) {
2004 u16 ier;
2005
2006 spin_lock_irq(&dinfo->int_lock);
2007 ier = INREG16(IER);
2008 if ((ier & VSYNC_PIPE_A_INTERRUPT)) {
2009 DBG_MSG("someone disabled the IRQ [%08X]\n", ier);
2010 OUTREG(IER, VSYNC_PIPE_A_INTERRUPT);
2011 }
2012 spin_unlock_irq(&dinfo->int_lock);
2013 }
2014 return 0;
2015 }
2016
2017 void
2018 intelfbhw_disable_irq(struct intelfb_info *dinfo) {
2019 u16 tmp;
2020
2021 if (test_and_clear_bit(0, &dinfo->irq_flags)) {
2022 if (dinfo->vsync.pan_display) {
2023 dinfo->vsync.pan_display = 0;
2024 OUTREG(DSPABASE, dinfo->vsync.pan_offset);
2025 }
2026 spin_lock_irq(&dinfo->int_lock);
2027 OUTREG16(HWSTAM, 0xffff);
2028 OUTREG16(IMR, 0xffff);
2029 OUTREG16(IER, 0x0);
2030
2031 tmp = INREG16(IIR);
2032 OUTREG16(IIR, tmp);
2033 spin_unlock_irq(&dinfo->int_lock);
2034
2035 free_irq(dinfo->pdev->irq, dinfo);
2036 }
2037 }
2038
2039 int
2040 intelfbhw_wait_for_vsync(struct intelfb_info *dinfo, u32 pipe) {
2041 struct intelfb_vsync *vsync;
2042 unsigned int count;
2043 int ret;
2044
2045 switch (pipe) {
2046 case 0:
2047 vsync = &dinfo->vsync;
2048 break;
2049 default:
2050 return -ENODEV;
2051 }
2052
2053 ret = intelfbhw_enable_irq(dinfo, 0);
2054 if (ret) {
2055 return ret;
2056 }
2057
2058 count = vsync->count;
2059 ret = wait_event_interruptible_timeout(vsync->wait, count != vsync->count, HZ/10);
2060 if (ret < 0) {
2061 return ret;
2062 }
2063 if (ret == 0) {
2064 intelfbhw_enable_irq(dinfo, 1);
2065 DBG_MSG("wait_for_vsync timed out!\n");
2066 return -ETIMEDOUT;
2067 }
2068
2069 return 0;
2070 }