]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/video/omap2/dss/dispc.c
ASoC: fsl-spdif: big-endian support
[mirror_ubuntu-zesty-kernel.git] / drivers / video / omap2 / dss / dispc.c
1 /*
2 * linux/drivers/video/omap2/dss/dispc.c
3 *
4 * Copyright (C) 2009 Nokia Corporation
5 * Author: Tomi Valkeinen <tomi.valkeinen@nokia.com>
6 *
7 * Some code and ideas taken from drivers/video/omap/ driver
8 * by Imre Deak.
9 *
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License version 2 as published by
12 * the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful, but WITHOUT
15 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
17 * more details.
18 *
19 * You should have received a copy of the GNU General Public License along with
20 * this program. If not, see <http://www.gnu.org/licenses/>.
21 */
22
23 #define DSS_SUBSYS_NAME "DISPC"
24
25 #include <linux/kernel.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/vmalloc.h>
28 #include <linux/export.h>
29 #include <linux/clk.h>
30 #include <linux/io.h>
31 #include <linux/jiffies.h>
32 #include <linux/seq_file.h>
33 #include <linux/delay.h>
34 #include <linux/workqueue.h>
35 #include <linux/hardirq.h>
36 #include <linux/platform_device.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/sizes.h>
39
40 #include <video/omapdss.h>
41
42 #include "dss.h"
43 #include "dss_features.h"
44 #include "dispc.h"
45
46 /* DISPC */
47 #define DISPC_SZ_REGS SZ_4K
48
49 enum omap_burst_size {
50 BURST_SIZE_X2 = 0,
51 BURST_SIZE_X4 = 1,
52 BURST_SIZE_X8 = 2,
53 };
54
55 #define REG_GET(idx, start, end) \
56 FLD_GET(dispc_read_reg(idx), start, end)
57
58 #define REG_FLD_MOD(idx, val, start, end) \
59 dispc_write_reg(idx, FLD_MOD(dispc_read_reg(idx), val, start, end))
60
61 struct dispc_features {
62 u8 sw_start;
63 u8 fp_start;
64 u8 bp_start;
65 u16 sw_max;
66 u16 vp_max;
67 u16 hp_max;
68 u8 mgr_width_start;
69 u8 mgr_height_start;
70 u16 mgr_width_max;
71 u16 mgr_height_max;
72 unsigned long max_lcd_pclk;
73 unsigned long max_tv_pclk;
74 int (*calc_scaling) (unsigned long pclk, unsigned long lclk,
75 const struct omap_video_timings *mgr_timings,
76 u16 width, u16 height, u16 out_width, u16 out_height,
77 enum omap_color_mode color_mode, bool *five_taps,
78 int *x_predecim, int *y_predecim, int *decim_x, int *decim_y,
79 u16 pos_x, unsigned long *core_clk, bool mem_to_mem);
80 unsigned long (*calc_core_clk) (unsigned long pclk,
81 u16 width, u16 height, u16 out_width, u16 out_height,
82 bool mem_to_mem);
83 u8 num_fifos;
84
85 /* swap GFX & WB fifos */
86 bool gfx_fifo_workaround:1;
87
88 /* no DISPC_IRQ_FRAMEDONETV on this SoC */
89 bool no_framedone_tv:1;
90
91 /* revert to the OMAP4 mechanism of DISPC Smart Standby operation */
92 bool mstandby_workaround:1;
93
94 bool set_max_preload:1;
95 };
96
97 #define DISPC_MAX_NR_FIFOS 5
98
99 static struct {
100 struct platform_device *pdev;
101 void __iomem *base;
102
103 int ctx_loss_cnt;
104
105 int irq;
106
107 unsigned long core_clk_rate;
108 unsigned long tv_pclk_rate;
109
110 u32 fifo_size[DISPC_MAX_NR_FIFOS];
111 /* maps which plane is using a fifo. fifo-id -> plane-id */
112 int fifo_assignment[DISPC_MAX_NR_FIFOS];
113
114 bool ctx_valid;
115 u32 ctx[DISPC_SZ_REGS / sizeof(u32)];
116
117 const struct dispc_features *feat;
118 } dispc;
119
120 enum omap_color_component {
121 /* used for all color formats for OMAP3 and earlier
122 * and for RGB and Y color component on OMAP4
123 */
124 DISPC_COLOR_COMPONENT_RGB_Y = 1 << 0,
125 /* used for UV component for
126 * OMAP_DSS_COLOR_YUV2, OMAP_DSS_COLOR_UYVY, OMAP_DSS_COLOR_NV12
127 * color formats on OMAP4
128 */
129 DISPC_COLOR_COMPONENT_UV = 1 << 1,
130 };
131
132 enum mgr_reg_fields {
133 DISPC_MGR_FLD_ENABLE,
134 DISPC_MGR_FLD_STNTFT,
135 DISPC_MGR_FLD_GO,
136 DISPC_MGR_FLD_TFTDATALINES,
137 DISPC_MGR_FLD_STALLMODE,
138 DISPC_MGR_FLD_TCKENABLE,
139 DISPC_MGR_FLD_TCKSELECTION,
140 DISPC_MGR_FLD_CPR,
141 DISPC_MGR_FLD_FIFOHANDCHECK,
142 /* used to maintain a count of the above fields */
143 DISPC_MGR_FLD_NUM,
144 };
145
146 static const struct {
147 const char *name;
148 u32 vsync_irq;
149 u32 framedone_irq;
150 u32 sync_lost_irq;
151 struct reg_field reg_desc[DISPC_MGR_FLD_NUM];
152 } mgr_desc[] = {
153 [OMAP_DSS_CHANNEL_LCD] = {
154 .name = "LCD",
155 .vsync_irq = DISPC_IRQ_VSYNC,
156 .framedone_irq = DISPC_IRQ_FRAMEDONE,
157 .sync_lost_irq = DISPC_IRQ_SYNC_LOST,
158 .reg_desc = {
159 [DISPC_MGR_FLD_ENABLE] = { DISPC_CONTROL, 0, 0 },
160 [DISPC_MGR_FLD_STNTFT] = { DISPC_CONTROL, 3, 3 },
161 [DISPC_MGR_FLD_GO] = { DISPC_CONTROL, 5, 5 },
162 [DISPC_MGR_FLD_TFTDATALINES] = { DISPC_CONTROL, 9, 8 },
163 [DISPC_MGR_FLD_STALLMODE] = { DISPC_CONTROL, 11, 11 },
164 [DISPC_MGR_FLD_TCKENABLE] = { DISPC_CONFIG, 10, 10 },
165 [DISPC_MGR_FLD_TCKSELECTION] = { DISPC_CONFIG, 11, 11 },
166 [DISPC_MGR_FLD_CPR] = { DISPC_CONFIG, 15, 15 },
167 [DISPC_MGR_FLD_FIFOHANDCHECK] = { DISPC_CONFIG, 16, 16 },
168 },
169 },
170 [OMAP_DSS_CHANNEL_DIGIT] = {
171 .name = "DIGIT",
172 .vsync_irq = DISPC_IRQ_EVSYNC_ODD | DISPC_IRQ_EVSYNC_EVEN,
173 .framedone_irq = DISPC_IRQ_FRAMEDONETV,
174 .sync_lost_irq = DISPC_IRQ_SYNC_LOST_DIGIT,
175 .reg_desc = {
176 [DISPC_MGR_FLD_ENABLE] = { DISPC_CONTROL, 1, 1 },
177 [DISPC_MGR_FLD_STNTFT] = { },
178 [DISPC_MGR_FLD_GO] = { DISPC_CONTROL, 6, 6 },
179 [DISPC_MGR_FLD_TFTDATALINES] = { },
180 [DISPC_MGR_FLD_STALLMODE] = { },
181 [DISPC_MGR_FLD_TCKENABLE] = { DISPC_CONFIG, 12, 12 },
182 [DISPC_MGR_FLD_TCKSELECTION] = { DISPC_CONFIG, 13, 13 },
183 [DISPC_MGR_FLD_CPR] = { },
184 [DISPC_MGR_FLD_FIFOHANDCHECK] = { DISPC_CONFIG, 16, 16 },
185 },
186 },
187 [OMAP_DSS_CHANNEL_LCD2] = {
188 .name = "LCD2",
189 .vsync_irq = DISPC_IRQ_VSYNC2,
190 .framedone_irq = DISPC_IRQ_FRAMEDONE2,
191 .sync_lost_irq = DISPC_IRQ_SYNC_LOST2,
192 .reg_desc = {
193 [DISPC_MGR_FLD_ENABLE] = { DISPC_CONTROL2, 0, 0 },
194 [DISPC_MGR_FLD_STNTFT] = { DISPC_CONTROL2, 3, 3 },
195 [DISPC_MGR_FLD_GO] = { DISPC_CONTROL2, 5, 5 },
196 [DISPC_MGR_FLD_TFTDATALINES] = { DISPC_CONTROL2, 9, 8 },
197 [DISPC_MGR_FLD_STALLMODE] = { DISPC_CONTROL2, 11, 11 },
198 [DISPC_MGR_FLD_TCKENABLE] = { DISPC_CONFIG2, 10, 10 },
199 [DISPC_MGR_FLD_TCKSELECTION] = { DISPC_CONFIG2, 11, 11 },
200 [DISPC_MGR_FLD_CPR] = { DISPC_CONFIG2, 15, 15 },
201 [DISPC_MGR_FLD_FIFOHANDCHECK] = { DISPC_CONFIG2, 16, 16 },
202 },
203 },
204 [OMAP_DSS_CHANNEL_LCD3] = {
205 .name = "LCD3",
206 .vsync_irq = DISPC_IRQ_VSYNC3,
207 .framedone_irq = DISPC_IRQ_FRAMEDONE3,
208 .sync_lost_irq = DISPC_IRQ_SYNC_LOST3,
209 .reg_desc = {
210 [DISPC_MGR_FLD_ENABLE] = { DISPC_CONTROL3, 0, 0 },
211 [DISPC_MGR_FLD_STNTFT] = { DISPC_CONTROL3, 3, 3 },
212 [DISPC_MGR_FLD_GO] = { DISPC_CONTROL3, 5, 5 },
213 [DISPC_MGR_FLD_TFTDATALINES] = { DISPC_CONTROL3, 9, 8 },
214 [DISPC_MGR_FLD_STALLMODE] = { DISPC_CONTROL3, 11, 11 },
215 [DISPC_MGR_FLD_TCKENABLE] = { DISPC_CONFIG3, 10, 10 },
216 [DISPC_MGR_FLD_TCKSELECTION] = { DISPC_CONFIG3, 11, 11 },
217 [DISPC_MGR_FLD_CPR] = { DISPC_CONFIG3, 15, 15 },
218 [DISPC_MGR_FLD_FIFOHANDCHECK] = { DISPC_CONFIG3, 16, 16 },
219 },
220 },
221 };
222
223 struct color_conv_coef {
224 int ry, rcr, rcb, gy, gcr, gcb, by, bcr, bcb;
225 int full_range;
226 };
227
228 static unsigned long dispc_plane_pclk_rate(enum omap_plane plane);
229 static unsigned long dispc_plane_lclk_rate(enum omap_plane plane);
230
231 static inline void dispc_write_reg(const u16 idx, u32 val)
232 {
233 __raw_writel(val, dispc.base + idx);
234 }
235
236 static inline u32 dispc_read_reg(const u16 idx)
237 {
238 return __raw_readl(dispc.base + idx);
239 }
240
241 static u32 mgr_fld_read(enum omap_channel channel, enum mgr_reg_fields regfld)
242 {
243 const struct reg_field rfld = mgr_desc[channel].reg_desc[regfld];
244 return REG_GET(rfld.reg, rfld.high, rfld.low);
245 }
246
247 static void mgr_fld_write(enum omap_channel channel,
248 enum mgr_reg_fields regfld, int val) {
249 const struct reg_field rfld = mgr_desc[channel].reg_desc[regfld];
250 REG_FLD_MOD(rfld.reg, val, rfld.high, rfld.low);
251 }
252
253 #define SR(reg) \
254 dispc.ctx[DISPC_##reg / sizeof(u32)] = dispc_read_reg(DISPC_##reg)
255 #define RR(reg) \
256 dispc_write_reg(DISPC_##reg, dispc.ctx[DISPC_##reg / sizeof(u32)])
257
258 static void dispc_save_context(void)
259 {
260 int i, j;
261
262 DSSDBG("dispc_save_context\n");
263
264 SR(IRQENABLE);
265 SR(CONTROL);
266 SR(CONFIG);
267 SR(LINE_NUMBER);
268 if (dss_has_feature(FEAT_ALPHA_FIXED_ZORDER) ||
269 dss_has_feature(FEAT_ALPHA_FREE_ZORDER))
270 SR(GLOBAL_ALPHA);
271 if (dss_has_feature(FEAT_MGR_LCD2)) {
272 SR(CONTROL2);
273 SR(CONFIG2);
274 }
275 if (dss_has_feature(FEAT_MGR_LCD3)) {
276 SR(CONTROL3);
277 SR(CONFIG3);
278 }
279
280 for (i = 0; i < dss_feat_get_num_mgrs(); i++) {
281 SR(DEFAULT_COLOR(i));
282 SR(TRANS_COLOR(i));
283 SR(SIZE_MGR(i));
284 if (i == OMAP_DSS_CHANNEL_DIGIT)
285 continue;
286 SR(TIMING_H(i));
287 SR(TIMING_V(i));
288 SR(POL_FREQ(i));
289 SR(DIVISORo(i));
290
291 SR(DATA_CYCLE1(i));
292 SR(DATA_CYCLE2(i));
293 SR(DATA_CYCLE3(i));
294
295 if (dss_has_feature(FEAT_CPR)) {
296 SR(CPR_COEF_R(i));
297 SR(CPR_COEF_G(i));
298 SR(CPR_COEF_B(i));
299 }
300 }
301
302 for (i = 0; i < dss_feat_get_num_ovls(); i++) {
303 SR(OVL_BA0(i));
304 SR(OVL_BA1(i));
305 SR(OVL_POSITION(i));
306 SR(OVL_SIZE(i));
307 SR(OVL_ATTRIBUTES(i));
308 SR(OVL_FIFO_THRESHOLD(i));
309 SR(OVL_ROW_INC(i));
310 SR(OVL_PIXEL_INC(i));
311 if (dss_has_feature(FEAT_PRELOAD))
312 SR(OVL_PRELOAD(i));
313 if (i == OMAP_DSS_GFX) {
314 SR(OVL_WINDOW_SKIP(i));
315 SR(OVL_TABLE_BA(i));
316 continue;
317 }
318 SR(OVL_FIR(i));
319 SR(OVL_PICTURE_SIZE(i));
320 SR(OVL_ACCU0(i));
321 SR(OVL_ACCU1(i));
322
323 for (j = 0; j < 8; j++)
324 SR(OVL_FIR_COEF_H(i, j));
325
326 for (j = 0; j < 8; j++)
327 SR(OVL_FIR_COEF_HV(i, j));
328
329 for (j = 0; j < 5; j++)
330 SR(OVL_CONV_COEF(i, j));
331
332 if (dss_has_feature(FEAT_FIR_COEF_V)) {
333 for (j = 0; j < 8; j++)
334 SR(OVL_FIR_COEF_V(i, j));
335 }
336
337 if (dss_has_feature(FEAT_HANDLE_UV_SEPARATE)) {
338 SR(OVL_BA0_UV(i));
339 SR(OVL_BA1_UV(i));
340 SR(OVL_FIR2(i));
341 SR(OVL_ACCU2_0(i));
342 SR(OVL_ACCU2_1(i));
343
344 for (j = 0; j < 8; j++)
345 SR(OVL_FIR_COEF_H2(i, j));
346
347 for (j = 0; j < 8; j++)
348 SR(OVL_FIR_COEF_HV2(i, j));
349
350 for (j = 0; j < 8; j++)
351 SR(OVL_FIR_COEF_V2(i, j));
352 }
353 if (dss_has_feature(FEAT_ATTR2))
354 SR(OVL_ATTRIBUTES2(i));
355 }
356
357 if (dss_has_feature(FEAT_CORE_CLK_DIV))
358 SR(DIVISOR);
359
360 dispc.ctx_loss_cnt = dss_get_ctx_loss_count();
361 dispc.ctx_valid = true;
362
363 DSSDBG("context saved, ctx_loss_count %d\n", dispc.ctx_loss_cnt);
364 }
365
366 static void dispc_restore_context(void)
367 {
368 int i, j, ctx;
369
370 DSSDBG("dispc_restore_context\n");
371
372 if (!dispc.ctx_valid)
373 return;
374
375 ctx = dss_get_ctx_loss_count();
376
377 if (ctx >= 0 && ctx == dispc.ctx_loss_cnt)
378 return;
379
380 DSSDBG("ctx_loss_count: saved %d, current %d\n",
381 dispc.ctx_loss_cnt, ctx);
382
383 /*RR(IRQENABLE);*/
384 /*RR(CONTROL);*/
385 RR(CONFIG);
386 RR(LINE_NUMBER);
387 if (dss_has_feature(FEAT_ALPHA_FIXED_ZORDER) ||
388 dss_has_feature(FEAT_ALPHA_FREE_ZORDER))
389 RR(GLOBAL_ALPHA);
390 if (dss_has_feature(FEAT_MGR_LCD2))
391 RR(CONFIG2);
392 if (dss_has_feature(FEAT_MGR_LCD3))
393 RR(CONFIG3);
394
395 for (i = 0; i < dss_feat_get_num_mgrs(); i++) {
396 RR(DEFAULT_COLOR(i));
397 RR(TRANS_COLOR(i));
398 RR(SIZE_MGR(i));
399 if (i == OMAP_DSS_CHANNEL_DIGIT)
400 continue;
401 RR(TIMING_H(i));
402 RR(TIMING_V(i));
403 RR(POL_FREQ(i));
404 RR(DIVISORo(i));
405
406 RR(DATA_CYCLE1(i));
407 RR(DATA_CYCLE2(i));
408 RR(DATA_CYCLE3(i));
409
410 if (dss_has_feature(FEAT_CPR)) {
411 RR(CPR_COEF_R(i));
412 RR(CPR_COEF_G(i));
413 RR(CPR_COEF_B(i));
414 }
415 }
416
417 for (i = 0; i < dss_feat_get_num_ovls(); i++) {
418 RR(OVL_BA0(i));
419 RR(OVL_BA1(i));
420 RR(OVL_POSITION(i));
421 RR(OVL_SIZE(i));
422 RR(OVL_ATTRIBUTES(i));
423 RR(OVL_FIFO_THRESHOLD(i));
424 RR(OVL_ROW_INC(i));
425 RR(OVL_PIXEL_INC(i));
426 if (dss_has_feature(FEAT_PRELOAD))
427 RR(OVL_PRELOAD(i));
428 if (i == OMAP_DSS_GFX) {
429 RR(OVL_WINDOW_SKIP(i));
430 RR(OVL_TABLE_BA(i));
431 continue;
432 }
433 RR(OVL_FIR(i));
434 RR(OVL_PICTURE_SIZE(i));
435 RR(OVL_ACCU0(i));
436 RR(OVL_ACCU1(i));
437
438 for (j = 0; j < 8; j++)
439 RR(OVL_FIR_COEF_H(i, j));
440
441 for (j = 0; j < 8; j++)
442 RR(OVL_FIR_COEF_HV(i, j));
443
444 for (j = 0; j < 5; j++)
445 RR(OVL_CONV_COEF(i, j));
446
447 if (dss_has_feature(FEAT_FIR_COEF_V)) {
448 for (j = 0; j < 8; j++)
449 RR(OVL_FIR_COEF_V(i, j));
450 }
451
452 if (dss_has_feature(FEAT_HANDLE_UV_SEPARATE)) {
453 RR(OVL_BA0_UV(i));
454 RR(OVL_BA1_UV(i));
455 RR(OVL_FIR2(i));
456 RR(OVL_ACCU2_0(i));
457 RR(OVL_ACCU2_1(i));
458
459 for (j = 0; j < 8; j++)
460 RR(OVL_FIR_COEF_H2(i, j));
461
462 for (j = 0; j < 8; j++)
463 RR(OVL_FIR_COEF_HV2(i, j));
464
465 for (j = 0; j < 8; j++)
466 RR(OVL_FIR_COEF_V2(i, j));
467 }
468 if (dss_has_feature(FEAT_ATTR2))
469 RR(OVL_ATTRIBUTES2(i));
470 }
471
472 if (dss_has_feature(FEAT_CORE_CLK_DIV))
473 RR(DIVISOR);
474
475 /* enable last, because LCD & DIGIT enable are here */
476 RR(CONTROL);
477 if (dss_has_feature(FEAT_MGR_LCD2))
478 RR(CONTROL2);
479 if (dss_has_feature(FEAT_MGR_LCD3))
480 RR(CONTROL3);
481 /* clear spurious SYNC_LOST_DIGIT interrupts */
482 dispc_clear_irqstatus(DISPC_IRQ_SYNC_LOST_DIGIT);
483
484 /*
485 * enable last so IRQs won't trigger before
486 * the context is fully restored
487 */
488 RR(IRQENABLE);
489
490 DSSDBG("context restored\n");
491 }
492
493 #undef SR
494 #undef RR
495
496 int dispc_runtime_get(void)
497 {
498 int r;
499
500 DSSDBG("dispc_runtime_get\n");
501
502 r = pm_runtime_get_sync(&dispc.pdev->dev);
503 WARN_ON(r < 0);
504 return r < 0 ? r : 0;
505 }
506 EXPORT_SYMBOL(dispc_runtime_get);
507
508 void dispc_runtime_put(void)
509 {
510 int r;
511
512 DSSDBG("dispc_runtime_put\n");
513
514 r = pm_runtime_put_sync(&dispc.pdev->dev);
515 WARN_ON(r < 0 && r != -ENOSYS);
516 }
