]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/watchdog/watchdog_dev.c
Documentation: Add documentation for Processor MMIO Stale Data
[mirror_ubuntu-jammy-kernel.git] / drivers / watchdog / watchdog_dev.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * watchdog_dev.c
4 *
5 * (c) Copyright 2008-2011 Alan Cox <alan@lxorguk.ukuu.org.uk>,
6 * All Rights Reserved.
7 *
8 * (c) Copyright 2008-2011 Wim Van Sebroeck <wim@iguana.be>.
9 *
10 * (c) Copyright 2021 Hewlett Packard Enterprise Development LP.
11 *
12 * This source code is part of the generic code that can be used
13 * by all the watchdog timer drivers.
14 *
15 * This part of the generic code takes care of the following
16 * misc device: /dev/watchdog.
17 *
18 * Based on source code of the following authors:
19 * Matt Domsch <Matt_Domsch@dell.com>,
20 * Rob Radez <rob@osinvestor.com>,
21 * Rusty Lynch <rusty@linux.co.intel.com>
22 * Satyam Sharma <satyam@infradead.org>
23 * Randy Dunlap <randy.dunlap@oracle.com>
24 *
25 * Neither Alan Cox, CymruNet Ltd., Wim Van Sebroeck nor Iguana vzw.
26 * admit liability nor provide warranty for any of this software.
27 * This material is provided "AS-IS" and at no charge.
28 */
29
30 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31
32 #include <linux/cdev.h> /* For character device */
33 #include <linux/errno.h> /* For the -ENODEV/... values */
34 #include <linux/fs.h> /* For file operations */
35 #include <linux/init.h> /* For __init/__exit/... */
36 #include <linux/hrtimer.h> /* For hrtimers */
37 #include <linux/kernel.h> /* For printk/panic/... */
38 #include <linux/kthread.h> /* For kthread_work */
39 #include <linux/miscdevice.h> /* For handling misc devices */
40 #include <linux/module.h> /* For module stuff/... */
41 #include <linux/mutex.h> /* For mutexes */
42 #include <linux/slab.h> /* For memory functions */
43 #include <linux/types.h> /* For standard types (like size_t) */
44 #include <linux/watchdog.h> /* For watchdog specific items */
45 #include <linux/uaccess.h> /* For copy_to_user/put_user/... */
46
47 #include "watchdog_core.h"
48 #include "watchdog_pretimeout.h"
49
50 /* the dev_t structure to store the dynamically allocated watchdog devices */
51 static dev_t watchdog_devt;
52 /* Reference to watchdog device behind /dev/watchdog */
53 static struct watchdog_core_data *old_wd_data;
54
55 static struct kthread_worker *watchdog_kworker;
56
57 static bool handle_boot_enabled =
58 IS_ENABLED(CONFIG_WATCHDOG_HANDLE_BOOT_ENABLED);
59
60 static unsigned open_timeout = CONFIG_WATCHDOG_OPEN_TIMEOUT;
61
62 static bool watchdog_past_open_deadline(struct watchdog_core_data *data)
63 {
64 return ktime_after(ktime_get(), data->open_deadline);
65 }
66
67 static void watchdog_set_open_deadline(struct watchdog_core_data *data)
68 {
69 data->open_deadline = open_timeout ?
70 ktime_get() + ktime_set(open_timeout, 0) : KTIME_MAX;
71 }
72
73 static inline bool watchdog_need_worker(struct watchdog_device *wdd)
74 {
75 /* All variables in milli-seconds */
76 unsigned int hm = wdd->max_hw_heartbeat_ms;
77 unsigned int t = wdd->timeout * 1000;
78
79 /*
80 * A worker to generate heartbeat requests is needed if all of the
81 * following conditions are true.
82 * - Userspace activated the watchdog.
83 * - The driver provided a value for the maximum hardware timeout, and
84 * thus is aware that the framework supports generating heartbeat
85 * requests.
86 * - Userspace requests a longer timeout than the hardware can handle.
87 *
88 * Alternatively, if userspace has not opened the watchdog
89 * device, we take care of feeding the watchdog if it is
90 * running.
91 */
92 return (hm && watchdog_active(wdd) && t > hm) ||
93 (t && !watchdog_active(wdd) && watchdog_hw_running(wdd));
94 }
95
96 static ktime_t watchdog_next_keepalive(struct watchdog_device *wdd)
97 {
98 struct watchdog_core_data *wd_data = wdd->wd_data;
99 unsigned int timeout_ms = wdd->timeout * 1000;
100 ktime_t keepalive_interval;
101 ktime_t last_heartbeat, latest_heartbeat;
102 ktime_t virt_timeout;
103 unsigned int hw_heartbeat_ms;
104
105 if (watchdog_active(wdd))
106 virt_timeout = ktime_add(wd_data->last_keepalive,
107 ms_to_ktime(timeout_ms));
108 else
109 virt_timeout = wd_data->open_deadline;
110
111 hw_heartbeat_ms = min_not_zero(timeout_ms, wdd->max_hw_heartbeat_ms);
112 keepalive_interval = ms_to_ktime(hw_heartbeat_ms / 2);
113
114 /*
115 * To ensure that the watchdog times out wdd->timeout seconds
116 * after the most recent ping from userspace, the last
117 * worker ping has to come in hw_heartbeat_ms before this timeout.
