]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/virtio/virtio_ring.c
Merge branch 'work.mount' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[mirror_ubuntu-bionic-kernel.git] / drivers / virtio / virtio_ring.c
1 /* Virtio ring implementation.
2 *
3 * Copyright 2007 Rusty Russell IBM Corporation
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 */
19 #include <linux/virtio.h>
20 #include <linux/virtio_ring.h>
21 #include <linux/virtio_config.h>
22 #include <linux/device.h>
23 #include <linux/slab.h>
24 #include <linux/module.h>
25 #include <linux/hrtimer.h>
26 #include <linux/kmemleak.h>
27 #include <linux/dma-mapping.h>
28 #include <xen/xen.h>
29
30 #ifdef DEBUG
31 /* For development, we want to crash whenever the ring is screwed. */
32 #define BAD_RING(_vq, fmt, args...) \
33 do { \
34 dev_err(&(_vq)->vq.vdev->dev, \
35 "%s:"fmt, (_vq)->vq.name, ##args); \
36 BUG(); \
37 } while (0)
38 /* Caller is supposed to guarantee no reentry. */
39 #define START_USE(_vq) \
40 do { \
41 if ((_vq)->in_use) \
42 panic("%s:in_use = %i\n", \
43 (_vq)->vq.name, (_vq)->in_use); \
44 (_vq)->in_use = __LINE__; \
45 } while (0)
46 #define END_USE(_vq) \
47 do { BUG_ON(!(_vq)->in_use); (_vq)->in_use = 0; } while(0)
48 #else
49 #define BAD_RING(_vq, fmt, args...) \
50 do { \
51 dev_err(&_vq->vq.vdev->dev, \
52 "%s:"fmt, (_vq)->vq.name, ##args); \
53 (_vq)->broken = true; \
54 } while (0)
55 #define START_USE(vq)
56 #define END_USE(vq)
57 #endif
58
59 struct vring_desc_state {
60 void *data; /* Data for callback. */
61 struct vring_desc *indir_desc; /* Indirect descriptor, if any. */
62 };
63
64 struct vring_virtqueue {
65 struct virtqueue vq;
66
67 /* Actual memory layout for this queue */
68 struct vring vring;
69
70 /* Can we use weak barriers? */
71 bool weak_barriers;
72
73 /* Other side has made a mess, don't try any more. */
74 bool broken;
75
76 /* Host supports indirect buffers */
77 bool indirect;
78
79 /* Host publishes avail event idx */
80 bool event;
81
82 /* Head of free buffer list. */
83 unsigned int free_head;
84 /* Number we've added since last sync. */
85 unsigned int num_added;
86
87 /* Last used index we've seen. */
88 u16 last_used_idx;
89
90 /* Last written value to avail->flags */
91 u16 avail_flags_shadow;
92
93 /* Last written value to avail->idx in guest byte order */
94 u16 avail_idx_shadow;
95
96 /* How to notify other side. FIXME: commonalize hcalls! */
97 bool (*notify)(struct virtqueue *vq);
98
99 /* DMA, allocation, and size information */
100 bool we_own_ring;
101 size_t queue_size_in_bytes;
102 dma_addr_t queue_dma_addr;
103
104 #ifdef DEBUG
105 /* They're supposed to lock for us. */
106 unsigned int in_use;
107
108 /* Figure out if their kicks are too delayed. */
109 bool last_add_time_valid;
110 ktime_t last_add_time;
111 #endif
112
113 /* Per-descriptor state. */
114 struct vring_desc_state desc_state[];
115 };
116
117 #define to_vvq(_vq) container_of(_vq, struct vring_virtqueue, vq)
118
119 /*
120 * Modern virtio devices have feature bits to specify whether they need a
121 * quirk and bypass the IOMMU. If not there, just use the DMA API.
122 *
123 * If there, the interaction between virtio and DMA API is messy.
124 *
125 * On most systems with virtio, physical addresses match bus addresses,
126 * and it doesn't particularly matter whether we use the DMA API.
127 *
128 * On some systems, including Xen and any system with a physical device
129 * that speaks virtio behind a physical IOMMU, we must use the DMA API
130 * for virtio DMA to work at all.
131 *
132 * On other systems, including SPARC and PPC64, virtio-pci devices are
133 * enumerated as though they are behind an IOMMU, but the virtio host
134 * ignores the IOMMU, so we must either pretend that the IOMMU isn't
135 * there or somehow map everything as the identity.
136 *
137 * For the time being, we preserve historic behavior and bypass the DMA
138 * API.
139 *
140 * TODO: install a per-device DMA ops structure that does the right thing
141 * taking into account all the above quirks, and use the DMA API
142 * unconditionally on data path.
143 */
144
145 static bool vring_use_dma_api(struct virtio_device *vdev)
146 {
147 if (!virtio_has_iommu_quirk(vdev))
148 return true;
149
150 /* Otherwise, we are left to guess. */
151 /*
152 * In theory, it's possible to have a buggy QEMU-supposed
153 * emulated Q35 IOMMU and Xen enabled at the same time. On
154 * such a configuration, virtio has never worked and will
155 * not work without an even larger kludge. Instead, enable
156 * the DMA API if we're a Xen guest, which at least allows
157 * all of the sensible Xen configurations to work correctly.
158 */
159 if (xen_domain())
160 return true;
161
162 return false;
163 }
164
165 /*
166 * The DMA ops on various arches are rather gnarly right now, and
167 * making all of the arch DMA ops work on the vring device itself
168 * is a mess. For now, we use the parent device for DMA ops.
169 */
170 static inline struct device *vring_dma_dev(const struct vring_virtqueue *vq)
171 {
172 return vq->vq.vdev->dev.parent;
173 }
174
175 /* Map one sg entry. */
176 static dma_addr_t vring_map_one_sg(const struct vring_virtqueue *vq,
177 struct scatterlist *sg,
178 enum dma_data_direction direction)
179 {
180 if (!vring_use_dma_api(vq->vq.vdev))
181 return (dma_addr_t)sg_phys(sg);
182
183 /*
184 * We can't use dma_map_sg, because we don't use scatterlists in
185 * the way it expects (we don't guarantee that the scatterlist
186 * will exist for the lifetime of the mapping).