517 EXPORT_SYMBOL(dispc_runtime_put);
518
519 u32 dispc_mgr_get_vsync_irq(enum omap_channel channel)
520 {
521 return mgr_desc[channel].vsync_irq;
522 }
523 EXPORT_SYMBOL(dispc_mgr_get_vsync_irq);
524
525 u32 dispc_mgr_get_framedone_irq(enum omap_channel channel)
526 {
527 if (channel == OMAP_DSS_CHANNEL_DIGIT && dispc.feat->no_framedone_tv)
528 return 0;
529
530 return mgr_desc[channel].framedone_irq;
531 }
532 EXPORT_SYMBOL(dispc_mgr_get_framedone_irq);
533
534 u32 dispc_mgr_get_sync_lost_irq(enum omap_channel channel)
535 {
536 return mgr_desc[channel].sync_lost_irq;
537 }
538 EXPORT_SYMBOL(dispc_mgr_get_sync_lost_irq);
539
540 u32 dispc_wb_get_framedone_irq(void)
541 {
542 return DISPC_IRQ_FRAMEDONEWB;
543 }
544
545 bool dispc_mgr_go_busy(enum omap_channel channel)
546 {
547 return mgr_fld_read(channel, DISPC_MGR_FLD_GO) == 1;
548 }
549 EXPORT_SYMBOL(dispc_mgr_go_busy);
550
551 void dispc_mgr_go(enum omap_channel channel)
552 {
553 WARN_ON(dispc_mgr_is_enabled(channel) == false);
554 WARN_ON(dispc_mgr_go_busy(channel));
555
556 DSSDBG("GO %s\n", mgr_desc[channel].name);
557
558 mgr_fld_write(channel, DISPC_MGR_FLD_GO, 1);
559 }
560 EXPORT_SYMBOL(dispc_mgr_go);
561
562 bool dispc_wb_go_busy(void)
563 {
564 return REG_GET(DISPC_CONTROL2, 6, 6) == 1;
565 }
566
567 void dispc_wb_go(void)
568 {
569 enum omap_plane plane = OMAP_DSS_WB;
570 bool enable, go;
571
572 enable = REG_GET(DISPC_OVL_ATTRIBUTES(plane), 0, 0) == 1;
573
574 if (!enable)
575 return;
576
577 go = REG_GET(DISPC_CONTROL2, 6, 6) == 1;
578 if (go) {
579 DSSERR("GO bit not down for WB\n");
580 return;
581 }
582
583 REG_FLD_MOD(DISPC_CONTROL2, 1, 6, 6);
584 }
585
586 static void dispc_ovl_write_firh_reg(enum omap_plane plane, int reg, u32 value)
587 {
588 dispc_write_reg(DISPC_OVL_FIR_COEF_H(plane, reg), value);
589 }
590
591 static void dispc_ovl_write_firhv_reg(enum omap_plane plane, int reg, u32 value)
592 {
593 dispc_write_reg(DISPC_OVL_FIR_COEF_HV(plane, reg), value);
594 }
595
596 static void dispc_ovl_write_firv_reg(enum omap_plane plane, int reg, u32 value)
597 {
598 dispc_write_reg(DISPC_OVL_FIR_COEF_V(plane, reg), value);
599 }
600
601 static void dispc_ovl_write_firh2_reg(enum omap_plane plane, int reg, u32 value)
602 {
603 BUG_ON(plane == OMAP_DSS_GFX);
604
605 dispc_write_reg(DISPC_OVL_FIR_COEF_H2(plane, reg), value);
606 }
607
608 static void dispc_ovl_write_firhv2_reg(enum omap_plane plane, int reg,
609 u32 value)
610 {
611 BUG_ON(plane == OMAP_DSS_GFX);
612
613 dispc_write_reg(DISPC_OVL_FIR_COEF_HV2(plane, reg), value);
614 }
615
616 static void dispc_ovl_write_firv2_reg(enum omap_plane plane, int reg, u32 value)
617 {
618 BUG_ON(plane == OMAP_DSS_GFX);
619
620 dispc_write_reg(DISPC_OVL_FIR_COEF_V2(plane, reg), value);
621 }
622
623 static void dispc_ovl_set_scale_coef(enum omap_plane plane, int fir_hinc,
624 int fir_vinc, int five_taps,
625 enum omap_color_component color_comp)
626 {
627 const struct dispc_coef *h_coef, *v_coef;
628 int i;
629
630 h_coef = dispc_ovl_get_scale_coef(fir_hinc, true);
631 v_coef = dispc_ovl_get_scale_coef(fir_vinc, five_taps);
632
633 for (i = 0; i < 8; i++) {
634 u32 h, hv;
635
636 h = FLD_VAL(h_coef[i].hc0_vc00, 7, 0)
637 | FLD_VAL(h_coef[i].hc1_vc0, 15, 8)
638 | FLD_VAL(h_coef[i].hc2_vc1, 23, 16)
639 | FLD_VAL(h_coef[i].hc3_vc2, 31, 24);
640 hv = FLD_VAL(h_coef[i].hc4_vc22, 7, 0)
641 | FLD_VAL(v_coef[i].hc1_vc0, 15, 8)
642 | FLD_VAL(v_coef[i].hc2_vc1, 23, 16)
643 | FLD_VAL(v_coef[i].hc3_vc2, 31, 24);
644
645 if (color_comp == DISPC_COLOR_COMPONENT_RGB_Y) {
646 dispc_ovl_write_firh_reg(plane, i, h);
647 dispc_ovl_write_firhv_reg(plane, i, hv);
648 } else {
649 dispc_ovl_write_firh2_reg(plane, i, h);
650 dispc_ovl_write_firhv2_reg(plane, i, hv);
651 }
652
653 }
654
655 if (five_taps) {
656 for (i = 0; i < 8; i++) {
657 u32 v;
658 v = FLD_VAL(v_coef[i].hc0_vc00, 7, 0)
659 | FLD_VAL(v_coef[i].hc4_vc22, 15, 8);
660 if (color_comp == DISPC_COLOR_COMPONENT_RGB_Y)
661 dispc_ovl_write_firv_reg(plane, i, v);
662 else
663 dispc_ovl_write_firv2_reg(plane, i, v);
664 }
665 }
666 }
667
668
669 static void dispc_ovl_write_color_conv_coef(enum omap_plane plane,
670 const struct color_conv_coef *ct)
671 {
672 #define CVAL(x, y) (FLD_VAL(x, 26, 16) | FLD_VAL(y, 10, 0))
673
674 dispc_write_reg(DISPC_OVL_CONV_COEF(plane, 0), CVAL(ct->rcr, ct->ry));
675 dispc_write_reg(DISPC_OVL_CONV_COEF(plane, 1), CVAL(ct->gy, ct->rcb));
676 dispc_write_reg(DISPC_OVL_CONV_COEF(plane, 2), CVAL(ct->gcb, ct->gcr));
677 dispc_write_reg(DISPC_OVL_CONV_COEF(plane, 3), CVAL(ct->bcr, ct->by));
678 dispc_write_reg(DISPC_OVL_CONV_COEF(plane, 4), CVAL(0, ct->bcb));
679
680 REG_FLD_MOD(DISPC_OVL_ATTRIBUTES(plane), ct->full_range, 11, 11);
681
682 #undef CVAL
683 }
684
685 static void dispc_setup_color_conv_coef(void)
686 {
687 int i;
688 int num_ovl = dss_feat_get_num_ovls();
689 int num_wb = dss_feat_get_num_wbs();
690 const struct color_conv_coef ctbl_bt601_5_ovl = {
691 298, 409, 0, 298, -208, -100, 298, 0, 517, 0,
692 };
693 const struct color_conv_coef ctbl_bt601_5_wb = {
694 66, 112, -38, 129, -94, -74, 25, -18, 112, 0,
695 };
696
697 for (i = 1; i < num_ovl; i++)
698 dispc_ovl_write_color_conv_coef(i, &ctbl_bt601_5_ovl);
699
700 for (; i < num_wb; i++)
701 dispc_ovl_write_color_conv_coef(i, &ctbl_bt601_5_wb);
702 }
703
704 static void dispc_ovl_set_ba0(enum omap_plane plane, u32 paddr)
705 {
706 dispc_write_reg(DISPC_OVL_BA0(plane), paddr);
707 }
708
709 static void dispc_ovl_set_ba1(enum omap_plane plane, u32 paddr)
710 {
711 dispc_write_reg(DISPC_OVL_BA1(plane), paddr);
712 }
713
714 static void dispc_ovl_set_ba0_uv(enum omap_plane plane, u32 paddr)
715 {
716 dispc_write_reg(DISPC_OVL_BA0_UV(plane), paddr);
717 }
718
719 static void dispc_ovl_set_ba1_uv(enum omap_plane plane, u32 paddr)
720 {
721 dispc_write_reg(DISPC_OVL_BA1_UV(plane), paddr);
722 }
723
724 static void dispc_ovl_set_pos(enum omap_plane plane,
725 enum omap_overlay_caps caps, int x, int y)
726 {
727 u32 val;
728
729 if ((caps & OMAP_DSS_OVL_CAP_POS) == 0)
730 return;
731
732 val = FLD_VAL(y, 26, 16) | FLD_VAL(x, 10, 0);
733
734 dispc_write_reg(DISPC_OVL_POSITION(plane), val);
735 }
736
737 static void dispc_ovl_set_input_size(enum omap_plane plane, int width,
738 int height)
739 {
740 u32 val = FLD_VAL(height - 1, 26, 16) | FLD_VAL(width - 1, 10, 0);
741
742 if (plane == OMAP_DSS_GFX || plane == OMAP_DSS_WB)
743 dispc_write_reg(DISPC_OVL_SIZE(plane), val);
744 else
745 dispc_write_reg(DISPC_OVL_PICTURE_SIZE(plane), val);
746 }
747
748 static void dispc_ovl_set_output_size(enum omap_plane plane, int width,
749 int height)
750 {
751 u32 val;
752
753 BUG_ON(plane == OMAP_DSS_GFX);
754
755 val = FLD_VAL(height - 1, 26, 16) | FLD_VAL(width - 1, 10, 0);
756
757 if (plane == OMAP_DSS_WB)
758 dispc_write_reg(DISPC_OVL_PICTURE_SIZE(plane), val);
759 else
760 dispc_write_reg(DISPC_OVL_SIZE(plane), val);
761 }
762
763 static void dispc_ovl_set_zorder(enum omap_plane plane,
764 enum omap_overlay_caps caps, u8 zorder)
765 {
766 if ((caps & OMAP_DSS_OVL_CAP_ZORDER) == 0)
767 return;
768
769 REG_FLD_MOD(DISPC_OVL_ATTRIBUTES(plane), zorder, 27, 26);
770 }
771
772 static void dispc_ovl_enable_zorder_planes(void)
773 {
774 int i;
775
776 if (!dss_has_feature(FEAT_ALPHA_FREE_ZORDER))
777 return;
778
779 for (i = 0; i < dss_feat_get_num_ovls(); i++)
780 REG_FLD_MOD(DISPC_OVL_ATTRIBUTES(i), 1, 25, 25);
781 }
782
783 static void dispc_ovl_set_pre_mult_alpha(enum omap_plane plane,
784 enum omap_overlay_caps caps, bool enable)
785 {
786 if ((caps & OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA) == 0)
787 return;
788
789 REG_FLD_MOD(DISPC_OVL_ATTRIBUTES(plane), enable ? 1 : 0, 28, 28);
790 }
791
792 static void dispc_ovl_setup_global_alpha(enum omap_plane plane,
793 enum omap_overlay_caps caps, u8 global_alpha)
794 {
795 static const unsigned shifts[] = { 0, 8, 16, 24, };
796 int shift;
797
798 if ((caps & OMAP_DSS_OVL_CAP_GLOBAL_ALPHA) == 0)
799 return;
800
801 shift = shifts[plane];
802 REG_FLD_MOD(DISPC_GLOBAL_ALPHA, global_alpha, shift + 7, shift);
803 }
804
805 static void dispc_ovl_set_pix_inc(enum omap_plane plane, s32 inc)
806 {
807 dispc_write_reg(DISPC_OVL_PIXEL_INC(plane), inc);
808 }
809
810 static void dispc_ovl_set_row_inc(enum omap_plane plane, s32 inc)
811 {
812 dispc_write_reg(DISPC_OVL_ROW_INC(plane), inc);
813 }
814
815 static void dispc_ovl_set_color_mode(enum omap_plane plane,
816 enum omap_color_mode color_mode)
817 {
818 u32 m = 0;
819 if (plane != OMAP_DSS_GFX) {
820 switch (color_mode) {
821 case OMAP_DSS_COLOR_NV12:
822 m = 0x0; break;
823 case OMAP_DSS_COLOR_RGBX16:
824 m = 0x1; break;
825 case OMAP_DSS_COLOR_RGBA16:
826 m = 0x2; break;
827 case OMAP_DSS_COLOR_RGB12U:
828 m = 0x4; break;
829 case OMAP_DSS_COLOR_ARGB16:
830 m = 0x5; break;
831 case OMAP_DSS_COLOR_RGB16:
832 m = 0x6; break;
833 case OMAP_DSS_COLOR_ARGB16_1555:
834 m = 0x7; break;
835 case OMAP_DSS_COLOR_RGB24U:
836 m = 0x8; break;
837 case OMAP_DSS_COLOR_RGB24P:
838 m = 0x9; break;
839 case OMAP_DSS_COLOR_YUV2:
840 m = 0xa; break;
841 case OMAP_DSS_COLOR_UYVY:
842 m = 0xb; break;
843 case OMAP_DSS_COLOR_ARGB32:
844 m = 0xc; break;
845 case OMAP_DSS_COLOR_RGBA32:
846 m = 0xd; break;
847 case OMAP_DSS_COLOR_RGBX32:
848 m = 0xe; break;
849 case OMAP_DSS_COLOR_XRGB16_1555:
850 m = 0xf; break;
851 default:
852 BUG(); return;
853 }
854 } else {
855 switch (color_mode) {
856 case OMAP_DSS_COLOR_CLUT1:
857 m = 0x0; break;
858 case OMAP_DSS_COLOR_CLUT2:
859 m = 0x1; break;
860 case OMAP_DSS_COLOR_CLUT4:
861 m = 0x2; break;
862 case OMAP_DSS_COLOR_CLUT8:
863 m = 0x3; break;
864 case OMAP_DSS_COLOR_RGB12U:
865 m = 0x4; break;
866 case OMAP_DSS_COLOR_ARGB16:
867 m = 0x5; break;
868 case OMAP_DSS_COLOR_RGB16:
869 m = 0x6; break;
870 case OMAP_DSS_COLOR_ARGB16_1555:
871 m = 0x7; break;
872 case OMAP_DSS_COLOR_RGB24U:
873 m = 0x8; break;
874 case OMAP_DSS_COLOR_RGB24P:
875 m = 0x9; break;
876 case OMAP_DSS_COLOR_RGBX16:
877 m = 0xa; break;
878 case OMAP_DSS_COLOR_RGBA16:
879 m = 0xb; break;
880 case OMAP_DSS_COLOR_ARGB32:
881 m = 0xc; break;
882 case OMAP_DSS_COLOR_RGBA32:
883 m = 0xd; break;
884 case OMAP_DSS_COLOR_RGBX32:
885 m = 0xe; break;
886 case OMAP_DSS_COLOR_XRGB16_1555:
887 m = 0xf; break;
888 default:
889 BUG(); return;
890 }
891 }
892
893 REG_FLD_MOD(DISPC_OVL_ATTRIBUTES(plane), m, 4, 1);
894 }
895
896 static void dispc_ovl_configure_burst_type(enum omap_plane plane,
897 enum omap_dss_rotation_type rotation_type)
898 {
899 if (dss_has_feature(FEAT_BURST_2D) == 0)
900 return;
901
902 if (rotation_type == OMAP_DSS_ROT_TILER)
903 REG_FLD_MOD(DISPC_OVL_ATTRIBUTES(plane), 1, 29, 29);
904 else
905 REG_FLD_MOD(DISPC_OVL_ATTRIBUTES(plane), 0, 29, 29);
906 }
907
908 void dispc_ovl_set_channel_out(enum omap_plane plane, enum omap_channel channel)
909 {
910 int shift;
911 u32 val;
912 int chan = 0, chan2 = 0;
913
914 switch (plane) {
915 case OMAP_DSS_GFX:
916 shift = 8;
917 break;
918 case OMAP_DSS_VIDEO1:
919 case OMAP_DSS_VIDEO2:
920 case OMAP_DSS_VIDEO3:
921 shift = 16;
922 break;
923 default:
924 BUG();
925 return;
926 }
927
928 val = dispc_read_reg(DISPC_OVL_ATTRIBUTES(plane));
929 if (dss_has_feature(FEAT_MGR_LCD2)) {
930 switch (channel) {
931 case OMAP_DSS_CHANNEL_LCD:
932 chan = 0;
933 chan2 = 0;
934 break;
935 case OMAP_DSS_CHANNEL_DIGIT:
936 chan = 1;
937 chan2 = 0;
938 break;
939 case OMAP_DSS_CHANNEL_LCD2:
940 chan = 0;
941 chan2 = 1;
942 break;
943 case OMAP_DSS_CHANNEL_LCD3:
944 if (dss_has_feature(FEAT_MGR_LCD3)) {
945 chan = 0;
946 chan2 = 2;
947 } else {
948 BUG();
949 return;
950 }
951 break;
952 default:
953 BUG();
954 return;
955 }
956
957 val = FLD_MOD(val, chan, shift, shift);
958 val = FLD_MOD(val, chan2, 31, 30);
959 } else {
960 val = FLD_MOD(val, channel, shift, shift);
961 }
962 dispc_write_reg(DISPC_OVL_ATTRIBUTES(plane), val);
963 }
964 EXPORT_SYMBOL(dispc_ovl_set_channel_out);
965
966 static enum omap_channel dispc_ovl_get_channel_out(enum omap_plane plane)
967 {
968 int shift;
969 u32 val;
970 enum omap_channel channel;
971
972 switch (plane) {
973 case OMAP_DSS_GFX:
974 shift = 8;
975 break;
976 case OMAP_DSS_VIDEO1:
977 case OMAP_DSS_VIDEO2:
978 case OMAP_DSS_VIDEO3:
979 shift = 16;
980 break;
981 default:
982 BUG();
983 return 0;
984 }
985
986 val = dispc_read_reg(DISPC_OVL_ATTRIBUTES(plane));
987
988 if (dss_has_feature(FEAT_MGR_LCD3)) {
989 if (FLD_GET(val, 31, 30) == 0)
990 channel = FLD_GET(val, shift, shift);
991 else if (FLD_GET(val, 31, 30) == 1)
992 channel = OMAP_DSS_CHANNEL_LCD2;
993 else
994 channel = OMAP_DSS_CHANNEL_LCD3;
995 } else if (dss_has_feature(FEAT_MGR_LCD2)) {
996 if (FLD_GET(val, 31, 30) == 0)
997 channel = FLD_GET(val, shift, shift);
998 else
999 channel = OMAP_DSS_CHANNEL_LCD2;
1000 } else {
1001 channel = FLD_GET(val, shift, shift);
1002 }
1003
1004 return channel;
1005 }
1006
1007 void dispc_wb_set_channel_in(enum dss_writeback_channel channel)
1008 {
1009 enum omap_plane plane = OMAP_DSS_WB;
1010
1011 REG_FLD_MOD(DISPC_OVL_ATTRIBUTES(plane), channel, 18, 16);
1012 }
1013
1014 static void dispc_ovl_set_burst_size(enum omap_plane plane,
1015 enum omap_burst_size burst_size)
1016 {
1017 static const unsigned shifts[] = { 6, 14, 14, 14, 14, };
1018 int shift;
1019
1020 shift = shifts[plane];
1021 REG_FLD_MOD(DISPC_OVL_ATTRIBUTES(plane), burst_size, shift + 1, shift);
1022 }
1023
1024 static void dispc_configure_burst_sizes(void)
1025 {
1026 int i;
1027 const int burst_size = BURST_SIZE_X8;
1028
1029 /* Configure burst size always to maximum size */
1030 for (i = 0; i < dss_feat_get_num_ovls(); ++i)
1031 dispc_ovl_set_burst_size(i, burst_size);
1032 }
1033
1034 static u32 dispc_ovl_get_burst_size(enum omap_plane plane)
1035 {
1036 unsigned unit = dss_feat_get_burst_size_unit();
1037 /* burst multiplier is always x8 (see dispc_configure_burst_sizes()) */
1038 return unit * 8;
1039 }
1040
1041 void dispc_enable_gamma_table(bool enable)
1042 {
1043 /*
1044 * This is partially implemented to support only disabling of
1045 * the gamma table.
