]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/vme/vme.c
Merge tag 'iio-fixes-for-4.11b' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-artful-kernel.git] / drivers / vme / vme.c
1 /*
2 * VME Bridge Framework
3 *
4 * Author: Martyn Welch <martyn.welch@ge.com>
5 * Copyright 2008 GE Intelligent Platforms Embedded Systems, Inc.
6 *
7 * Based on work by Tom Armistead and Ajit Prem
8 * Copyright 2004 Motorola Inc.
9 *
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or (at your
13 * option) any later version.
14 */
15
16 #include <linux/init.h>
17 #include <linux/export.h>
18 #include <linux/mm.h>
19 #include <linux/types.h>
20 #include <linux/kernel.h>
21 #include <linux/errno.h>
22 #include <linux/pci.h>
23 #include <linux/poll.h>
24 #include <linux/highmem.h>
25 #include <linux/interrupt.h>
26 #include <linux/pagemap.h>
27 #include <linux/device.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/syscalls.h>
30 #include <linux/mutex.h>
31 #include <linux/spinlock.h>
32 #include <linux/slab.h>
33 #include <linux/vme.h>
34
35 #include "vme_bridge.h"
36
37 /* Bitmask and list of registered buses both protected by common mutex */
38 static unsigned int vme_bus_numbers;
39 static LIST_HEAD(vme_bus_list);
40 static DEFINE_MUTEX(vme_buses_lock);
41
42 static int __init vme_init(void);
43
44 static struct vme_dev *dev_to_vme_dev(struct device *dev)
45 {
46 return container_of(dev, struct vme_dev, dev);
47 }
48
49 /*
50 * Find the bridge that the resource is associated with.
51 */
52 static struct vme_bridge *find_bridge(struct vme_resource *resource)
53 {
54 /* Get list to search */
55 switch (resource->type) {
56 case VME_MASTER:
57 return list_entry(resource->entry, struct vme_master_resource,
58 list)->parent;
59 break;
60 case VME_SLAVE:
61 return list_entry(resource->entry, struct vme_slave_resource,
62 list)->parent;
63 break;
64 case VME_DMA:
65 return list_entry(resource->entry, struct vme_dma_resource,
66 list)->parent;
67 break;
68 case VME_LM:
69 return list_entry(resource->entry, struct vme_lm_resource,
70 list)->parent;
71 break;
72 default:
73 printk(KERN_ERR "Unknown resource type\n");
74 return NULL;
75 break;
76 }
77 }
78
79 /*
80 * Allocate a contiguous block of memory for use by the driver. This is used to
81 * create the buffers for the slave windows.
82 */
83 void *vme_alloc_consistent(struct vme_resource *resource, size_t size,
84 dma_addr_t *dma)
85 {
86 struct vme_bridge *bridge;
87
88 if (resource == NULL) {
89 printk(KERN_ERR "No resource\n");
90 return NULL;
91 }
92
93 bridge = find_bridge(resource);
94 if (bridge == NULL) {
95 printk(KERN_ERR "Can't find bridge\n");
96 return NULL;
97 }
98
99 if (bridge->parent == NULL) {
100 printk(KERN_ERR "Dev entry NULL for bridge %s\n", bridge->name);
101 return NULL;
102 }
103
104 if (bridge->alloc_consistent == NULL) {
105 printk(KERN_ERR "alloc_consistent not supported by bridge %s\n",
106 bridge->name);
107 return NULL;
108 }
109
110 return bridge->alloc_consistent(bridge->parent, size, dma);
111 }
112 EXPORT_SYMBOL(vme_alloc_consistent);
113
114 /*
115 * Free previously allocated contiguous block of memory.
116 */
117 void vme_free_consistent(struct vme_resource *resource, size_t size,
118 void *vaddr, dma_addr_t dma)
119 {
120 struct vme_bridge *bridge;
121
122 if (resource == NULL) {
123 printk(KERN_ERR "No resource\n");
124 return;
125 }
126
127 bridge = find_bridge(resource);
128 if (bridge == NULL) {
129 printk(KERN_ERR "Can't find bridge\n");
130 return;
131 }
132
133 if (bridge->parent == NULL) {
134 printk(KERN_ERR "Dev entry NULL for bridge %s\n", bridge->name);
135 return;
136 }
137
138 if (bridge->free_consistent == NULL) {
139 printk(KERN_ERR "free_consistent not supported by bridge %s\n",
140 bridge->name);
141 return;
142 }
143
144 bridge->free_consistent(bridge->parent, size, vaddr, dma);
145 }
146 EXPORT_SYMBOL(vme_free_consistent);
147
148 size_t vme_get_size(struct vme_resource *resource)
149 {
150 int enabled, retval;
151 unsigned long long base, size;
152 dma_addr_t buf_base;
153 u32 aspace, cycle, dwidth;
154
155 switch (resource->type) {
156 case VME_MASTER:
157 retval = vme_master_get(resource, &enabled, &base, &size,
158 &aspace, &cycle, &dwidth);
159 if (retval)
160 return 0;
161
162 return size;
163 break;
164 case VME_SLAVE:
165 retval = vme_slave_get(resource, &enabled, &base, &size,
166 &buf_base, &aspace, &cycle);
167 if (retval)
168 return 0;
169
170 return size;
171 break;
172 case VME_DMA:
173 return 0;
174 break;
175 default:
176 printk(KERN_ERR "Unknown resource type\n");
177 return 0;
178 break;
179 }
180 }
181 EXPORT_SYMBOL(vme_get_size);
182
183 int vme_check_window(u32 aspace, unsigned long long vme_base,
184 unsigned long long size)
185 {
186 int retval = 0;
187
188 switch (aspace) {
189 case VME_A16:
190 if (((vme_base + size) > VME_A16_MAX) ||
191 (vme_base > VME_A16_MAX))
192 retval = -EFAULT;
193 break;
194 case VME_A24:
195 if (((vme_base + size) > VME_A24_MAX) ||
196 (vme_base > VME_A24_MAX))
197 retval = -EFAULT;
198 break;
199 case VME_A32:
200 if (((vme_base + size) > VME_A32_MAX) ||
201 (vme_base > VME_A32_MAX))
202 retval = -EFAULT;
203 break;
204 case VME_A64:
205 if ((size != 0) && (vme_base > U64_MAX + 1 - size))
206 retval = -EFAULT;
207 break;
208 case VME_CRCSR:
209 if (((vme_base + size) > VME_CRCSR_MAX) ||
210 (vme_base > VME_CRCSR_MAX))
211 retval = -EFAULT;
212 break;
213 case VME_USER1:
214 case VME_USER2:
215 case VME_USER3:
216 case VME_USER4:
217 /* User Defined */
218 break;
219 default:
220 printk(KERN_ERR "Invalid address space\n");
221 retval = -EINVAL;
222 break;
223 }
224
225 return retval;
226 }
227 EXPORT_SYMBOL(vme_check_window);
228
229 static u32 vme_get_aspace(int am)
230 {
231 switch (am) {
232 case 0x29:
233 case 0x2D:
234 return VME_A16;
235 case 0x38:
236 case 0x39:
237 case 0x3A:
238 case 0x3B:
239 case 0x3C:
240 case 0x3D:
241 case 0x3E:
242 case 0x3F:
243 return VME_A24;
244 case 0x8:
245 case 0x9:
246 case 0xA:
247 case 0xB:
248 case 0xC:
249 case 0xD:
250 case 0xE:
251 case 0xF:
252 return VME_A32;
253 case 0x0:
254 case 0x1:
255 case 0x3:
256 return VME_A64;
257 }
258
259 return 0;
260 }
261
262 /*
263 * Request a slave image with specific attributes, return some unique
264 * identifier.
