]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/video/omap/dispc.c
7c833db4f9b7cabdb5f646618980ead27fc36a10
[mirror_ubuntu-bionic-kernel.git] / drivers / video / omap / dispc.c
1 /*
2 * OMAP2 display controller support
3 *
4 * Copyright (C) 2005 Nokia Corporation
5 * Author: Imre Deak <imre.deak@nokia.com>
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License as published by the
9 * Free Software Foundation; either version 2 of the License, or (at your
10 * option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful, but
13 * WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, write to the Free Software Foundation, Inc.,
19 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20 */
21 #include <linux/kernel.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/mm.h>
24 #include <linux/vmalloc.h>
25 #include <linux/clk.h>
26 #include <linux/io.h>
27
28 #include <plat/sram.h>
29 #include <plat/omapfb.h>
30 #include <plat/board.h>
31
32 #include "dispc.h"
33
34 #define MODULE_NAME "dispc"
35
36 #define DSS_BASE 0x48050000
37 #define DSS_SYSCONFIG 0x0010
38
39 #define DISPC_BASE 0x48050400
40
41 /* DISPC common */
42 #define DISPC_REVISION 0x0000
43 #define DISPC_SYSCONFIG 0x0010
44 #define DISPC_SYSSTATUS 0x0014
45 #define DISPC_IRQSTATUS 0x0018
46 #define DISPC_IRQENABLE 0x001C
47 #define DISPC_CONTROL 0x0040
48 #define DISPC_CONFIG 0x0044
49 #define DISPC_CAPABLE 0x0048
50 #define DISPC_DEFAULT_COLOR0 0x004C
51 #define DISPC_DEFAULT_COLOR1 0x0050
52 #define DISPC_TRANS_COLOR0 0x0054
53 #define DISPC_TRANS_COLOR1 0x0058
54 #define DISPC_LINE_STATUS 0x005C
55 #define DISPC_LINE_NUMBER 0x0060
56 #define DISPC_TIMING_H 0x0064
57 #define DISPC_TIMING_V 0x0068
58 #define DISPC_POL_FREQ 0x006C
59 #define DISPC_DIVISOR 0x0070
60 #define DISPC_SIZE_DIG 0x0078
61 #define DISPC_SIZE_LCD 0x007C
62
63 #define DISPC_DATA_CYCLE1 0x01D4
64 #define DISPC_DATA_CYCLE2 0x01D8
65 #define DISPC_DATA_CYCLE3 0x01DC
66
67 /* DISPC GFX plane */
68 #define DISPC_GFX_BA0 0x0080
69 #define DISPC_GFX_BA1 0x0084
70 #define DISPC_GFX_POSITION 0x0088
71 #define DISPC_GFX_SIZE 0x008C
72 #define DISPC_GFX_ATTRIBUTES 0x00A0
73 #define DISPC_GFX_FIFO_THRESHOLD 0x00A4
74 #define DISPC_GFX_FIFO_SIZE_STATUS 0x00A8
75 #define DISPC_GFX_ROW_INC 0x00AC
76 #define DISPC_GFX_PIXEL_INC 0x00B0
77 #define DISPC_GFX_WINDOW_SKIP 0x00B4
78 #define DISPC_GFX_TABLE_BA 0x00B8
79
80 /* DISPC Video plane 1/2 */
81 #define DISPC_VID1_BASE 0x00BC
82 #define DISPC_VID2_BASE 0x014C
83
84 /* Offsets into DISPC_VID1/2_BASE */
85 #define DISPC_VID_BA0 0x0000
86 #define DISPC_VID_BA1 0x0004
87 #define DISPC_VID_POSITION 0x0008
88 #define DISPC_VID_SIZE 0x000C
89 #define DISPC_VID_ATTRIBUTES 0x0010
90 #define DISPC_VID_FIFO_THRESHOLD 0x0014
91 #define DISPC_VID_FIFO_SIZE_STATUS 0x0018
92 #define DISPC_VID_ROW_INC 0x001C
93 #define DISPC_VID_PIXEL_INC 0x0020
94 #define DISPC_VID_FIR 0x0024
95 #define DISPC_VID_PICTURE_SIZE 0x0028
96 #define DISPC_VID_ACCU0 0x002C
97 #define DISPC_VID_ACCU1 0x0030
98
99 /* 8 elements in 8 byte increments */
100 #define DISPC_VID_FIR_COEF_H0 0x0034
101 /* 8 elements in 8 byte increments */
102 #define DISPC_VID_FIR_COEF_HV0 0x0038
103 /* 5 elements in 4 byte increments */
104 #define DISPC_VID_CONV_COEF0 0x0074
105
106 #define DISPC_IRQ_FRAMEMASK 0x0001
107 #define DISPC_IRQ_VSYNC 0x0002
108 #define DISPC_IRQ_EVSYNC_EVEN 0x0004
109 #define DISPC_IRQ_EVSYNC_ODD 0x0008
110 #define DISPC_IRQ_ACBIAS_COUNT_STAT 0x0010
111 #define DISPC_IRQ_PROG_LINE_NUM 0x0020
112 #define DISPC_IRQ_GFX_FIFO_UNDERFLOW 0x0040
113 #define DISPC_IRQ_GFX_END_WIN 0x0080
114 #define DISPC_IRQ_PAL_GAMMA_MASK 0x0100
115 #define DISPC_IRQ_OCP_ERR 0x0200
116 #define DISPC_IRQ_VID1_FIFO_UNDERFLOW 0x0400
117 #define DISPC_IRQ_VID1_END_WIN 0x0800
118 #define DISPC_IRQ_VID2_FIFO_UNDERFLOW 0x1000
119 #define DISPC_IRQ_VID2_END_WIN 0x2000
120 #define DISPC_IRQ_SYNC_LOST 0x4000
121
122 #define DISPC_IRQ_MASK_ALL 0x7fff
123
124 #define DISPC_IRQ_MASK_ERROR (DISPC_IRQ_GFX_FIFO_UNDERFLOW | \
125 DISPC_IRQ_VID1_FIFO_UNDERFLOW | \
126 DISPC_IRQ_VID2_FIFO_UNDERFLOW | \
127 DISPC_IRQ_SYNC_LOST)
128
129 #define RFBI_CONTROL 0x48050040
130
131 #define MAX_PALETTE_SIZE (256 * 16)
132
133 #define FLD_MASK(pos, len) (((1 << len) - 1) << pos)
134
135 #define MOD_REG_FLD(reg, mask, val) \
136 dispc_write_reg((reg), (dispc_read_reg(reg) & ~(mask)) | (val));
137
138 #define OMAP2_SRAM_START 0x40200000
139 /* Maximum size, in reality this is smaller if SRAM is partially locked. */
140 #define OMAP2_SRAM_SIZE 0xa0000 /* 640k */
141
142 /* We support the SDRAM / SRAM types. See OMAPFB_PLANE_MEMTYPE_* in omapfb.h */
143 #define DISPC_MEMTYPE_NUM 2
144
145 #define RESMAP_SIZE(_page_cnt) \
146 ((_page_cnt + (sizeof(unsigned long) * 8) - 1) / 8)
147 #define RESMAP_PTR(_res_map, _page_nr) \
148 (((_res_map)->map) + (_page_nr) / (sizeof(unsigned long) * 8))
149 #define RESMAP_MASK(_page_nr) \
150 (1 << ((_page_nr) & (sizeof(unsigned long) * 8 - 1)))
151
152 struct resmap {
