]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/xen/events.c
Merge branch 'stable/cleanups-3.2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-bionic-kernel.git] / drivers / xen / events.c
1 /*
2 * Xen event channels
3 *
4 * Xen models interrupts with abstract event channels. Because each
5 * domain gets 1024 event channels, but NR_IRQ is not that large, we
6 * must dynamically map irqs<->event channels. The event channels
7 * interface with the rest of the kernel by defining a xen interrupt
8 * chip. When an event is received, it is mapped to an irq and sent
9 * through the normal interrupt processing path.
10 *
11 * There are four kinds of events which can be mapped to an event
12 * channel:
13 *
14 * 1. Inter-domain notifications. This includes all the virtual
15 * device events, since they're driven by front-ends in another domain
16 * (typically dom0).
17 * 2. VIRQs, typically used for timers. These are per-cpu events.
18 * 3. IPIs.
19 * 4. PIRQs - Hardware interrupts.
20 *
21 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
22 */
23
24 #include <linux/linkage.h>
25 #include <linux/interrupt.h>
26 #include <linux/irq.h>
27 #include <linux/module.h>
28 #include <linux/string.h>
29 #include <linux/bootmem.h>
30 #include <linux/slab.h>
31 #include <linux/irqnr.h>
32 #include <linux/pci.h>
33
34 #include <asm/desc.h>
35 #include <asm/ptrace.h>
36 #include <asm/irq.h>
37 #include <asm/idle.h>
38 #include <asm/io_apic.h>
39 #include <asm/sync_bitops.h>
40 #include <asm/xen/pci.h>
41 #include <asm/xen/hypercall.h>
42 #include <asm/xen/hypervisor.h>
43
44 #include <xen/xen.h>
45 #include <xen/hvm.h>
46 #include <xen/xen-ops.h>
47 #include <xen/events.h>
48 #include <xen/interface/xen.h>
49 #include <xen/interface/event_channel.h>
50 #include <xen/interface/hvm/hvm_op.h>
51 #include <xen/interface/hvm/params.h>
52
53 /*
54 * This lock protects updates to the following mapping and reference-count
55 * arrays. The lock does not need to be acquired to read the mapping tables.
56 */
57 static DEFINE_MUTEX(irq_mapping_update_lock);
58
59 static LIST_HEAD(xen_irq_list_head);
60
61 /* IRQ <-> VIRQ mapping. */
62 static DEFINE_PER_CPU(int [NR_VIRQS], virq_to_irq) = {[0 ... NR_VIRQS-1] = -1};
63
64 /* IRQ <-> IPI mapping */
65 static DEFINE_PER_CPU(int [XEN_NR_IPIS], ipi_to_irq) = {[0 ... XEN_NR_IPIS-1] = -1};
66
67 /* Interrupt types. */
68 enum xen_irq_type {
69 IRQT_UNBOUND = 0,
70 IRQT_PIRQ,
71 IRQT_VIRQ,
72 IRQT_IPI,
73 IRQT_EVTCHN
74 };
75
76 /*
77 * Packed IRQ information:
78 * type - enum xen_irq_type
79 * event channel - irq->event channel mapping
80 * cpu - cpu this event channel is bound to
81 * index - type-specific information:
82 * PIRQ - vector, with MSB being "needs EIO", or physical IRQ of the HVM
83 * guest, or GSI (real passthrough IRQ) of the device.
84 * VIRQ - virq number
85 * IPI - IPI vector
86 * EVTCHN -
87 */
88 struct irq_info {
89 struct list_head list;
90 enum xen_irq_type type; /* type */
91 unsigned irq;
92 unsigned short evtchn; /* event channel */
93 unsigned short cpu; /* cpu bound */
94
95 union {
96 unsigned short virq;
97 enum ipi_vector ipi;
98 struct {
99 unsigned short pirq;
100 unsigned short gsi;
101 unsigned char vector;
102 unsigned char flags;
103 uint16_t domid;
104 } pirq;
105 } u;
106 };
107 #define PIRQ_NEEDS_EOI (1 << 0)
108 #define PIRQ_SHAREABLE (1 << 1)
109
110 static int *evtchn_to_irq;
111
112 static DEFINE_PER_CPU(unsigned long [NR_EVENT_CHANNELS/BITS_PER_LONG],
113 cpu_evtchn_mask);
114
115 /* Xen will never allocate port zero for any purpose. */
116 #define VALID_EVTCHN(chn) ((chn) != 0)
117
118 static struct irq_chip xen_dynamic_chip;
119 static struct irq_chip xen_percpu_chip;
120 static struct irq_chip xen_pirq_chip;
121 static void enable_dynirq(struct irq_data *data);
122 static void disable_dynirq(struct irq_data *data);
123
124 /* Get info for IRQ */
125 static struct irq_info *info_for_irq(unsigned irq)
126 {
127 return irq_get_handler_data(irq);
128 }
129
130 /* Constructors for packed IRQ information. */
131 static void xen_irq_info_common_init(struct irq_info *info,
132 unsigned irq,
133 enum xen_irq_type type,
134 unsigned short evtchn,
135 unsigned short cpu)
136 {
137
138 BUG_ON(info->type != IRQT_UNBOUND && info->type != type);
139
140 info->type = type;
141 info->irq = irq;
142 info->evtchn = evtchn;
143 info->cpu = cpu;
144
145 evtchn_to_irq[evtchn] = irq;
146 }
147
148 static void xen_irq_info_evtchn_init(unsigned irq,
149 unsigned short evtchn)
150 {
151 struct irq_info *info = info_for_irq(irq);
152
153 xen_irq_info_common_init(info, irq, IRQT_EVTCHN, evtchn, 0);
154 }
155
156 static void xen_irq_info_ipi_init(unsigned cpu,
157 unsigned irq,
158 unsigned short evtchn,
159 enum ipi_vector ipi)
160 {
161 struct irq_info *info = info_for_irq(irq);
162
163 xen_irq_info_common_init(info, irq, IRQT_IPI, evtchn, 0);
164
165 info->u.ipi = ipi;
166
167 per_cpu(ipi_to_irq, cpu)[ipi] = irq;
168 }
169
170 static void xen_irq_info_virq_init(unsigned cpu,
171 unsigned irq,
172 unsigned short evtchn,
173 unsigned short virq)
174 {
175 struct irq_info *info = info_for_irq(irq);
176
177 xen_irq_info_common_init(info, irq, IRQT_VIRQ, evtchn, 0);
178
179 info->u.virq = virq;
180
181 per_cpu(virq_to_irq, cpu)[virq] = irq;
182 }
183
184 static void xen_irq_info_pirq_init(unsigned irq,
185 unsigned short evtchn,
186 unsigned short pirq,
187 unsigned short gsi,
188 unsigned short vector,
189 uint16_t domid,
190 unsigned char flags)
191 {
192 struct irq_info *info = info_for_irq(irq);
193
194 xen_irq_info_common_init(info, irq, IRQT_PIRQ, evtchn, 0);
195
196 info->u.pirq.pirq = pirq;
197 info->u.pirq.gsi = gsi;
198 info->u.pirq.vector = vector;
199 info->u.pirq.domid = domid;
200 info->u.pirq.flags = flags;
201 }
202
203 /*
204 * Accessors for packed IRQ information.