265 */
266 struct vme_resource *vme_slave_request(struct vme_dev *vdev, u32 address,
267 u32 cycle)
268 {
269 struct vme_bridge *bridge;
270 struct list_head *slave_pos = NULL;
271 struct vme_slave_resource *allocated_image = NULL;
272 struct vme_slave_resource *slave_image = NULL;
273 struct vme_resource *resource = NULL;
274
275 bridge = vdev->bridge;
276 if (bridge == NULL) {
277 printk(KERN_ERR "Can't find VME bus\n");
278 goto err_bus;
279 }
280
281 /* Loop through slave resources */
282 list_for_each(slave_pos, &bridge->slave_resources) {
283 slave_image = list_entry(slave_pos,
284 struct vme_slave_resource, list);
285
286 if (slave_image == NULL) {
287 printk(KERN_ERR "Registered NULL Slave resource\n");
288 continue;
289 }
290
291 /* Find an unlocked and compatible image */
292 mutex_lock(&slave_image->mtx);
293 if (((slave_image->address_attr & address) == address) &&
294 ((slave_image->cycle_attr & cycle) == cycle) &&
295 (slave_image->locked == 0)) {
296
297 slave_image->locked = 1;
298 mutex_unlock(&slave_image->mtx);
299 allocated_image = slave_image;
300 break;
301 }
302 mutex_unlock(&slave_image->mtx);
303 }
304
305 /* No free image */
306 if (allocated_image == NULL)
307 goto err_image;
308
309 resource = kmalloc(sizeof(struct vme_resource), GFP_KERNEL);
310 if (resource == NULL) {
311 printk(KERN_WARNING "Unable to allocate resource structure\n");
312 goto err_alloc;
313 }
314 resource->type = VME_SLAVE;
315 resource->entry = &allocated_image->list;
316
317 return resource;
318
319 err_alloc:
320 /* Unlock image */
321 mutex_lock(&slave_image->mtx);
322 slave_image->locked = 0;
323 mutex_unlock(&slave_image->mtx);
324 err_image:
325 err_bus:
326 return NULL;
327 }
328 EXPORT_SYMBOL(vme_slave_request);
329
330 int vme_slave_set(struct vme_resource *resource, int enabled,
331 unsigned long long vme_base, unsigned long long size,
332 dma_addr_t buf_base, u32 aspace, u32 cycle)
333 {
334 struct vme_bridge *bridge = find_bridge(resource);
335 struct vme_slave_resource *image;
336 int retval;
337
338 if (resource->type != VME_SLAVE) {
339 printk(KERN_ERR "Not a slave resource\n");
340 return -EINVAL;
341 }
342
343 image = list_entry(resource->entry, struct vme_slave_resource, list);
344
345 if (bridge->slave_set == NULL) {
346 printk(KERN_ERR "Function not supported\n");
347 return -ENOSYS;
348 }
349
350 if (!(((image->address_attr & aspace) == aspace) &&
351 ((image->cycle_attr & cycle) == cycle))) {
352 printk(KERN_ERR "Invalid attributes\n");
353 return -EINVAL;
354 }
355
356 retval = vme_check_window(aspace, vme_base, size);
357 if (retval)
358 return retval;
359
360 return bridge->slave_set(image, enabled, vme_base, size, buf_base,
361 aspace, cycle);
362 }
363 EXPORT_SYMBOL(vme_slave_set);
364
365 int vme_slave_get(struct vme_resource *resource, int *enabled,
366 unsigned long long *vme_base, unsigned long long *size,
367 dma_addr_t *buf_base, u32 *aspace, u32 *cycle)
368 {
369 struct vme_bridge *bridge = find_bridge(resource);
370 struct vme_slave_resource *image;
371
372 if (resource->type != VME_SLAVE) {
373 printk(KERN_ERR "Not a slave resource\n");
374 return -EINVAL;
375 }
376
377 image = list_entry(resource->entry, struct vme_slave_resource, list);
378
379 if (bridge->slave_get == NULL) {
380 printk(KERN_ERR "vme_slave_get not supported\n");
381 return -EINVAL;
382 }
383
384 return bridge->slave_get(image, enabled, vme_base, size, buf_base,
385 aspace, cycle);
386 }
387 EXPORT_SYMBOL(vme_slave_get);
388
389 void vme_slave_free(struct vme_resource *resource)
390 {
391 struct vme_slave_resource *slave_image;
392
393 if (resource->type != VME_SLAVE) {
394 printk(KERN_ERR "Not a slave resource\n");
395 return;
396 }
397
398 slave_image = list_entry(resource->entry, struct vme_slave_resource,
399 list);
400 if (slave_image == NULL) {
401 printk(KERN_ERR "Can't find slave resource\n");
402 return;
403 }
404
405 /* Unlock image */
406 mutex_lock(&slave_image->mtx);
407 if (slave_image->locked == 0)
408 printk(KERN_ERR "Image is already free\n");
409
410 slave_image->locked = 0;
411 mutex_unlock(&slave_image->mtx);
412
413 /* Free up resource memory */
414 kfree(resource);
415 }
416 EXPORT_SYMBOL(vme_slave_free);
417
418 /*
419 * Request a master image with specific attributes, return some unique
420 * identifier.
