]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/virtio/virtio_ring.c
Merge branch 'opp/linux-next' of git://git.kernel.org/pub/scm/linux/kernel/git/vireshk/pm
[mirror_ubuntu-jammy-kernel.git] / drivers / virtio / virtio_ring.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Virtio ring implementation.
3 *
4 * Copyright 2007 Rusty Russell IBM Corporation
5 */
6 #include <linux/virtio.h>
7 #include <linux/virtio_ring.h>
8 #include <linux/virtio_config.h>
9 #include <linux/device.h>
10 #include <linux/slab.h>
11 #include <linux/module.h>
12 #include <linux/hrtimer.h>
13 #include <linux/dma-mapping.h>
14 #include <xen/xen.h>
15
16 #ifdef DEBUG
17 /* For development, we want to crash whenever the ring is screwed. */
18 #define BAD_RING(_vq, fmt, args...) \
19 do { \
20 dev_err(&(_vq)->vq.vdev->dev, \
21 "%s:"fmt, (_vq)->vq.name, ##args); \
22 BUG(); \
23 } while (0)
24 /* Caller is supposed to guarantee no reentry. */
25 #define START_USE(_vq) \
26 do { \
27 if ((_vq)->in_use) \
28 panic("%s:in_use = %i\n", \
29 (_vq)->vq.name, (_vq)->in_use); \
30 (_vq)->in_use = __LINE__; \
31 } while (0)
32 #define END_USE(_vq) \
33 do { BUG_ON(!(_vq)->in_use); (_vq)->in_use = 0; } while(0)
34 #define LAST_ADD_TIME_UPDATE(_vq) \
35 do { \
36 ktime_t now = ktime_get(); \
37 \
38 /* No kick or get, with .1 second between? Warn. */ \
39 if ((_vq)->last_add_time_valid) \
40 WARN_ON(ktime_to_ms(ktime_sub(now, \
41 (_vq)->last_add_time)) > 100); \
42 (_vq)->last_add_time = now; \
43 (_vq)->last_add_time_valid = true; \
44 } while (0)
45 #define LAST_ADD_TIME_CHECK(_vq) \
46 do { \
47 if ((_vq)->last_add_time_valid) { \
48 WARN_ON(ktime_to_ms(ktime_sub(ktime_get(), \
49 (_vq)->last_add_time)) > 100); \
50 } \
51 } while (0)
52 #define LAST_ADD_TIME_INVALID(_vq) \
53 ((_vq)->last_add_time_valid = false)
54 #else
55 #define BAD_RING(_vq, fmt, args...) \
56 do { \
57 dev_err(&_vq->vq.vdev->dev, \
58 "%s:"fmt, (_vq)->vq.name, ##args); \
59 (_vq)->broken = true; \
60 } while (0)
61 #define START_USE(vq)
62 #define END_USE(vq)
63 #define LAST_ADD_TIME_UPDATE(vq)
64 #define LAST_ADD_TIME_CHECK(vq)
65 #define LAST_ADD_TIME_INVALID(vq)
66 #endif
67
68 struct vring_desc_state_split {
69 void *data; /* Data for callback. */
70 struct vring_desc *indir_desc; /* Indirect descriptor, if any. */
71 };
72
73 struct vring_desc_state_packed {
74 void *data; /* Data for callback. */
75 struct vring_packed_desc *indir_desc; /* Indirect descriptor, if any. */
76 u16 num; /* Descriptor list length. */
77 u16 next; /* The next desc state in a list. */
78 u16 last; /* The last desc state in a list. */
79 };
80
81 struct vring_desc_extra_packed {
82 dma_addr_t addr; /* Buffer DMA addr. */
83 u32 len; /* Buffer length. */
84 u16 flags; /* Descriptor flags. */
85 };
86
87 struct vring_virtqueue {
88 struct virtqueue vq;
89
90 /* Is this a packed ring? */
91 bool packed_ring;
92
93 /* Is DMA API used? */
94 bool use_dma_api;
95
96 /* Can we use weak barriers? */
97 bool weak_barriers;
98
99 /* Other side has made a mess, don't try any more. */
100 bool broken;
101
102 /* Host supports indirect buffers */
103 bool indirect;
104
105 /* Host publishes avail event idx */
106 bool event;
107
108 /* Head of free buffer list. */
109 unsigned int free_head;
110 /* Number we've added since last sync. */
111 unsigned int num_added;
112
113 /* Last used index we've seen. */
114 u16 last_used_idx;
115
116 union {
117 /* Available for split ring */
118 struct {
119 /* Actual memory layout for this queue. */
120 struct vring vring;
121
122 /* Last written value to avail->flags */
123 u16 avail_flags_shadow;
124
125 /*
126 * Last written value to avail->idx in
127 * guest byte order.
128 */
129 u16 avail_idx_shadow;
130
131 /* Per-descriptor state. */
132 struct vring_desc_state_split *desc_state;
133
134 /* DMA address and size information */
135 dma_addr_t queue_dma_addr;
136 size_t queue_size_in_bytes;
137 } split;
138
139 /* Available for packed ring */
140 struct {
141 /* Actual memory layout for this queue. */
142 struct {
143 unsigned int num;
144 struct vring_packed_desc *desc;
145 struct vring_packed_desc_event *driver;
146 struct vring_packed_desc_event *device;
147 } vring;
148
149 /* Driver ring wrap counter. */
150 bool avail_wrap_counter;
151
152 /* Device ring wrap counter. */
153 bool used_wrap_counter;
154
155 /* Avail used flags. */
156 u16 avail_used_flags;
157
158 /* Index of the next avail descriptor. */
159 u16 next_avail_idx;
160
161 /*
162 * Last written value to driver->flags in
163 * guest byte order.
164 */
165 u16 event_flags_shadow;
166
167 /* Per-descriptor state. */
168 struct vring_desc_state_packed *desc_state;
169 struct vring_desc_extra_packed *desc_extra;
170
171 /* DMA address and size information */
172 dma_addr_t ring_dma_addr;
173 dma_addr_t driver_event_dma_addr;
174 dma_addr_t device_event_dma_addr;
175 size_t ring_size_in_bytes;
176 size_t event_size_in_bytes;
177 } packed;
178 };
179
180 /* How to notify other side. FIXME: commonalize hcalls! */
181 bool (*notify)(struct virtqueue *vq);
182
183 /* DMA, allocation, and size information */
184 bool we_own_ring;
185
186 #ifdef DEBUG
187 /* They're supposed to lock for us. */
188 unsigned int in_use;
189
190 /* Figure out if their kicks are too delayed. */
191 bool last_add_time_valid;
192 ktime_t last_add_time;
193 #endif
194 };
195
196
197 /*
198 * Helpers.
199 */
200
201 #define to_vvq(_vq) container_of(_vq, struct vring_virtqueue, vq)
202
203 static inline bool virtqueue_use_indirect(struct virtqueue *_vq,
204 unsigned int total_sg)
205 {
206 struct vring_virtqueue *vq = to_vvq(_vq);
207
208 /*
209 * If the host supports indirect descriptor tables, and we have multiple
210 * buffers, then go indirect. FIXME: tune this threshold
211 */
212 return (vq->indirect && total_sg > 1 && vq->vq.num_free);
213 }
214
215 /*
216 * Modern virtio devices have feature bits to specify whether they need a
217 * quirk and bypass the IOMMU. If not there, just use the DMA API.
218 *
219 * If there, the interaction between virtio and DMA API is messy.
220 *
221 * On most systems with virtio, physical addresses match bus addresses,
222 * and it doesn't particularly matter whether we use the DMA API.
223 *
224 * On some systems, including Xen and any system with a physical device
225 * that speaks virtio behind a physical IOMMU, we must use the DMA API
226 * for virtio DMA to work at all.
227 *
228 * On other systems, including SPARC and PPC64, virtio-pci devices are
229 * enumerated as though they are behind an IOMMU, but the virtio host
230 * ignores the IOMMU, so we must either pretend that the IOMMU isn't
231 * there or somehow map everything as the identity.
232 *
233 * For the time being, we preserve historic behavior and bypass the DMA
234 * API.
235 *
236 * TODO: install a per-device DMA ops structure that does the right thing
237 * taking into account all the above quirks, and use the DMA API
238 * unconditionally on data path.
239 */
240
241 static bool vring_use_dma_api(struct virtio_device *vdev)
242 {
243 if (!virtio_has_dma_quirk(vdev))
244 return true;
245
246 /* Otherwise, we are left to guess. */
247 /*
248 * In theory, it's possible to have a buggy QEMU-supposed
249 * emulated Q35 IOMMU and Xen enabled at the same time. On
250 * such a configuration, virtio has never worked and will
251 * not work without an even larger kludge. Instead, enable
252 * the DMA API if we're a Xen guest, which at least allows
253 * all of the sensible Xen configurations to work correctly.
254 */
255 if (xen_domain())
256 return true;
257
258 return false;
259 }
260
261 size_t virtio_max_dma_size(struct virtio_device *vdev)
262 {
263 size_t max_segment_size = SIZE_MAX;
264
265 if (vring_use_dma_api(vdev))
266 max_segment_size = dma_max_mapping_size(&vdev->dev);
267
268 return max_segment_size;
269 }
270 EXPORT_SYMBOL_GPL(virtio_max_dma_size);
271
272 static void *vring_alloc_queue(struct virtio_device *vdev, size_t size,
273 dma_addr_t *dma_handle, gfp_t flag)
274 {
275 if (vring_use_dma_api(vdev)) {
276 return dma_alloc_coherent(vdev->dev.parent, size,
277 dma_handle, flag);
278 } else {
279 void *queue = alloc_pages_exact(PAGE_ALIGN(size), flag);
280
281 if (queue) {
282 phys_addr_t phys_addr = virt_to_phys(queue);
283 *dma_handle = (dma_addr_t)phys_addr;
284
285 /*
286 * Sanity check: make sure we dind't truncate
287 * the address. The only arches I can find that
288 * have 64-bit phys_addr_t but 32-bit dma_addr_t
289 * are certain non-highmem MIPS and x86
290 * configurations, but these configurations
291 * should never allocate physical pages above 32
292 * bits, so this is fine. Just in case, throw a
293 * warning and abort if we end up with an
294 * unrepresentable address.
295 */
296 if (WARN_ON_ONCE(*dma_handle != phys_addr)) {
297 free_pages_exact(queue, PAGE_ALIGN(size));
298 return NULL;
299 }
300 }
301 return queue;
302 }
303 }
304
305 static void vring_free_queue(struct virtio_device *vdev, size_t size,
306 void *queue, dma_addr_t dma_handle)
307 {
308 if (vring_use_dma_api(vdev))
309 dma_free_coherent(vdev->dev.parent, size, queue, dma_handle);
310 else
311 free_pages_exact(queue, PAGE_ALIGN(size));
312 }
313
314 /*
315 * The DMA ops on various arches are rather gnarly right now, and
316 * making all of the arch DMA ops work on the vring device itself
317 * is a mess. For now, we use the parent device for DMA ops.
