4 * Linux framebuffer driver for Intel(R) 865G integrated graphics chips.
6 * Copyright © 2002, 2003 David Dawes <dawes@xfree86.org>
9 * This driver consists of two parts. The first part (intelfbdrv.c) provides
10 * the basic fbdev interfaces, is derived in part from the radeonfb and
11 * vesafb drivers, and is covered by the GPL. The second part (intelfbhw.c)
12 * provides the code to program the hardware. Most of it is derived from
13 * the i810/i830 XFree86 driver. The HW-specific code is covered here
14 * under a dual license (GPL and MIT/XFree86 license).
20 /* $DHD: intelfb/intelfbhw.c,v 1.9 2003/06/27 15:06:25 dawes Exp $ */
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/errno.h>
25 #include <linux/string.h>
27 #include <linux/slab.h>
28 #include <linux/delay.h>
30 #include <linux/ioport.h>
31 #include <linux/init.h>
32 #include <linux/pci.h>
33 #include <linux/vmalloc.h>
34 #include <linux/pagemap.h>
35 #include <linux/interrupt.h>
40 #include "intelfbhw.h"
43 int min_m
, max_m
, min_m1
, max_m1
;
44 int min_m2
, max_m2
, min_n
, max_n
;
45 int min_p
, max_p
, min_p1
, max_p1
;
46 int min_vco
, max_vco
, p_transition_clk
, ref_clk
;
47 int p_inc_lo
, p_inc_hi
;
54 static struct pll_min_max plls
[PLLS_MAX
] = {
58 930000, 1400000, 165000, 48000,
64 1400000, 2800000, 200000, 96000,
69 intelfbhw_get_chipset(struct pci_dev
*pdev
, struct intelfb_info
*dinfo
)
75 switch (pdev
->device
) {
76 case PCI_DEVICE_ID_INTEL_830M
:
77 dinfo
->name
= "Intel(R) 830M";
78 dinfo
->chipset
= INTEL_830M
;
80 dinfo
->pll_index
= PLLS_I8xx
;
82 case PCI_DEVICE_ID_INTEL_845G
:
83 dinfo
->name
= "Intel(R) 845G";
84 dinfo
->chipset
= INTEL_845G
;
86 dinfo
->pll_index
= PLLS_I8xx
;
88 case PCI_DEVICE_ID_INTEL_85XGM
:
91 dinfo
->pll_index
= PLLS_I8xx
;
92 pci_read_config_dword(pdev
, INTEL_85X_CAPID
, &tmp
);
93 switch ((tmp
>> INTEL_85X_VARIANT_SHIFT
) &
94 INTEL_85X_VARIANT_MASK
) {
95 case INTEL_VAR_855GME
:
96 dinfo
->name
= "Intel(R) 855GME";
97 dinfo
->chipset
= INTEL_855GME
;
100 dinfo
->name
= "Intel(R) 855GM";
101 dinfo
->chipset
= INTEL_855GM
;
103 case INTEL_VAR_852GME
:
104 dinfo
->name
= "Intel(R) 852GME";
105 dinfo
->chipset
= INTEL_852GME
;
107 case INTEL_VAR_852GM
:
108 dinfo
->name
= "Intel(R) 852GM";
109 dinfo
->chipset
= INTEL_852GM
;
112 dinfo
->name
= "Intel(R) 852GM/855GM";
113 dinfo
->chipset
= INTEL_85XGM
;
117 case PCI_DEVICE_ID_INTEL_865G
:
118 dinfo
->name
= "Intel(R) 865G";
119 dinfo
->chipset
= INTEL_865G
;
121 dinfo
->pll_index
= PLLS_I8xx
;
123 case PCI_DEVICE_ID_INTEL_915G
:
124 dinfo
->name
= "Intel(R) 915G";
125 dinfo
->chipset
= INTEL_915G
;
127 dinfo
->pll_index
= PLLS_I9xx
;
129 case PCI_DEVICE_ID_INTEL_915GM
:
130 dinfo
->name
= "Intel(R) 915GM";
131 dinfo
->chipset
= INTEL_915GM
;
133 dinfo
->pll_index
= PLLS_I9xx
;
135 case PCI_DEVICE_ID_INTEL_945G
:
136 dinfo
->name
= "Intel(R) 945G";
137 dinfo
->chipset
= INTEL_945G
;
139 dinfo
->pll_index
= PLLS_I9xx
;
141 case PCI_DEVICE_ID_INTEL_945GM
:
142 dinfo
->name
= "Intel(R) 945GM";
143 dinfo
->chipset
= INTEL_945GM
;
145 dinfo
->pll_index
= PLLS_I9xx
;
153 intelfbhw_get_memory(struct pci_dev
*pdev
, int *aperture_size
,
156 struct pci_dev
*bridge_dev
;
160 if (!pdev
|| !aperture_size
|| !stolen_size
)
163 /* Find the bridge device. It is always 0:0.0 */
164 if (!(bridge_dev
= pci_find_slot(0, PCI_DEVFN(0, 0)))) {
165 ERR_MSG("cannot find bridge device\n");
169 /* Get the fb aperture size and "stolen" memory amount. */
171 pci_read_config_word(bridge_dev
, INTEL_GMCH_CTRL
, &tmp
);
172 switch (pdev
->device
) {
173 case PCI_DEVICE_ID_INTEL_915G
:
174 case PCI_DEVICE_ID_INTEL_915GM
:
175 case PCI_DEVICE_ID_INTEL_945G
:
176 case PCI_DEVICE_ID_INTEL_945GM
:
177 /* 915 and 945 chipsets support a 256MB aperture.
178 Aperture size is determined by inspected the
179 base address of the aperture. */
180 if (pci_resource_start(pdev
, 2) & 0x08000000)
181 *aperture_size
= MB(128);
183 *aperture_size
= MB(256);
186 if ((tmp
& INTEL_GMCH_MEM_MASK
) == INTEL_GMCH_MEM_64M
)
187 *aperture_size
= MB(64);
189 *aperture_size
= MB(128);
193 /* Stolen memory size is reduced by the GTT and the popup.
194 GTT is 1K per MB of aperture size, and popup is 4K. */
195 stolen_overhead
= (*aperture_size
/ MB(1)) + 4;
196 switch(pdev
->device
) {
197 case PCI_DEVICE_ID_INTEL_830M
:
198 case PCI_DEVICE_ID_INTEL_845G
:
199 switch (tmp
& INTEL_830_GMCH_GMS_MASK
) {
200 case INTEL_830_GMCH_GMS_STOLEN_512
:
201 *stolen_size
= KB(512) - KB(stolen_overhead
);
203 case INTEL_830_GMCH_GMS_STOLEN_1024
:
204 *stolen_size
= MB(1) - KB(stolen_overhead
);
206 case INTEL_830_GMCH_GMS_STOLEN_8192
:
207 *stolen_size
= MB(8) - KB(stolen_overhead
);
209 case INTEL_830_GMCH_GMS_LOCAL
:
210 ERR_MSG("only local memory found\n");
212 case INTEL_830_GMCH_GMS_DISABLED
:
213 ERR_MSG("video memory is disabled\n");
216 ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
217 tmp
& INTEL_830_GMCH_GMS_MASK
);
222 switch (tmp
& INTEL_855_GMCH_GMS_MASK
) {
223 case INTEL_855_GMCH_GMS_STOLEN_1M
:
224 *stolen_size
= MB(1) - KB(stolen_overhead
);
226 case INTEL_855_GMCH_GMS_STOLEN_4M
:
227 *stolen_size
= MB(4) - KB(stolen_overhead
);
229 case INTEL_855_GMCH_GMS_STOLEN_8M
:
230 *stolen_size
= MB(8) - KB(stolen_overhead
);
232 case INTEL_855_GMCH_GMS_STOLEN_16M
:
233 *stolen_size
= MB(16) - KB(stolen_overhead
);
235 case INTEL_855_GMCH_GMS_STOLEN_32M
:
236 *stolen_size
= MB(32) - KB(stolen_overhead
);
238 case INTEL_915G_GMCH_GMS_STOLEN_48M
:
239 *stolen_size
= MB(48) - KB(stolen_overhead
);
241 case INTEL_915G_GMCH_GMS_STOLEN_64M
:
242 *stolen_size
= MB(64) - KB(stolen_overhead
);
244 case INTEL_855_GMCH_GMS_DISABLED
:
245 ERR_MSG("video memory is disabled\n");
248 ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
249 tmp
& INTEL_855_GMCH_GMS_MASK
);
256 intelfbhw_check_non_crt(struct intelfb_info