187 */
188 return dma_map_page(vring_dma_dev(vq),
189 sg_page(sg), sg->offset, sg->length,
190 direction);
191 }
192
193 static dma_addr_t vring_map_single(const struct vring_virtqueue *vq,
194 void *cpu_addr, size_t size,
195 enum dma_data_direction direction)
196 {
197 if (!vring_use_dma_api(vq->vq.vdev))
198 return (dma_addr_t)virt_to_phys(cpu_addr);
199
200 return dma_map_single(vring_dma_dev(vq),
201 cpu_addr, size, direction);
202 }
203
204 static void vring_unmap_one(const struct vring_virtqueue *vq,
205 struct vring_desc *desc)
206 {
207 u16 flags;
208
209 if (!vring_use_dma_api(vq->vq.vdev))
210 return;
211
212 flags = virtio16_to_cpu(vq->vq.vdev, desc->flags);
213
214 if (flags & VRING_DESC_F_INDIRECT) {
215 dma_unmap_single(vring_dma_dev(vq),
216 virtio64_to_cpu(vq->vq.vdev, desc->addr),
217 virtio32_to_cpu(vq->vq.vdev, desc->len),
218 (flags & VRING_DESC_F_WRITE) ?
219 DMA_FROM_DEVICE : DMA_TO_DEVICE);
220 } else {
221 dma_unmap_page(vring_dma_dev(vq),
222 virtio64_to_cpu(vq->vq.vdev, desc->addr),
223 virtio32_to_cpu(vq->vq.vdev, desc->len),
224 (flags & VRING_DESC_F_WRITE) ?
225 DMA_FROM_DEVICE : DMA_TO_DEVICE);
226 }
227 }
228
229 static int vring_mapping_error(const struct vring_virtqueue *vq,
230 dma_addr_t addr)
231 {
232 if (!vring_use_dma_api(vq->vq.vdev))
233 return 0;
234
235 return dma_mapping_error(vring_dma_dev(vq), addr);
236 }
237
238 static struct vring_desc *alloc_indirect(struct virtqueue *_vq,
239 unsigned int total_sg, gfp_t gfp)
240 {
241 struct vring_desc *desc;
242 unsigned int i;
243
244 /*
245 * We require lowmem mappings for the descriptors because
246 * otherwise virt_to_phys will give us bogus addresses in the
247 * virtqueue.
248 */
249 gfp &= ~__GFP_HIGHMEM;
250
251 desc = kmalloc(total_sg * sizeof(struct vring_desc), gfp);
252 if (!desc)
253 return NULL;
254
255 for (i = 0; i < total_sg; i++)
256 desc[i].next = cpu_to_virtio16(_vq->vdev, i + 1);
257 return desc;
258 }
259
260 static inline int virtqueue_add(struct virtqueue *_vq,
261 struct scatterlist *sgs[],
262 unsigned int total_sg,
263 unsigned int out_sgs,
264 unsigned int in_sgs,
265 void *data,
266 void *ctx,
267 gfp_t gfp)
268 {
269 struct vring_virtqueue *vq = to_vvq(_vq);
270 struct scatterlist *sg;
271 struct vring_desc *desc;
272 unsigned int i, n, avail, descs_used, uninitialized_var(prev), err_idx;
273 int head;
274 bool indirect;
275
276 START_USE(vq);
277
278 BUG_ON(data == NULL);
279 BUG_ON(ctx && vq->indirect);
280
281 if (unlikely(vq->broken)) {
282 END_USE(vq);
283 return -EIO;
284 }
285
286 #ifdef DEBUG
287 {
288 ktime_t now = ktime_get();
289
290 /* No kick or get, with .1 second between? Warn. */
291 if (vq->last_add_time_valid)
292 WARN_ON(ktime_to_ms(ktime_sub(now, vq->last_add_time))
293 > 100);
294 vq->last_add_time = now;
295 vq->last_add_time_valid = true;
296 }
297 #endif
298
299 BUG_ON(total_sg == 0);
300
301 head = vq->free_head;
302
303 /* If the host supports indirect descriptor tables, and we have multiple
304 * buffers, then go indirect. FIXME: tune this threshold */
305 if (vq->indirect && total_sg > 1 && vq->vq.num_free)
306 desc = alloc_indirect(_vq, total_sg, gfp);
307 else {
308 desc = NULL;
309 WARN_ON_ONCE(total_sg > vq->vring.num && !vq->indirect);
310 }
311
312 if (desc) {
313 /* Use a single buffer which doesn't continue */
314 indirect = true;
315 /* Set up rest to use this indirect table. */
316 i = 0;
317 descs_used = 1;
318 } else {
319 indirect = false;
320 desc = vq->vring.desc;
321 i = head;
322 descs_used = total_sg;
323 }
324
325 if (vq->vq.num_free < descs_used) {
326 pr_debug("Can't add buf len %i - avail = %i\n",
327 descs_used, vq->vq.num_free);
328 /* FIXME: for historical reasons, we force a notify here if
329 * there are outgoing parts to the buffer. Presumably the
330 * host should service the ring ASAP. */
331 if (out_sgs)
332 vq->notify(&vq->vq);
333 if (indirect)
334 kfree(desc);
335 END_USE(vq);
336 return -ENOSPC;
337 }
338
339 for (n = 0; n < out_sgs; n++) {
340 for (sg = sgs[n]; sg; sg = sg_next(sg)) {
341 dma_addr_t addr = vring_map_one_sg(vq, sg, DMA_TO_DEVICE);
342 if (vring_mapping_error(vq, addr))
343 goto unmap_release;
344
345 desc[i].flags = cpu_to_virtio16(_vq->vdev, VRING_DESC_F_NEXT);
346 desc[i].addr = cpu_to_virtio64(_vq->vdev, addr);
347 desc[i].len = cpu_to_virtio32(_vq->vdev, sg->length);
348 prev = i;
349 i = virtio16_to_cpu(_vq->vdev, desc[i].next);
350 }
351 }
352 for (; n < (out_sgs + in_sgs); n++) {
353 for (sg = sgs[n]; sg; sg = sg_next(sg)) {
354 dma_addr_t addr = vring_map_one_sg(vq, sg, DMA_FROM_DEVICE);
