]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/video/intelfb/intelfbhw.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/paulus/powerpc
[mirror_ubuntu-artful-kernel.git] / drivers / video / intelfb / intelfbhw.c
1 /*
2 * intelfb
3 *
4 * Linux framebuffer driver for Intel(R) 865G integrated graphics chips.
5 *
6 * Copyright © 2002, 2003 David Dawes <dawes@xfree86.org>
7 * 2004 Sylvain Meyer
8 *
9 * This driver consists of two parts. The first part (intelfbdrv.c) provides
10 * the basic fbdev interfaces, is derived in part from the radeonfb and
11 * vesafb drivers, and is covered by the GPL. The second part (intelfbhw.c)
12 * provides the code to program the hardware. Most of it is derived from
13 * the i810/i830 XFree86 driver. The HW-specific code is covered here
14 * under a dual license (GPL and MIT/XFree86 license).
15 *
16 * Author: David Dawes
17 *
18 */
19
20 /* $DHD: intelfb/intelfbhw.c,v 1.9 2003/06/27 15:06:25 dawes Exp $ */
21
22 #include <linux/config.h>
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/errno.h>
26 #include <linux/string.h>
27 #include <linux/mm.h>
28 #include <linux/tty.h>
29 #include <linux/slab.h>
30 #include <linux/delay.h>
31 #include <linux/fb.h>
32 #include <linux/ioport.h>
33 #include <linux/init.h>
34 #include <linux/pci.h>
35 #include <linux/vmalloc.h>
36 #include <linux/pagemap.h>
37
38 #include <asm/io.h>
39
40 #include "intelfb.h"
41 #include "intelfbhw.h"
42
43 struct pll_min_max {
44 int min_m, max_m, min_m1, max_m1;
45 int min_m2, max_m2, min_n, max_n;
46 int min_p, max_p, min_p1, max_p1;
47 int min_vco, max_vco, p_transition_clk, ref_clk;
48 int p_inc_lo, p_inc_hi;
49 };
50
51 #define PLLS_I8xx 0
52 #define PLLS_I9xx 1
53 #define PLLS_MAX 2
54
55 static struct pll_min_max plls[PLLS_MAX] = {
56 { 108, 140, 18, 26,
57 6, 16, 3, 16,
58 4, 128, 0, 31,
59 930000, 1400000, 165000, 48000,
60 4, 2 }, //I8xx
61
62 { 75, 120, 10, 20,
63 5, 9, 4, 7,
64 5, 80, 1, 8,
65 1400000, 2800000, 200000, 96000,
66 10, 5 } //I9xx
67 };
68
69 int
70 intelfbhw_get_chipset(struct pci_dev *pdev, struct intelfb_info *dinfo)
71 {
72 u32 tmp;
73 if (!pdev || !dinfo)
74 return 1;
75
76 switch (pdev->device) {
77 case PCI_DEVICE_ID_INTEL_830M:
78 dinfo->name = "Intel(R) 830M";
79 dinfo->chipset = INTEL_830M;
80 dinfo->mobile = 1;
81 dinfo->pll_index = PLLS_I8xx;
82 return 0;
83 case PCI_DEVICE_ID_INTEL_845G:
84 dinfo->name = "Intel(R) 845G";
85 dinfo->chipset = INTEL_845G;
86 dinfo->mobile = 0;
87 dinfo->pll_index = PLLS_I8xx;
88 return 0;
89 case PCI_DEVICE_ID_INTEL_85XGM:
90 tmp = 0;
91 dinfo->mobile = 1;
92 dinfo->pll_index = PLLS_I8xx;
93 pci_read_config_dword(pdev, INTEL_85X_CAPID, &tmp);
94 switch ((tmp >> INTEL_85X_VARIANT_SHIFT) &
95 INTEL_85X_VARIANT_MASK) {
96 case INTEL_VAR_855GME:
97 dinfo->name = "Intel(R) 855GME";
98 dinfo->chipset = INTEL_855GME;
99 return 0;
100 case INTEL_VAR_855GM:
101 dinfo->name = "Intel(R) 855GM";
102 dinfo->chipset = INTEL_855GM;
103 return 0;
104 case INTEL_VAR_852GME:
105 dinfo->name = "Intel(R) 852GME";
106 dinfo->chipset = INTEL_852GME;
107 return 0;
108 case INTEL_VAR_852GM:
109 dinfo->name = "Intel(R) 852GM";
110 dinfo->chipset = INTEL_852GM;
111 return 0;
112 default:
113 dinfo->name = "Intel(R) 852GM/855GM";
114 dinfo->chipset = INTEL_85XGM;
115 return 0;
116 }
117 break;
118 case PCI_DEVICE_ID_INTEL_865G:
119 dinfo->name = "Intel(R) 865G";
120 dinfo->chipset = INTEL_865G;
121 dinfo->mobile = 0;
122 dinfo->pll_index = PLLS_I8xx;
123 return 0;
124 case PCI_DEVICE_ID_INTEL_915G:
125 dinfo->name = "Intel(R) 915G";
126 dinfo->chipset = INTEL_915G;
127 dinfo->mobile = 0;
128 dinfo->pll_index = PLLS_I9xx;
129 return 0;
130 case PCI_DEVICE_ID_INTEL_915GM:
131 dinfo->name = "Intel(R) 915GM";
132 dinfo->chipset = INTEL_915GM;
133 dinfo->mobile = 1;
134 dinfo->pll_index = PLLS_I9xx;
135 return 0;
136 case PCI_DEVICE_ID_INTEL_945G:
137 dinfo->name = "Intel(R) 945G";
138 dinfo->chipset = INTEL_945G;
139 dinfo->mobile = 0;
140 dinfo->pll_index = PLLS_I9xx;
141 return 0;
142 case PCI_DEVICE_ID_INTEL_945GM:
143 dinfo->name = "Intel(R) 945GM";
144 dinfo->chipset = INTEL_945GM;
145 dinfo->mobile = 1;
146 dinfo->pll_index = PLLS_I9xx;
147 return 0;
148 default:
149 return 1;
150 }
151 }
152
153 int
154 intelfbhw_get_memory(struct pci_dev *pdev, int *aperture_size,
155 int *stolen_size)
156 {
157 struct pci_dev *bridge_dev;
158 u16 tmp;
159 int stolen_overhead;
160
161 if (!pdev || !aperture_size || !stolen_size)
162 return 1;
163
164 /* Find the bridge device. It is always 0:0.0 */
165 if (!(bridge_dev = pci_find_slot(0, PCI_DEVFN(0, 0)))) {
166 ERR_MSG("cannot find bridge device\n");
167 return 1;
168 }
169
170 /* Get the fb aperture size and "stolen" memory amount. */
171 tmp = 0;
172 pci_read_config_word(bridge_dev, INTEL_GMCH_CTRL, &tmp);
173 switch (pdev->device) {
174 case PCI_DEVICE_ID_INTEL_915G:
175 case PCI_DEVICE_ID_INTEL_915GM:
176 case PCI_DEVICE_ID_INTEL_945G:
177 case PCI_DEVICE_ID_INTEL_945GM:
178 /* 915 and 945 chipsets support a 256MB aperture.
179 Aperture size is determined by inspected the
180 base address of the aperture. */
181 if (pci_resource_start(pdev, 2) & 0x08000000)
182 *aperture_size = MB(128);
183 else
184 *aperture_size = MB(256);
185 break;
186 default:
187 if ((tmp & INTEL_GMCH_MEM_MASK) == INTEL_GMCH_MEM_64M)
188 *aperture_size = MB(64);
189 else
190 *aperture_size = MB(128);
191 break;
192 }
193
194 /* Stolen memory size is reduced by the GTT and the popup.