*dinfo
)
260 if (INREG(LVDS
) & PORT_ENABLE
)
262 if (INREG(DVOA
) & PORT_ENABLE
)
264 if (INREG(DVOB
) & PORT_ENABLE
)
266 if (INREG(DVOC
) & PORT_ENABLE
)
273 intelfbhw_dvo_to_string(int dvo
)
277 else if (dvo
& DVOB_PORT
)
279 else if (dvo
& DVOC_PORT
)
281 else if (dvo
& LVDS_PORT
)
289 intelfbhw_validate_mode(struct intelfb_info
*dinfo
,
290 struct fb_var_screeninfo
*var
)
296 DBG_MSG("intelfbhw_validate_mode\n");
299 bytes_per_pixel
= var
->bits_per_pixel
/ 8;
300 if (bytes_per_pixel
== 3)
303 /* Check if enough video memory. */
304 tmp
= var
->yres_virtual
* var
->xres_virtual
* bytes_per_pixel
;
305 if (tmp
> dinfo
->fb
.size
) {
306 WRN_MSG("Not enough video ram for mode "
307 "(%d KByte vs %d KByte).\n",
308 BtoKB(tmp
), BtoKB(dinfo
->fb
.size
));
312 /* Check if x/y limits are OK. */
313 if (var
->xres
- 1 > HACTIVE_MASK
) {
314 WRN_MSG("X resolution too large (%d vs %d).\n",
315 var
->xres
, HACTIVE_MASK
+ 1);
318 if (var
->yres
- 1 > VACTIVE_MASK
) {
319 WRN_MSG("Y resolution too large (%d vs %d).\n",
320 var
->yres
, VACTIVE_MASK
+ 1);
324 /* Check for interlaced/doublescan modes. */
325 if (var
->vmode
& FB_VMODE_INTERLACED
) {
326 WRN_MSG("Mode is interlaced.\n");
329 if (var
->vmode
& FB_VMODE_DOUBLE
) {
330 WRN_MSG("Mode is double-scan.\n");
334 /* Check if clock is OK. */
335 tmp
= 1000000000 / var
->pixclock
;
336 if (tmp
< MIN_CLOCK
) {
337 WRN_MSG("Pixel clock is too low (%d MHz vs %d MHz).\n",
338 (tmp
+ 500) / 1000, MIN_CLOCK
/ 1000);
341 if (tmp
> MAX_CLOCK
) {
342 WRN_MSG("Pixel clock is too high (%d MHz vs %d MHz).\n",
343 (tmp
+ 500) / 1000, MAX_CLOCK
/ 1000);
351 intelfbhw_pan_display(struct fb_var_screeninfo
*var
, struct fb_info
*info
)
353 struct intelfb_info
*dinfo
= GET_DINFO(info
);
354 u32 offset
, xoffset
, yoffset
;
357 DBG_MSG("intelfbhw_pan_display\n");
360 xoffset
= ROUND_DOWN_TO(var
->xoffset
, 8);
361 yoffset
= var
->yoffset
;
363 if ((xoffset
+ var
->xres
> var
->xres_virtual
) ||
364 (yoffset
+ var
->yres
> var
->yres_virtual
))
367 offset
= (yoffset
* dinfo
->pitch
) +
368 (xoffset
* var
->bits_per_pixel
) / 8;
370 offset
+= dinfo
->fb
.offset
<< 12;
372 dinfo
->vsync
.pan_offset
= offset
;
373 if ((var
->activate
& FB_ACTIVATE_VBL
) && !intelfbhw_enable_irq(dinfo
, 0)) {
374 dinfo
->vsync
.pan_display
= 1;
376 dinfo
->vsync
.pan_display
= 0;
377 OUTREG(DSPABASE
, offset
);
383 /* Blank the screen. */
385 intelfbhw_do_blank(int blank
, struct fb_info
*info
)
387 struct intelfb_info
*dinfo
= GET_DINFO(info
);
391 DBG_MSG("intelfbhw_do_blank: blank is %d\n", blank
);
394 /* Turn plane A on or off */
395 tmp
= INREG(DSPACNTR
);
397 tmp
&= ~DISPPLANE_PLANE_ENABLE
;
399 tmp
|= DISPPLANE_PLANE_ENABLE
;
400 OUTREG(DSPACNTR
, tmp
);
402 tmp
= INREG(DSPABASE
);
403 OUTREG(DSPABASE
, tmp
);
405 /* Turn off/on the HW cursor */
407 DBG_MSG("cursor_on is %d\n", dinfo
->cursor_on
);
409 if (dinfo
->cursor_on
) {
411 intelfbhw_cursor_hide(dinfo
);
413 intelfbhw_cursor_show(dinfo
);
415 dinfo
->cursor_on
= 1;
417 dinfo
->cursor_blanked
= blank
;
420 tmp
= INREG(ADPA
) & ~ADPA_DPMS_CONTROL_MASK
;
422 case FB_BLANK_UNBLANK
:
423 case FB_BLANK_NORMAL
:
426 case FB_BLANK_VSYNC_SUSPEND
:
429 case FB_BLANK_HSYNC_SUSPEND
:
432 case FB_BLANK_POWERDOWN
:
443 intelfbhw_setcolreg(struct intelfb_info
*dinfo
, unsigned regno
,
444 unsigned red
, unsigned green
, unsigned blue
,
448 DBG_MSG("intelfbhw_setcolreg: %d: (%d, %d, %d)\n",
449 regno
, red
, green
, blue
);
452 u32 palette_reg
= (dinfo
->pipe
== PIPE_A
) ?
453 PALETTE_A
: PALETTE_B
;
455 OUTREG(palette_reg
+ (regno
<< 2),
456 (red
<< PALETTE_8_RED_SHIFT
) |
457 (green
<< PALETTE_8_GREEN_SHIFT
) |
458 (blue
<< PALETTE_8_BLUE_SHIFT
));
463 intelfbhw_read_hw_state(struct intelfb_info
*dinfo
, struct intelfb_hwstate
*hw
,
469 DBG_MSG("intelfbhw_read_hw_state\n");
475 /* Read in as much of the HW state as possible. */
476 hw
->vga0_divisor
= INREG(VGA0_DIVISOR
);
477 hw
->vga1_divisor
= INREG(VGA1_DIVISOR
);
478 hw
->vga_pd
= INREG(VGAPD
);
479 hw
->dpll_a
= INREG(DPLL_A
);
480 hw
->dpll_b
= INREG(DPLL_B
);
481 hw
->fpa0
= INREG(FPA0
);
482 hw
->fpa1
= INREG(FPA1
);
483 hw
->fpb0
= INREG(FPB0
);
484 hw
->fpb1
= INREG(FPB1
);
490 /* This seems to be a problem with the 852GM/855GM */
491 for (i
= 0; i
< PALETTE_8_ENTRIES
; i
++) {
492 hw
->palette_a
[i
] = INREG(PALETTE_A
+ (i
<< 2));
493 hw
->palette_b
[i
] = INREG(PALETTE_B
+ (i
<< 2));
500 hw
->htotal_a
= INREG(HTOTAL_A
);
501 hw
->hblank_a
= INREG(HBLANK_A
);
502 hw
->hsync_a
= INREG(HSYNC_A
);
503 hw
->vtotal_a
= INREG(VTOTAL_A
);
504 hw
->vblank_a
= INREG(VBLANK_A
);
505 hw
->vsync_a
= INREG(VSYNC_A
);
506 hw
->src_size_a
= INREG(SRC_SIZE_A
);
507 hw
->bclrpat_a
= INREG(BCLRPAT_A
);
508 hw
->htotal_b
= INREG(HTOTAL_B
);
509 hw
->hblank_b
= INREG(HBLANK_B
);
510 hw
->hsync_b
= INREG(HSYNC_B
);
511 hw
->vtotal_b
= INREG(VTOTAL_B
);
512 hw
->vblank_b
= INREG(VBLANK_B
);
513 hw
->vsync_b
= INREG(VSYNC_B
);
514 hw
->src_size_b
= INREG(SRC_SIZE_B
);
515 hw
->bclrpat_b
= INREG(BCLRPAT_B
);
520 hw
->adpa
= INREG(ADPA
);
521 hw
->dvoa
= INREG(DVOA
);
522 hw
->dvob
= INREG(DVOB
);
523 hw
->dvoc
= INREG(DVOC
);
524 hw
->dvoa_srcdim
= INREG(DVOA_SRCDIM
);
525 hw
->dvob_srcdim
= INREG(DVOB_SRCDIM
);
526 hw
->dvoc_srcdim
= INREG(DVOC_SRCDIM
);
527 hw
->lvds
= INREG(LVDS
);
532 hw
->pipe_a_conf
= INREG(PIPEACONF
);
533 hw
->pipe_b_conf
= INREG(PIPEBCONF
);
534 hw
->disp_arb
= INREG(DISPARB
);
539 hw
->cursor_a_control
= INREG(CURSOR_A_CONTROL
);
540 hw
->cursor_b_control
= INREG(CURSOR_B_CONTROL
);
541 hw
->cursor_a_base
= INREG(CURSOR_A_BASEADDR
);
542 hw
->cursor_b_base
= INREG(CURSOR_B_BASEADDR
);
547 for (i
= 0; i
< 4; i
++) {
548 hw
->cursor_a_palette
[i
] = INREG(CURSOR_A_PALETTE0
+ (i
<< 2));
549 hw
->cursor_b_palette
[i
] = INREG(CURSOR_B_PALETTE0
+ (i
<< 2));
555 hw
->cursor_size