205 */
206 static unsigned int evtchn_from_irq(unsigned irq)
207 {
208 if (unlikely(WARN(irq < 0 || irq >= nr_irqs, "Invalid irq %d!\n", irq)))
209 return 0;
210
211 return info_for_irq(irq)->evtchn;
212 }
213
214 unsigned irq_from_evtchn(unsigned int evtchn)
215 {
216 return evtchn_to_irq[evtchn];
217 }
218 EXPORT_SYMBOL_GPL(irq_from_evtchn);
219
220 static enum ipi_vector ipi_from_irq(unsigned irq)
221 {
222 struct irq_info *info = info_for_irq(irq);
223
224 BUG_ON(info == NULL);
225 BUG_ON(info->type != IRQT_IPI);
226
227 return info->u.ipi;
228 }
229
230 static unsigned virq_from_irq(unsigned irq)
231 {
232 struct irq_info *info = info_for_irq(irq);
233
234 BUG_ON(info == NULL);
235 BUG_ON(info->type != IRQT_VIRQ);
236
237 return info->u.virq;
238 }
239
240 static unsigned pirq_from_irq(unsigned irq)
241 {
242 struct irq_info *info = info_for_irq(irq);
243
244 BUG_ON(info == NULL);
245 BUG_ON(info->type != IRQT_PIRQ);
246
247 return info->u.pirq.pirq;
248 }
249
250 static enum xen_irq_type type_from_irq(unsigned irq)
251 {
252 return info_for_irq(irq)->type;
253 }
254
255 static unsigned cpu_from_irq(unsigned irq)
256 {
257 return info_for_irq(irq)->cpu;
258 }
259
260 static unsigned int cpu_from_evtchn(unsigned int evtchn)
261 {
262 int irq = evtchn_to_irq[evtchn];
263 unsigned ret = 0;
264
265 if (irq != -1)
266 ret = cpu_from_irq(irq);
267
268 return ret;
269 }
270
271 static bool pirq_needs_eoi(unsigned irq)
272 {
273 struct irq_info *info = info_for_irq(irq);
274
275 BUG_ON(info->type != IRQT_PIRQ);
276
277 return info->u.pirq.flags & PIRQ_NEEDS_EOI;
278 }
279
280 static inline unsigned long active_evtchns(unsigned int cpu,
281 struct shared_info *sh,
282 unsigned int idx)
283 {
284 return sh->evtchn_pending[idx] &
285 per_cpu(cpu_evtchn_mask, cpu)[idx] &
286 ~sh->evtchn_mask[idx];
287 }
288
289 static void bind_evtchn_to_cpu(unsigned int chn, unsigned int cpu)
290 {
291 int irq = evtchn_to_irq[chn];
292
293 BUG_ON(irq == -1);
294 #ifdef CONFIG_SMP
295 cpumask_copy(irq_to_desc(irq)->irq_data.affinity, cpumask_of(cpu));
296 #endif
297
298 clear_bit(chn, per_cpu(cpu_evtchn_mask, cpu_from_irq(irq)));
299 set_bit(chn, per_cpu(cpu_evtchn_mask, cpu));
300
301 info_for_irq(irq)->cpu = cpu;
302 }
303
304 static void init_evtchn_cpu_bindings(void)
305 {
306 int i;
307 #ifdef CONFIG_SMP
308 struct irq_info *info;
309
310 /* By default all event channels notify CPU#0. */
311 list_for_each_entry(info, &xen_irq_list_head, list) {
312 struct irq_desc *desc = irq_to_desc(info->irq);
313 cpumask_copy(desc->irq_data.affinity, cpumask_of(0));
314 }
315 #endif
316
317 for_each_possible_cpu(i)
318 memset(per_cpu(cpu_evtchn_mask, i),
319 (i == 0) ? ~0 : 0, sizeof(*per_cpu(cpu_evtchn_mask, i)));
320 }
321
322 static inline void clear_evtchn(int port)
323 {
324 struct shared_info *s = HYPERVISOR_shared_info;
325 sync_clear_bit(port, &s->evtchn_pending[0]);
326 }
327
328 static inline void set_evtchn(int port)
329 {
330 struct shared_info *s = HYPERVISOR_shared_info;
331 sync_set_bit(port, &s->evtchn_pending[0]);
332 }
333
334 static inline int test_evtchn(int port)
335 {
336 struct shared_info *s = HYPERVISOR_shared_info;
337 return sync_test_bit(port, &s->evtchn_pending[0]);
338 }
339
340
341 /**
342 * notify_remote_via_irq - send event to remote end of event channel via irq
343 * @irq: irq of event channel to send event to
344 *
345 * Unlike notify_remote_via_evtchn(), this is safe to use across
346 * save/restore. Notifications on a broken connection are silently
347 * dropped.
348 */
349 void notify_remote_via_irq(int irq)
350 {
351 int evtchn = evtchn_from_irq(irq);
352
353 if (VALID_EVTCHN(evtchn))
354 notify_remote_via_evtchn(evtchn);
355 }
356 EXPORT_SYMBOL_GPL(notify_remote_via_irq);
357
358 static void mask_evtchn(int port)
359 {
360 struct shared_info *s = HYPERVISOR_shared_info;
361 sync_set_bit(port, &s->evtchn_mask[0]);
362 }
363
364 static void unmask_evtchn(int port)
365 {
366 struct shared_info *s = HYPERVISOR_shared_info;
367 unsigned int cpu = get_cpu();
368
369 BUG_ON(!irqs_disabled());
370
371 /* Slow path (hypercall) if this is a non-local port. */
372 if (unlikely(cpu != cpu_from_evtchn(port))) {
373 struct evtchn_unmask unmask = { .port = port };
374 (void)HYPERVISOR_event_channel_op(EVTCHNOP_unmask, &unmask);
375 } else {
376 struct vcpu_info *vcpu_info = __this_cpu_read(xen_vcpu);
377
378 sync_clear_bit(port, &s->evtchn_mask[0]);
379
380 /*
381 * The following is basically the equivalent of
382 * 'hw_resend_irq'. Just like a real IO-APIC we 'lose
383 * the interrupt edge' if the channel is masked.
384 */
385 if (sync_test_bit(port, &s->evtchn_pending[0]) &&
386 !sync_test_and_set_bit(port / BITS_PER_LONG,
387 &vcpu_info->evtchn_pending_sel))
388 vcpu_info->evtchn_upcall_pending = 1;
389 }
390
391 put_cpu();
392 }
393
394 static void xen_irq_init(unsigned irq)
395 {
396 struct irq_info *info;
397 #ifdef CONFIG_SMP
398 struct irq_desc *desc = irq_to_desc(irq);
399
400 /* By default all event channels notify CPU#0. */
401 cpumask_copy(desc->irq_data.affinity, cpumask_of(0));
402 #endif
403
404 info = kzalloc(sizeof(*info), GFP_KERNEL);
405 if (info == NULL)
406 panic("Unable to allocate metadata for IRQ%d\n", irq);
407
408 info->type = IRQT_UNBOUND;
409
410 irq_set_handler_data(irq, info);
411
412 list_add_tail(&info->list, &xen_irq_list_head);
413 }
414
415 static int __must_check xen_allocate_irq_dynamic(void)
416 {
417 int first = 0;
418 int irq;
419
420 #ifdef CONFIG_X86_IO_APIC
421 /*
422 * For an HVM guest or domain 0 which see "real" (emulated or
423 * actual respectively) GSIs we allocate dynamic IRQs
424 * e.g. those corresponding to event channels or MSIs
425 * etc. from the range above those "real" GSIs to avoid
426 * collisions.
427 */
428 if (xen_initial_domain() || xen_hvm_domain())
429 first = get_nr_irqs_gsi();
430 #endif
431
432 irq = irq_alloc_desc_from(first, -1);
433
434 if (irq >= 0)
435 xen_irq_init(irq);
436
437 return irq;
438 }
439
440 static int __must_check xen_allocate_irq_gsi(unsigned gsi)
441 {
442 int irq;
443
444 /*
445 * A PV guest has no concept of a GSI (since it has no ACPI
446 * nor access to/knowledge of the physical APICs). Therefore
447 * all IRQs are dynamically allocated from the entire IRQ
448 * space.