355 if (vring_mapping_error(vq, addr))
356 goto unmap_release;
357
358 desc[i].flags = cpu_to_virtio16(_vq->vdev, VRING_DESC_F_NEXT | VRING_DESC_F_WRITE);
359 desc[i].addr = cpu_to_virtio64(_vq->vdev, addr);
360 desc[i].len = cpu_to_virtio32(_vq->vdev, sg->length);
361 prev = i;
362 i = virtio16_to_cpu(_vq->vdev, desc[i].next);
363 }
364 }
365 /* Last one doesn't continue. */
366 desc[prev].flags &= cpu_to_virtio16(_vq->vdev, ~VRING_DESC_F_NEXT);
367
368 if (indirect) {
369 /* Now that the indirect table is filled in, map it. */
370 dma_addr_t addr = vring_map_single(
371 vq, desc, total_sg * sizeof(struct vring_desc),
372 DMA_TO_DEVICE);
373 if (vring_mapping_error(vq, addr))
374 goto unmap_release;
375
376 vq->vring.desc[head].flags = cpu_to_virtio16(_vq->vdev, VRING_DESC_F_INDIRECT);
377 vq->vring.desc[head].addr = cpu_to_virtio64(_vq->vdev, addr);
378
379 vq->vring.desc[head].len = cpu_to_virtio32(_vq->vdev, total_sg * sizeof(struct vring_desc));
380 }
381
382 /* We're using some buffers from the free list. */
383 vq->vq.num_free -= descs_used;
384
385 /* Update free pointer */
386 if (indirect)
387 vq->free_head = virtio16_to_cpu(_vq->vdev, vq->vring.desc[head].next);
388 else
389 vq->free_head = i;
390
391 /* Store token and indirect buffer state. */
392 vq->desc_state[head].data = data;
393 if (indirect)
394 vq->desc_state[head].indir_desc = desc;
395 else
396 vq->desc_state[head].indir_desc = ctx;
397
398 /* Put entry in available array (but don't update avail->idx until they
399 * do sync). */
400 avail = vq->avail_idx_shadow & (vq->vring.num - 1);
401 vq->vring.avail->ring[avail] = cpu_to_virtio16(_vq->vdev, head);
402
403 /* Descriptors and available array need to be set before we expose the
404 * new available array entries. */
405 virtio_wmb(vq->weak_barriers);
406 vq->avail_idx_shadow++;
407 vq->vring.avail->idx = cpu_to_virtio16(_vq->vdev, vq->avail_idx_shadow);
408 vq->num_added++;
409
410 pr_debug("Added buffer head %i to %p\n", head, vq);
411 END_USE(vq);
412
413 /* This is very unlikely, but theoretically possible. Kick
414 * just in case. */
415 if (unlikely(vq->num_added == (1 << 16) - 1))
416 virtqueue_kick(_vq);
417
418 return 0;
419
420 unmap_release:
421 err_idx = i;
422 i = head;
423
424 for (n = 0; n < total_sg; n++) {
425 if (i == err_idx)
426 break;
427 vring_unmap_one(vq, &desc[i]);
428 i = virtio16_to_cpu(_vq->vdev, vq->vring.desc[i].next);
429 }
430
431 vq->vq.num_free += total_sg;
432
433 if (indirect)
434 kfree(desc);
435
436 END_USE(vq);
437 return -EIO;
438 }
439
440 /**
441 * virtqueue_add_sgs - expose buffers to other end
442 * @vq: the struct virtqueue we're talking about.
443 * @sgs: array of terminated scatterlists.
444 * @out_num: the number of scatterlists readable by other side
445 * @in_num: the number of scatterlists which are writable (after readable ones)
446 * @data: the token identifying the buffer.
447 * @gfp: how to do memory allocations (if necessary).
448 *
449 * Caller must ensure we don't call this with other virtqueue operations
450 * at the same time (except where noted).
451 *
452 * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
453 */
454 int virtqueue_add_sgs(struct virtqueue *_vq,
455 struct scatterlist *sgs[],
456 unsigned int out_sgs,
457 unsigned int in_sgs,
458 void *data,
459 gfp_t gfp)
460 {
461 unsigned int i, total_sg = 0;
462
463 /* Count them first. */
464 for (i = 0; i < out_sgs + in_sgs; i++) {
465 struct scatterlist *sg;
466 for (sg = sgs[i]; sg; sg = sg_next(sg))
467 total_sg++;
468 }
469 return virtqueue_add(_vq, sgs, total_sg, out_sgs, in_sgs,
470 data, NULL, gfp);
471 }
472 EXPORT_SYMBOL_GPL(virtqueue_add_sgs);
473
474 /**
475 * virtqueue_add_outbuf - expose output buffers to other end
476 * @vq: the struct virtqueue we're talking about.
477 * @sg: scatterlist (must be well-formed and terminated!)
478 * @num: the number of entries in @sg readable by other side
479 * @data: the token identifying the buffer.
480 * @gfp: how to do memory allocations (if necessary).
481 *
482 * Caller must ensure we don't call this with other virtqueue operations
483 * at the same time (except where noted).
484 *
485 * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
486 */
487 int virtqueue_add_outbuf(struct virtqueue *vq,
488 struct scatterlist *sg, unsigned int num,
489 void *data,
490 gfp_t gfp)
491 {
492 return virtqueue_add(vq, &sg, num, 1, 0, data, NULL, gfp);
493 }
494 EXPORT_SYMBOL_GPL(virtqueue_add_outbuf);
495
496 /**
497 * virtqueue_add_inbuf - expose input buffers to other end
498 * @vq: the struct virtqueue we're talking about.