118 */
119 last_heartbeat = ktime_sub(virt_timeout, ms_to_ktime(hw_heartbeat_ms));
120 latest_heartbeat = ktime_sub(last_heartbeat, ktime_get());
121 if (ktime_before(latest_heartbeat, keepalive_interval))
122 return latest_heartbeat;
123 return keepalive_interval;
124 }
125
126 static inline void watchdog_update_worker(struct watchdog_device *wdd)
127 {
128 struct watchdog_core_data *wd_data = wdd->wd_data;
129
130 if (watchdog_need_worker(wdd)) {
131 ktime_t t = watchdog_next_keepalive(wdd);
132
133 if (t > 0)
134 hrtimer_start(&wd_data->timer, t,
135 HRTIMER_MODE_REL_HARD);
136 } else {
137 hrtimer_cancel(&wd_data->timer);
138 }
139 }
140
141 static int __watchdog_ping(struct watchdog_device *wdd)
142 {
143 struct watchdog_core_data *wd_data = wdd->wd_data;
144 ktime_t earliest_keepalive, now;
145 int err;
146
147 earliest_keepalive = ktime_add(wd_data->last_hw_keepalive,
148 ms_to_ktime(wdd->min_hw_heartbeat_ms));
149 now = ktime_get();
150
151 if (ktime_after(earliest_keepalive, now)) {
152 hrtimer_start(&wd_data->timer,
153 ktime_sub(earliest_keepalive, now),
154 HRTIMER_MODE_REL_HARD);
155 return 0;
156 }
157
158 wd_data->last_hw_keepalive = now;
159
160 if (wdd->ops->ping)
161 err = wdd->ops->ping(wdd); /* ping the watchdog */
162 else
163 err = wdd->ops->start(wdd); /* restart watchdog */
164
165 if (err == 0)
166 watchdog_hrtimer_pretimeout_start(wdd);
167
168 watchdog_update_worker(wdd);
169
170 return err;
171 }
172
173 /*
174 * watchdog_ping: ping the watchdog.
175 * @wdd: the watchdog device to ping
176 *
177 * The caller must hold wd_data->lock.
178 *
179 * If the watchdog has no own ping operation then it needs to be
180 * restarted via the start operation. This wrapper function does
181 * exactly that.
182 * We only ping when the watchdog device is running.
183 */
184
185 static int watchdog_ping(struct watchdog_device *wdd)
186 {
187 struct watchdog_core_data *wd_data = wdd->wd_data;
188
189 if (!watchdog_active(wdd) && !watchdog_hw_running(wdd))
190 return 0;
191
192 set_bit(_WDOG_KEEPALIVE, &wd_data->status);
193
194 wd_data->last_keepalive = ktime_get();
195 return __watchdog_ping(wdd);
196 }
197
198 static bool watchdog_worker_should_ping(struct watchdog_core_data *wd_data)
199 {
200 struct watchdog_device *wdd = wd_data->wdd;
201
202 if (!wdd)
203 return false;
204
205 if (watchdog_active(wdd))
206 return true;
207
208 return watchdog_hw_running(wdd) && !watchdog_past_open_deadline(wd_data);
209 }
210
211 static void watchdog_ping_work(struct kthread_work *work)
212 {
213 struct watchdog_core_data *wd_data;
214
215 wd_data = container_of(work, struct watchdog_core_data, work);
216
217 mutex_lock(&wd_data->lock);
218 if (watchdog_worker_should_ping(wd_data))
219 __watchdog_ping(wd_data->wdd);
220 mutex_unlock(&wd_data->lock);
221 }
222
223 static enum hrtimer_restart watchdog_timer_expired(struct hrtimer *timer)
224 {
225 struct watchdog_core_data *wd_data;
226
227 wd_data = container_of(timer, struct watchdog_core_data, timer);
228
229 kthread_queue_work(watchdog_kworker, &wd_data->work);
230 return HRTIMER_NORESTART;
231 }
232
233 /*
234 * watchdog_start: wrapper to start the watchdog.
235 * @wdd: the watchdog device to start
236 *
237 * The caller must hold wd_data->lock.
238 *
239 * Start the watchdog if it is not active and mark it active.
240 * This function returns zero on success or a negative errno code for
241 * failure.
242 */
243
244 static int watchdog_start(struct watchdog_device *wdd)
245 {
246 struct watchdog_core_data *wd_data = wdd->wd_data;
247 ktime_t started_at;
248 int err;
249
250 if (watchdog_active(wdd))
251 return 0;
252
253 set_bit(_WDOG_KEEPALIVE, &wd_data->status);
254
255 started_at = ktime_get();
256 if (watchdog_hw_running(wdd) && wdd->ops->ping) {
257 err = __watchdog_ping(wdd);
258 if (err == 0) {
259 set_bit(WDOG_ACTIVE, &wdd->status);
260 watchdog_hrtimer_pretimeout_start(wdd);
261 }
262 } else {
263 err = wdd->ops->start(wdd);
264 if (err == 0) {
265 set_bit(WDOG_ACTIVE, &wdd->status);
266 wd_data->last_keepalive = started_at;
267 wd_data->last_hw_keepalive = started_at;
268 watchdog_update_worker(wdd);
269 watchdog_hrtimer_pretimeout_start(wdd);
270 }
271 }
272
273 return err;
274 }
275
276 /*
277 * watchdog_stop: wrapper to stop the watchdog.
278 * @wdd: the watchdog device to stop
279 *
280 * The caller must hold wd_data->lock.
281 *
282 * Stop the watchdog if it is still active and unmark it active.
283 * This function returns zero on success or a negative errno code for
284 * failure.
285 * If the 'nowayout' feature was set, the watchdog cannot be stopped.