318 */
319 static inline struct device *vring_dma_dev(const struct vring_virtqueue *vq)
320 {
321 return vq->vq.vdev->dev.parent;
322 }
323
324 /* Map one sg entry. */
325 static dma_addr_t vring_map_one_sg(const struct vring_virtqueue *vq,
326 struct scatterlist *sg,
327 enum dma_data_direction direction)
328 {
329 if (!vq->use_dma_api)
330 return (dma_addr_t)sg_phys(sg);
331
332 /*
333 * We can't use dma_map_sg, because we don't use scatterlists in
334 * the way it expects (we don't guarantee that the scatterlist
335 * will exist for the lifetime of the mapping).
336 */
337 return dma_map_page(vring_dma_dev(vq),
338 sg_page(sg), sg->offset, sg->length,
339 direction);
340 }
341
342 static dma_addr_t vring_map_single(const struct vring_virtqueue *vq,
343 void *cpu_addr, size_t size,
344 enum dma_data_direction direction)
345 {
346 if (!vq->use_dma_api)
347 return (dma_addr_t)virt_to_phys(cpu_addr);
348
349 return dma_map_single(vring_dma_dev(vq),
350 cpu_addr, size, direction);
351 }
352
353 static int vring_mapping_error(const struct vring_virtqueue *vq,
354 dma_addr_t addr)
355 {
356 if (!vq->use_dma_api)
357 return 0;
358
359 return dma_mapping_error(vring_dma_dev(vq), addr);
360 }
361
362
363 /*
364 * Split ring specific functions - *_split().
365 */
366
367 static void vring_unmap_one_split(const struct vring_virtqueue *vq,
368 struct vring_desc *desc)
369 {
370 u16 flags;
371
372 if (!vq->use_dma_api)
373 return;
374
375 flags = virtio16_to_cpu(vq->vq.vdev, desc->flags);
376
377 if (flags & VRING_DESC_F_INDIRECT) {
378 dma_unmap_single(vring_dma_dev(vq),
379 virtio64_to_cpu(vq->vq.vdev, desc->addr),
380 virtio32_to_cpu(vq->vq.vdev, desc->len),
381 (flags & VRING_DESC_F_WRITE) ?
382 DMA_FROM_DEVICE : DMA_TO_DEVICE);
383 } else {
384 dma_unmap_page(vring_dma_dev(vq),
385 virtio64_to_cpu(vq->vq.vdev, desc->addr),
386 virtio32_to_cpu(vq->vq.vdev, desc->len),
387 (flags & VRING_DESC_F_WRITE) ?
388 DMA_FROM_DEVICE : DMA_TO_DEVICE);
389 }
390 }
391
392 static struct vring_desc *alloc_indirect_split(struct virtqueue *_vq,
393 unsigned int total_sg,
394 gfp_t gfp)
395 {
396 struct vring_desc *desc;
397 unsigned int i;
398
399 /*
400 * We require lowmem mappings for the descriptors because
401 * otherwise virt_to_phys will give us bogus addresses in the
402 * virtqueue.
403 */
404 gfp &= ~__GFP_HIGHMEM;
405
406 desc = kmalloc_array(total_sg, sizeof(struct vring_desc), gfp);
407 if (!desc)
408 return NULL;
409
410 for (i = 0; i < total_sg; i++)
411 desc[i].next = cpu_to_virtio16(_vq->vdev, i + 1);
412 return desc;
413 }
414
415 static inline int virtqueue_add_split(struct virtqueue *_vq,
416 struct scatterlist *sgs[],
417 unsigned int total_sg,
418 unsigned int out_sgs,
419 unsigned int in_sgs,
420 void *data,
421 void *ctx,
422 gfp_t gfp)
423 {
424 struct vring_virtqueue *vq = to_vvq(_vq);
425 struct scatterlist *sg;
426 struct vring_desc *desc;
427 unsigned int i, n, avail, descs_used, prev, err_idx;
428 int head;
429 bool indirect;
430
431 START_USE(vq);
432
433 BUG_ON(data == NULL);
434 BUG_ON(ctx && vq->indirect);
435
436 if (unlikely(vq->broken)) {
437 END_USE(vq);
438 return -EIO;
439 }
440
441 LAST_ADD_TIME_UPDATE(vq);
442
443 BUG_ON(total_sg == 0);
444
445 head = vq->free_head;
446
447 if (virtqueue_use_indirect(_vq, total_sg))
448 desc = alloc_indirect_split(_vq, total_sg, gfp);
449 else {
450 desc = NULL;
451 WARN_ON_ONCE(total_sg > vq->split.vring.num && !vq->indirect);
452 }
453
454 if (desc) {
455 /* Use a single buffer which doesn't continue */
456 indirect = true;
457 /* Set up rest to use this indirect table. */
458 i = 0;
459 descs_used = 1;
460 } else {
461 indirect = false;
462 desc = vq->split.vring.desc;
463 i = head;
464 descs_used = total_sg;
465 }
466
467 if (vq->vq.num_free < descs_used) {
468 pr_debug("Can't add buf len %i - avail = %i\n",
469 descs_used, vq->vq.num_free);
470 /* FIXME: for historical reasons, we force a notify here if
471 * there are outgoing parts to the buffer. Presumably the
472 * host should service the ring ASAP. */
473 if (out_sgs)
474 vq->notify(&vq->vq);
475 if (indirect)
476 kfree(desc);
477 END_USE(vq);
478 return -ENOSPC;
479 }
480
481 for (n = 0; n < out_sgs; n++) {
482 for (sg = sgs[n]; sg; sg = sg_next(sg)) {
483 dma_addr_t addr = vring_map_one_sg(vq, sg, DMA_TO_DEVICE);
484 if (vring_mapping_error(vq, addr))
485 goto unmap_release;
486
487 desc[i].flags = cpu_to_virtio16(_vq->vdev, VRING_DESC_F_NEXT);
488 desc[i].addr = cpu_to_virtio64(_vq->vdev, addr);
489 desc[i].len = cpu_to_virtio32(_vq->vdev, sg->length);
490 prev = i;
491 i = virtio16_to_cpu(_vq->vdev, desc[i].next);
492 }
493 }
494 for (; n < (out_sgs + in_sgs); n++) {
495 for (sg = sgs[n]; sg; sg = sg_next(sg)) {
496 dma_addr_t addr = vring_map_one_sg(vq, sg, DMA_FROM_DEVICE);
497 if (vring_mapping_error(vq, addr))
498 goto unmap_release;
499
500 desc[i].flags = cpu_to_virtio16(_vq->vdev, VRING_DESC_F_NEXT | VRING_DESC_F_WRITE);
501 desc[i].addr = cpu_to_virtio64(_vq->vdev, addr);
502 desc[i].len = cpu_to_virtio32(_vq->vdev, sg->length);
503 prev = i;
504 i = virtio16_to_cpu(_vq->vdev, desc[i].next);
505 }
506 }
507 /* Last one doesn't continue. */
508 desc[prev].flags &= cpu_to_virtio16(_vq->vdev, ~VRING_DESC_F_NEXT);
509
510 if (indirect) {
511 /* Now that the indirect table is filled in, map it. */
512 dma_addr_t addr = vring_map_single(
513 vq, desc, total_sg * sizeof(struct vring_desc),
514 DMA_TO_DEVICE);
515 if (vring_mapping_error(vq, addr))
516 goto unmap_release;
517
518 vq->split.vring.desc[head].flags = cpu_to_virtio16(_vq->vdev,
519 VRING_DESC_F_INDIRECT);
520 vq->split.vring.desc[head].addr = cpu_to_virtio64(_vq->vdev,
521 addr);
522
523 vq->split.vring.desc[head].len = cpu_to_virtio32(_vq->vdev,
524 total_sg * sizeof(struct vring_desc));
525 }
526
527 /* We're using some buffers from the free list. */
528 vq->vq.num_free -= descs_used;
529
530 /* Update free pointer */
531 if (indirect)
532 vq->free_head = virtio16_to_cpu(_vq->vdev,
533 vq->split.vring.desc[head].next);
534 else
535 vq->free_head = i;
536
537 /* Store token and indirect buffer state. */
538 vq->split.desc_state[head].data = data;
539 if (indirect)
540 vq->split.desc_state[head].indir_desc = desc;
541 else
542 vq->split.desc_state[head].indir_desc = ctx;
543
544 /* Put entry in available array (but don't update avail->idx until they
545 * do sync). */
546 avail = vq->split.avail_idx_shadow & (vq->split.vring.num - 1);
547 vq->split.vring.avail->ring[avail] = cpu_to_virtio16(_vq->vdev, head);
548
549 /* Descriptors and available array need to be set before we expose the
550 * new available array entries. */
551 virtio_wmb(vq->weak_barriers);
552 vq->split.avail_idx_shadow++;
553 vq->split.vring.avail->idx = cpu_to_virtio16(_vq->vdev,
554 vq->split.avail_idx_shadow);
555 vq->num_added++;
556
557 pr_debug("Added buffer head %i to %p\n", head, vq);
558 END_USE(vq);
559
560 /* This is very unlikely, but theoretically possible. Kick
561 * just in case. */
562 if (unlikely(vq->num_added == (1 << 16) - 1))
563 virtqueue_kick(_vq);
564
565 return 0;
566
567 unmap_release:
568 err_idx = i;
569
570 if (indirect)
571 i = 0;
572 else
573 i = head;
574
575 for (n = 0; n < total_sg; n++) {
576 if (i == err_idx)
577 break;
578 vring_unmap_one_split(vq, &desc[i]);
579 i = virtio16_to_cpu(_vq->vdev, desc[i].next);
580 }
581
582 if (indirect)
583 kfree(desc);
584
585 END_USE(vq);
586 return -ENOMEM;
587 }
588
589 static bool virtqueue_kick_prepare_split(struct virtqueue *_vq)
590 {
591 struct vring_virtqueue *vq = to_vvq(_vq);
592 u16 new, old;
593 bool needs_kick;
594
595 START_USE(vq);
596 /* We need to expose available array entries before checking avail
597 * event. */
598 virtio_mb(vq->weak_barriers);
599
600 old = vq->split.avail_idx_shadow - vq->num_added;
601 new = vq->split.avail_idx_shadow;
602 vq->num_added = 0;
603
604 LAST_ADD_TIME_CHECK(vq);
605 LAST_ADD_TIME_INVALID(vq);
606
607 if (vq->event) {
608 needs_kick = vring_need_event(virtio16_to_cpu(_vq->vdev,
609 vring_avail_event(&vq->split.vring)),
610 new, old);
611 } else {
612 needs_kick = !(vq->split.vring.used->flags &
613 cpu_to_virtio16(_vq->vdev,
614 VRING_USED_F_NO_NOTIFY));
615 }
616 END_USE(vq);
617 return needs_kick;
618 }
619
620 static void detach_buf_split(struct vring_virtqueue *vq, unsigned int head,
621 void **ctx)
622 {
623 unsigned int i, j;
624 __virtio16 nextflag = cpu_to_virtio16(vq->vq.vdev, VRING_DESC_F_NEXT);
625
626 /* Clear data ptr. */
627 vq->split.desc_state[head].data = NULL;
628
629 /* Put back on free list: unmap first-level descriptors and find end */
630 i = head;