195 GTT is 1K per MB of aperture size, and popup is 4K. */
196 stolen_overhead = (*aperture_size / MB(1)) + 4;
197 switch(pdev->device) {
198 case PCI_DEVICE_ID_INTEL_830M:
199 case PCI_DEVICE_ID_INTEL_845G:
200 switch (tmp & INTEL_830_GMCH_GMS_MASK) {
201 case INTEL_830_GMCH_GMS_STOLEN_512:
202 *stolen_size = KB(512) - KB(stolen_overhead);
203 return 0;
204 case INTEL_830_GMCH_GMS_STOLEN_1024:
205 *stolen_size = MB(1) - KB(stolen_overhead);
206 return 0;
207 case INTEL_830_GMCH_GMS_STOLEN_8192:
208 *stolen_size = MB(8) - KB(stolen_overhead);
209 return 0;
210 case INTEL_830_GMCH_GMS_LOCAL:
211 ERR_MSG("only local memory found\n");
212 return 1;
213 case INTEL_830_GMCH_GMS_DISABLED:
214 ERR_MSG("video memory is disabled\n");
215 return 1;
216 default:
217 ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
218 tmp & INTEL_830_GMCH_GMS_MASK);
219 return 1;
220 }
221 break;
222 default:
223 switch (tmp & INTEL_855_GMCH_GMS_MASK) {
224 case INTEL_855_GMCH_GMS_STOLEN_1M:
225 *stolen_size = MB(1) - KB(stolen_overhead);
226 return 0;
227 case INTEL_855_GMCH_GMS_STOLEN_4M:
228 *stolen_size = MB(4) - KB(stolen_overhead);
229 return 0;
230 case INTEL_855_GMCH_GMS_STOLEN_8M:
231 *stolen_size = MB(8) - KB(stolen_overhead);
232 return 0;
233 case INTEL_855_GMCH_GMS_STOLEN_16M:
234 *stolen_size = MB(16) - KB(stolen_overhead);
235 return 0;
236 case INTEL_855_GMCH_GMS_STOLEN_32M:
237 *stolen_size = MB(32) - KB(stolen_overhead);
238 return 0;
239 case INTEL_915G_GMCH_GMS_STOLEN_48M:
240 *stolen_size = MB(48) - KB(stolen_overhead);
241 return 0;
242 case INTEL_915G_GMCH_GMS_STOLEN_64M:
243 *stolen_size = MB(64) - KB(stolen_overhead);
244 return 0;
245 case INTEL_855_GMCH_GMS_DISABLED:
246 ERR_MSG("video memory is disabled\n");
247 return 0;
248 default:
249 ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
250 tmp & INTEL_855_GMCH_GMS_MASK);
251 return 1;
252 }
253 }
254 }
255
256 int
257 intelfbhw_check_non_crt(struct intelfb_info *dinfo)
258 {
259 int dvo = 0;
260
261 if (INREG(LVDS) & PORT_ENABLE)
262 dvo |= LVDS_PORT;
263 if (INREG(DVOA) & PORT_ENABLE)
264 dvo |= DVOA_PORT;
265 if (INREG(DVOB) & PORT_ENABLE)
266 dvo |= DVOB_PORT;
267 if (INREG(DVOC) & PORT_ENABLE)
268 dvo |= DVOC_PORT;
269
270 return dvo;
271 }
272
273 const char *
274 intelfbhw_dvo_to_string(int dvo)
275 {
276 if (dvo & DVOA_PORT)
277 return "DVO port A";
278 else if (dvo & DVOB_PORT)
279 return "DVO port B";
280 else if (dvo & DVOC_PORT)
281 return "DVO port C";
282 else if (dvo & LVDS_PORT)
283 return "LVDS port";
284 else
285 return NULL;
286 }
287
288
289 int
290 intelfbhw_validate_mode(struct intelfb_info *dinfo,
291 struct fb_var_screeninfo *var)
292 {
293 int bytes_per_pixel;
294 int tmp;
295
296 #if VERBOSE > 0
297 DBG_MSG("intelfbhw_validate_mode\n");
298 #endif
299
300 bytes_per_pixel = var->bits_per_pixel / 8;
301 if (bytes_per_pixel == 3)
302 bytes_per_pixel = 4;
303
304 /* Check if enough video memory. */
305 tmp = var->yres_virtual * var->xres_virtual * bytes_per_pixel;
306 if (tmp > dinfo->fb.size) {
307 WRN_MSG("Not enough video ram for mode "
308 "(%d KByte vs %d KByte).\n",
309 BtoKB(tmp), BtoKB(dinfo->fb.size));
310 return 1;
311 }
312
313 /* Check if x/y limits are OK. */
314 if (var->xres - 1 > HACTIVE_MASK) {
315 WRN_MSG("X resolution too large (%d vs %d).\n",
316 var->xres, HACTIVE_MASK + 1);
317 return 1;
318 }
319 if (var->yres - 1 > VACTIVE_MASK) {
320 WRN_MSG("Y resolution too large (%d vs %d).\n",
321 var->yres, VACTIVE_MASK + 1);
322 return 1;
323 }
324
325 /* Check for interlaced/doublescan modes. */
326 if (var->vmode & FB_VMODE_INTERLACED) {
327 WRN_MSG("Mode is interlaced.\n");
328 return 1;
329 }
330 if (var->vmode & FB_VMODE_DOUBLE) {
331 WRN_MSG("Mode is double-scan.\n");
332 return 1;
333 }
334
335 /* Check if clock is OK. */
336 tmp = 1000000000 / var->pixclock;
337 if (tmp < MIN_CLOCK) {
338 WRN_MSG("Pixel clock is too low (%d MHz vs %d MHz).\n",
339 (tmp + 500) / 1000, MIN_CLOCK / 1000);
340 return 1;
341 }
342 if (tmp > MAX_CLOCK) {
343 WRN_MSG("Pixel clock is too high (%d MHz vs %d MHz).\n",
344 (tmp + 500) / 1000, MAX_CLOCK / 1000);
345 return 1;
346 }
347
348 return 0;
349 }
350
351 int
352 intelfbhw_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
353 {
354 struct intelfb_info *dinfo = GET_DINFO(info);
355 u32 offset, xoffset, yoffset;
356
357 #if VERBOSE > 0
358 DBG_MSG("intelfbhw_pan_display\n");
359 #endif
360
361 xoffset = ROUND_DOWN_TO(var->xoffset, 8);
362 yoffset = var->yoffset;
363
364 if ((xoffset + var->xres > var->xres_virtual) ||
365 (yoffset + var->yres > var->yres_virtual))
366 return -EINVAL;
367
368 offset = (yoffset * dinfo->pitch) +
369 (xoffset * var->bits_per_pixel) / 8;
370
371 offset += dinfo->fb.offset << 12;
372
373 OUTREG(DSPABASE, offset);
374
375 return 0;
376 }
377
378 /* Blank the screen. */
379 void
380 intelfbhw_do_blank(int blank, struct fb_info *info)
381 {
382 struct intelfb_info *dinfo = GET_DINFO(info);
383 u32 tmp;
384
385 #if VERBOSE > 0
386 DBG_MSG("intelfbhw_do_blank: blank is %d\n", blank);
387 #endif
388
389 /* Turn plane A on or off */
390 tmp = INREG(DSPACNTR);
391 if (blank)
392 tmp &= ~DISPPLANE_PLANE_ENABLE;
393 else
394 tmp |= DISPPLANE_PLANE_ENABLE;
395 OUTREG(DSPACNTR, tmp);
396 /* Flush */
397 tmp = INREG(DSPABASE);
398 OUTREG(DSPABASE, tmp);
399
400 /* Turn off/on the HW cursor */
401 #if VERBOSE > 0
402 DBG_MSG("cursor_on is %d\n", dinfo->cursor_on);
403 #endif
404 if (dinfo->cursor_on) {
405 if (blank) {
406 intelfbhw_cursor_hide(dinfo);
407 } else {
408 intelfbhw_cursor_show(dinfo);
409 }
410 dinfo->cursor_on = 1;
411 }
412 dinfo->cursor_blanked = blank;
413
414 /* Set DPMS level */
415 tmp = INREG(ADPA) & ~ADPA_DPMS_CONTROL_MASK;
416 switch (blank) {
417 case FB_BLANK_UNBLANK:
418 case FB_BLANK_NORMAL:
419 tmp |= ADPA_DPMS_D0;
420 break;
421 case FB_BLANK_VSYNC_SUSPEND:
422 tmp |= ADPA_DPMS_D1;
423 break;
424 case FB_BLANK_HSYNC_SUSPEND:
425 tmp |= ADPA_DPMS_D2;
426 break;
427 case FB_BLANK_POWERDOWN:
428 tmp |= ADPA_DPMS_D3;
429 break;
430 }
431 OUTREG(ADPA, tmp);
432
433 return;
434 }
435
436
437 void
438 intelfbhw_setcolreg(struct intelfb_info *dinfo, unsigned regno,
439 unsigned red, unsigned green, unsigned blue,
440 unsigned transp)
441 {
442 #if VERBOSE > 0
443 DBG_MSG("intelfbhw_setcolreg: %d: (%d, %d, %d)\n",
444 regno, red, green, blue);
445 #endif
446
447 u32 palette_reg = (dinfo->pipe == PIPE_A) ?