153 unsigned long start;
154 unsigned page_cnt;
155 unsigned long *map;
156 };
157
158 #define MAX_IRQ_HANDLERS 4
159
160 static struct {
161 void __iomem *base;
162
163 struct omapfb_mem_desc mem_desc;
164 struct resmap *res_map[DISPC_MEMTYPE_NUM];
165 atomic_t map_count[OMAPFB_PLANE_NUM];
166
167 dma_addr_t palette_paddr;
168 void *palette_vaddr;
169
170 int ext_mode;
171
172 struct {
173 u32 irq_mask;
174 void (*callback)(void *);
175 void *data;
176 } irq_handlers[MAX_IRQ_HANDLERS];
177 struct completion frame_done;
178
179 int fir_hinc[OMAPFB_PLANE_NUM];
180 int fir_vinc[OMAPFB_PLANE_NUM];
181
182 struct clk *dss_ick, *dss1_fck;
183 struct clk *dss_54m_fck;
184
185 enum omapfb_update_mode update_mode;
186 struct omapfb_device *fbdev;
187
188 struct omapfb_color_key color_key;
189 } dispc;
190
191 static void enable_lcd_clocks(int enable);
192
193 static void inline dispc_write_reg(int idx, u32 val)
194 {
195 __raw_writel(val, dispc.base + idx);
196 }
197
198 static u32 inline dispc_read_reg(int idx)
199 {
200 u32 l = __raw_readl(dispc.base + idx);
201 return l;
202 }
203
204 /* Select RFBI or bypass mode */
205 static void enable_rfbi_mode(int enable)
206 {
207 void __iomem *rfbi_control;
208 u32 l;
209
210 l = dispc_read_reg(DISPC_CONTROL);
211 /* Enable RFBI, GPIO0/1 */
212 l &= ~((1 << 11) | (1 << 15) | (1 << 16));
213 l |= enable ? (1 << 11) : 0;
214 /* RFBI En: GPIO0/1=10 RFBI Dis: GPIO0/1=11 */
215 l |= 1 << 15;
216 l |= enable ? 0 : (1 << 16);
217 dispc_write_reg(DISPC_CONTROL, l);
218
219 /* Set bypass mode in RFBI module */
220 rfbi_control = ioremap(RFBI_CONTROL, SZ_1K);
221 if (!rfbi_control) {
222 pr_err("Unable to ioremap rfbi_control\n");
223 return;
224 }
225 l = __raw_readl(rfbi_control);
226 l |= enable ? 0 : (1 << 1);
227 __raw_writel(l, rfbi_control);
228 iounmap(rfbi_control);
229 }
230
231 static void set_lcd_data_lines(int data_lines)
232 {
233 u32 l;
234 int code = 0;
235
236 switch (data_lines) {
237 case 12:
238 code = 0;
239 break;
240 case 16:
241 code = 1;
242 break;
243 case 18:
244 code = 2;
245 break;
246 case 24:
247 code = 3;
248 break;
249 default:
250 BUG();
251 }
252
253 l = dispc_read_reg(DISPC_CONTROL);
254 l &= ~(0x03 << 8);
255 l |= code << 8;
256 dispc_write_reg(DISPC_CONTROL, l);
257 }
258
259 static void set_load_mode(int mode)
260 {
261 BUG_ON(mode & ~(DISPC_LOAD_CLUT_ONLY | DISPC_LOAD_FRAME_ONLY |
262 DISPC_LOAD_CLUT_ONCE_FRAME));
263 MOD_REG_FLD(DISPC_CONFIG, 0x03 << 1, mode << 1);
264 }
265
266 void omap_dispc_set_lcd_size(int x, int y)
267 {
268 BUG_ON((x > (1 << 11)) || (y > (1 << 11)));
269 enable_lcd_clocks(1);
270 MOD_REG_FLD(DISPC_SIZE_LCD, FLD_MASK(16, 11) | FLD_MASK(0, 11),
271 ((y - 1) << 16) | (x - 1));
272 enable_lcd_clocks(0);
273 }
274 EXPORT_SYMBOL(omap_dispc_set_lcd_size);
275
276 void omap_dispc_set_digit_size(int x, int y)
277 {
278 BUG_ON((x > (1 << 11)) || (y > (1 << 11)));
279 enable_lcd_clocks(1);
280 MOD_REG_FLD(DISPC_SIZE_DIG, FLD_MASK(16, 11) | FLD_MASK(0, 11),
281 ((y - 1) << 16) | (x - 1));
282 enable_lcd_clocks(0);
283 }
284 EXPORT_SYMBOL(omap_dispc_set_digit_size);
285
286 static void setup_plane_fifo(int plane, int ext_mode)
287 {
288 const u32 ftrs_reg[] = { DISPC_GFX_FIFO_THRESHOLD,
289 DISPC_VID1_BASE + DISPC_VID_FIFO_THRESHOLD,
290 DISPC_VID2_BASE + DISPC_VID_FIFO_THRESHOLD };
291 const u32 fsz_reg[] = { DISPC_GFX_FIFO_SIZE_STATUS,
292 DISPC_VID1_BASE + DISPC_VID_FIFO_SIZE_STATUS,
293 DISPC_VID2_BASE + DISPC_VID_FIFO_SIZE_STATUS };
294 int low, high;
295 u32 l;
296
297 BUG_ON(plane > 2);
298
299 l = dispc_read_reg(fsz_reg[plane]);
300 l &= FLD_MASK(0, 11);
301 if (ext_mode) {
302 low = l * 3 / 4;
303 high = l;
304 } else {
305 low = l / 4;
306 high = l * 3 / 4;
307 }
308 MOD_REG_FLD(ftrs_reg[plane], FLD_MASK(16, 12) | FLD_MASK(0, 12),
309 (high << 16) | low);
310 }
311
312 void omap_dispc_enable_lcd_out(int enable)
313 {
314 enable_lcd_clocks(1);
315 MOD_REG_FLD(DISPC_CONTROL, 1, enable ? 1 : 0);
316 enable_lcd_clocks(0);
317 }
318 EXPORT_SYMBOL(omap_dispc_enable_lcd_out);
319
320 void omap_dispc_enable_digit_out(int enable)
321 {
322 enable_lcd_clocks(1);
323 MOD_REG_FLD(DISPC_CONTROL, 1 << 1, enable ? 1 << 1 : 0);
324 enable_lcd_clocks(0);
325 }
326 EXPORT_SYMBOL(omap_dispc_enable_digit_out);
327
328 static inline int _setup_plane(int plane, int channel_out,
329 u32 paddr, int screen_width,
330 int pos_x, int pos_y, int width, int height,
331 int color_mode)
332 {
333 const u32 at_reg[] = { DISPC_GFX_ATTRIBUTES,
334 DISPC_VID1_BASE + DISPC_VID_ATTRIBUTES,
335 DISPC_VID2_BASE + DISPC_VID_ATTRIBUTES };
336 const u32 ba_reg[] = { DISPC_GFX_BA0, DISPC_VID1_BASE + DISPC_VID_BA0,
337 DISPC_VID2_BASE + DISPC_VID_BA0 };
338 const u32 ps_reg[] = { DISPC_GFX_POSITION,
339 DISPC_VID1_BASE + DISPC_VID_POSITION,
340 DISPC_VID2_BASE + DISPC_VID_POSITION };
341 const u32 sz_reg[] = { DISPC_GFX_SIZE,
342 DISPC_VID1_BASE + DISPC_VID_PICTURE_SIZE,
343 DISPC_VID2_BASE + DISPC_VID_PICTURE_SIZE };
344 const u32 ri_reg[] = { DISPC_GFX_ROW_INC,