499 * @sg: scatterlist (must be well-formed and terminated!)
500 * @num: the number of entries in @sg writable by other side
501 * @data: the token identifying the buffer.
502 * @gfp: how to do memory allocations (if necessary).
503 *
504 * Caller must ensure we don't call this with other virtqueue operations
505 * at the same time (except where noted).
506 *
507 * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
508 */
509 int virtqueue_add_inbuf(struct virtqueue *vq,
510 struct scatterlist *sg, unsigned int num,
511 void *data,
512 gfp_t gfp)
513 {
514 return virtqueue_add(vq, &sg, num, 0, 1, data, NULL, gfp);
515 }
516 EXPORT_SYMBOL_GPL(virtqueue_add_inbuf);
517
518 /**
519 * virtqueue_add_inbuf_ctx - expose input buffers to other end
520 * @vq: the struct virtqueue we're talking about.
521 * @sg: scatterlist (must be well-formed and terminated!)
522 * @num: the number of entries in @sg writable by other side
523 * @data: the token identifying the buffer.
524 * @ctx: extra context for the token
525 * @gfp: how to do memory allocations (if necessary).
526 *
527 * Caller must ensure we don't call this with other virtqueue operations
528 * at the same time (except where noted).
529 *
530 * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
531 */
532 int virtqueue_add_inbuf_ctx(struct virtqueue *vq,
533 struct scatterlist *sg, unsigned int num,
534 void *data,
535 void *ctx,
536 gfp_t gfp)
537 {
538 return virtqueue_add(vq, &sg, num, 0, 1, data, ctx, gfp);
539 }
540 EXPORT_SYMBOL_GPL(virtqueue_add_inbuf_ctx);
541
542 /**
543 * virtqueue_kick_prepare - first half of split virtqueue_kick call.
544 * @vq: the struct virtqueue
545 *
546 * Instead of virtqueue_kick(), you can do:
547 * if (virtqueue_kick_prepare(vq))
548 * virtqueue_notify(vq);
549 *
550 * This is sometimes useful because the virtqueue_kick_prepare() needs
551 * to be serialized, but the actual virtqueue_notify() call does not.
552 */
553 bool virtqueue_kick_prepare(struct virtqueue *_vq)
554 {
555 struct vring_virtqueue *vq = to_vvq(_vq);
556 u16 new, old;
557 bool needs_kick;
558
559 START_USE(vq);
560 /* We need to expose available array entries before checking avail
561 * event. */
562 virtio_mb(vq->weak_barriers);
563
564 old = vq->avail_idx_shadow - vq->num_added;
565 new = vq->avail_idx_shadow;
566 vq->num_added = 0;
567
568 #ifdef DEBUG
569 if (vq->last_add_time_valid) {
570 WARN_ON(ktime_to_ms(ktime_sub(ktime_get(),
571 vq->last_add_time)) > 100);
572 }
573 vq->last_add_time_valid = false;
574 #endif
575
576 if (vq->event) {
577 needs_kick = vring_need_event(virtio16_to_cpu(_vq->vdev, vring_avail_event(&vq->vring)),
578 new, old);
579 } else {
580 needs_kick = !(vq->vring.used->flags & cpu_to_virtio16(_vq->vdev, VRING_USED_F_NO_NOTIFY));
581 }
582 END_USE(vq);
583 return needs_kick;
584 }
585 EXPORT_SYMBOL_GPL(virtqueue_kick_prepare);
586
587 /**
588 * virtqueue_notify - second half of split virtqueue_kick call.
589 * @vq: the struct virtqueue
590 *
591 * This does not need to be serialized.
592 *
593 * Returns false if host notify failed or queue is broken, otherwise true.
594 */
595 bool virtqueue_notify(struct virtqueue *_vq)
596 {
597 struct vring_virtqueue *vq = to_vvq(_vq);
598
599 if (unlikely(vq->broken))
600 return false;
601
602 /* Prod other side to tell it about changes. */
603 if (!vq->notify(_vq)) {
604 vq->broken = true;
605 return false;
606 }
607 return true;
608 }
609 EXPORT_SYMBOL_GPL(virtqueue_notify);
610
611 /**
612 * virtqueue_kick - update after add_buf
613 * @vq: the struct virtqueue
614 *
615 * After one or more virtqueue_add_* calls, invoke this to kick
616 * the other side.
617 *
618 * Caller must ensure we don't call this with other virtqueue
619 * operations at the same time (except where noted).
620 *
621 * Returns false if kick failed, otherwise true.