631
632 while (vq->split.vring.desc[i].flags & nextflag) {
633 vring_unmap_one_split(vq, &vq->split.vring.desc[i]);
634 i = virtio16_to_cpu(vq->vq.vdev, vq->split.vring.desc[i].next);
635 vq->vq.num_free++;
636 }
637
638 vring_unmap_one_split(vq, &vq->split.vring.desc[i]);
639 vq->split.vring.desc[i].next = cpu_to_virtio16(vq->vq.vdev,
640 vq->free_head);
641 vq->free_head = head;
642
643 /* Plus final descriptor */
644 vq->vq.num_free++;
645
646 if (vq->indirect) {
647 struct vring_desc *indir_desc =
648 vq->split.desc_state[head].indir_desc;
649 u32 len;
650
651 /* Free the indirect table, if any, now that it's unmapped. */
652 if (!indir_desc)
653 return;
654
655 len = virtio32_to_cpu(vq->vq.vdev,
656 vq->split.vring.desc[head].len);
657
658 BUG_ON(!(vq->split.vring.desc[head].flags &
659 cpu_to_virtio16(vq->vq.vdev, VRING_DESC_F_INDIRECT)));
660 BUG_ON(len == 0 || len % sizeof(struct vring_desc));
661
662 for (j = 0; j < len / sizeof(struct vring_desc); j++)
663 vring_unmap_one_split(vq, &indir_desc[j]);
664
665 kfree(indir_desc);
666 vq->split.desc_state[head].indir_desc = NULL;
667 } else if (ctx) {
668 *ctx = vq->split.desc_state[head].indir_desc;
669 }
670 }
671
672 static inline bool more_used_split(const struct vring_virtqueue *vq)
673 {
674 return vq->last_used_idx != virtio16_to_cpu(vq->vq.vdev,
675 vq->split.vring.used->idx);
676 }
677
678 static void *virtqueue_get_buf_ctx_split(struct virtqueue *_vq,
679 unsigned int *len,
680 void **ctx)
681 {
682 struct vring_virtqueue *vq = to_vvq(_vq);
683 void *ret;
684 unsigned int i;
685 u16 last_used;
686
687 START_USE(vq);
688
689 if (unlikely(vq->broken)) {
690 END_USE(vq);
691 return NULL;
692 }
693
694 if (!more_used_split(vq)) {
695 pr_debug("No more buffers in queue\n");
696 END_USE(vq);
697 return NULL;
698 }
699
700 /* Only get used array entries after they have been exposed by host. */
701 virtio_rmb(vq->weak_barriers);
702
703 last_used = (vq->last_used_idx & (vq->split.vring.num - 1));
704 i = virtio32_to_cpu(_vq->vdev,
705 vq->split.vring.used->ring[last_used].id);
706 *len = virtio32_to_cpu(_vq->vdev,
707 vq->split.vring.used->ring[last_used].len);
708
709 if (unlikely(i >= vq->split.vring.num)) {
710 BAD_RING(vq, "id %u out of range\n", i);
711 return NULL;
712 }
713 if (unlikely(!vq->split.desc_state[i].data)) {
714 BAD_RING(vq, "id %u is not a head!\n", i);
715 return NULL;
716 }
717
718 /* detach_buf_split clears data, so grab it now. */
719 ret = vq->split.desc_state[i].data;
720 detach_buf_split(vq, i, ctx);
721 vq->last_used_idx++;
722 /* If we expect an interrupt for the next entry, tell host
723 * by writing event index and flush out the write before
724 * the read in the next get_buf call. */
725 if (!(vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT))
726 virtio_store_mb(vq->weak_barriers,
727 &vring_used_event(&vq->split.vring),
728 cpu_to_virtio16(_vq->vdev, vq->last_used_idx));
729
730 LAST_ADD_TIME_INVALID(vq);
731
732 END_USE(vq);
733 return ret;
734 }
735
736 static void virtqueue_disable_cb_split(struct virtqueue *_vq)
737 {
738 struct vring_virtqueue *vq = to_vvq(_vq);
739
740 if (!(vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT)) {
741 vq->split.avail_flags_shadow |= VRING_AVAIL_F_NO_INTERRUPT;
742 if (!vq->event)
743 vq->split.vring.avail->flags =
744 cpu_to_virtio16(_vq->vdev,
745 vq->split.avail_flags_shadow);
746 }
747 }
748
749 static unsigned virtqueue_enable_cb_prepare_split(struct virtqueue *_vq)
750 {
751 struct vring_virtqueue *vq = to_vvq(_vq);
752 u16 last_used_idx;
753
754 START_USE(vq);
755
756 /* We optimistically turn back on interrupts, then check if there was
757 * more to do. */
758 /* Depending on the VIRTIO_RING_F_EVENT_IDX feature, we need to
759 * either clear the flags bit or point the event index at the next
760 * entry. Always do both to keep code simple. */
761 if (vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT) {
762 vq->split.avail_flags_shadow &= ~VRING_AVAIL_F_NO_INTERRUPT;
763 if (!vq->event)
764 vq->split.vring.avail->flags =
765 cpu_to_virtio16(_vq->vdev,
766 vq->split.avail_flags_shadow);
767 }
768 vring_used_event(&vq->split.vring) = cpu_to_virtio16(_vq->vdev,
769 last_used_idx = vq->last_used_idx);
770 END_USE(vq);
771 return last_used_idx;
772 }
773
774 static bool virtqueue_poll_split(struct virtqueue *_vq, unsigned last_used_idx)
775 {
776 struct vring_virtqueue *vq = to_vvq(_vq);
777
778 return (u16)last_used_idx != virtio16_to_cpu(_vq->vdev,
779 vq->split.vring.used->idx);
780 }
781
782 static bool virtqueue_enable_cb_delayed_split(struct virtqueue *_vq)
783 {
784 struct vring_virtqueue *vq = to_vvq(_vq);
785 u16 bufs;
786
787 START_USE(vq);
788
789 /* We optimistically turn back on interrupts, then check if there was
790 * more to do. */
791 /* Depending on the VIRTIO_RING_F_USED_EVENT_IDX feature, we need to
792 * either clear the flags bit or point the event index at the next
793 * entry. Always update the event index to keep code simple. */
794 if (vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT) {
795 vq->split.avail_flags_shadow &= ~VRING_AVAIL_F_NO_INTERRUPT;
796 if (!vq->event)
797 vq->split.vring.avail->flags =
798 cpu_to_virtio16(_vq->vdev,
799 vq->split.avail_flags_shadow);
800 }
801 /* TODO: tune this threshold */
802 bufs = (u16)(vq->split.avail_idx_shadow - vq->last_used_idx) * 3 / 4;
803
804 virtio_store_mb(vq->weak_barriers,
805 &vring_used_event(&vq->split.vring),
806 cpu_to_virtio16(_vq->vdev, vq->last_used_idx + bufs));
807
808 if (unlikely((u16)(virtio16_to_cpu(_vq->vdev, vq->split.vring.used->idx)
809 - vq->last_used_idx) > bufs)) {
810 END_USE(vq);
811 return false;
812 }
813
814 END_USE(vq);
815 return true;
816 }
817
818 static void *virtqueue_detach_unused_buf_split(struct virtqueue *_vq)
819 {
820 struct vring_virtqueue *vq = to_vvq(_vq);
821 unsigned int i;
822 void *buf;
823
824 START_USE(vq);
825
826 for (i = 0; i < vq->split.vring.num; i++) {
827 if (!vq->split.desc_state[i].data)
828 continue;
829 /* detach_buf_split clears data, so grab it now. */
830 buf = vq->split.desc_state[i].data;
831 detach_buf_split(vq, i, NULL);
832 vq->split.avail_idx_shadow--;
833 vq->split.vring.avail->idx = cpu_to_virtio16(_vq->vdev,
834 vq->split.avail_idx_shadow);
835 END_USE(vq);
836 return buf;
837 }
838 /* That should have freed everything. */
839 BUG_ON(vq->vq.num_free != vq->split.vring.num);
840
841 END_USE(vq);
842 return NULL;
843 }
844
845 static struct virtqueue *vring_create_virtqueue_split(
846 unsigned int index,
847 unsigned int num,
848 unsigned int vring_align,
849 struct virtio_device *vdev,
850 bool weak_barriers,
851 bool may_reduce_num,
852 bool context,
853 bool (*notify)(struct virtqueue *),
854 void (*callback)(struct virtqueue *),
855 const char *name)
856 {
857 struct virtqueue *vq;
858 void *queue = NULL;
859 dma_addr_t dma_addr;
860 size_t queue_size_in_bytes;
861 struct vring vring;
862
863 /* We assume num is a power of 2. */
864 if (num & (num - 1)) {
865 dev_warn(&vdev->dev, "Bad virtqueue length %u\n", num);
866 return NULL;
867 }
868
869 /* TODO: allocate each queue chunk individually */
870 for (; num && vring_size(num, vring_align) > PAGE_SIZE; num /= 2) {
871 queue = vring_alloc_queue(vdev, vring_size(num, vring_align),
872 &dma_addr,
873 GFP_KERNEL|__GFP_NOWARN|__GFP_ZERO);
874 if (queue)
875 break;
876 if (!may_reduce_num)
877 return NULL;
878 }
879
880 if (!num)
881 return NULL;
882
883 if (!queue) {
884 /* Try to get a single page. You are my only hope! */
885 queue = vring_alloc_queue(vdev, vring_size(num, vring_align),
886 &dma_addr, GFP_KERNEL|__GFP_ZERO);
887 }
888 if (!queue)
889 return NULL;
890
891 queue_size_in_bytes = vring_size(num, vring_align);
892 vring_init(&vring, num, queue, vring_align);
893
894 vq = __vring_new_virtqueue(index, vring, vdev, weak_barriers, context,
895 notify, callback, name);
896 if (!vq) {
897 vring_free_queue(vdev, queue_size_in_bytes, queue,
898 dma_addr);
899 return NULL;
900 }
901
902 to_vvq(vq)->split.queue_dma_addr = dma_addr;
903 to_vvq(vq)->split.queue_size_in_bytes = queue_size_in_bytes;
904 to_vvq(vq)->we_own_ring = true;
905
906 return vq;
907 }
908
909
910 /*
911 * Packed ring specific functions - *_packed().
912 */
913
914 static void vring_unmap_state_packed(const struct vring_virtqueue *vq,
915 struct vring_desc_extra_packed *state)
916 {
917 u16 flags;
918
919 if (!vq->use_dma_api)
920 return;
921
922 flags = state->flags;
923
924 if (flags & VRING_DESC_F_INDIRECT) {
925 dma_unmap_single(vring_dma_dev(vq),
926 state->addr, state->len,
927 (flags & VRING_DESC_F_WRITE) ?