286 */
287
288 static int watchdog_stop(struct watchdog_device *wdd)
289 {
290 int err = 0;
291
292 if (!watchdog_active(wdd))
293 return 0;
294
295 if (test_bit(WDOG_NO_WAY_OUT, &wdd->status)) {
296 pr_info("watchdog%d: nowayout prevents watchdog being stopped!\n",
297 wdd->id);
298 return -EBUSY;
299 }
300
301 if (wdd->ops->stop) {
302 clear_bit(WDOG_HW_RUNNING, &wdd->status);
303 err = wdd->ops->stop(wdd);
304 } else {
305 set_bit(WDOG_HW_RUNNING, &wdd->status);
306 }
307
308 if (err == 0) {
309 clear_bit(WDOG_ACTIVE, &wdd->status);
310 watchdog_update_worker(wdd);
311 watchdog_hrtimer_pretimeout_stop(wdd);
312 }
313
314 return err;
315 }
316
317 /*
318 * watchdog_get_status: wrapper to get the watchdog status
319 * @wdd: the watchdog device to get the status from
320 *
321 * The caller must hold wd_data->lock.
322 *
323 * Get the watchdog's status flags.
324 */
325
326 static unsigned int watchdog_get_status(struct watchdog_device *wdd)
327 {
328 struct watchdog_core_data *wd_data = wdd->wd_data;
329 unsigned int status;
330
331 if (wdd->ops->status)
332 status = wdd->ops->status(wdd);
333 else
334 status = wdd->bootstatus & (WDIOF_CARDRESET |
335 WDIOF_OVERHEAT |
336 WDIOF_FANFAULT |
337 WDIOF_EXTERN1 |
338 WDIOF_EXTERN2 |
339 WDIOF_POWERUNDER |
340 WDIOF_POWEROVER);
341
342 if (test_bit(_WDOG_ALLOW_RELEASE, &wd_data->status))
343 status |= WDIOF_MAGICCLOSE;
344
345 if (test_and_clear_bit(_WDOG_KEEPALIVE, &wd_data->status))
346 status |= WDIOF_KEEPALIVEPING;
347
348 if (IS_ENABLED(CONFIG_WATCHDOG_HRTIMER_PRETIMEOUT))
349 status |= WDIOF_PRETIMEOUT;
350
351 return status;
352 }
353
354 /*
355 * watchdog_set_timeout: set the watchdog timer timeout
356 * @wdd: the watchdog device to set the timeout for
357 * @timeout: timeout to set in seconds
358 *
359 * The caller must hold wd_data->lock.
360 */
361
362 static int watchdog_set_timeout(struct watchdog_device *wdd,
363 unsigned int timeout)
364 {
365 int err = 0;
366
367 if (!(wdd->info->options & WDIOF_SETTIMEOUT))
368 return -EOPNOTSUPP;
369
370 if (watchdog_timeout_invalid(wdd, timeout))
371 return -EINVAL;
372
373 if (wdd->ops->set_timeout) {
374 err = wdd->ops->set_timeout(wdd, timeout);
375 } else {
376 wdd->timeout = timeout;
377 /* Disable pretimeout if it doesn't fit the new timeout */
378 if (wdd->pretimeout >= wdd->timeout)
379 wdd->pretimeout = 0;
380 }
381
382 watchdog_update_worker(wdd);
383
384 return err;
385 }
386
387 /*
388 * watchdog_set_pretimeout: set the watchdog timer pretimeout
389 * @wdd: the watchdog device to set the timeout for
390 * @timeout: pretimeout to set in seconds
391 */
392
393 static int watchdog_set_pretimeout(struct watchdog_device *wdd,
394 unsigned int timeout)
395 {
396 int err = 0;
397
398 if (!watchdog_have_pretimeout(wdd))
399 return -EOPNOTSUPP;
400
401 if (watchdog_pretimeout_invalid(wdd, timeout))
402 return -EINVAL;
403
404 if (wdd->ops->set_pretimeout && (wdd->info->options & WDIOF_PRETIMEOUT))
405 err = wdd->ops->set_pretimeout(wdd, timeout);
406 else
407 wdd->pretimeout = timeout;
408
409 return err;
410 }
411
412 /*
413 * watchdog_get_timeleft: wrapper to get the time left before a reboot
414 * @wdd: the watchdog device to get the remaining time from
415 * @timeleft: the time that's left
416 *
417 * The caller must hold wd_data->lock.
418 *
419 * Get the time before a watchdog will reboot (if not pinged).
420 */
421
422 static int watchdog_get_timeleft(struct watchdog_device *wdd,
423 unsigned int *timeleft)
424 {
425 *timeleft = 0;
426
427 if (!wdd->ops->get_timeleft)
428 return -EOPNOTSUPP;
429
430 *timeleft = wdd->ops->get_timeleft(wdd);
431
432 return 0;
433 }
434
435 #ifdef CONFIG_WATCHDOG_SYSFS
436 static ssize_t nowayout_show(struct device *dev, struct device_attribute *attr,
437 char *buf)
438 {
439 struct watchdog_device *wdd = dev_get_drvdata(dev);
440
441 return sysfs_emit(buf, "%d\n", !!test_bit(WDOG_NO_WAY_OUT,
442 &wdd->status));
443 }
444
445 static ssize_t nowayout_store(struct device *dev, struct device_attribute *attr,
446 const char *buf, size_t len)
447 {
448 struct watchdog_device *wdd = dev_get_drvdata(dev);
449 unsigned int value;
450 int ret;
451
452 ret = kstrtouint(buf, 0, &value);
453 if (ret)
454 return ret;
455 if (value > 1)
456 return -EINVAL;
457 /* nowayout cannot be disabled once set */
458 if (test_bit(WDOG_NO_WAY_OUT, &wdd->status) && !value)
459 return -EPERM;
460 watchdog_set_nowayout(wdd, value);
461 return len;
462 }
463 static DEVICE_ATTR_RW(nowayout);
464
465 static ssize_t status_show(struct device *dev, struct device_attribute *attr,
466 char *buf)
467 {
468 struct watchdog_device *wdd = dev_get_drvdata(dev);
469 struct watchdog_core_data *wd_data = wdd->wd_data;
470 unsigned int status;
471
472 mutex_lock(&wd_data->lock);
473 status = watchdog_get_status(wdd);
474 mutex_unlock(&wd_data->lock);
475
476 return sysfs_emit(buf, "0x%x\n", status);
477 }