= INREG(CURSOR_SIZE
);
560 hw
->disp_a_ctrl
= INREG(DSPACNTR
);
561 hw
->disp_b_ctrl
= INREG(DSPBCNTR
);
562 hw
->disp_a_base
= INREG(DSPABASE
);
563 hw
->disp_b_base
= INREG(DSPBBASE
);
564 hw
->disp_a_stride
= INREG(DSPASTRIDE
);
565 hw
->disp_b_stride
= INREG(DSPBSTRIDE
);
570 hw
->vgacntrl
= INREG(VGACNTRL
);
575 hw
->add_id
= INREG(ADD_ID
);
580 for (i
= 0; i
< 7; i
++) {
581 hw
->swf0x
[i
] = INREG(SWF00
+ (i
<< 2));
582 hw
->swf1x
[i
] = INREG(SWF10
+ (i
<< 2));
584 hw
->swf3x
[i
] = INREG(SWF30
+ (i
<< 2));
587 for (i
= 0; i
< 8; i
++)
588 hw
->fence
[i
] = INREG(FENCE
+ (i
<< 2));
590 hw
->instpm
= INREG(INSTPM
);
591 hw
->mem_mode
= INREG(MEM_MODE
);
592 hw
->fw_blc_0
= INREG(FW_BLC_0
);
593 hw
->fw_blc_1
= INREG(FW_BLC_1
);
595 hw
->hwstam
= INREG16(HWSTAM
);
596 hw
->ier
= INREG16(IER
);
597 hw
->iir
= INREG16(IIR
);
598 hw
->imr
= INREG16(IMR
);
604 static int calc_vclock3(int index
, int m
, int n
, int p
)
606 if (p
== 0 || n
== 0)
608 return plls
[index
].ref_clk
* m
/ n
/ p
;
611 static int calc_vclock(int index
, int m1
, int m2
, int n
, int p1
, int p2
, int lvds
)
613 struct pll_min_max
*pll
= &plls
[index
];
616 m
= (5 * (m1
+ 2)) + (m2
+ 2);
618 vco
= pll
->ref_clk
* m
/ n
;
620 if (index
== PLLS_I8xx
) {
621 p
= ((p1
+ 2) * (1 << (p2
+ 1)));
623 p
= ((p1
) * (p2
? 5 : 10));
630 intelfbhw_get_p1p2(struct intelfb_info
*dinfo
, int dpll
, int *o_p1
, int *o_p2
)
634 if (IS_I9XX(dinfo
)) {
635 if (dpll
& DPLL_P1_FORCE_DIV2
)
638 p1
= (dpll
>> DPLL_P1_SHIFT
) & 0xff;
642 p2
= (dpll
>> DPLL_I9XX_P2_SHIFT
) & DPLL_P2_MASK
;
644 if (dpll
& DPLL_P1_FORCE_DIV2
)
647 p1
= (dpll
>> DPLL_P1_SHIFT
) & DPLL_P1_MASK
;
648 p2
= (dpll
>> DPLL_P2_SHIFT
) & DPLL_P2_MASK
;
658 intelfbhw_print_hw_state(struct intelfb_info
*dinfo
, struct intelfb_hwstate
*hw
)
661 int i
, m1
, m2
, n
, p1
, p2
;
662 int index
= dinfo
->pll_index
;
663 DBG_MSG("intelfbhw_print_hw_state\n");
667 /* Read in as much of the HW state as possible. */
668 printk("hw state dump start\n");
669 printk(" VGA0_DIVISOR: 0x%08x\n", hw
->vga0_divisor
);
670 printk(" VGA1_DIVISOR: 0x%08x\n", hw
->vga1_divisor
);
671 printk(" VGAPD: 0x%08x\n", hw
->vga_pd
);
672 n
= (hw
->vga0_divisor
>> FP_N_DIVISOR_SHIFT
) & FP_DIVISOR_MASK
;
673 m1
= (hw
->vga0_divisor
>> FP_M1_DIVISOR_SHIFT
) & FP_DIVISOR_MASK
;
674 m2
= (hw
->vga0_divisor
>> FP_M2_DIVISOR_SHIFT
) & FP_DIVISOR_MASK
;
676 intelfbhw_get_p1p2(dinfo
, hw
->vga_pd
, &p1
, &p2
);
678 printk(" VGA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
680 printk(" VGA0: clock is %d\n",
681 calc_vclock(index
, m1
, m2
, n
, p1
, p2
, 0));
683 n
= (hw
->vga1_divisor
>> FP_N_DIVISOR_SHIFT
) & FP_DIVISOR_MASK
;
684 m1
= (hw
->vga1_divisor
>> FP_M1_DIVISOR_SHIFT
) & FP_DIVISOR_MASK
;
685 m2
= (hw
->vga1_divisor
>> FP_M2_DIVISOR_SHIFT
) & FP_DIVISOR_MASK
;
687 intelfbhw_get_p1p2(dinfo
, hw
->vga_pd
, &p1
, &p2
);
688 printk(" VGA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
690 printk(" VGA1: clock is %d\n", calc_vclock(index
, m1
, m2
, n
, p1
, p2
, 0));
692 printk(" DPLL_A: 0x%08x\n", hw
->dpll_a
);
693 printk(" DPLL_B: 0x%08x\n", hw
->dpll_b
);
694 printk(" FPA0: 0x%08x\n", hw
->fpa0
);
695 printk(" FPA1: 0x%08x\n", hw
->fpa1
);
696 printk(" FPB0: 0x%08x\n", hw
->fpb0
);
697 printk(" FPB1: 0x%08x\n", hw
->fpb1
);
699 n
= (hw
->fpa0
>> FP_N_DIVISOR_SHIFT
) & FP_DIVISOR_MASK
;
700 m1
= (hw
->fpa0
>> FP_M1_DIVISOR_SHIFT
) & FP_DIVISOR_MASK
;
701 m2
= (hw
->fpa0
>> FP_M2_DIVISOR_SHIFT
) & FP_DIVISOR_MASK
;
703 intelfbhw_get_p1p2(dinfo
, hw
->dpll_a
, &p1
, &p2
);
705 printk(" PLLA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
707 printk(" PLLA0: clock is %d\n", calc_vclock(index
, m1
, m2
, n
, p1
, p2
, 0));
709 n
= (hw
->fpa1
>> FP_N_DIVISOR_SHIFT
) & FP_DIVISOR_MASK
;
710 m1
= (hw
->fpa1
>> FP_M1_DIVISOR_SHIFT
) & FP_DIVISOR_MASK
;
711 m2
= (hw
->fpa1
>> FP_M2_DIVISOR_SHIFT
) & FP_DIVISOR_MASK
;
713 intelfbhw_get_p1p2(dinfo
, hw
->dpll_a
, &p1
, &p2
);
715 printk(" PLLA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
717 printk(" PLLA1: clock is %d\n", calc_vclock(index
, m1
, m2
, n
, p1
, p2
, 0));
720 printk(" PALETTE_A:\n");
721 for (i
= 0; i
< PALETTE_8_ENTRIES
)
722 printk(" %3d: 0x%08x\n", i
, hw
->palette_a
[i
]);
723 printk(" PALETTE_B:\n");
724 for (i
= 0; i
< PALETTE_8_ENTRIES
)
725 printk(" %3d: 0x%08x\n", i
, hw
->palette_b
[i
]);
728 printk(" HTOTAL_A: 0x%08x\n", hw
->htotal_a
);
729 printk(" HBLANK_A: 0x%08x\n", hw
->hblank_a
);
730 printk(" HSYNC_A: 0x%08x\n", hw
->hsync_a
);
731 printk(" VTOTAL_A: 0x%08x\n", hw
->vtotal_a
);
732 printk(" VBLANK_A: 0x%08x\n", hw
->vblank_a
);
733 printk(" VSYNC_A: 0x%08x\n", hw
->vsync_a
);
734 printk(" SRC_SIZE_A: 0x%08x\n", hw
->src_size_a
);
735 printk(" BCLRPAT_A: 0x%08x\n", hw
->bclrpat_a
);
736 printk(" HTOTAL_B: 0x%08x\n", hw
->htotal_b
);
737 printk(" HBLANK_B: 0x%08x\n", hw
->hblank_b
);
738 printk(" HSYNC_B: 0x%08x\n", hw
->hsync_b
);
739 printk(" VTOTAL_B: 0x%08x\n", hw
->vtotal_b
);
740 printk(" VBLANK_B: 0x%08x\n", hw
->vblank_b
);
741 printk(" VSYNC_B: 0x%08x\n", hw
->vsync_b
);
742 printk(" SRC_SIZE_B: 0x%08x\n", hw
->src_size_b
);
743 printk(" BCLRPAT_B: 0x%08x\n", hw
->bclrpat_b
);
745 printk(" ADPA: 0x%08x\n", hw
->adpa
);
746 printk(" DVOA: 0x%08x\n", hw
->dvoa
);
747 printk(" DVOB: 0x%08x\n", hw
->dvob
);
748 printk(" DVOC: 0x%08x\n", hw
->dvoc
);
749 printk(" DVOA_SRCDIM: 0x%08x\n", hw
->dvoa_srcdim
);
750 printk(" DVOB_SRCDIM: 0x%08x\n", hw
->dvob_srcdim
);
751 printk(" DVOC_SRCDIM: 0x%08x\n", hw
->dvoc_srcdim
);
752 printk(" LVDS: 0x%08x\n", hw
->lvds
);
754 printk(" PIPEACONF: 0x%08x\n", hw
->pipe_a_conf
);
755 printk(" PIPEBCONF: 0x%08x\n", hw
->pipe_b_conf
);
756 printk(" DISPARB: 0x%08x\n", hw
->disp_arb
);
758 printk(" CURSOR_A_CONTROL: 0x%08x\n", hw
->cursor_a_control
);
759 printk(" CURSOR_B_CONTROL: 0x%08x\n", hw