449 */
450 if (xen_pv_domain() && !xen_initial_domain())
451 return xen_allocate_irq_dynamic();
452
453 /* Legacy IRQ descriptors are already allocated by the arch. */
454 if (gsi < NR_IRQS_LEGACY)
455 irq = gsi;
456 else
457 irq = irq_alloc_desc_at(gsi, -1);
458
459 xen_irq_init(irq);
460
461 return irq;
462 }
463
464 static void xen_free_irq(unsigned irq)
465 {
466 struct irq_info *info = irq_get_handler_data(irq);
467
468 list_del(&info->list);
469
470 irq_set_handler_data(irq, NULL);
471
472 kfree(info);
473
474 /* Legacy IRQ descriptors are managed by the arch. */
475 if (irq < NR_IRQS_LEGACY)
476 return;
477
478 irq_free_desc(irq);
479 }
480
481 static void pirq_query_unmask(int irq)
482 {
483 struct physdev_irq_status_query irq_status;
484 struct irq_info *info = info_for_irq(irq);
485
486 BUG_ON(info->type != IRQT_PIRQ);
487
488 irq_status.irq = pirq_from_irq(irq);
489 if (HYPERVISOR_physdev_op(PHYSDEVOP_irq_status_query, &irq_status))
490 irq_status.flags = 0;
491
492 info->u.pirq.flags &= ~PIRQ_NEEDS_EOI;
493 if (irq_status.flags & XENIRQSTAT_needs_eoi)
494 info->u.pirq.flags |= PIRQ_NEEDS_EOI;
495 }
496
497 static bool probing_irq(int irq)
498 {
499 struct irq_desc *desc = irq_to_desc(irq);
500
501 return desc && desc->action == NULL;
502 }
503
504 static void eoi_pirq(struct irq_data *data)
505 {
506 int evtchn = evtchn_from_irq(data->irq);
507 struct physdev_eoi eoi = { .irq = pirq_from_irq(data->irq) };
508 int rc = 0;
509
510 irq_move_irq(data);
511
512 if (VALID_EVTCHN(evtchn))
513 clear_evtchn(evtchn);
514
515 if (pirq_needs_eoi(data->irq)) {
516 rc = HYPERVISOR_physdev_op(PHYSDEVOP_eoi, &eoi);
517 WARN_ON(rc);
518 }
519 }
520
521 static void mask_ack_pirq(struct irq_data *data)
522 {
523 disable_dynirq(data);
524 eoi_pirq(data);
525 }
526
527 static unsigned int __startup_pirq(unsigned int irq)
528 {
529 struct evtchn_bind_pirq bind_pirq;
530 struct irq_info *info = info_for_irq(irq);
531 int evtchn = evtchn_from_irq(irq);
532 int rc;
533
534 BUG_ON(info->type != IRQT_PIRQ);
535
536 if (VALID_EVTCHN(evtchn))
537 goto out;
538
539 bind_pirq.pirq = pirq_from_irq(irq);
540 /* NB. We are happy to share unless we are probing. */
541 bind_pirq.flags = info->u.pirq.flags & PIRQ_SHAREABLE ?
542 BIND_PIRQ__WILL_SHARE : 0;
543 rc = HYPERVISOR_event_channel_op(EVTCHNOP_bind_pirq, &bind_pirq);
544 if (rc != 0) {
545 if (!probing_irq(irq))
546 printk(KERN_INFO "Failed to obtain physical IRQ %d\n",
547 irq);
548 return 0;
549 }
550 evtchn = bind_pirq.port;
551
552 pirq_query_unmask(irq);
553
554 evtchn_to_irq[evtchn] = irq;
555 bind_evtchn_to_cpu(evtchn, 0);
556 info->evtchn = evtchn;
557
558 out:
559 unmask_evtchn(evtchn);
560 eoi_pirq(irq_get_irq_data(irq));
561
562 return 0;
563 }
564
565 static unsigned int startup_pirq(struct irq_data *data)
566 {
567 return __startup_pirq(data->irq);
568 }
569
570 static void shutdown_pirq(struct irq_data *data)
571 {
572 struct evtchn_close close;
573 unsigned int irq = data->irq;
574 struct irq_info *info = info_for_irq(irq);
575 int evtchn = evtchn_from_irq(irq);
576
577 BUG_ON(info->type != IRQT_PIRQ);
578
579 if (!VALID_EVTCHN(evtchn))
580 return;
581
582 mask_evtchn(evtchn);
583
584 close.port = evtchn;
585 if (HYPERVISOR_event_channel_op(EVTCHNOP_close, &close) != 0)
586 BUG();
587
588 bind_evtchn_to_cpu(evtchn, 0);
589 evtchn_to_irq[evtchn] = -1;
590 info->evtchn = 0;
591 }
592
593 static void enable_pirq(struct irq_data *data)
594 {
595 startup_pirq(data);
596 }
597
598 static void disable_pirq(struct irq_data *data)
599 {
600 disable_dynirq(data);
601 }
602
603 static int find_irq_by_gsi(unsigned gsi)
604 {
605 struct irq_info *info;
606
607 list_for_each_entry(info, &xen_irq_list_head, list) {
608 if (info->type != IRQT_PIRQ)
609 continue;
610
611 if (info->u.pirq.gsi == gsi)
612 return info->irq;
613 }
614
615 return -1;
616 }
617
618 /*
619 * Do not make any assumptions regarding the relationship between the
620 * IRQ number returned here and the Xen pirq argument.
621 *
622 * Note: We don't assign an event channel until the irq actually started
623 * up. Return an existing irq if we've already got one for the gsi.
624 *
625 * Shareable implies level triggered, not shareable implies edge
626 * triggered here.
627 */
628 int xen_bind_pirq_gsi_to_irq(unsigned gsi,
629 unsigned pirq, int shareable, char *name)
630 {
631 int irq = -1;
632 struct physdev_irq irq_op;
633
634 mutex_lock(&irq_mapping_update_lock);
635
636 irq = find_irq_by_gsi(gsi);
637 if (irq != -1) {
638 printk(KERN_INFO "xen_map_pirq_gsi: returning irq %d for gsi %u\n",
639 irq, gsi);
640 goto out; /* XXX need refcount? */
641 }
642
643 irq = xen_allocate_irq_gsi(gsi);
644 if (irq < 0)
645 goto out;
646
647 irq_op.irq = irq;
648 irq_op.vector = 0;
649
650 /* Only the privileged domain can do this. For non-priv, the pcifront
651 * driver provides a PCI bus that does the call to do exactly
652 * this in the priv domain. */
653 if (xen_initial_domain() &&
654 HYPERVISOR_physdev_op(PHYSDEVOP_alloc_irq_vector, &irq_op)) {
655 xen_free_irq(irq);
656 irq = -ENOSPC;
657 goto out;
658 }
659
660 xen_irq_info_pirq_init(irq, 0, pirq, gsi, irq_op.vector, DOMID_SELF,
661 shareable ? PIRQ_SHAREABLE : 0);
662
663 pirq_query_unmask(irq);
664 /* We try to use the handler with the appropriate semantic for the
665 * type of interrupt: if the interrupt is an edge triggered
666 * interrupt we use handle_edge_irq.
667 *
668 * On the other hand if the interrupt is level triggered we use
669 * handle_fasteoi_irq like the native code does for this kind of
670 * interrupts.
671 *
672 * Depending on the Xen version, pirq_needs_eoi might return true
673 * not only for level triggered interrupts but for edge triggered
674 * interrupts too. In any case Xen always honors the eoi mechanism,
675 * not injecting any more pirqs of the same kind if the first one
676 * hasn't received an eoi yet. Therefore using the fasteoi handler
677 * is the right choice either way.