448 PALETTE_A : PALETTE_B;
449
450 OUTREG(palette_reg + (regno << 2),
451 (red << PALETTE_8_RED_SHIFT) |
452 (green << PALETTE_8_GREEN_SHIFT) |
453 (blue << PALETTE_8_BLUE_SHIFT));
454 }
455
456
457 int
458 intelfbhw_read_hw_state(struct intelfb_info *dinfo, struct intelfb_hwstate *hw,
459 int flag)
460 {
461 int i;
462
463 #if VERBOSE > 0
464 DBG_MSG("intelfbhw_read_hw_state\n");
465 #endif
466
467 if (!hw || !dinfo)
468 return -1;
469
470 /* Read in as much of the HW state as possible. */
471 hw->vga0_divisor = INREG(VGA0_DIVISOR);
472 hw->vga1_divisor = INREG(VGA1_DIVISOR);
473 hw->vga_pd = INREG(VGAPD);
474 hw->dpll_a = INREG(DPLL_A);
475 hw->dpll_b = INREG(DPLL_B);
476 hw->fpa0 = INREG(FPA0);
477 hw->fpa1 = INREG(FPA1);
478 hw->fpb0 = INREG(FPB0);
479 hw->fpb1 = INREG(FPB1);
480
481 if (flag == 1)
482 return flag;
483
484 #if 0
485 /* This seems to be a problem with the 852GM/855GM */
486 for (i = 0; i < PALETTE_8_ENTRIES; i++) {
487 hw->palette_a[i] = INREG(PALETTE_A + (i << 2));
488 hw->palette_b[i] = INREG(PALETTE_B + (i << 2));
489 }
490 #endif
491
492 if (flag == 2)
493 return flag;
494
495 hw->htotal_a = INREG(HTOTAL_A);
496 hw->hblank_a = INREG(HBLANK_A);
497 hw->hsync_a = INREG(HSYNC_A);
498 hw->vtotal_a = INREG(VTOTAL_A);
499 hw->vblank_a = INREG(VBLANK_A);
500 hw->vsync_a = INREG(VSYNC_A);
501 hw->src_size_a = INREG(SRC_SIZE_A);
502 hw->bclrpat_a = INREG(BCLRPAT_A);
503 hw->htotal_b = INREG(HTOTAL_B);
504 hw->hblank_b = INREG(HBLANK_B);
505 hw->hsync_b = INREG(HSYNC_B);
506 hw->vtotal_b = INREG(VTOTAL_B);
507 hw->vblank_b = INREG(VBLANK_B);
508 hw->vsync_b = INREG(VSYNC_B);
509 hw->src_size_b = INREG(SRC_SIZE_B);
510 hw->bclrpat_b = INREG(BCLRPAT_B);
511
512 if (flag == 3)
513 return flag;
514
515 hw->adpa = INREG(ADPA);
516 hw->dvoa = INREG(DVOA);
517 hw->dvob = INREG(DVOB);
518 hw->dvoc = INREG(DVOC);
519 hw->dvoa_srcdim = INREG(DVOA_SRCDIM);
520 hw->dvob_srcdim = INREG(DVOB_SRCDIM);
521 hw->dvoc_srcdim = INREG(DVOC_SRCDIM);
522 hw->lvds = INREG(LVDS);
523
524 if (flag == 4)
525 return flag;
526
527 hw->pipe_a_conf = INREG(PIPEACONF);
528 hw->pipe_b_conf = INREG(PIPEBCONF);
529 hw->disp_arb = INREG(DISPARB);
530
531 if (flag == 5)
532 return flag;
533
534 hw->cursor_a_control = INREG(CURSOR_A_CONTROL);
535 hw->cursor_b_control = INREG(CURSOR_B_CONTROL);
536 hw->cursor_a_base = INREG(CURSOR_A_BASEADDR);
537 hw->cursor_b_base = INREG(CURSOR_B_BASEADDR);
538
539 if (flag == 6)
540 return flag;
541
542 for (i = 0; i < 4; i++) {
543 hw->cursor_a_palette[i] = INREG(CURSOR_A_PALETTE0 + (i << 2));
544 hw->cursor_b_palette[i] = INREG(CURSOR_B_PALETTE0 + (i << 2));
545 }
546
547 if (flag == 7)
548 return flag;
549
550 hw->cursor_size = INREG(CURSOR_SIZE);
551
552 if (flag == 8)
553 return flag;
554
555 hw->disp_a_ctrl = INREG(DSPACNTR);
556 hw->disp_b_ctrl = INREG(DSPBCNTR);
557 hw->disp_a_base = INREG(DSPABASE);
558 hw->disp_b_base = INREG(DSPBBASE);
559 hw->disp_a_stride = INREG(DSPASTRIDE);
560 hw->disp_b_stride = INREG(DSPBSTRIDE);
561
562 if (flag == 9)
563 return flag;
564
565 hw->vgacntrl = INREG(VGACNTRL);
566
567 if (flag == 10)
568 return flag;
569
570 hw->add_id = INREG(ADD_ID);
571
572 if (flag == 11)
573 return flag;
574
575 for (i = 0; i < 7; i++) {
576 hw->swf0x[i] = INREG(SWF00 + (i << 2));
577 hw->swf1x[i] = INREG(SWF10 + (i << 2));
578 if (i < 3)
579 hw->swf3x[i] = INREG(SWF30 + (i << 2));
580 }
581
582 for (i = 0; i < 8; i++)
583 hw->fence[i] = INREG(FENCE + (i << 2));
584
585 hw->instpm = INREG(INSTPM);
586 hw->mem_mode = INREG(MEM_MODE);
587 hw->fw_blc_0 = INREG(FW_BLC_0);
588 hw->fw_blc_1 = INREG(FW_BLC_1);
589
590 return 0;
591 }
592
593
594 static int calc_vclock3(int index, int m, int n, int p)
595 {
596 if (p == 0 || n == 0)
597 return 0;
598 return plls[index].ref_clk * m / n / p;
599 }
600
601 static int calc_vclock(int index, int m1, int m2, int n, int p1, int p2, int lvds)
602 {
603 struct pll_min_max *pll = &plls[index];
604 u32 m, vco, p;
605
606 m = (5 * (m1 + 2)) + (m2 + 2);
607 n += 2;
608 vco = pll->ref_clk * m / n;
609
610 if (index == PLLS_I8xx) {
611 p = ((p1 + 2) * (1 << (p2 + 1)));
612 } else {
613 p = ((p1) * (p2 ? 5 : 10));
614 }
615 return vco / p;
616 }
617
618 static void
619 intelfbhw_get_p1p2(struct intelfb_info *dinfo, int dpll, int *o_p1, int *o_p2)
620 {
621 int p1, p2;
622
623 if (IS_I9XX(dinfo)) {
624 if (dpll & DPLL_P1_FORCE_DIV2)
625 p1 = 1;
626 else
627 p1 = (dpll >> DPLL_P1_SHIFT) & 0xff;
628
629 p1 = ffs(p1);
630
631 p2 = (dpll >> DPLL_I9XX_P2_SHIFT) & DPLL_P2_MASK;
632 } else {
633 if (dpll & DPLL_P1_FORCE_DIV2)
634 p1 = 0;
635 else
636 p1 = (dpll >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
637 p2 = (dpll >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
638 }
639
640 *o_p1 = p1;
641 *o_p2 = p2;
642 }
643
644
645 void
646 intelfbhw_print_hw_state(struct intelfb_info *dinfo, struct intelfb_hwstate *hw)
647 {
648 #if REGDUMP
649 int i, m1, m2, n, p1, p2;
650 int index = dinfo->pll_index;
651 DBG_MSG("intelfbhw_print_hw_state\n");
652
653 if (!hw || !dinfo)
654 return;
655 /* Read in as much of the HW state as possible. */
656 printk("hw state dump start\n");
657 printk(" VGA0_DIVISOR: 0x%08x\n", hw->vga0_divisor);
658 printk(" VGA1_DIVISOR: 0x%08x\n", hw->vga1_divisor);
659 printk(" VGAPD: 0x%08x\n", hw->vga_pd);
660 n = (hw->vga0_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
661 m1 = (hw->vga0_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
662 m2 = (hw->vga0_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
663
664 intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
665
666 printk(" VGA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
667 m1, m2, n, p1, p2);
668 printk(" VGA0: clock is %d\n",
669 calc_vclock(index, m1, m2, n, p1, p2, 0));
670
671 n = (hw->vga1_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
672 m1 = (hw->vga1_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
673 m2 = (hw->vga1_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
674
675 intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
676 printk(" VGA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
677 m1, m2, n, p1, p2);
678 printk(" VGA1: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2, 0));
679
680 printk(" DPLL_A: 0x%08x\n", hw->dpll_a);
681 printk(" DPLL_B: 0x%08x\n", hw->dpll_b);
682 printk(" FPA0: 0x%08x\n", hw->fpa0);
683 printk(" FPA1: 0x%08x\n", hw->fpa1);
684 printk(" FPB0: 0x%08x\n", hw->fpb0);
685 printk(" FPB1: 0x%08x\n", hw->fpb1);
686
687 n = (hw->fpa0 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
688 m1 = (hw->fpa0 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
689 m2 = (hw->fpa0 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
690
691 intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
692
693 printk(" PLLA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
694 m1, m2, n, p1, p2);
695 printk(" PLLA0: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2, 0));
696
697 n = (hw->fpa1 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
698 m1 = (hw->fpa1 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
699 m2 = (hw->fpa1 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
700
701 intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
702
703 printk(" PLLA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
704 m1, m2, n, p1, p2);
705 printk(" PLLA1: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2, 0));
706
707 #if 0
708 printk(" PALETTE_A:\n");
709 for (i = 0; i < PALETTE_8_ENTRIES)
710 printk(" %3d: 0x%08x\n", i, hw->palette_a[i]);
711 printk(" PALETTE_B:\n");
712 for (i = 0; i < PALETTE_8_ENTRIES)
713 printk(" %3d: 0x%08x\n", i, hw->palette_b[i]);
714 #endif
715
716 printk(" HTOTAL_A: 0x%08x\n", hw->htotal_a);
717 printk(" HBLANK_A: 0x%08x\n", hw->hblank_a);
718 printk(" HSYNC_A: 0x%08x\n", hw->hsync_a);
719 printk(" VTOTAL_A: 0x%08x\n", hw->vtotal_a);
720 printk(" VBLANK_A: 0x%08x\n", hw->vblank_a);
721 printk(" VSYNC_A: 0x%08x\n", hw->vsync_a);
722 printk(" SRC_SIZE_A: 0x%08x\n", hw->src_size_a);
723 printk(" BCLRPAT_A: 0x%08x\n", hw->bclrpat_a);
724 printk(" HTOTAL_B: 0x%08x\n", hw->htotal_b);
725 printk(" HBLANK_B: 0x%08x\n", hw->hblank_b);
726 printk(" HSYNC_B: 0x%08x\n", hw->hsync_b);
727 printk(" VTOTAL_B: 0x%08x\n", hw->vtotal_b);