1046 */
1047 if (enable) {
1048 DSSWARN("Gamma table enabling for TV not yet supported");
1049 return;
1050 }
1051
1052 REG_FLD_MOD(DISPC_CONFIG, enable, 9, 9);
1053 }
1054
1055 static void dispc_mgr_enable_cpr(enum omap_channel channel, bool enable)
1056 {
1057 if (channel == OMAP_DSS_CHANNEL_DIGIT)
1058 return;
1059
1060 mgr_fld_write(channel, DISPC_MGR_FLD_CPR, enable);
1061 }
1062
1063 static void dispc_mgr_set_cpr_coef(enum omap_channel channel,
1064 const struct omap_dss_cpr_coefs *coefs)
1065 {
1066 u32 coef_r, coef_g, coef_b;
1067
1068 if (!dss_mgr_is_lcd(channel))
1069 return;
1070
1071 coef_r = FLD_VAL(coefs->rr, 31, 22) | FLD_VAL(coefs->rg, 20, 11) |
1072 FLD_VAL(coefs->rb, 9, 0);
1073 coef_g = FLD_VAL(coefs->gr, 31, 22) | FLD_VAL(coefs->gg, 20, 11) |
1074 FLD_VAL(coefs->gb, 9, 0);
1075 coef_b = FLD_VAL(coefs->br, 31, 22) | FLD_VAL(coefs->bg, 20, 11) |
1076 FLD_VAL(coefs->bb, 9, 0);
1077
1078 dispc_write_reg(DISPC_CPR_COEF_R(channel), coef_r);
1079 dispc_write_reg(DISPC_CPR_COEF_G(channel), coef_g);
1080 dispc_write_reg(DISPC_CPR_COEF_B(channel), coef_b);
1081 }
1082
1083 static void dispc_ovl_set_vid_color_conv(enum omap_plane plane, bool enable)
1084 {
1085 u32 val;
1086
1087 BUG_ON(plane == OMAP_DSS_GFX);
1088
1089 val = dispc_read_reg(DISPC_OVL_ATTRIBUTES(plane));
1090 val = FLD_MOD(val, enable, 9, 9);
1091 dispc_write_reg(DISPC_OVL_ATTRIBUTES(plane), val);
1092 }
1093
1094 static void dispc_ovl_enable_replication(enum omap_plane plane,
1095 enum omap_overlay_caps caps, bool enable)
1096 {
1097 static const unsigned shifts[] = { 5, 10, 10, 10 };
1098 int shift;
1099
1100 if ((caps & OMAP_DSS_OVL_CAP_REPLICATION) == 0)
1101 return;
1102
1103 shift = shifts[plane];
1104 REG_FLD_MOD(DISPC_OVL_ATTRIBUTES(plane), enable, shift, shift);
1105 }
1106
1107 static void dispc_mgr_set_size(enum omap_channel channel, u16 width,
1108 u16 height)
1109 {
1110 u32 val;
1111
1112 val = FLD_VAL(height - 1, dispc.feat->mgr_height_start, 16) |
1113 FLD_VAL(width - 1, dispc.feat->mgr_width_start, 0);
1114
1115 dispc_write_reg(DISPC_SIZE_MGR(channel), val);
1116 }
1117
1118 static void dispc_init_fifos(void)
1119 {
1120 u32 size;
1121 int fifo;
1122 u8 start, end;
1123 u32 unit;
1124
1125 unit = dss_feat_get_buffer_size_unit();
1126
1127 dss_feat_get_reg_field(FEAT_REG_FIFOSIZE, &start, &end);
1128
1129 for (fifo = 0; fifo < dispc.feat->num_fifos; ++fifo) {
1130 size = REG_GET(DISPC_OVL_FIFO_SIZE_STATUS(fifo), start, end);
1131 size *= unit;
1132 dispc.fifo_size[fifo] = size;
1133
1134 /*
1135 * By default fifos are mapped directly to overlays, fifo 0 to
1136 * ovl 0, fifo 1 to ovl 1, etc.
1137 */
1138 dispc.fifo_assignment[fifo] = fifo;
1139 }
1140
1141 /*
1142 * The GFX fifo on OMAP4 is smaller than the other fifos. The small fifo
1143 * causes problems with certain use cases, like using the tiler in 2D
1144 * mode. The below hack swaps the fifos of GFX and WB planes, thus
1145 * giving GFX plane a larger fifo. WB but should work fine with a
1146 * smaller fifo.
1147 */
1148 if (dispc.feat->gfx_fifo_workaround) {
1149 u32 v;
1150
1151 v = dispc_read_reg(DISPC_GLOBAL_BUFFER);
1152
1153 v = FLD_MOD(v, 4, 2, 0); /* GFX BUF top to WB */
1154 v = FLD_MOD(v, 4, 5, 3); /* GFX BUF bottom to WB */
1155 v = FLD_MOD(v, 0, 26, 24); /* WB BUF top to GFX */
1156 v = FLD_MOD(v, 0, 29, 27); /* WB BUF bottom to GFX */
1157
1158 dispc_write_reg(DISPC_GLOBAL_BUFFER, v);
1159
1160 dispc.fifo_assignment[OMAP_DSS_GFX] = OMAP_DSS_WB;
1161 dispc.fifo_assignment[OMAP_DSS_WB] = OMAP_DSS_GFX;
1162 }
1163 }
1164
1165 static u32 dispc_ovl_get_fifo_size(enum omap_plane plane)
1166 {
1167 int fifo;
1168 u32 size = 0;
1169
1170 for (fifo = 0; fifo < dispc.feat->num_fifos; ++fifo) {
1171 if (dispc.fifo_assignment[fifo] == plane)
1172 size += dispc.fifo_size[fifo];
1173 }
1174
1175 return size;
1176 }
1177
1178 void dispc_ovl_set_fifo_threshold(enum omap_plane plane, u32 low, u32 high)
1179 {
1180 u8 hi_start, hi_end, lo_start, lo_end;
1181 u32 unit;
1182
1183 unit = dss_feat_get_buffer_size_unit();
1184
1185 WARN_ON(low % unit != 0);
1186 WARN_ON(high % unit != 0);
1187
1188 low /= unit;
1189 high /= unit;
1190
1191 dss_feat_get_reg_field(FEAT_REG_FIFOHIGHTHRESHOLD, &hi_start, &hi_end);
1192 dss_feat_get_reg_field(FEAT_REG_FIFOLOWTHRESHOLD, &lo_start, &lo_end);
1193
1194 DSSDBG("fifo(%d) threshold (bytes), old %u/%u, new %u/%u\n",
1195 plane,
1196 REG_GET(DISPC_OVL_FIFO_THRESHOLD(plane),
1197 lo_start, lo_end) * unit,
1198 REG_GET(DISPC_OVL_FIFO_THRESHOLD(plane),
1199 hi_start, hi_end) * unit,
1200 low * unit, high * unit);
1201
1202 dispc_write_reg(DISPC_OVL_FIFO_THRESHOLD(plane),
1203 FLD_VAL(high, hi_start, hi_end) |
1204 FLD_VAL(low, lo_start, lo_end));
1205
1206 /*
1207 * configure the preload to the pipeline's high threhold, if HT it's too
1208 * large for the preload field, set the threshold to the maximum value
1209 * that can be held by the preload register
1210 */
1211 if (dss_has_feature(FEAT_PRELOAD) && dispc.feat->set_max_preload &&
1212 plane != OMAP_DSS_WB)
1213 dispc_write_reg(DISPC_OVL_PRELOAD(plane), min(high, 0xfffu));
1214 }
1215 EXPORT_SYMBOL(dispc_ovl_set_fifo_threshold);
1216
1217 void dispc_enable_fifomerge(bool enable)
1218 {
1219 if (!dss_has_feature(FEAT_FIFO_MERGE)) {
1220 WARN_ON(enable);
1221 return;
1222 }
1223
1224 DSSDBG("FIFO merge %s\n", enable ? "enabled" : "disabled");
1225 REG_FLD_MOD(DISPC_CONFIG, enable ? 1 : 0, 14, 14);
1226 }
1227
1228 void dispc_ovl_compute_fifo_thresholds(enum omap_plane plane,
1229 u32 *fifo_low, u32 *fifo_high, bool use_fifomerge,
1230 bool manual_update)
1231 {
1232 /*
1233 * All sizes are in bytes. Both the buffer and burst are made of
1234 * buffer_units, and the fifo thresholds must be buffer_unit aligned.
1235 */
1236
1237 unsigned buf_unit = dss_feat_get_buffer_size_unit();
1238 unsigned ovl_fifo_size, total_fifo_size, burst_size;
1239 int i;
1240
1241 burst_size = dispc_ovl_get_burst_size(plane);
1242 ovl_fifo_size = dispc_ovl_get_fifo_size(plane);
1243
1244 if (use_fifomerge) {
1245 total_fifo_size = 0;
1246 for (i = 0; i < dss_feat_get_num_ovls(); ++i)
1247 total_fifo_size += dispc_ovl_get_fifo_size(i);
1248 } else {
1249 total_fifo_size = ovl_fifo_size;
1250 }
1251
1252 /*
1253 * We use the same low threshold for both fifomerge and non-fifomerge
1254 * cases, but for fifomerge we calculate the high threshold using the
1255 * combined fifo size
1256 */
1257
1258 if (manual_update && dss_has_feature(FEAT_OMAP3_DSI_FIFO_BUG)) {
1259 *fifo_low = ovl_fifo_size - burst_size * 2;
1260 *fifo_high = total_fifo_size - burst_size;
1261 } else if (plane == OMAP_DSS_WB) {
1262 /*
1263 * Most optimal configuration for writeback is to push out data
1264 * to the interconnect the moment writeback pushes enough pixels
1265 * in the FIFO to form a burst
1266 */
1267 *fifo_low = 0;
1268 *fifo_high = burst_size;
1269 } else {
1270 *fifo_low = ovl_fifo_size - burst_size;
1271 *fifo_high = total_fifo_size - buf_unit;
1272 }
1273 }
1274 EXPORT_SYMBOL(dispc_ovl_compute_fifo_thresholds);
1275
1276 static void dispc_ovl_set_fir(enum omap_plane plane,
1277 int hinc, int vinc,
1278 enum omap_color_component color_comp)
1279 {
1280 u32 val;
1281
1282 if (color_comp == DISPC_COLOR_COMPONENT_RGB_Y) {
1283 u8 hinc_start, hinc_end, vinc_start, vinc_end;
1284
1285 dss_feat_get_reg_field(FEAT_REG_FIRHINC,
1286 &hinc_start, &hinc_end);
1287 dss_feat_get_reg_field(FEAT_REG_FIRVINC,
1288 &vinc_start, &vinc_end);
1289 val = FLD_VAL(vinc, vinc_start, vinc_end) |
1290 FLD_VAL(hinc, hinc_start, hinc_end);
1291
1292 dispc_write_reg(DISPC_OVL_FIR(plane), val);
1293 } else {
1294 val = FLD_VAL(vinc, 28, 16) | FLD_VAL(hinc, 12, 0);
1295 dispc_write_reg(DISPC_OVL_FIR2(plane), val);
1296 }
1297 }
1298
1299 static void dispc_ovl_set_vid_accu0(enum omap_plane plane, int haccu, int vaccu)
1300 {
1301 u32 val;
1302 u8 hor_start, hor_end, vert_start, vert_end;
1303
1304 dss_feat_get_reg_field(FEAT_REG_HORIZONTALACCU, &hor_start, &hor_end);
1305 dss_feat_get_reg_field(FEAT_REG_VERTICALACCU, &vert_start, &vert_end);
1306
1307 val = FLD_VAL(vaccu, vert_start, vert_end) |
1308 FLD_VAL(haccu, hor_start, hor_end);
1309
1310 dispc_write_reg(DISPC_OVL_ACCU0(plane), val);
1311 }
1312
1313 static void dispc_ovl_set_vid_accu1(enum omap_plane plane, int haccu, int vaccu)
1314 {
1315 u32 val;
1316 u8 hor_start, hor_end, vert_start, vert_end;
1317
1318 dss_feat_get_reg_field(FEAT_REG_HORIZONTALACCU, &hor_start, &hor_end);
1319 dss_feat_get_reg_field(FEAT_REG_VERTICALACCU, &vert_start, &vert_end);
1320
1321 val = FLD_VAL(vaccu, vert_start, vert_end) |
1322 FLD_VAL(haccu, hor_start, hor_end);
1323
1324 dispc_write_reg(DISPC_OVL_ACCU1(plane), val);
1325 }
1326
1327 static void dispc_ovl_set_vid_accu2_0(enum omap_plane plane, int haccu,
1328 int vaccu)
1329 {
1330 u32 val;
1331
1332 val = FLD_VAL(vaccu, 26, 16) | FLD_VAL(haccu, 10, 0);
1333 dispc_write_reg(DISPC_OVL_ACCU2_0(plane), val);
1334 }
1335
1336 static void dispc_ovl_set_vid_accu2_1(enum omap_plane plane, int haccu,
1337 int vaccu)
1338 {
1339 u32 val;
1340
1341 val = FLD_VAL(vaccu, 26, 16) | FLD_VAL(haccu, 10, 0);
1342 dispc_write_reg(DISPC_OVL_ACCU2_1(plane), val);
1343 }
1344
1345 static void dispc_ovl_set_scale_param(enum omap_plane plane,
1346 u16 orig_width, u16 orig_height,
1347 u16 out_width, u16 out_height,
1348 bool five_taps, u8 rotation,
1349 enum omap_color_component color_comp)
1350 {
1351 int fir_hinc, fir_vinc;
1352
1353 fir_hinc = 1024 * orig_width / out_width;
1354 fir_vinc = 1024 * orig_height / out_height;
1355
1356 dispc_ovl_set_scale_coef(plane, fir_hinc, fir_vinc, five_taps,
1357 color_comp);
1358 dispc_ovl_set_fir(plane, fir_hinc, fir_vinc, color_comp);
1359 }
1360
1361 static void dispc_ovl_set_accu_uv(enum omap_plane plane,
1362 u16 orig_width, u16 orig_height, u16 out_width, u16 out_height,
1363 bool ilace, enum omap_color_mode color_mode, u8 rotation)
1364 {
1365 int h_accu2_0, h_accu2_1;
1366 int v_accu2_0, v_accu2_1;
1367 int chroma_hinc, chroma_vinc;
1368 int idx;
1369
1370 struct accu {
1371 s8 h0_m, h0_n;
1372 s8 h1_m, h1_n;
1373 s8 v0_m, v0_n;
1374 s8 v1_m, v1_n;
1375 };
1376
1377 const struct accu *accu_table;
1378 const struct accu *accu_val;
1379
1380 static const struct accu accu_nv12[4] = {
1381 { 0, 1, 0, 1 , -1, 2, 0, 1 },
1382 { 1, 2, -3, 4 , 0, 1, 0, 1 },
1383 { -1, 1, 0, 1 , -1, 2, 0, 1 },
1384 { -1, 2, -1, 2 , -1, 1, 0, 1 },
1385 };
1386
1387 static const struct accu accu_nv12_ilace[4] = {
1388 { 0, 1, 0, 1 , -3, 4, -1, 4 },
1389 { -1, 4, -3, 4 , 0, 1, 0, 1 },
1390 { -1, 1, 0, 1 , -1, 4, -3, 4 },
1391 { -3, 4, -3, 4 , -1, 1, 0, 1 },
1392 };
1393
1394 static const struct accu accu_yuv[4] = {
1395 { 0, 1, 0, 1, 0, 1, 0, 1 },
1396 { 0, 1, 0, 1, 0, 1, 0, 1 },
1397 { -1, 1, 0, 1, 0, 1, 0, 1 },
1398 { 0, 1, 0, 1, -1, 1, 0, 1 },
1399 };
1400
1401 switch (rotation) {
1402 case OMAP_DSS_ROT_0:
1403 idx = 0;
1404 break;
1405 case OMAP_DSS_ROT_90:
1406 idx = 1;
1407 break;
1408 case OMAP_DSS_ROT_180:
1409 idx = 2;
1410 break;
1411 case OMAP_DSS_ROT_270:
1412 idx = 3;
1413 break;
1414 default:
1415 BUG();
1416 return;
1417 }
1418
1419 switch (color_mode) {
1420 case OMAP_DSS_COLOR_NV12:
1421 if (ilace)
1422 accu_table = accu_nv12_ilace;
1423 else
1424 accu_table = accu_nv12;
1425 break;
1426 case OMAP_DSS_COLOR_YUV2:
1427 case OMAP_DSS_COLOR_UYVY:
1428 accu_table = accu_yuv;
1429 break;
1430 default:
1431 BUG();
1432 return;
1433 }
1434
1435 accu_val = &accu_table[idx];
1436
1437 chroma_hinc = 1024 * orig_width / out_width;
1438 chroma_vinc = 1024 * orig_height / out_height;
1439
1440 h_accu2_0 = (accu_val->h0_m * chroma_hinc / accu_val->h0_n) % 1024;
1441 h_accu2_1 = (accu_val->h1_m * chroma_hinc / accu_val->h1_n) % 1024;
1442 v_accu2_0 = (accu_val->v0_m * chroma_vinc / accu_val->v0_n) % 1024;
1443 v_accu2_1 = (accu_val->v1_m * chroma_vinc / accu_val->v1_n) % 1024;
1444
1445 dispc_ovl_set_vid_accu2_0(plane, h_accu2_0, v_accu2_0);
1446 dispc_ovl_set_vid_accu2_1(plane, h_accu2_1, v_accu2_1);
1447 }
1448
1449 static void dispc_ovl_set_scaling_common(enum omap_plane plane,
1450 u16 orig_width, u16 orig_height,
1451 u16 out_width, u16 out_height,
1452 bool ilace, bool five_taps,
1453 bool fieldmode, enum omap_color_mode color_mode,
1454 u8 rotation)
1455 {
1456 int accu0 = 0;
1457 int accu1 = 0;
1458 u32 l;
1459
1460 dispc_ovl_set_scale_param(plane, orig_width, orig_height,
1461 out_width, out_height, five_taps,
1462 rotation, DISPC_COLOR_COMPONENT_RGB_Y);
1463 l = dispc_read_reg(DISPC_OVL_ATTRIBUTES(plane));
1464
1465 /* RESIZEENABLE and VERTICALTAPS */
1466 l &= ~((0x3 << 5) | (0x1 << 21));
1467 l |= (orig_width != out_width) ? (1 << 5) : 0;
1468 l |= (orig_height != out_height) ? (1 << 6) : 0;
1469 l |= five_taps ? (1 << 21) : 0;
1470
1471 /* VRESIZECONF and HRESIZECONF */
1472 if (dss_has_feature(FEAT_RESIZECONF)) {
1473 l &= ~(0x3 << 7);
1474 l |= (orig_width <= out_width) ? 0 : (1 << 7);
1475 l |= (orig_height <= out_height) ? 0 : (1 << 8);
1476 }
1477
1478 /* LINEBUFFERSPLIT */
1479 if (dss_has_feature(FEAT_LINEBUFFERSPLIT)) {
1480 l &= ~(0x1 << 22);
1481 l |= five_taps ? (1 << 22) : 0;
1482 }
1483
1484 dispc_write_reg(DISPC_OVL_ATTRIBUTES(plane), l);
1485
1486 /*
1487 * field 0 = even field = bottom field
1488 * field 1 = odd field = top field
1489 */
1490 if (ilace && !fieldmode) {
1491 accu1 = 0;
1492 accu0 = ((1024 * orig_height / out_height) / 2) & 0x3ff;
1493 if (accu0 >= 1024/2) {
1494 accu1 = 1024/2;
1495 accu0 -= accu1;
1496 }
1497 }
1498
1499 dispc_ovl_set_vid_accu0(plane, 0, accu0);
1500 dispc_ovl_set_vid_accu1(plane, 0, accu1);
1501 }
1502
1503 static void dispc_ovl_set_scaling_uv(enum omap_plane plane,
1504 u16 orig_width, u16 orig_height,
1505 u16 out_width, u16 out_height,
1506 bool ilace, bool five_taps,
1507 bool fieldmode, enum omap_color_mode color_mode,