678 */
679 if (shareable)
680 irq_set_chip_and_handler_name(irq, &xen_pirq_chip,
681 handle_fasteoi_irq, name);
682 else
683 irq_set_chip_and_handler_name(irq, &xen_pirq_chip,
684 handle_edge_irq, name);
685
686 out:
687 mutex_unlock(&irq_mapping_update_lock);
688
689 return irq;
690 }
691
692 #ifdef CONFIG_PCI_MSI
693 int xen_allocate_pirq_msi(struct pci_dev *dev, struct msi_desc *msidesc)
694 {
695 int rc;
696 struct physdev_get_free_pirq op_get_free_pirq;
697
698 op_get_free_pirq.type = MAP_PIRQ_TYPE_MSI;
699 rc = HYPERVISOR_physdev_op(PHYSDEVOP_get_free_pirq, &op_get_free_pirq);
700
701 WARN_ONCE(rc == -ENOSYS,
702 "hypervisor does not support the PHYSDEVOP_get_free_pirq interface\n");
703
704 return rc ? -1 : op_get_free_pirq.pirq;
705 }
706
707 int xen_bind_pirq_msi_to_irq(struct pci_dev *dev, struct msi_desc *msidesc,
708 int pirq, int vector, const char *name,
709 domid_t domid)
710 {
711 int irq, ret;
712
713 mutex_lock(&irq_mapping_update_lock);
714
715 irq = xen_allocate_irq_dynamic();
716 if (irq < 0)
717 goto out;
718
719 irq_set_chip_and_handler_name(irq, &xen_pirq_chip, handle_edge_irq,
720 name);
721
722 xen_irq_info_pirq_init(irq, 0, pirq, 0, vector, domid, 0);
723 ret = irq_set_msi_desc(irq, msidesc);
724 if (ret < 0)
725 goto error_irq;
726 out:
727 mutex_unlock(&irq_mapping_update_lock);
728 return irq;
729 error_irq:
730 mutex_unlock(&irq_mapping_update_lock);
731 xen_free_irq(irq);
732 return ret;
733 }
734 #endif
735
736 int xen_destroy_irq(int irq)
737 {
738 struct irq_desc *desc;
739 struct physdev_unmap_pirq unmap_irq;
740 struct irq_info *info = info_for_irq(irq);
741 int rc = -ENOENT;
742
743 mutex_lock(&irq_mapping_update_lock);
744
745 desc = irq_to_desc(irq);
746 if (!desc)
747 goto out;
748
749 if (xen_initial_domain()) {
750 unmap_irq.pirq = info->u.pirq.pirq;
751 unmap_irq.domid = info->u.pirq.domid;
752 rc = HYPERVISOR_physdev_op(PHYSDEVOP_unmap_pirq, &unmap_irq);
753 /* If another domain quits without making the pci_disable_msix
754 * call, the Xen hypervisor takes care of freeing the PIRQs
755 * (free_domain_pirqs).
756 */
757 if ((rc == -ESRCH && info->u.pirq.domid != DOMID_SELF))
758 printk(KERN_INFO "domain %d does not have %d anymore\n",
759 info->u.pirq.domid, info->u.pirq.pirq);
760 else if (rc) {
761 printk(KERN_WARNING "unmap irq failed %d\n", rc);
762 goto out;
763 }
764 }
765
766 xen_free_irq(irq);
767
768 out:
769 mutex_unlock(&irq_mapping_update_lock);
770 return rc;
771 }
772
773 int xen_irq_from_pirq(unsigned pirq)
774 {
775 int irq;
776
777 struct irq_info *info;
778
779 mutex_lock(&irq_mapping_update_lock);
780
781 list_for_each_entry(info, &xen_irq_list_head, list) {
782 if (info->type != IRQT_PIRQ)
783 continue;
784 irq = info->irq;
785 if (info->u.pirq.pirq == pirq)
786 goto out;
787 }
788 irq = -1;
789 out:
790 mutex_unlock(&irq_mapping_update_lock);
791
792 return irq;
793 }
794
795
796 int xen_pirq_from_irq(unsigned irq)
797 {
798 return pirq_from_irq(irq);
799 }
800 EXPORT_SYMBOL_GPL(xen_pirq_from_irq);
801 int bind_evtchn_to_irq(unsigned int evtchn)
802 {
803 int irq;
804
805 mutex_lock(&irq_mapping_update_lock);
806
807 irq = evtchn_to_irq[evtchn];
808
809 if (irq == -1) {
810 irq = xen_allocate_irq_dynamic();
811 if (irq == -1)
812 goto out;
813
814 irq_set_chip_and_handler_name(irq, &xen_dynamic_chip,
815 handle_edge_irq, "event");
816
817 xen_irq_info_evtchn_init(irq, evtchn);
818 }
819
820 out:
821 mutex_unlock(&irq_mapping_update_lock);
822
823 return irq;
824 }
825 EXPORT_SYMBOL_GPL(bind_evtchn_to_irq);
826
827 static int bind_ipi_to_irq(unsigned int ipi, unsigned int cpu)
828 {
829 struct evtchn_bind_ipi bind_ipi;
830 int evtchn, irq;
831
832 mutex_lock(&irq_mapping_update_lock);
833
834 irq = per_cpu(ipi_to_irq, cpu)[ipi];
835
836 if (irq == -1) {
837 irq = xen_allocate_irq_dynamic();
838 if (irq < 0)
839 goto out;
840
841 irq_set_chip_and_handler_name(irq, &xen_percpu_chip,
842 handle_percpu_irq, "ipi");
843
844 bind_ipi.vcpu = cpu;
845 if (HYPERVISOR_event_channel_op(EVTCHNOP_bind_ipi,
846 &bind_ipi) != 0)
847 BUG();
848 evtchn = bind_ipi.port;
849
850 xen_irq_info_ipi_init(cpu, irq, evtchn, ipi);
851
852 bind_evtchn_to_cpu(evtchn, cpu);
853 }
854
855 out:
856 mutex_unlock(&irq_mapping_update_lock);
857 return irq;
858 }
859
860 static int bind_interdomain_evtchn_to_irq(unsigned int remote_domain,
861 unsigned int remote_port)
862 {
863 struct evtchn_bind_interdomain bind_interdomain;
864 int err;
865
866 bind_interdomain.remote_dom = remote_domain;
867 bind_interdomain.remote_port = remote_port;
868
869 err = HYPERVISOR_event_channel_op(EVTCHNOP_bind_interdomain,
870 &bind_interdomain);
871
872 return err ? : bind_evtchn_to_irq(bind_interdomain.local_port);
873 }
874
875 static int find_virq(unsigned int virq, unsigned int cpu)
876 {
877 struct evtchn_status status;
878 int port, rc = -ENOENT;
879
880 memset(&status, 0, sizeof(status));
881 for (port = 0; port <= NR_EVENT_CHANNELS; port++) {
882 status.dom = DOMID_SELF;
883 status.port = port;
884 rc = HYPERVISOR_event_channel_op(EVTCHNOP_status, &status);
885 if (rc < 0)
886 continue;
887 if (status.status != EVTCHNSTAT_virq)
888 continue;
889 if (status.u.virq == virq && status.vcpu == cpu) {
890 rc = port;
891 break;
892 }
893 }
894 return rc;
895 }
896
897 int bind_virq_to_irq(unsigned int virq, unsigned int cpu)
898 {
899 struct evtchn_bind_virq bind_virq;
900 int evtchn, irq, ret;
901
902 mutex_lock(&irq_mapping_update_lock);
903
904 irq = per_cpu(virq_to_irq, cpu)[virq];
905
906 if (irq == -1) {
907 irq = xen_allocate_irq_dynamic();
908 if (irq == -1)
909 goto out;
910
911 irq_set_chip_and_handler_name(irq, &xen_percpu_chip,
912 handle_percpu_irq, "virq");
913
914 bind_virq.virq = virq;
915 bind_virq.vcpu = cpu;
916 ret = HYPERVISOR_event_channel_op(EVTCHNOP_bind_virq,