728 printk(" VBLANK_B: 0x%08x\n", hw->vblank_b);
729 printk(" VSYNC_B: 0x%08x\n", hw->vsync_b);
730 printk(" SRC_SIZE_B: 0x%08x\n", hw->src_size_b);
731 printk(" BCLRPAT_B: 0x%08x\n", hw->bclrpat_b);
732
733 printk(" ADPA: 0x%08x\n", hw->adpa);
734 printk(" DVOA: 0x%08x\n", hw->dvoa);
735 printk(" DVOB: 0x%08x\n", hw->dvob);
736 printk(" DVOC: 0x%08x\n", hw->dvoc);
737 printk(" DVOA_SRCDIM: 0x%08x\n", hw->dvoa_srcdim);
738 printk(" DVOB_SRCDIM: 0x%08x\n", hw->dvob_srcdim);
739 printk(" DVOC_SRCDIM: 0x%08x\n", hw->dvoc_srcdim);
740 printk(" LVDS: 0x%08x\n", hw->lvds);
741
742 printk(" PIPEACONF: 0x%08x\n", hw->pipe_a_conf);
743 printk(" PIPEBCONF: 0x%08x\n", hw->pipe_b_conf);
744 printk(" DISPARB: 0x%08x\n", hw->disp_arb);
745
746 printk(" CURSOR_A_CONTROL: 0x%08x\n", hw->cursor_a_control);
747 printk(" CURSOR_B_CONTROL: 0x%08x\n", hw->cursor_b_control);
748 printk(" CURSOR_A_BASEADDR: 0x%08x\n", hw->cursor_a_base);
749 printk(" CURSOR_B_BASEADDR: 0x%08x\n", hw->cursor_b_base);
750
751 printk(" CURSOR_A_PALETTE: ");
752 for (i = 0; i < 4; i++) {
753 printk("0x%08x", hw->cursor_a_palette[i]);
754 if (i < 3)
755 printk(", ");
756 }
757 printk("\n");
758 printk(" CURSOR_B_PALETTE: ");
759 for (i = 0; i < 4; i++) {
760 printk("0x%08x", hw->cursor_b_palette[i]);
761 if (i < 3)
762 printk(", ");
763 }
764 printk("\n");
765
766 printk(" CURSOR_SIZE: 0x%08x\n", hw->cursor_size);
767
768 printk(" DSPACNTR: 0x%08x\n", hw->disp_a_ctrl);
769 printk(" DSPBCNTR: 0x%08x\n", hw->disp_b_ctrl);
770 printk(" DSPABASE: 0x%08x\n", hw->disp_a_base);
771 printk(" DSPBBASE: 0x%08x\n", hw->disp_b_base);
772 printk(" DSPASTRIDE: 0x%08x\n", hw->disp_a_stride);
773 printk(" DSPBSTRIDE: 0x%08x\n", hw->disp_b_stride);
774
775 printk(" VGACNTRL: 0x%08x\n", hw->vgacntrl);
776 printk(" ADD_ID: 0x%08x\n", hw->add_id);
777
778 for (i = 0; i < 7; i++) {
779 printk(" SWF0%d 0x%08x\n", i,
780 hw->swf0x[i]);
781 }
782 for (i = 0; i < 7; i++) {
783 printk(" SWF1%d 0x%08x\n", i,
784 hw->swf1x[i]);
785 }
786 for (i = 0; i < 3; i++) {
787 printk(" SWF3%d 0x%08x\n", i,
788 hw->swf3x[i]);
789 }
790 for (i = 0; i < 8; i++)
791 printk(" FENCE%d 0x%08x\n", i,
792 hw->fence[i]);
793
794 printk(" INSTPM 0x%08x\n", hw->instpm);
795 printk(" MEM_MODE 0x%08x\n", hw->mem_mode);
796 printk(" FW_BLC_0 0x%08x\n", hw->fw_blc_0);
797 printk(" FW_BLC_1 0x%08x\n", hw->fw_blc_1);
798
799 printk("hw state dump end\n");
800 #endif
801 }
802
803
804
805 /* Split the M parameter into M1 and M2. */
806 static int
807 splitm(int index, unsigned int m, unsigned int *retm1, unsigned int *retm2)
808 {
809 int m1, m2;
810 int testm;
811 struct pll_min_max *pll = &plls[index];
812
813 /* no point optimising too much - brute force m */
814 for (m1 = pll->min_m1; m1 < pll->max_m1 + 1; m1++) {
815 for (m2 = pll->min_m2; m2 < pll->max_m2 + 1; m2++) {
816 testm = (5 * (m1 + 2)) + (m2 + 2);
817 if (testm == m) {
818 *retm1 = (unsigned int)m1;
819 *retm2 = (unsigned int)m2;
820 return 0;
821 }
822 }
823 }
824 return 1;
825 }
826
827 /* Split the P parameter into P1 and P2. */
828 static int
829 splitp(int index, unsigned int p, unsigned int *retp1, unsigned int *retp2)
830 {
831 int p1, p2;
832 struct pll_min_max *pll = &plls[index];
833
834 if (index == PLLS_I9xx) {
835 p2 = (p % 10) ? 1 : 0;
836
837 p1 = p / (p2 ? 5 : 10);
838
839 *retp1 = (unsigned int)p1;
840 *retp2 = (unsigned int)p2;
841 return 0;
842 }
843
844 if (p % 4 == 0)
845 p2 = 1;
846 else
847 p2 = 0;
848 p1 = (p / (1 << (p2 + 1))) - 2;
849 if (p % 4 == 0 && p1 < pll->min_p1) {
850 p2 = 0;
851 p1 = (p / (1 << (p2 + 1))) - 2;
852 }
853 if (p1 < pll->min_p1 || p1 > pll->max_p1 ||
854 (p1 + 2) * (1 << (p2 + 1)) != p) {
855 return 1;
856 } else {
857 *retp1 = (unsigned int)p1;
858 *retp2 = (unsigned int)p2;
859 return 0;
860 }
861 }
862
863 static int
864 calc_pll_params(int index, int clock, u32 *retm1, u32 *retm2, u32 *retn, u32 *retp1,
865 u32 *retp2, u32 *retclock)
866 {
867 u32 m1, m2, n, p1, p2, n1, testm;
868 u32 f_vco, p, p_best = 0, m, f_out = 0;
869 u32 err_max, err_target, err_best = 10000000;
870 u32 n_best = 0, m_best = 0, f_best, f_err;
871 u32 p_min, p_max, p_inc, div_max;
872 struct pll_min_max *pll = &plls[index];
873
874 /* Accept 0.5% difference, but aim for 0.1% */
875 err_max = 5 * clock / 1000;
876 err_target = clock / 1000;
877
878 DBG_MSG("Clock is %d\n", clock);
879
880 div_max = pll->max_vco / clock;
881
882 p_inc = (clock <= pll->p_transition_clk) ? pll->p_inc_lo : pll->p_inc_hi;
883 p_min = p_inc;
884 p_max = ROUND_DOWN_TO(div_max, p_inc);
885 if (p_min < pll->min_p)
886 p_min = pll->min_p;
887 if (p_max > pll->max_p)
888 p_max = pll->max_p;
889
890 DBG_MSG("p range is %d-%d (%d)\n", p_min, p_max, p_inc);
891
892 p = p_min;
893 do {
894 if (splitp(index, p, &p1, &p2)) {
895 WRN_MSG("cannot split p = %d\n", p);
896 p += p_inc;
897 continue;
898 }
899 n = pll->min_n;
900 f_vco = clock * p;
901
902 do {
903 m = ROUND_UP_TO(f_vco * n, pll->ref_clk) / pll->ref_clk;
904 if (m < pll->min_m)
905 m = pll->min_m + 1;
906 if (m > pll->max_m)
907 m = pll->max_m - 1;
908 for (testm = m - 1; testm <= m; testm++) {
909 f_out = calc_vclock3(index, m, n, p);
910 if (splitm(index, testm, &m1, &m2)) {
911 WRN_MSG("cannot split m = %d\n", m);
912 n++;
913 continue;
914 }
915 if (clock > f_out)
916 f_err = clock - f_out;
917 else/* slightly bias the error for bigger clocks */
918 f_err = f_out - clock + 1;
919
920 if (f_err < err_best) {
921 m_best = testm;
922 n_best = n;
923 p_best = p;
924 f_best = f_out;
925 err_best = f_err;
926 }
927 }
928 n++;
929 } while ((n <= pll->max_n) && (f_out >= clock));
930 p += p_inc;
931 } while ((p <= p_max));
932
933 if (!m_best) {
934 WRN_MSG("cannot find parameters for clock %d\n", clock);
935 return 1;
936 }
937 m = m_best;
938 n = n_best;
939 p = p_best;
940 splitm(index, m, &m1, &m2);
941 splitp(index, p, &p1, &p2);
942 n1 = n - 2;
943
944 DBG_MSG("m, n, p: %d (%d,%d), %d (%d), %d (%d,%d), "
945 "f: %d (%d), VCO: %d\n",
946 m, m1, m2, n, n1, p, p1, p2,
947 calc_vclock3(index, m, n, p),
948 calc_vclock(index, m1, m2, n1, p1, p2, 0),
949 calc_vclock3(index, m, n, p) * p);
950 *retm1 = m1;
951 *retm2 = m2;
952 *retn = n1;
953 *retp1 = p1;
954 *retp2 = p2;
955 *retclock = calc_vclock(index, m1, m2, n1, p1, p2, 0);
956
957 return 0;
958 }
959
960 static __inline__ int
961 check_overflow(u32 value, u32 limit, const char *description)
962 {
963 if (value > limit) {
964 WRN_MSG("%s value %d exceeds limit %d\n",
965 description, value, limit);
966 return 1;
967 }
968 return 0;
969 }
970
971 /* It is assumed that hw is filled in with the initial state information. */
972 int
973 intelfbhw_mode_to_hw(struct intelfb_info *dinfo, struct intelfb_hwstate *hw,
974 struct fb_var_screeninfo *var)
975 {
976 int pipe = PIPE_A;
977 u32 *dpll, *fp0, *fp1;
978 u32 m1, m2, n, p1, p2, clock_target, clock;
979 u32 hsync_start, hsync_end, hblank_start, hblank_end, htotal, hactive;
980 u32 vsync_start, vsync_end, vblank_start, vblank_end, vtotal, vactive;
981 u32 vsync_pol, hsync_pol;
982 u32 *vs, *vb, *vt, *hs, *hb, *ht, *ss, *pipe_conf;
983 u32 stride_alignment;
984
985 DBG_MSG("intelfbhw_mode_to_hw\n");
986
987 /* Disable VGA */
988 hw->vgacntrl |= VGA_DISABLE;
989
990 /* Check whether pipe A or pipe B is enabled. */
991 if (hw->pipe_a_conf & PIPECONF_ENABLE)
992 pipe = PIPE_A;
993 else if (hw->pipe_b_conf & PIPECONF_ENABLE)
994 pipe = PIPE_B;
995
996 /* Set which pipe's registers will be set. */
997 if (pipe == PIPE_B) {
998 dpll = &hw->dpll_b;
999 fp0 = &hw->fpb0;
1000 fp1 = &hw->fpb1;
1001 hs = &hw->hsync_b;
1002 hb = &hw->hblank_b;
1003 ht = &hw->htotal_b;
1004 vs = &hw->vsync_b;
1005 vb = &hw->vblank_b;
1006 vt = &hw->vtotal_b;
1007 ss = &hw->src_size_b;
1008 pipe_conf = &hw->pipe_b_conf;
1009 } else {
1010 dpll = &hw->dpll_a;
1011 fp0 = &hw->fpa0;
1012 fp1 = &hw->fpa1;
1013 hs = &hw->hsync_a;
1014 hb = &hw->hblank_a;
1015 ht = &hw->htotal_a;
1016 vs = &hw->vsync_a;
1017 vb = &hw->vblank_a;
1018 vt = &hw->vtotal_a;
1019 ss = &hw->src_size_a;
1020 pipe_conf = &hw->pipe_a_conf;
1021 }
1022
1023 /* Use ADPA register for sync control. */
1024 hw->adpa &= ~ADPA_USE_VGA_HVPOLARITY;
1025
1026 /* sync polarity */
1027 hsync_pol = (var->sync & FB_SYNC_HOR_HIGH_ACT) ?