421 */
422 struct vme_resource *vme_master_request(struct vme_dev *vdev, u32 address,
423 u32 cycle, u32 dwidth)
424 {
425 struct vme_bridge *bridge;
426 struct list_head *master_pos = NULL;
427 struct vme_master_resource *allocated_image = NULL;
428 struct vme_master_resource *master_image = NULL;
429 struct vme_resource *resource = NULL;
430
431 bridge = vdev->bridge;
432 if (bridge == NULL) {
433 printk(KERN_ERR "Can't find VME bus\n");
434 goto err_bus;
435 }
436
437 /* Loop through master resources */
438 list_for_each(master_pos, &bridge->master_resources) {
439 master_image = list_entry(master_pos,
440 struct vme_master_resource, list);
441
442 if (master_image == NULL) {
443 printk(KERN_WARNING "Registered NULL master resource\n");
444 continue;
445 }
446
447 /* Find an unlocked and compatible image */
448 spin_lock(&master_image->lock);
449 if (((master_image->address_attr & address) == address) &&
450 ((master_image->cycle_attr & cycle) == cycle) &&
451 ((master_image->width_attr & dwidth) == dwidth) &&
452 (master_image->locked == 0)) {
453
454 master_image->locked = 1;
455 spin_unlock(&master_image->lock);
456 allocated_image = master_image;
457 break;
458 }
459 spin_unlock(&master_image->lock);
460 }
461
462 /* Check to see if we found a resource */
463 if (allocated_image == NULL) {
464 printk(KERN_ERR "Can't find a suitable resource\n");
465 goto err_image;
466 }
467
468 resource = kmalloc(sizeof(struct vme_resource), GFP_KERNEL);
469 if (resource == NULL) {
470 printk(KERN_ERR "Unable to allocate resource structure\n");
471 goto err_alloc;
472 }
473 resource->type = VME_MASTER;
474 resource->entry = &allocated_image->list;
475
476 return resource;
477
478 err_alloc:
479 /* Unlock image */
480 spin_lock(&master_image->lock);
481 master_image->locked = 0;
482 spin_unlock(&master_image->lock);
483 err_image:
484 err_bus:
485 return NULL;
486 }
487 EXPORT_SYMBOL(vme_master_request);
488
489 int vme_master_set(struct vme_resource *resource, int enabled,
490 unsigned long long vme_base, unsigned long long size, u32 aspace,
491 u32 cycle, u32 dwidth)
492 {
493 struct vme_bridge *bridge = find_bridge(resource);
494 struct vme_master_resource *image;
495 int retval;
496
497 if (resource->type != VME_MASTER) {
498 printk(KERN_ERR "Not a master resource\n");
499 return -EINVAL;
500 }
501
502 image = list_entry(resource->entry, struct vme_master_resource, list);
503
504 if (bridge->master_set == NULL) {
505 printk(KERN_WARNING "vme_master_set not supported\n");
506 return -EINVAL;
507 }
508
509 if (!(((image->address_attr & aspace) == aspace) &&
510 ((image->cycle_attr & cycle) == cycle) &&
511 ((image->width_attr & dwidth) == dwidth))) {
512 printk(KERN_WARNING "Invalid attributes\n");
513 return -EINVAL;
514 }
515
516 retval = vme_check_window(aspace, vme_base, size);
517 if (retval)
518 return retval;
519
520 return bridge->master_set(image, enabled, vme_base, size, aspace,
521 cycle, dwidth);
522 }
523 EXPORT_SYMBOL(vme_master_set);
524
525 int vme_master_get(struct vme_resource *resource, int *enabled,
526 unsigned long long *vme_base, unsigned long long *size, u32 *aspace,
527 u32 *cycle, u32 *dwidth)
528 {
529 struct vme_bridge *bridge = find_bridge(resource);
530 struct vme_master_resource *image;
531
532 if (resource->type != VME_MASTER) {
533 printk(KERN_ERR "Not a master resource\n");
534 return -EINVAL;
535 }
536
537 image = list_entry(resource->entry, struct vme_master_resource, list);
538
539 if (bridge->master_get == NULL) {
540 printk(KERN_WARNING "%s not supported\n", __func__);
541 return -EINVAL;
542 }
543
544 return bridge->master_get(image, enabled, vme_base, size, aspace,
545 cycle, dwidth);
546 }
547 EXPORT_SYMBOL(vme_master_get);
548
549 /*
550 * Read data out of VME space into a buffer.
551 */
552 ssize_t vme_master_read(struct vme_resource *resource, void *buf, size_t count,
553 loff_t offset)
554 {
555 struct vme_bridge *bridge = find_bridge(resource);
556 struct vme_master_resource *image;
557 size_t length;
558
559 if (bridge->master_read == NULL) {
560 printk(KERN_WARNING "Reading from resource not supported\n");
561 return -EINVAL;
562 }
563
564 if (resource->type != VME_MASTER) {
565 printk(KERN_ERR "Not a master resource\n");
566 return -EINVAL;
567 }
568
569 image = list_entry(resource->entry, struct vme_master_resource, list);
570
571 length = vme_get_size(resource);
572
573 if (offset > length) {
574 printk(KERN_WARNING "Invalid Offset\n");
575 return -EFAULT;
576 }
577
578 if ((offset + count) > length)
579 count = length - offset;
580
581 return bridge->master_read(image, buf, count, offset);
582
583 }
584 EXPORT_SYMBOL(vme_master_read);
585
586 /*
587 * Write data out to VME space from a buffer.
588 */
589 ssize_t vme_master_write(struct vme_resource *resource, void *buf,
590 size_t count, loff_t offset)
591 {
592 struct vme_bridge *bridge = find_bridge(resource);
593 struct vme_master_resource *image;
594 size_t length;
595
596 if (bridge->master_write == NULL) {
597 printk(KERN_WARNING "Writing to resource not supported\n");
598 return -EINVAL;
599 }
600
601 if (resource->type != VME_MASTER) {
602 printk(KERN_ERR "Not a master resource\n");
603 return -EINVAL;
604 }
605
606 image = list_entry(resource->entry, struct vme_master_resource, list);
607
608 length = vme_get_size(resource);
609
610 if (offset > length) {
611 printk(KERN_WARNING "Invalid Offset\n");
612 return -EFAULT;
613 }
614
615 if ((offset + count) > length)
616 count = length - offset;
617
618 return bridge->master_write(image, buf, count, offset);
619 }
620 EXPORT_SYMBOL(vme_master_write);
621
622 /*
623 * Perform RMW cycle to provided location.