917 &bind_virq);
918 if (ret == 0)
919 evtchn = bind_virq.port;
920 else {
921 if (ret == -EEXIST)
922 ret = find_virq(virq, cpu);
923 BUG_ON(ret < 0);
924 evtchn = ret;
925 }
926
927 xen_irq_info_virq_init(cpu, irq, evtchn, virq);
928
929 bind_evtchn_to_cpu(evtchn, cpu);
930 }
931
932 out:
933 mutex_unlock(&irq_mapping_update_lock);
934
935 return irq;
936 }
937
938 static void unbind_from_irq(unsigned int irq)
939 {
940 struct evtchn_close close;
941 int evtchn = evtchn_from_irq(irq);
942
943 mutex_lock(&irq_mapping_update_lock);
944
945 if (VALID_EVTCHN(evtchn)) {
946 close.port = evtchn;
947 if (HYPERVISOR_event_channel_op(EVTCHNOP_close, &close) != 0)
948 BUG();
949
950 switch (type_from_irq(irq)) {
951 case IRQT_VIRQ:
952 per_cpu(virq_to_irq, cpu_from_evtchn(evtchn))
953 [virq_from_irq(irq)] = -1;
954 break;
955 case IRQT_IPI:
956 per_cpu(ipi_to_irq, cpu_from_evtchn(evtchn))
957 [ipi_from_irq(irq)] = -1;
958 break;
959 default:
960 break;
961 }
962
963 /* Closed ports are implicitly re-bound to VCPU0. */
964 bind_evtchn_to_cpu(evtchn, 0);
965
966 evtchn_to_irq[evtchn] = -1;
967 }
968
969 BUG_ON(info_for_irq(irq)->type == IRQT_UNBOUND);
970
971 xen_free_irq(irq);
972
973 mutex_unlock(&irq_mapping_update_lock);
974 }
975
976 int bind_evtchn_to_irqhandler(unsigned int evtchn,
977 irq_handler_t handler,
978 unsigned long irqflags,
979 const char *devname, void *dev_id)
980 {
981 int irq, retval;
982
983 irq = bind_evtchn_to_irq(evtchn);
984 if (irq < 0)
985 return irq;
986 retval = request_irq(irq, handler, irqflags, devname, dev_id);
987 if (retval != 0) {
988 unbind_from_irq(irq);
989 return retval;
990 }
991
992 return irq;
993 }
994 EXPORT_SYMBOL_GPL(bind_evtchn_to_irqhandler);
995
996 int bind_interdomain_evtchn_to_irqhandler(unsigned int remote_domain,
997 unsigned int remote_port,
998 irq_handler_t handler,
999 unsigned long irqflags,
1000 const char *devname,
1001 void *dev_id)
1002 {
1003 int irq, retval;
1004
1005 irq = bind_interdomain_evtchn_to_irq(remote_domain, remote_port);
1006 if (irq < 0)
1007 return irq;
1008
1009 retval = request_irq(irq, handler, irqflags, devname, dev_id);
1010 if (retval != 0) {
1011 unbind_from_irq(irq);
1012 return retval;
1013 }
1014
1015 return irq;
1016 }
1017 EXPORT_SYMBOL_GPL(bind_interdomain_evtchn_to_irqhandler);
1018
1019 int bind_virq_to_irqhandler(unsigned int virq, unsigned int cpu,
1020 irq_handler_t handler,
1021 unsigned long irqflags, const char *devname, void *dev_id)
1022 {
1023 int irq, retval;
1024
1025 irq = bind_virq_to_irq(virq, cpu);
1026 if (irq < 0)
1027 return irq;
1028 retval = request_irq(irq, handler, irqflags, devname, dev_id);
1029 if (retval != 0) {
1030 unbind_from_irq(irq);
1031 return retval;
1032 }
1033
1034 return irq;
1035 }
1036 EXPORT_SYMBOL_GPL(bind_virq_to_irqhandler);
1037
1038 int bind_ipi_to_irqhandler(enum ipi_vector ipi,
1039 unsigned int cpu,
1040 irq_handler_t handler,
1041 unsigned long irqflags,
1042 const char *devname,
1043 void *dev_id)
1044 {
1045 int irq, retval;
1046
1047 irq = bind_ipi_to_irq(ipi, cpu);
1048 if (irq < 0)
1049 return irq;
1050
1051 irqflags |= IRQF_NO_SUSPEND | IRQF_FORCE_RESUME | IRQF_EARLY_RESUME;
1052 retval = request_irq(irq, handler, irqflags, devname, dev_id);
1053 if (retval != 0) {
1054 unbind_from_irq(irq);
1055 return retval;
1056 }
1057
1058 return irq;
1059 }
1060
1061 void unbind_from_irqhandler(unsigned int irq, void *dev_id)
1062 {
1063 free_irq(irq, dev_id);
1064 unbind_from_irq(irq);
1065 }
1066 EXPORT_SYMBOL_GPL(unbind_from_irqhandler);
1067
1068 void xen_send_IPI_one(unsigned int cpu, enum ipi_vector vector)
1069 {
1070 int irq = per_cpu(ipi_to_irq, cpu)[vector];
1071 BUG_ON(irq < 0);
1072 notify_remote_via_irq(irq);
1073 }
1074
1075 irqreturn_t xen_debug_interrupt(int irq, void *dev_id)
1076 {
1077 struct shared_info *sh = HYPERVISOR_shared_info;
1078 int cpu = smp_processor_id();
1079 unsigned long *cpu_evtchn = per_cpu(cpu_evtchn_mask, cpu);
1080 int i;
1081 unsigned long flags;
1082 static DEFINE_SPINLOCK(debug_lock);
1083 struct vcpu_info *v;
1084
1085 spin_lock_irqsave(&debug_lock, flags);
1086
1087 printk("\nvcpu %d\n ", cpu);
1088
1089 for_each_online_cpu(i) {
1090 int pending;
1091 v = per_cpu(xen_vcpu, i);
1092 pending = (get_irq_regs() && i == cpu)
1093 ? xen_irqs_disabled(get_irq_regs())
1094 : v->evtchn_upcall_mask;
1095 printk("%d: masked=%d pending=%d event_sel %0*lx\n ", i,
1096 pending, v->evtchn_upcall_pending,
1097 (int)(sizeof(v->evtchn_pending_sel)*2),
1098 v->evtchn_pending_sel);
1099 }
1100 v = per_cpu(xen_vcpu, cpu);
1101
1102 printk("\npending:\n ");
1103 for (i = ARRAY_SIZE(sh->evtchn_pending)-1; i >= 0; i--)
1104 printk("%0*lx%s", (int)sizeof(sh->evtchn_pending[0])*2,
1105 sh->evtchn_pending[i],
1106 i % 8 == 0 ? "\n " : " ");
1107 printk("\nglobal mask:\n ");
1108 for (i = ARRAY_SIZE(sh->evtchn_mask)-1; i >= 0; i--)
1109 printk("%0*lx%s",
1110 (int)(sizeof(sh->evtchn_mask[0])*2),
1111 sh->evtchn_mask[i],
1112 i % 8 == 0 ? "\n " : " ");
1113
1114 printk("\nglobally unmasked:\n ");
1115 for (i = ARRAY_SIZE(sh->evtchn_mask)-1; i >= 0; i--)
1116 printk("%0*lx%s", (int)(sizeof(sh->evtchn_mask[0])*2),
1117 sh->evtchn_pending[i] & ~sh->evtchn_mask[i],
1118 i % 8 == 0 ? "\n " : " ");
1119
1120 printk("\nlocal cpu%d mask:\n ", cpu);
1121 for (i = (NR_EVENT_CHANNELS/BITS_PER_LONG)-1; i >= 0; i--)
1122 printk("%0*lx%s", (int)(sizeof(cpu_evtchn[0])*2),
1123 cpu_evtchn[i],
1124 i % 8 == 0 ? "\n " : " ");
1125
1126 printk("\nlocally unmasked:\n ");
1127 for (i = ARRAY_SIZE(sh->evtchn_mask)-1; i >= 0; i--) {
1128 unsigned long pending = sh->evtchn_pending[i]
1129 & ~sh->evtchn_mask[i]
1130 & cpu_evtchn[i];
1131 printk("%0*lx%s", (int)(sizeof(sh->evtchn_mask[0])*2),
1132 pending, i % 8 == 0 ? "\n " : " ");