1508 u8 rotation)
1509 {
1510 int scale_x = out_width != orig_width;
1511 int scale_y = out_height != orig_height;
1512 bool chroma_upscale = plane != OMAP_DSS_WB ? true : false;
1513
1514 if (!dss_has_feature(FEAT_HANDLE_UV_SEPARATE))
1515 return;
1516 if ((color_mode != OMAP_DSS_COLOR_YUV2 &&
1517 color_mode != OMAP_DSS_COLOR_UYVY &&
1518 color_mode != OMAP_DSS_COLOR_NV12)) {
1519 /* reset chroma resampling for RGB formats */
1520 if (plane != OMAP_DSS_WB)
1521 REG_FLD_MOD(DISPC_OVL_ATTRIBUTES2(plane), 0, 8, 8);
1522 return;
1523 }
1524
1525 dispc_ovl_set_accu_uv(plane, orig_width, orig_height, out_width,
1526 out_height, ilace, color_mode, rotation);
1527
1528 switch (color_mode) {
1529 case OMAP_DSS_COLOR_NV12:
1530 if (chroma_upscale) {
1531 /* UV is subsampled by 2 horizontally and vertically */
1532 orig_height >>= 1;
1533 orig_width >>= 1;
1534 } else {
1535 /* UV is downsampled by 2 horizontally and vertically */
1536 orig_height <<= 1;
1537 orig_width <<= 1;
1538 }
1539
1540 break;
1541 case OMAP_DSS_COLOR_YUV2:
1542 case OMAP_DSS_COLOR_UYVY:
1543 /* For YUV422 with 90/270 rotation, we don't upsample chroma */
1544 if (rotation == OMAP_DSS_ROT_0 ||
1545 rotation == OMAP_DSS_ROT_180) {
1546 if (chroma_upscale)
1547 /* UV is subsampled by 2 horizontally */
1548 orig_width >>= 1;
1549 else
1550 /* UV is downsampled by 2 horizontally */
1551 orig_width <<= 1;
1552 }
1553
1554 /* must use FIR for YUV422 if rotated */
1555 if (rotation != OMAP_DSS_ROT_0)
1556 scale_x = scale_y = true;
1557
1558 break;
1559 default:
1560 BUG();
1561 return;
1562 }
1563
1564 if (out_width != orig_width)
1565 scale_x = true;
1566 if (out_height != orig_height)
1567 scale_y = true;
1568
1569 dispc_ovl_set_scale_param(plane, orig_width, orig_height,
1570 out_width, out_height, five_taps,
1571 rotation, DISPC_COLOR_COMPONENT_UV);
1572
1573 if (plane != OMAP_DSS_WB)
1574 REG_FLD_MOD(DISPC_OVL_ATTRIBUTES2(plane),
1575 (scale_x || scale_y) ? 1 : 0, 8, 8);
1576
1577 /* set H scaling */
1578 REG_FLD_MOD(DISPC_OVL_ATTRIBUTES(plane), scale_x ? 1 : 0, 5, 5);
1579 /* set V scaling */
1580 REG_FLD_MOD(DISPC_OVL_ATTRIBUTES(plane), scale_y ? 1 : 0, 6, 6);
1581 }
1582
1583 static void dispc_ovl_set_scaling(enum omap_plane plane,
1584 u16 orig_width, u16 orig_height,
1585 u16 out_width, u16 out_height,
1586 bool ilace, bool five_taps,
1587 bool fieldmode, enum omap_color_mode color_mode,
1588 u8 rotation)
1589 {
1590 BUG_ON(plane == OMAP_DSS_GFX);
1591
1592 dispc_ovl_set_scaling_common(plane,
1593 orig_width, orig_height,
1594 out_width, out_height,
1595 ilace, five_taps,
1596 fieldmode, color_mode,
1597 rotation);
1598
1599 dispc_ovl_set_scaling_uv(plane,
1600 orig_width, orig_height,
1601 out_width, out_height,
1602 ilace, five_taps,
1603 fieldmode, color_mode,
1604 rotation);
1605 }
1606
1607 static void dispc_ovl_set_rotation_attrs(enum omap_plane plane, u8 rotation,
1608 enum omap_dss_rotation_type rotation_type,
1609 bool mirroring, enum omap_color_mode color_mode)
1610 {
1611 bool row_repeat = false;
1612 int vidrot = 0;
1613
1614 if (color_mode == OMAP_DSS_COLOR_YUV2 ||
1615 color_mode == OMAP_DSS_COLOR_UYVY) {
1616
1617 if (mirroring) {
1618 switch (rotation) {
1619 case OMAP_DSS_ROT_0:
1620 vidrot = 2;
1621 break;
1622 case OMAP_DSS_ROT_90:
1623 vidrot = 1;
1624 break;
1625 case OMAP_DSS_ROT_180:
1626 vidrot = 0;
1627 break;
1628 case OMAP_DSS_ROT_270:
1629 vidrot = 3;
1630 break;
1631 }
1632 } else {
1633 switch (rotation) {
1634 case OMAP_DSS_ROT_0:
1635 vidrot = 0;
1636 break;
1637 case OMAP_DSS_ROT_90:
1638 vidrot = 1;
1639 break;
1640 case OMAP_DSS_ROT_180:
1641 vidrot = 2;
1642 break;
1643 case OMAP_DSS_ROT_270:
1644 vidrot = 3;
1645 break;
1646 }
1647 }
1648
1649 if (rotation == OMAP_DSS_ROT_90 || rotation == OMAP_DSS_ROT_270)
1650 row_repeat = true;
1651 else
1652 row_repeat = false;
1653 }
1654
1655 REG_FLD_MOD(DISPC_OVL_ATTRIBUTES(plane), vidrot, 13, 12);
1656 if (dss_has_feature(FEAT_ROWREPEATENABLE))
1657 REG_FLD_MOD(DISPC_OVL_ATTRIBUTES(plane),
1658 row_repeat ? 1 : 0, 18, 18);
1659
1660 if (color_mode == OMAP_DSS_COLOR_NV12) {
1661 bool doublestride = (rotation_type == OMAP_DSS_ROT_TILER) &&
1662 (rotation == OMAP_DSS_ROT_0 ||
1663 rotation == OMAP_DSS_ROT_180);
1664 /* DOUBLESTRIDE */
1665 REG_FLD_MOD(DISPC_OVL_ATTRIBUTES(plane), doublestride, 22, 22);
1666 }
1667
1668 }
1669
1670 static int color_mode_to_bpp(enum omap_color_mode color_mode)
1671 {
1672 switch (color_mode) {
1673 case OMAP_DSS_COLOR_CLUT1:
1674 return 1;
1675 case OMAP_DSS_COLOR_CLUT2:
1676 return 2;
1677 case OMAP_DSS_COLOR_CLUT4:
1678 return 4;
1679 case OMAP_DSS_COLOR_CLUT8:
1680 case OMAP_DSS_COLOR_NV12:
1681 return 8;
1682 case OMAP_DSS_COLOR_RGB12U:
1683 case OMAP_DSS_COLOR_RGB16:
1684 case OMAP_DSS_COLOR_ARGB16:
1685 case OMAP_DSS_COLOR_YUV2:
1686 case OMAP_DSS_COLOR_UYVY:
1687 case OMAP_DSS_COLOR_RGBA16:
1688 case OMAP_DSS_COLOR_RGBX16:
1689 case OMAP_DSS_COLOR_ARGB16_1555:
1690 case OMAP_DSS_COLOR_XRGB16_1555:
1691 return 16;
1692 case OMAP_DSS_COLOR_RGB24P:
1693 return 24;
1694 case OMAP_DSS_COLOR_RGB24U:
1695 case OMAP_DSS_COLOR_ARGB32:
1696 case OMAP_DSS_COLOR_RGBA32:
1697 case OMAP_DSS_COLOR_RGBX32:
1698 return 32;
1699 default:
1700 BUG();
1701 return 0;
1702 }
1703 }
1704
1705 static s32 pixinc(int pixels, u8 ps)
1706 {
1707 if (pixels == 1)
1708 return 1;
1709 else if (pixels > 1)
1710 return 1 + (pixels - 1) * ps;
1711 else if (pixels < 0)
1712 return 1 - (-pixels + 1) * ps;
1713 else
1714 BUG();
1715 return 0;
1716 }
1717
1718 static void calc_vrfb_rotation_offset(u8 rotation, bool mirror,
1719 u16 screen_width,
1720 u16 width, u16 height,
1721 enum omap_color_mode color_mode, bool fieldmode,
1722 unsigned int field_offset,
1723 unsigned *offset0, unsigned *offset1,
1724 s32 *row_inc, s32 *pix_inc, int x_predecim, int y_predecim)
1725 {
1726 u8 ps;
1727
1728 /* FIXME CLUT formats */
1729 switch (color_mode) {
1730 case OMAP_DSS_COLOR_CLUT1:
1731 case OMAP_DSS_COLOR_CLUT2:
1732 case OMAP_DSS_COLOR_CLUT4:
1733 case OMAP_DSS_COLOR_CLUT8:
1734 BUG();
1735 return;
1736 case OMAP_DSS_COLOR_YUV2:
1737 case OMAP_DSS_COLOR_UYVY:
1738 ps = 4;
1739 break;
1740 default:
1741 ps = color_mode_to_bpp(color_mode) / 8;
1742 break;
1743 }
1744
1745 DSSDBG("calc_rot(%d): scrw %d, %dx%d\n", rotation, screen_width,
1746 width, height);
1747
1748 /*
1749 * field 0 = even field = bottom field
1750 * field 1 = odd field = top field
1751 */
1752 switch (rotation + mirror * 4) {
1753 case OMAP_DSS_ROT_0:
1754 case OMAP_DSS_ROT_180:
1755 /*
1756 * If the pixel format is YUV or UYVY divide the width
1757 * of the image by 2 for 0 and 180 degree rotation.
1758 */
1759 if (color_mode == OMAP_DSS_COLOR_YUV2 ||
1760 color_mode == OMAP_DSS_COLOR_UYVY)
1761 width = width >> 1;
1762 case OMAP_DSS_ROT_90:
1763 case OMAP_DSS_ROT_270:
1764 *offset1 = 0;
1765 if (field_offset)
1766 *offset0 = field_offset * screen_width * ps;
1767 else
1768 *offset0 = 0;
1769
1770 *row_inc = pixinc(1 +
1771 (y_predecim * screen_width - x_predecim * width) +
1772 (fieldmode ? screen_width : 0), ps);
1773 *pix_inc = pixinc(x_predecim, ps);
1774 break;
1775
1776 case OMAP_DSS_ROT_0 + 4:
1777 case OMAP_DSS_ROT_180 + 4:
1778 /* If the pixel format is YUV or UYVY divide the width
1779 * of the image by 2 for 0 degree and 180 degree
1780 */
1781 if (color_mode == OMAP_DSS_COLOR_YUV2 ||
1782 color_mode == OMAP_DSS_COLOR_UYVY)
1783 width = width >> 1;
1784 case OMAP_DSS_ROT_90 + 4:
1785 case OMAP_DSS_ROT_270 + 4:
1786 *offset1 = 0;
1787 if (field_offset)
1788 *offset0 = field_offset * screen_width * ps;
1789 else
1790 *offset0 = 0;
1791 *row_inc = pixinc(1 -
1792 (y_predecim * screen_width + x_predecim * width) -
1793 (fieldmode ? screen_width : 0), ps);
1794 *pix_inc = pixinc(x_predecim, ps);
1795 break;
1796
1797 default:
1798 BUG();
1799 return;
1800 }
1801 }
1802
1803 static void calc_dma_rotation_offset(u8 rotation, bool mirror,
1804 u16 screen_width,
1805 u16 width, u16 height,
1806 enum omap_color_mode color_mode, bool fieldmode,
1807 unsigned int field_offset,
1808 unsigned *offset0, unsigned *offset1,
1809 s32 *row_inc, s32 *pix_inc, int x_predecim, int y_predecim)
1810 {
1811 u8 ps;
1812 u16 fbw, fbh;
1813
1814 /* FIXME CLUT formats */
1815 switch (color_mode) {
1816 case OMAP_DSS_COLOR_CLUT1:
1817 case OMAP_DSS_COLOR_CLUT2:
1818 case OMAP_DSS_COLOR_CLUT4:
1819 case OMAP_DSS_COLOR_CLUT8:
1820 BUG();
1821 return;
1822 default:
1823 ps = color_mode_to_bpp(color_mode) / 8;
1824 break;
1825 }
1826
1827 DSSDBG("calc_rot(%d): scrw %d, %dx%d\n", rotation, screen_width,
1828 width, height);
1829
1830 /* width & height are overlay sizes, convert to fb sizes */
1831
1832 if (rotation == OMAP_DSS_ROT_0 || rotation == OMAP_DSS_ROT_180) {
1833 fbw = width;
1834 fbh = height;
1835 } else {
1836 fbw = height;
1837 fbh = width;
1838 }
1839
1840 /*
1841 * field 0 = even field = bottom field
1842 * field 1 = odd field = top field
1843 */
1844 switch (rotation + mirror * 4) {
1845 case OMAP_DSS_ROT_0:
1846 *offset1 = 0;
1847 if (field_offset)
1848 *offset0 = *offset1 + field_offset * screen_width * ps;
1849 else
1850 *offset0 = *offset1;
1851 *row_inc = pixinc(1 +
1852 (y_predecim * screen_width - fbw * x_predecim) +
1853 (fieldmode ? screen_width : 0), ps);
1854 if (color_mode == OMAP_DSS_COLOR_YUV2 ||
1855 color_mode == OMAP_DSS_COLOR_UYVY)
1856 *pix_inc = pixinc(x_predecim, 2 * ps);
1857 else
1858 *pix_inc = pixinc(x_predecim, ps);
1859 break;
1860 case OMAP_DSS_ROT_90:
1861 *offset1 = screen_width * (fbh - 1) * ps;
1862 if (field_offset)
1863 *offset0 = *offset1 + field_offset * ps;
1864 else
1865 *offset0 = *offset1;
1866 *row_inc = pixinc(screen_width * (fbh * x_predecim - 1) +
1867 y_predecim + (fieldmode ? 1 : 0), ps);
1868 *pix_inc = pixinc(-x_predecim * screen_width, ps);
1869 break;
1870 case OMAP_DSS_ROT_180:
1871 *offset1 = (screen_width * (fbh - 1) + fbw - 1) * ps;
1872 if (field_offset)
1873 *offset0 = *offset1 - field_offset * screen_width * ps;
1874 else
1875 *offset0 = *offset1;
1876 *row_inc = pixinc(-1 -
1877 (y_predecim * screen_width - fbw * x_predecim) -
1878 (fieldmode ? screen_width : 0), ps);
1879 if (color_mode == OMAP_DSS_COLOR_YUV2 ||
1880 color_mode == OMAP_DSS_COLOR_UYVY)
1881 *pix_inc = pixinc(-x_predecim, 2 * ps);
1882 else
1883 *pix_inc = pixinc(-x_predecim, ps);
1884 break;
1885 case OMAP_DSS_ROT_270:
1886 *offset1 = (fbw - 1) * ps;
1887 if (field_offset)
1888 *offset0 = *offset1 - field_offset * ps;
1889 else
1890 *offset0 = *offset1;
1891 *row_inc = pixinc(-screen_width * (fbh * x_predecim - 1) -
1892 y_predecim - (fieldmode ? 1 : 0), ps);
1893 *pix_inc = pixinc(x_predecim * screen_width, ps);
1894 break;
1895
1896 /* mirroring */
1897 case OMAP_DSS_ROT_0 + 4:
1898 *offset1 = (fbw - 1) * ps;
1899 if (field_offset)
1900 *offset0 = *offset1 + field_offset * screen_width * ps;
1901 else
1902 *offset0 = *offset1;
1903 *row_inc = pixinc(y_predecim * screen_width * 2 - 1 +
1904 (fieldmode ? screen_width : 0),
1905 ps);
1906 if (color_mode == OMAP_DSS_COLOR_YUV2 ||
1907 color_mode == OMAP_DSS_COLOR_UYVY)
1908 *pix_inc = pixinc(-x_predecim, 2 * ps);
1909 else
1910 *pix_inc = pixinc(-x_predecim, ps);
1911 break;
1912
1913 case OMAP_DSS_ROT_90 + 4:
1914 *offset1 = 0;
1915 if (field_offset)
1916 *offset0 = *offset1 + field_offset * ps;
1917 else
1918 *offset0 = *offset1;
1919 *row_inc = pixinc(-screen_width * (fbh * x_predecim - 1) +
1920 y_predecim + (fieldmode ? 1 : 0),
1921 ps);
1922 *pix_inc = pixinc(x_predecim * screen_width, ps);
1923 break;
1924
1925 case OMAP_DSS_ROT_180 + 4:
1926 *offset1 = screen_width * (fbh - 1) * ps;
1927 if (field_offset)
1928 *offset0 = *offset1 - field_offset * screen_width * ps;
1929 else
1930 *offset0 = *offset1;
1931 *row_inc = pixinc(1 - y_predecim * screen_width * 2 -
1932 (fieldmode ? screen_width : 0),
1933 ps);
1934 if (color_mode == OMAP_DSS_COLOR_YUV2 ||
1935 color_mode == OMAP_DSS_COLOR_UYVY)
1936 *pix_inc = pixinc(x_predecim, 2 * ps);
1937 else
1938 *pix_inc = pixinc(x_predecim, ps);
1939 break;
1940
1941 case OMAP_DSS_ROT_270 + 4:
1942 *offset1 = (screen_width * (fbh - 1) + fbw - 1) * ps;
1943 if (field_offset)
1944 *offset0 = *offset1 - field_offset * ps;
1945 else
1946 *offset0 = *offset1;
1947 *row_inc = pixinc(screen_width * (fbh * x_predecim - 1) -
1948 y_predecim - (fieldmode ? 1 : 0),
1949 ps);
1950 *pix_inc = pixinc(-x_predecim * screen_width, ps);
1951 break;
1952
1953 default:
1954 BUG();
1955 return;
1956 }
1957 }
1958
1959 static void calc_tiler_rotation_offset(u16 screen_width, u16 width,
1960 enum omap_color_mode color_mode, bool fieldmode,
1961 unsigned int field_offset, unsigned *offset0, unsigned *offset1,
1962 s32 *row_inc, s32 *pix_inc, int x_predecim, int y_predecim)
1963 {
1964 u8 ps;
1965
1966 switch (color_mode) {
1967 case OMAP_DSS_COLOR_CLUT1:
1968 case OMAP_DSS_COLOR_CLUT2:
1969 case OMAP_DSS_COLOR_CLUT4:
1970 case OMAP_DSS_COLOR_CLUT8:
1971 BUG();
1972 return;
1973 default:
1974 ps = color_mode_to_bpp(color_mode) / 8;
1975 break;
1976 }
1977
1978 DSSDBG("scrw %d, width %d\n", screen_width, width);
1979
1980 /*
1981 * field 0 = even field = bottom field
1982 * field 1 = odd field = top field
1983 */
1984 *offset1 = 0;
1985 if (field_offset)
1986 *offset0 = *offset1 + field_offset * screen_width * ps;
1987 else
1988 *offset0 = *offset1;
1989 *row_inc = pixinc(1 + (y_predecim * screen_width - width * x_predecim) +
1990 (fieldmode ? screen_width : 0), ps);
1991 if (color_mode == OMAP_DSS_COLOR_YUV2 ||
1992 color_mode == OMAP_DSS_COLOR_UYVY)
1993 *pix_inc = pixinc(x_predecim, 2 * ps);
1994 else
1995 *pix_inc = pixinc(x_predecim, ps);
1996 }
1997
1998 /*
1999 * This function is used to avoid synclosts in OMAP3, because of some
2000 * undocumented horizontal position and timing related limitations.