345 DISPC_VID1_BASE + DISPC_VID_ROW_INC,
346 DISPC_VID2_BASE + DISPC_VID_ROW_INC };
347 const u32 vs_reg[] = { 0, DISPC_VID1_BASE + DISPC_VID_SIZE,
348 DISPC_VID2_BASE + DISPC_VID_SIZE };
349
350 int chout_shift, burst_shift;
351 int chout_val;
352 int color_code;
353 int bpp;
354 int cconv_en;
355 int set_vsize;
356 u32 l;
357
358 #ifdef VERBOSE
359 dev_dbg(dispc.fbdev->dev, "plane %d channel %d paddr %#08x scr_width %d"
360 " pos_x %d pos_y %d width %d height %d color_mode %d\n",
361 plane, channel_out, paddr, screen_width, pos_x, pos_y,
362 width, height, color_mode);
363 #endif
364
365 set_vsize = 0;
366 switch (plane) {
367 case OMAPFB_PLANE_GFX:
368 burst_shift = 6;
369 chout_shift = 8;
370 break;
371 case OMAPFB_PLANE_VID1:
372 case OMAPFB_PLANE_VID2:
373 burst_shift = 14;
374 chout_shift = 16;
375 set_vsize = 1;
376 break;
377 default:
378 return -EINVAL;
379 }
380
381 switch (channel_out) {
382 case OMAPFB_CHANNEL_OUT_LCD:
383 chout_val = 0;
384 break;
385 case OMAPFB_CHANNEL_OUT_DIGIT:
386 chout_val = 1;
387 break;
388 default:
389 return -EINVAL;
390 }
391
392 cconv_en = 0;
393 switch (color_mode) {
394 case OMAPFB_COLOR_RGB565:
395 color_code = DISPC_RGB_16_BPP;
396 bpp = 16;
397 break;
398 case OMAPFB_COLOR_YUV422:
399 if (plane == 0)
400 return -EINVAL;
401 color_code = DISPC_UYVY_422;
402 cconv_en = 1;
403 bpp = 16;
404 break;
405 case OMAPFB_COLOR_YUY422:
406 if (plane == 0)
407 return -EINVAL;
408 color_code = DISPC_YUV2_422;
409 cconv_en = 1;
410 bpp = 16;
411 break;
412 default:
413 return -EINVAL;
414 }
415
416 l = dispc_read_reg(at_reg[plane]);
417
418 l &= ~(0x0f << 1);
419 l |= color_code << 1;
420 l &= ~(1 << 9);
421 l |= cconv_en << 9;
422
423 l &= ~(0x03 << burst_shift);
424 l |= DISPC_BURST_8x32 << burst_shift;
425
426 l &= ~(1 << chout_shift);
427 l |= chout_val << chout_shift;
428
429 dispc_write_reg(at_reg[plane], l);
430
431 dispc_write_reg(ba_reg[plane], paddr);
432 MOD_REG_FLD(ps_reg[plane],
433 FLD_MASK(16, 11) | FLD_MASK(0, 11), (pos_y << 16) | pos_x);
434
435 MOD_REG_FLD(sz_reg[plane], FLD_MASK(16, 11) | FLD_MASK(0, 11),
436 ((height - 1) << 16) | (width - 1));
437
438 if (set_vsize) {
439 /* Set video size if set_scale hasn't set it */
440 if (!dispc.fir_vinc[plane])
441 MOD_REG_FLD(vs_reg[plane],
442 FLD_MASK(16, 11), (height - 1) << 16);
443 if (!dispc.fir_hinc[plane])
444 MOD_REG_FLD(vs_reg[plane],
445 FLD_MASK(0, 11), width - 1);
446 }
447
448 dispc_write_reg(ri_reg[plane], (screen_width - width) * bpp / 8 + 1);
449
450 return height * screen_width * bpp / 8;
451 }
452
453 static int omap_dispc_setup_plane(int plane, int channel_out,
454 unsigned long offset,
455 int screen_width,
456 int pos_x, int pos_y, int width, int height,
457 int color_mode)
458 {
459 u32 paddr;
460 int r;
461
462 if ((unsigned)plane > dispc.mem_desc.region_cnt)
463 return -EINVAL;
464 paddr = dispc.mem_desc.region[plane].paddr + offset;
465 enable_lcd_clocks(1);
466 r = _setup_plane(plane, channel_out, paddr,
467 screen_width,
468 pos_x, pos_y, width, height, color_mode);
469 enable_lcd_clocks(0);
470 return r;
471 }
472
473 static void write_firh_reg(int plane, int reg, u32 value)
474 {
475 u32 base;
476
477 if (plane == 1)
478 base = DISPC_VID1_BASE + DISPC_VID_FIR_COEF_H0;
479 else
480 base = DISPC_VID2_BASE + DISPC_VID_FIR_COEF_H0;
481 dispc_write_reg(base + reg * 8, value);
482 }
483
484 static void write_firhv_reg(int plane, int reg, u32 value)
485 {
486 u32 base;
487
488 if (plane == 1)
489 base = DISPC_VID1_BASE + DISPC_VID_FIR_COEF_HV0;
490 else
491 base = DISPC_VID2_BASE + DISPC_VID_FIR_COEF_HV0;
492 dispc_write_reg(base + reg * 8, value);
493 }
494
495 static void set_upsampling_coef_table(int plane)
496 {
497 const u32 coef[][2] = {
498 { 0x00800000, 0x00800000 },
499 { 0x0D7CF800, 0x037B02FF },
500 { 0x1E70F5FF, 0x0C6F05FE },
501 { 0x335FF5FE, 0x205907FB },
502 { 0xF74949F7, 0x00404000 },
503 { 0xF55F33FB, 0x075920FE },
504 { 0xF5701EFE, 0x056F0CFF },
505 { 0xF87C0DFF, 0x027B0300 },
506 };
507 int i;
508
509 for (i = 0; i < 8; i++) {
510 write_firh_reg(plane, i, coef[i][0]);
511 write_firhv_reg(plane, i, coef[i][1]);
512 }
513 }
514
515 static int omap_dispc_set_scale(int plane,
516 int orig_width, int orig_height,
517 int out_width, int out_height)
518 {
519 const u32 at_reg[] = { 0, DISPC_VID1_BASE + DISPC_VID_ATTRIBUTES,
520 DISPC_VID2_BASE + DISPC_VID_ATTRIBUTES };
521 const u32 vs_reg[] = { 0, DISPC_VID1_BASE + DISPC_VID_SIZE,
522 DISPC_VID2_BASE + DISPC_VID_SIZE };
523 const u32 fir_reg[] = { 0, DISPC_VID1_BASE + DISPC_VID_FIR,
524 DISPC_VID2_BASE + DISPC_VID_FIR };
525
526 u32 l;
527 int fir_hinc;
528 int fir_vinc;
529
530 if ((unsigned)plane > OMAPFB_PLANE_NUM)
531 return -ENODEV;
532
533 if (plane == OMAPFB_PLANE_GFX &&
534 (out_width != orig_width || out_height != orig_height))
535 return -EINVAL;
536
537 enable_lcd_clocks(1);
538 if (orig_width < out_width) {
539 /*
540 * Upsampling.
541 * Currently you can only scale both dimensions in one way.