->cursor_b_control
);
760 printk(" CURSOR_A_BASEADDR: 0x%08x\n", hw
->cursor_a_base
);
761 printk(" CURSOR_B_BASEADDR: 0x%08x\n", hw
->cursor_b_base
);
763 printk(" CURSOR_A_PALETTE: ");
764 for (i
= 0; i
< 4; i
++) {
765 printk("0x%08x", hw
->cursor_a_palette
[i
]);
770 printk(" CURSOR_B_PALETTE: ");
771 for (i
= 0; i
< 4; i
++) {
772 printk("0x%08x", hw
->cursor_b_palette
[i
]);
778 printk(" CURSOR_SIZE: 0x%08x\n", hw
->cursor_size
);
780 printk(" DSPACNTR: 0x%08x\n", hw
->disp_a_ctrl
);
781 printk(" DSPBCNTR: 0x%08x\n", hw
->disp_b_ctrl
);
782 printk(" DSPABASE: 0x%08x\n", hw
->disp_a_base
);
783 printk(" DSPBBASE: 0x%08x\n", hw
->disp_b_base
);
784 printk(" DSPASTRIDE: 0x%08x\n", hw
->disp_a_stride
);
785 printk(" DSPBSTRIDE: 0x%08x\n", hw
->disp_b_stride
);
787 printk(" VGACNTRL: 0x%08x\n", hw
->vgacntrl
);
788 printk(" ADD_ID: 0x%08x\n", hw
->add_id
);
790 for (i
= 0; i
< 7; i
++) {
791 printk(" SWF0%d 0x%08x\n", i
,
794 for (i
= 0; i
< 7; i
++) {
795 printk(" SWF1%d 0x%08x\n", i
,
798 for (i
= 0; i
< 3; i
++) {
799 printk(" SWF3%d 0x%08x\n", i
,
802 for (i
= 0; i
< 8; i
++)
803 printk(" FENCE%d 0x%08x\n", i
,
806 printk(" INSTPM 0x%08x\n", hw
->instpm
);
807 printk(" MEM_MODE 0x%08x\n", hw
->mem_mode
);
808 printk(" FW_BLC_0 0x%08x\n", hw
->fw_blc_0
);
809 printk(" FW_BLC_1 0x%08x\n", hw
->fw_blc_1
);
811 printk(" HWSTAM 0x%04x\n", hw
->hwstam
);
812 printk(" IER 0x%04x\n", hw
->ier
);
813 printk(" IIR 0x%04x\n", hw
->iir
);
814 printk(" IMR 0x%04x\n", hw
->imr
);
815 printk("hw state dump end\n");
821 /* Split the M parameter into M1 and M2. */
823 splitm(int index
, unsigned int m
, unsigned int *retm1
, unsigned int *retm2
)
827 struct pll_min_max
*pll
= &plls
[index
];
829 /* no point optimising too much - brute force m */
830 for (m1
= pll
->min_m1
; m1
< pll
->max_m1
+ 1; m1
++) {
831 for (m2
= pll
->min_m2
; m2
< pll
->max_m2
+ 1; m2
++) {
832 testm
= (5 * (m1
+ 2)) + (m2
+ 2);
834 *retm1
= (unsigned int)m1
;
835 *retm2
= (unsigned int)m2
;
843 /* Split the P parameter into P1 and P2. */
845 splitp(int index
, unsigned int p
, unsigned int *retp1
, unsigned int *retp2
)
848 struct pll_min_max
*pll
= &plls
[index
];
850 if (index
== PLLS_I9xx
) {
851 p2
= (p
% 10) ? 1 : 0;
853 p1
= p
/ (p2
? 5 : 10);
855 *retp1
= (unsigned int)p1
;
856 *retp2
= (unsigned int)p2
;
864 p1
= (p
/ (1 << (p2
+ 1))) - 2;
865 if (p
% 4 == 0 && p1
< pll
->min_p1
) {
867 p1
= (p
/ (1 << (p2
+ 1))) - 2;
869 if (p1
< pll
->min_p1
|| p1
> pll
->max_p1
||
870 (p1
+ 2) * (1 << (p2
+ 1)) != p
) {
873 *retp1
= (unsigned int)p1
;
874 *retp2
= (unsigned int)p2
;
880 calc_pll_params(int index
, int clock
, u32
*retm1
, u32
*retm2
, u32
*retn
, u32
*retp1
,
881 u32
*retp2
, u32
*retclock
)
883 u32 m1
, m2
, n
, p1
, p2
, n1
, testm
;
884 u32 f_vco
, p
, p_best
= 0, m
, f_out
= 0;
885 u32 err_max
, err_target
, err_best
= 10000000;
886 u32 n_best
= 0, m_best
= 0, f_best
, f_err
;
887 u32 p_min
, p_max
, p_inc
, div_max
;
888 struct pll_min_max
*pll
= &plls
[index
];
890 /* Accept 0.5% difference, but aim for 0.1% */
891 err_max
= 5 * clock
/ 1000;
892 err_target
= clock
/ 1000;
894 DBG_MSG("Clock is %d\n", clock
);
896 div_max
= pll
->max_vco
/ clock
;
898 p_inc
= (clock
<= pll
->p_transition_clk
) ? pll
->p_inc_lo
: pll
->p_inc_hi
;
900 p_max
= ROUND_DOWN_TO(div_max
, p_inc
);
901 if (p_min
< pll
->min_p
)
903 if (p_max
> pll
->max_p
)
906 DBG_MSG("p range is %d-%d (%d)\n", p_min
, p_max
, p_inc
);
910 if (splitp(index
, p
, &p1
, &p2
)) {
911 WRN_MSG("cannot split p = %d\n", p
);
919 m
= ROUND_UP_TO(f_vco
* n
, pll
->ref_clk
) / pll
->ref_clk
;
924 for (testm
= m
- 1; testm
<= m
; testm
++) {
925 f_out
= calc_vclock3(index
, m
, n
, p
);
926 if (splitm(index
, testm
, &m1
, &m2
)) {
927 WRN_MSG("cannot split m = %d\n", m
);
932 f_err
= clock
- f_out
;
933 else/* slightly bias the error for bigger clocks */
934 f_err
= f_out
- clock
+ 1;
936 if (f_err
< err_best
) {
945 } while ((n
<= pll
->max_n
) && (f_out
>= clock
));
947 } while ((p
<= p_max
));
950 WRN_MSG("cannot find parameters for clock %d\n", clock
);
956 splitm(index
, m
, &m1
, &m2
);
957 splitp(index
, p
, &p1
, &p2
);
960 DBG_MSG("m, n, p: %d (%d,%d), %d (%d), %d (%d,%d), "
961 "f: %d (%d), VCO: %d\n",
962 m
, m1
, m2
, n
, n1
, p
, p1
, p2
,
963 calc_vclock3(index
, m
, n
, p
),
964 calc_vclock(index
, m1
, m2
, n1
, p1
, p2
, 0),
965 calc_vclock3(index
, m
, n
, p
) * p
);
971 *retclock
= calc_vclock(index
, m1
, m2
, n1
, p1
, p2
, 0);
976 static __inline__
int
977 check_overflow(u32 value
, u32 limit
, const char *description
)
980 WRN_MSG("%s value %d exceeds limit %d\n",
981 description
, value
, limit
);
987 /* It is assumed that hw is filled in with the initial state information. */
989 intelfbhw_mode_to_hw(struct intelfb_info
*dinfo
, struct intelfb_hwstate
*hw
,
990 struct fb_var_screeninfo
*var
)
993 u32
*dpll
, *fp0
, *fp1
;
994 u32 m1
, m2
, n
, p1
, p2
, clock_target
, clock
;
995 u32 hsync_start
, hsync_end
, hblank_start
, hblank_end
, htotal
, hactive
;
996 u32 vsync_start
, vsync_end
, vblank_start
, vblank_end
, vtotal
, vactive
;
997 u32 vsync_pol
, hsync_pol
;
998 u32
*vs
, *vb
, *vt
, *hs
, *hb
, *ht
, *ss
, *pipe_conf
;
999 u32 stride_alignment
;
1001 DBG_MSG("intelfbhw_mode_to_hw\n");
1004 hw
->vgacntrl
|= VGA_DISABLE
;
1006 /* Check whether pipe A or pipe B is enabled. */
1007 if (hw
->pipe_a_conf
& PIPECONF_ENABLE
)
1009 else if (hw
->pipe_b_conf
& PIPECONF_ENABLE
)
1012 /* Set which pipe's registers will be set. */
1013 if (pipe
== PIPE_B
) {
1023 ss
= &hw
->src_size_b
;
1024 pipe_conf
= &hw
->pipe_b_conf
;
1035 ss
= &hw
->src_size_a
;
1036 pipe_conf
= &hw
->pipe_a_conf
;
1039 /* Use ADPA register for sync control. */
1040 hw
->adpa
&= ~ADPA_USE_VGA_HVPOLARITY
;
1043 hsync_pol
= (var
->sync
& FB_SYNC_HOR_HIGH_ACT
) ?