2001 */
2002 static int check_horiz_timing_omap3(unsigned long pclk, unsigned long lclk,
2003 const struct omap_video_timings *t, u16 pos_x,
2004 u16 width, u16 height, u16 out_width, u16 out_height,
2005 bool five_taps)
2006 {
2007 const int ds = DIV_ROUND_UP(height, out_height);
2008 unsigned long nonactive;
2009 static const u8 limits[3] = { 8, 10, 20 };
2010 u64 val, blank;
2011 int i;
2012
2013 nonactive = t->x_res + t->hfp + t->hsw + t->hbp - out_width;
2014
2015 i = 0;
2016 if (out_height < height)
2017 i++;
2018 if (out_width < width)
2019 i++;
2020 blank = div_u64((u64)(t->hbp + t->hsw + t->hfp) * lclk, pclk);
2021 DSSDBG("blanking period + ppl = %llu (limit = %u)\n", blank, limits[i]);
2022 if (blank <= limits[i])
2023 return -EINVAL;
2024
2025 /* FIXME add checks for 3-tap filter once the limitations are known */
2026 if (!five_taps)
2027 return 0;
2028
2029 /*
2030 * Pixel data should be prepared before visible display point starts.
2031 * So, atleast DS-2 lines must have already been fetched by DISPC
2032 * during nonactive - pos_x period.
2033 */
2034 val = div_u64((u64)(nonactive - pos_x) * lclk, pclk);
2035 DSSDBG("(nonactive - pos_x) * pcd = %llu max(0, DS - 2) * width = %d\n",
2036 val, max(0, ds - 2) * width);
2037 if (val < max(0, ds - 2) * width)
2038 return -EINVAL;
2039
2040 /*
2041 * All lines need to be refilled during the nonactive period of which
2042 * only one line can be loaded during the active period. So, atleast
2043 * DS - 1 lines should be loaded during nonactive period.
2044 */
2045 val = div_u64((u64)nonactive * lclk, pclk);
2046 DSSDBG("nonactive * pcd = %llu, max(0, DS - 1) * width = %d\n",
2047 val, max(0, ds - 1) * width);
2048 if (val < max(0, ds - 1) * width)
2049 return -EINVAL;
2050
2051 return 0;
2052 }
2053
2054 static unsigned long calc_core_clk_five_taps(unsigned long pclk,
2055 const struct omap_video_timings *mgr_timings, u16 width,
2056 u16 height, u16 out_width, u16 out_height,
2057 enum omap_color_mode color_mode)
2058 {
2059 u32 core_clk = 0;
2060 u64 tmp;
2061
2062 if (height <= out_height && width <= out_width)
2063 return (unsigned long) pclk;
2064
2065 if (height > out_height) {
2066 unsigned int ppl = mgr_timings->x_res;
2067
2068 tmp = pclk * height * out_width;
2069 do_div(tmp, 2 * out_height * ppl);
2070 core_clk = tmp;
2071
2072 if (height > 2 * out_height) {
2073 if (ppl == out_width)
2074 return 0;
2075
2076 tmp = pclk * (height - 2 * out_height) * out_width;
2077 do_div(tmp, 2 * out_height * (ppl - out_width));
2078 core_clk = max_t(u32, core_clk, tmp);
2079 }
2080 }
2081
2082 if (width > out_width) {
2083 tmp = pclk * width;
2084 do_div(tmp, out_width);
2085 core_clk = max_t(u32, core_clk, tmp);
2086
2087 if (color_mode == OMAP_DSS_COLOR_RGB24U)
2088 core_clk <<= 1;
2089 }
2090
2091 return core_clk;
2092 }
2093
2094 static unsigned long calc_core_clk_24xx(unsigned long pclk, u16 width,
2095 u16 height, u16 out_width, u16 out_height, bool mem_to_mem)
2096 {
2097 if (height > out_height && width > out_width)
2098 return pclk * 4;
2099 else
2100 return pclk * 2;
2101 }
2102
2103 static unsigned long calc_core_clk_34xx(unsigned long pclk, u16 width,
2104 u16 height, u16 out_width, u16 out_height, bool mem_to_mem)
2105 {
2106 unsigned int hf, vf;
2107
2108 /*
2109 * FIXME how to determine the 'A' factor
2110 * for the no downscaling case ?
2111 */
2112
2113 if (width > 3 * out_width)
2114 hf = 4;
2115 else if (width > 2 * out_width)
2116 hf = 3;
2117 else if (width > out_width)
2118 hf = 2;
2119 else
2120 hf = 1;
2121 if (height > out_height)
2122 vf = 2;
2123 else
2124 vf = 1;
2125
2126 return pclk * vf * hf;
2127 }
2128
2129 static unsigned long calc_core_clk_44xx(unsigned long pclk, u16 width,
2130 u16 height, u16 out_width, u16 out_height, bool mem_to_mem)
2131 {
2132 /*
2133 * If the overlay/writeback is in mem to mem mode, there are no
2134 * downscaling limitations with respect to pixel clock, return 1 as
2135 * required core clock to represent that we have sufficient enough
2136 * core clock to do maximum downscaling
2137 */
2138 if (mem_to_mem)
2139 return 1;
2140
2141 if (width > out_width)
2142 return DIV_ROUND_UP(pclk, out_width) * width;
2143 else
2144 return pclk;
2145 }
2146
2147 static int dispc_ovl_calc_scaling_24xx(unsigned long pclk, unsigned long lclk,
2148 const struct omap_video_timings *mgr_timings,
2149 u16 width, u16 height, u16 out_width, u16 out_height,
2150 enum omap_color_mode color_mode, bool *five_taps,
2151 int *x_predecim, int *y_predecim, int *decim_x, int *decim_y,
2152 u16 pos_x, unsigned long *core_clk, bool mem_to_mem)
2153 {
2154 int error;
2155 u16 in_width, in_height;
2156 int min_factor = min(*decim_x, *decim_y);
2157 const int maxsinglelinewidth =
2158 dss_feat_get_param_max(FEAT_PARAM_LINEWIDTH);
2159
2160 *five_taps = false;
2161
2162 do {
2163 in_height = DIV_ROUND_UP(height, *decim_y);
2164 in_width = DIV_ROUND_UP(width, *decim_x);
2165 *core_clk = dispc.feat->calc_core_clk(pclk, in_width,
2166 in_height, out_width, out_height, mem_to_mem);
2167 error = (in_width > maxsinglelinewidth || !*core_clk ||
2168 *core_clk > dispc_core_clk_rate());
2169 if (error) {
2170 if (*decim_x == *decim_y) {
2171 *decim_x = min_factor;
2172 ++*decim_y;
2173 } else {
2174 swap(*decim_x, *decim_y);
2175 if (*decim_x < *decim_y)
2176 ++*decim_x;
2177 }
2178 }
2179 } while (*decim_x <= *x_predecim && *decim_y <= *y_predecim && error);
2180
2181 if (in_width > maxsinglelinewidth) {
2182 DSSERR("Cannot scale max input width exceeded");
2183 return -EINVAL;
2184 }
2185 return 0;
2186 }
2187
2188 static int dispc_ovl_calc_scaling_34xx(unsigned long pclk, unsigned long lclk,
2189 const struct omap_video_timings *mgr_timings,
2190 u16 width, u16 height, u16 out_width, u16 out_height,
2191 enum omap_color_mode color_mode, bool *five_taps,
2192 int *x_predecim, int *y_predecim, int *decim_x, int *decim_y,
2193 u16 pos_x, unsigned long *core_clk, bool mem_to_mem)
2194 {
2195 int error;
2196 u16 in_width, in_height;
2197 int min_factor = min(*decim_x, *decim_y);
2198 const int maxsinglelinewidth =
2199 dss_feat_get_param_max(FEAT_PARAM_LINEWIDTH);
2200
2201 do {
2202 in_height = DIV_ROUND_UP(height, *decim_y);
2203 in_width = DIV_ROUND_UP(width, *decim_x);
2204 *five_taps = in_height > out_height;
2205
2206 if (in_width > maxsinglelinewidth)
2207 if (in_height > out_height &&
2208 in_height < out_height * 2)
2209 *five_taps = false;
2210 again:
2211 if (*five_taps)
2212 *core_clk = calc_core_clk_five_taps(pclk, mgr_timings,
2213 in_width, in_height, out_width,
2214 out_height, color_mode);
2215 else
2216 *core_clk = dispc.feat->calc_core_clk(pclk, in_width,
2217 in_height, out_width, out_height,
2218 mem_to_mem);
2219
2220 error = check_horiz_timing_omap3(pclk, lclk, mgr_timings,
2221 pos_x, in_width, in_height, out_width,
2222 out_height, *five_taps);
2223 if (error && *five_taps) {
2224 *five_taps = false;
2225 goto again;
2226 }
2227
2228 error = (error || in_width > maxsinglelinewidth * 2 ||
2229 (in_width > maxsinglelinewidth && *five_taps) ||
2230 !*core_clk || *core_clk > dispc_core_clk_rate());
2231 if (error) {
2232 if (*decim_x == *decim_y) {
2233 *decim_x = min_factor;
2234 ++*decim_y;
2235 } else {
2236 swap(*decim_x, *decim_y);
2237 if (*decim_x < *decim_y)
2238 ++*decim_x;
2239 }
2240 }
2241 } while (*decim_x <= *x_predecim && *decim_y <= *y_predecim && error);
2242
2243 if (check_horiz_timing_omap3(pclk, lclk, mgr_timings, pos_x, width,
2244 height, out_width, out_height, *five_taps)) {
2245 DSSERR("horizontal timing too tight\n");
2246 return -EINVAL;
2247 }
2248
2249 if (in_width > (maxsinglelinewidth * 2)) {
2250 DSSERR("Cannot setup scaling");
2251 DSSERR("width exceeds maximum width possible");
2252 return -EINVAL;
2253 }
2254
2255 if (in_width > maxsinglelinewidth && *five_taps) {
2256 DSSERR("cannot setup scaling with five taps");
2257 return -EINVAL;
2258 }
2259 return 0;
2260 }
2261
2262 static int dispc_ovl_calc_scaling_44xx(unsigned long pclk, unsigned long lclk,
2263 const struct omap_video_timings *mgr_timings,
2264 u16 width, u16 height, u16 out_width, u16 out_height,
2265 enum omap_color_mode color_mode, bool *five_taps,
2266 int *x_predecim, int *y_predecim, int *decim_x, int *decim_y,
2267 u16 pos_x, unsigned long *core_clk, bool mem_to_mem)
2268 {
2269 u16 in_width, in_width_max;
2270 int decim_x_min = *decim_x;
2271 u16 in_height = DIV_ROUND_UP(height, *decim_y);
2272 const int maxsinglelinewidth =
2273 dss_feat_get_param_max(FEAT_PARAM_LINEWIDTH);
2274 const int maxdownscale = dss_feat_get_param_max(FEAT_PARAM_DOWNSCALE);
2275
2276 if (mem_to_mem) {
2277 in_width_max = out_width * maxdownscale;
2278 } else {
2279 in_width_max = dispc_core_clk_rate() /
2280 DIV_ROUND_UP(pclk, out_width);
2281 }
2282
2283 *decim_x = DIV_ROUND_UP(width, in_width_max);
2284
2285 *decim_x = *decim_x > decim_x_min ? *decim_x : decim_x_min;
2286 if (*decim_x > *x_predecim)
2287 return -EINVAL;
2288
2289 do {
2290 in_width = DIV_ROUND_UP(width, *decim_x);
2291 } while (*decim_x <= *x_predecim &&
2292 in_width > maxsinglelinewidth && ++*decim_x);
2293
2294 if (in_width > maxsinglelinewidth) {
2295 DSSERR("Cannot scale width exceeds max line width");
2296 return -EINVAL;
2297 }
2298
2299 *core_clk = dispc.feat->calc_core_clk(pclk, in_width, in_height,
2300 out_width, out_height, mem_to_mem);
2301 return 0;
2302 }
2303
2304 static int dispc_ovl_calc_scaling(unsigned long pclk, unsigned long lclk,
2305 enum omap_overlay_caps caps,
2306 const struct omap_video_timings *mgr_timings,
2307 u16 width, u16 height, u16 out_width, u16 out_height,
2308 enum omap_color_mode color_mode, bool *five_taps,
2309 int *x_predecim, int *y_predecim, u16 pos_x,
2310 enum omap_dss_rotation_type rotation_type, bool mem_to_mem)
2311 {
2312 const int maxdownscale = dss_feat_get_param_max(FEAT_PARAM_DOWNSCALE);
2313 const int max_decim_limit = 16;
2314 unsigned long core_clk = 0;
2315 int decim_x, decim_y, ret;
2316
2317 if (width == out_width && height == out_height)
2318 return 0;
2319
2320 if ((caps & OMAP_DSS_OVL_CAP_SCALE) == 0)
2321 return -EINVAL;
2322
2323 if (mem_to_mem) {
2324 *x_predecim = *y_predecim = 1;
2325 } else {
2326 *x_predecim = max_decim_limit;
2327 *y_predecim = (rotation_type == OMAP_DSS_ROT_TILER &&
2328 dss_has_feature(FEAT_BURST_2D)) ?