542 */
543 if (orig_height > out_height ||
544 orig_width * 8 < out_width ||
545 orig_height * 8 < out_height) {
546 enable_lcd_clocks(0);
547 return -EINVAL;
548 }
549 set_upsampling_coef_table(plane);
550 } else if (orig_width > out_width) {
551 /* Downsampling not yet supported
552 */
553
554 enable_lcd_clocks(0);
555 return -EINVAL;
556 }
557 if (!orig_width || orig_width == out_width)
558 fir_hinc = 0;
559 else
560 fir_hinc = 1024 * orig_width / out_width;
561 if (!orig_height || orig_height == out_height)
562 fir_vinc = 0;
563 else
564 fir_vinc = 1024 * orig_height / out_height;
565 dispc.fir_hinc[plane] = fir_hinc;
566 dispc.fir_vinc[plane] = fir_vinc;
567
568 MOD_REG_FLD(fir_reg[plane],
569 FLD_MASK(16, 12) | FLD_MASK(0, 12),
570 ((fir_vinc & 4095) << 16) |
571 (fir_hinc & 4095));
572
573 dev_dbg(dispc.fbdev->dev, "out_width %d out_height %d orig_width %d "
574 "orig_height %d fir_hinc %d fir_vinc %d\n",
575 out_width, out_height, orig_width, orig_height,
576 fir_hinc, fir_vinc);
577
578 MOD_REG_FLD(vs_reg[plane],
579 FLD_MASK(16, 11) | FLD_MASK(0, 11),
580 ((out_height - 1) << 16) | (out_width - 1));
581
582 l = dispc_read_reg(at_reg[plane]);
583 l &= ~(0x03 << 5);
584 l |= fir_hinc ? (1 << 5) : 0;
585 l |= fir_vinc ? (1 << 6) : 0;
586 dispc_write_reg(at_reg[plane], l);
587
588 enable_lcd_clocks(0);
589 return 0;
590 }
591
592 static int omap_dispc_enable_plane(int plane, int enable)
593 {
594 const u32 at_reg[] = { DISPC_GFX_ATTRIBUTES,
595 DISPC_VID1_BASE + DISPC_VID_ATTRIBUTES,
596 DISPC_VID2_BASE + DISPC_VID_ATTRIBUTES };
597 if ((unsigned int)plane > dispc.mem_desc.region_cnt)
598 return -EINVAL;
599
600 enable_lcd_clocks(1);
601 MOD_REG_FLD(at_reg[plane], 1, enable ? 1 : 0);
602 enable_lcd_clocks(0);
603
604 return 0;
605 }
606
607 static int omap_dispc_set_color_key(struct omapfb_color_key *ck)
608 {
609 u32 df_reg, tr_reg;
610 int shift, val;
611
612 switch (ck->channel_out) {
613 case OMAPFB_CHANNEL_OUT_LCD:
614 df_reg = DISPC_DEFAULT_COLOR0;
615 tr_reg = DISPC_TRANS_COLOR0;
616 shift = 10;
617 break;
618 case OMAPFB_CHANNEL_OUT_DIGIT:
619 df_reg = DISPC_DEFAULT_COLOR1;
620 tr_reg = DISPC_TRANS_COLOR1;
621 shift = 12;
622 break;
623 default:
624 return -EINVAL;
625 }
626 switch (ck->key_type) {
627 case OMAPFB_COLOR_KEY_DISABLED:
628 val = 0;
629 break;
630 case OMAPFB_COLOR_KEY_GFX_DST:
631 val = 1;
632 break;
633 case OMAPFB_COLOR_KEY_VID_SRC:
634 val = 3;
635 break;
636 default:
637 return -EINVAL;
638 }
639 enable_lcd_clocks(1);
640 MOD_REG_FLD(DISPC_CONFIG, FLD_MASK(shift, 2), val << shift);
641
642 if (val != 0)
643 dispc_write_reg(tr_reg, ck->trans_key);
644 dispc_write_reg(df_reg, ck->background);
645 enable_lcd_clocks(0);
646
647 dispc.color_key = *ck;
648
649 return 0;
650 }
651
652 static int omap_dispc_get_color_key(struct omapfb_color_key *ck)
653 {
654 *ck = dispc.color_key;
655 return 0;
656 }
657
658 static void load_palette(void)
659 {
660 }
661
662 static int omap_dispc_set_update_mode(enum omapfb_update_mode mode)
663 {
664 int r = 0;
665
666 if (mode != dispc.update_mode) {
667 switch (mode) {
668 case OMAPFB_AUTO_UPDATE:
669 case OMAPFB_MANUAL_UPDATE:
670 enable_lcd_clocks(1);
671 omap_dispc_enable_lcd_out(1);
672 dispc.update_mode = mode;
673 break;
674 case OMAPFB_UPDATE_DISABLED:
675 init_completion(&dispc.frame_done);
676 omap_dispc_enable_lcd_out(0);
677 if (!wait_for_completion_timeout(&dispc.frame_done,
678 msecs_to_jiffies(500))) {
679 dev_err(dispc.fbdev->dev,
680 "timeout waiting for FRAME DONE\n");
681 }
682 dispc.update_mode = mode;
683 enable_lcd_clocks(0);
684 break;
685 default:
686 r = -EINVAL;
687 }
688 }
689
690 return r;
691 }
692
693 static void omap_dispc_get_caps(int plane, struct omapfb_caps *caps)
694 {
695 caps->ctrl |= OMAPFB_CAPS_PLANE_RELOCATE_MEM;
696 if (plane > 0)
697 caps->ctrl |= OMAPFB_CAPS_PLANE_SCALE;
698 caps->plane_color |= (1 << OMAPFB_COLOR_RGB565) |
699 (1 << OMAPFB_COLOR_YUV422) |
700 (1 << OMAPFB_COLOR_YUY422);
701 if (plane == 0)
702 caps->plane_color |= (1 << OMAPFB_COLOR_CLUT_8BPP) |
703 (1 << OMAPFB_COLOR_CLUT_4BPP) |
704 (1 << OMAPFB_COLOR_CLUT_2BPP) |
705 (1 << OMAPFB_COLOR_CLUT_1BPP) |
706 (1 << OMAPFB_COLOR_RGB444);
707 }
708
709 static enum omapfb_update_mode omap_dispc_get_update_mode(void)
710 {
711 return dispc.update_mode;
712 }
713
714 static void setup_color_conv_coef(void)
715 {
716 u32 mask = FLD_MASK(16, 11) | FLD_MASK(0, 11);
717 int cf1_reg = DISPC_VID1_BASE + DISPC_VID_CONV_COEF0;
718 int cf2_reg = DISPC_VID2_BASE + DISPC_VID_CONV_COEF0;
719 int at1_reg = DISPC_VID1_BASE + DISPC_VID_ATTRIBUTES;
720 int at2_reg = DISPC_VID2_BASE + DISPC_VID_ATTRIBUTES;
721 const struct color_conv_coef {
722 int ry, rcr, rcb, gy, gcr, gcb, by, bcr, bcb;
723 int full_range;
724 } ctbl_bt601_5 = {
725 298, 409, 0, 298, -208, -100, 298, 0, 517, 0,
726 };
727 const struct color_conv_coef *ct;
728 #define CVAL(x, y) (((x & 2047) << 16) | (y & 2047))
729
730 ct = &ctbl_bt601_5;
731
732 MOD_REG_FLD(cf1_reg, mask, CVAL(ct->rcr, ct->ry));
733 MOD_REG_FLD(cf1_reg + 4, mask, CVAL(ct->gy, ct->rcb));
734 MOD_REG_FLD(cf1_reg + 8, mask, CVAL(ct->gcb, ct->gcr));
735 MOD_REG_FLD(cf1_reg + 12, mask, CVAL(ct->bcr, ct->by));
736 MOD_REG_FLD(cf1_reg + 16, mask, CVAL(0, ct->bcb));
737
738 MOD_REG_FLD(cf2_reg, mask, CVAL(ct->rcr, ct->ry));
739 MOD_REG_FLD(cf2_reg + 4, mask, CVAL(ct->gy, ct->rcb));
740 MOD_REG_FLD(cf2_reg + 8, mask, CVAL(ct->gcb, ct->gcr));