928 DMA_FROM_DEVICE : DMA_TO_DEVICE);
929 } else {
930 dma_unmap_page(vring_dma_dev(vq),
931 state->addr, state->len,
932 (flags & VRING_DESC_F_WRITE) ?
933 DMA_FROM_DEVICE : DMA_TO_DEVICE);
934 }
935 }
936
937 static void vring_unmap_desc_packed(const struct vring_virtqueue *vq,
938 struct vring_packed_desc *desc)
939 {
940 u16 flags;
941
942 if (!vq->use_dma_api)
943 return;
944
945 flags = le16_to_cpu(desc->flags);
946
947 if (flags & VRING_DESC_F_INDIRECT) {
948 dma_unmap_single(vring_dma_dev(vq),
949 le64_to_cpu(desc->addr),
950 le32_to_cpu(desc->len),
951 (flags & VRING_DESC_F_WRITE) ?
952 DMA_FROM_DEVICE : DMA_TO_DEVICE);
953 } else {
954 dma_unmap_page(vring_dma_dev(vq),
955 le64_to_cpu(desc->addr),
956 le32_to_cpu(desc->len),
957 (flags & VRING_DESC_F_WRITE) ?
958 DMA_FROM_DEVICE : DMA_TO_DEVICE);
959 }
960 }
961
962 static struct vring_packed_desc *alloc_indirect_packed(unsigned int total_sg,
963 gfp_t gfp)
964 {
965 struct vring_packed_desc *desc;
966
967 /*
968 * We require lowmem mappings for the descriptors because
969 * otherwise virt_to_phys will give us bogus addresses in the
970 * virtqueue.
971 */
972 gfp &= ~__GFP_HIGHMEM;
973
974 desc = kmalloc_array(total_sg, sizeof(struct vring_packed_desc), gfp);
975
976 return desc;
977 }
978
979 static int virtqueue_add_indirect_packed(struct vring_virtqueue *vq,
980 struct scatterlist *sgs[],
981 unsigned int total_sg,
982 unsigned int out_sgs,
983 unsigned int in_sgs,
984 void *data,
985 gfp_t gfp)
986 {
987 struct vring_packed_desc *desc;
988 struct scatterlist *sg;
989 unsigned int i, n, err_idx;
990 u16 head, id;
991 dma_addr_t addr;
992
993 head = vq->packed.next_avail_idx;
994 desc = alloc_indirect_packed(total_sg, gfp);
995
996 if (unlikely(vq->vq.num_free < 1)) {
997 pr_debug("Can't add buf len 1 - avail = 0\n");
998 kfree(desc);
999 END_USE(vq);
1000 return -ENOSPC;
1001 }
1002
1003 i = 0;
1004 id = vq->free_head;
1005 BUG_ON(id == vq->packed.vring.num);
1006
1007 for (n = 0; n < out_sgs + in_sgs; n++) {
1008 for (sg = sgs[n]; sg; sg = sg_next(sg)) {
1009 addr = vring_map_one_sg(vq, sg, n < out_sgs ?
1010 DMA_TO_DEVICE : DMA_FROM_DEVICE);
1011 if (vring_mapping_error(vq, addr))
1012 goto unmap_release;
1013
1014 desc[i].flags = cpu_to_le16(n < out_sgs ?
1015 0 : VRING_DESC_F_WRITE);
1016 desc[i].addr = cpu_to_le64(addr);
1017 desc[i].len = cpu_to_le32(sg->length);
1018 i++;
1019 }
1020 }
1021
1022 /* Now that the indirect table is filled in, map it. */
1023 addr = vring_map_single(vq, desc,
1024 total_sg * sizeof(struct vring_packed_desc),
1025 DMA_TO_DEVICE);
1026 if (vring_mapping_error(vq, addr))
1027 goto unmap_release;
1028
1029 vq->packed.vring.desc[head].addr = cpu_to_le64(addr);
1030 vq->packed.vring.desc[head].len = cpu_to_le32(total_sg *
1031 sizeof(struct vring_packed_desc));
1032 vq->packed.vring.desc[head].id = cpu_to_le16(id);
1033
1034 if (vq->use_dma_api) {
1035 vq->packed.desc_extra[id].addr = addr;
1036 vq->packed.desc_extra[id].len = total_sg *
1037 sizeof(struct vring_packed_desc);
1038 vq->packed.desc_extra[id].flags = VRING_DESC_F_INDIRECT |
1039 vq->packed.avail_used_flags;
1040 }
1041
1042 /*
1043 * A driver MUST NOT make the first descriptor in the list
1044 * available before all subsequent descriptors comprising
1045 * the list are made available.
1046 */
1047 virtio_wmb(vq->weak_barriers);
1048 vq->packed.vring.desc[head].flags = cpu_to_le16(VRING_DESC_F_INDIRECT |
1049 vq->packed.avail_used_flags);
1050
1051 /* We're using some buffers from the free list. */
1052 vq->vq.num_free -= 1;
1053
1054 /* Update free pointer */
1055 n = head + 1;
1056 if (n >= vq->packed.vring.num) {
1057 n = 0;
1058 vq->packed.avail_wrap_counter ^= 1;
1059 vq->packed.avail_used_flags ^=
1060 1 << VRING_PACKED_DESC_F_AVAIL |
1061 1 << VRING_PACKED_DESC_F_USED;
1062 }
1063 vq->packed.next_avail_idx = n;
1064 vq->free_head = vq->packed.desc_state[id].next;
1065
1066 /* Store token and indirect buffer state. */
1067 vq->packed.desc_state[id].num = 1;
1068 vq->packed.desc_state[id].data = data;
1069 vq->packed.desc_state[id].indir_desc = desc;
1070 vq->packed.desc_state[id].last = id;
1071
1072 vq->num_added += 1;
1073
1074 pr_debug("Added buffer head %i to %p\n", head, vq);
1075 END_USE(vq);
1076
1077 return 0;
1078
1079 unmap_release:
1080 err_idx = i;
1081
1082 for (i = 0; i < err_idx; i++)
1083 vring_unmap_desc_packed(vq, &desc[i]);
1084
1085 kfree(desc);
1086
1087 END_USE(vq);
1088 return -ENOMEM;
1089 }
1090
1091 static inline int virtqueue_add_packed(struct virtqueue *_vq,
1092 struct scatterlist *sgs[],
1093 unsigned int total_sg,
1094 unsigned int out_sgs,
1095 unsigned int in_sgs,
1096 void *data,
1097 void *ctx,
1098 gfp_t gfp)
1099 {
1100 struct vring_virtqueue *vq = to_vvq(_vq);
1101 struct vring_packed_desc *desc;
1102 struct scatterlist *sg;
1103 unsigned int i, n, c, descs_used, err_idx;
1104 __le16 head_flags, flags;
1105 u16 head, id, prev, curr, avail_used_flags;
1106
1107 START_USE(vq);
1108
1109 BUG_ON(data == NULL);
1110 BUG_ON(ctx && vq->indirect);
1111
1112 if (unlikely(vq->broken)) {
1113 END_USE(vq);
1114 return -EIO;
1115 }
1116
1117 LAST_ADD_TIME_UPDATE(vq);
1118
1119 BUG_ON(total_sg == 0);
1120
1121 if (virtqueue_use_indirect(_vq, total_sg))
1122 return virtqueue_add_indirect_packed(vq, sgs, total_sg,
1123 out_sgs, in_sgs, data, gfp);
1124
1125 head = vq->packed.next_avail_idx;
1126 avail_used_flags = vq->packed.avail_used_flags;
1127
1128 WARN_ON_ONCE(total_sg > vq->packed.vring.num && !vq->indirect);
1129
1130 desc = vq->packed.vring.desc;
1131 i = head;
1132 descs_used = total_sg;
1133
1134 if (unlikely(vq->vq.num_free < descs_used)) {
1135 pr_debug("Can't add buf len %i - avail = %i\n",
1136 descs_used, vq->vq.num_free);
1137 END_USE(vq);
1138 return -ENOSPC;
1139 }
1140
1141 id = vq->free_head;
1142 BUG_ON(id == vq->packed.vring.num);
1143
1144 curr = id;
1145 c = 0;
1146 for (n = 0; n < out_sgs + in_sgs; n++) {
1147 for (sg = sgs[n]; sg; sg = sg_next(sg)) {
1148 dma_addr_t addr = vring_map_one_sg(vq, sg, n < out_sgs ?
1149 DMA_TO_DEVICE : DMA_FROM_DEVICE);
1150 if (vring_mapping_error(vq, addr))
1151 goto unmap_release;
1152
1153 flags = cpu_to_le16(vq->packed.avail_used_flags |
1154 (++c == total_sg ? 0 : VRING_DESC_F_NEXT) |
1155 (n < out_sgs ? 0 : VRING_DESC_F_WRITE));
1156 if (i == head)
1157 head_flags = flags;
1158 else
1159 desc[i].flags = flags;
1160
1161 desc[i].addr = cpu_to_le64(addr);
1162 desc[i].len = cpu_to_le32(sg->length);
1163 desc[i].id = cpu_to_le16(id);
1164
1165 if (unlikely(vq->use_dma_api)) {
1166 vq->packed.desc_extra[curr].addr = addr;
1167 vq->packed.desc_extra[curr].len = sg->length;
1168 vq->packed.desc_extra[curr].flags =
1169 le16_to_cpu(flags);
1170 }
1171 prev = curr;
1172 curr = vq->packed.desc_state[curr].next;
1173
1174 if ((unlikely(++i >= vq->packed.vring.num))) {
1175 i = 0;
1176 vq->packed.avail_used_flags ^=
1177 1 << VRING_PACKED_DESC_F_AVAIL |
1178 1 << VRING_PACKED_DESC_F_USED;
1179 }
1180 }
1181 }
1182
1183 if (i < head)
1184 vq->packed.avail_wrap_counter ^= 1;
1185
1186 /* We're using some buffers from the free list. */
1187 vq->vq.num_free -= descs_used;
1188
1189 /* Update free pointer */
1190 vq->packed.next_avail_idx = i;
1191 vq->free_head = curr;
1192
1193 /* Store token. */
1194 vq->packed.desc_state[id].num = descs_used;
1195 vq->packed.desc_state[id].data = data;
1196 vq->packed.desc_state[id].indir_desc = ctx;
1197 vq->packed.desc_state[id].last = prev;
1198
1199 /*
1200 * A driver MUST NOT make the first descriptor in the list
1201 * available before all subsequent descriptors comprising
1202 * the list are made available.