1044 ADPA_SYNC_ACTIVE_HIGH
: ADPA_SYNC_ACTIVE_LOW
;
1045 vsync_pol
= (var
->sync
& FB_SYNC_VERT_HIGH_ACT
) ?
1046 ADPA_SYNC_ACTIVE_HIGH
: ADPA_SYNC_ACTIVE_LOW
;
1047 hw
->adpa
&= ~((ADPA_SYNC_ACTIVE_MASK
<< ADPA_VSYNC_ACTIVE_SHIFT
) |
1048 (ADPA_SYNC_ACTIVE_MASK
<< ADPA_HSYNC_ACTIVE_SHIFT
));
1049 hw
->adpa
|= (hsync_pol
<< ADPA_HSYNC_ACTIVE_SHIFT
) |
1050 (vsync_pol
<< ADPA_VSYNC_ACTIVE_SHIFT
);
1052 /* Connect correct pipe to the analog port DAC */
1053 hw
->adpa
&= ~(PIPE_MASK
<< ADPA_PIPE_SELECT_SHIFT
);
1054 hw
->adpa
|= (pipe
<< ADPA_PIPE_SELECT_SHIFT
);
1056 /* Set DPMS state to D0 (on) */
1057 hw
->adpa
&= ~ADPA_DPMS_CONTROL_MASK
;
1058 hw
->adpa
|= ADPA_DPMS_D0
;
1060 hw
->adpa
|= ADPA_DAC_ENABLE
;
1062 *dpll
|= (DPLL_VCO_ENABLE
| DPLL_VGA_MODE_DISABLE
);
1063 *dpll
&= ~(DPLL_RATE_SELECT_MASK
| DPLL_REFERENCE_SELECT_MASK
);
1064 *dpll
|= (DPLL_REFERENCE_DEFAULT
| DPLL_RATE_SELECT_FP0
);
1066 /* Desired clock in kHz */
1067 clock_target
= 1000000000 / var
->pixclock
;
1069 if (calc_pll_params(dinfo
->pll_index
, clock_target
, &m1
, &m2
,
1070 &n
, &p1
, &p2
, &clock
)) {
1071 WRN_MSG("calc_pll_params failed\n");
1075 /* Check for overflow. */
1076 if (check_overflow(p1
, DPLL_P1_MASK
, "PLL P1 parameter"))
1078 if (check_overflow(p2
, DPLL_P2_MASK
, "PLL P2 parameter"))
1080 if (check_overflow(m1
, FP_DIVISOR_MASK
, "PLL M1 parameter"))
1082 if (check_overflow(m2
, FP_DIVISOR_MASK
, "PLL M2 parameter"))
1084 if (check_overflow(n
, FP_DIVISOR_MASK
, "PLL N parameter"))
1087 *dpll
&= ~DPLL_P1_FORCE_DIV2
;
1088 *dpll
&= ~((DPLL_P2_MASK
<< DPLL_P2_SHIFT
) |
1089 (DPLL_P1_MASK
<< DPLL_P1_SHIFT
));
1091 if (IS_I9XX(dinfo
)) {
1092 *dpll
|= (p2
<< DPLL_I9XX_P2_SHIFT
);
1093 *dpll
|= (1 << (p1
- 1)) << DPLL_P1_SHIFT
;
1095 *dpll
|= (p2
<< DPLL_P2_SHIFT
) | (p1
<< DPLL_P1_SHIFT
);
1098 *fp0
= (n
<< FP_N_DIVISOR_SHIFT
) |
1099 (m1
<< FP_M1_DIVISOR_SHIFT
) |
1100 (m2
<< FP_M2_DIVISOR_SHIFT
);
1103 hw
->dvob
&= ~PORT_ENABLE
;
1104 hw
->dvoc
&= ~PORT_ENABLE
;
1106 /* Use display plane A. */
1107 hw
->disp_a_ctrl
|= DISPPLANE_PLANE_ENABLE
;
1108 hw
->disp_a_ctrl
&= ~DISPPLANE_GAMMA_ENABLE
;
1109 hw
->disp_a_ctrl
&= ~DISPPLANE_PIXFORMAT_MASK
;
1110 switch (intelfb_var_to_depth(var
)) {
1112 hw
->disp_a_ctrl
|= DISPPLANE_8BPP
| DISPPLANE_GAMMA_ENABLE
;
1115 hw
->disp_a_ctrl
|= DISPPLANE_15_16BPP
;
1118 hw
->disp_a_ctrl
|= DISPPLANE_16BPP
;
1121 hw
->disp_a_ctrl
|= DISPPLANE_32BPP_NO_ALPHA
;
1124 hw
->disp_a_ctrl
&= ~(PIPE_MASK
<< DISPPLANE_SEL_PIPE_SHIFT
);
1125 hw
->disp_a_ctrl
|= (pipe
<< DISPPLANE_SEL_PIPE_SHIFT
);
1127 /* Set CRTC registers. */
1128 hactive
= var
->xres
;
1129 hsync_start
= hactive
+ var
->right_margin
;
1130 hsync_end
= hsync_start
+ var
->hsync_len
;
1131 htotal
= hsync_end
+ var
->left_margin
;
1132 hblank_start
= hactive
;
1133 hblank_end
= htotal
;
1135 DBG_MSG("H: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
1136 hactive
, hsync_start
, hsync_end
, htotal
, hblank_start
,
1139 vactive
= var
->yres
;
1140 vsync_start
= vactive
+ var
->lower_margin
;
1141 vsync_end
= vsync_start
+ var
->vsync_len
;
1142 vtotal
= vsync_end
+ var
->upper_margin
;
1143 vblank_start
= vactive
;
1144 vblank_end
= vtotal
;
1145 vblank_end
= vsync_end
+ 1;
1147 DBG_MSG("V: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
1148 vactive
, vsync_start
, vsync_end
, vtotal
, vblank_start
,
1151 /* Adjust for register values, and check for overflow. */
1153 if (check_overflow(hactive
, HACTIVE_MASK
, "CRTC hactive"))
1156 if (check_overflow(hsync_start
, HSYNCSTART_MASK
, "CRTC hsync_start"))
1159 if (check_overflow(hsync_end
, HSYNCEND_MASK
, "CRTC hsync_end"))
1162 if (check_overflow(htotal
, HTOTAL_MASK
, "CRTC htotal"))
1165 if (check_overflow(hblank_start
, HBLANKSTART_MASK
, "CRTC hblank_start"))
1168 if (check_overflow(hblank_end
, HBLANKEND_MASK
, "CRTC hblank_end"))
1172 if (check_overflow(vactive
, VACTIVE_MASK
, "CRTC vactive"))
1175 if (check_overflow(vsync_start
, VSYNCSTART_MASK
, "CRTC vsync_start"))
1178 if (check_overflow(vsync_end
, VSYNCEND_MASK
, "CRTC vsync_end"))
1181 if (check_overflow(vtotal
, VTOTAL_MASK
, "CRTC vtotal"))
1184 if (check_overflow(vblank_start
, VBLANKSTART_MASK
, "CRTC vblank_start"))
1187 if (check_overflow(vblank_end
, VBLANKEND_MASK
, "CRTC vblank_end"))
1190 *ht
= (htotal
<< HTOTAL_SHIFT
) | (hactive
<< HACTIVE_SHIFT
);
1191 *hb
= (hblank_start
<< HBLANKSTART_SHIFT
) |
1192 (hblank_end
<< HSYNCEND_SHIFT
);
1193 *hs
= (hsync_start
<< HSYNCSTART_SHIFT
) | (hsync_end
<< HSYNCEND_SHIFT
);
1195 *vt
= (vtotal
<< VTOTAL_SHIFT
) | (vactive
<< VACTIVE_SHIFT
);
1196 *vb
= (vblank_start
<< VBLANKSTART_SHIFT
) |
1197 (vblank_end
<< VSYNCEND_SHIFT
);
1198 *vs
= (vsync_start
<< VSYNCSTART_SHIFT
) | (vsync_end
<< VSYNCEND_SHIFT
);
1199 *ss
= (hactive
<< SRC_SIZE_HORIZ_SHIFT
) |
1200 (vactive
<< SRC_SIZE_VERT_SHIFT
);
1202 hw
->disp_a_stride
= dinfo
->pitch
;
1203 DBG_MSG("pitch is %d\n", hw
->disp_a_stride
);
1205 hw
->disp_a_base
= hw
->disp_a_stride
* var
->yoffset
+
1206 var
->xoffset
* var
->bits_per_pixel
/ 8;
1208 hw
->disp_a_base
+= dinfo
->fb
.offset
<< 12;
1210 /* Check stride alignment. */
1211 stride_alignment
= IS_I9XX(dinfo
) ? STRIDE_ALIGNMENT_I9XX
:
1213 if (hw
->disp_a_stride
% stride_alignment
!= 0) {
1214 WRN_MSG("display stride %d has bad alignment %d\n",
1215 hw
->disp_a_stride
, stride_alignment
);
1219 /* Set the palette to 8-bit mode. */
1220 *pipe_conf
&= ~PIPECONF_GAMMA
;
1224 /* Program a (non-VGA) video mode. */