2329 2 : max_decim_limit;
2330 }
2331
2332 if (color_mode == OMAP_DSS_COLOR_CLUT1 ||
2333 color_mode == OMAP_DSS_COLOR_CLUT2 ||
2334 color_mode == OMAP_DSS_COLOR_CLUT4 ||
2335 color_mode == OMAP_DSS_COLOR_CLUT8) {
2336 *x_predecim = 1;
2337 *y_predecim = 1;
2338 *five_taps = false;
2339 return 0;
2340 }
2341
2342 decim_x = DIV_ROUND_UP(DIV_ROUND_UP(width, out_width), maxdownscale);
2343 decim_y = DIV_ROUND_UP(DIV_ROUND_UP(height, out_height), maxdownscale);
2344
2345 if (decim_x > *x_predecim || out_width > width * 8)
2346 return -EINVAL;
2347
2348 if (decim_y > *y_predecim || out_height > height * 8)
2349 return -EINVAL;
2350
2351 ret = dispc.feat->calc_scaling(pclk, lclk, mgr_timings, width, height,
2352 out_width, out_height, color_mode, five_taps,
2353 x_predecim, y_predecim, &decim_x, &decim_y, pos_x, &core_clk,
2354 mem_to_mem);
2355 if (ret)
2356 return ret;
2357
2358 DSSDBG("required core clk rate = %lu Hz\n", core_clk);
2359 DSSDBG("current core clk rate = %lu Hz\n", dispc_core_clk_rate());
2360
2361 if (!core_clk || core_clk > dispc_core_clk_rate()) {
2362 DSSERR("failed to set up scaling, "
2363 "required core clk rate = %lu Hz, "
2364 "current core clk rate = %lu Hz\n",
2365 core_clk, dispc_core_clk_rate());
2366 return -EINVAL;
2367 }
2368
2369 *x_predecim = decim_x;
2370 *y_predecim = decim_y;
2371 return 0;
2372 }
2373
2374 int dispc_ovl_check(enum omap_plane plane, enum omap_channel channel,
2375 const struct omap_overlay_info *oi,
2376 const struct omap_video_timings *timings,
2377 int *x_predecim, int *y_predecim)
2378 {
2379 enum omap_overlay_caps caps = dss_feat_get_overlay_caps(plane);
2380 bool five_taps = true;
2381 bool fieldmode = false;
2382 u16 in_height = oi->height;
2383 u16 in_width = oi->width;
2384 bool ilace = timings->interlace;
2385 u16 out_width, out_height;
2386 int pos_x = oi->pos_x;
2387 unsigned long pclk = dispc_mgr_pclk_rate(channel);
2388 unsigned long lclk = dispc_mgr_lclk_rate(channel);
2389
2390 out_width = oi->out_width == 0 ? oi->width : oi->out_width;
2391 out_height = oi->out_height == 0 ? oi->height : oi->out_height;
2392
2393 if (ilace && oi->height == out_height)
2394 fieldmode = true;
2395
2396 if (ilace) {
2397 if (fieldmode)
2398 in_height /= 2;
2399 out_height /= 2;
2400
2401 DSSDBG("adjusting for ilace: height %d, out_height %d\n",
2402 in_height, out_height);
2403 }
2404
2405 if (!dss_feat_color_mode_supported(plane, oi->color_mode))
2406 return -EINVAL;
2407
2408 return dispc_ovl_calc_scaling(pclk, lclk, caps, timings, in_width,
2409 in_height, out_width, out_height, oi->color_mode,
2410 &five_taps, x_predecim, y_predecim, pos_x,
2411 oi->rotation_type, false);
2412 }
2413 EXPORT_SYMBOL(dispc_ovl_check);
2414
2415 static int dispc_ovl_setup_common(enum omap_plane plane,
2416 enum omap_overlay_caps caps, u32 paddr, u32 p_uv_addr,
2417 u16 screen_width, int pos_x, int pos_y, u16 width, u16 height,
2418 u16 out_width, u16 out_height, enum omap_color_mode color_mode,
2419 u8 rotation, bool mirror, u8 zorder, u8 pre_mult_alpha,
2420 u8 global_alpha, enum omap_dss_rotation_type rotation_type,
2421 bool replication, const struct omap_video_timings *mgr_timings,
2422 bool mem_to_mem)
2423 {
2424 bool five_taps = true;
2425 bool fieldmode = false;
2426 int r, cconv = 0;
2427 unsigned offset0, offset1;
2428 s32 row_inc;
2429 s32 pix_inc;
2430 u16 frame_width, frame_height;
2431 unsigned int field_offset = 0;
2432 u16 in_height = height;
2433 u16 in_width = width;
2434 int x_predecim = 1, y_predecim = 1;
2435 bool ilace = mgr_timings->interlace;
2436 unsigned long pclk = dispc_plane_pclk_rate(plane);
2437 unsigned long lclk = dispc_plane_lclk_rate(plane);
2438
2439 if (paddr == 0)
2440 return -EINVAL;
2441
2442 out_width = out_width == 0 ? width : out_width;
2443 out_height = out_height == 0 ? height : out_height;
2444
2445 if (ilace && height == out_height)
2446 fieldmode = true;
2447
2448 if (ilace) {
2449 if (fieldmode)
2450 in_height /= 2;
2451 pos_y /= 2;
2452 out_height /= 2;
2453
2454 DSSDBG("adjusting for ilace: height %d, pos_y %d, "
2455 "out_height %d\n", in_height, pos_y,
2456 out_height);
2457 }
2458
2459 if (!dss_feat_color_mode_supported(plane, color_mode))
2460 return -EINVAL;
2461
2462 r = dispc_ovl_calc_scaling(pclk, lclk, caps, mgr_timings, in_width,
2463 in_height, out_width, out_height, color_mode,
2464 &five_taps, &x_predecim, &y_predecim, pos_x,
2465 rotation_type, mem_to_mem);
2466 if (r)
2467 return r;
2468
2469 in_width = DIV_ROUND_UP(in_width, x_predecim);
2470 in_height = DIV_ROUND_UP(in_height, y_predecim);
2471
2472 if (color_mode == OMAP_DSS_COLOR_YUV2 ||
2473 color_mode == OMAP_DSS_COLOR_UYVY ||
2474 color_mode == OMAP_DSS_COLOR_NV12)
2475 cconv = 1;
2476
2477 if (ilace && !fieldmode) {
2478 /*
2479 * when downscaling the bottom field may have to start several
2480 * source lines below the top field. Unfortunately ACCUI
2481 * registers will only hold the fractional part of the offset
2482 * so the integer part must be added to the base address of the
2483 * bottom field.
2484 */
2485 if (!in_height || in_height == out_height)
2486 field_offset = 0;
2487 else
2488 field_offset = in_height / out_height / 2;
2489 }
2490
2491 /* Fields are independent but interleaved in memory. */
2492 if (fieldmode)
2493 field_offset = 1;
2494
2495 offset0 = 0;
2496 offset1 = 0;
2497 row_inc = 0;
2498 pix_inc = 0;
2499
2500 if (plane == OMAP_DSS_WB) {
2501 frame_width = out_width;
2502 frame_height = out_height;
2503 } else {
2504 frame_width = in_width;
2505 frame_height = height;
2506 }
2507
2508 if (rotation_type == OMAP_DSS_ROT_TILER)
2509 calc_tiler_rotation_offset(screen_width, frame_width,
2510 color_mode, fieldmode, field_offset,
2511 &offset0, &offset1, &row_inc, &pix_inc,
2512 x_predecim, y_predecim);
2513 else if (rotation_type == OMAP_DSS_ROT_DMA)
2514 calc_dma_rotation_offset(rotation, mirror, screen_width,
2515 frame_width, frame_height,
2516 color_mode, fieldmode, field_offset,
2517 &offset0, &offset1, &row_inc, &pix_inc,
2518 x_predecim, y_predecim);
2519 else
2520 calc_vrfb_rotation_offset(rotation, mirror,
2521 screen_width, frame_width, frame_height,
2522 color_mode, fieldmode, field_offset,
2523 &offset0, &offset1, &row_inc, &pix_inc,
2524 x_predecim, y_predecim);
2525
2526 DSSDBG("offset0 %u, offset1 %u, row_inc %d, pix_inc %d\n",
2527 offset0, offset1, row_inc, pix_inc);
2528
2529 dispc_ovl_set_color_mode(plane, color_mode);
2530
2531 dispc_ovl_configure_burst_type(plane, rotation_type);
2532
2533 dispc_ovl_set_ba0(plane, paddr + offset0);
2534 dispc_ovl_set_ba1(plane, paddr + offset1);
2535
2536 if (OMAP_DSS_COLOR_NV12 == color_mode) {
2537 dispc_ovl_set_ba0_uv(plane, p_uv_addr + offset0);
2538 dispc_ovl_set_ba1_uv(plane, p_uv_addr + offset1);
2539 }
2540
2541 dispc_ovl_set_row_inc(plane, row_inc);
2542 dispc_ovl_set_pix_inc(plane, pix_inc);
2543
2544 DSSDBG("%d,%d %dx%d -> %dx%d\n", pos_x, pos_y, in_width,
2545 in_height, out_width, out_height);
2546
2547 dispc_ovl_set_pos(plane, caps, pos_x, pos_y);
2548
2549 dispc_ovl_set_input_size(plane, in_width, in_height);
2550
2551 if (caps & OMAP_DSS_OVL_CAP_SCALE) {
2552 dispc_ovl_set_scaling(plane, in_width, in_height, out_width,
2553 out_height, ilace, five_taps, fieldmode,
2554 color_mode, rotation);
2555 dispc_ovl_set_output_size(plane, out_width, out_height);
2556 dispc_ovl_set_vid_color_conv(plane, cconv);
2557 }
2558
2559 dispc_ovl_set_rotation_attrs(plane, rotation, rotation_type, mirror,
2560 color_mode);
2561
2562 dispc_ovl_set_zorder(plane, caps, zorder);
2563 dispc_ovl_set_pre_mult_alpha(plane, caps, pre_mult_alpha);
2564 dispc_ovl_setup_global_alpha(plane, caps, global_alpha);
2565
2566 dispc_ovl_enable_replication(plane, caps, replication);
2567
2568 return 0;
2569 }
2570
2571 int dispc_ovl_setup(enum omap_plane plane, const struct omap_overlay_info *oi,
2572 bool replication, const struct omap_video_timings *mgr_timings,
2573 bool mem_to_mem)
2574 {
2575 int r;
2576 enum omap_overlay_caps caps = dss_feat_get_overlay_caps(plane);
2577 enum omap_channel channel;
2578
2579 channel = dispc_ovl_get_channel_out(plane);
2580
2581 DSSDBG("dispc_ovl_setup %d, pa %x, pa_uv %x, sw %d, %d,%d, %dx%d -> "
2582 "%dx%d, cmode %x, rot %d, mir %d, chan %d repl %d\n",
2583 plane, oi->paddr, oi->p_uv_addr, oi->screen_width, oi->pos_x,
2584 oi->pos_y, oi->width, oi->height, oi->out_width, oi->out_height,
2585 oi->color_mode, oi->rotation, oi->mirror, channel, replication);
2586
2587 r = dispc_ovl_setup_common(plane, caps, oi->paddr, oi->p_uv_addr,
2588 oi->screen_width, oi->pos_x, oi->pos_y, oi->width, oi->height,
2589 oi->out_width, oi->out_height, oi->color_mode, oi->rotation,
2590 oi->mirror, oi->zorder, oi->pre_mult_alpha, oi->global_alpha,
2591 oi->rotation_type, replication, mgr_timings, mem_to_mem);
2592
2593 return r;
2594 }
2595 EXPORT_SYMBOL(dispc_ovl_setup);
2596
2597 int dispc_wb_setup(const struct omap_dss_writeback_info *wi,
2598 bool mem_to_mem, const struct omap_video_timings *mgr_timings)
2599 {
2600 int r;
2601 u32 l;
2602 enum omap_plane plane = OMAP_DSS_WB;
2603 const int pos_x = 0, pos_y = 0;
2604 const u8 zorder = 0, global_alpha = 0;
2605 const bool replication = false;
2606 bool truncation;
2607 int in_width = mgr_timings->x_res;
2608 int in_height = mgr_timings->y_res;
2609 enum omap_overlay_caps caps =
2610 OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA;
2611
2612 DSSDBG("dispc_wb_setup, pa %x, pa_uv %x, %d,%d -> %dx%d, cmode %x, "
2613 "rot %d, mir %d\n", wi->paddr, wi->p_uv_addr, in_width,
2614 in_height, wi->width, wi->height, wi->color_mode, wi->rotation,
2615 wi->mirror);
2616
2617 r = dispc_ovl_setup_common(plane, caps, wi->paddr, wi->p_uv_addr,
2618 wi->buf_width, pos_x, pos_y, in_width, in_height, wi->width,
2619 wi->height, wi->color_mode, wi->rotation, wi->mirror, zorder,
2620 wi->pre_mult_alpha, global_alpha, wi->rotation_type,
2621 replication, mgr_timings, mem_to_mem);
2622
2623 switch (wi->color_mode) {
2624 case OMAP_DSS_COLOR_RGB16:
2625 case OMAP_DSS_COLOR_RGB24P:
2626 case OMAP_DSS_COLOR_ARGB16:
2627 case OMAP_DSS_COLOR_RGBA16:
2628 case OMAP_DSS_COLOR_RGB12U:
2629 case OMAP_DSS_COLOR_ARGB16_1555:
2630 case OMAP_DSS_COLOR_XRGB16_1555:
2631 case OMAP_DSS_COLOR_RGBX16:
2632 truncation = true;
2633 break;
2634 default:
2635 truncation = false;
2636 break;
2637 }
2638
2639 /* setup extra DISPC_WB_ATTRIBUTES */
2640 l = dispc_read_reg(DISPC_OVL_ATTRIBUTES(plane));
2641 l = FLD_MOD(l, truncation, 10, 10); /* TRUNCATIONENABLE */
2642 l = FLD_MOD(l, mem_to_mem, 19, 19); /* WRITEBACKMODE */
2643 dispc_write_reg(DISPC_OVL_ATTRIBUTES(plane), l);
2644
2645 return r;
2646 }
2647
2648 int dispc_ovl_enable(enum omap_plane plane, bool enable)
2649 {
2650 DSSDBG("dispc_enable_plane %d, %d\n", plane, enable);
2651
2652 REG_FLD_MOD(DISPC_OVL_ATTRIBUTES(plane), enable ? 1 : 0, 0, 0);
2653
2654 return 0;
2655 }
2656 EXPORT_SYMBOL(dispc_ovl_enable);
2657
2658 bool dispc_ovl_enabled(enum omap_plane plane)
2659 {
2660 return REG_GET(DISPC_OVL_ATTRIBUTES(plane), 0, 0);
2661 }
2662 EXPORT_SYMBOL(dispc_ovl_enabled);
2663
2664 void dispc_mgr_enable(enum omap_channel channel, bool enable)
2665 {
2666 mgr_fld_write(channel, DISPC_MGR_FLD_ENABLE, enable);
2667 /* flush posted write */
2668 mgr_fld_read(channel, DISPC_MGR_FLD_ENABLE);
2669 }
2670 EXPORT_SYMBOL(dispc_mgr_enable);
2671
2672 bool dispc_mgr_is_enabled(enum omap_channel channel)
2673 {
2674 return !!mgr_fld_read(channel, DISPC_MGR_FLD_ENABLE);
2675 }
2676 EXPORT_SYMBOL(dispc_mgr_is_enabled);
2677
2678 void dispc_wb_enable(bool enable)
2679 {
2680 dispc_ovl_enable(OMAP_DSS_WB, enable);
2681 }
2682
2683 bool dispc_wb_is_enabled(void)
2684 {
2685 return dispc_ovl_enabled(OMAP_DSS_WB);
2686 }
2687
2688 static void dispc_lcd_enable_signal_polarity(bool act_high)
2689 {
2690 if (!dss_has_feature(FEAT_LCDENABLEPOL))
2691 return;
2692
2693 REG_FLD_MOD(DISPC_CONTROL, act_high ? 1 : 0, 29, 29);
2694 }
2695
2696 void dispc_lcd_enable_signal(bool enable)
2697 {
2698 if (!dss_has_feature(FEAT_LCDENABLESIGNAL))
2699 return;
2700
2701 REG_FLD_MOD(DISPC_CONTROL, enable ? 1 : 0, 28, 28);
2702 }
2703
2704 void dispc_pck_free_enable(bool enable)
2705 {
2706 if (!dss_has_feature(FEAT_PCKFREEENABLE))
2707 return;
2708
2709 REG_FLD_MOD(DISPC_CONTROL, enable ? 1 : 0, 27, 27);
2710 }
2711
2712 static void dispc_mgr_enable_fifohandcheck(enum omap_channel channel, bool enable)
2713 {
2714 mgr_fld_write(channel, DISPC_MGR_FLD_FIFOHANDCHECK, enable);
2715 }
2716
2717
2718 static void dispc_mgr_set_lcd_type_tft(enum omap_channel channel)
2719 {
2720 mgr_fld_write(channel, DISPC_MGR_FLD_STNTFT, 1);
2721 }
2722
2723 void dispc_set_loadmode(enum omap_dss_load_mode mode)
2724 {
2725 REG_FLD_MOD(DISPC_CONFIG, mode, 2, 1);
2726 }
2727
2728
2729 static void dispc_mgr_set_default_color(enum omap_channel channel, u32 color)
2730 {
2731 dispc_write_reg(DISPC_DEFAULT_COLOR(channel), color);
2732 }
2733
2734 static void dispc_mgr_set_trans_key(enum omap_channel ch,
2735 enum omap_dss_trans_key_type type,
2736 u32 trans_key)
2737 {
2738 mgr_fld_write(ch, DISPC_MGR_FLD_TCKSELECTION, type);
2739
2740 dispc_write_reg(DISPC_TRANS_COLOR(ch), trans_key);
2741 }
2742
2743 static void dispc_mgr_enable_trans_key(enum omap_channel ch, bool enable)
2744 {
2745 mgr_fld_write(ch, DISPC_MGR_FLD_TCKENABLE, enable);
2746 }
2747
2748 static void dispc_mgr_enable_alpha_fixed_zorder(enum omap_channel ch,
2749 bool enable)
2750 {
2751 if (!dss_has_feature(FEAT_ALPHA_FIXED_ZORDER))
2752 return;
2753
2754 if (ch == OMAP_DSS_CHANNEL_LCD)
2755 REG_FLD_MOD(DISPC_CONFIG, enable, 18, 18);
2756 else if (ch == OMAP_DSS_CHANNEL_DIGIT)
2757 REG_FLD_MOD(DISPC_CONFIG, enable, 19, 19);
2758 }
2759
2760 void dispc_mgr_setup(enum omap_channel channel,
2761 const struct omap_overlay_manager_info *info)
2762 {
2763 dispc_mgr_set_default_color(channel, info->default_color);
2764 dispc_mgr_set_trans_key(channel, info->trans_key_type, info->trans_key);
2765 dispc_mgr_enable_trans_key(channel, info->trans_enabled);
2766 dispc_mgr_enable_alpha_fixed_zorder(channel,
2767 info->partial_alpha_enabled);
2768 if (dss_has_feature(FEAT_CPR)) {
2769 dispc_mgr_enable_cpr(channel, info->cpr_enable);
2770 dispc_mgr_set_cpr_coef(channel, &info->cpr_coefs);
2771 }
2772 }
2773 EXPORT_SYMBOL(dispc_mgr_setup);
2774
2775 static void dispc_mgr_set_tft_data_lines(enum omap_channel channel, u8 data_lines)
2776 {
2777 int code;
2778
2779 switch (data_lines) {
2780 case 12:
2781 code = 0;
2782 break;
2783 case 16:
2784 code = 1;
2785 break;
2786 case 18:
2787 code = 2;
2788 break;
2789 case 24:
2790 code = 3;
2791 break;
2792 default:
2793 BUG();
2794 return;
2795 }
2796
2797 mgr_fld_write(channel, DISPC_MGR_FLD_TFTDATALINES, code);
2798 }
2799
2800 static void dispc_mgr_set_io_pad_mode(enum dss_io_pad_mode mode)
2801 {
2802 u32 l;
2803 int gpout0, gpout1;
2804
2805 switch (mode) {
2806 case DSS_IO_PAD_MODE_RESET:
2807 gpout0 = 0;
2808 gpout1 = 0;
2809 break;
2810 case DSS_IO_PAD_MODE_RFBI:
2811 gpout0 = 1;
2812 gpout1 = 0;
2813 break;
2814 case DSS_IO_PAD_MODE_BYPASS:
2815 gpout0 = 1;
2816 gpout1 = 1;
2817 break;
2818 default:
2819 BUG();
2820 return;
2821 }
2822
2823 l = dispc_read_reg(DISPC_CONTROL);
2824 l = FLD_MOD(l, gpout0, 15, 15);
2825 l = FLD_MOD(l, gpout1, 16, 16);
2826 dispc_write_reg(DISPC_CONTROL, l);
2827 }
2828
2829 static void dispc_mgr_enable_stallmode(enum omap_channel channel, bool enable)
2830 {
2831 mgr_fld_write(channel, DISPC_MGR_FLD_STALLMODE, enable);
2832 }
2833
2834 void dispc_mgr_set_lcd_config(enum omap_channel channel,
2835 const struct dss_lcd_mgr_config *config)
2836 {
2837 dispc_mgr_set_io_pad_mode(config->io_pad_mode);
2838
2839 dispc_mgr_enable_stallmode(channel, config->stallmode);
2840 dispc_mgr_enable_fifohandcheck(channel, config->fifohandcheck);
2841
2842 dispc_mgr_set_clock_div(channel, &config->clock_info);
2843
2844 dispc_mgr_set_tft_data_lines(channel, config->video_port_width);
2845
2846 dispc_lcd_enable_signal_polarity(config->lcden_sig_polarity);
2847
2848 dispc_mgr_set_lcd_type_tft(channel);
2849 }
2850 EXPORT_SYMBOL(dispc_mgr_set_lcd_config);
2851
2852 static bool _dispc_mgr_size_ok(u16 width, u16 height)
2853 {
2854 return width <= dispc.feat->mgr_width_max &&
2855 height <= dispc.feat->mgr_height_max;