1203 */
1204 virtio_wmb(vq->weak_barriers);
1205 vq->packed.vring.desc[head].flags = head_flags;
1206 vq->num_added += descs_used;
1207
1208 pr_debug("Added buffer head %i to %p\n", head, vq);
1209 END_USE(vq);
1210
1211 return 0;
1212
1213 unmap_release:
1214 err_idx = i;
1215 i = head;
1216
1217 vq->packed.avail_used_flags = avail_used_flags;
1218
1219 for (n = 0; n < total_sg; n++) {
1220 if (i == err_idx)
1221 break;
1222 vring_unmap_desc_packed(vq, &desc[i]);
1223 i++;
1224 if (i >= vq->packed.vring.num)
1225 i = 0;
1226 }
1227
1228 END_USE(vq);
1229 return -EIO;
1230 }
1231
1232 static bool virtqueue_kick_prepare_packed(struct virtqueue *_vq)
1233 {
1234 struct vring_virtqueue *vq = to_vvq(_vq);
1235 u16 new, old, off_wrap, flags, wrap_counter, event_idx;
1236 bool needs_kick;
1237 union {
1238 struct {
1239 __le16 off_wrap;
1240 __le16 flags;
1241 };
1242 u32 u32;
1243 } snapshot;
1244
1245 START_USE(vq);
1246
1247 /*
1248 * We need to expose the new flags value before checking notification
1249 * suppressions.
1250 */
1251 virtio_mb(vq->weak_barriers);
1252
1253 old = vq->packed.next_avail_idx - vq->num_added;
1254 new = vq->packed.next_avail_idx;
1255 vq->num_added = 0;
1256
1257 snapshot.u32 = *(u32 *)vq->packed.vring.device;
1258 flags = le16_to_cpu(snapshot.flags);
1259
1260 LAST_ADD_TIME_CHECK(vq);
1261 LAST_ADD_TIME_INVALID(vq);
1262
1263 if (flags != VRING_PACKED_EVENT_FLAG_DESC) {
1264 needs_kick = (flags != VRING_PACKED_EVENT_FLAG_DISABLE);
1265 goto out;
1266 }
1267
1268 off_wrap = le16_to_cpu(snapshot.off_wrap);
1269
1270 wrap_counter = off_wrap >> VRING_PACKED_EVENT_F_WRAP_CTR;
1271 event_idx = off_wrap & ~(1 << VRING_PACKED_EVENT_F_WRAP_CTR);
1272 if (wrap_counter != vq->packed.avail_wrap_counter)
1273 event_idx -= vq->packed.vring.num;
1274
1275 needs_kick = vring_need_event(event_idx, new, old);
1276 out:
1277 END_USE(vq);
1278 return needs_kick;
1279 }
1280
1281 static void detach_buf_packed(struct vring_virtqueue *vq,
1282 unsigned int id, void **ctx)
1283 {
1284 struct vring_desc_state_packed *state = NULL;
1285 struct vring_packed_desc *desc;
1286 unsigned int i, curr;
1287
1288 state = &vq->packed.desc_state[id];
1289
1290 /* Clear data ptr. */
1291 state->data = NULL;
1292
1293 vq->packed.desc_state[state->last].next = vq->free_head;
1294 vq->free_head = id;
1295 vq->vq.num_free += state->num;
1296
1297 if (unlikely(vq->use_dma_api)) {
1298 curr = id;
1299 for (i = 0; i < state->num; i++) {
1300 vring_unmap_state_packed(vq,
1301 &vq->packed.desc_extra[curr]);
1302 curr = vq->packed.desc_state[curr].next;
1303 }
1304 }
1305
1306 if (vq->indirect) {
1307 u32 len;
1308
1309 /* Free the indirect table, if any, now that it's unmapped. */
1310 desc = state->indir_desc;
1311 if (!desc)
1312 return;
1313
1314 if (vq->use_dma_api) {
1315 len = vq->packed.desc_extra[id].len;
1316 for (i = 0; i < len / sizeof(struct vring_packed_desc);
1317 i++)
1318 vring_unmap_desc_packed(vq, &desc[i]);
1319 }
1320 kfree(desc);
1321 state->indir_desc = NULL;
1322 } else if (ctx) {
1323 *ctx = state->indir_desc;
1324 }
1325 }
1326
1327 static inline bool is_used_desc_packed(const struct vring_virtqueue *vq,
1328 u16 idx, bool used_wrap_counter)
1329 {
1330 bool avail, used;
1331 u16 flags;
1332
1333 flags = le16_to_cpu(vq->packed.vring.desc[idx].flags);
1334 avail = !!(flags & (1 << VRING_PACKED_DESC_F_AVAIL));
1335 used = !!(flags & (1 << VRING_PACKED_DESC_F_USED));
1336
1337 return avail == used && used == used_wrap_counter;
1338 }
1339
1340 static inline bool more_used_packed(const struct vring_virtqueue *vq)
1341 {
1342 return is_used_desc_packed(vq, vq->last_used_idx,
1343 vq->packed.used_wrap_counter);
1344 }
1345
1346 static void *virtqueue_get_buf_ctx_packed(struct virtqueue *_vq,
1347 unsigned int *len,
1348 void **ctx)
1349 {
1350 struct vring_virtqueue *vq = to_vvq(_vq);
1351 u16 last_used, id;
1352 void *ret;
1353
1354 START_USE(vq);
1355
1356 if (unlikely(vq->broken)) {
1357 END_USE(vq);
1358 return NULL;
1359 }
1360
1361 if (!more_used_packed(vq)) {
1362 pr_debug("No more buffers in queue\n");
1363 END_USE(vq);
1364 return NULL;
1365 }
1366
1367 /* Only get used elements after they have been exposed by host. */
1368 virtio_rmb(vq->weak_barriers);
1369
1370 last_used = vq->last_used_idx;
1371 id = le16_to_cpu(vq->packed.vring.desc[last_used].id);
1372 *len = le32_to_cpu(vq->packed.vring.desc[last_used].len);
1373
1374 if (unlikely(id >= vq->packed.vring.num)) {
1375 BAD_RING(vq, "id %u out of range\n", id);
1376 return NULL;
1377 }
1378 if (unlikely(!vq->packed.desc_state[id].data)) {
1379 BAD_RING(vq, "id %u is not a head!\n", id);
1380 return NULL;
1381 }
1382
1383 /* detach_buf_packed clears data, so grab it now. */
1384 ret = vq->packed.desc_state[id].data;
1385 detach_buf_packed(vq, id, ctx);
1386
1387 vq->last_used_idx += vq->packed.desc_state[id].num;
1388 if (unlikely(vq->last_used_idx >= vq->packed.vring.num)) {
1389 vq->last_used_idx -= vq->packed.vring.num;
1390 vq->packed.used_wrap_counter ^= 1;
1391 }
1392
1393 /*
1394 * If we expect an interrupt for the next entry, tell host
1395 * by writing event index and flush out the write before
1396 * the read in the next get_buf call.
1397 */
1398 if (vq->packed.event_flags_shadow == VRING_PACKED_EVENT_FLAG_DESC)
1399 virtio_store_mb(vq->weak_barriers,
1400 &vq->packed.vring.driver->off_wrap,
1401 cpu_to_le16(vq->last_used_idx |
1402 (vq->packed.used_wrap_counter <<
1403 VRING_PACKED_EVENT_F_WRAP_CTR)));
1404
1405 LAST_ADD_TIME_INVALID(vq);
1406
1407 END_USE(vq);
1408 return ret;
1409 }
1410
1411 static void virtqueue_disable_cb_packed(struct virtqueue *_vq)
1412 {
1413 struct vring_virtqueue *vq = to_vvq(_vq);
1414
1415 if (vq->packed.event_flags_shadow != VRING_PACKED_EVENT_FLAG_DISABLE) {
1416 vq->packed.event_flags_shadow = VRING_PACKED_EVENT_FLAG_DISABLE;
1417 vq->packed.vring.driver->flags =
1418 cpu_to_le16(vq->packed.event_flags_shadow);
1419 }
1420 }
1421
1422 static unsigned virtqueue_enable_cb_prepare_packed(struct virtqueue *_vq)
1423 {
1424 struct vring_virtqueue *vq = to_vvq(_vq);
1425
1426 START_USE(vq);
1427
1428 /*
1429 * We optimistically turn back on interrupts, then check if there was
1430 * more to do.
1431 */
1432
1433 if (vq->event) {
1434 vq->packed.vring.driver->off_wrap =
1435 cpu_to_le16(vq->last_used_idx |
1436 (vq->packed.used_wrap_counter <<
1437 VRING_PACKED_EVENT_F_WRAP_CTR));
1438 /*
1439 * We need to update event offset and event wrap
1440 * counter first before updating event flags.
1441 */
1442 virtio_wmb(vq->weak_barriers);
1443 }
1444
1445 if (vq->packed.event_flags_shadow == VRING_PACKED_EVENT_FLAG_DISABLE) {
1446 vq->packed.event_flags_shadow = vq->event ?
1447 VRING_PACKED_EVENT_FLAG_DESC :
1448 VRING_PACKED_EVENT_FLAG_ENABLE;
1449 vq->packed.vring.driver->flags =
1450 cpu_to_le16(vq->packed.event_flags_shadow);
1451 }
1452
1453 END_USE(vq);
1454 return vq->last_used_idx | ((u16)vq->packed.used_wrap_counter <<
1455 VRING_PACKED_EVENT_F_WRAP_CTR);
1456 }
1457
1458 static bool virtqueue_poll_packed(struct virtqueue *_vq, u16 off_wrap)
1459 {
1460 struct vring_virtqueue *vq = to_vvq(_vq);
1461 bool wrap_counter;
1462 u16 used_idx;
1463
1464 wrap_counter = off_wrap >> VRING_PACKED_EVENT_F_WRAP_CTR;
1465 used_idx = off_wrap & ~(1 << VRING_PACKED_EVENT_F_WRAP_CTR);
1466
1467 return is_used_desc_packed(vq, used_idx, wrap_counter);
1468 }
1469
1470 static bool virtqueue_enable_cb_delayed_packed(struct virtqueue *_vq)
1471 {
1472 struct vring_virtqueue *vq = to_vvq(_vq);
1473 u16 used_idx, wrap_counter;
1474 u16 bufs;
1475
1476 START_USE(vq);
1477
1478 /*
1479 * We optimistically turn back on interrupts, then check if there was
1480 * more to do.
1481 */
1482
1483 if (vq->event) {
1484 /* TODO: tune this threshold */
1485 bufs = (vq->packed.vring.num - vq->vq.num_free) * 3 / 4;
1486 wrap_counter = vq->packed.used_wrap_counter;
1487
1488 used_idx = vq->last_used_idx + bufs;
1489 if (used_idx >= vq->packed.vring.num) {
1490 used_idx -= vq->packed.vring.num;
1491 wrap_counter ^= 1;
1492 }
1493
1494 vq->packed.vring.driver->off_wrap = cpu_to_le16(used_idx |
1495 (wrap_counter << VRING_PACKED_EVENT_F_WRAP_CTR));
1496
1497 /*
1498 * We need to update event offset and event wrap
1499 * counter first before updating event flags.
1500 */
1501 virtio_wmb(vq->weak_barriers);
1502 }
1503
1504 if (vq->packed.event_flags_shadow == VRING_PACKED_EVENT_FLAG_DISABLE) {
1505 vq->packed.event_flags_shadow = vq->event ?