622 */
623 bool virtqueue_kick(struct virtqueue *vq)
624 {
625 if (virtqueue_kick_prepare(vq))
626 return virtqueue_notify(vq);
627 return true;
628 }
629 EXPORT_SYMBOL_GPL(virtqueue_kick);
630
631 static void detach_buf(struct vring_virtqueue *vq, unsigned int head,
632 void **ctx)
633 {
634 unsigned int i, j;
635 __virtio16 nextflag = cpu_to_virtio16(vq->vq.vdev, VRING_DESC_F_NEXT);
636
637 /* Clear data ptr. */
638 vq->desc_state[head].data = NULL;
639
640 /* Put back on free list: unmap first-level descriptors and find end */
641 i = head;
642
643 while (vq->vring.desc[i].flags & nextflag) {
644 vring_unmap_one(vq, &vq->vring.desc[i]);
645 i = virtio16_to_cpu(vq->vq.vdev, vq->vring.desc[i].next);
646 vq->vq.num_free++;
647 }
648
649 vring_unmap_one(vq, &vq->vring.desc[i]);
650 vq->vring.desc[i].next = cpu_to_virtio16(vq->vq.vdev, vq->free_head);
651 vq->free_head = head;
652
653 /* Plus final descriptor */
654 vq->vq.num_free++;
655
656 if (vq->indirect) {
657 struct vring_desc *indir_desc = vq->desc_state[head].indir_desc;
658 u32 len;
659
660 /* Free the indirect table, if any, now that it's unmapped. */
661 if (!indir_desc)
662 return;
663
664 len = virtio32_to_cpu(vq->vq.vdev, vq->vring.desc[head].len);
665
666 BUG_ON(!(vq->vring.desc[head].flags &
667 cpu_to_virtio16(vq->vq.vdev, VRING_DESC_F_INDIRECT)));
668 BUG_ON(len == 0 || len % sizeof(struct vring_desc));
669
670 for (j = 0; j < len / sizeof(struct vring_desc); j++)
671 vring_unmap_one(vq, &indir_desc[j]);
672
673 kfree(indir_desc);
674 vq->desc_state[head].indir_desc = NULL;
675 } else if (ctx) {
676 *ctx = vq->desc_state[head].indir_desc;
677 }
678 }
679
680 static inline bool more_used(const struct vring_virtqueue *vq)
681 {
682 return vq->last_used_idx != virtio16_to_cpu(vq->vq.vdev, vq->vring.used->idx);
683 }
684
685 /**
686 * virtqueue_get_buf - get the next used buffer
687 * @vq: the struct virtqueue we're talking about.
688 * @len: the length written into the buffer
689 *
690 * If the device wrote data into the buffer, @len will be set to the
691 * amount written. This means you don't need to clear the buffer
692 * beforehand to ensure there's no data leakage in the case of short
693 * writes.
694 *
695 * Caller must ensure we don't call this with other virtqueue
696 * operations at the same time (except where noted).
697 *
698 * Returns NULL if there are no used buffers, or the "data" token
699 * handed to virtqueue_add_*().
700 */
701 void *virtqueue_get_buf_ctx(struct virtqueue *_vq, unsigned int *len,
702 void **ctx)
703 {
704 struct vring_virtqueue *vq = to_vvq(_vq);
705 void *ret;
706 unsigned int i;
707 u16 last_used;
708
709 START_USE(vq);
710
711 if (unlikely(vq->broken)) {
712 END_USE(vq);
713 return NULL;
714 }
715
716 if (!more_used(vq)) {
717 pr_debug("No more buffers in queue\n");
718 END_USE(vq);
719 return NULL;
720 }
721
722 /* Only get used array entries after they have been exposed by host. */
723 virtio_rmb(vq->weak_barriers);
724
725 last_used = (vq->last_used_idx & (vq->vring.num - 1));
726 i = virtio32_to_cpu(_vq->vdev, vq->vring.used->ring[last_used].id);
727 *len = virtio32_to_cpu(_vq->vdev, vq->vring.used->ring[last_used].len);
728
729 if (unlikely(i >= vq->vring.num)) {
730 BAD_RING(vq, "id %u out of range\n", i);
731 return NULL;
732 }
733 if (unlikely(!vq->desc_state[i].data)) {
734 BAD_RING(vq, "id %u is not a head!\n", i);
735 return NULL;
736 }
737
738 /* detach_buf clears data, so grab it now. */
739 ret = vq->desc_state[i].data;
740 detach_buf(vq, i, ctx);
741 vq->last_used_idx++;
742 /* If we expect an interrupt for the next entry, tell host
743 * by writing event index and flush out the write before
744 * the read in the next get_buf call. */
745 if (!(vq->avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT))
746 virtio_store_mb(vq->weak_barriers,
747 &vring_used_event(&vq->vring),
748 cpu_to_virtio16(_vq->vdev, vq->last_used_idx));
749
750 #ifdef DEBUG
751 vq->last_add_time_valid = false;
752 #endif
753
754 END_USE(vq);
755 return ret;
756 }
757 EXPORT_SYMBOL_GPL(virtqueue_get_buf_ctx);
758
759 void *virtqueue_get_buf(struct virtqueue *_vq, unsigned int *len)
760 {
761 return virtqueue_get_buf_ctx(_vq, len, NULL);
762 }
763 EXPORT_SYMBOL_GPL(virtqueue_get_buf);
764 /**
765 * virtqueue_disable_cb - disable callbacks
766 * @vq: the struct virtqueue we're talking about.
767 *
768 * Note that this is not necessarily synchronous, hence unreliable and only
769 * useful as an optimization.
770 *
771 * Unlike other operations, this need not be serialized.
772 */
773 void virtqueue_disable_cb(struct virtqueue *_vq)
774 {
775 struct vring_virtqueue *vq = to_vvq(_vq);
776
777 if (!(vq->avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT)) {
778 vq->avail_flags_shadow |= VRING_AVAIL_F_NO_INTERRUPT;
779 if (!vq->event)
780 vq->vring.avail->flags = cpu_to_virtio16(_vq->vdev, vq->avail_flags_shadow);
781 }
782
783 }
784 EXPORT_SYMBOL_GPL(virtqueue_disable_cb);
785
786 /**
787 * virtqueue_enable_cb_prepare - restart callbacks after disable_cb
788 * @vq: the struct virtqueue we're talking about.
789 *
790 * This re-enables callbacks; it returns current queue state
791 * in an opaque unsigned value. This value should be later tested by
792 * virtqueue_poll, to detect a possible race between the driver checking for
793 * more work, and enabling callbacks.
794 *
795 * Caller must ensure we don't call this with other virtqueue
796 * operations at the same time (except where noted).