624 */
625 unsigned int vme_master_rmw(struct vme_resource *resource, unsigned int mask,
626 unsigned int compare, unsigned int swap, loff_t offset)
627 {
628 struct vme_bridge *bridge = find_bridge(resource);
629 struct vme_master_resource *image;
630
631 if (bridge->master_rmw == NULL) {
632 printk(KERN_WARNING "Writing to resource not supported\n");
633 return -EINVAL;
634 }
635
636 if (resource->type != VME_MASTER) {
637 printk(KERN_ERR "Not a master resource\n");
638 return -EINVAL;
639 }
640
641 image = list_entry(resource->entry, struct vme_master_resource, list);
642
643 return bridge->master_rmw(image, mask, compare, swap, offset);
644 }
645 EXPORT_SYMBOL(vme_master_rmw);
646
647 int vme_master_mmap(struct vme_resource *resource, struct vm_area_struct *vma)
648 {
649 struct vme_master_resource *image;
650 phys_addr_t phys_addr;
651 unsigned long vma_size;
652
653 if (resource->type != VME_MASTER) {
654 pr_err("Not a master resource\n");
655 return -EINVAL;
656 }
657
658 image = list_entry(resource->entry, struct vme_master_resource, list);
659 phys_addr = image->bus_resource.start + (vma->vm_pgoff << PAGE_SHIFT);
660 vma_size = vma->vm_end - vma->vm_start;
661
662 if (phys_addr + vma_size > image->bus_resource.end + 1) {
663 pr_err("Map size cannot exceed the window size\n");
664 return -EFAULT;
665 }
666
667 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
668
669 return vm_iomap_memory(vma, phys_addr, vma->vm_end - vma->vm_start);
670 }
671 EXPORT_SYMBOL(vme_master_mmap);
672
673 void vme_master_free(struct vme_resource *resource)
674 {
675 struct vme_master_resource *master_image;
676
677 if (resource->type != VME_MASTER) {
678 printk(KERN_ERR "Not a master resource\n");
679 return;
680 }
681
682 master_image = list_entry(resource->entry, struct vme_master_resource,
683 list);
684 if (master_image == NULL) {
685 printk(KERN_ERR "Can't find master resource\n");
686 return;
687 }
688
689 /* Unlock image */
690 spin_lock(&master_image->lock);
691 if (master_image->locked == 0)
692 printk(KERN_ERR "Image is already free\n");
693
694 master_image->locked = 0;
695 spin_unlock(&master_image->lock);
696
697 /* Free up resource memory */
698 kfree(resource);
699 }
700 EXPORT_SYMBOL(vme_master_free);
701
702 /*
703 * Request a DMA controller with specific attributes, return some unique
704 * identifier.
705 */
706 struct vme_resource *vme_dma_request(struct vme_dev *vdev, u32 route)
707 {
708 struct vme_bridge *bridge;
709 struct list_head *dma_pos = NULL;
710 struct vme_dma_resource *allocated_ctrlr = NULL;
711 struct vme_dma_resource *dma_ctrlr = NULL;
712 struct vme_resource *resource = NULL;
713
714 /* XXX Not checking resource attributes */
715 printk(KERN_ERR "No VME resource Attribute tests done\n");
716
717 bridge = vdev->bridge;
718 if (bridge == NULL) {
719 printk(KERN_ERR "Can't find VME bus\n");
720 goto err_bus;
721 }
722
723 /* Loop through DMA resources */
724 list_for_each(dma_pos, &bridge->dma_resources) {
725 dma_ctrlr = list_entry(dma_pos,
726 struct vme_dma_resource, list);
727
728 if (dma_ctrlr == NULL) {
729 printk(KERN_ERR "Registered NULL DMA resource\n");
730 continue;
731 }
732
733 /* Find an unlocked and compatible controller */
734 mutex_lock(&dma_ctrlr->mtx);
735 if (((dma_ctrlr->route_attr & route) == route) &&
736 (dma_ctrlr->locked == 0)) {
737
738 dma_ctrlr->locked = 1;
739 mutex_unlock(&dma_ctrlr->mtx);
740 allocated_ctrlr = dma_ctrlr;
741 break;
742 }
743 mutex_unlock(&dma_ctrlr->mtx);
744 }
745
746 /* Check to see if we found a resource */
747 if (allocated_ctrlr == NULL)
748 goto err_ctrlr;
749
750 resource = kmalloc(sizeof(struct vme_resource), GFP_KERNEL);
751 if (resource == NULL) {
752 printk(KERN_WARNING "Unable to allocate resource structure\n");
753 goto err_alloc;
754 }
755 resource->type = VME_DMA;
756 resource->entry = &allocated_ctrlr->list;
757
758 return resource;
759
760 err_alloc:
761 /* Unlock image */
762 mutex_lock(&dma_ctrlr->mtx);
763 dma_ctrlr->locked = 0;
764 mutex_unlock(&dma_ctrlr->mtx);
765 err_ctrlr:
766 err_bus:
767 return NULL;
768 }
769 EXPORT_SYMBOL(vme_dma_request);
770
771 /*
772 * Start new list
773 */
774 struct vme_dma_list *vme_new_dma_list(struct vme_resource *resource)
775 {
776 struct vme_dma_resource *ctrlr;
777 struct vme_dma_list *dma_list;
778
779 if (resource->type != VME_DMA) {
780 printk(KERN_ERR "Not a DMA resource\n");
781 return NULL;
782 }
783
784 ctrlr = list_entry(resource->entry, struct vme_dma_resource, list);
785
786 dma_list = kmalloc(sizeof(struct vme_dma_list), GFP_KERNEL);
787 if (dma_list == NULL) {
788 printk(KERN_ERR "Unable to allocate memory for new DMA list\n");
789 return NULL;
790 }
791 INIT_LIST_HEAD(&dma_list->entries);
792 dma_list->parent = ctrlr;
793 mutex_init(&dma_list->mtx);
794
795 return dma_list;
796 }
797 EXPORT_SYMBOL(vme_new_dma_list);
798
799 /*
800 * Create "Pattern" type attributes
801 */
802 struct vme_dma_attr *vme_dma_pattern_attribute(u32 pattern, u32 type)
803 {
804 struct vme_dma_attr *attributes;
805 struct vme_dma_pattern *pattern_attr;
806
807 attributes = kmalloc(sizeof(struct vme_dma_attr), GFP_KERNEL);
808 if (attributes == NULL) {
809 printk(KERN_ERR "Unable to allocate memory for attributes structure\n");
810 goto err_attr;
811 }
812
813 pattern_attr = kmalloc(sizeof(struct vme_dma_pattern), GFP_KERNEL);
814 if (pattern_attr == NULL) {
815 printk(KERN_ERR "Unable to allocate memory for pattern attributes\n");
816 goto err_pat;
817 }