741 MOD_REG_FLD(cf2_reg + 12, mask, CVAL(ct->bcr, ct->by));
742 MOD_REG_FLD(cf2_reg + 16, mask, CVAL(0, ct->bcb));
743 #undef CVAL
744
745 MOD_REG_FLD(at1_reg, (1 << 11), ct->full_range);
746 MOD_REG_FLD(at2_reg, (1 << 11), ct->full_range);
747 }
748
749 static void calc_ck_div(int is_tft, int pck, int *lck_div, int *pck_div)
750 {
751 unsigned long fck, lck;
752
753 *lck_div = 1;
754 pck = max(1, pck);
755 fck = clk_get_rate(dispc.dss1_fck);
756 lck = fck;
757 *pck_div = (lck + pck - 1) / pck;
758 if (is_tft)
759 *pck_div = max(2, *pck_div);
760 else
761 *pck_div = max(3, *pck_div);
762 if (*pck_div > 255) {
763 *pck_div = 255;
764 lck = pck * *pck_div;
765 *lck_div = fck / lck;
766 BUG_ON(*lck_div < 1);
767 if (*lck_div > 255) {
768 *lck_div = 255;
769 dev_warn(dispc.fbdev->dev, "pixclock %d kHz too low.\n",
770 pck / 1000);
771 }
772 }
773 }
774
775 static void set_lcd_tft_mode(int enable)
776 {
777 u32 mask;
778
779 mask = 1 << 3;
780 MOD_REG_FLD(DISPC_CONTROL, mask, enable ? mask : 0);
781 }
782
783 static void set_lcd_timings(void)
784 {
785 u32 l;
786 int lck_div, pck_div;
787 struct lcd_panel *panel = dispc.fbdev->panel;
788 int is_tft = panel->config & OMAP_LCDC_PANEL_TFT;
789 unsigned long fck;
790
791 l = dispc_read_reg(DISPC_TIMING_H);
792 l &= ~(FLD_MASK(0, 6) | FLD_MASK(8, 8) | FLD_MASK(20, 8));
793 l |= ( max(1, (min(64, panel->hsw))) - 1 ) << 0;
794 l |= ( max(1, (min(256, panel->hfp))) - 1 ) << 8;
795 l |= ( max(1, (min(256, panel->hbp))) - 1 ) << 20;
796 dispc_write_reg(DISPC_TIMING_H, l);
797
798 l = dispc_read_reg(DISPC_TIMING_V);
799 l &= ~(FLD_MASK(0, 6) | FLD_MASK(8, 8) | FLD_MASK(20, 8));
800 l |= ( max(1, (min(64, panel->vsw))) - 1 ) << 0;
801 l |= ( max(0, (min(255, panel->vfp))) - 0 ) << 8;
802 l |= ( max(0, (min(255, panel->vbp))) - 0 ) << 20;
803 dispc_write_reg(DISPC_TIMING_V, l);
804
805 l = dispc_read_reg(DISPC_POL_FREQ);
806 l &= ~FLD_MASK(12, 6);
807 l |= (panel->config & OMAP_LCDC_SIGNAL_MASK) << 12;
808 l |= panel->acb & 0xff;
809 dispc_write_reg(DISPC_POL_FREQ, l);
810
811 calc_ck_div(is_tft, panel->pixel_clock * 1000, &lck_div, &pck_div);
812
813 l = dispc_read_reg(DISPC_DIVISOR);
814 l &= ~(FLD_MASK(16, 8) | FLD_MASK(0, 8));
815 l |= (lck_div << 16) | (pck_div << 0);
816 dispc_write_reg(DISPC_DIVISOR, l);
817
818 /* update panel info with the exact clock */
819 fck = clk_get_rate(dispc.dss1_fck);
820 panel->pixel_clock = fck / lck_div / pck_div / 1000;
821 }
822
823 static void recalc_irq_mask(void)
824 {
825 int i;
826 unsigned long irq_mask = DISPC_IRQ_MASK_ERROR;
827
828 for (i = 0; i < MAX_IRQ_HANDLERS; i++) {
829 if (!dispc.irq_handlers[i].callback)
830 continue;
831
832 irq_mask |= dispc.irq_handlers[i].irq_mask;
833 }
834
835 enable_lcd_clocks(1);
836 MOD_REG_FLD(DISPC_IRQENABLE, 0x7fff, irq_mask);
837 enable_lcd_clocks(0);
838 }
839
840 int omap_dispc_request_irq(unsigned long irq_mask, void (*callback)(void *data),
841 void *data)
842 {
843 int i;
844
845 BUG_ON(callback == NULL);
846
847 for (i = 0; i < MAX_IRQ_HANDLERS; i++) {
848 if (dispc.irq_handlers[i].callback)
849 continue;
850
851 dispc.irq_handlers[i].irq_mask = irq_mask;
852 dispc.irq_handlers[i].callback = callback;
853 dispc.irq_handlers[i].data = data;
854 recalc_irq_mask();
855
856 return 0;
857 }
858
859 return -EBUSY;
860 }
861 EXPORT_SYMBOL(omap_dispc_request_irq);
862
863 void omap_dispc_free_irq(unsigned long irq_mask, void (*callback)(void *data),
864 void *data)
865 {
866 int i;
867
868 for (i = 0; i < MAX_IRQ_HANDLERS; i++) {
869 if (dispc.irq_handlers[i].callback == callback &&
870 dispc.irq_handlers[i].data == data) {
871 dispc.irq_handlers[i].irq_mask = 0;
872 dispc.irq_handlers[i].callback = NULL;
873 dispc.irq_handlers[i].data = NULL;
874 recalc_irq_mask();
875 return;
876 }
877 }
878
879 BUG();
880 }
881 EXPORT_SYMBOL(omap_dispc_free_irq);
882
883 static irqreturn_t omap_dispc_irq_handler(int irq, void *dev)
884 {
885 u32 stat;
886 int i = 0;
887
888 enable_lcd_clocks(1);
889
890 stat = dispc_read_reg(DISPC_IRQSTATUS);
891 if (stat & DISPC_IRQ_FRAMEMASK)
892 complete(&dispc.frame_done);
893
894 if (stat & DISPC_IRQ_MASK_ERROR) {
895 if (printk_ratelimit()) {
896 dev_err(dispc.fbdev->dev, "irq error status %04x\n",
897 stat & 0x7fff);
898 }
899 }
900
901 for (i = 0; i < MAX_IRQ_HANDLERS; i++) {
902 if (unlikely(dispc.irq_handlers[i].callback &&
903 (stat & dispc.irq_handlers[i].irq_mask)))
904 dispc.irq_handlers[i].callback(
905 dispc.irq_handlers[i].data);
906 }
907
908 dispc_write_reg(DISPC_IRQSTATUS, stat);
909
910 enable_lcd_clocks(0);
911
912 return IRQ_HANDLED;
913 }
914
915 static int get_dss_clocks(void)
916 {
917 dispc.dss_ick = clk_get(dispc.fbdev->dev, "ick");
918 if (IS_ERR(dispc.dss_ick)) {
919 dev_err(dispc.fbdev->dev, "can't get ick\n");
920 return PTR_ERR(dispc.dss_ick);
921 }
922
923 dispc.dss1_fck = clk_get(dispc.fbdev->dev, "dss1_fck");
924 if (IS_ERR(dispc.dss1_fck)) {
925 dev_err(dispc.fbdev->dev, "can't get dss1_fck\n");
926 clk_put(dispc.dss_ick);
927 return PTR_ERR(dispc.dss1_fck);
928 }
929
930 dispc.dss_54m_fck = clk_get(dispc.fbdev->dev, "tv_fck");
931 if (IS_ERR(dispc.dss_54m_fck)) {
932 dev_err(dispc.fbdev->dev, "can't get tv_fck\n");
933 clk_put(dispc.dss_ick);
934 clk_put(dispc.dss1_fck);
935 return PTR_ERR(dispc.dss_54m_fck);
936 }
937
938 return 0;
939 }
940
941 static void put_dss_clocks(void)
942 {
943 clk_put(dispc.dss_54m_fck);
944 clk_put(dispc.dss1_fck);
945 clk_put(dispc.dss_ick);