797 */
798 unsigned virtqueue_enable_cb_prepare(struct virtqueue *_vq)
799 {
800 struct vring_virtqueue *vq = to_vvq(_vq);
801 u16 last_used_idx;
802
803 START_USE(vq);
804
805 /* We optimistically turn back on interrupts, then check if there was
806 * more to do. */
807 /* Depending on the VIRTIO_RING_F_EVENT_IDX feature, we need to
808 * either clear the flags bit or point the event index at the next
809 * entry. Always do both to keep code simple. */
810 if (vq->avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT) {
811 vq->avail_flags_shadow &= ~VRING_AVAIL_F_NO_INTERRUPT;
812 if (!vq->event)
813 vq->vring.avail->flags = cpu_to_virtio16(_vq->vdev, vq->avail_flags_shadow);
814 }
815 vring_used_event(&vq->vring) = cpu_to_virtio16(_vq->vdev, last_used_idx = vq->last_used_idx);
816 END_USE(vq);
817 return last_used_idx;
818 }
819 EXPORT_SYMBOL_GPL(virtqueue_enable_cb_prepare);
820
821 /**
822 * virtqueue_poll - query pending used buffers
823 * @vq: the struct virtqueue we're talking about.
824 * @last_used_idx: virtqueue state (from call to virtqueue_enable_cb_prepare).
825 *
826 * Returns "true" if there are pending used buffers in the queue.
827 *
828 * This does not need to be serialized.
829 */
830 bool virtqueue_poll(struct virtqueue *_vq, unsigned last_used_idx)
831 {
832 struct vring_virtqueue *vq = to_vvq(_vq);
833
834 virtio_mb(vq->weak_barriers);
835 return (u16)last_used_idx != virtio16_to_cpu(_vq->vdev, vq->vring.used->idx);
836 }
837 EXPORT_SYMBOL_GPL(virtqueue_poll);
838
839 /**
840 * virtqueue_enable_cb - restart callbacks after disable_cb.
841 * @vq: the struct virtqueue we're talking about.
842 *
843 * This re-enables callbacks; it returns "false" if there are pending
844 * buffers in the queue, to detect a possible race between the driver
845 * checking for more work, and enabling callbacks.
846 *
847 * Caller must ensure we don't call this with other virtqueue
848 * operations at the same time (except where noted).
849 */
850 bool virtqueue_enable_cb(struct virtqueue *_vq)
851 {
852 unsigned last_used_idx = virtqueue_enable_cb_prepare(_vq);
853 return !virtqueue_poll(_vq, last_used_idx);
854 }
855 EXPORT_SYMBOL_GPL(virtqueue_enable_cb);
856
857 /**
858 * virtqueue_enable_cb_delayed - restart callbacks after disable_cb.
859 * @vq: the struct virtqueue we're talking about.
860 *
861 * This re-enables callbacks but hints to the other side to delay
862 * interrupts until most of the available buffers have been processed;
863 * it returns "false" if there are many pending buffers in the queue,
864 * to detect a possible race between the driver checking for more work,
865 * and enabling callbacks.
866 *
867 * Caller must ensure we don't call this with other virtqueue
868 * operations at the same time (except where noted).
869 */
870 bool virtqueue_enable_cb_delayed(struct virtqueue *_vq)
871 {
872 struct vring_virtqueue *vq = to_vvq(_vq);
873 u16 bufs;
874
875 START_USE(vq);
876
877 /* We optimistically turn back on interrupts, then check if there was
878 * more to do. */
879 /* Depending on the VIRTIO_RING_F_USED_EVENT_IDX feature, we need to
880 * either clear the flags bit or point the event index at the next
881 * entry. Always update the event index to keep code simple. */
882 if (vq->avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT) {
883 vq->avail_flags_shadow &= ~VRING_AVAIL_F_NO_INTERRUPT;
884 if (!vq->event)
885 vq->vring.avail->flags = cpu_to_virtio16(_vq->vdev, vq->avail_flags_shadow);
886 }
887 /* TODO: tune this threshold */
888 bufs = (u16)(vq->avail_idx_shadow - vq->last_used_idx) * 3 / 4;
889
890 virtio_store_mb(vq->weak_barriers,
891 &vring_used_event(&vq->vring),
892 cpu_to_virtio16(_vq->vdev, vq->last_used_idx + bufs));
893
894 if (unlikely((u16)(virtio16_to_cpu(_vq->vdev, vq->vring.used->idx) - vq->last_used_idx) > bufs)) {
895 END_USE(vq);
896 return false;
897 }
898
899 END_USE(vq);
900 return true;
901 }
902 EXPORT_SYMBOL_GPL(virtqueue_enable_cb_delayed);
903
904 /**
905 * virtqueue_detach_unused_buf - detach first unused buffer
906 * @vq: the struct virtqueue we're talking about.
907 *
908 * Returns NULL or the "data" token handed to virtqueue_add_*().
909 * This is not valid on an active queue; it is useful only for device
910 * shutdown.