1506 VRING_PACKED_EVENT_FLAG_DESC :
1507 VRING_PACKED_EVENT_FLAG_ENABLE;
1508 vq->packed.vring.driver->flags =
1509 cpu_to_le16(vq->packed.event_flags_shadow);
1510 }
1511
1512 /*
1513 * We need to update event suppression structure first
1514 * before re-checking for more used buffers.
1515 */
1516 virtio_mb(vq->weak_barriers);
1517
1518 if (is_used_desc_packed(vq,
1519 vq->last_used_idx,
1520 vq->packed.used_wrap_counter)) {
1521 END_USE(vq);
1522 return false;
1523 }
1524
1525 END_USE(vq);
1526 return true;
1527 }
1528
1529 static void *virtqueue_detach_unused_buf_packed(struct virtqueue *_vq)
1530 {
1531 struct vring_virtqueue *vq = to_vvq(_vq);
1532 unsigned int i;
1533 void *buf;
1534
1535 START_USE(vq);
1536
1537 for (i = 0; i < vq->packed.vring.num; i++) {
1538 if (!vq->packed.desc_state[i].data)
1539 continue;
1540 /* detach_buf clears data, so grab it now. */
1541 buf = vq->packed.desc_state[i].data;
1542 detach_buf_packed(vq, i, NULL);
1543 END_USE(vq);
1544 return buf;
1545 }
1546 /* That should have freed everything. */
1547 BUG_ON(vq->vq.num_free != vq->packed.vring.num);
1548
1549 END_USE(vq);
1550 return NULL;
1551 }
1552
1553 static struct virtqueue *vring_create_virtqueue_packed(
1554 unsigned int index,
1555 unsigned int num,
1556 unsigned int vring_align,
1557 struct virtio_device *vdev,
1558 bool weak_barriers,
1559 bool may_reduce_num,
1560 bool context,
1561 bool (*notify)(struct virtqueue *),
1562 void (*callback)(struct virtqueue *),
1563 const char *name)
1564 {
1565 struct vring_virtqueue *vq;
1566 struct vring_packed_desc *ring;
1567 struct vring_packed_desc_event *driver, *device;
1568 dma_addr_t ring_dma_addr, driver_event_dma_addr, device_event_dma_addr;
1569 size_t ring_size_in_bytes, event_size_in_bytes;
1570 unsigned int i;
1571
1572 ring_size_in_bytes = num * sizeof(struct vring_packed_desc);
1573
1574 ring = vring_alloc_queue(vdev, ring_size_in_bytes,
1575 &ring_dma_addr,
1576 GFP_KERNEL|__GFP_NOWARN|__GFP_ZERO);
1577 if (!ring)
1578 goto err_ring;
1579
1580 event_size_in_bytes = sizeof(struct vring_packed_desc_event);
1581
1582 driver = vring_alloc_queue(vdev, event_size_in_bytes,
1583 &driver_event_dma_addr,
1584 GFP_KERNEL|__GFP_NOWARN|__GFP_ZERO);
1585 if (!driver)
1586 goto err_driver;
1587
1588 device = vring_alloc_queue(vdev, event_size_in_bytes,
1589 &device_event_dma_addr,
1590 GFP_KERNEL|__GFP_NOWARN|__GFP_ZERO);
1591 if (!device)
1592 goto err_device;
1593
1594 vq = kmalloc(sizeof(*vq), GFP_KERNEL);
1595 if (!vq)
1596 goto err_vq;
1597
1598 vq->vq.callback = callback;
1599 vq->vq.vdev = vdev;
1600 vq->vq.name = name;
1601 vq->vq.num_free = num;
1602 vq->vq.index = index;
1603 vq->we_own_ring = true;
1604 vq->notify = notify;
1605 vq->weak_barriers = weak_barriers;
1606 vq->broken = false;
1607 vq->last_used_idx = 0;
1608 vq->num_added = 0;
1609 vq->packed_ring = true;
1610 vq->use_dma_api = vring_use_dma_api(vdev);
1611 #ifdef DEBUG
1612 vq->in_use = false;
1613 vq->last_add_time_valid = false;
1614 #endif
1615
1616 vq->indirect = virtio_has_feature(vdev, VIRTIO_RING_F_INDIRECT_DESC) &&
1617 !context;
1618 vq->event = virtio_has_feature(vdev, VIRTIO_RING_F_EVENT_IDX);
1619
1620 if (virtio_has_feature(vdev, VIRTIO_F_ORDER_PLATFORM))
1621 vq->weak_barriers = false;
1622
1623 vq->packed.ring_dma_addr = ring_dma_addr;
1624 vq->packed.driver_event_dma_addr = driver_event_dma_addr;
1625 vq->packed.device_event_dma_addr = device_event_dma_addr;
1626
1627 vq->packed.ring_size_in_bytes = ring_size_in_bytes;
1628 vq->packed.event_size_in_bytes = event_size_in_bytes;
1629
1630 vq->packed.vring.num = num;
1631 vq->packed.vring.desc = ring;
1632 vq->packed.vring.driver = driver;
1633 vq->packed.vring.device = device;
1634
1635 vq->packed.next_avail_idx = 0;
1636 vq->packed.avail_wrap_counter = 1;
1637 vq->packed.used_wrap_counter = 1;
1638 vq->packed.event_flags_shadow = 0;
1639 vq->packed.avail_used_flags = 1 << VRING_PACKED_DESC_F_AVAIL;
1640
1641 vq->packed.desc_state = kmalloc_array(num,
1642 sizeof(struct vring_desc_state_packed),
1643 GFP_KERNEL);
1644 if (!vq->packed.desc_state)
1645 goto err_desc_state;
1646
1647 memset(vq->packed.desc_state, 0,
1648 num * sizeof(struct vring_desc_state_packed));
1649
1650 /* Put everything in free lists. */
1651 vq->free_head = 0;
1652 for (i = 0; i < num-1; i++)
1653 vq->packed.desc_state[i].next = i + 1;
1654
1655 vq->packed.desc_extra = kmalloc_array(num,
1656 sizeof(struct vring_desc_extra_packed),
1657 GFP_KERNEL);
1658 if (!vq->packed.desc_extra)
1659 goto err_desc_extra;
1660
1661 memset(vq->packed.desc_extra, 0,
1662 num * sizeof(struct vring_desc_extra_packed));
1663
1664 /* No callback? Tell other side not to bother us. */
1665 if (!callback) {
1666 vq->packed.event_flags_shadow = VRING_PACKED_EVENT_FLAG_DISABLE;
1667 vq->packed.vring.driver->flags =
1668 cpu_to_le16(vq->packed.event_flags_shadow);
1669 }
1670
1671 list_add_tail(&vq->vq.list, &vdev->vqs);
1672 return &vq->vq;
1673
1674 err_desc_extra:
1675 kfree(vq->packed.desc_state);
1676 err_desc_state:
1677 kfree(vq);
1678 err_vq:
1679 vring_free_queue(vdev, event_size_in_bytes, device, device_event_dma_addr);
1680 err_device:
1681 vring_free_queue(vdev, event_size_in_bytes, driver, driver_event_dma_addr);
1682 err_driver:
1683 vring_free_queue(vdev, ring_size_in_bytes, ring, ring_dma_addr);
1684 err_ring:
1685 return NULL;
1686 }
1687
1688
1689 /*
1690 * Generic functions and exported symbols.
1691 */
1692
1693 static inline int virtqueue_add(struct virtqueue *_vq,
1694 struct scatterlist *sgs[],
1695 unsigned int total_sg,
1696 unsigned int out_sgs,
1697 unsigned int in_sgs,
1698 void *data,
1699 void *ctx,
1700 gfp_t gfp)
1701 {
1702 struct vring_virtqueue *vq = to_vvq(_vq);
1703
1704 return vq->packed_ring ? virtqueue_add_packed(_vq, sgs, total_sg,
1705 out_sgs, in_sgs, data, ctx, gfp) :
1706 virtqueue_add_split(_vq, sgs, total_sg,
1707 out_sgs, in_sgs, data, ctx, gfp);
1708 }
1709
1710 /**
1711 * virtqueue_add_sgs - expose buffers to other end
1712 * @_vq: the struct virtqueue we're talking about.
1713 * @sgs: array of terminated scatterlists.
1714 * @out_sgs: the number of scatterlists readable by other side
1715 * @in_sgs: the number of scatterlists which are writable (after readable ones)
1716 * @data: the token identifying the buffer.
1717 * @gfp: how to do memory allocations (if necessary).
1718 *
1719 * Caller must ensure we don't call this with other virtqueue operations
1720 * at the same time (except where noted).
1721 *
1722 * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
1723 */
1724 int virtqueue_add_sgs(struct virtqueue *_vq,
1725 struct scatterlist *sgs[],
1726 unsigned int out_sgs,
1727 unsigned int in_sgs,
1728 void *data,
1729 gfp_t gfp)
1730 {
1731 unsigned int i, total_sg = 0;
1732
1733 /* Count them first. */
1734 for (i = 0; i < out_sgs + in_sgs; i++) {
1735 struct scatterlist *sg;
1736
1737 for (sg = sgs[i]; sg; sg = sg_next(sg))
1738 total_sg++;
1739 }
1740 return virtqueue_add(_vq, sgs, total_sg, out_sgs, in_sgs,
1741 data, NULL, gfp);
1742 }
1743 EXPORT_SYMBOL_GPL(virtqueue_add_sgs);
1744
1745 /**
1746 * virtqueue_add_outbuf - expose output buffers to other end
1747 * @vq: the struct virtqueue we're talking about.
1748 * @sg: scatterlist (must be well-formed and terminated!)
1749 * @num: the number of entries in @sg readable by other side
1750 * @data: the token identifying the buffer.
1751 * @gfp: how to do memory allocations (if necessary).
1752 *
1753 * Caller must ensure we don't call this with other virtqueue operations
1754 * at the same time (except where noted).
1755 *
1756 * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
1757 */
1758 int virtqueue_add_outbuf(struct virtqueue *vq,
1759 struct scatterlist *sg, unsigned int num,
1760 void *data,
1761 gfp_t gfp)
1762 {
1763 return virtqueue_add(vq, &sg, num, 1, 0, data, NULL, gfp);
1764 }
1765 EXPORT_SYMBOL_GPL(virtqueue_add_outbuf);
1766
1767 /**
1768 * virtqueue_add_inbuf - expose input buffers to other end
1769 * @vq: the struct virtqueue we're talking about.
1770 * @sg: scatterlist (must be well-formed and terminated!)
1771 * @num: the number of entries in @sg writable by other side
1772 * @data: the token identifying the buffer.
1773 * @gfp: how to do memory allocations (if necessary).
1774 *
1775 * Caller must ensure we don't call this with other virtqueue operations
1776 * at the same time (except where noted).