1226 intelfbhw_program_mode(struct intelfb_info
*dinfo
,
1227 const struct intelfb_hwstate
*hw
, int blank
)
1231 const u32
*dpll
, *fp0
, *fp1
, *pipe_conf
;
1232 const u32
*hs
, *ht
, *hb
, *vs
, *vt
, *vb
, *ss
;
1233 u32 dpll_reg
, fp0_reg
, fp1_reg
, pipe_conf_reg
;
1234 u32 hsync_reg
, htotal_reg
, hblank_reg
;
1235 u32 vsync_reg
, vtotal_reg
, vblank_reg
;
1237 u32 count
, tmp_val
[3];
1239 /* Assume single pipe, display plane A, analog CRT. */
1242 DBG_MSG("intelfbhw_program_mode\n");
1246 tmp
= INREG(VGACNTRL
);
1248 OUTREG(VGACNTRL
, tmp
);
1250 /* Check whether pipe A or pipe B is enabled. */
1251 if (hw
->pipe_a_conf
& PIPECONF_ENABLE
)
1253 else if (hw
->pipe_b_conf
& PIPECONF_ENABLE
)
1258 if (pipe
== PIPE_B
) {
1262 pipe_conf
= &hw
->pipe_b_conf
;
1269 ss
= &hw
->src_size_b
;
1273 pipe_conf_reg
= PIPEBCONF
;
1274 hsync_reg
= HSYNC_B
;
1275 htotal_reg
= HTOTAL_B
;
1276 hblank_reg
= HBLANK_B
;
1277 vsync_reg
= VSYNC_B
;
1278 vtotal_reg
= VTOTAL_B
;
1279 vblank_reg
= VBLANK_B
;
1280 src_size_reg
= SRC_SIZE_B
;
1285 pipe_conf
= &hw
->pipe_a_conf
;
1292 ss
= &hw
->src_size_a
;
1296 pipe_conf_reg
= PIPEACONF
;
1297 hsync_reg
= HSYNC_A
;
1298 htotal_reg
= HTOTAL_A
;
1299 hblank_reg
= HBLANK_A
;
1300 vsync_reg
= VSYNC_A
;
1301 vtotal_reg
= VTOTAL_A
;
1302 vblank_reg
= VBLANK_A
;
1303 src_size_reg
= SRC_SIZE_A
;
1307 tmp
= INREG(pipe_conf_reg
);
1308 tmp
&= ~PIPECONF_ENABLE
;
1309 OUTREG(pipe_conf_reg
, tmp
);
1313 tmp_val
[count
%3] = INREG(0x70000);
1314 if ((tmp_val
[0] == tmp_val
[1]) && (tmp_val
[1]==tmp_val
[2]))
1318 if (count
% 200 == 0) {
1319 tmp
= INREG(pipe_conf_reg
);
1320 tmp
&= ~PIPECONF_ENABLE
;
1321 OUTREG(pipe_conf_reg
, tmp
);
1323 } while(count
< 2000);
1325 OUTREG(ADPA
, INREG(ADPA
) & ~ADPA_DAC_ENABLE
);
1327 /* Disable planes A and B. */
1328 tmp
= INREG(DSPACNTR
);
1329 tmp
&= ~DISPPLANE_PLANE_ENABLE
;
1330 OUTREG(DSPACNTR
, tmp
);
1331 tmp
= INREG(DSPBCNTR
);
1332 tmp
&= ~DISPPLANE_PLANE_ENABLE
;
1333 OUTREG(DSPBCNTR
, tmp
);
1335 /* Wait for vblank. For now, just wait for a 50Hz cycle (20ms)) */
1338 OUTREG(DVOB
, INREG(DVOB
) & ~PORT_ENABLE
);
1339 OUTREG(DVOC
, INREG(DVOC
) & ~PORT_ENABLE
);
1340 OUTREG(ADPA
, INREG(ADPA
) & ~ADPA_DAC_ENABLE
);
1344 tmp
&= ~ADPA_DPMS_CONTROL_MASK
;
1345 tmp
|= ADPA_DPMS_D3
;
1348 /* do some funky magic - xyzzy */
1349 OUTREG(0x61204, 0xabcd0000);
1352 tmp
= INREG(dpll_reg
);
1353 dpll_reg
&= ~DPLL_VCO_ENABLE
;
1354 OUTREG(dpll_reg
, tmp
);
1356 /* Set PLL parameters */
1357 OUTREG(fp0_reg
, *fp0
);
1358 OUTREG(fp1_reg
, *fp1
);
1361 OUTREG(dpll_reg
, *dpll
);
1364 OUTREG(DVOB
, hw
->dvob
);
1365 OUTREG(DVOC
, hw
->dvoc
);
1367 /* undo funky magic */
1368 OUTREG(0x61204, 0x00000000);
1371 OUTREG(ADPA
, INREG(ADPA
) | ADPA_DAC_ENABLE
);
1372 OUTREG(ADPA
, (hw
->adpa
& ~(ADPA_DPMS_CONTROL_MASK
)) | ADPA_DPMS_D3
);
1374 /* Set pipe parameters */
1375 OUTREG(hsync_reg
, *hs
);
1376 OUTREG(hblank_reg
, *hb
);
1377 OUTREG(htotal_reg
, *ht
);
1378 OUTREG(vsync_reg
, *vs
);
1379 OUTREG(vblank_reg
, *vb
);
1380 OUTREG(vtotal_reg
, *vt
);
1381 OUTREG(src_size_reg
, *ss
);
1384 OUTREG(pipe_conf_reg
, *pipe_conf
| PIPECONF_ENABLE
);
1388 tmp
&= ~ADPA_DPMS_CONTROL_MASK
;
1389 tmp
|= ADPA_DPMS_D0
;
1392 /* setup display plane */
1393 if (dinfo
->pdev
->device
== PCI_DEVICE_ID_INTEL_830M
) {
1395 * i830M errata: the display plane must be enabled
1396 * to allow writes to the other bits in the plane
1399 tmp
= INREG(DSPACNTR
);
1400 if ((tmp
& DISPPLANE_PLANE_ENABLE
) != DISPPLANE_PLANE_ENABLE
) {
1401 tmp
|= DISPPLANE_PLANE_ENABLE
;
1402 OUTREG(DSPACNTR
, tmp
);
1404 hw
->disp_a_ctrl
|DISPPLANE_PLANE_ENABLE
);
1409 OUTREG(DSPACNTR
, hw
->disp_a_ctrl
& ~DISPPLANE_PLANE_ENABLE
);
1410 OUTREG(DSPASTRIDE
, hw
->disp_a_stride
);
1411 OUTREG(DSPABASE
, hw
->disp_a_base
);
1415 tmp
= INREG(DSPACNTR
);
1416 tmp
|= DISPPLANE_PLANE_ENABLE
;
1417 OUTREG(DSPACNTR
, tmp
);
1418 OUTREG(DSPABASE
, hw
->disp_a_base
);
1424 /* forward declarations */
1425 static void refresh_ring(struct intelfb_info
*dinfo
);
1426 static void reset_state(struct intelfb_info
*dinfo
);
1427 static void do_flush(struct intelfb_info
*dinfo
);
1430 wait_ring(struct intelfb_info
*dinfo
, int n
)
1434 u32 last_head
= INREG(PRI_RING_HEAD
) & RING_HEAD_MASK
;
1437 DBG_MSG("wait_ring: %d\n", n
);
1440 end
= jiffies
+ (HZ
* 3);
1441 while (dinfo
->ring_space
< n
) {
1442 dinfo
->ring_head
= INREG(PRI_RING_HEAD
) & RING_HEAD_MASK
;
1443 if (dinfo
->ring_tail
+ RING_MIN_FREE
< dinfo
->ring_head
)
1444 dinfo
->ring_space
= dinfo
->ring_head
1445 - (dinfo
->ring_tail
+ RING_MIN_FREE
);
1447 dinfo
->ring_space
= (dinfo
->ring
.size
+
1449 - (dinfo
->ring_tail
+ RING_MIN_FREE
);
1450 if (dinfo
->ring_head
!= last_head
) {
1451 end
= jiffies
+ (HZ
* 3);
1452 last_head
= dinfo
->ring_head
;
1455 if (time_before(end
, jiffies
)) {
1459 refresh_ring(dinfo
);
1461 end
= jiffies
+ (HZ
* 3);
1464 WRN_MSG("ring buffer : space: %d wanted %d\n",
1465 dinfo
->ring_space
, n
);
1466 WRN_MSG("lockup - turning off hardware "
1468 dinfo
->ring_lockup
= 1;
1478 do_flush(struct intelfb_info
*dinfo
) {
1480 OUT_RING(MI_FLUSH
| MI_WRITE_DIRTY_STATE
| MI_INVALIDATE_MAP_CACHE
);
1486 intelfbhw_do_sync(struct intelfb_info
*dinfo
)
1489 DBG_MSG("intelfbhw_do_sync\n");
1496 * Send a flush, then wait until the ring is empty. This is what
1497 * the XFree86 driver does, and actually it doesn't seem a lot worse
1498 * than the recommended method (both have problems).