911 */
912 void *virtqueue_detach_unused_buf(struct virtqueue *_vq)
913 {
914 struct vring_virtqueue *vq = to_vvq(_vq);
915 unsigned int i;
916 void *buf;
917
918 START_USE(vq);
919
920 for (i = 0; i < vq->vring.num; i++) {
921 if (!vq->desc_state[i].data)
922 continue;
923 /* detach_buf clears data, so grab it now. */
924 buf = vq->desc_state[i].data;
925 detach_buf(vq, i, NULL);
926 vq->avail_idx_shadow--;
927 vq->vring.avail->idx = cpu_to_virtio16(_vq->vdev, vq->avail_idx_shadow);
928 END_USE(vq);
929 return buf;
930 }
931 /* That should have freed everything. */
932 BUG_ON(vq->vq.num_free != vq->vring.num);
933
934 END_USE(vq);
935 return NULL;
936 }
937 EXPORT_SYMBOL_GPL(virtqueue_detach_unused_buf);
938
939 irqreturn_t vring_interrupt(int irq, void *_vq)
940 {
941 struct vring_virtqueue *vq = to_vvq(_vq);
942
943 if (!more_used(vq)) {
944 pr_debug("virtqueue interrupt with no work for %p\n", vq);
945 return IRQ_NONE;
946 }
947
948 if (unlikely(vq->broken))
949 return IRQ_HANDLED;
950
951 pr_debug("virtqueue callback for %p (%p)\n", vq, vq->vq.callback);
952 if (vq->vq.callback)
953 vq->vq.callback(&vq->vq);
954
955 return IRQ_HANDLED;
956 }
957 EXPORT_SYMBOL_GPL(vring_interrupt);
958
959 struct virtqueue *__vring_new_virtqueue(unsigned int index,
960 struct vring vring,
961 struct virtio_device *vdev,
962 bool weak_barriers,
963 bool context,
964 bool (*notify)(struct virtqueue *),
965 void (*callback)(struct virtqueue *),
966 const char *name)
967 {
968 unsigned int i;
969 struct vring_virtqueue *vq;
970
971 vq = kmalloc(sizeof(*vq) + vring.num * sizeof(struct vring_desc_state),
972 GFP_KERNEL);
973 if (!vq)
974 return NULL;
975
976 vq->vring = vring;
977 vq->vq.callback = callback;
978 vq->vq.vdev = vdev;
979 vq->vq.name = name;
980 vq->vq.num_free = vring.num;
981 vq->vq.index = index;
982 vq->we_own_ring = false;
983 vq->queue_dma_addr = 0;
984 vq->queue_size_in_bytes = 0;
985 vq->notify = notify;
986 vq->weak_barriers = weak_barriers;
987 vq->broken = false;
988 vq->last_used_idx = 0;
989 vq->avail_flags_shadow = 0;
990 vq->avail_idx_shadow = 0;
991 vq->num_added = 0;
992 list_add_tail(&vq->vq.list, &vdev->vqs);
993 #ifdef DEBUG
994 vq->in_use = false;
995 vq->last_add_time_valid = false;
996 #endif
997
998 vq->indirect = virtio_has_feature(vdev, VIRTIO_RING_F_INDIRECT_DESC) &&
999 !context;
1000 vq->event = virtio_has_feature(vdev, VIRTIO_RING_F_EVENT_IDX);
1001
1002 /* No callback? Tell other side not to bother us. */
1003 if (!callback) {
1004 vq->avail_flags_shadow |= VRING_AVAIL_F_NO_INTERRUPT;
1005 if (!vq->event)
1006 vq->vring.avail->flags = cpu_to_virtio16(vdev, vq->avail_flags_shadow);
1007 }
1008
1009 /* Put everything in free lists. */
1010 vq->free_head = 0;
1011 for (i = 0; i < vring.num-1; i++)
1012 vq->vring.desc[i].next = cpu_to_virtio16(vdev, i + 1);
1013 memset(vq->desc_state, 0, vring.num * sizeof(struct vring_desc_state));
1014
1015 return &vq->vq;
1016 }
1017 EXPORT_SYMBOL_GPL(__vring_new_virtqueue);
1018
1019 static void *vring_alloc_queue(struct virtio_device *vdev, size_t size,
1020 dma_addr_t *dma_handle, gfp_t flag)
1021 {
1022 if (vring_use_dma_api(vdev)) {
1023 return dma_alloc_coherent(vdev->dev.parent, size,
1024 dma_handle, flag);
1025 } else {
1026 void *queue = alloc_pages_exact(PAGE_ALIGN(size), flag);
1027 if (queue) {
1028 phys_addr_t phys_addr = virt_to_phys(queue);
1029 *dma_handle = (dma_addr_t)phys_addr;
1030
1031 /*
1032 * Sanity check: make sure we dind't truncate
1033 * the address. The only arches I can find that
1034 * have 64-bit phys_addr_t but 32-bit dma_addr_t
1035 * are certain non-highmem MIPS and x86
1036 * configurations, but these configurations
1037 * should never allocate physical pages above 32
1038 * bits, so this is fine. Just in case, throw a
1039 * warning and abort if we end up with an
1040 * unrepresentable address.
1041 */
1042 if (WARN_ON_ONCE(*dma_handle != phys_addr)) {
1043 free_pages_exact(queue, PAGE_ALIGN(size));
1044 return NULL;
1045 }
1046 }
1047 return queue;
1048 }
1049 }
1050
1051 static void vring_free_queue(struct virtio_device *vdev, size_t size,
1052 void *queue, dma_addr_t dma_handle)
1053 {
1054 if (vring_use_dma_api(vdev)) {
1055 dma_free_coherent(vdev->dev.parent, size, queue, dma_handle);
1056 } else {
1057 free_pages_exact(queue, PAGE_ALIGN(size));
1058 }
1059 }
1060
1061 struct virtqueue *vring_create_virtqueue(
1062 unsigned int index,
1063 unsigned int num,
1064 unsigned int vring_align,
1065 struct virtio_device *vdev,
1066 bool weak_barriers,
1067 bool may_reduce_num,
1068 bool context,
1069 bool (*notify)(struct virtqueue *),
1070 void (*callback)(struct virtqueue *),
1071 const char *name)
1072 {
1073 struct virtqueue *vq;
1074 void *queue = NULL;
1075 dma_addr_t dma_addr;
1076 size_t queue_size_in_bytes;
1077 struct vring vring;
1078
1079 /* We assume num is a power of 2. */
1080 if (num & (num - 1)) {