1028 ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
1029 vsync_pol = (var->sync & FB_SYNC_VERT_HIGH_ACT) ?
1030 ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
1031 hw->adpa &= ~((ADPA_SYNC_ACTIVE_MASK << ADPA_VSYNC_ACTIVE_SHIFT) |
1032 (ADPA_SYNC_ACTIVE_MASK << ADPA_HSYNC_ACTIVE_SHIFT));
1033 hw->adpa |= (hsync_pol << ADPA_HSYNC_ACTIVE_SHIFT) |
1034 (vsync_pol << ADPA_VSYNC_ACTIVE_SHIFT);
1035
1036 /* Connect correct pipe to the analog port DAC */
1037 hw->adpa &= ~(PIPE_MASK << ADPA_PIPE_SELECT_SHIFT);
1038 hw->adpa |= (pipe << ADPA_PIPE_SELECT_SHIFT);
1039
1040 /* Set DPMS state to D0 (on) */
1041 hw->adpa &= ~ADPA_DPMS_CONTROL_MASK;
1042 hw->adpa |= ADPA_DPMS_D0;
1043
1044 hw->adpa |= ADPA_DAC_ENABLE;
1045
1046 *dpll |= (DPLL_VCO_ENABLE | DPLL_VGA_MODE_DISABLE);
1047 *dpll &= ~(DPLL_RATE_SELECT_MASK | DPLL_REFERENCE_SELECT_MASK);
1048 *dpll |= (DPLL_REFERENCE_DEFAULT | DPLL_RATE_SELECT_FP0);
1049
1050 /* Desired clock in kHz */
1051 clock_target = 1000000000 / var->pixclock;
1052
1053 if (calc_pll_params(dinfo->pll_index, clock_target, &m1, &m2,
1054 &n, &p1, &p2, &clock)) {
1055 WRN_MSG("calc_pll_params failed\n");
1056 return 1;
1057 }
1058
1059 /* Check for overflow. */
1060 if (check_overflow(p1, DPLL_P1_MASK, "PLL P1 parameter"))
1061 return 1;
1062 if (check_overflow(p2, DPLL_P2_MASK, "PLL P2 parameter"))
1063 return 1;
1064 if (check_overflow(m1, FP_DIVISOR_MASK, "PLL M1 parameter"))
1065 return 1;
1066 if (check_overflow(m2, FP_DIVISOR_MASK, "PLL M2 parameter"))
1067 return 1;
1068 if (check_overflow(n, FP_DIVISOR_MASK, "PLL N parameter"))
1069 return 1;
1070
1071 *dpll &= ~DPLL_P1_FORCE_DIV2;
1072 *dpll &= ~((DPLL_P2_MASK << DPLL_P2_SHIFT) |
1073 (DPLL_P1_MASK << DPLL_P1_SHIFT));
1074
1075 if (IS_I9XX(dinfo)) {
1076 *dpll |= (p2 << DPLL_I9XX_P2_SHIFT);
1077 *dpll |= (1 << (p1 - 1)) << DPLL_P1_SHIFT;
1078 } else {
1079 *dpll |= (p2 << DPLL_P2_SHIFT) | (p1 << DPLL_P1_SHIFT);
1080 }
1081
1082 *fp0 = (n << FP_N_DIVISOR_SHIFT) |
1083 (m1 << FP_M1_DIVISOR_SHIFT) |
1084 (m2 << FP_M2_DIVISOR_SHIFT);
1085 *fp1 = *fp0;
1086
1087 hw->dvob &= ~PORT_ENABLE;
1088 hw->dvoc &= ~PORT_ENABLE;
1089
1090 /* Use display plane A. */
1091 hw->disp_a_ctrl |= DISPPLANE_PLANE_ENABLE;
1092 hw->disp_a_ctrl &= ~DISPPLANE_GAMMA_ENABLE;
1093 hw->disp_a_ctrl &= ~DISPPLANE_PIXFORMAT_MASK;
1094 switch (intelfb_var_to_depth(var)) {
1095 case 8:
1096 hw->disp_a_ctrl |= DISPPLANE_8BPP | DISPPLANE_GAMMA_ENABLE;
1097 break;
1098 case 15:
1099 hw->disp_a_ctrl |= DISPPLANE_15_16BPP;
1100 break;
1101 case 16:
1102 hw->disp_a_ctrl |= DISPPLANE_16BPP;
1103 break;
1104 case 24:
1105 hw->disp_a_ctrl |= DISPPLANE_32BPP_NO_ALPHA;
1106 break;
1107 }
1108 hw->disp_a_ctrl &= ~(PIPE_MASK << DISPPLANE_SEL_PIPE_SHIFT);
1109 hw->disp_a_ctrl |= (pipe << DISPPLANE_SEL_PIPE_SHIFT);
1110
1111 /* Set CRTC registers. */
1112 hactive = var->xres;
1113 hsync_start = hactive + var->right_margin;
1114 hsync_end = hsync_start + var->hsync_len;
1115 htotal = hsync_end + var->left_margin;
1116 hblank_start = hactive;
1117 hblank_end = htotal;
1118
1119 DBG_MSG("H: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
1120 hactive, hsync_start, hsync_end, htotal, hblank_start,
1121 hblank_end);
1122
1123 vactive = var->yres;
1124 vsync_start = vactive + var->lower_margin;
1125 vsync_end = vsync_start + var->vsync_len;
1126 vtotal = vsync_end + var->upper_margin;
1127 vblank_start = vactive;
1128 vblank_end = vtotal;
1129 vblank_end = vsync_end + 1;
1130
1131 DBG_MSG("V: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
1132 vactive, vsync_start, vsync_end, vtotal, vblank_start,
1133 vblank_end);
1134
1135 /* Adjust for register values, and check for overflow. */
1136 hactive--;
1137 if (check_overflow(hactive, HACTIVE_MASK, "CRTC hactive"))
1138 return 1;
1139 hsync_start--;
1140 if (check_overflow(hsync_start, HSYNCSTART_MASK, "CRTC hsync_start"))
1141 return 1;
1142 hsync_end--;
1143 if (check_overflow(hsync_end, HSYNCEND_MASK, "CRTC hsync_end"))
1144 return 1;
1145 htotal--;
1146 if (check_overflow(htotal, HTOTAL_MASK, "CRTC htotal"))
1147 return 1;
1148 hblank_start--;
1149 if (check_overflow(hblank_start, HBLANKSTART_MASK, "CRTC hblank_start"))
1150 return 1;
1151 hblank_end--;
1152 if (check_overflow(hblank_end, HBLANKEND_MASK, "CRTC hblank_end"))
1153 return 1;
1154
1155 vactive--;
1156 if (check_overflow(vactive, VACTIVE_MASK, "CRTC vactive"))
1157 return 1;
1158 vsync_start--;
1159 if (check_overflow(vsync_start, VSYNCSTART_MASK, "CRTC vsync_start"))
1160 return 1;
1161 vsync_end--;
1162 if (check_overflow(vsync_end, VSYNCEND_MASK, "CRTC vsync_end"))
1163 return 1;
1164 vtotal--;
1165 if (check_overflow(vtotal, VTOTAL_MASK, "CRTC vtotal"))
1166 return 1;
1167 vblank_start--;
1168 if (check_overflow(vblank_start, VBLANKSTART_MASK, "CRTC vblank_start"))
1169 return 1;
1170 vblank_end--;
1171 if (check_overflow(vblank_end, VBLANKEND_MASK, "CRTC vblank_end"))
1172 return 1;
1173
1174 *ht = (htotal << HTOTAL_SHIFT) | (hactive << HACTIVE_SHIFT);
1175 *hb = (hblank_start << HBLANKSTART_SHIFT) |
1176 (hblank_end << HSYNCEND_SHIFT);
1177 *hs = (hsync_start << HSYNCSTART_SHIFT) | (hsync_end << HSYNCEND_SHIFT);
1178
1179 *vt = (vtotal << VTOTAL_SHIFT) | (vactive << VACTIVE_SHIFT);
1180 *vb = (vblank_start << VBLANKSTART_SHIFT) |
1181 (vblank_end << VSYNCEND_SHIFT);
1182 *vs = (vsync_start << VSYNCSTART_SHIFT) | (vsync_end << VSYNCEND_SHIFT);
1183 *ss = (hactive << SRC_SIZE_HORIZ_SHIFT) |
1184 (vactive << SRC_SIZE_VERT_SHIFT);
1185
1186 hw->disp_a_stride = dinfo->pitch;
1187 DBG_MSG("pitch is %d\n", hw->disp_a_stride);
1188
1189 hw->disp_a_base = hw->disp_a_stride * var->yoffset +
1190 var->xoffset * var->bits_per_pixel / 8;
1191
1192 hw->disp_a_base += dinfo->fb.offset << 12;
1193
1194 /* Check stride alignment. */
1195 stride_alignment = IS_I9XX(dinfo) ? STRIDE_ALIGNMENT_I9XX :
1196 STRIDE_ALIGNMENT;
1197 if (hw->disp_a_stride % stride_alignment != 0) {
1198 WRN_MSG("display stride %d has bad alignment %d\n",
1199 hw->disp_a_stride, stride_alignment);
1200 return 1;
1201 }
1202
1203 /* Set the palette to 8-bit mode. */
1204 *pipe_conf &= ~PIPECONF_GAMMA;
1205 return 0;
1206 }
1207
1208 /* Program a (non-VGA) video mode. */
1209 int
1210 intelfbhw_program_mode(struct intelfb_info *dinfo,
1211 const struct intelfb_hwstate *hw, int blank)
1212 {
1213 int pipe = PIPE_A;
1214 u32 tmp;
1215 const u32 *dpll, *fp0, *fp1, *pipe_conf;
1216 const u32 *hs, *ht, *hb, *vs, *vt, *vb, *ss;
1217 u32 dpll_reg, fp0_reg, fp1_reg, pipe_conf_reg;
1218 u32 hsync_reg, htotal_reg, hblank_reg;
1219 u32 vsync_reg, vtotal_reg, vblank_reg;
1220 u32 src_size_reg;
1221 u32 count, tmp_val[3];
1222
1223 /* Assume single pipe, display plane A, analog CRT. */
1224
1225 #if VERBOSE > 0
1226 DBG_MSG("intelfbhw_program_mode\n");
1227 #endif
1228
1229 /* Disable VGA */