2856 }
2857
2858 static bool _dispc_lcd_timings_ok(int hsw, int hfp, int hbp,
2859 int vsw, int vfp, int vbp)
2860 {
2861 if (hsw < 1 || hsw > dispc.feat->sw_max ||
2862 hfp < 1 || hfp > dispc.feat->hp_max ||
2863 hbp < 1 || hbp > dispc.feat->hp_max ||
2864 vsw < 1 || vsw > dispc.feat->sw_max ||
2865 vfp < 0 || vfp > dispc.feat->vp_max ||
2866 vbp < 0 || vbp > dispc.feat->vp_max)
2867 return false;
2868 return true;
2869 }
2870
2871 static bool _dispc_mgr_pclk_ok(enum omap_channel channel,
2872 unsigned long pclk)
2873 {
2874 if (dss_mgr_is_lcd(channel))
2875 return pclk <= dispc.feat->max_lcd_pclk ? true : false;
2876 else
2877 return pclk <= dispc.feat->max_tv_pclk ? true : false;
2878 }
2879
2880 bool dispc_mgr_timings_ok(enum omap_channel channel,
2881 const struct omap_video_timings *timings)
2882 {
2883 bool timings_ok;
2884
2885 timings_ok = _dispc_mgr_size_ok(timings->x_res, timings->y_res);
2886
2887 timings_ok &= _dispc_mgr_pclk_ok(channel, timings->pixel_clock * 1000);
2888
2889 if (dss_mgr_is_lcd(channel)) {
2890 timings_ok &= _dispc_lcd_timings_ok(timings->hsw, timings->hfp,
2891 timings->hbp, timings->vsw, timings->vfp,
2892 timings->vbp);
2893 }
2894
2895 return timings_ok;
2896 }
2897
2898 static void _dispc_mgr_set_lcd_timings(enum omap_channel channel, int hsw,
2899 int hfp, int hbp, int vsw, int vfp, int vbp,
2900 enum omap_dss_signal_level vsync_level,
2901 enum omap_dss_signal_level hsync_level,
2902 enum omap_dss_signal_edge data_pclk_edge,
2903 enum omap_dss_signal_level de_level,
2904 enum omap_dss_signal_edge sync_pclk_edge)
2905
2906 {
2907 u32 timing_h, timing_v, l;
2908 bool onoff, rf, ipc;
2909
2910 timing_h = FLD_VAL(hsw-1, dispc.feat->sw_start, 0) |
2911 FLD_VAL(hfp-1, dispc.feat->fp_start, 8) |
2912 FLD_VAL(hbp-1, dispc.feat->bp_start, 20);
2913 timing_v = FLD_VAL(vsw-1, dispc.feat->sw_start, 0) |
2914 FLD_VAL(vfp, dispc.feat->fp_start, 8) |
2915 FLD_VAL(vbp, dispc.feat->bp_start, 20);
2916
2917 dispc_write_reg(DISPC_TIMING_H(channel), timing_h);
2918 dispc_write_reg(DISPC_TIMING_V(channel), timing_v);
2919
2920 switch (data_pclk_edge) {
2921 case OMAPDSS_DRIVE_SIG_RISING_EDGE:
2922 ipc = false;
2923 break;
2924 case OMAPDSS_DRIVE_SIG_FALLING_EDGE:
2925 ipc = true;
2926 break;
2927 case OMAPDSS_DRIVE_SIG_OPPOSITE_EDGES:
2928 default:
2929 BUG();
2930 }
2931
2932 switch (sync_pclk_edge) {
2933 case OMAPDSS_DRIVE_SIG_OPPOSITE_EDGES:
2934 onoff = false;
2935 rf = false;
2936 break;
2937 case OMAPDSS_DRIVE_SIG_FALLING_EDGE:
2938 onoff = true;
2939 rf = false;
2940 break;
2941 case OMAPDSS_DRIVE_SIG_RISING_EDGE:
2942 onoff = true;
2943 rf = true;
2944 break;
2945 default:
2946 BUG();
2947 }
2948
2949 l = dispc_read_reg(DISPC_POL_FREQ(channel));
2950 l |= FLD_VAL(onoff, 17, 17);
2951 l |= FLD_VAL(rf, 16, 16);
2952 l |= FLD_VAL(de_level, 15, 15);
2953 l |= FLD_VAL(ipc, 14, 14);
2954 l |= FLD_VAL(hsync_level, 13, 13);
2955 l |= FLD_VAL(vsync_level, 12, 12);
2956 dispc_write_reg(DISPC_POL_FREQ(channel), l);
2957 }
2958
2959 /* change name to mode? */
2960 void dispc_mgr_set_timings(enum omap_channel channel,
2961 const struct omap_video_timings *timings)
2962 {
2963 unsigned xtot, ytot;
2964 unsigned long ht, vt;
2965 struct omap_video_timings t = *timings;
2966
2967 DSSDBG("channel %d xres %u yres %u\n", channel, t.x_res, t.y_res);
2968
2969 if (!dispc_mgr_timings_ok(channel, &t)) {
2970 BUG();
2971 return;
2972 }
2973
2974 if (dss_mgr_is_lcd(channel)) {
2975 _dispc_mgr_set_lcd_timings(channel, t.hsw, t.hfp, t.hbp, t.vsw,
2976 t.vfp, t.vbp, t.vsync_level, t.hsync_level,
2977 t.data_pclk_edge, t.de_level, t.sync_pclk_edge);
2978
2979 xtot = t.x_res + t.hfp + t.hsw + t.hbp;
2980 ytot = t.y_res + t.vfp + t.vsw + t.vbp;
2981
2982 ht = (timings->pixel_clock * 1000) / xtot;
2983 vt = (timings->pixel_clock * 1000) / xtot / ytot;
2984
2985 DSSDBG("pck %u\n", timings->pixel_clock);
2986 DSSDBG("hsw %d hfp %d hbp %d vsw %d vfp %d vbp %d\n",
2987 t.hsw, t.hfp, t.hbp, t.vsw, t.vfp, t.vbp);
2988 DSSDBG("vsync_level %d hsync_level %d data_pclk_edge %d de_level %d sync_pclk_edge %d\n",
2989 t.vsync_level, t.hsync_level, t.data_pclk_edge,
2990 t.de_level, t.sync_pclk_edge);
2991
2992 DSSDBG("hsync %luHz, vsync %luHz\n", ht, vt);
2993 } else {
2994 if (t.interlace == true)
2995 t.y_res /= 2;
2996 }
2997
2998 dispc_mgr_set_size(channel, t.x_res, t.y_res);
2999 }
3000 EXPORT_SYMBOL(dispc_mgr_set_timings);
3001
3002 static void dispc_mgr_set_lcd_divisor(enum omap_channel channel, u16 lck_div,
3003 u16 pck_div)
3004 {
3005 BUG_ON(lck_div < 1);
3006 BUG_ON(pck_div < 1);
3007
3008 dispc_write_reg(DISPC_DIVISORo(channel),
3009 FLD_VAL(lck_div, 23, 16) | FLD_VAL(pck_div, 7, 0));
3010
3011 if (dss_has_feature(FEAT_CORE_CLK_DIV) == false &&
3012 channel == OMAP_DSS_CHANNEL_LCD)
3013 dispc.core_clk_rate = dispc_fclk_rate() / lck_div;
3014 }
3015
3016 static void dispc_mgr_get_lcd_divisor(enum omap_channel channel, int *lck_div,
3017 int *pck_div)
3018 {
3019 u32 l;
3020 l = dispc_read_reg(DISPC_DIVISORo(channel));
3021 *lck_div = FLD_GET(l, 23, 16);
3022 *pck_div = FLD_GET(l, 7, 0);
3023 }
3024
3025 unsigned long dispc_fclk_rate(void)
3026 {
3027 struct platform_device *dsidev;
3028 unsigned long r = 0;
3029
3030 switch (dss_get_dispc_clk_source()) {
3031 case OMAP_DSS_CLK_SRC_FCK:
3032 r = dss_get_dispc_clk_rate();
3033 break;
3034 case OMAP_DSS_CLK_SRC_DSI_PLL_HSDIV_DISPC:
3035 dsidev = dsi_get_dsidev_from_id(0);
3036 r = dsi_get_pll_hsdiv_dispc_rate(dsidev);
3037 break;
3038 case OMAP_DSS_CLK_SRC_DSI2_PLL_HSDIV_DISPC:
3039 dsidev = dsi_get_dsidev_from_id(1);
3040 r = dsi_get_pll_hsdiv_dispc_rate(dsidev);
3041 break;
3042 default:
3043 BUG();
3044 return 0;
3045 }
3046
3047 return r;
3048 }
3049
3050 unsigned long dispc_mgr_lclk_rate(enum omap_channel channel)
3051 {
3052 struct platform_device *dsidev;
3053 int lcd;
3054 unsigned long r;
3055 u32 l;
3056
3057 if (dss_mgr_is_lcd(channel)) {
3058 l = dispc_read_reg(DISPC_DIVISORo(channel));
3059
3060 lcd = FLD_GET(l, 23, 16);
3061
3062 switch (dss_get_lcd_clk_source(channel)) {
3063 case OMAP_DSS_CLK_SRC_FCK:
3064 r = dss_get_dispc_clk_rate();
3065 break;
3066 case OMAP_DSS_CLK_SRC_DSI_PLL_HSDIV_DISPC:
3067 dsidev = dsi_get_dsidev_from_id(0);
3068 r = dsi_get_pll_hsdiv_dispc_rate(dsidev);
3069 break;
3070 case OMAP_DSS_CLK_SRC_DSI2_PLL_HSDIV_DISPC:
3071 dsidev = dsi_get_dsidev_from_id(1);
3072 r = dsi_get_pll_hsdiv_dispc_rate(dsidev);
3073 break;
3074 default:
3075 BUG();
3076 return 0;
3077 }
3078
3079 return r / lcd;
3080 } else {
3081 return dispc_fclk_rate();
3082 }
3083 }
3084
3085 unsigned long dispc_mgr_pclk_rate(enum omap_channel channel)
3086 {
3087 unsigned long r;
3088
3089 if (dss_mgr_is_lcd(channel)) {
3090 int pcd;
3091 u32 l;
3092
3093 l = dispc_read_reg(DISPC_DIVISORo(channel));
3094
3095 pcd = FLD_GET(l, 7, 0);
3096
3097 r = dispc_mgr_lclk_rate(channel);
3098
3099 return r / pcd;
3100 } else {
3101 return dispc.tv_pclk_rate;
3102 }
3103 }
3104
3105 void dispc_set_tv_pclk(unsigned long pclk)
3106 {
3107 dispc.tv_pclk_rate = pclk;
3108 }
3109
3110 unsigned long dispc_core_clk_rate(void)
3111 {
3112 return dispc.core_clk_rate;
3113 }
3114
3115 static unsigned long dispc_plane_pclk_rate(enum omap_plane plane)
3116 {
3117 enum omap_channel channel;
3118
3119 if (plane == OMAP_DSS_WB)
3120 return 0;
3121
3122 channel = dispc_ovl_get_channel_out(plane);
3123
3124 return dispc_mgr_pclk_rate(channel);
3125 }
3126
3127 static unsigned long dispc_plane_lclk_rate(enum omap_plane plane)
3128 {
3129 enum omap_channel channel;
3130
3131 if (plane == OMAP_DSS_WB)
3132 return 0;
3133
3134 channel = dispc_ovl_get_channel_out(plane);
3135
3136 return dispc_mgr_lclk_rate(channel);
3137 }
3138
3139 static void dispc_dump_clocks_channel(struct seq_file *s, enum omap_channel channel)
3140 {
3141 int lcd, pcd;
3142 enum omap_dss_clk_source lcd_clk_src;
3143
3144 seq_printf(s, "- %s -\n", mgr_desc[channel].name);
3145
3146 lcd_clk_src = dss_get_lcd_clk_source(channel);
3147
3148 seq_printf(s, "%s clk source = %s (%s)\n", mgr_desc[channel].name,
3149 dss_get_generic_clk_source_name(lcd_clk_src),
3150 dss_feat_get_clk_source_name(lcd_clk_src));
3151
3152 dispc_mgr_get_lcd_divisor(channel, &lcd, &pcd);
3153
3154 seq_printf(s, "lck\t\t%-16lulck div\t%u\n",
3155 dispc_mgr_lclk_rate(channel), lcd);
3156 seq_printf(s, "pck\t\t%-16lupck div\t%u\n",
3157 dispc_mgr_pclk_rate(channel), pcd);
3158 }
3159
3160 void dispc_dump_clocks(struct seq_file *s)
3161 {
3162 int lcd;
3163 u32 l;
3164 enum omap_dss_clk_source dispc_clk_src = dss_get_dispc_clk_source();
3165
3166 if (dispc_runtime_get())
3167 return;
3168
3169 seq_printf(s, "- DISPC -\n");
3170
3171 seq_printf(s, "dispc fclk source = %s (%s)\n",
3172 dss_get_generic_clk_source_name(dispc_clk_src),
3173 dss_feat_get_clk_source_name(dispc_clk_src));
3174
3175 seq_printf(s, "fck\t\t%-16lu\n", dispc_fclk_rate());
3176
3177 if (dss_has_feature(FEAT_CORE_CLK_DIV)) {
3178 seq_printf(s, "- DISPC-CORE-CLK -\n");
3179 l = dispc_read_reg(DISPC_DIVISOR);
3180 lcd = FLD_GET(l, 23, 16);
3181
3182 seq_printf(s, "lck\t\t%-16lulck div\t%u\n",
3183 (dispc_fclk_rate()/lcd), lcd);
3184 }
3185
3186 dispc_dump_clocks_channel(s, OMAP_DSS_CHANNEL_LCD);
3187
3188 if (dss_has_feature(FEAT_MGR_LCD2))
3189 dispc_dump_clocks_channel(s, OMAP_DSS_CHANNEL_LCD2);
3190 if (dss_has_feature(FEAT_MGR_LCD3))
3191 dispc_dump_clocks_channel(s, OMAP_DSS_CHANNEL_LCD3);
3192
3193 dispc_runtime_put();
3194 }
3195
3196 static void dispc_dump_regs(struct seq_file *s)
3197 {
3198 int i, j;
3199 const char *mgr_names[] = {
3200 [OMAP_DSS_CHANNEL_LCD] = "LCD",
3201 [OMAP_DSS_CHANNEL_DIGIT] = "TV",
3202 [OMAP_DSS_CHANNEL_LCD2] = "LCD2",
3203 [OMAP_DSS_CHANNEL_LCD3] = "LCD3",
3204 };
3205 const char *ovl_names[] = {
3206 [OMAP_DSS_GFX] = "GFX",
3207 [OMAP_DSS_VIDEO1] = "VID1",
3208 [OMAP_DSS_VIDEO2] = "VID2",
3209 [OMAP_DSS_VIDEO3] = "VID3",
3210 };
3211 const char **p_names;
3212
3213 #define DUMPREG(r) seq_printf(s, "%-50s %08x\n", #r, dispc_read_reg(r))
3214
3215 if (dispc_runtime_get())
3216 return;
3217
3218 /* DISPC common registers */
3219 DUMPREG(DISPC_REVISION);
3220 DUMPREG(DISPC_SYSCONFIG);
3221 DUMPREG(DISPC_SYSSTATUS);
3222 DUMPREG(DISPC_IRQSTATUS);
3223 DUMPREG(DISPC_IRQENABLE);
3224 DUMPREG(DISPC_CONTROL);
3225 DUMPREG(DISPC_CONFIG);
3226 DUMPREG(DISPC_CAPABLE);
3227 DUMPREG(DISPC_LINE_STATUS);
3228 DUMPREG(DISPC_LINE_NUMBER);
3229 if (dss_has_feature(FEAT_ALPHA_FIXED_ZORDER) ||
3230 dss_has_feature(FEAT_ALPHA_FREE_ZORDER))
3231 DUMPREG(DISPC_GLOBAL_ALPHA);
3232 if (dss_has_feature(FEAT_MGR_LCD2)) {
3233 DUMPREG(DISPC_CONTROL2);
3234 DUMPREG(DISPC_CONFIG2);
3235 }
3236 if (dss_has_feature(FEAT_MGR_LCD3)) {
3237 DUMPREG(DISPC_CONTROL3);
3238 DUMPREG(DISPC_CONFIG3);
3239 }
3240 if (dss_has_feature(FEAT_MFLAG))
3241 DUMPREG(DISPC_GLOBAL_MFLAG_ATTRIBUTE);
3242
3243 #undef DUMPREG
3244
3245 #define DISPC_REG(i, name) name(i)
3246 #define DUMPREG(i, r) seq_printf(s, "%s(%s)%*s %08x\n", #r, p_names[i], \
3247 (int)(48 - strlen(#r) - strlen(p_names[i])), " ", \
3248 dispc_read_reg(DISPC_REG(i, r)))
3249
3250 p_names = mgr_names;
3251
3252 /* DISPC channel specific registers */
3253 for (i = 0; i < dss_feat_get_num_mgrs(); i++) {
3254 DUMPREG(i, DISPC_DEFAULT_COLOR);
3255 DUMPREG(i, DISPC_TRANS_COLOR);
3256 DUMPREG(i, DISPC_SIZE_MGR);
3257
3258 if (i == OMAP_DSS_CHANNEL_DIGIT)
3259 continue;
3260
3261 DUMPREG(i, DISPC_DEFAULT_COLOR);
3262 DUMPREG(i, DISPC_TRANS_COLOR);
3263 DUMPREG(i, DISPC_TIMING_H);
3264 DUMPREG(i, DISPC_TIMING_V);
3265 DUMPREG(i, DISPC_POL_FREQ);
3266 DUMPREG(i, DISPC_DIVISORo);
3267 DUMPREG(i, DISPC_SIZE_MGR);
3268
3269 DUMPREG(i, DISPC_DATA_CYCLE1);
3270 DUMPREG(i, DISPC_DATA_CYCLE2);
3271 DUMPREG(i, DISPC_DATA_CYCLE3);
3272
3273 if (dss_has_feature(FEAT_CPR)) {
3274 DUMPREG(i, DISPC_CPR_COEF_R);
3275 DUMPREG(i, DISPC_CPR_COEF_G);
3276 DUMPREG(i, DISPC_CPR_COEF_B);
3277 }
3278 }
3279
3280 p_names = ovl_names;
3281
3282 for (i = 0; i < dss_feat_get_num_ovls(); i++) {
3283 DUMPREG(i, DISPC_OVL_BA0);
3284 DUMPREG(i, DISPC_OVL_BA1);
3285 DUMPREG(i, DISPC_OVL_POSITION);
3286 DUMPREG(i, DISPC_OVL_SIZE);
3287 DUMPREG(i, DISPC_OVL_ATTRIBUTES);
3288 DUMPREG(i, DISPC_OVL_FIFO_THRESHOLD);
3289 DUMPREG(i, DISPC_OVL_FIFO_SIZE_STATUS);
3290 DUMPREG(i, DISPC_OVL_ROW_INC);
3291 DUMPREG(i, DISPC_OVL_PIXEL_INC);
3292 if (dss_has_feature(FEAT_PRELOAD))
3293 DUMPREG(i, DISPC_OVL_PRELOAD);
3294
3295 if (i == OMAP_DSS_GFX) {
3296 DUMPREG(i, DISPC_OVL_WINDOW_SKIP);
3297 DUMPREG(i, DISPC_OVL_TABLE_BA);
3298 continue;
3299 }
3300
3301 DUMPREG(i, DISPC_OVL_FIR);
3302 DUMPREG(i, DISPC_OVL_PICTURE_SIZE);
3303 DUMPREG(i, DISPC_OVL_ACCU0);
3304 DUMPREG(i, DISPC_OVL_ACCU1);
3305 if (dss_has_feature(FEAT_HANDLE_UV_SEPARATE)) {
3306 DUMPREG(i, DISPC_OVL_BA0_UV);
3307 DUMPREG(i, DISPC_OVL_BA1_UV);
3308 DUMPREG(i, DISPC_OVL_FIR2);
3309 DUMPREG(i, DISPC_OVL_ACCU2_0);
3310 DUMPREG(i, DISPC_OVL_ACCU2_1);
3311 }
3312 if (dss_has_feature(FEAT_ATTR2))
3313 DUMPREG(i, DISPC_OVL_ATTRIBUTES2);
3314 if (dss_has_feature(FEAT_PRELOAD))
3315 DUMPREG(i, DISPC_OVL_PRELOAD);
3316 if (dss_has_feature(FEAT_MFLAG))
3317 DUMPREG(i, DISPC_OVL_MFLAG_THRESHOLD);
3318 }
3319
3320 #undef DISPC_REG
3321 #undef DUMPREG
3322
3323 #define DISPC_REG(plane, name, i) name(plane, i)
3324 #define DUMPREG(plane, name, i) \
3325 seq_printf(s, "%s_%d(%s)%*s %08x\n", #name, i, p_names[plane], \
3326 (int)(46 - strlen(#name) - strlen(p_names[plane])), " ", \
3327 dispc_read_reg(DISPC_REG(plane, name, i)))
3328
3329 /* Video pipeline coefficient registers */
3330
3331 /* start from OMAP_DSS_VIDEO1 */
3332 for (i = 1; i < dss_feat_get_num_ovls(); i++) {
3333 for (j = 0; j < 8; j++)
3334 DUMPREG(i, DISPC_OVL_FIR_COEF_H, j);
3335
3336 for (j = 0; j < 8; j++)
3337 DUMPREG(i, DISPC_OVL_FIR_COEF_HV, j);
3338
3339 for (j = 0; j < 5; j++)
3340 DUMPREG(i, DISPC_OVL_CONV_COEF, j);
3341
3342 if (dss_has_feature(FEAT_FIR_COEF_V)) {
3343 for (j = 0; j < 8; j++)
3344 DUMPREG(i, DISPC_OVL_FIR_COEF_V, j);
3345 }
3346
3347 if (dss_has_feature(FEAT_HANDLE_UV_SEPARATE)) {
3348 for (j = 0; j < 8; j++)
3349 DUMPREG(i, DISPC_OVL_FIR_COEF_H2, j);
3350
3351 for (j = 0; j < 8; j++)
3352 DUMPREG(i, DISPC_OVL_FIR_COEF_HV2, j);
3353
3354 for (j = 0; j < 8; j++)
3355 DUMPREG(i, DISPC_OVL_FIR_COEF_V2, j);
3356 }
3357 }
3358
3359 dispc_runtime_put();
3360
3361 #undef DISPC_REG
3362 #undef DUMPREG
3363 }
3364
3365 /* calculate clock rates using dividers in cinfo */
3366 int dispc_calc_clock_rates(unsigned long dispc_fclk_rate,
3367 struct dispc_clock_info *cinfo)
3368 {
3369 if (cinfo->lck_div > 255 || cinfo->lck_div == 0)
3370 return -EINVAL;
3371 if (cinfo->pck_div < 1 || cinfo->pck_div > 255)
3372 return -EINVAL;
3373
3374 cinfo->lck = dispc_fclk_rate / cinfo->lck_div;
3375 cinfo->pck = cinfo->lck / cinfo->pck_div;
3376
3377 return 0;
3378 }
3379
3380 bool dispc_div_calc(unsigned long dispc,
3381 unsigned long pck_min, unsigned long pck_max,
3382 dispc_div_calc_func func, void *data)
3383 {
3384 int lckd, lckd_start, lckd_stop;
3385 int pckd, pckd_start, pckd_stop;
3386 unsigned long pck, lck;
3387 unsigned long lck_max;
3388 unsigned long pckd_hw_min, pckd_hw_max;
3389 unsigned min_fck_per_pck;
3390 unsigned long fck;
3391
3392 #ifdef CONFIG_OMAP2_DSS_MIN_FCK_PER_PCK
3393 min_fck_per_pck = CONFIG_OMAP2_DSS_MIN_FCK_PER_PCK;
3394 #else
3395 min_fck_per_pck = 0;
3396 #endif
3397
3398 pckd_hw_min = dss_feat_get_param_min(FEAT_PARAM_DSS_PCD);
3399 pckd_hw_max = dss_feat_get_param_max(FEAT_PARAM_DSS_PCD);
3400
3401 lck_max = dss_feat_get_param_max(FEAT_PARAM_DSS_FCK);
3402
3403 pck_min = pck_min ? pck_min : 1;
3404 pck_max = pck_max ? pck_max : ULONG_MAX;
3405
3406 lckd_start = max(DIV_ROUND_UP(dispc, lck_max), 1ul);
3407 lckd_stop = min(dispc / pck_min, 255ul);
3408
3409 for (lckd = lckd_start; lckd <= lckd_stop; ++lckd) {
3410 lck = dispc / lckd;
3411
3412 pckd_start = max(DIV_ROUND_UP(lck, pck_max), pckd_hw_min);
3413 pckd_stop = min(lck / pck_min, pckd_hw_max);
3414
3415 for (pckd = pckd_start; pckd <= pckd_stop; ++pckd) {
3416 pck = lck / pckd;
3417
3418 /*
3419 * For OMAP2/3 the DISPC fclk is the same as LCD's logic
3420 * clock, which means we're configuring DISPC fclk here
3421 * also. Thus we need to use the calculated lck. For
3422 * OMAP4+ the DISPC fclk is a separate clock.