1081 dev_warn(&vdev->dev, "Bad virtqueue length %u\n", num);
1082 return NULL;
1083 }
1084
1085 /* TODO: allocate each queue chunk individually */
1086 for (; num && vring_size(num, vring_align) > PAGE_SIZE; num /= 2) {
1087 queue = vring_alloc_queue(vdev, vring_size(num, vring_align),
1088 &dma_addr,
1089 GFP_KERNEL|__GFP_NOWARN|__GFP_ZERO);
1090 if (queue)
1091 break;
1092 }
1093
1094 if (!num)
1095 return NULL;
1096
1097 if (!queue) {
1098 /* Try to get a single page. You are my only hope! */
1099 queue = vring_alloc_queue(vdev, vring_size(num, vring_align),
1100 &dma_addr, GFP_KERNEL|__GFP_ZERO);
1101 }
1102 if (!queue)
1103 return NULL;
1104
1105 queue_size_in_bytes = vring_size(num, vring_align);
1106 vring_init(&vring, num, queue, vring_align);
1107
1108 vq = __vring_new_virtqueue(index, vring, vdev, weak_barriers, context,
1109 notify, callback, name);
1110 if (!vq) {
1111 vring_free_queue(vdev, queue_size_in_bytes, queue,
1112 dma_addr);
1113 return NULL;
1114 }
1115
1116 to_vvq(vq)->queue_dma_addr = dma_addr;
1117 to_vvq(vq)->queue_size_in_bytes = queue_size_in_bytes;
1118 to_vvq(vq)->we_own_ring = true;
1119
1120 return vq;
1121 }
1122 EXPORT_SYMBOL_GPL(vring_create_virtqueue);
1123
1124 struct virtqueue *vring_new_virtqueue(unsigned int index,
1125 unsigned int num,
1126 unsigned int vring_align,
1127 struct virtio_device *vdev,
1128 bool weak_barriers,
1129 bool context,
1130 void *pages,
1131 bool (*notify)(struct virtqueue *vq),
1132 void (*callback)(struct virtqueue *vq),
1133 const char *name)
1134 {
1135 struct vring vring;
1136 vring_init(&vring, num, pages, vring_align);
1137 return __vring_new_virtqueue(index, vring, vdev, weak_barriers, context,
1138 notify, callback, name);
1139 }
1140 EXPORT_SYMBOL_GPL(vring_new_virtqueue);
1141
1142 void vring_del_virtqueue(struct virtqueue *_vq)
1143 {
1144 struct vring_virtqueue *vq = to_vvq(_vq);
1145
1146 if (vq->we_own_ring) {
1147 vring_free_queue(vq->vq.vdev, vq->queue_size_in_bytes,
1148 vq->vring.desc, vq->queue_dma_addr);
1149 }
1150 list_del(&_vq->list);
1151 kfree(vq);
1152 }
1153 EXPORT_SYMBOL_GPL(vring_del_virtqueue);
1154
1155 /* Manipulates transport-specific feature bits. */
1156 void vring_transport_features(struct virtio_device *vdev)
1157 {
1158 unsigned int i;
1159
1160 for (i = VIRTIO_TRANSPORT_F_START; i < VIRTIO_TRANSPORT_F_END; i++) {
1161 switch (i) {
1162 case VIRTIO_RING_F_INDIRECT_DESC:
1163 break;
1164 case VIRTIO_RING_F_EVENT_IDX:
1165 break;
1166 case VIRTIO_F_VERSION_1:
1167 break;
1168 case VIRTIO_F_IOMMU_PLATFORM:
1169 break;
1170 default:
1171 /* We don't understand this bit. */
1172 __virtio_clear_bit(vdev, i);
1173 }
1174 }
1175 }
1176 EXPORT_SYMBOL_GPL(vring_transport_features);
1177
1178 /**
1179 * virtqueue_get_vring_size - return the size of the virtqueue's vring
1180 * @vq: the struct virtqueue containing the vring of interest.
1181 *
1182 * Returns the size of the vring. This is mainly used for boasting to
1183 * userspace. Unlike other operations, this need not be serialized.
1184 */
1185 unsigned int virtqueue_get_vring_size(struct virtqueue *_vq)
1186 {
1187
1188 struct vring_virtqueue *vq = to_vvq(_vq);
1189
1190 return vq->vring.num;
1191 }
1192 EXPORT_SYMBOL_GPL(virtqueue_get_vring_size);
1193
1194 bool virtqueue_is_broken(struct virtqueue *_vq)
1195 {
1196 struct vring_virtqueue *vq = to_vvq(_vq);
1197
1198 return vq->broken;
1199 }
1200 EXPORT_SYMBOL_GPL(virtqueue_is_broken);
1201
1202 /*
1203 * This should prevent the device from being used, allowing drivers to
1204 * recover. You may need to grab appropriate locks to flush.
1205 */
1206 void virtio_break_device(struct virtio_device *dev)
1207 {
1208 struct virtqueue *_vq;
1209
1210 list_for_each_entry(_vq, &dev->vqs, list) {
1211 struct vring_virtqueue *vq = to_vvq(_vq);
1212 vq->broken = true;
1213 }
1214 }
1215 EXPORT_SYMBOL_GPL(virtio_break_device);
1216
1217 dma_addr_t virtqueue_get_desc_addr(struct virtqueue *_vq)
1218 {
1219 struct vring_virtqueue *vq = to_vvq(_vq);
1220
1221 BUG_ON(!vq->we_own_ring);
1222
1223 return vq->queue_dma_addr;
1224 }
1225 EXPORT_SYMBOL_GPL(virtqueue_get_desc_addr);
1226
1227 dma_addr_t virtqueue_get_avail_addr(struct virtqueue *_vq)
1228 {
1229 struct vring_virtqueue *vq = to_vvq(_vq);
1230
1231 BUG_ON(!vq->we_own_ring);
1232
1233 return vq->queue_dma_addr +
1234 ((char *)vq->vring.avail - (char *)vq->vring.desc);
1235 }
1236 EXPORT_SYMBOL_GPL(virtqueue_get_avail_addr);
1237
1238 dma_addr_t virtqueue_get_used_addr(struct virtqueue *_vq)
1239 {
1240 struct vring_virtqueue *vq = to_vvq(_vq);
1241
1242 BUG_ON(!vq->we_own_ring);
1243
1244 return vq->queue_dma_addr +
1245 ((char *)vq->vring.used - (char *)vq->vring.desc);
1246 }
1247 EXPORT_SYMBOL_GPL(virtqueue_get_used_addr);
1248
1249 const struct vring *virtqueue_get_vring(struct virtqueue *vq)
1250 {
1251 return &to_vvq(vq)->vring;
1252 }
1253 EXPORT_SYMBOL_GPL(virtqueue_get_vring);
1254
1255 MODULE_LICENSE("GPL");