478 static DEVICE_ATTR_RO(status);
479
480 static ssize_t bootstatus_show(struct device *dev,
481 struct device_attribute *attr, char *buf)
482 {
483 struct watchdog_device *wdd = dev_get_drvdata(dev);
484
485 return sysfs_emit(buf, "%u\n", wdd->bootstatus);
486 }
487 static DEVICE_ATTR_RO(bootstatus);
488
489 static ssize_t timeleft_show(struct device *dev, struct device_attribute *attr,
490 char *buf)
491 {
492 struct watchdog_device *wdd = dev_get_drvdata(dev);
493 struct watchdog_core_data *wd_data = wdd->wd_data;
494 ssize_t status;
495 unsigned int val;
496
497 mutex_lock(&wd_data->lock);
498 status = watchdog_get_timeleft(wdd, &val);
499 mutex_unlock(&wd_data->lock);
500 if (!status)
501 status = sysfs_emit(buf, "%u\n", val);
502
503 return status;
504 }
505 static DEVICE_ATTR_RO(timeleft);
506
507 static ssize_t timeout_show(struct device *dev, struct device_attribute *attr,
508 char *buf)
509 {
510 struct watchdog_device *wdd = dev_get_drvdata(dev);
511
512 return sysfs_emit(buf, "%u\n", wdd->timeout);
513 }
514 static DEVICE_ATTR_RO(timeout);
515
516 static ssize_t min_timeout_show(struct device *dev,
517 struct device_attribute *attr, char *buf)
518 {
519 struct watchdog_device *wdd = dev_get_drvdata(dev);
520
521 return sysfs_emit(buf, "%u\n", wdd->min_timeout);
522 }
523 static DEVICE_ATTR_RO(min_timeout);
524
525 static ssize_t max_timeout_show(struct device *dev,
526 struct device_attribute *attr, char *buf)
527 {
528 struct watchdog_device *wdd = dev_get_drvdata(dev);
529
530 return sysfs_emit(buf, "%u\n", wdd->max_timeout);
531 }
532 static DEVICE_ATTR_RO(max_timeout);
533
534 static ssize_t pretimeout_show(struct device *dev,
535 struct device_attribute *attr, char *buf)
536 {
537 struct watchdog_device *wdd = dev_get_drvdata(dev);
538
539 return sysfs_emit(buf, "%u\n", wdd->pretimeout);
540 }
541 static DEVICE_ATTR_RO(pretimeout);
542
543 static ssize_t identity_show(struct device *dev, struct device_attribute *attr,
544 char *buf)
545 {
546 struct watchdog_device *wdd = dev_get_drvdata(dev);
547
548 return sysfs_emit(buf, "%s\n", wdd->info->identity);
549 }
550 static DEVICE_ATTR_RO(identity);
551
552 static ssize_t state_show(struct device *dev, struct device_attribute *attr,
553 char *buf)
554 {
555 struct watchdog_device *wdd = dev_get_drvdata(dev);
556
557 if (watchdog_active(wdd))
558 return sysfs_emit(buf, "active\n");
559
560 return sysfs_emit(buf, "inactive\n");
561 }
562 static DEVICE_ATTR_RO(state);
563
564 static ssize_t pretimeout_available_governors_show(struct device *dev,
565 struct device_attribute *attr, char *buf)
566 {
567 return watchdog_pretimeout_available_governors_get(buf);
568 }
569 static DEVICE_ATTR_RO(pretimeout_available_governors);
570
571 static ssize_t pretimeout_governor_show(struct device *dev,
572 struct device_attribute *attr,
573 char *buf)
574 {
575 struct watchdog_device *wdd = dev_get_drvdata(dev);
576
577 return watchdog_pretimeout_governor_get(wdd, buf);
578 }
579
580 static ssize_t pretimeout_governor_store(struct device *dev,
581 struct device_attribute *attr,
582 const char *buf, size_t count)
583 {
584 struct watchdog_device *wdd = dev_get_drvdata(dev);
585 int ret = watchdog_pretimeout_governor_set(wdd, buf);
586
587 if (!ret)
588 ret = count;
589
590 return ret;
591 }
592 static DEVICE_ATTR_RW(pretimeout_governor);
593
594 static umode_t wdt_is_visible(struct kobject *kobj, struct attribute *attr,
595 int n)
596 {
597 struct device *dev = kobj_to_dev(kobj);
598 struct watchdog_device *wdd = dev_get_drvdata(dev);
599 umode_t mode = attr->mode;
600
601 if (attr == &dev_attr_timeleft.attr && !wdd->ops->get_timeleft)
602 mode = 0;
603 else if (attr == &dev_attr_pretimeout.attr && !watchdog_have_pretimeout(wdd))
604 mode = 0;
605 else if ((attr == &dev_attr_pretimeout_governor.attr ||
606 attr == &dev_attr_pretimeout_available_governors.attr) &&
607 (!watchdog_have_pretimeout(wdd) || !IS_ENABLED(CONFIG_WATCHDOG_PRETIMEOUT_GOV)))
608 mode = 0;
609
610 return mode;
611 }
612 static struct attribute *wdt_attrs[] = {
613 &dev_attr_state.attr,
614 &dev_attr_identity.attr,
615 &dev_attr_timeout.attr,
616 &dev_attr_min_timeout.attr,
617 &dev_attr_max_timeout.attr,
618 &dev_attr_pretimeout.attr,
619 &dev_attr_timeleft.attr,
620 &dev_attr_bootstatus.attr,
621 &dev_attr_status.attr,
622 &dev_attr_nowayout.attr,
623 &dev_attr_pretimeout_governor.attr,
624 &dev_attr_pretimeout_available_governors.attr,
625 NULL,
626 };
627
628 static const struct attribute_group wdt_group = {
629 .attrs = wdt_attrs,
630 .is_visible = wdt_is_visible,
631 };
632 __ATTRIBUTE_GROUPS(wdt);
633 #else
634 #define wdt_groups NULL
635 #endif
636
637 /*
638 * watchdog_ioctl_op: call the watchdog drivers ioctl op if defined
639 * @wdd: the watchdog device to do the ioctl on
640 * @cmd: watchdog command
641 * @arg: argument pointer
642 *
643 * The caller must hold wd_data->lock.