1777 *
1778 * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
1779 */
1780 int virtqueue_add_inbuf(struct virtqueue *vq,
1781 struct scatterlist *sg, unsigned int num,
1782 void *data,
1783 gfp_t gfp)
1784 {
1785 return virtqueue_add(vq, &sg, num, 0, 1, data, NULL, gfp);
1786 }
1787 EXPORT_SYMBOL_GPL(virtqueue_add_inbuf);
1788
1789 /**
1790 * virtqueue_add_inbuf_ctx - expose input buffers to other end
1791 * @vq: the struct virtqueue we're talking about.
1792 * @sg: scatterlist (must be well-formed and terminated!)
1793 * @num: the number of entries in @sg writable by other side
1794 * @data: the token identifying the buffer.
1795 * @ctx: extra context for the token
1796 * @gfp: how to do memory allocations (if necessary).
1797 *
1798 * Caller must ensure we don't call this with other virtqueue operations
1799 * at the same time (except where noted).
1800 *
1801 * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
1802 */
1803 int virtqueue_add_inbuf_ctx(struct virtqueue *vq,
1804 struct scatterlist *sg, unsigned int num,
1805 void *data,
1806 void *ctx,
1807 gfp_t gfp)
1808 {
1809 return virtqueue_add(vq, &sg, num, 0, 1, data, ctx, gfp);
1810 }
1811 EXPORT_SYMBOL_GPL(virtqueue_add_inbuf_ctx);
1812
1813 /**
1814 * virtqueue_kick_prepare - first half of split virtqueue_kick call.
1815 * @_vq: the struct virtqueue
1816 *
1817 * Instead of virtqueue_kick(), you can do:
1818 * if (virtqueue_kick_prepare(vq))
1819 * virtqueue_notify(vq);
1820 *
1821 * This is sometimes useful because the virtqueue_kick_prepare() needs
1822 * to be serialized, but the actual virtqueue_notify() call does not.
1823 */
1824 bool virtqueue_kick_prepare(struct virtqueue *_vq)
1825 {
1826 struct vring_virtqueue *vq = to_vvq(_vq);
1827
1828 return vq->packed_ring ? virtqueue_kick_prepare_packed(_vq) :
1829 virtqueue_kick_prepare_split(_vq);
1830 }
1831 EXPORT_SYMBOL_GPL(virtqueue_kick_prepare);
1832
1833 /**
1834 * virtqueue_notify - second half of split virtqueue_kick call.
1835 * @_vq: the struct virtqueue
1836 *
1837 * This does not need to be serialized.
1838 *
1839 * Returns false if host notify failed or queue is broken, otherwise true.
1840 */
1841 bool virtqueue_notify(struct virtqueue *_vq)
1842 {
1843 struct vring_virtqueue *vq = to_vvq(_vq);
1844
1845 if (unlikely(vq->broken))
1846 return false;
1847
1848 /* Prod other side to tell it about changes. */
1849 if (!vq->notify(_vq)) {
1850 vq->broken = true;
1851 return false;
1852 }
1853 return true;
1854 }
1855 EXPORT_SYMBOL_GPL(virtqueue_notify);
1856
1857 /**
1858 * virtqueue_kick - update after add_buf
1859 * @vq: the struct virtqueue
1860 *
1861 * After one or more virtqueue_add_* calls, invoke this to kick
1862 * the other side.
1863 *
1864 * Caller must ensure we don't call this with other virtqueue
1865 * operations at the same time (except where noted).
1866 *
1867 * Returns false if kick failed, otherwise true.
1868 */
1869 bool virtqueue_kick(struct virtqueue *vq)
1870 {
1871 if (virtqueue_kick_prepare(vq))
1872 return virtqueue_notify(vq);
1873 return true;
1874 }
1875 EXPORT_SYMBOL_GPL(virtqueue_kick);
1876
1877 /**
1878 * virtqueue_get_buf - get the next used buffer
1879 * @_vq: the struct virtqueue we're talking about.
1880 * @len: the length written into the buffer
1881 * @ctx: extra context for the token
1882 *
1883 * If the device wrote data into the buffer, @len will be set to the
1884 * amount written. This means you don't need to clear the buffer
1885 * beforehand to ensure there's no data leakage in the case of short
1886 * writes.
1887 *
1888 * Caller must ensure we don't call this with other virtqueue
1889 * operations at the same time (except where noted).
1890 *
1891 * Returns NULL if there are no used buffers, or the "data" token
1892 * handed to virtqueue_add_*().
1893 */
1894 void *virtqueue_get_buf_ctx(struct virtqueue *_vq, unsigned int *len,
1895 void **ctx)
1896 {
1897 struct vring_virtqueue *vq = to_vvq(_vq);
1898
1899 return vq->packed_ring ? virtqueue_get_buf_ctx_packed(_vq, len, ctx) :
1900 virtqueue_get_buf_ctx_split(_vq, len, ctx);
1901 }
1902 EXPORT_SYMBOL_GPL(virtqueue_get_buf_ctx);
1903
1904 void *virtqueue_get_buf(struct virtqueue *_vq, unsigned int *len)
1905 {
1906 return virtqueue_get_buf_ctx(_vq, len, NULL);
1907 }
1908 EXPORT_SYMBOL_GPL(virtqueue_get_buf);
1909 /**
1910 * virtqueue_disable_cb - disable callbacks
1911 * @_vq: the struct virtqueue we're talking about.
1912 *
1913 * Note that this is not necessarily synchronous, hence unreliable and only
1914 * useful as an optimization.
1915 *
1916 * Unlike other operations, this need not be serialized.
1917 */
1918 void virtqueue_disable_cb(struct virtqueue *_vq)
1919 {
1920 struct vring_virtqueue *vq = to_vvq(_vq);
1921
1922 if (vq->packed_ring)
1923 virtqueue_disable_cb_packed(_vq);
1924 else
1925 virtqueue_disable_cb_split(_vq);
1926 }
1927 EXPORT_SYMBOL_GPL(virtqueue_disable_cb);
1928
1929 /**
1930 * virtqueue_enable_cb_prepare - restart callbacks after disable_cb
1931 * @_vq: the struct virtqueue we're talking about.
1932 *
1933 * This re-enables callbacks; it returns current queue state
1934 * in an opaque unsigned value. This value should be later tested by
1935 * virtqueue_poll, to detect a possible race between the driver checking for
1936 * more work, and enabling callbacks.
1937 *
1938 * Caller must ensure we don't call this with other virtqueue
1939 * operations at the same time (except where noted).
1940 */
1941 unsigned virtqueue_enable_cb_prepare(struct virtqueue *_vq)
1942 {
1943 struct vring_virtqueue *vq = to_vvq(_vq);
1944
1945 return vq->packed_ring ? virtqueue_enable_cb_prepare_packed(_vq) :
1946 virtqueue_enable_cb_prepare_split(_vq);
1947 }
1948 EXPORT_SYMBOL_GPL(virtqueue_enable_cb_prepare);
1949
1950 /**
1951 * virtqueue_poll - query pending used buffers
1952 * @_vq: the struct virtqueue we're talking about.
1953 * @last_used_idx: virtqueue state (from call to virtqueue_enable_cb_prepare).
1954 *
1955 * Returns "true" if there are pending used buffers in the queue.
1956 *
1957 * This does not need to be serialized.
1958 */
1959 bool virtqueue_poll(struct virtqueue *_vq, unsigned last_used_idx)
1960 {
1961 struct vring_virtqueue *vq = to_vvq(_vq);
1962
1963 if (unlikely(vq->broken))
1964 return false;
1965
1966 virtio_mb(vq->weak_barriers);
1967 return vq->packed_ring ? virtqueue_poll_packed(_vq, last_used_idx) :
1968 virtqueue_poll_split(_vq, last_used_idx);
1969 }
1970 EXPORT_SYMBOL_GPL(virtqueue_poll);
1971
1972 /**
1973 * virtqueue_enable_cb - restart callbacks after disable_cb.
1974 * @_vq: the struct virtqueue we're talking about.
1975 *
1976 * This re-enables callbacks; it returns "false" if there are pending
1977 * buffers in the queue, to detect a possible race between the driver
1978 * checking for more work, and enabling callbacks.
1979 *
1980 * Caller must ensure we don't call this with other virtqueue
1981 * operations at the same time (except where noted).
1982 */
1983 bool virtqueue_enable_cb(struct virtqueue *_vq)
1984 {
1985 unsigned last_used_idx = virtqueue_enable_cb_prepare(_vq);
1986
1987 return !virtqueue_poll(_vq, last_used_idx);
1988 }
1989 EXPORT_SYMBOL_GPL(virtqueue_enable_cb);
1990
1991 /**
1992 * virtqueue_enable_cb_delayed - restart callbacks after disable_cb.
1993 * @_vq: the struct virtqueue we're talking about.
1994 *
1995 * This re-enables callbacks but hints to the other side to delay
1996 * interrupts until most of the available buffers have been processed;
1997 * it returns "false" if there are many pending buffers in the queue,
1998 * to detect a possible race between the driver checking for more work,
1999 * and enabling callbacks.
2000 *
2001 * Caller must ensure we don't call this with other virtqueue
2002 * operations at the same time (except where noted).
2003 */
2004 bool virtqueue_enable_cb_delayed(struct virtqueue *_vq)
2005 {
2006 struct vring_virtqueue *vq = to_vvq(_vq);
2007
2008 return vq->packed_ring ? virtqueue_enable_cb_delayed_packed(_vq) :
2009 virtqueue_enable_cb_delayed_split(_vq);
2010 }
2011 EXPORT_SYMBOL_GPL(virtqueue_enable_cb_delayed);
2012
2013 /**
2014 * virtqueue_detach_unused_buf - detach first unused buffer
2015 * @_vq: the struct virtqueue we're talking about.
2016 *
2017 * Returns NULL or the "data" token handed to virtqueue_add_*().
2018 * This is not valid on an active queue; it is useful only for device
2019 * shutdown.