818
819 attributes->type = VME_DMA_PATTERN;
820 attributes->private = (void *)pattern_attr;
821
822 pattern_attr->pattern = pattern;
823 pattern_attr->type = type;
824
825 return attributes;
826
827 err_pat:
828 kfree(attributes);
829 err_attr:
830 return NULL;
831 }
832 EXPORT_SYMBOL(vme_dma_pattern_attribute);
833
834 /*
835 * Create "PCI" type attributes
836 */
837 struct vme_dma_attr *vme_dma_pci_attribute(dma_addr_t address)
838 {
839 struct vme_dma_attr *attributes;
840 struct vme_dma_pci *pci_attr;
841
842 /* XXX Run some sanity checks here */
843
844 attributes = kmalloc(sizeof(struct vme_dma_attr), GFP_KERNEL);
845 if (attributes == NULL) {
846 printk(KERN_ERR "Unable to allocate memory for attributes structure\n");
847 goto err_attr;
848 }
849
850 pci_attr = kmalloc(sizeof(struct vme_dma_pci), GFP_KERNEL);
851 if (pci_attr == NULL) {
852 printk(KERN_ERR "Unable to allocate memory for PCI attributes\n");
853 goto err_pci;
854 }
855
856
857
858 attributes->type = VME_DMA_PCI;
859 attributes->private = (void *)pci_attr;
860
861 pci_attr->address = address;
862
863 return attributes;
864
865 err_pci:
866 kfree(attributes);
867 err_attr:
868 return NULL;
869 }
870 EXPORT_SYMBOL(vme_dma_pci_attribute);
871
872 /*
873 * Create "VME" type attributes
874 */
875 struct vme_dma_attr *vme_dma_vme_attribute(unsigned long long address,
876 u32 aspace, u32 cycle, u32 dwidth)
877 {
878 struct vme_dma_attr *attributes;
879 struct vme_dma_vme *vme_attr;
880
881 attributes = kmalloc(
882 sizeof(struct vme_dma_attr), GFP_KERNEL);
883 if (attributes == NULL) {
884 printk(KERN_ERR "Unable to allocate memory for attributes structure\n");
885 goto err_attr;
886 }
887
888 vme_attr = kmalloc(sizeof(struct vme_dma_vme), GFP_KERNEL);
889 if (vme_attr == NULL) {
890 printk(KERN_ERR "Unable to allocate memory for VME attributes\n");
891 goto err_vme;
892 }
893
894 attributes->type = VME_DMA_VME;
895 attributes->private = (void *)vme_attr;
896
897 vme_attr->address = address;
898 vme_attr->aspace = aspace;
899 vme_attr->cycle = cycle;
900 vme_attr->dwidth = dwidth;
901
902 return attributes;
903
904 err_vme:
905 kfree(attributes);
906 err_attr:
907 return NULL;
908 }
909 EXPORT_SYMBOL(vme_dma_vme_attribute);
910
911 /*
912 * Free attribute
913 */
914 void vme_dma_free_attribute(struct vme_dma_attr *attributes)
915 {
916 kfree(attributes->private);
917 kfree(attributes);
918 }
919 EXPORT_SYMBOL(vme_dma_free_attribute);
920
921 int vme_dma_list_add(struct vme_dma_list *list, struct vme_dma_attr *src,
922 struct vme_dma_attr *dest, size_t count)
923 {
924 struct vme_bridge *bridge = list->parent->parent;
925 int retval;
926
927 if (bridge->dma_list_add == NULL) {
928 printk(KERN_WARNING "Link List DMA generation not supported\n");
929 return -EINVAL;
930 }
931
932 if (!mutex_trylock(&list->mtx)) {
933 printk(KERN_ERR "Link List already submitted\n");
934 return -EINVAL;
935 }
936
937 retval = bridge->dma_list_add(list, src, dest, count);
938
939 mutex_unlock(&list->mtx);
940
941 return retval;
942 }
943 EXPORT_SYMBOL(vme_dma_list_add);
944
945 int vme_dma_list_exec(struct vme_dma_list *list)
946 {
947 struct vme_bridge *bridge = list->parent->parent;
948 int retval;
949
950 if (bridge->dma_list_exec == NULL) {
951 printk(KERN_ERR "Link List DMA execution not supported\n");
952 return -EINVAL;
953 }
954
955 mutex_lock(&list->mtx);
956
957 retval = bridge->dma_list_exec(list);
958
959 mutex_unlock(&list->mtx);
960
961 return retval;
962 }
963 EXPORT_SYMBOL(vme_dma_list_exec);
964
965 int vme_dma_list_free(struct vme_dma_list *list)
966 {
967 struct vme_bridge *bridge = list->parent->parent;
968 int retval;
969
970 if (bridge->dma_list_empty == NULL) {
971 printk(KERN_WARNING "Emptying of Link Lists not supported\n");
972 return -EINVAL;
973 }
974
975 if (!mutex_trylock(&list->mtx)) {
976 printk(KERN_ERR "Link List in use\n");
977 return -EINVAL;
978 }
979
980 /*
981 * Empty out all of the entries from the DMA list. We need to go to the
982 * low level driver as DMA entries are driver specific.
983 */
984 retval = bridge->dma_list_empty(list);
985 if (retval) {
986 printk(KERN_ERR "Unable to empty link-list entries\n");
987 mutex_unlock(&list->mtx);
988 return retval;
989 }
990 mutex_unlock(&list->mtx);
991 kfree(list);
992
993 return retval;
994 }
995 EXPORT_SYMBOL(vme_dma_list_free);
996
997 int vme_dma_free(struct vme_resource *resource)
998 {
999 struct vme_dma_resource *ctrlr;
1000
1001 if (resource->type != VME_DMA) {
1002 printk(KERN_ERR "Not a DMA resource\n");
1003 return -EINVAL;
1004 }
1005
1006 ctrlr = list_entry(resource->entry, struct vme_dma_resource, list);
1007
1008 if (!mutex_trylock(&ctrlr->mtx)) {
1009 printk(KERN_ERR "Resource busy, can't free\n");
1010 return -EBUSY;
1011 }
1012
1013 if (!(list_empty(&ctrlr->pending) && list_empty(&ctrlr->running))) {
1014 printk(KERN_WARNING "Resource still processing transfers\n");
1015 mutex_unlock(&ctrlr->mtx);
1016 return -EBUSY;
1017 }
1018
1019 ctrlr->locked = 0;
1020
1021 mutex_unlock(&ctrlr->mtx);
1022
1023 kfree(resource);
1024
1025 return 0;
1026 }
1027 EXPORT_SYMBOL(vme_dma_free);
1028
1029 void vme_bus_error_handler(struct vme_bridge *bridge,
1030 unsigned long long address, int am)
1031 {
1032 struct list_head *handler_pos = NULL;
1033 struct vme_error_handler *handler;
1034 int handler_triggered = 0;
1035 u32 aspace = vme_get_aspace(am);
1036
1037 list_for_each(handler_pos, &bridge->vme_error_handlers) {