644 */
645
646 static int watchdog_ioctl_op(struct watchdog_device *wdd, unsigned int cmd,
647 unsigned long arg)
648 {
649 if (!wdd->ops->ioctl)
650 return -ENOIOCTLCMD;
651
652 return wdd->ops->ioctl(wdd, cmd, arg);
653 }
654
655 /*
656 * watchdog_write: writes to the watchdog.
657 * @file: file from VFS
658 * @data: user address of data
659 * @len: length of data
660 * @ppos: pointer to the file offset
661 *
662 * A write to a watchdog device is defined as a keepalive ping.
663 * Writing the magic 'V' sequence allows the next close to turn
664 * off the watchdog (if 'nowayout' is not set).
665 */
666
667 static ssize_t watchdog_write(struct file *file, const char __user *data,
668 size_t len, loff_t *ppos)
669 {
670 struct watchdog_core_data *wd_data = file->private_data;
671 struct watchdog_device *wdd;
672 int err;
673 size_t i;
674 char c;
675
676 if (len == 0)
677 return 0;
678
679 /*
680 * Note: just in case someone wrote the magic character
681 * five months ago...
682 */
683 clear_bit(_WDOG_ALLOW_RELEASE, &wd_data->status);
684
685 /* scan to see whether or not we got the magic character */
686 for (i = 0; i != len; i++) {
687 if (get_user(c, data + i))
688 return -EFAULT;
689 if (c == 'V')
690 set_bit(_WDOG_ALLOW_RELEASE, &wd_data->status);
691 }
692
693 /* someone wrote to us, so we send the watchdog a keepalive ping */
694
695 err = -ENODEV;
696 mutex_lock(&wd_data->lock);
697 wdd = wd_data->wdd;
698 if (wdd)
699 err = watchdog_ping(wdd);
700 mutex_unlock(&wd_data->lock);
701
702 if (err < 0)
703 return err;
704
705 return len;
706 }
707
708 /*
709 * watchdog_ioctl: handle the different ioctl's for the watchdog device.
710 * @file: file handle to the device
711 * @cmd: watchdog command
712 * @arg: argument pointer
713 *
714 * The watchdog API defines a common set of functions for all watchdogs
715 * according to their available features.
716 */
717
718 static long watchdog_ioctl(struct file *file, unsigned int cmd,
719 unsigned long arg)
720 {
721 struct watchdog_core_data *wd_data = file->private_data;
722 void __user *argp = (void __user *)arg;
723 struct watchdog_device *wdd;
724 int __user *p = argp;
725 unsigned int val;
726 int err;
727
728 mutex_lock(&wd_data->lock);
729
730 wdd = wd_data->wdd;
731 if (!wdd) {
732 err = -ENODEV;
733 goto out_ioctl;
734 }
735
736 err = watchdog_ioctl_op(wdd, cmd, arg);
737 if (err != -ENOIOCTLCMD)
738 goto out_ioctl;
739
740 switch (cmd) {
741 case WDIOC_GETSUPPORT:
742 err = copy_to_user(argp, wdd->info,
743 sizeof(struct watchdog_info)) ? -EFAULT : 0;
744 break;
745 case WDIOC_GETSTATUS:
746 val = watchdog_get_status(wdd);
747 err = put_user(val, p);
748 break;
749 case WDIOC_GETBOOTSTATUS:
750 err = put_user(wdd->bootstatus, p);
751 break;
752 case WDIOC_SETOPTIONS:
753 if (get_user(val, p)) {
754 err = -EFAULT;
755 break;
756 }
757 if (val & WDIOS_DISABLECARD) {
758 err = watchdog_stop(wdd);
759 if (err < 0)
760 break;
761 }
762 if (val & WDIOS_ENABLECARD)
763 err = watchdog_start(wdd);
764 break;
765 case WDIOC_KEEPALIVE:
766 if (!(wdd->info->options & WDIOF_KEEPALIVEPING)) {
767 err = -EOPNOTSUPP;
768 break;
769 }
770 err = watchdog_ping(wdd);
771 break;
772 case WDIOC_SETTIMEOUT:
773 if (get_user(val, p)) {
774 err = -EFAULT;
775 break;
776 }
777 err = watchdog_set_timeout(wdd, val);
778 if (err < 0)
779 break;
780 /* If the watchdog is active then we send a keepalive ping
781 * to make sure that the watchdog keep's running (and if
782 * possible that it takes the new timeout) */
783 err = watchdog_ping(wdd);
784 if (err < 0)
785 break;
786 fallthrough;
787 case WDIOC_GETTIMEOUT:
788 /* timeout == 0 means that we don't know the timeout */
789 if (wdd->timeout == 0) {
790 err = -EOPNOTSUPP;
791 break;
792 }
793 err = put_user(wdd->timeout, p);
794 break;
795 case WDIOC_GETTIMELEFT:
796 err = watchdog_get_timeleft(wdd, &val);
797 if (err < 0)
798 break;
799 err = put_user(val, p);
800 break;
801 case WDIOC_SETPRETIMEOUT:
802 if (get_user(val, p)) {
803 err = -EFAULT;
804 break;
805 }
806 err = watchdog_set_pretimeout(wdd, val);
807 break;
808 case WDIOC_GETPRETIMEOUT:
809 err = put_user(wdd->pretimeout, p);
810 break;
811 default:
812 err = -ENOTTY;
813 break;
814 }
815
816 out_ioctl:
817 mutex_unlock(&wd_data->lock);
818 return err;
819 }
820
821 /*
822 * watchdog_open: open the /dev/watchdog* devices.