3423 */
3424 if (dss_has_feature(FEAT_CORE_CLK_DIV))
3425 fck = dispc_core_clk_rate();
3426 else
3427 fck = lck;
3428
3429 if (fck < pck * min_fck_per_pck)
3430 continue;
3431
3432 if (func(lckd, pckd, lck, pck, data))
3433 return true;
3434 }
3435 }
3436
3437 return false;
3438 }
3439
3440 void dispc_mgr_set_clock_div(enum omap_channel channel,
3441 const struct dispc_clock_info *cinfo)
3442 {
3443 DSSDBG("lck = %lu (%u)\n", cinfo->lck, cinfo->lck_div);
3444 DSSDBG("pck = %lu (%u)\n", cinfo->pck, cinfo->pck_div);
3445
3446 dispc_mgr_set_lcd_divisor(channel, cinfo->lck_div, cinfo->pck_div);
3447 }
3448
3449 int dispc_mgr_get_clock_div(enum omap_channel channel,
3450 struct dispc_clock_info *cinfo)
3451 {
3452 unsigned long fck;
3453
3454 fck = dispc_fclk_rate();
3455
3456 cinfo->lck_div = REG_GET(DISPC_DIVISORo(channel), 23, 16);
3457 cinfo->pck_div = REG_GET(DISPC_DIVISORo(channel), 7, 0);
3458
3459 cinfo->lck = fck / cinfo->lck_div;
3460 cinfo->pck = cinfo->lck / cinfo->pck_div;
3461
3462 return 0;
3463 }
3464
3465 u32 dispc_read_irqstatus(void)
3466 {
3467 return dispc_read_reg(DISPC_IRQSTATUS);
3468 }
3469 EXPORT_SYMBOL(dispc_read_irqstatus);
3470
3471 void dispc_clear_irqstatus(u32 mask)
3472 {
3473 dispc_write_reg(DISPC_IRQSTATUS, mask);
3474 }
3475 EXPORT_SYMBOL(dispc_clear_irqstatus);
3476
3477 u32 dispc_read_irqenable(void)
3478 {
3479 return dispc_read_reg(DISPC_IRQENABLE);
3480 }
3481 EXPORT_SYMBOL(dispc_read_irqenable);
3482
3483 void dispc_write_irqenable(u32 mask)
3484 {
3485 u32 old_mask = dispc_read_reg(DISPC_IRQENABLE);
3486
3487 /* clear the irqstatus for newly enabled irqs */
3488 dispc_clear_irqstatus((mask ^ old_mask) & mask);
3489
3490 dispc_write_reg(DISPC_IRQENABLE, mask);
3491 }
3492 EXPORT_SYMBOL(dispc_write_irqenable);
3493
3494 void dispc_enable_sidle(void)
3495 {
3496 REG_FLD_MOD(DISPC_SYSCONFIG, 2, 4, 3); /* SIDLEMODE: smart idle */
3497 }
3498
3499 void dispc_disable_sidle(void)
3500 {
3501 REG_FLD_MOD(DISPC_SYSCONFIG, 1, 4, 3); /* SIDLEMODE: no idle */
3502 }
3503
3504 static void _omap_dispc_initial_config(void)
3505 {
3506 u32 l;
3507
3508 /* Exclusively enable DISPC_CORE_CLK and set divider to 1 */
3509 if (dss_has_feature(FEAT_CORE_CLK_DIV)) {
3510 l = dispc_read_reg(DISPC_DIVISOR);
3511 /* Use DISPC_DIVISOR.LCD, instead of DISPC_DIVISOR1.LCD */
3512 l = FLD_MOD(l, 1, 0, 0);
3513 l = FLD_MOD(l, 1, 23, 16);
3514 dispc_write_reg(DISPC_DIVISOR, l);
3515
3516 dispc.core_clk_rate = dispc_fclk_rate();
3517 }
3518
3519 /* FUNCGATED */
3520 if (dss_has_feature(FEAT_FUNCGATED))
3521 REG_FLD_MOD(DISPC_CONFIG, 1, 9, 9);
3522
3523 dispc_setup_color_conv_coef();
3524
3525 dispc_set_loadmode(OMAP_DSS_LOAD_FRAME_ONLY);
3526
3527 dispc_init_fifos();
3528
3529 dispc_configure_burst_sizes();
3530
3531 dispc_ovl_enable_zorder_planes();
3532
3533 if (dispc.feat->mstandby_workaround)
3534 REG_FLD_MOD(DISPC_MSTANDBY_CTRL, 1, 0, 0);
3535 }
3536
3537 static const struct dispc_features omap24xx_dispc_feats __initconst = {
3538 .sw_start = 5,
3539 .fp_start = 15,
3540 .bp_start = 27,
3541 .sw_max = 64,
3542 .vp_max = 255,
3543 .hp_max = 256,
3544 .mgr_width_start = 10,
3545 .mgr_height_start = 26,
3546 .mgr_width_max = 2048,
3547 .mgr_height_max = 2048,
3548 .max_lcd_pclk = 66500000,
3549 .calc_scaling = dispc_ovl_calc_scaling_24xx,
3550 .calc_core_clk = calc_core_clk_24xx,
3551 .num_fifos = 3,
3552 .no_framedone_tv = true,
3553 .set_max_preload = false,
3554 };
3555
3556 static const struct dispc_features omap34xx_rev1_0_dispc_feats __initconst = {
3557 .sw_start = 5,
3558 .fp_start = 15,
3559 .bp_start = 27,
3560 .sw_max = 64,
3561 .vp_max = 255,
3562 .hp_max = 256,
3563 .mgr_width_start = 10,
3564 .mgr_height_start = 26,
3565 .mgr_width_max = 2048,
3566 .mgr_height_max = 2048,
3567 .max_lcd_pclk = 173000000,
3568 .max_tv_pclk = 59000000,
3569 .calc_scaling = dispc_ovl_calc_scaling_34xx,
3570 .calc_core_clk = calc_core_clk_34xx,
3571 .num_fifos = 3,
3572 .no_framedone_tv = true,
3573 .set_max_preload = false,
3574 };
3575
3576 static const struct dispc_features omap34xx_rev3_0_dispc_feats __initconst = {
3577 .sw_start = 7,
3578 .fp_start = 19,
3579 .bp_start = 31,
3580 .sw_max = 256,
3581 .vp_max = 4095,
3582 .hp_max = 4096,
3583 .mgr_width_start = 10,
3584 .mgr_height_start = 26,
3585 .mgr_width_max = 2048,
3586 .mgr_height_max = 2048,
3587 .max_lcd_pclk = 173000000,
3588 .max_tv_pclk = 59000000,
3589 .calc_scaling = dispc_ovl_calc_scaling_34xx,
3590 .calc_core_clk = calc_core_clk_34xx,
3591 .num_fifos = 3,
3592 .no_framedone_tv = true,
3593 .set_max_preload = false,
3594 };
3595
3596 static const struct dispc_features omap44xx_dispc_feats __initconst = {
3597 .sw_start = 7,
3598 .fp_start = 19,
3599 .bp_start = 31,
3600 .sw_max = 256,
3601 .vp_max = 4095,
3602 .hp_max = 4096,
3603 .mgr_width_start = 10,
3604 .mgr_height_start = 26,
3605 .mgr_width_max = 2048,
3606 .mgr_height_max = 2048,
3607 .max_lcd_pclk = 170000000,
3608 .max_tv_pclk = 185625000,
3609 .calc_scaling = dispc_ovl_calc_scaling_44xx,
3610 .calc_core_clk = calc_core_clk_44xx,
3611 .num_fifos = 5,
3612 .gfx_fifo_workaround = true,
3613 .set_max_preload = true,
3614 };
3615
3616 static const struct dispc_features omap54xx_dispc_feats __initconst = {
3617 .sw_start = 7,
3618 .fp_start = 19,
3619 .bp_start = 31,
3620 .sw_max = 256,
3621 .vp_max = 4095,
3622 .hp_max = 4096,
3623 .mgr_width_start = 11,
3624 .mgr_height_start = 27,
3625 .mgr_width_max = 4096,
3626 .mgr_height_max = 4096,
3627 .max_lcd_pclk = 170000000,
3628 .max_tv_pclk = 186000000,
3629 .calc_scaling = dispc_ovl_calc_scaling_44xx,
3630 .calc_core_clk = calc_core_clk_44xx,
3631 .num_fifos = 5,
3632 .gfx_fifo_workaround = true,
3633 .mstandby_workaround = true,
3634 .set_max_preload = true,
3635 };
3636
3637 static int __init dispc_init_features(struct platform_device *pdev)
3638 {
3639 const struct dispc_features *src;
3640 struct dispc_features *dst;
3641
3642 dst = devm_kzalloc(&pdev->dev, sizeof(*dst), GFP_KERNEL);
3643 if (!dst) {
3644 dev_err(&pdev->dev, "Failed to allocate DISPC Features\n");
3645 return -ENOMEM;
3646 }
3647
3648 switch (omapdss_get_version()) {
3649 case OMAPDSS_VER_OMAP24xx:
3650 src = &omap24xx_dispc_feats;
3651 break;
3652
3653 case OMAPDSS_VER_OMAP34xx_ES1:
3654 src = &omap34xx_rev1_0_dispc_feats;
3655 break;
3656
3657 case OMAPDSS_VER_OMAP34xx_ES3:
3658 case OMAPDSS_VER_OMAP3630:
3659 case OMAPDSS_VER_AM35xx:
3660 src = &omap34xx_rev3_0_dispc_feats;
3661 break;
3662
3663 case OMAPDSS_VER_OMAP4430_ES1:
3664 case OMAPDSS_VER_OMAP4430_ES2:
3665 case OMAPDSS_VER_OMAP4:
3666 src = &omap44xx_dispc_feats;
3667 break;
3668
3669 case OMAPDSS_VER_OMAP5:
3670 src = &omap54xx_dispc_feats;
3671 break;
3672
3673 default:
3674 return -ENODEV;
3675 }
3676
3677 memcpy(dst, src, sizeof(*dst));
3678 dispc.feat = dst;
3679
3680 return 0;
3681 }
3682
3683 int dispc_request_irq(irq_handler_t handler, void *dev_id)
3684 {
3685 return devm_request_irq(&dispc.pdev->dev, dispc.irq, handler,
3686 IRQF_SHARED, "OMAP DISPC", dev_id);
3687 }
3688 EXPORT_SYMBOL(dispc_request_irq);
3689
3690 void dispc_free_irq(void *dev_id)
3691 {
3692 devm_free_irq(&dispc.pdev->dev, dispc.irq, dev_id);
3693 }
3694 EXPORT_SYMBOL(dispc_free_irq);
3695
3696 /* DISPC HW IP initialisation */
3697 static int __init omap_dispchw_probe(struct platform_device *pdev)
3698 {
3699 u32 rev;
3700 int r = 0;
3701 struct resource *dispc_mem;
3702
3703 dispc.pdev = pdev;
3704
3705 r = dispc_init_features(dispc.pdev);
3706 if (r)
3707 return r;
3708
3709 dispc_mem = platform_get_resource(dispc.pdev, IORESOURCE_MEM, 0);
3710 if (!dispc_mem) {
3711 DSSERR("can't get IORESOURCE_MEM DISPC\n");
3712 return -EINVAL;
3713 }
3714
3715 dispc.base = devm_ioremap(&pdev->dev, dispc_mem->start,
3716 resource_size(dispc_mem));
3717 if (!dispc.base) {
3718 DSSERR("can't ioremap DISPC\n");
3719 return -ENOMEM;
3720 }
3721
3722 dispc.irq = platform_get_irq(dispc.pdev, 0);
3723 if (dispc.irq < 0) {
3724 DSSERR("platform_get_irq failed\n");
3725 return -ENODEV;
3726 }
3727
3728 pm_runtime_enable(&pdev->dev);
3729
3730 r = dispc_runtime_get();
3731 if (r)
3732 goto err_runtime_get;
3733
3734 _omap_dispc_initial_config();
3735
3736 rev = dispc_read_reg(DISPC_REVISION);
3737 dev_dbg(&pdev->dev, "OMAP DISPC rev %d.%d\n",
3738 FLD_GET(rev, 7, 4), FLD_GET(rev, 3, 0));
3739
3740 dispc_runtime_put();
3741
3742 dss_init_overlay_managers();
3743
3744 dss_debugfs_create_file("dispc", dispc_dump_regs);
3745
3746 return 0;
3747
3748 err_runtime_get:
3749 pm_runtime_disable(&pdev->dev);
3750 return r;
3751 }
3752
3753 static int __exit omap_dispchw_remove(struct platform_device *pdev)
3754 {
3755 pm_runtime_disable(&pdev->dev);
3756
3757 dss_uninit_overlay_managers();
3758
3759 return 0;
3760 }
3761
3762 static int dispc_runtime_suspend(struct device *dev)
3763 {
3764 dispc_save_context();
3765
3766 return 0;
3767 }
3768
3769 static int dispc_runtime_resume(struct device *dev)
3770 {
3771 _omap_dispc_initial_config();
3772
3773 dispc_restore_context();
3774
3775 return 0;
3776 }
3777
3778 static const struct dev_pm_ops dispc_pm_ops = {
3779 .runtime_suspend = dispc_runtime_suspend,
3780 .runtime_resume = dispc_runtime_resume,
3781 };
3782
3783 static struct platform_driver omap_dispchw_driver = {
3784 .remove = __exit_p(omap_dispchw_remove),
3785 .driver = {
3786 .name = "omapdss_dispc",
3787 .owner = THIS_MODULE,
3788 .pm = &dispc_pm_ops,
3789 },
3790 };
3791
3792 int __init dispc_init_platform_driver(void)
3793 {
3794 return platform_driver_probe(&omap_dispchw_driver, omap_dispchw_probe);
3795 }
3796
3797 void __exit dispc_uninit_platform_driver(void)
3798 {
3799 platform_driver_unregister(&omap_dispchw_driver);
3800 }