1038 handler = list_entry(handler_pos, struct vme_error_handler,
1039 list);
1040 if ((aspace == handler->aspace) &&
1041 (address >= handler->start) &&
1042 (address < handler->end)) {
1043 if (!handler->num_errors)
1044 handler->first_error = address;
1045 if (handler->num_errors != UINT_MAX)
1046 handler->num_errors++;
1047 handler_triggered = 1;
1048 }
1049 }
1050
1051 if (!handler_triggered)
1052 dev_err(bridge->parent,
1053 "Unhandled VME access error at address 0x%llx\n",
1054 address);
1055 }
1056 EXPORT_SYMBOL(vme_bus_error_handler);
1057
1058 struct vme_error_handler *vme_register_error_handler(
1059 struct vme_bridge *bridge, u32 aspace,
1060 unsigned long long address, size_t len)
1061 {
1062 struct vme_error_handler *handler;
1063
1064 handler = kmalloc(sizeof(*handler), GFP_KERNEL);
1065 if (!handler)
1066 return NULL;
1067
1068 handler->aspace = aspace;
1069 handler->start = address;
1070 handler->end = address + len;
1071 handler->num_errors = 0;
1072 handler->first_error = 0;
1073 list_add_tail(&handler->list, &bridge->vme_error_handlers);
1074
1075 return handler;
1076 }
1077 EXPORT_SYMBOL(vme_register_error_handler);
1078
1079 void vme_unregister_error_handler(struct vme_error_handler *handler)
1080 {
1081 list_del(&handler->list);
1082 kfree(handler);
1083 }
1084 EXPORT_SYMBOL(vme_unregister_error_handler);
1085
1086 void vme_irq_handler(struct vme_bridge *bridge, int level, int statid)
1087 {
1088 void (*call)(int, int, void *);
1089 void *priv_data;
1090
1091 call = bridge->irq[level - 1].callback[statid].func;
1092 priv_data = bridge->irq[level - 1].callback[statid].priv_data;
1093
1094 if (call != NULL)
1095 call(level, statid, priv_data);
1096 else
1097 printk(KERN_WARNING "Spurious VME interrupt, level:%x, vector:%x\n",
1098 level, statid);
1099 }
1100 EXPORT_SYMBOL(vme_irq_handler);
1101
1102 int vme_irq_request(struct vme_dev *vdev, int level, int statid,
1103 void (*callback)(int, int, void *),
1104 void *priv_data)
1105 {
1106 struct vme_bridge *bridge;
1107
1108 bridge = vdev->bridge;
1109 if (bridge == NULL) {
1110 printk(KERN_ERR "Can't find VME bus\n");
1111 return -EINVAL;
1112 }
1113
1114 if ((level < 1) || (level > 7)) {
1115 printk(KERN_ERR "Invalid interrupt level\n");
1116 return -EINVAL;
1117 }
1118
1119 if (bridge->irq_set == NULL) {
1120 printk(KERN_ERR "Configuring interrupts not supported\n");
1121 return -EINVAL;
1122 }
1123
1124 mutex_lock(&bridge->irq_mtx);
1125
1126 if (bridge->irq[level - 1].callback[statid].func) {
1127 mutex_unlock(&bridge->irq_mtx);
1128 printk(KERN_WARNING "VME Interrupt already taken\n");
1129 return -EBUSY;
1130 }
1131
1132 bridge->irq[level - 1].count++;
1133 bridge->irq[level - 1].callback[statid].priv_data = priv_data;
1134 bridge->irq[level - 1].callback[statid].func = callback;
1135
1136 /* Enable IRQ level */
1137 bridge->irq_set(bridge, level, 1, 1);
1138
1139 mutex_unlock(&bridge->irq_mtx);
1140
1141 return 0;
1142 }
1143 EXPORT_SYMBOL(vme_irq_request);
1144
1145 void vme_irq_free(struct vme_dev *vdev, int level, int statid)
1146 {
1147 struct vme_bridge *bridge;
1148
1149 bridge = vdev->bridge;
1150 if (bridge == NULL) {
1151 printk(KERN_ERR "Can't find VME bus\n");
1152 return;
1153 }
1154
1155 if ((level < 1) || (level > 7)) {
1156 printk(KERN_ERR "Invalid interrupt level\n");
1157 return;
1158 }
1159
1160 if (bridge->irq_set == NULL) {
1161 printk(KERN_ERR "Configuring interrupts not supported\n");
1162 return;
1163 }
1164
1165 mutex_lock(&bridge->irq_mtx);
1166
1167 bridge->irq[level - 1].count--;
1168
1169 /* Disable IRQ level if no more interrupts attached at this level*/
1170 if (bridge->irq[level - 1].count == 0)
1171 bridge->irq_set(bridge, level, 0, 1);
1172
1173 bridge->irq[level - 1].callback[statid].func = NULL;
1174 bridge->irq[level - 1].callback[statid].priv_data = NULL;
1175
1176 mutex_unlock(&bridge->irq_mtx);
1177 }
1178 EXPORT_SYMBOL(vme_irq_free);
1179
1180 int vme_irq_generate(struct vme_dev *vdev, int level, int statid)
1181 {
1182 struct vme_bridge *bridge;
1183
1184 bridge = vdev->bridge;
1185 if (bridge == NULL) {
1186 printk(KERN_ERR "Can't find VME bus\n");
1187 return -EINVAL;
1188 }
1189
1190 if ((level < 1) || (level > 7)) {
1191 printk(KERN_WARNING "Invalid interrupt level\n");
1192 return -EINVAL;
1193 }
1194
1195 if (bridge->irq_generate == NULL) {
1196 printk(KERN_WARNING "Interrupt generation not supported\n");
1197 return -EINVAL;
1198 }
1199
1200 return bridge->irq_generate(bridge, level, statid);
1201 }
1202 EXPORT_SYMBOL(vme_irq_generate);
1203
1204 /*
1205 * Request the location monitor, return resource or NULL
1206 */
1207 struct vme_resource *vme_lm_request(struct vme_dev *vdev)
1208 {
1209 struct vme_bridge *bridge;
1210 struct list_head *lm_pos = NULL;
1211 struct vme_lm_resource *allocated_lm = NULL;
1212 struct vme_lm_resource *lm = NULL;
1213 struct vme_resource *resource = NULL;
1214
1215 bridge = vdev->bridge;
1216 if (bridge == NULL) {
1217 printk(KERN_ERR "Can't find VME bus\n");
1218 goto err_bus;
1219 }
1220
1221 /* Loop through DMA resources */
1222 list_for_each(lm_pos, &bridge->lm_resources) {
1223 lm = list_entry(lm_pos,
1224 struct vme_lm_resource, list);
1225
1226 if (lm == NULL) {
1227 printk(KERN_ERR "Registered NULL Location Monitor resource\n");
1228 continue;
1229 }
1230
1231 /* Find an unlocked controller */
1232 mutex_lock(&lm->mtx);
1233 if (lm->locked == 0) {
1234 lm->locked = 1;
1235 mutex_unlock(&lm->mtx);
1236 allocated_lm = lm;
1237 break;
1238 }