823 * @inode: inode of device
824 * @file: file handle to device
825 *
826 * When the /dev/watchdog* device gets opened, we start the watchdog.
827 * Watch out: the /dev/watchdog device is single open, so we make sure
828 * it can only be opened once.
829 */
830
831 static int watchdog_open(struct inode *inode, struct file *file)
832 {
833 struct watchdog_core_data *wd_data;
834 struct watchdog_device *wdd;
835 bool hw_running;
836 int err;
837
838 /* Get the corresponding watchdog device */
839 if (imajor(inode) == MISC_MAJOR)
840 wd_data = old_wd_data;
841 else
842 wd_data = container_of(inode->i_cdev, struct watchdog_core_data,
843 cdev);
844
845 /* the watchdog is single open! */
846 if (test_and_set_bit(_WDOG_DEV_OPEN, &wd_data->status))
847 return -EBUSY;
848
849 wdd = wd_data->wdd;
850
851 /*
852 * If the /dev/watchdog device is open, we don't want the module
853 * to be unloaded.
854 */
855 hw_running = watchdog_hw_running(wdd);
856 if (!hw_running && !try_module_get(wdd->ops->owner)) {
857 err = -EBUSY;
858 goto out_clear;
859 }
860
861 err = watchdog_start(wdd);
862 if (err < 0)
863 goto out_mod;
864
865 file->private_data = wd_data;
866
867 if (!hw_running)
868 get_device(&wd_data->dev);
869
870 /*
871 * open_timeout only applies for the first open from
872 * userspace. Set open_deadline to infinity so that the kernel
873 * will take care of an always-running hardware watchdog in
874 * case the device gets magic-closed or WDIOS_DISABLECARD is
875 * applied.
876 */
877 wd_data->open_deadline = KTIME_MAX;
878
879 /* dev/watchdog is a virtual (and thus non-seekable) filesystem */
880 return stream_open(inode, file);
881
882 out_mod:
883 module_put(wd_data->wdd->ops->owner);
884 out_clear:
885 clear_bit(_WDOG_DEV_OPEN, &wd_data->status);
886 return err;
887 }
888
889 static void watchdog_core_data_release(struct device *dev)
890 {
891 struct watchdog_core_data *wd_data;
892
893 wd_data = container_of(dev, struct watchdog_core_data, dev);
894
895 kfree(wd_data);
896 }
897
898 /*
899 * watchdog_release: release the watchdog device.
900 * @inode: inode of device
901 * @file: file handle to device
902 *
903 * This is the code for when /dev/watchdog gets closed. We will only
904 * stop the watchdog when we have received the magic char (and nowayout
905 * was not set), else the watchdog will keep running.
906 */
907
908 static int watchdog_release(struct inode *inode, struct file *file)
909 {
910 struct watchdog_core_data *wd_data = file->private_data;
911 struct watchdog_device *wdd;
912 int err = -EBUSY;
913 bool running;
914
915 mutex_lock(&wd_data->lock);
916
917 wdd = wd_data->wdd;
918 if (!wdd)
919 goto done;
920
921 /*
922 * We only stop the watchdog if we received the magic character
923 * or if WDIOF_MAGICCLOSE is not set. If nowayout was set then
924 * watchdog_stop will fail.
925 */
926 if (!watchdog_active(wdd))
927 err = 0;
928 else if (test_and_clear_bit(_WDOG_ALLOW_RELEASE, &wd_data->status) ||
929 !(wdd->info->options & WDIOF_MAGICCLOSE))
930 err = watchdog_stop(wdd);
931
932 /* If the watchdog was not stopped, send a keepalive ping */
933 if (err < 0) {
934 pr_crit("watchdog%d: watchdog did not stop!\n", wdd->id);
935 watchdog_ping(wdd);
936 }
937
938 watchdog_update_worker(wdd);
939
940 /* make sure that /dev/watchdog can be re-opened */
941 clear_bit(_WDOG_DEV_OPEN, &wd_data->status);
942
943 done:
944 running = wdd && watchdog_hw_running(wdd);
945 mutex_unlock(&wd_data->lock);
946 /*
947 * Allow the owner module to be unloaded again unless the watchdog
948 * is still running. If the watchdog is still running, it can not
949 * be stopped, and its driver must not be unloaded.
950 */
951 if (!running) {
952 module_put(wd_data->cdev.owner);
953 put_device(&wd_data->dev);
954 }
955 return 0;
956 }
957
958 static const struct file_operations watchdog_fops = {
959 .owner = THIS_MODULE,
960 .write = watchdog_write,
961 .unlocked_ioctl = watchdog_ioctl,
962 .compat_ioctl = compat_ptr_ioctl,
963 .open = watchdog_open,
964 .release = watchdog_release,
965 };
966
967 static struct miscdevice watchdog_miscdev = {
968 .minor = WATCHDOG_MINOR,
969 .name = "watchdog",
970 .fops = &watchdog_fops,
971 };
972
973 static struct class watchdog_class = {
974 .name = "watchdog",
975 .owner = THIS_MODULE,
976 .dev_groups = wdt_groups,
977 };
978
979 /*
980 * watchdog_cdev_register: register watchdog character device
981 * @wdd: watchdog device
982 *
983 * Register a watchdog character device including handling the legacy
984 * /dev/watchdog node. /dev/watchdog is actually a miscdevice and
985 * thus we set it up like that.