946 }
947
948 static void enable_lcd_clocks(int enable)
949 {
950 if (enable) {
951 clk_enable(dispc.dss_ick);
952 clk_enable(dispc.dss1_fck);
953 } else {
954 clk_disable(dispc.dss1_fck);
955 clk_disable(dispc.dss_ick);
956 }
957 }
958
959 static void enable_digit_clocks(int enable)
960 {
961 if (enable)
962 clk_enable(dispc.dss_54m_fck);
963 else
964 clk_disable(dispc.dss_54m_fck);
965 }
966
967 static void omap_dispc_suspend(void)
968 {
969 if (dispc.update_mode == OMAPFB_AUTO_UPDATE) {
970 init_completion(&dispc.frame_done);
971 omap_dispc_enable_lcd_out(0);
972 if (!wait_for_completion_timeout(&dispc.frame_done,
973 msecs_to_jiffies(500))) {
974 dev_err(dispc.fbdev->dev,
975 "timeout waiting for FRAME DONE\n");
976 }
977 enable_lcd_clocks(0);
978 }
979 }
980
981 static void omap_dispc_resume(void)
982 {
983 if (dispc.update_mode == OMAPFB_AUTO_UPDATE) {
984 enable_lcd_clocks(1);
985 if (!dispc.ext_mode) {
986 set_lcd_timings();
987 load_palette();
988 }
989 omap_dispc_enable_lcd_out(1);
990 }
991 }
992
993
994 static int omap_dispc_update_window(struct fb_info *fbi,
995 struct omapfb_update_window *win,
996 void (*complete_callback)(void *arg),
997 void *complete_callback_data)
998 {
999 return dispc.update_mode == OMAPFB_UPDATE_DISABLED ? -ENODEV : 0;
1000 }
1001
1002 static int mmap_kern(struct omapfb_mem_region *region)
1003 {
1004 struct vm_struct *kvma;
1005 struct vm_area_struct vma;
1006 pgprot_t pgprot;
1007 unsigned long vaddr;
1008
1009 kvma = get_vm_area(region->size, VM_IOREMAP);
1010 if (kvma == NULL) {
1011 dev_err(dispc.fbdev->dev, "can't get kernel vm area\n");
1012 return -ENOMEM;
1013 }
1014 vma.vm_mm = &init_mm;
1015
1016 vaddr = (unsigned long)kvma->addr;
1017
1018 pgprot = pgprot_writecombine(pgprot_kernel);
1019 vma.vm_start = vaddr;
1020 vma.vm_end = vaddr + region->size;
1021 if (io_remap_pfn_range(&vma, vaddr, region->paddr >> PAGE_SHIFT,
1022 region->size, pgprot) < 0) {
1023 dev_err(dispc.fbdev->dev, "kernel mmap for FBMEM failed\n");
1024 return -EAGAIN;
1025 }
1026 region->vaddr = (void *)vaddr;
1027
1028 return 0;
1029 }
1030
1031 static void mmap_user_open(struct vm_area_struct *vma)
1032 {
1033 int plane = (int)vma->vm_private_data;
1034
1035 atomic_inc(&dispc.map_count[plane]);
1036 }
1037
1038 static void mmap_user_close(struct vm_area_struct *vma)
1039 {
1040 int plane = (int)vma->vm_private_data;
1041
1042 atomic_dec(&dispc.map_count[plane]);
1043 }
1044
1045 static const struct vm_operations_struct mmap_user_ops = {
1046 .open = mmap_user_open,
1047 .close = mmap_user_close,
1048 };
1049
1050 static int omap_dispc_mmap_user(struct fb_info *info,
1051 struct vm_area_struct *vma)
1052 {
1053 struct omapfb_plane_struct *plane = info->par;
1054 unsigned long off;
1055 unsigned long start;
1056 u32 len;
1057
1058 if (vma->vm_end - vma->vm_start == 0)
1059 return 0;
1060 if (vma->vm_pgoff > (~0UL >> PAGE_SHIFT))
1061 return -EINVAL;
1062 off = vma->vm_pgoff << PAGE_SHIFT;
1063
1064 start = info->fix.smem_start;
1065 len = info->fix.smem_len;
1066 if (off >= len)
1067 return -EINVAL;
1068 if ((vma->vm_end - vma->vm_start + off) > len)
1069 return -EINVAL;
1070 off += start;
1071 vma->vm_pgoff = off >> PAGE_SHIFT;
1072 vma->vm_flags |= VM_IO | VM_RESERVED;
1073 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
1074 vma->vm_ops = &mmap_user_ops;
1075 vma->vm_private_data = (void *)plane->idx;
1076 if (io_remap_pfn_range(vma, vma->vm_start, off >> PAGE_SHIFT,
1077 vma->vm_end - vma->vm_start, vma->vm_page_prot))
1078 return -EAGAIN;
1079 /* vm_ops.open won't be called for mmap itself. */
1080 atomic_inc(&dispc.map_count[plane->idx]);
1081 return 0;
1082 }
1083
1084 static void unmap_kern(struct omapfb_mem_region *region)
1085 {
1086 vunmap(region->vaddr);
1087 }
1088
1089 static int alloc_palette_ram(void)
1090 {
1091 dispc.palette_vaddr = dma_alloc_writecombine(dispc.fbdev->dev,
1092 MAX_PALETTE_SIZE, &dispc.palette_paddr, GFP_KERNEL);
1093 if (dispc.palette_vaddr == NULL) {
1094 dev_err(dispc.fbdev->dev, "failed to alloc palette memory\n");
1095 return -ENOMEM;
1096 }
1097
1098 return 0;
1099 }
1100
1101 static void free_palette_ram(void)
1102 {
1103 dma_free_writecombine(dispc.fbdev->dev, MAX_PALETTE_SIZE,
1104 dispc.palette_vaddr, dispc.palette_paddr);
1105 }
1106
1107 static int alloc_fbmem(struct omapfb_mem_region *region)
1108 {
1109 region->vaddr = dma_alloc_writecombine(dispc.fbdev->dev,
1110 region->size, &region->paddr, GFP_KERNEL);
1111
1112 if (region->vaddr == NULL) {
1113 dev_err(dispc.fbdev->dev, "unable to allocate FB DMA memory\n");
1114 return -ENOMEM;
1115 }
1116
1117 return 0;
1118 }
1119
1120 static void free_fbmem(struct omapfb_mem_region *region)
1121 {
1122 dma_free_writecombine(dispc.fbdev->dev, region->size,
1123 region->vaddr, region->paddr);
1124 }
1125
1126 static struct resmap *init_resmap(unsigned long start, size_t size)
1127 {
1128 unsigned page_cnt;
1129 struct resmap *res_map;
1130
1131 page_cnt = PAGE_ALIGN(size) / PAGE_SIZE;
1132 res_map =
1133 kzalloc(sizeof(struct resmap) + RESMAP_SIZE(page_cnt), GFP_KERNEL);
1134 if (res_map == NULL)
1135 return NULL;
1136 res_map->start = start;
1137 res_map->page_cnt = page_cnt;
1138 res_map->map = (unsigned long *)(res_map + 1);
1139 return res_map;
1140 }
1141
1142 static void cleanup_resmap(struct resmap *res_map)
1143 {
1144 kfree(res_map);
1145 }
1146
1147 static inline int resmap_mem_type(unsigned long start)