1239 mutex_unlock(&lm->mtx);
1240 }
1241
1242 /* Check to see if we found a resource */
1243 if (allocated_lm == NULL)
1244 goto err_lm;
1245
1246 resource = kmalloc(sizeof(struct vme_resource), GFP_KERNEL);
1247 if (resource == NULL) {
1248 printk(KERN_ERR "Unable to allocate resource structure\n");
1249 goto err_alloc;
1250 }
1251 resource->type = VME_LM;
1252 resource->entry = &allocated_lm->list;
1253
1254 return resource;
1255
1256 err_alloc:
1257 /* Unlock image */
1258 mutex_lock(&lm->mtx);
1259 lm->locked = 0;
1260 mutex_unlock(&lm->mtx);
1261 err_lm:
1262 err_bus:
1263 return NULL;
1264 }
1265 EXPORT_SYMBOL(vme_lm_request);
1266
1267 int vme_lm_count(struct vme_resource *resource)
1268 {
1269 struct vme_lm_resource *lm;
1270
1271 if (resource->type != VME_LM) {
1272 printk(KERN_ERR "Not a Location Monitor resource\n");
1273 return -EINVAL;
1274 }
1275
1276 lm = list_entry(resource->entry, struct vme_lm_resource, list);
1277
1278 return lm->monitors;
1279 }
1280 EXPORT_SYMBOL(vme_lm_count);
1281
1282 int vme_lm_set(struct vme_resource *resource, unsigned long long lm_base,
1283 u32 aspace, u32 cycle)
1284 {
1285 struct vme_bridge *bridge = find_bridge(resource);
1286 struct vme_lm_resource *lm;
1287
1288 if (resource->type != VME_LM) {
1289 printk(KERN_ERR "Not a Location Monitor resource\n");
1290 return -EINVAL;
1291 }
1292
1293 lm = list_entry(resource->entry, struct vme_lm_resource, list);
1294
1295 if (bridge->lm_set == NULL) {
1296 printk(KERN_ERR "vme_lm_set not supported\n");
1297 return -EINVAL;
1298 }
1299
1300 return bridge->lm_set(lm, lm_base, aspace, cycle);
1301 }
1302 EXPORT_SYMBOL(vme_lm_set);
1303
1304 int vme_lm_get(struct vme_resource *resource, unsigned long long *lm_base,
1305 u32 *aspace, u32 *cycle)
1306 {
1307 struct vme_bridge *bridge = find_bridge(resource);
1308 struct vme_lm_resource *lm;
1309
1310 if (resource->type != VME_LM) {
1311 printk(KERN_ERR "Not a Location Monitor resource\n");
1312 return -EINVAL;
1313 }
1314
1315 lm = list_entry(resource->entry, struct vme_lm_resource, list);
1316
1317 if (bridge->lm_get == NULL) {
1318 printk(KERN_ERR "vme_lm_get not supported\n");
1319 return -EINVAL;
1320 }
1321
1322 return bridge->lm_get(lm, lm_base, aspace, cycle);
1323 }
1324 EXPORT_SYMBOL(vme_lm_get);
1325
1326 int vme_lm_attach(struct vme_resource *resource, int monitor,
1327 void (*callback)(void *), void *data)
1328 {
1329 struct vme_bridge *bridge = find_bridge(resource);
1330 struct vme_lm_resource *lm;
1331
1332 if (resource->type != VME_LM) {
1333 printk(KERN_ERR "Not a Location Monitor resource\n");
1334 return -EINVAL;
1335 }
1336
1337 lm = list_entry(resource->entry, struct vme_lm_resource, list);
1338
1339 if (bridge->lm_attach == NULL) {
1340 printk(KERN_ERR "vme_lm_attach not supported\n");
1341 return -EINVAL;
1342 }
1343
1344 return bridge->lm_attach(lm, monitor, callback, data);
1345 }
1346 EXPORT_SYMBOL(vme_lm_attach);
1347
1348 int vme_lm_detach(struct vme_resource *resource, int monitor)
1349 {
1350 struct vme_bridge *bridge = find_bridge(resource);
1351 struct vme_lm_resource *lm;
1352
1353 if (resource->type != VME_LM) {
1354 printk(KERN_ERR "Not a Location Monitor resource\n");
1355 return -EINVAL;
1356 }
1357
1358 lm = list_entry(resource->entry, struct vme_lm_resource, list);
1359
1360 if (bridge->lm_detach == NULL) {
1361 printk(KERN_ERR "vme_lm_detach not supported\n");
1362 return -EINVAL;
1363 }
1364
1365 return bridge->lm_detach(lm, monitor);
1366 }
1367 EXPORT_SYMBOL(vme_lm_detach);
1368
1369 void vme_lm_free(struct vme_resource *resource)
1370 {
1371 struct vme_lm_resource *lm;
1372
1373 if (resource->type != VME_LM) {
1374 printk(KERN_ERR "Not a Location Monitor resource\n");
1375 return;
1376 }
1377
1378 lm = list_entry(resource->entry, struct vme_lm_resource, list);
1379
1380 mutex_lock(&lm->mtx);
1381
1382 /* XXX
1383 * Check to see that there aren't any callbacks still attached, if
1384 * there are we should probably be detaching them!
1385 */
1386
1387 lm->locked = 0;
1388
1389 mutex_unlock(&lm->mtx);
1390
1391 kfree(resource);
1392 }
1393 EXPORT_SYMBOL(vme_lm_free);
1394
1395 int vme_slot_num(struct vme_dev *vdev)
1396 {
1397 struct vme_bridge *bridge;
1398
1399 bridge = vdev->bridge;
1400 if (bridge == NULL) {
1401 printk(KERN_ERR "Can't find VME bus\n");
1402 return -EINVAL;
1403 }
1404
1405 if (bridge->slot_get == NULL) {
1406 printk(KERN_WARNING "vme_slot_num not supported\n");
1407 return -EINVAL;
1408 }
1409
1410 return bridge->slot_get(bridge);
1411 }
1412 EXPORT_SYMBOL(vme_slot_num);
1413
1414 int vme_bus_num(struct vme_dev *vdev)
1415 {
1416 struct vme_bridge *bridge;
1417
1418 bridge = vdev->bridge;
1419 if (bridge == NULL) {
1420 pr_err("Can't find VME bus\n");
1421 return -EINVAL;
1422 }
1423
1424 return bridge->num;
1425 }
1426 EXPORT_SYMBOL(vme_bus_num);
1427
1428 /* - Bridge Registration --------------------------------------------------- */
1429
1430 static void vme_dev_release(struct device *dev)
1431 {
1432 kfree(dev_to_vme_dev(dev));
1433 }
1434
1435 /* Common bridge initialization */
1436 struct vme_bridge *vme_init_bridge(struct vme_bridge *bridge)
1437 {
1438 INIT_LIST_HEAD(&bridge->vme_error_handlers);
1439 INIT_LIST_HEAD(&bridge->master_resources);
1440 INIT_LIST_HEAD(&bridge->slave_resources);
1441 INIT_LIST_HEAD(&bridge->dma_resources);
1442 INIT_LIST_HEAD(&bridge->lm_resources);
1443 mutex_init(&bridge->irq_mtx);
1444
1445 return bridge;
1446 }
1447 EXPORT_SYMBOL(vme_init_bridge);