2020 */
2021 void *virtqueue_detach_unused_buf(struct virtqueue *_vq)
2022 {
2023 struct vring_virtqueue *vq = to_vvq(_vq);
2024
2025 return vq->packed_ring ? virtqueue_detach_unused_buf_packed(_vq) :
2026 virtqueue_detach_unused_buf_split(_vq);
2027 }
2028 EXPORT_SYMBOL_GPL(virtqueue_detach_unused_buf);
2029
2030 static inline bool more_used(const struct vring_virtqueue *vq)
2031 {
2032 return vq->packed_ring ? more_used_packed(vq) : more_used_split(vq);
2033 }
2034
2035 irqreturn_t vring_interrupt(int irq, void *_vq)
2036 {
2037 struct vring_virtqueue *vq = to_vvq(_vq);
2038
2039 if (!more_used(vq)) {
2040 pr_debug("virtqueue interrupt with no work for %p\n", vq);
2041 return IRQ_NONE;
2042 }
2043
2044 if (unlikely(vq->broken))
2045 return IRQ_HANDLED;
2046
2047 pr_debug("virtqueue callback for %p (%p)\n", vq, vq->vq.callback);
2048 if (vq->vq.callback)
2049 vq->vq.callback(&vq->vq);
2050
2051 return IRQ_HANDLED;
2052 }
2053 EXPORT_SYMBOL_GPL(vring_interrupt);
2054
2055 /* Only available for split ring */
2056 struct virtqueue *__vring_new_virtqueue(unsigned int index,
2057 struct vring vring,
2058 struct virtio_device *vdev,
2059 bool weak_barriers,
2060 bool context,
2061 bool (*notify)(struct virtqueue *),
2062 void (*callback)(struct virtqueue *),
2063 const char *name)
2064 {
2065 unsigned int i;
2066 struct vring_virtqueue *vq;
2067
2068 if (virtio_has_feature(vdev, VIRTIO_F_RING_PACKED))
2069 return NULL;
2070
2071 vq = kmalloc(sizeof(*vq), GFP_KERNEL);
2072 if (!vq)
2073 return NULL;
2074
2075 vq->packed_ring = false;
2076 vq->vq.callback = callback;
2077 vq->vq.vdev = vdev;
2078 vq->vq.name = name;
2079 vq->vq.num_free = vring.num;
2080 vq->vq.index = index;
2081 vq->we_own_ring = false;
2082 vq->notify = notify;
2083 vq->weak_barriers = weak_barriers;
2084 vq->broken = false;
2085 vq->last_used_idx = 0;
2086 vq->num_added = 0;
2087 vq->use_dma_api = vring_use_dma_api(vdev);
2088 #ifdef DEBUG
2089 vq->in_use = false;
2090 vq->last_add_time_valid = false;
2091 #endif
2092
2093 vq->indirect = virtio_has_feature(vdev, VIRTIO_RING_F_INDIRECT_DESC) &&
2094 !context;
2095 vq->event = virtio_has_feature(vdev, VIRTIO_RING_F_EVENT_IDX);
2096
2097 if (virtio_has_feature(vdev, VIRTIO_F_ORDER_PLATFORM))
2098 vq->weak_barriers = false;
2099
2100 vq->split.queue_dma_addr = 0;
2101 vq->split.queue_size_in_bytes = 0;
2102
2103 vq->split.vring = vring;
2104 vq->split.avail_flags_shadow = 0;
2105 vq->split.avail_idx_shadow = 0;
2106
2107 /* No callback? Tell other side not to bother us. */
2108 if (!callback) {
2109 vq->split.avail_flags_shadow |= VRING_AVAIL_F_NO_INTERRUPT;
2110 if (!vq->event)
2111 vq->split.vring.avail->flags = cpu_to_virtio16(vdev,
2112 vq->split.avail_flags_shadow);
2113 }
2114
2115 vq->split.desc_state = kmalloc_array(vring.num,
2116 sizeof(struct vring_desc_state_split), GFP_KERNEL);
2117 if (!vq->split.desc_state) {
2118 kfree(vq);
2119 return NULL;
2120 }
2121
2122 /* Put everything in free lists. */
2123 vq->free_head = 0;
2124 for (i = 0; i < vring.num-1; i++)
2125 vq->split.vring.desc[i].next = cpu_to_virtio16(vdev, i + 1);
2126 memset(vq->split.desc_state, 0, vring.num *
2127 sizeof(struct vring_desc_state_split));
2128
2129 list_add_tail(&vq->vq.list, &vdev->vqs);
2130 return &vq->vq;
2131 }
2132 EXPORT_SYMBOL_GPL(__vring_new_virtqueue);
2133
2134 struct virtqueue *vring_create_virtqueue(
2135 unsigned int index,
2136 unsigned int num,
2137 unsigned int vring_align,
2138 struct virtio_device *vdev,
2139 bool weak_barriers,
2140 bool may_reduce_num,
2141 bool context,
2142 bool (*notify)(struct virtqueue *),
2143 void (*callback)(struct virtqueue *),
2144 const char *name)
2145 {
2146
2147 if (virtio_has_feature(vdev, VIRTIO_F_RING_PACKED))
2148 return vring_create_virtqueue_packed(index, num, vring_align,
2149 vdev, weak_barriers, may_reduce_num,
2150 context, notify, callback, name);
2151
2152 return vring_create_virtqueue_split(index, num, vring_align,
2153 vdev, weak_barriers, may_reduce_num,
2154 context, notify, callback, name);
2155 }
2156 EXPORT_SYMBOL_GPL(vring_create_virtqueue);
2157
2158 /* Only available for split ring */
2159 struct virtqueue *vring_new_virtqueue(unsigned int index,
2160 unsigned int num,
2161 unsigned int vring_align,
2162 struct virtio_device *vdev,
2163 bool weak_barriers,
2164 bool context,
2165 void *pages,
2166 bool (*notify)(struct virtqueue *vq),
2167 void (*callback)(struct virtqueue *vq),
2168 const char *name)
2169 {
2170 struct vring vring;
2171
2172 if (virtio_has_feature(vdev, VIRTIO_F_RING_PACKED))
2173 return NULL;
2174
2175 vring_init(&vring, num, pages, vring_align);
2176 return __vring_new_virtqueue(index, vring, vdev, weak_barriers, context,
2177 notify, callback, name);
2178 }
2179 EXPORT_SYMBOL_GPL(vring_new_virtqueue);
2180
2181 void vring_del_virtqueue(struct virtqueue *_vq)
2182 {
2183 struct vring_virtqueue *vq = to_vvq(_vq);
2184
2185 if (vq->we_own_ring) {
2186 if (vq->packed_ring) {
2187 vring_free_queue(vq->vq.vdev,
2188 vq->packed.ring_size_in_bytes,
2189 vq->packed.vring.desc,
2190 vq->packed.ring_dma_addr);
2191
2192 vring_free_queue(vq->vq.vdev,
2193 vq->packed.event_size_in_bytes,
2194 vq->packed.vring.driver,
2195 vq->packed.driver_event_dma_addr);
2196
2197 vring_free_queue(vq->vq.vdev,
2198 vq->packed.event_size_in_bytes,
2199 vq->packed.vring.device,
2200 vq->packed.device_event_dma_addr);
2201
2202 kfree(vq->packed.desc_state);
2203 kfree(vq->packed.desc_extra);
2204 } else {
2205 vring_free_queue(vq->vq.vdev,
2206 vq->split.queue_size_in_bytes,
2207 vq->split.vring.desc,
2208 vq->split.queue_dma_addr);
2209 }
2210 }
2211 if (!vq->packed_ring)
2212 kfree(vq->split.desc_state);
2213 list_del(&_vq->list);
2214 kfree(vq);
2215 }
2216 EXPORT_SYMBOL_GPL(vring_del_virtqueue);
2217
2218 /* Manipulates transport-specific feature bits. */
2219 void vring_transport_features(struct virtio_device *vdev)
2220 {
2221 unsigned int i;
2222
2223 for (i = VIRTIO_TRANSPORT_F_START; i < VIRTIO_TRANSPORT_F_END; i++) {
2224 switch (i) {
2225 case VIRTIO_RING_F_INDIRECT_DESC:
2226 break;
2227 case VIRTIO_RING_F_EVENT_IDX:
2228 break;
2229 case VIRTIO_F_VERSION_1:
2230 break;
2231 case VIRTIO_F_ACCESS_PLATFORM:
2232 break;
2233 case VIRTIO_F_RING_PACKED:
2234 break;
2235 case VIRTIO_F_ORDER_PLATFORM:
2236 break;
2237 default:
2238 /* We don't understand this bit. */
2239 __virtio_clear_bit(vdev, i);
2240 }
2241 }
2242 }
2243 EXPORT_SYMBOL_GPL(vring_transport_features);
2244
2245 /**
2246 * virtqueue_get_vring_size - return the size of the virtqueue's vring
2247 * @_vq: the struct virtqueue containing the vring of interest.
2248 *
2249 * Returns the size of the vring. This is mainly used for boasting to
2250 * userspace. Unlike other operations, this need not be serialized.
2251 */
2252 unsigned int virtqueue_get_vring_size(struct virtqueue *_vq)
2253 {
2254
2255 struct vring_virtqueue *vq = to_vvq(_vq);
2256
2257 return vq->packed_ring ? vq->packed.vring.num : vq->split.vring.num;
2258 }
2259 EXPORT_SYMBOL_GPL(virtqueue_get_vring_size);
2260
2261 bool virtqueue_is_broken(struct virtqueue *_vq)
2262 {
2263 struct vring_virtqueue *vq = to_vvq(_vq);
2264
2265 return vq->broken;
2266 }
2267 EXPORT_SYMBOL_GPL(virtqueue_is_broken);
2268
2269 /*
2270 * This should prevent the device from being used, allowing drivers to
2271 * recover. You may need to grab appropriate locks to flush.
2272 */
2273 void virtio_break_device(struct virtio_device *dev)
2274 {
2275 struct virtqueue *_vq;
2276
2277 list_for_each_entry(_vq, &dev->vqs, list) {
2278 struct vring_virtqueue *vq = to_vvq(_vq);
2279 vq->broken = true;
2280 }
2281 }
2282 EXPORT_SYMBOL_GPL(virtio_break_device);
2283
2284 dma_addr_t virtqueue_get_desc_addr(struct virtqueue *_vq)
2285 {
2286 struct vring_virtqueue *vq = to_vvq(_vq);
2287
2288 BUG_ON(!vq->we_own_ring);
2289
2290 if (vq->packed_ring)
2291 return vq->packed.ring_dma_addr;
2292
2293 return vq->split.queue_dma_addr;
2294 }
2295 EXPORT_SYMBOL_GPL(virtqueue_get_desc_addr);
2296
2297 dma_addr_t virtqueue_get_avail_addr(struct virtqueue *_vq)
2298 {
2299 struct vring_virtqueue *vq = to_vvq(_vq);
2300
2301 BUG_ON(!vq->we_own_ring);
2302
2303 if (vq->packed_ring)
2304 return vq->packed.driver_event_dma_addr;
2305
2306 return vq->split.queue_dma_addr +
2307 ((char *)vq->split.vring.avail - (char *)vq->split.vring.desc);
2308 }
2309 EXPORT_SYMBOL_GPL(virtqueue_get_avail_addr);
2310
2311 dma_addr_t virtqueue_get_used_addr(struct virtqueue *_vq)
2312 {
2313 struct vring_virtqueue *vq = to_vvq(_vq);
2314
2315 BUG_ON(!vq->we_own_ring);
2316
2317 if (vq->packed_ring)
2318 return vq->packed.device_event_dma_addr;
2319
2320 return vq->split.queue_dma_addr +
2321 ((char *)vq->split.vring.used - (char *)vq->split.vring.desc);
2322 }
2323 EXPORT_SYMBOL_GPL(virtqueue_get_used_addr);
2324
2325 /* Only available for split ring */
2326 const struct vring *virtqueue_get_vring(struct virtqueue *vq)
2327 {
2328 return &to_vvq(vq)->split.vring;
2329 }
2330 EXPORT_SYMBOL_GPL(virtqueue_get_vring);
2331
2332 MODULE_LICENSE("GPL");