986 */
987
988 static int watchdog_cdev_register(struct watchdog_device *wdd)
989 {
990 struct watchdog_core_data *wd_data;
991 int err;
992
993 wd_data = kzalloc(sizeof(struct watchdog_core_data), GFP_KERNEL);
994 if (!wd_data)
995 return -ENOMEM;
996 mutex_init(&wd_data->lock);
997
998 wd_data->wdd = wdd;
999 wdd->wd_data = wd_data;
1000
1001 if (IS_ERR_OR_NULL(watchdog_kworker)) {
1002 kfree(wd_data);
1003 return -ENODEV;
1004 }
1005
1006 device_initialize(&wd_data->dev);
1007 wd_data->dev.devt = MKDEV(MAJOR(watchdog_devt), wdd->id);
1008 wd_data->dev.class = &watchdog_class;
1009 wd_data->dev.parent = wdd->parent;
1010 wd_data->dev.groups = wdd->groups;
1011 wd_data->dev.release = watchdog_core_data_release;
1012 dev_set_drvdata(&wd_data->dev, wdd);
1013 dev_set_name(&wd_data->dev, "watchdog%d", wdd->id);
1014
1015 kthread_init_work(&wd_data->work, watchdog_ping_work);
1016 hrtimer_init(&wd_data->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1017 wd_data->timer.function = watchdog_timer_expired;
1018 watchdog_hrtimer_pretimeout_init(wdd);
1019
1020 if (wdd->id == 0) {
1021 old_wd_data = wd_data;
1022 watchdog_miscdev.parent = wdd->parent;
1023 err = misc_register(&watchdog_miscdev);
1024 if (err != 0) {
1025 pr_err("%s: cannot register miscdev on minor=%d (err=%d).\n",
1026 wdd->info->identity, WATCHDOG_MINOR, err);
1027 if (err == -EBUSY)
1028 pr_err("%s: a legacy watchdog module is probably present.\n",
1029 wdd->info->identity);
1030 old_wd_data = NULL;
1031 put_device(&wd_data->dev);
1032 return err;
1033 }
1034 }
1035
1036 /* Fill in the data structures */
1037 cdev_init(&wd_data->cdev, &watchdog_fops);
1038
1039 /* Add the device */
1040 err = cdev_device_add(&wd_data->cdev, &wd_data->dev);
1041 if (err) {
1042 pr_err("watchdog%d unable to add device %d:%d\n",
1043 wdd->id, MAJOR(watchdog_devt), wdd->id);
1044 if (wdd->id == 0) {
1045 misc_deregister(&watchdog_miscdev);
1046 old_wd_data = NULL;
1047 put_device(&wd_data->dev);
1048 }
1049 return err;
1050 }
1051
1052 wd_data->cdev.owner = wdd->ops->owner;
1053
1054 /* Record time of most recent heartbeat as 'just before now'. */
1055 wd_data->last_hw_keepalive = ktime_sub(ktime_get(), 1);
1056 watchdog_set_open_deadline(wd_data);
1057
1058 /*
1059 * If the watchdog is running, prevent its driver from being unloaded,
1060 * and schedule an immediate ping.
1061 */
1062 if (watchdog_hw_running(wdd)) {
1063 __module_get(wdd->ops->owner);
1064 get_device(&wd_data->dev);
1065 if (handle_boot_enabled)
1066 hrtimer_start(&wd_data->timer, 0,
1067 HRTIMER_MODE_REL_HARD);
1068 else
1069 pr_info("watchdog%d running and kernel based pre-userspace handler disabled\n",
1070 wdd->id);
1071 }
1072
1073 return 0;
1074 }
1075
1076 /*
1077 * watchdog_cdev_unregister: unregister watchdog character device
1078 * @watchdog: watchdog device
1079 *
1080 * Unregister watchdog character device and if needed the legacy
1081 * /dev/watchdog device.
1082 */
1083
1084 static void watchdog_cdev_unregister(struct watchdog_device *wdd)
1085 {
1086 struct watchdog_core_data *wd_data = wdd->wd_data;
1087
1088 cdev_device_del(&wd_data->cdev, &wd_data->dev);
1089 if (wdd->id == 0) {
1090 misc_deregister(&watchdog_miscdev);
1091 old_wd_data = NULL;
1092 }
1093
1094 if (watchdog_active(wdd) &&
1095 test_bit(WDOG_STOP_ON_UNREGISTER, &wdd->status)) {
1096 watchdog_stop(wdd);
1097 }
1098
1099 watchdog_hrtimer_pretimeout_stop(wdd);
1100
1101 mutex_lock(&wd_data->lock);
1102 wd_data->wdd = NULL;
1103 wdd->wd_data = NULL;
1104 mutex_unlock(&wd_data->lock);
1105
1106 hrtimer_cancel(&wd_data->timer);
1107 kthread_cancel_work_sync(&wd_data->work);
1108
1109 put_device(&wd_data->dev);
1110 }
1111
1112 /*
1113 * watchdog_dev_register: register a watchdog device
1114 * @wdd: watchdog device
1115 *
1116 * Register a watchdog device including handling the legacy
1117 * /dev/watchdog node. /dev/watchdog is actually a miscdevice and
1118 * thus we set it up like that.
1119 */
1120
1121 int watchdog_dev_register(struct watchdog_device *wdd)
1122 {
1123 int ret;
1124
1125 ret = watchdog_cdev_register(wdd);
1126 if (ret)
1127 return ret;
1128
1129 ret = watchdog_register_pretimeout(wdd);
1130 if (ret)
1131 watchdog_cdev_unregister(wdd);
1132
1133 return ret;
1134 }
1135
1136 /*
1137 * watchdog_dev_unregister: unregister a watchdog device
1138 * @watchdog: watchdog device
1139 *
1140 * Unregister watchdog device and if needed the legacy
1141 * /dev/watchdog device.