1230 tmp = INREG(VGACNTRL);
1231 tmp |= VGA_DISABLE;
1232 OUTREG(VGACNTRL, tmp);
1233
1234 /* Check whether pipe A or pipe B is enabled. */
1235 if (hw->pipe_a_conf & PIPECONF_ENABLE)
1236 pipe = PIPE_A;
1237 else if (hw->pipe_b_conf & PIPECONF_ENABLE)
1238 pipe = PIPE_B;
1239
1240 dinfo->pipe = pipe;
1241
1242 if (pipe == PIPE_B) {
1243 dpll = &hw->dpll_b;
1244 fp0 = &hw->fpb0;
1245 fp1 = &hw->fpb1;
1246 pipe_conf = &hw->pipe_b_conf;
1247 hs = &hw->hsync_b;
1248 hb = &hw->hblank_b;
1249 ht = &hw->htotal_b;
1250 vs = &hw->vsync_b;
1251 vb = &hw->vblank_b;
1252 vt = &hw->vtotal_b;
1253 ss = &hw->src_size_b;
1254 dpll_reg = DPLL_B;
1255 fp0_reg = FPB0;
1256 fp1_reg = FPB1;
1257 pipe_conf_reg = PIPEBCONF;
1258 hsync_reg = HSYNC_B;
1259 htotal_reg = HTOTAL_B;
1260 hblank_reg = HBLANK_B;
1261 vsync_reg = VSYNC_B;
1262 vtotal_reg = VTOTAL_B;
1263 vblank_reg = VBLANK_B;
1264 src_size_reg = SRC_SIZE_B;
1265 } else {
1266 dpll = &hw->dpll_a;
1267 fp0 = &hw->fpa0;
1268 fp1 = &hw->fpa1;
1269 pipe_conf = &hw->pipe_a_conf;
1270 hs = &hw->hsync_a;
1271 hb = &hw->hblank_a;
1272 ht = &hw->htotal_a;
1273 vs = &hw->vsync_a;
1274 vb = &hw->vblank_a;
1275 vt = &hw->vtotal_a;
1276 ss = &hw->src_size_a;
1277 dpll_reg = DPLL_A;
1278 fp0_reg = FPA0;
1279 fp1_reg = FPA1;
1280 pipe_conf_reg = PIPEACONF;
1281 hsync_reg = HSYNC_A;
1282 htotal_reg = HTOTAL_A;
1283 hblank_reg = HBLANK_A;
1284 vsync_reg = VSYNC_A;
1285 vtotal_reg = VTOTAL_A;
1286 vblank_reg = VBLANK_A;
1287 src_size_reg = SRC_SIZE_A;
1288 }
1289
1290 /* turn off pipe */
1291 tmp = INREG(pipe_conf_reg);
1292 tmp &= ~PIPECONF_ENABLE;
1293 OUTREG(pipe_conf_reg, tmp);
1294
1295 count = 0;
1296 do {
1297 tmp_val[count%3] = INREG(0x70000);
1298 if ((tmp_val[0] == tmp_val[1]) && (tmp_val[1]==tmp_val[2]))
1299 break;
1300 count++;
1301 udelay(1);
1302 if (count % 200 == 0) {
1303 tmp = INREG(pipe_conf_reg);
1304 tmp &= ~PIPECONF_ENABLE;
1305 OUTREG(pipe_conf_reg, tmp);
1306 }
1307 } while(count < 2000);
1308
1309 OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
1310
1311 /* Disable planes A and B. */
1312 tmp = INREG(DSPACNTR);
1313 tmp &= ~DISPPLANE_PLANE_ENABLE;
1314 OUTREG(DSPACNTR, tmp);
1315 tmp = INREG(DSPBCNTR);
1316 tmp &= ~DISPPLANE_PLANE_ENABLE;
1317 OUTREG(DSPBCNTR, tmp);
1318
1319 /* Wait for vblank. For now, just wait for a 50Hz cycle (20ms)) */
1320 mdelay(20);
1321
1322 OUTREG(DVOB, INREG(DVOB) & ~PORT_ENABLE);
1323 OUTREG(DVOC, INREG(DVOC) & ~PORT_ENABLE);
1324 OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
1325
1326 /* Disable Sync */
1327 tmp = INREG(ADPA);
1328 tmp &= ~ADPA_DPMS_CONTROL_MASK;
1329 tmp |= ADPA_DPMS_D3;
1330 OUTREG(ADPA, tmp);
1331
1332 /* do some funky magic - xyzzy */
1333 OUTREG(0x61204, 0xabcd0000);
1334
1335 /* turn off PLL */
1336 tmp = INREG(dpll_reg);
1337 dpll_reg &= ~DPLL_VCO_ENABLE;
1338 OUTREG(dpll_reg, tmp);
1339
1340 /* Set PLL parameters */
1341 OUTREG(fp0_reg, *fp0);
1342 OUTREG(fp1_reg, *fp1);
1343
1344 /* Enable PLL */
1345 OUTREG(dpll_reg, *dpll);
1346
1347 /* Set DVOs B/C */
1348 OUTREG(DVOB, hw->dvob);
1349 OUTREG(DVOC, hw->dvoc);
1350
1351 /* undo funky magic */
1352 OUTREG(0x61204, 0x00000000);
1353
1354 /* Set ADPA */
1355 OUTREG(ADPA, INREG(ADPA) | ADPA_DAC_ENABLE);
1356 OUTREG(ADPA, (hw->adpa & ~(ADPA_DPMS_CONTROL_MASK)) | ADPA_DPMS_D3);
1357
1358 /* Set pipe parameters */
1359 OUTREG(hsync_reg, *hs);
1360 OUTREG(hblank_reg, *hb);
1361 OUTREG(htotal_reg, *ht);
1362 OUTREG(vsync_reg, *vs);
1363 OUTREG(vblank_reg, *vb);
1364 OUTREG(vtotal_reg, *vt);
1365 OUTREG(src_size_reg, *ss);
1366
1367 /* Enable pipe */
1368 OUTREG(pipe_conf_reg, *pipe_conf | PIPECONF_ENABLE);
1369
1370 /* Enable sync */
1371 tmp = INREG(ADPA);
1372 tmp &= ~ADPA_DPMS_CONTROL_MASK;
1373 tmp |= ADPA_DPMS_D0;
1374 OUTREG(ADPA, tmp);
1375
1376 /* setup display plane */
1377 if (dinfo->pdev->device == PCI_DEVICE_ID_INTEL_830M) {
1378 /*
1379 * i830M errata: the display plane must be enabled
1380 * to allow writes to the other bits in the plane
1381 * control register.
1382 */
1383 tmp = INREG(DSPACNTR);
1384 if ((tmp & DISPPLANE_PLANE_ENABLE) != DISPPLANE_PLANE_ENABLE) {
1385 tmp |= DISPPLANE_PLANE_ENABLE;
1386 OUTREG(DSPACNTR, tmp);
1387 OUTREG(DSPACNTR,
1388 hw->disp_a_ctrl|DISPPLANE_PLANE_ENABLE);
1389 mdelay(1);
1390 }
1391 }
1392
1393 OUTREG(DSPACNTR, hw->disp_a_ctrl & ~DISPPLANE_PLANE_ENABLE);
1394 OUTREG(DSPASTRIDE, hw->disp_a_stride);
1395 OUTREG(DSPABASE, hw->disp_a_base);
1396
1397 /* Enable plane */
1398 if (!blank) {
1399 tmp = INREG(DSPACNTR);
1400 tmp |= DISPPLANE_PLANE_ENABLE;
1401 OUTREG(DSPACNTR, tmp);
1402 OUTREG(DSPABASE, hw->disp_a_base);
1403 }
1404
1405 return 0;
1406 }
1407
1408 /* forward declarations */
1409 static void refresh_ring(struct intelfb_info *dinfo);
1410 static void reset_state(struct intelfb_info *dinfo);
1411 static void do_flush(struct intelfb_info *dinfo);
1412
1413 static int
1414 wait_ring(struct intelfb_info *dinfo, int n)
1415 {
1416 int i = 0;
1417 unsigned long end;
1418 u32 last_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1419
1420 #if VERBOSE > 0
1421 DBG_MSG("wait_ring: %d\n", n);
1422 #endif
1423
1424 end = jiffies + (HZ * 3);
1425 while (dinfo->ring_space < n) {
1426 dinfo->ring_head = (u8 __iomem *)(INREG(PRI_RING_HEAD) &
1427 RING_HEAD_MASK);
1428 if (dinfo->ring_tail + RING_MIN_FREE <
1429 (u32 __iomem) dinfo->ring_head)
1430 dinfo->ring_space = (u32 __iomem) dinfo->ring_head
1431 - (dinfo->ring_tail + RING_MIN_FREE);
1432 else
1433 dinfo->ring_space = (dinfo->ring.size +
1434 (u32 __iomem) dinfo->ring_head)
1435 - (dinfo->ring_tail + RING_MIN_FREE);
1436 if ((u32 __iomem) dinfo->ring_head != last_head) {
1437 end = jiffies + (HZ * 3);
1438 last_head = (u32 __iomem) dinfo->ring_head;
1439 }
1440 i++;
1441 if (time_before(end, jiffies)) {
1442 if (!i) {
1443 /* Try again */
1444 reset_state(dinfo);
1445 refresh_ring(dinfo);
1446 do_flush(dinfo);
1447 end = jiffies + (HZ * 3);
1448 i = 1;
1449 } else {
1450 WRN_MSG("ring buffer : space: %d wanted %d\n",
1451 dinfo->ring_space, n);
1452 WRN_MSG("lockup - turning off hardware "
1453 "acceleration\n");
1454 dinfo->ring_lockup = 1;
1455 break;
1456 }
1457 }
1458 udelay(1);
1459 }
1460 return i;
1461 }
1462
1463 static void
1464 do_flush(struct intelfb_info *dinfo) {
1465 START_RING(2);
1466 OUT_RING(MI_FLUSH | MI_WRITE_DIRTY_STATE | MI_INVALIDATE_MAP_CACHE);
1467 OUT_RING(MI_NOOP);
1468 ADVANCE_RING();
1469 }
1470
1471 void
1472 intelfbhw_do_sync(struct intelfb_info *dinfo)
1473 {
1474 #if VERBOSE > 0
1475 DBG_MSG("intelfbhw_do_sync\n");
1476 #endif
1477
1478 if (!dinfo->accel)
1479 return;
1480
1481 /*
1482 * Send a flush, then wait until the ring is empty. This is what
1483 * the XFree86 driver does, and actually it doesn't seem a lot worse
1484 * than the recommended method (both have problems).