1148 {
1149 if (start >= OMAP2_SRAM_START &&
1150 start < OMAP2_SRAM_START + OMAP2_SRAM_SIZE)
1151 return OMAPFB_MEMTYPE_SRAM;
1152 else
1153 return OMAPFB_MEMTYPE_SDRAM;
1154 }
1155
1156 static inline int resmap_page_reserved(struct resmap *res_map, unsigned page_nr)
1157 {
1158 return *RESMAP_PTR(res_map, page_nr) & RESMAP_MASK(page_nr) ? 1 : 0;
1159 }
1160
1161 static inline void resmap_reserve_page(struct resmap *res_map, unsigned page_nr)
1162 {
1163 BUG_ON(resmap_page_reserved(res_map, page_nr));
1164 *RESMAP_PTR(res_map, page_nr) |= RESMAP_MASK(page_nr);
1165 }
1166
1167 static inline void resmap_free_page(struct resmap *res_map, unsigned page_nr)
1168 {
1169 BUG_ON(!resmap_page_reserved(res_map, page_nr));
1170 *RESMAP_PTR(res_map, page_nr) &= ~RESMAP_MASK(page_nr);
1171 }
1172
1173 static void resmap_reserve_region(unsigned long start, size_t size)
1174 {
1175
1176 struct resmap *res_map;
1177 unsigned start_page;
1178 unsigned end_page;
1179 int mtype;
1180 unsigned i;
1181
1182 mtype = resmap_mem_type(start);
1183 res_map = dispc.res_map[mtype];
1184 dev_dbg(dispc.fbdev->dev, "reserve mem type %d start %08lx size %d\n",
1185 mtype, start, size);
1186 start_page = (start - res_map->start) / PAGE_SIZE;
1187 end_page = start_page + PAGE_ALIGN(size) / PAGE_SIZE;
1188 for (i = start_page; i < end_page; i++)
1189 resmap_reserve_page(res_map, i);
1190 }
1191
1192 static void resmap_free_region(unsigned long start, size_t size)
1193 {
1194 struct resmap *res_map;
1195 unsigned start_page;
1196 unsigned end_page;
1197 unsigned i;
1198 int mtype;
1199
1200 mtype = resmap_mem_type(start);
1201 res_map = dispc.res_map[mtype];
1202 dev_dbg(dispc.fbdev->dev, "free mem type %d start %08lx size %d\n",
1203 mtype, start, size);
1204 start_page = (start - res_map->start) / PAGE_SIZE;
1205 end_page = start_page + PAGE_ALIGN(size) / PAGE_SIZE;
1206 for (i = start_page; i < end_page; i++)
1207 resmap_free_page(res_map, i);
1208 }
1209
1210 static unsigned long resmap_alloc_region(int mtype, size_t size)
1211 {
1212 unsigned i;
1213 unsigned total;
1214 unsigned start_page;
1215 unsigned long start;
1216 struct resmap *res_map = dispc.res_map[mtype];
1217
1218 BUG_ON(mtype >= DISPC_MEMTYPE_NUM || res_map == NULL || !size);
1219
1220 size = PAGE_ALIGN(size) / PAGE_SIZE;
1221 start_page = 0;
1222 total = 0;
1223 for (i = 0; i < res_map->page_cnt; i++) {
1224 if (resmap_page_reserved(res_map, i)) {
1225 start_page = i + 1;
1226 total = 0;
1227 } else if (++total == size)
1228 break;
1229 }
1230 if (total < size)
1231 return 0;
1232
1233 start = res_map->start + start_page * PAGE_SIZE;
1234 resmap_reserve_region(start, size * PAGE_SIZE);
1235
1236 return start;
1237 }
1238
1239 /* Note that this will only work for user mappings, we don't deal with
1240 * kernel mappings here, so fbcon will keep using the old region.
1241 */
1242 static int omap_dispc_setup_mem(int plane, size_t size, int mem_type,
1243 unsigned long *paddr)
1244 {
1245 struct omapfb_mem_region *rg;
1246 unsigned long new_addr = 0;
1247
1248 if ((unsigned)plane > dispc.mem_desc.region_cnt)
1249 return -EINVAL;
1250 if (mem_type >= DISPC_MEMTYPE_NUM)
1251 return -EINVAL;
1252 if (dispc.res_map[mem_type] == NULL)
1253 return -ENOMEM;
1254 rg = &dispc.mem_desc.region[plane];
1255 if (size == rg->size && mem_type == rg->type)
1256 return 0;
1257 if (atomic_read(&dispc.map_count[plane]))
1258 return -EBUSY;
1259 if (rg->size != 0)
1260 resmap_free_region(rg->paddr, rg->size);
1261 if (size != 0) {
1262 new_addr = resmap_alloc_region(mem_type, size);
1263 if (!new_addr) {
1264 /* Reallocate old region. */
1265 resmap_reserve_region(rg->paddr, rg->size);
1266 return -ENOMEM;
1267 }
1268 }
1269 rg->paddr = new_addr;
1270 rg->size = size;
1271 rg->type = mem_type;
1272
1273 *paddr = new_addr;
1274
1275 return 0;
1276 }
1277
1278 static int setup_fbmem(struct omapfb_mem_desc *req_md)
1279 {
1280 struct omapfb_mem_region *rg;
1281 int i;
1282 int r;
1283 unsigned long mem_start[DISPC_MEMTYPE_NUM];
1284 unsigned long mem_end[DISPC_MEMTYPE_NUM];
1285
1286 if (!req_md->region_cnt) {
1287 dev_err(dispc.fbdev->dev, "no memory regions defined\n");
1288 return -ENOENT;
1289 }
1290
1291 rg = &req_md->region[0];
1292 memset(mem_start, 0xff, sizeof(mem_start));
1293 memset(mem_end, 0, sizeof(mem_end));
1294
1295 for (i = 0; i < req_md->region_cnt; i++, rg++) {
1296 int mtype;
1297 if (rg->paddr) {
1298 rg->alloc = 0;
1299 if (rg->vaddr == NULL) {
1300 rg->map = 1;
1301 if ((r = mmap_kern(rg)) < 0)
1302 return r;
1303 }
1304 } else {
1305 if (rg->type != OMAPFB_MEMTYPE_SDRAM) {
1306 dev_err(dispc.fbdev->dev,
1307 "unsupported memory type\n");
1308 return -EINVAL;
1309 }
1310 rg->alloc = rg->map = 1;
1311 if ((r = alloc_fbmem(rg)) < 0)
1312 return r;
1313 }
1314 mtype = rg->type;
1315
1316 if (rg->paddr < mem_start[mtype])
1317 mem_start[mtype] = rg->paddr;
1318 if (rg->paddr + rg->size > mem_end[mtype])
1319 mem_end[mtype] = rg->paddr + rg->size;
1320 }
1321
1322 for (i = 0; i < DISPC_MEMTYPE_NUM; i++) {
1323 unsigned long start;
1324 size_t size;
1325 if (mem_end[i] == 0)
1326 continue;
1327 start = mem_start[i];
1328 size = mem_end[i] - start;
1329 dispc.res_map[i] = init_resmap(start, size);
1330 r = -ENOMEM;
1331 if (dispc.res_map[i] == NULL)
1332 goto fail;
1333 /* Initial state is that everything is reserved. This
1334 * includes possible holes as well, which will never be
1335 * freed.