1448
1449 int vme_register_bridge(struct vme_bridge *bridge)
1450 {
1451 int i;
1452 int ret = -1;
1453
1454 mutex_lock(&vme_buses_lock);
1455 for (i = 0; i < sizeof(vme_bus_numbers) * 8; i++) {
1456 if ((vme_bus_numbers & (1 << i)) == 0) {
1457 vme_bus_numbers |= (1 << i);
1458 bridge->num = i;
1459 INIT_LIST_HEAD(&bridge->devices);
1460 list_add_tail(&bridge->bus_list, &vme_bus_list);
1461 ret = 0;
1462 break;
1463 }
1464 }
1465 mutex_unlock(&vme_buses_lock);
1466
1467 return ret;
1468 }
1469 EXPORT_SYMBOL(vme_register_bridge);
1470
1471 void vme_unregister_bridge(struct vme_bridge *bridge)
1472 {
1473 struct vme_dev *vdev;
1474 struct vme_dev *tmp;
1475
1476 mutex_lock(&vme_buses_lock);
1477 vme_bus_numbers &= ~(1 << bridge->num);
1478 list_for_each_entry_safe(vdev, tmp, &bridge->devices, bridge_list) {
1479 list_del(&vdev->drv_list);
1480 list_del(&vdev->bridge_list);
1481 device_unregister(&vdev->dev);
1482 }
1483 list_del(&bridge->bus_list);
1484 mutex_unlock(&vme_buses_lock);
1485 }
1486 EXPORT_SYMBOL(vme_unregister_bridge);
1487
1488 /* - Driver Registration --------------------------------------------------- */
1489
1490 static int __vme_register_driver_bus(struct vme_driver *drv,
1491 struct vme_bridge *bridge, unsigned int ndevs)
1492 {
1493 int err;
1494 unsigned int i;
1495 struct vme_dev *vdev;
1496 struct vme_dev *tmp;
1497
1498 for (i = 0; i < ndevs; i++) {
1499 vdev = kzalloc(sizeof(struct vme_dev), GFP_KERNEL);
1500 if (!vdev) {
1501 err = -ENOMEM;
1502 goto err_devalloc;
1503 }
1504 vdev->num = i;
1505 vdev->bridge = bridge;
1506 vdev->dev.platform_data = drv;
1507 vdev->dev.release = vme_dev_release;
1508 vdev->dev.parent = bridge->parent;
1509 vdev->dev.bus = &vme_bus_type;
1510 dev_set_name(&vdev->dev, "%s.%u-%u", drv->name, bridge->num,
1511 vdev->num);
1512
1513 err = device_register(&vdev->dev);
1514 if (err)
1515 goto err_reg;
1516
1517 if (vdev->dev.platform_data) {
1518 list_add_tail(&vdev->drv_list, &drv->devices);
1519 list_add_tail(&vdev->bridge_list, &bridge->devices);
1520 } else
1521 device_unregister(&vdev->dev);
1522 }
1523 return 0;
1524
1525 err_reg:
1526 put_device(&vdev->dev);
1527 kfree(vdev);
1528 err_devalloc:
1529 list_for_each_entry_safe(vdev, tmp, &drv->devices, drv_list) {
1530 list_del(&vdev->drv_list);
1531 list_del(&vdev->bridge_list);
1532 device_unregister(&vdev->dev);
1533 }
1534 return err;
1535 }
1536
1537 static int __vme_register_driver(struct vme_driver *drv, unsigned int ndevs)
1538 {
1539 struct vme_bridge *bridge;
1540 int err = 0;
1541
1542 mutex_lock(&vme_buses_lock);
1543 list_for_each_entry(bridge, &vme_bus_list, bus_list) {
1544 /*
1545 * This cannot cause trouble as we already have vme_buses_lock
1546 * and if the bridge is removed, it will have to go through
1547 * vme_unregister_bridge() to do it (which calls remove() on
1548 * the bridge which in turn tries to acquire vme_buses_lock and
1549 * will have to wait).
1550 */
1551 err = __vme_register_driver_bus(drv, bridge, ndevs);
1552 if (err)
1553 break;
1554 }
1555 mutex_unlock(&vme_buses_lock);
1556 return err;
1557 }
1558
1559 int vme_register_driver(struct vme_driver *drv, unsigned int ndevs)
1560 {
1561 int err;
1562
1563 drv->driver.name = drv->name;
1564 drv->driver.bus = &vme_bus_type;
1565 INIT_LIST_HEAD(&drv->devices);
1566
1567 err = driver_register(&drv->driver);
1568 if (err)
1569 return err;
1570
1571 err = __vme_register_driver(drv, ndevs);
1572 if (err)
1573 driver_unregister(&drv->driver);
1574
1575 return err;
1576 }
1577 EXPORT_SYMBOL(vme_register_driver);
1578
1579 void vme_unregister_driver(struct vme_driver *drv)
1580 {
1581 struct vme_dev *dev, *dev_tmp;
1582
1583 mutex_lock(&vme_buses_lock);
1584 list_for_each_entry_safe(dev, dev_tmp, &drv->devices, drv_list) {
1585 list_del(&dev->drv_list);
1586 list_del(&dev->bridge_list);
1587 device_unregister(&dev->dev);
1588 }
1589 mutex_unlock(&vme_buses_lock);
1590
1591 driver_unregister(&drv->driver);
1592 }
1593 EXPORT_SYMBOL(vme_unregister_driver);
1594
1595 /* - Bus Registration ------------------------------------------------------ */
1596
1597 static int vme_bus_match(struct device *dev, struct device_driver *drv)
1598 {
1599 struct vme_driver *vme_drv;
1600
1601 vme_drv = container_of(drv, struct vme_driver, driver);
1602
1603 if (dev->platform_data == vme_drv) {
1604 struct vme_dev *vdev = dev_to_vme_dev(dev);
1605
1606 if (vme_drv->match && vme_drv->match(vdev))
1607 return 1;
1608
1609 dev->platform_data = NULL;
1610 }
1611 return 0;
1612 }
1613
1614 static int vme_bus_probe(struct device *dev)
1615 {
1616 int retval = -ENODEV;
1617 struct vme_driver *driver;
1618 struct vme_dev *vdev = dev_to_vme_dev(dev);
1619
1620 driver = dev->platform_data;
1621
1622 if (driver->probe != NULL)
1623 retval = driver->probe(vdev);
1624
1625 return retval;
1626 }
1627
1628 static int vme_bus_remove(struct device *dev)
1629 {
1630 int retval = -ENODEV;
1631 struct vme_driver *driver;
1632 struct vme_dev *vdev = dev_to_vme_dev(dev);
1633
1634 driver = dev->platform_data;
1635
1636 if (driver->remove != NULL)
1637 retval = driver->remove(vdev);
1638
1639 return retval;
1640 }
1641
1642 struct bus_type vme_bus_type = {
1643 .name = "vme",
1644 .match = vme_bus_match,
1645 .probe = vme_bus_probe,
1646 .remove = vme_bus_remove,
1647 };
1648 EXPORT_SYMBOL(vme_bus_type);
1649
1650 static int __init vme_init(void)
1651 {
1652 return bus_register(&vme_bus_type);
1653 }
1654 subsys_initcall(vme_init);