1133 }
1134
1135 printk("\npending list:\n");
1136 for (i = 0; i < NR_EVENT_CHANNELS; i++) {
1137 if (sync_test_bit(i, sh->evtchn_pending)) {
1138 int word_idx = i / BITS_PER_LONG;
1139 printk(" %d: event %d -> irq %d%s%s%s\n",
1140 cpu_from_evtchn(i), i,
1141 evtchn_to_irq[i],
1142 sync_test_bit(word_idx, &v->evtchn_pending_sel)
1143 ? "" : " l2-clear",
1144 !sync_test_bit(i, sh->evtchn_mask)
1145 ? "" : " globally-masked",
1146 sync_test_bit(i, cpu_evtchn)
1147 ? "" : " locally-masked");
1148 }
1149 }
1150
1151 spin_unlock_irqrestore(&debug_lock, flags);
1152
1153 return IRQ_HANDLED;
1154 }
1155
1156 static DEFINE_PER_CPU(unsigned, xed_nesting_count);
1157 static DEFINE_PER_CPU(unsigned int, current_word_idx);
1158 static DEFINE_PER_CPU(unsigned int, current_bit_idx);
1159
1160 /*
1161 * Mask out the i least significant bits of w
1162 */
1163 #define MASK_LSBS(w, i) (w & ((~0UL) << i))
1164
1165 /*
1166 * Search the CPUs pending events bitmasks. For each one found, map
1167 * the event number to an irq, and feed it into do_IRQ() for
1168 * handling.
1169 *
1170 * Xen uses a two-level bitmap to speed searching. The first level is
1171 * a bitset of words which contain pending event bits. The second
1172 * level is a bitset of pending events themselves.
1173 */
1174 static void __xen_evtchn_do_upcall(void)
1175 {
1176 int start_word_idx, start_bit_idx;
1177 int word_idx, bit_idx;
1178 int i;
1179 int cpu = get_cpu();
1180 struct shared_info *s = HYPERVISOR_shared_info;
1181 struct vcpu_info *vcpu_info = __this_cpu_read(xen_vcpu);
1182 unsigned count;
1183
1184 do {
1185 unsigned long pending_words;
1186
1187 vcpu_info->evtchn_upcall_pending = 0;
1188
1189 if (__this_cpu_inc_return(xed_nesting_count) - 1)
1190 goto out;
1191
1192 #ifndef CONFIG_X86 /* No need for a barrier -- XCHG is a barrier on x86. */
1193 /* Clear master flag /before/ clearing selector flag. */
1194 wmb();
1195 #endif
1196 pending_words = xchg(&vcpu_info->evtchn_pending_sel, 0);
1197
1198 start_word_idx = __this_cpu_read(current_word_idx);
1199 start_bit_idx = __this_cpu_read(current_bit_idx);
1200
1201 word_idx = start_word_idx;
1202
1203 for (i = 0; pending_words != 0; i++) {
1204 unsigned long pending_bits;
1205 unsigned long words;
1206
1207 words = MASK_LSBS(pending_words, word_idx);
1208
1209 /*
1210 * If we masked out all events, wrap to beginning.
1211 */
1212 if (words == 0) {
1213 word_idx = 0;
1214 bit_idx = 0;
1215 continue;
1216 }
1217 word_idx = __ffs(words);
1218
1219 pending_bits = active_evtchns(cpu, s, word_idx);
1220 bit_idx = 0; /* usually scan entire word from start */
1221 if (word_idx == start_word_idx) {
1222 /* We scan the starting word in two parts */
1223 if (i == 0)
1224 /* 1st time: start in the middle */
1225 bit_idx = start_bit_idx;
1226 else
1227 /* 2nd time: mask bits done already */
1228 bit_idx &= (1UL << start_bit_idx) - 1;
1229 }
1230
1231 do {
1232 unsigned long bits;
1233 int port, irq;
1234 struct irq_desc *desc;
1235
1236 bits = MASK_LSBS(pending_bits, bit_idx);
1237
1238 /* If we masked out all events, move on. */
1239 if (bits == 0)
1240 break;
1241
1242 bit_idx = __ffs(bits);
1243
1244 /* Process port. */
1245 port = (word_idx * BITS_PER_LONG) + bit_idx;
1246 irq = evtchn_to_irq[port];
1247
1248 if (irq != -1) {
1249 desc = irq_to_desc(irq);
1250 if (desc)
1251 generic_handle_irq_desc(irq, desc);
1252 }
1253
1254 bit_idx = (bit_idx + 1) % BITS_PER_LONG;
1255
1256 /* Next caller starts at last processed + 1 */
1257 __this_cpu_write(current_word_idx,
1258 bit_idx ? word_idx :
1259 (word_idx+1) % BITS_PER_LONG);
1260 __this_cpu_write(current_bit_idx, bit_idx);
1261 } while (bit_idx != 0);
1262
1263 /* Scan start_l1i twice; all others once. */
1264 if ((word_idx != start_word_idx) || (i != 0))
1265 pending_words &= ~(1UL << word_idx);
1266
1267 word_idx = (word_idx + 1) % BITS_PER_LONG;
1268 }
1269
1270 BUG_ON(!irqs_disabled());
1271
1272 count = __this_cpu_read(xed_nesting_count);
1273 __this_cpu_write(xed_nesting_count, 0);
1274 } while (count != 1 || vcpu_info->evtchn_upcall_pending);
1275
1276 out:
1277
1278 put_cpu();
1279 }
1280
1281 void xen_evtchn_do_upcall(struct pt_regs *regs)
1282 {
1283 struct pt_regs *old_regs = set_irq_regs(regs);
1284
1285 exit_idle();
1286 irq_enter();
1287
1288 __xen_evtchn_do_upcall();
1289
1290 irq_exit();
1291 set_irq_regs(old_regs);
1292 }
1293
1294 void xen_hvm_evtchn_do_upcall(void)
1295 {
1296 __xen_evtchn_do_upcall();
1297 }
1298 EXPORT_SYMBOL_GPL(xen_hvm_evtchn_do_upcall);
1299
1300 /* Rebind a new event channel to an existing irq. */
1301 void rebind_evtchn_irq(int evtchn, int irq)
1302 {
1303 struct irq_info *info = info_for_irq(irq);
1304
1305 /* Make sure the irq is masked, since the new event channel
1306 will also be masked. */
1307 disable_irq(irq);
1308
1309 mutex_lock(&irq_mapping_update_lock);
1310
1311 /* After resume the irq<->evtchn mappings are all cleared out */
1312 BUG_ON(evtchn_to_irq[evtchn] != -1);
1313 /* Expect irq to have been bound before,
1314 so there should be a proper type */
1315 BUG_ON(info->type == IRQT_UNBOUND);
1316
1317 xen_irq_info_evtchn_init(irq, evtchn);
1318
1319 mutex_unlock(&irq_mapping_update_lock);
1320
1321 /* new event channels are always bound to cpu 0 */
1322 irq_set_affinity(irq, cpumask_of(0));
1323
1324 /* Unmask the event channel. */
1325 enable_irq(irq);
1326 }
1327
1328 /* Rebind an evtchn so that it gets delivered to a specific cpu */
1329 static int rebind_irq_to_cpu(unsigned irq, unsigned tcpu)
1330 {
1331 struct evtchn_bind_vcpu bind_vcpu;
1332 int evtchn = evtchn_from_irq(irq);
1333
1334 if (!VALID_EVTCHN(evtchn))
1335 return -1;
1336
1337 /*
1338 * Events delivered via platform PCI interrupts are always
1339 * routed to vcpu 0 and hence cannot be rebound.