1336 */
1337 resmap_reserve_region(start, size);
1338 }
1339
1340 dispc.mem_desc = *req_md;
1341
1342 return 0;
1343 fail:
1344 for (i = 0; i < DISPC_MEMTYPE_NUM; i++) {
1345 if (dispc.res_map[i] != NULL)
1346 cleanup_resmap(dispc.res_map[i]);
1347 }
1348 return r;
1349 }
1350
1351 static void cleanup_fbmem(void)
1352 {
1353 struct omapfb_mem_region *rg;
1354 int i;
1355
1356 for (i = 0; i < DISPC_MEMTYPE_NUM; i++) {
1357 if (dispc.res_map[i] != NULL)
1358 cleanup_resmap(dispc.res_map[i]);
1359 }
1360 rg = &dispc.mem_desc.region[0];
1361 for (i = 0; i < dispc.mem_desc.region_cnt; i++, rg++) {
1362 if (rg->alloc)
1363 free_fbmem(rg);
1364 else {
1365 if (rg->map)
1366 unmap_kern(rg);
1367 }
1368 }
1369 }
1370
1371 static int omap_dispc_init(struct omapfb_device *fbdev, int ext_mode,
1372 struct omapfb_mem_desc *req_vram)
1373 {
1374 int r;
1375 u32 l;
1376 struct lcd_panel *panel = fbdev->panel;
1377 void __iomem *ram_fw_base;
1378 int tmo = 10000;
1379 int skip_init = 0;
1380 int i;
1381
1382 memset(&dispc, 0, sizeof(dispc));
1383
1384 dispc.base = ioremap(DISPC_BASE, SZ_1K);
1385 if (!dispc.base) {
1386 dev_err(fbdev->dev, "can't ioremap DISPC\n");
1387 return -ENOMEM;
1388 }
1389
1390 dispc.fbdev = fbdev;
1391 dispc.ext_mode = ext_mode;
1392
1393 init_completion(&dispc.frame_done);
1394
1395 if ((r = get_dss_clocks()) < 0)
1396 goto fail0;
1397
1398 enable_lcd_clocks(1);
1399
1400 #ifdef CONFIG_FB_OMAP_BOOTLOADER_INIT
1401 l = dispc_read_reg(DISPC_CONTROL);
1402 /* LCD enabled ? */
1403 if (l & 1) {
1404 pr_info("omapfb: skipping hardware initialization\n");
1405 skip_init = 1;
1406 }
1407 #endif
1408
1409 if (!skip_init) {
1410 /* Reset monitoring works only w/ the 54M clk */
1411 enable_digit_clocks(1);
1412
1413 /* Soft reset */
1414 MOD_REG_FLD(DISPC_SYSCONFIG, 1 << 1, 1 << 1);
1415
1416 while (!(dispc_read_reg(DISPC_SYSSTATUS) & 1)) {
1417 if (!--tmo) {
1418 dev_err(dispc.fbdev->dev, "soft reset failed\n");
1419 r = -ENODEV;
1420 enable_digit_clocks(0);
1421 goto fail1;
1422 }
1423 }
1424
1425 enable_digit_clocks(0);
1426 }
1427
1428 /* Enable smart standby/idle, autoidle and wakeup */
1429 l = dispc_read_reg(DISPC_SYSCONFIG);
1430 l &= ~((3 << 12) | (3 << 3));
1431 l |= (2 << 12) | (2 << 3) | (1 << 2) | (1 << 0);
1432 dispc_write_reg(DISPC_SYSCONFIG, l);
1433 omap_writel(1 << 0, DSS_BASE + DSS_SYSCONFIG);
1434
1435 /* Set functional clock autogating */
1436 l = dispc_read_reg(DISPC_CONFIG);
1437 l |= 1 << 9;
1438 dispc_write_reg(DISPC_CONFIG, l);
1439
1440 l = dispc_read_reg(DISPC_IRQSTATUS);
1441 dispc_write_reg(DISPC_IRQSTATUS, l);
1442
1443 recalc_irq_mask();
1444
1445 if ((r = request_irq(INT_24XX_DSS_IRQ, omap_dispc_irq_handler,
1446 0, MODULE_NAME, fbdev)) < 0) {
1447 dev_err(dispc.fbdev->dev, "can't get DSS IRQ\n");
1448 goto fail1;
1449 }
1450
1451 /* L3 firewall setting: enable access to OCM RAM */
1452 ram_fw_base = ioremap(0x68005000, SZ_1K);
1453 if (!ram_fw_base) {
1454 dev_err(dispc.fbdev->dev, "Cannot ioremap to enable OCM RAM\n");
1455 goto fail1;
1456 }
1457 __raw_writel(0x402000b0, ram_fw_base + 0xa0);
1458 iounmap(ram_fw_base);
1459
1460 if ((r = alloc_palette_ram()) < 0)
1461 goto fail2;
1462
1463 if ((r = setup_fbmem(req_vram)) < 0)
1464 goto fail3;
1465
1466 if (!skip_init) {
1467 for (i = 0; i < dispc.mem_desc.region_cnt; i++) {
1468 memset(dispc.mem_desc.region[i].vaddr, 0,
1469 dispc.mem_desc.region[i].size);
1470 }
1471
1472 /* Set logic clock to fck, pixel clock to fck/2 for now */
1473 MOD_REG_FLD(DISPC_DIVISOR, FLD_MASK(16, 8), 1 << 16);
1474 MOD_REG_FLD(DISPC_DIVISOR, FLD_MASK(0, 8), 2 << 0);
1475
1476 setup_plane_fifo(0, ext_mode);
1477 setup_plane_fifo(1, ext_mode);
1478 setup_plane_fifo(2, ext_mode);
1479
1480 setup_color_conv_coef();
1481
1482 set_lcd_tft_mode(panel->config & OMAP_LCDC_PANEL_TFT);
1483 set_load_mode(DISPC_LOAD_FRAME_ONLY);
1484
1485 if (!ext_mode) {
1486 set_lcd_data_lines(panel->data_lines);
1487 omap_dispc_set_lcd_size(panel->x_res, panel->y_res);
1488 set_lcd_timings();
1489 } else
1490 set_lcd_data_lines(panel->bpp);
1491 enable_rfbi_mode(ext_mode);
1492 }
1493
1494 l = dispc_read_reg(DISPC_REVISION);
1495 pr_info("omapfb: DISPC version %d.%d initialized\n",
1496 l >> 4 & 0x0f, l & 0x0f);
1497 enable_lcd_clocks(0);
1498
1499 return 0;
1500 fail3:
1501 free_palette_ram();
1502 fail2:
1503 free_irq(INT_24XX_DSS_IRQ, fbdev);
1504 fail1:
1505 enable_lcd_clocks(0);
1506 put_dss_clocks();
1507 fail0:
1508 iounmap(dispc.base);
1509 return r;
1510 }
1511
1512 static void omap_dispc_cleanup(void)
1513 {
1514 int i;
1515
1516 omap_dispc_set_update_mode(OMAPFB_UPDATE_DISABLED);
1517 /* This will also disable clocks that are on */
1518 for (i = 0; i < dispc.mem_desc.region_cnt; i++)
1519 omap_dispc_enable_plane(i, 0);
1520 cleanup_fbmem();
1521 free_palette_ram();
1522 free_irq(INT_24XX_DSS_IRQ, dispc.fbdev);
1523 put_dss_clocks();
1524 iounmap(dispc.base);
1525 }
1526
1527 const struct lcd_ctrl omap2_int_ctrl = {
1528 .name = "internal",
1529 .init = omap_dispc_init,
1530 .cleanup = omap_dispc_cleanup,
1531 .get_caps = omap_dispc_get_caps,
1532 .set_update_mode = omap_dispc_set_update_mode,
1533 .get_update_mode = omap_dispc_get_update_mode,
1534 .update_window = omap_dispc_update_window,
1535 .suspend = omap_dispc_suspend,
1536 .resume = omap_dispc_resume,
1537 .setup_plane = omap_dispc_setup_plane,
1538 .setup_mem = omap_dispc_setup_mem,
1539 .set_scale = omap_dispc_set_scale,
1540 .enable_plane = omap_dispc_enable_plane,
1541 .set_color_key = omap_dispc_set_color_key,
1542 .get_color_key = omap_dispc_get_color_key,
1543 .mmap = omap_dispc_mmap_user,
1544 };