1485 */
1486 do_flush(dinfo);
1487 wait_ring(dinfo, dinfo->ring.size - RING_MIN_FREE);
1488 dinfo->ring_space = dinfo->ring.size - RING_MIN_FREE;
1489 }
1490
1491 static void
1492 refresh_ring(struct intelfb_info *dinfo)
1493 {
1494 #if VERBOSE > 0
1495 DBG_MSG("refresh_ring\n");
1496 #endif
1497
1498 dinfo->ring_head = (u8 __iomem *) (INREG(PRI_RING_HEAD) &
1499 RING_HEAD_MASK);
1500 dinfo->ring_tail = INREG(PRI_RING_TAIL) & RING_TAIL_MASK;
1501 if (dinfo->ring_tail + RING_MIN_FREE < (u32 __iomem)dinfo->ring_head)
1502 dinfo->ring_space = (u32 __iomem) dinfo->ring_head
1503 - (dinfo->ring_tail + RING_MIN_FREE);
1504 else
1505 dinfo->ring_space = (dinfo->ring.size +
1506 (u32 __iomem) dinfo->ring_head)
1507 - (dinfo->ring_tail + RING_MIN_FREE);
1508 }
1509
1510 static void
1511 reset_state(struct intelfb_info *dinfo)
1512 {
1513 int i;
1514 u32 tmp;
1515
1516 #if VERBOSE > 0
1517 DBG_MSG("reset_state\n");
1518 #endif
1519
1520 for (i = 0; i < FENCE_NUM; i++)
1521 OUTREG(FENCE + (i << 2), 0);
1522
1523 /* Flush the ring buffer if it's enabled. */
1524 tmp = INREG(PRI_RING_LENGTH);
1525 if (tmp & RING_ENABLE) {
1526 #if VERBOSE > 0
1527 DBG_MSG("reset_state: ring was enabled\n");
1528 #endif
1529 refresh_ring(dinfo);
1530 intelfbhw_do_sync(dinfo);
1531 DO_RING_IDLE();
1532 }
1533
1534 OUTREG(PRI_RING_LENGTH, 0);
1535 OUTREG(PRI_RING_HEAD, 0);
1536 OUTREG(PRI_RING_TAIL, 0);
1537 OUTREG(PRI_RING_START, 0);
1538 }
1539
1540 /* Stop the 2D engine, and turn off the ring buffer. */
1541 void
1542 intelfbhw_2d_stop(struct intelfb_info *dinfo)
1543 {
1544 #if VERBOSE > 0
1545 DBG_MSG("intelfbhw_2d_stop: accel: %d, ring_active: %d\n", dinfo->accel,
1546 dinfo->ring_active);
1547 #endif
1548
1549 if (!dinfo->accel)
1550 return;
1551
1552 dinfo->ring_active = 0;
1553 reset_state(dinfo);
1554 }
1555
1556 /*
1557 * Enable the ring buffer, and initialise the 2D engine.
1558 * It is assumed that the graphics engine has been stopped by previously
1559 * calling intelfb_2d_stop().
1560 */
1561 void
1562 intelfbhw_2d_start(struct intelfb_info *dinfo)
1563 {
1564 #if VERBOSE > 0
1565 DBG_MSG("intelfbhw_2d_start: accel: %d, ring_active: %d\n",
1566 dinfo->accel, dinfo->ring_active);
1567 #endif
1568
1569 if (!dinfo->accel)
1570 return;
1571
1572 /* Initialise the primary ring buffer. */
1573 OUTREG(PRI_RING_LENGTH, 0);
1574 OUTREG(PRI_RING_TAIL, 0);
1575 OUTREG(PRI_RING_HEAD, 0);
1576
1577 OUTREG(PRI_RING_START, dinfo->ring.physical & RING_START_MASK);
1578 OUTREG(PRI_RING_LENGTH,
1579 ((dinfo->ring.size - GTT_PAGE_SIZE) & RING_LENGTH_MASK) |
1580 RING_NO_REPORT | RING_ENABLE);
1581 refresh_ring(dinfo);
1582 dinfo->ring_active = 1;
1583 }
1584
1585 /* 2D fillrect (solid fill or invert) */
1586 void
1587 intelfbhw_do_fillrect(struct intelfb_info *dinfo, u32 x, u32 y, u32 w, u32 h,
1588 u32 color, u32 pitch, u32 bpp, u32 rop)
1589 {
1590 u32 br00, br09, br13, br14, br16;
1591
1592 #if VERBOSE > 0
1593 DBG_MSG("intelfbhw_do_fillrect: (%d,%d) %dx%d, c 0x%06x, p %d bpp %d, "
1594 "rop 0x%02x\n", x, y, w, h, color, pitch, bpp, rop);
1595 #endif
1596
1597 br00 = COLOR_BLT_CMD;
1598 br09 = dinfo->fb_start + (y * pitch + x * (bpp / 8));
1599 br13 = (rop << ROP_SHIFT) | pitch;
1600 br14 = (h << HEIGHT_SHIFT) | ((w * (bpp / 8)) << WIDTH_SHIFT);
1601 br16 = color;
1602
1603 switch (bpp) {
1604 case 8:
1605 br13 |= COLOR_DEPTH_8;
1606 break;
1607 case 16:
1608 br13 |= COLOR_DEPTH_16;
1609 break;
1610 case 32:
1611 br13 |= COLOR_DEPTH_32;
1612 br00 |= WRITE_ALPHA | WRITE_RGB;
1613 break;
1614 }
1615
1616 START_RING(6);
1617 OUT_RING(br00);
1618 OUT_RING(br13);
1619 OUT_RING(br14);
1620 OUT_RING(br09);
1621 OUT_RING(br16);
1622 OUT_RING(MI_NOOP);
1623 ADVANCE_RING();
1624
1625 #if VERBOSE > 0
1626 DBG_MSG("ring = 0x%08x, 0x%08x (%d)\n", dinfo->ring_head,
1627 dinfo->ring_tail, dinfo->ring_space);
1628 #endif
1629 }
1630
1631 void
1632 intelfbhw_do_bitblt(struct intelfb_info *dinfo, u32 curx, u32 cury,
1633 u32 dstx, u32 dsty, u32 w, u32 h, u32 pitch, u32 bpp)
1634 {
1635 u32 br00, br09, br11, br12, br13, br22, br23, br26;
1636
1637 #if VERBOSE > 0
1638 DBG_MSG("intelfbhw_do_bitblt: (%d,%d)->(%d,%d) %dx%d, p %d bpp %d\n",
1639 curx, cury, dstx, dsty, w, h, pitch, bpp);
1640 #endif
1641
1642 br00 = XY_SRC_COPY_BLT_CMD;
1643 br09 = dinfo->fb_start;
1644 br11 = (pitch << PITCH_SHIFT);
1645 br12 = dinfo->fb_start;
1646 br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
1647 br22 = (dstx << WIDTH_SHIFT) | (dsty << HEIGHT_SHIFT);
1648 br23 = ((dstx + w) << WIDTH_SHIFT) |
1649 ((dsty + h) << HEIGHT_SHIFT);
1650 br26 = (curx << WIDTH_SHIFT) | (cury << HEIGHT_SHIFT);
1651
1652 switch (bpp) {
1653 case 8:
1654 br13 |= COLOR_DEPTH_8;
1655 break;
1656 case 16:
1657 br13 |= COLOR_DEPTH_16;
1658 break;
1659 case 32:
1660 br13 |= COLOR_DEPTH_32;
1661 br00 |= WRITE_ALPHA | WRITE_RGB;
1662 break;
1663 }
1664
1665 START_RING(8);
1666 OUT_RING(br00);
1667 OUT_RING(br13);
1668 OUT_RING(br22);
1669 OUT_RING(br23);
1670 OUT_RING(br09);
1671 OUT_RING(br26);
1672 OUT_RING(br11);
1673 OUT_RING(br12);
1674 ADVANCE_RING();
1675 }
1676
1677 int
1678 intelfbhw_do_drawglyph(struct intelfb_info *dinfo, u32 fg, u32 bg, u32 w,
1679 u32 h, const u8* cdat, u32 x, u32 y, u32 pitch, u32 bpp)
1680 {
1681 int nbytes, ndwords, pad, tmp;
1682 u32 br00, br09, br13, br18, br19, br22, br23;
1683 int dat, ix, iy, iw;
1684 int i, j;
1685
1686 #if VERBOSE > 0
1687 DBG_MSG("intelfbhw_do_drawglyph: (%d,%d) %dx%d\n", x, y, w, h);
1688 #endif
1689
1690 /* size in bytes of a padded scanline */
1691 nbytes = ROUND_UP_TO(w, 16) / 8;
1692
1693 /* Total bytes of padded scanline data to write out. */
1694 nbytes = nbytes * h;
1695
1696 /*
1697 * Check if the glyph data exceeds the immediate mode limit.