1340 */
1341 if (xen_hvm_domain() && !xen_have_vector_callback)
1342 return -1;
1343
1344 /* Send future instances of this interrupt to other vcpu. */
1345 bind_vcpu.port = evtchn;
1346 bind_vcpu.vcpu = tcpu;
1347
1348 /*
1349 * If this fails, it usually just indicates that we're dealing with a
1350 * virq or IPI channel, which don't actually need to be rebound. Ignore
1351 * it, but don't do the xenlinux-level rebind in that case.
1352 */
1353 if (HYPERVISOR_event_channel_op(EVTCHNOP_bind_vcpu, &bind_vcpu) >= 0)
1354 bind_evtchn_to_cpu(evtchn, tcpu);
1355
1356 return 0;
1357 }
1358
1359 static int set_affinity_irq(struct irq_data *data, const struct cpumask *dest,
1360 bool force)
1361 {
1362 unsigned tcpu = cpumask_first(dest);
1363
1364 return rebind_irq_to_cpu(data->irq, tcpu);
1365 }
1366
1367 int resend_irq_on_evtchn(unsigned int irq)
1368 {
1369 int masked, evtchn = evtchn_from_irq(irq);
1370 struct shared_info *s = HYPERVISOR_shared_info;
1371
1372 if (!VALID_EVTCHN(evtchn))
1373 return 1;
1374
1375 masked = sync_test_and_set_bit(evtchn, s->evtchn_mask);
1376 sync_set_bit(evtchn, s->evtchn_pending);
1377 if (!masked)
1378 unmask_evtchn(evtchn);
1379
1380 return 1;
1381 }
1382
1383 static void enable_dynirq(struct irq_data *data)
1384 {
1385 int evtchn = evtchn_from_irq(data->irq);
1386
1387 if (VALID_EVTCHN(evtchn))
1388 unmask_evtchn(evtchn);
1389 }
1390
1391 static void disable_dynirq(struct irq_data *data)
1392 {
1393 int evtchn = evtchn_from_irq(data->irq);
1394
1395 if (VALID_EVTCHN(evtchn))
1396 mask_evtchn(evtchn);
1397 }
1398
1399 static void ack_dynirq(struct irq_data *data)
1400 {
1401 int evtchn = evtchn_from_irq(data->irq);
1402
1403 irq_move_irq(data);
1404
1405 if (VALID_EVTCHN(evtchn))
1406 clear_evtchn(evtchn);
1407 }
1408
1409 static void mask_ack_dynirq(struct irq_data *data)
1410 {
1411 disable_dynirq(data);
1412 ack_dynirq(data);
1413 }
1414
1415 static int retrigger_dynirq(struct irq_data *data)
1416 {
1417 int evtchn = evtchn_from_irq(data->irq);
1418 struct shared_info *sh = HYPERVISOR_shared_info;
1419 int ret = 0;
1420
1421 if (VALID_EVTCHN(evtchn)) {
1422 int masked;
1423
1424 masked = sync_test_and_set_bit(evtchn, sh->evtchn_mask);
1425 sync_set_bit(evtchn, sh->evtchn_pending);
1426 if (!masked)
1427 unmask_evtchn(evtchn);
1428 ret = 1;
1429 }
1430
1431 return ret;
1432 }
1433
1434 static void restore_pirqs(void)
1435 {
1436 int pirq, rc, irq, gsi;
1437 struct physdev_map_pirq map_irq;
1438 struct irq_info *info;
1439
1440 list_for_each_entry(info, &xen_irq_list_head, list) {
1441 if (info->type != IRQT_PIRQ)
1442 continue;
1443
1444 pirq = info->u.pirq.pirq;
1445 gsi = info->u.pirq.gsi;
1446 irq = info->irq;
1447
1448 /* save/restore of PT devices doesn't work, so at this point the
1449 * only devices present are GSI based emulated devices */
1450 if (!gsi)
1451 continue;
1452
1453 map_irq.domid = DOMID_SELF;
1454 map_irq.type = MAP_PIRQ_TYPE_GSI;
1455 map_irq.index = gsi;
1456 map_irq.pirq = pirq;
1457
1458 rc = HYPERVISOR_physdev_op(PHYSDEVOP_map_pirq, &map_irq);
1459 if (rc) {
1460 printk(KERN_WARNING "xen map irq failed gsi=%d irq=%d pirq=%d rc=%d\n",
1461 gsi, irq, pirq, rc);
1462 xen_free_irq(irq);
1463 continue;
1464 }
1465
1466 printk(KERN_DEBUG "xen: --> irq=%d, pirq=%d\n", irq, map_irq.pirq);
1467
1468 __startup_pirq(irq);
1469 }
1470 }
1471
1472 static void restore_cpu_virqs(unsigned int cpu)
1473 {
1474 struct evtchn_bind_virq bind_virq;
1475 int virq, irq, evtchn;
1476
1477 for (virq = 0; virq < NR_VIRQS; virq++) {
1478 if ((irq = per_cpu(virq_to_irq, cpu)[virq]) == -1)
1479 continue;
1480
1481 BUG_ON(virq_from_irq(irq) != virq);
1482
1483 /* Get a new binding from Xen. */
1484 bind_virq.virq = virq;
1485 bind_virq.vcpu = cpu;
1486 if (HYPERVISOR_event_channel_op(EVTCHNOP_bind_virq,
1487 &bind_virq) != 0)
1488 BUG();
1489 evtchn = bind_virq.port;
1490
1491 /* Record the new mapping. */
1492 xen_irq_info_virq_init(cpu, irq, evtchn, virq);
1493 bind_evtchn_to_cpu(evtchn, cpu);
1494 }
1495 }
1496
1497 static void restore_cpu_ipis(unsigned int cpu)
1498 {
1499 struct evtchn_bind_ipi bind_ipi;
1500 int ipi, irq, evtchn;
1501
1502 for (ipi = 0; ipi < XEN_NR_IPIS; ipi++) {
1503 if ((irq = per_cpu(ipi_to_irq, cpu)[ipi]) == -1)
1504 continue;
1505
1506 BUG_ON(ipi_from_irq(irq) != ipi);
1507
1508 /* Get a new binding from Xen. */
1509 bind_ipi.vcpu = cpu;
1510 if (HYPERVISOR_event_channel_op(EVTCHNOP_bind_ipi,
1511 &bind_ipi) != 0)
1512 BUG();
1513 evtchn = bind_ipi.port;
1514
1515 /* Record the new mapping. */
1516 xen_irq_info_ipi_init(cpu, irq, evtchn, ipi);
1517 bind_evtchn_to_cpu(evtchn, cpu);
1518 }
1519 }
1520
1521 /* Clear an irq's pending state, in preparation for polling on it */
1522 void xen_clear_irq_pending(int irq)
1523 {
1524 int evtchn = evtchn_from_irq(irq);
1525
1526 if (VALID_EVTCHN(evtchn))
1527 clear_evtchn(evtchn);
1528 }
1529 EXPORT_SYMBOL(xen_clear_irq_pending);
1530 void xen_set_irq_pending(int irq)
1531 {
1532 int evtchn = evtchn_from_irq(irq);
1533
1534 if (VALID_EVTCHN(evtchn))
1535 set_evtchn(evtchn);
1536 }
1537
1538 bool xen_test_irq_pending(int irq)
1539 {
1540 int evtchn = evtchn_from_irq(irq);
1541 bool ret = false;
1542