1501 wait_ring(dinfo
, dinfo
->ring
.size
- RING_MIN_FREE
);
1502 dinfo
->ring_space
= dinfo
->ring
.size
- RING_MIN_FREE
;
1506 refresh_ring(struct intelfb_info
*dinfo
)
1509 DBG_MSG("refresh_ring\n");
1512 dinfo
->ring_head
= INREG(PRI_RING_HEAD
) & RING_HEAD_MASK
;
1513 dinfo
->ring_tail
= INREG(PRI_RING_TAIL
) & RING_TAIL_MASK
;
1514 if (dinfo
->ring_tail
+ RING_MIN_FREE
< dinfo
->ring_head
)
1515 dinfo
->ring_space
= dinfo
->ring_head
1516 - (dinfo
->ring_tail
+ RING_MIN_FREE
);
1518 dinfo
->ring_space
= (dinfo
->ring
.size
+ dinfo
->ring_head
)
1519 - (dinfo
->ring_tail
+ RING_MIN_FREE
);
1523 reset_state(struct intelfb_info
*dinfo
)
1529 DBG_MSG("reset_state\n");
1532 for (i
= 0; i
< FENCE_NUM
; i
++)
1533 OUTREG(FENCE
+ (i
<< 2), 0);
1535 /* Flush the ring buffer if it's enabled. */
1536 tmp
= INREG(PRI_RING_LENGTH
);
1537 if (tmp
& RING_ENABLE
) {
1539 DBG_MSG("reset_state: ring was enabled\n");
1541 refresh_ring(dinfo
);
1542 intelfbhw_do_sync(dinfo
);
1546 OUTREG(PRI_RING_LENGTH
, 0);
1547 OUTREG(PRI_RING_HEAD
, 0);
1548 OUTREG(PRI_RING_TAIL
, 0);
1549 OUTREG(PRI_RING_START
, 0);
1552 /* Stop the 2D engine, and turn off the ring buffer. */
1554 intelfbhw_2d_stop(struct intelfb_info
*dinfo
)
1557 DBG_MSG("intelfbhw_2d_stop: accel: %d, ring_active: %d\n", dinfo
->accel
,
1558 dinfo
->ring_active
);
1564 dinfo
->ring_active
= 0;
1569 * Enable the ring buffer, and initialise the 2D engine.
1570 * It is assumed that the graphics engine has been stopped by previously
1571 * calling intelfb_2d_stop().
1574 intelfbhw_2d_start(struct intelfb_info
*dinfo
)
1577 DBG_MSG("intelfbhw_2d_start: accel: %d, ring_active: %d\n",
1578 dinfo
->accel
, dinfo
->ring_active
);
1584 /* Initialise the primary ring buffer. */
1585 OUTREG(PRI_RING_LENGTH
, 0);
1586 OUTREG(PRI_RING_TAIL
, 0);
1587 OUTREG(PRI_RING_HEAD
, 0);
1589 OUTREG(PRI_RING_START
, dinfo
->ring
.physical
& RING_START_MASK
);
1590 OUTREG(PRI_RING_LENGTH
,
1591 ((dinfo
->ring
.size
- GTT_PAGE_SIZE
) & RING_LENGTH_MASK
) |
1592 RING_NO_REPORT
| RING_ENABLE
);
1593 refresh_ring(dinfo
);
1594 dinfo
->ring_active
= 1;
1597 /* 2D fillrect (solid fill or invert) */
1599 intelfbhw_do_fillrect(struct intelfb_info
*dinfo
, u32 x
, u32 y
, u32 w
, u32 h
,
1600 u32 color
, u32 pitch
, u32 bpp
, u32 rop
)
1602 u32 br00
, br09
, br13
, br14
, br16
;
1605 DBG_MSG("intelfbhw_do_fillrect: (%d,%d) %dx%d, c 0x%06x, p %d bpp %d, "
1606 "rop 0x%02x\n", x
, y
, w
, h
, color
, pitch
, bpp
, rop
);
1609 br00
= COLOR_BLT_CMD
;
1610 br09
= dinfo
->fb_start
+ (y
* pitch
+ x
* (bpp
/ 8));
1611 br13
= (rop
<< ROP_SHIFT
) | pitch
;
1612 br14
= (h
<< HEIGHT_SHIFT
) | ((w
* (bpp
/ 8)) << WIDTH_SHIFT
);
1617 br13
|= COLOR_DEPTH_8
;
1620 br13
|= COLOR_DEPTH_16
;
1623 br13
|= COLOR_DEPTH_32
;
1624 br00
|= WRITE_ALPHA
| WRITE_RGB
;
1638 DBG_MSG("ring = 0x%08x, 0x%08x (%d)\n", dinfo
->ring_head
,
1639 dinfo
->ring_tail
, dinfo
->ring_space
);
1644 intelfbhw_do_bitblt(struct intelfb_info
*dinfo
, u32 curx
, u32 cury
,
1645 u32 dstx
, u32 dsty
, u32 w
, u32 h
, u32 pitch
, u32 bpp
)
1647 u32 br00
, br09
, br11
, br12
, br13
, br22
, br23
, br26
;
1650 DBG_MSG("intelfbhw_do_bitblt: (%d,%d)->(%d,%d) %dx%d, p %d bpp %d\n",
1651 curx
, cury
, dstx
, dsty
, w
, h
, pitch
, bpp
);
1654 br00
= XY_SRC_COPY_BLT_CMD
;
1655 br09
= dinfo
->fb_start
;
1656 br11
= (pitch
<< PITCH_SHIFT
);
1657 br12
= dinfo
->fb_start
;
1658 br13
= (SRC_ROP_GXCOPY
<< ROP_SHIFT
) | (pitch
<< PITCH_SHIFT
);
1659 br22
= (dstx
<< WIDTH_SHIFT
) | (dsty
<< HEIGHT_SHIFT
);
1660 br23
= ((dstx
+ w
) << WIDTH_SHIFT
) |
1661 ((dsty
+ h
) << HEIGHT_SHIFT
);
1662 br26
= (curx
<< WIDTH_SHIFT
) | (cury
<< HEIGHT_SHIFT
);
1666 br13
|= COLOR_DEPTH_8
;
1669 br13
|= COLOR_DEPTH_16
;
1672 br13
|= COLOR_DEPTH_32
;
1673 br00
|= WRITE_ALPHA
| WRITE_RGB
;
1690 intelfbhw_do_drawglyph(struct intelfb_info
*dinfo
, u32 fg
, u32 bg
, u32 w
,
1691 u32 h
, const u8
* cdat
, u32 x
, u32 y
, u32 pitch
, u32 bpp
)
1693 int nbytes
, ndwords
, pad
, tmp
;
1694 u32 br00
, br09
, br13
, br18
, br19
, br22
, br23
;
1695 int dat
, ix
, iy
, iw
;
1699 DBG_MSG("intelfbhw_do_drawglyph: (%d,%d) %dx%d\n", x
, y
, w
, h
);
1702 /* size in bytes of a padded scanline */
1703 nbytes
= ROUND_UP_TO(w
, 16) / 8;
1705 /* Total bytes of padded scanline data to write out. */
1706 nbytes
= nbytes
* h
;
1709 * Check if the glyph data exceeds the immediate mode limit.
1710 * It would take a large font (1K pixels) to hit this limit.