1142 */
1143
1144 void watchdog_dev_unregister(struct watchdog_device *wdd)
1145 {
1146 watchdog_unregister_pretimeout(wdd);
1147 watchdog_cdev_unregister(wdd);
1148 }
1149
1150 /*
1151 * watchdog_set_last_hw_keepalive: set last HW keepalive time for watchdog
1152 * @wdd: watchdog device
1153 * @last_ping_ms: time since last HW heartbeat
1154 *
1155 * Adjusts the last known HW keepalive time for a watchdog timer.
1156 * This is needed if the watchdog is already running when the probe
1157 * function is called, and it can't be pinged immediately. This
1158 * function must be called immediately after watchdog registration,
1159 * and min_hw_heartbeat_ms must be set for this to be useful.
1160 */
1161 int watchdog_set_last_hw_keepalive(struct watchdog_device *wdd,
1162 unsigned int last_ping_ms)
1163 {
1164 struct watchdog_core_data *wd_data;
1165 ktime_t now;
1166
1167 if (!wdd)
1168 return -EINVAL;
1169
1170 wd_data = wdd->wd_data;
1171
1172 now = ktime_get();
1173
1174 wd_data->last_hw_keepalive = ktime_sub(now, ms_to_ktime(last_ping_ms));
1175
1176 if (watchdog_hw_running(wdd) && handle_boot_enabled)
1177 return __watchdog_ping(wdd);
1178
1179 return 0;
1180 }
1181 EXPORT_SYMBOL_GPL(watchdog_set_last_hw_keepalive);
1182
1183 /*
1184 * watchdog_dev_init: init dev part of watchdog core
1185 *
1186 * Allocate a range of chardev nodes to use for watchdog devices
1187 */
1188
1189 int __init watchdog_dev_init(void)
1190 {
1191 int err;
1192
1193 watchdog_kworker = kthread_create_worker(0, "watchdogd");
1194 if (IS_ERR(watchdog_kworker)) {
1195 pr_err("Failed to create watchdog kworker\n");
1196 return PTR_ERR(watchdog_kworker);
1197 }
1198 sched_set_fifo(watchdog_kworker->task);
1199
1200 err = class_register(&watchdog_class);
1201 if (err < 0) {
1202 pr_err("couldn't register class\n");
1203 goto err_register;
1204 }
1205
1206 err = alloc_chrdev_region(&watchdog_devt, 0, MAX_DOGS, "watchdog");
1207 if (err < 0) {
1208 pr_err("watchdog: unable to allocate char dev region\n");
1209 goto err_alloc;
1210 }
1211
1212 return 0;
1213
1214 err_alloc:
1215 class_unregister(&watchdog_class);
1216 err_register:
1217 kthread_destroy_worker(watchdog_kworker);
1218 return err;
1219 }
1220
1221 /*
1222 * watchdog_dev_exit: exit dev part of watchdog core
1223 *
1224 * Release the range of chardev nodes used for watchdog devices
1225 */
1226
1227 void __exit watchdog_dev_exit(void)
1228 {
1229 unregister_chrdev_region(watchdog_devt, MAX_DOGS);
1230 class_unregister(&watchdog_class);
1231 kthread_destroy_worker(watchdog_kworker);
1232 }
1233
1234 int watchdog_dev_suspend(struct watchdog_device *wdd)
1235 {
1236 struct watchdog_core_data *wd_data = wdd->wd_data;
1237 int ret = 0;
1238
1239 if (!wdd->wd_data)
1240 return -ENODEV;
1241
1242 /* ping for the last time before suspend */
1243 mutex_lock(&wd_data->lock);
1244 if (watchdog_worker_should_ping(wd_data))
1245 ret = __watchdog_ping(wd_data->wdd);
1246 mutex_unlock(&wd_data->lock);
1247
1248 if (ret)
1249 return ret;
1250
1251 /*
1252 * make sure that watchdog worker will not kick in when the wdog is
1253 * suspended
1254 */
1255 hrtimer_cancel(&wd_data->timer);
1256 kthread_cancel_work_sync(&wd_data->work);
1257
1258 return 0;
1259 }
1260
1261 int watchdog_dev_resume(struct watchdog_device *wdd)
1262 {
1263 struct watchdog_core_data *wd_data = wdd->wd_data;
1264 int ret = 0;
1265
1266 if (!wdd->wd_data)
1267 return -ENODEV;
1268
1269 /*
1270 * __watchdog_ping will also retrigger hrtimer and therefore restore the
1271 * ping worker if needed.
1272 */
1273 mutex_lock(&wd_data->lock);
1274 if (watchdog_worker_should_ping(wd_data))
1275 ret = __watchdog_ping(wd_data->wdd);
1276 mutex_unlock(&wd_data->lock);
1277
1278 return ret;
1279 }
1280
1281 module_param(handle_boot_enabled, bool, 0444);
1282 MODULE_PARM_DESC(handle_boot_enabled,
1283 "Watchdog core auto-updates boot enabled watchdogs before userspace takes over (default="
1284 __MODULE_STRING(IS_ENABLED(CONFIG_WATCHDOG_HANDLE_BOOT_ENABLED)) ")");
1285
1286 module_param(open_timeout, uint, 0644);
1287 MODULE_PARM_DESC(open_timeout,
1288 "Maximum time (in seconds, 0 means infinity) for userspace to take over a running watchdog (default="
1289 __MODULE_STRING(CONFIG_WATCHDOG_OPEN_TIMEOUT) ")");