1543 if (VALID_EVTCHN(evtchn))
1544 ret = test_evtchn(evtchn);
1545
1546 return ret;
1547 }
1548
1549 /* Poll waiting for an irq to become pending with timeout. In the usual case,
1550 * the irq will be disabled so it won't deliver an interrupt. */
1551 void xen_poll_irq_timeout(int irq, u64 timeout)
1552 {
1553 evtchn_port_t evtchn = evtchn_from_irq(irq);
1554
1555 if (VALID_EVTCHN(evtchn)) {
1556 struct sched_poll poll;
1557
1558 poll.nr_ports = 1;
1559 poll.timeout = timeout;
1560 set_xen_guest_handle(poll.ports, &evtchn);
1561
1562 if (HYPERVISOR_sched_op(SCHEDOP_poll, &poll) != 0)
1563 BUG();
1564 }
1565 }
1566 EXPORT_SYMBOL(xen_poll_irq_timeout);
1567 /* Poll waiting for an irq to become pending. In the usual case, the
1568 * irq will be disabled so it won't deliver an interrupt. */
1569 void xen_poll_irq(int irq)
1570 {
1571 xen_poll_irq_timeout(irq, 0 /* no timeout */);
1572 }
1573
1574 /* Check whether the IRQ line is shared with other guests. */
1575 int xen_test_irq_shared(int irq)
1576 {
1577 struct irq_info *info = info_for_irq(irq);
1578 struct physdev_irq_status_query irq_status = { .irq = info->u.pirq.pirq };
1579
1580 if (HYPERVISOR_physdev_op(PHYSDEVOP_irq_status_query, &irq_status))
1581 return 0;
1582 return !(irq_status.flags & XENIRQSTAT_shared);
1583 }
1584 EXPORT_SYMBOL_GPL(xen_test_irq_shared);
1585
1586 void xen_irq_resume(void)
1587 {
1588 unsigned int cpu, evtchn;
1589 struct irq_info *info;
1590
1591 init_evtchn_cpu_bindings();
1592
1593 /* New event-channel space is not 'live' yet. */
1594 for (evtchn = 0; evtchn < NR_EVENT_CHANNELS; evtchn++)
1595 mask_evtchn(evtchn);
1596
1597 /* No IRQ <-> event-channel mappings. */
1598 list_for_each_entry(info, &xen_irq_list_head, list)
1599 info->evtchn = 0; /* zap event-channel binding */
1600
1601 for (evtchn = 0; evtchn < NR_EVENT_CHANNELS; evtchn++)
1602 evtchn_to_irq[evtchn] = -1;
1603
1604 for_each_possible_cpu(cpu) {
1605 restore_cpu_virqs(cpu);
1606 restore_cpu_ipis(cpu);
1607 }
1608
1609 restore_pirqs();
1610 }
1611
1612 static struct irq_chip xen_dynamic_chip __read_mostly = {
1613 .name = "xen-dyn",
1614
1615 .irq_disable = disable_dynirq,
1616 .irq_mask = disable_dynirq,
1617 .irq_unmask = enable_dynirq,
1618
1619 .irq_ack = ack_dynirq,
1620 .irq_mask_ack = mask_ack_dynirq,
1621
1622 .irq_set_affinity = set_affinity_irq,
1623 .irq_retrigger = retrigger_dynirq,
1624 };
1625
1626 static struct irq_chip xen_pirq_chip __read_mostly = {
1627 .name = "xen-pirq",
1628
1629 .irq_startup = startup_pirq,
1630 .irq_shutdown = shutdown_pirq,
1631 .irq_enable = enable_pirq,
1632 .irq_disable = disable_pirq,
1633
1634 .irq_mask = disable_dynirq,
1635 .irq_unmask = enable_dynirq,
1636
1637 .irq_ack = eoi_pirq,
1638 .irq_eoi = eoi_pirq,
1639 .irq_mask_ack = mask_ack_pirq,
1640
1641 .irq_set_affinity = set_affinity_irq,
1642
1643 .irq_retrigger = retrigger_dynirq,
1644 };
1645
1646 static struct irq_chip xen_percpu_chip __read_mostly = {
1647 .name = "xen-percpu",
1648
1649 .irq_disable = disable_dynirq,
1650 .irq_mask = disable_dynirq,
1651 .irq_unmask = enable_dynirq,
1652
1653 .irq_ack = ack_dynirq,
1654 };
1655
1656 int xen_set_callback_via(uint64_t via)
1657 {
1658 struct xen_hvm_param a;
1659 a.domid = DOMID_SELF;
1660 a.index = HVM_PARAM_CALLBACK_IRQ;
1661 a.value = via;
1662 return HYPERVISOR_hvm_op(HVMOP_set_param, &a);
1663 }
1664 EXPORT_SYMBOL_GPL(xen_set_callback_via);
1665
1666 #ifdef CONFIG_XEN_PVHVM
1667 /* Vector callbacks are better than PCI interrupts to receive event
1668 * channel notifications because we can receive vector callbacks on any
1669 * vcpu and we don't need PCI support or APIC interactions. */
1670 void xen_callback_vector(void)
1671 {
1672 int rc;
1673 uint64_t callback_via;
1674 if (xen_have_vector_callback) {
1675 callback_via = HVM_CALLBACK_VECTOR(XEN_HVM_EVTCHN_CALLBACK);
1676 rc = xen_set_callback_via(callback_via);
1677 if (rc) {
1678 printk(KERN_ERR "Request for Xen HVM callback vector"
1679 " failed.\n");
1680 xen_have_vector_callback = 0;
1681 return;
1682 }
1683 printk(KERN_INFO "Xen HVM callback vector for event delivery is "
1684 "enabled\n");
1685 /* in the restore case the vector has already been allocated */
1686 if (!test_bit(XEN_HVM_EVTCHN_CALLBACK, used_vectors))
1687 alloc_intr_gate(XEN_HVM_EVTCHN_CALLBACK, xen_hvm_callback_vector);
1688 }
1689 }
1690 #else
1691 void xen_callback_vector(void) {}
1692 #endif
1693
1694 void __init xen_init_IRQ(void)
1695 {
1696 int i;
1697
1698 evtchn_to_irq = kcalloc(NR_EVENT_CHANNELS, sizeof(*evtchn_to_irq),
1699 GFP_KERNEL);
1700 BUG_ON(!evtchn_to_irq);
1701 for (i = 0; i < NR_EVENT_CHANNELS; i++)
1702 evtchn_to_irq[i] = -1;
1703
1704 init_evtchn_cpu_bindings();
1705
1706 /* No event channels are 'live' right now. */
1707 for (i = 0; i < NR_EVENT_CHANNELS; i++)
1708 mask_evtchn(i);
1709
1710 if (xen_hvm_domain()) {
1711 xen_callback_vector();
1712 native_init_IRQ();
1713 /* pci_xen_hvm_init must be called after native_init_IRQ so that
1714 * __acpi_register_gsi can point at the right function */
1715 pci_xen_hvm_init();
1716 } else {
1717 irq_ctx_init(smp_processor_id());
1718 if (xen_initial_domain())
1719 pci_xen_initial_domain();
1720 }
1721 }