1712 if (nbytes
> MAX_MONO_IMM_SIZE
)
1715 /* Src data is packaged a dword (32-bit) at a time. */
1716 ndwords
= ROUND_UP_TO(nbytes
, 4) / 4;
1719 * Ring has to be padded to a quad word. But because the command starts
1720 with 7 bytes, pad only if there is an even number of ndwords
1722 pad
= !(ndwords
% 2);
1724 tmp
= (XY_MONO_SRC_IMM_BLT_CMD
& DW_LENGTH_MASK
) + ndwords
;
1725 br00
= (XY_MONO_SRC_IMM_BLT_CMD
& ~DW_LENGTH_MASK
) | tmp
;
1726 br09
= dinfo
->fb_start
;
1727 br13
= (SRC_ROP_GXCOPY
<< ROP_SHIFT
) | (pitch
<< PITCH_SHIFT
);
1730 br22
= (x
<< WIDTH_SHIFT
) | (y
<< HEIGHT_SHIFT
);
1731 br23
= ((x
+ w
) << WIDTH_SHIFT
) | ((y
+ h
) << HEIGHT_SHIFT
);
1735 br13
|= COLOR_DEPTH_8
;
1738 br13
|= COLOR_DEPTH_16
;
1741 br13
|= COLOR_DEPTH_32
;
1742 br00
|= WRITE_ALPHA
| WRITE_RGB
;
1746 START_RING(8 + ndwords
);
1755 iw
= ROUND_UP_TO(w
, 8) / 8;
1758 for (j
= 0; j
< 2; ++j
) {
1759 for (i
= 0; i
< 2; ++i
) {
1760 if (ix
!= iw
|| i
== 0)
1761 dat
|= cdat
[iy
*iw
+ ix
++] << (i
+j
*2)*8;
1763 if (ix
== iw
&& iy
!= (h
-1)) {
1777 /* HW cursor functions. */
1779 intelfbhw_cursor_init(struct intelfb_info
*dinfo
)
1784 DBG_MSG("intelfbhw_cursor_init\n");
1787 if (dinfo
->mobile
|| IS_I9XX(dinfo
)) {
1788 if (!dinfo
->cursor
.physical
)
1790 tmp
= INREG(CURSOR_A_CONTROL
);
1791 tmp
&= ~(CURSOR_MODE_MASK
| CURSOR_MOBILE_GAMMA_ENABLE
|
1792 CURSOR_MEM_TYPE_LOCAL
|
1793 (1 << CURSOR_PIPE_SELECT_SHIFT
));
1794 tmp
|= CURSOR_MODE_DISABLE
;
1795 OUTREG(CURSOR_A_CONTROL
, tmp
);
1796 OUTREG(CURSOR_A_BASEADDR
, dinfo
->cursor
.physical
);
1798 tmp
= INREG(CURSOR_CONTROL
);
1799 tmp
&= ~(CURSOR_FORMAT_MASK
| CURSOR_GAMMA_ENABLE
|
1800 CURSOR_ENABLE
| CURSOR_STRIDE_MASK
);
1801 tmp
= CURSOR_FORMAT_3C
;
1802 OUTREG(CURSOR_CONTROL
, tmp
);
1803 OUTREG(CURSOR_A_BASEADDR
, dinfo
->cursor
.offset
<< 12);
1804 tmp
= (64 << CURSOR_SIZE_H_SHIFT
) |
1805 (64 << CURSOR_SIZE_V_SHIFT
);
1806 OUTREG(CURSOR_SIZE
, tmp
);
1811 intelfbhw_cursor_hide(struct intelfb_info
*dinfo
)
1816 DBG_MSG("intelfbhw_cursor_hide\n");
1819 dinfo
->cursor_on
= 0;
1820 if (dinfo
->mobile
|| IS_I9XX(dinfo
)) {
1821 if (!dinfo
->cursor
.physical
)
1823 tmp
= INREG(CURSOR_A_CONTROL
);
1824 tmp
&= ~CURSOR_MODE_MASK
;
1825 tmp
|= CURSOR_MODE_DISABLE
;
1826 OUTREG(CURSOR_A_CONTROL
, tmp
);
1828 OUTREG(CURSOR_A_BASEADDR
, dinfo
->cursor
.physical
);
1830 tmp
= INREG(CURSOR_CONTROL
);
1831 tmp
&= ~CURSOR_ENABLE
;
1832 OUTREG(CURSOR_CONTROL
, tmp
);
1837 intelfbhw_cursor_show(struct intelfb_info
*dinfo
)
1842 DBG_MSG("intelfbhw_cursor_show\n");
1845 dinfo
->cursor_on
= 1;
1847 if (dinfo
->cursor_blanked
)
1850 if (dinfo
->mobile
|| IS_I9XX(dinfo
)) {
1851 if (!dinfo
->cursor
.physical
)
1853 tmp
= INREG(CURSOR_A_CONTROL
);
1854 tmp
&= ~CURSOR_MODE_MASK
;
1855 tmp
|= CURSOR_MODE_64_4C_AX
;
1856 OUTREG(CURSOR_A_CONTROL
, tmp
);
1858 OUTREG(CURSOR_A_BASEADDR
, dinfo
->cursor
.physical
);
1860 tmp
= INREG(CURSOR_CONTROL
);
1861 tmp
|= CURSOR_ENABLE
;
1862 OUTREG(CURSOR_CONTROL
, tmp
);
1867 intelfbhw_cursor_setpos(struct intelfb_info
*dinfo
, int x
, int y
)
1872 DBG_MSG("intelfbhw_cursor_setpos: (%d, %d)\n", x
, y
);
1876 * Sets the position. The coordinates are assumed to already
1877 * have any offset adjusted. Assume that the cursor is never
1878 * completely off-screen, and that x, y are always >= 0.
1881 tmp
= ((x
& CURSOR_POS_MASK
) << CURSOR_X_SHIFT
) |
1882 ((y
& CURSOR_POS_MASK
) << CURSOR_Y_SHIFT
);
1883 OUTREG(CURSOR_A_POSITION
, tmp
);
1885 if (IS_I9XX(dinfo
)) {
1886 OUTREG(CURSOR_A_BASEADDR
, dinfo
->cursor
.physical
);
1891 intelfbhw_cursor_setcolor(struct intelfb_info
*dinfo
, u32 bg
, u32 fg
)
1894 DBG_MSG("intelfbhw_cursor_setcolor\n");
1897 OUTREG(CURSOR_A_PALETTE0
, bg
& CURSOR_PALETTE_MASK
);
1898 OUTREG(CURSOR_A_PALETTE1
, fg
& CURSOR_PALETTE_MASK
);
1899 OUTREG(CURSOR_A_PALETTE2
, fg
& CURSOR_PALETTE_MASK
);
1900 OUTREG(CURSOR_A_PALETTE3
, bg
& CURSOR_PALETTE_MASK
);
1904 intelfbhw_cursor_load(struct intelfb_info
*dinfo
, int width
, int height
,
1907 u8 __iomem
*addr
= (u8 __iomem
*)dinfo
->cursor
.virtual;
1908 int i
, j
, w
= width
/ 8;
1909 int mod
= width
% 8, t_mask
, d_mask
;
1912 DBG_MSG("intelfbhw_cursor_load\n");
1915 if (!dinfo
->cursor
.virtual)
1918 t_mask
= 0xff >> mod
;
1919 d_mask
= ~(0xff >> mod
);
1920 for (i
= height
; i
--; ) {
1921 for (j
= 0; j
< w
; j
++) {
1922 writeb(0x00, addr
+ j
);
1923 writeb(*(data
++), addr
+ j
+8);
1926 writeb(t_mask
, addr
+ j
);
1927 writeb(*(data
++) & d_mask
, addr
+ j
+8);
1934 intelfbhw_cursor_reset(struct intelfb_info
*dinfo
) {
1935 u8 __iomem
*addr
= (u8 __iomem
*)dinfo
->cursor
.virtual;
1939 DBG_MSG("intelfbhw_cursor_reset\n");
1942 if (!dinfo
->cursor
.virtual)
1945 for (i
= 64; i
--; ) {
1946 for (j
= 0; j
< 8; j
++) {
1947 writeb(0xff, addr
+ j
+0);
1948 writeb(0x00, addr
+ j
+8);
1955 intelfbhw_irq(int irq
, void *dev_id
, struct pt_regs
*fp
) {
1958 struct intelfb_info
*dinfo
= (struct intelfb_info
*)dev_id
;
1960 spin_lock(&dinfo
->int_lock
);
1963 tmp
&= VSYNC_PIPE_A_INTERRUPT
;
1966 spin_unlock(&dinfo
->int_lock
);
1967 return IRQ_RETVAL(handled
);
1972 if (tmp
& VSYNC_PIPE_A_INTERRUPT
) {
1973 dinfo
->vsync
.count
++;
1974 if (dinfo
->vsync
.pan_display
) {
1975 dinfo
->vsync
.pan_display
= 0;
1976 OUTREG(DSPABASE
, dinfo
->vsync
.pan_offset
);
1978 wake_up_interruptible(&dinfo
->vsync
.wait
);
1982 spin_unlock(&dinfo
->int_lock
);
1984 return IRQ_RETVAL(handled
);
1988 intelfbhw_enable_irq(struct intelfb_info
*dinfo
, int reenable
) {
1990 if (!test_and_set_bit(0, &dinfo
->irq_flags
)) {
1991 if (request_irq(dinfo
->pdev
->irq
, intelfbhw_irq
, SA_SHIRQ
, "intelfb", dinfo
)) {
1992 clear_bit(0, &dinfo
->irq_flags
);
1996 spin_lock_irq(&dinfo
->int_lock
);
1997 OUTREG16(HWSTAM
, 0xfffe);
1999 OUTREG16(IER
, VSYNC_PIPE_A_INTERRUPT
);
2000 spin_unlock_irq(&dinfo
->int_lock
);
2001 } else if (reenable
) {
2004 spin_lock_irq(&dinfo
->int_lock
);
2006 if ((ier
& VSYNC_PIPE_A_INTERRUPT
)) {
2007 DBG_MSG("someone disabled the IRQ [%08X]\n", ier
);
2008 OUTREG(IER
, VSYNC_PIPE_A_INTERRUPT
);
2010 spin_unlock_irq(&dinfo
->int_lock
);
2016 intelfbhw_disable_irq(struct intelfb_info
*dinfo
) {
2019 if (test_and_clear_bit(0, &dinfo
->irq_flags
)) {
2020 if (dinfo
->vsync
.pan_display
) {
2021 dinfo
->vsync
.pan_display
= 0;
2022 OUTREG(DSPABASE
, dinfo
->vsync
.pan_offset
);
2024 spin_lock_irq(&dinfo
->int_lock
);
2025 OUTREG16(HWSTAM
, 0xffff);
2026 OUTREG16(IMR
, 0xffff);
2031 spin_unlock_irq(&dinfo
->int_lock
);
2033 free_irq(dinfo
->pdev
->irq
, dinfo
);
2038 intelfbhw_wait_for_vsync(struct intelfb_info
*dinfo
, u32 pipe
) {
2039 struct intelfb_vsync
*vsync
;
2045 vsync
= &dinfo
->vsync
;
2051 ret
= intelfbhw_enable_irq(dinfo
, 0);
2056 count
= vsync
->count
;
2057 ret
= wait_event_interruptible_timeout(vsync
->wait
, count
!= vsync
->count
, HZ
/10);
2062 intelfbhw_enable_irq(dinfo
, 1);
2063 DBG_MSG("wait_for_vsync timed out!\n");