1698 * It would take a large font (1K pixels) to hit this limit.
1699 */
1700 if (nbytes > MAX_MONO_IMM_SIZE)
1701 return 0;
1702
1703 /* Src data is packaged a dword (32-bit) at a time. */
1704 ndwords = ROUND_UP_TO(nbytes, 4) / 4;
1705
1706 /*
1707 * Ring has to be padded to a quad word. But because the command starts
1708 with 7 bytes, pad only if there is an even number of ndwords
1709 */
1710 pad = !(ndwords % 2);
1711
1712 tmp = (XY_MONO_SRC_IMM_BLT_CMD & DW_LENGTH_MASK) + ndwords;
1713 br00 = (XY_MONO_SRC_IMM_BLT_CMD & ~DW_LENGTH_MASK) | tmp;
1714 br09 = dinfo->fb_start;
1715 br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
1716 br18 = bg;
1717 br19 = fg;
1718 br22 = (x << WIDTH_SHIFT) | (y << HEIGHT_SHIFT);
1719 br23 = ((x + w) << WIDTH_SHIFT) | ((y + h) << HEIGHT_SHIFT);
1720
1721 switch (bpp) {
1722 case 8:
1723 br13 |= COLOR_DEPTH_8;
1724 break;
1725 case 16:
1726 br13 |= COLOR_DEPTH_16;
1727 break;
1728 case 32:
1729 br13 |= COLOR_DEPTH_32;
1730 br00 |= WRITE_ALPHA | WRITE_RGB;
1731 break;
1732 }
1733
1734 START_RING(8 + ndwords);
1735 OUT_RING(br00);
1736 OUT_RING(br13);
1737 OUT_RING(br22);
1738 OUT_RING(br23);
1739 OUT_RING(br09);
1740 OUT_RING(br18);
1741 OUT_RING(br19);
1742 ix = iy = 0;
1743 iw = ROUND_UP_TO(w, 8) / 8;
1744 while (ndwords--) {
1745 dat = 0;
1746 for (j = 0; j < 2; ++j) {
1747 for (i = 0; i < 2; ++i) {
1748 if (ix != iw || i == 0)
1749 dat |= cdat[iy*iw + ix++] << (i+j*2)*8;
1750 }
1751 if (ix == iw && iy != (h-1)) {
1752 ix = 0;
1753 ++iy;
1754 }
1755 }
1756 OUT_RING(dat);
1757 }
1758 if (pad)
1759 OUT_RING(MI_NOOP);
1760 ADVANCE_RING();
1761
1762 return 1;
1763 }
1764
1765 /* HW cursor functions. */
1766 void
1767 intelfbhw_cursor_init(struct intelfb_info *dinfo)
1768 {
1769 u32 tmp;
1770
1771 #if VERBOSE > 0
1772 DBG_MSG("intelfbhw_cursor_init\n");
1773 #endif
1774
1775 if (dinfo->mobile || IS_I9XX(dinfo)) {
1776 if (!dinfo->cursor.physical)
1777 return;
1778 tmp = INREG(CURSOR_A_CONTROL);
1779 tmp &= ~(CURSOR_MODE_MASK | CURSOR_MOBILE_GAMMA_ENABLE |
1780 CURSOR_MEM_TYPE_LOCAL |
1781 (1 << CURSOR_PIPE_SELECT_SHIFT));
1782 tmp |= CURSOR_MODE_DISABLE;
1783 OUTREG(CURSOR_A_CONTROL, tmp);
1784 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1785 } else {
1786 tmp = INREG(CURSOR_CONTROL);
1787 tmp &= ~(CURSOR_FORMAT_MASK | CURSOR_GAMMA_ENABLE |
1788 CURSOR_ENABLE | CURSOR_STRIDE_MASK);
1789 tmp = CURSOR_FORMAT_3C;
1790 OUTREG(CURSOR_CONTROL, tmp);
1791 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.offset << 12);
1792 tmp = (64 << CURSOR_SIZE_H_SHIFT) |
1793 (64 << CURSOR_SIZE_V_SHIFT);
1794 OUTREG(CURSOR_SIZE, tmp);
1795 }
1796 }
1797
1798 void
1799 intelfbhw_cursor_hide(struct intelfb_info *dinfo)
1800 {
1801 u32 tmp;
1802
1803 #if VERBOSE > 0
1804 DBG_MSG("intelfbhw_cursor_hide\n");
1805 #endif
1806
1807 dinfo->cursor_on = 0;
1808 if (dinfo->mobile || IS_I9XX(dinfo)) {
1809 if (!dinfo->cursor.physical)
1810 return;
1811 tmp = INREG(CURSOR_A_CONTROL);
1812 tmp &= ~CURSOR_MODE_MASK;
1813 tmp |= CURSOR_MODE_DISABLE;
1814 OUTREG(CURSOR_A_CONTROL, tmp);
1815 /* Flush changes */
1816 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1817 } else {
1818 tmp = INREG(CURSOR_CONTROL);
1819 tmp &= ~CURSOR_ENABLE;
1820 OUTREG(CURSOR_CONTROL, tmp);
1821 }
1822 }
1823
1824 void
1825 intelfbhw_cursor_show(struct intelfb_info *dinfo)
1826 {
1827 u32 tmp;
1828
1829 #if VERBOSE > 0
1830 DBG_MSG("intelfbhw_cursor_show\n");
1831 #endif
1832
1833 dinfo->cursor_on = 1;
1834
1835 if (dinfo->cursor_blanked)
1836 return;
1837
1838 if (dinfo->mobile || IS_I9XX(dinfo)) {
1839 if (!dinfo->cursor.physical)
1840 return;
1841 tmp = INREG(CURSOR_A_CONTROL);
1842 tmp &= ~CURSOR_MODE_MASK;
1843 tmp |= CURSOR_MODE_64_4C_AX;
1844 OUTREG(CURSOR_A_CONTROL, tmp);
1845 /* Flush changes */
1846 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1847 } else {
1848 tmp = INREG(CURSOR_CONTROL);
1849 tmp |= CURSOR_ENABLE;
1850 OUTREG(CURSOR_CONTROL, tmp);
1851 }
1852 }
1853
1854 void
1855 intelfbhw_cursor_setpos(struct intelfb_info *dinfo, int x, int y)
1856 {
1857 u32 tmp;
1858
1859 #if VERBOSE > 0
1860 DBG_MSG("intelfbhw_cursor_setpos: (%d, %d)\n", x, y);
1861 #endif
1862
1863 /*
1864 * Sets the position. The coordinates are assumed to already
1865 * have any offset adjusted. Assume that the cursor is never
1866 * completely off-screen, and that x, y are always >= 0.
1867 */
1868
1869 tmp = ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT) |
1870 ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
1871 OUTREG(CURSOR_A_POSITION, tmp);
1872
1873 if (IS_I9XX(dinfo)) {
1874 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1875 }
1876 }
1877
1878 void
1879 intelfbhw_cursor_setcolor(struct intelfb_info *dinfo, u32 bg, u32 fg)
1880 {
1881 #if VERBOSE > 0
1882 DBG_MSG("intelfbhw_cursor_setcolor\n");
1883 #endif
1884
1885 OUTREG(CURSOR_A_PALETTE0, bg & CURSOR_PALETTE_MASK);
1886 OUTREG(CURSOR_A_PALETTE1, fg & CURSOR_PALETTE_MASK);
1887 OUTREG(CURSOR_A_PALETTE2, fg & CURSOR_PALETTE_MASK);
1888 OUTREG(CURSOR_A_PALETTE3, bg & CURSOR_PALETTE_MASK);
1889 }
1890
1891 void
1892 intelfbhw_cursor_load(struct intelfb_info *dinfo, int width, int height,
1893 u8 *data)
1894 {
1895 u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
1896 int i, j, w = width / 8;
1897 int mod = width % 8, t_mask, d_mask;
1898
1899 #if VERBOSE > 0
1900 DBG_MSG("intelfbhw_cursor_load\n");
1901 #endif
1902
1903 if (!dinfo->cursor.virtual)
1904 return;
1905
1906 t_mask = 0xff >> mod;
1907 d_mask = ~(0xff >> mod);
1908 for (i = height; i--; ) {
1909 for (j = 0; j < w; j++) {
1910 writeb(0x00, addr + j);
1911 writeb(*(data++), addr + j+8);
1912 }
1913 if (mod) {
1914 writeb(t_mask, addr + j);
1915 writeb(*(data++) & d_mask, addr + j+8);
1916 }
1917 addr += 16;
1918 }
1919 }
1920
1921 void
1922 intelfbhw_cursor_reset(struct intelfb_info *dinfo) {
1923 u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
1924 int i, j;
1925
1926 #if VERBOSE > 0
1927 DBG_MSG("intelfbhw_cursor_reset\n");
1928 #endif
1929
1930 if (!dinfo->cursor.virtual)
1931 return;
1932
1933 for (i = 64; i--; ) {
1934 for (j = 0; j < 8; j++) {
1935 writeb(0xff, addr + j+0);
1936 writeb(0x00, addr + j+8);
1937 }
1938 addr += 16;
1939 }
1940 }