]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/xen/swiotlb-xen.c
drm/msm: Fix range size vs end confusion
[mirror_ubuntu-jammy-kernel.git] / drivers / xen / swiotlb-xen.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright 2010
4 * by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
5 *
6 * This code provides a IOMMU for Xen PV guests with PCI passthrough.
7 *
8 * PV guests under Xen are running in an non-contiguous memory architecture.
9 *
10 * When PCI pass-through is utilized, this necessitates an IOMMU for
11 * translating bus (DMA) to virtual and vice-versa and also providing a
12 * mechanism to have contiguous pages for device drivers operations (say DMA
13 * operations).
14 *
15 * Specifically, under Xen the Linux idea of pages is an illusion. It
16 * assumes that pages start at zero and go up to the available memory. To
17 * help with that, the Linux Xen MMU provides a lookup mechanism to
18 * translate the page frame numbers (PFN) to machine frame numbers (MFN)
19 * and vice-versa. The MFN are the "real" frame numbers. Furthermore
20 * memory is not contiguous. Xen hypervisor stitches memory for guests
21 * from different pools, which means there is no guarantee that PFN==MFN
22 * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
23 * allocated in descending order (high to low), meaning the guest might
24 * never get any MFN's under the 4GB mark.
25 */
26
27 #define pr_fmt(fmt) "xen:" KBUILD_MODNAME ": " fmt
28
29 #include <linux/memblock.h>
30 #include <linux/dma-direct.h>
31 #include <linux/dma-map-ops.h>
32 #include <linux/export.h>
33 #include <xen/swiotlb-xen.h>
34 #include <xen/page.h>
35 #include <xen/xen-ops.h>
36 #include <xen/hvc-console.h>
37
38 #include <asm/dma-mapping.h>
39 #include <asm/xen/page-coherent.h>
40
41 #include <trace/events/swiotlb.h>
42 #define MAX_DMA_BITS 32
43
44 /*
45 * Quick lookup value of the bus address of the IOTLB.
46 */
47
48 static inline phys_addr_t xen_phys_to_bus(struct device *dev, phys_addr_t paddr)
49 {
50 unsigned long bfn = pfn_to_bfn(XEN_PFN_DOWN(paddr));
51 phys_addr_t baddr = (phys_addr_t)bfn << XEN_PAGE_SHIFT;
52
53 baddr |= paddr & ~XEN_PAGE_MASK;
54 return baddr;
55 }
56
57 static inline dma_addr_t xen_phys_to_dma(struct device *dev, phys_addr_t paddr)
58 {
59 return phys_to_dma(dev, xen_phys_to_bus(dev, paddr));
60 }
61
62 static inline phys_addr_t xen_bus_to_phys(struct device *dev,
63 phys_addr_t baddr)
64 {
65 unsigned long xen_pfn = bfn_to_pfn(XEN_PFN_DOWN(baddr));
66 phys_addr_t paddr = (xen_pfn << XEN_PAGE_SHIFT) |
67 (baddr & ~XEN_PAGE_MASK);
68
69 return paddr;
70 }
71
72 static inline phys_addr_t xen_dma_to_phys(struct device *dev,
73 dma_addr_t dma_addr)
74 {
75 return xen_bus_to_phys(dev, dma_to_phys(dev, dma_addr));
76 }
77
78 static inline int range_straddles_page_boundary(phys_addr_t p, size_t size)
79 {
80 unsigned long next_bfn, xen_pfn = XEN_PFN_DOWN(p);
81 unsigned int i, nr_pages = XEN_PFN_UP(xen_offset_in_page(p) + size);
82
83 next_bfn = pfn_to_bfn(xen_pfn);
84
85 for (i = 1; i < nr_pages; i++)
86 if (pfn_to_bfn(++xen_pfn) != ++next_bfn)
87 return 1;
88
89 return 0;
90 }
91
92 static int is_xen_swiotlb_buffer(struct device *dev, dma_addr_t dma_addr)
93 {
94 unsigned long bfn = XEN_PFN_DOWN(dma_to_phys(dev, dma_addr));
95 unsigned long xen_pfn = bfn_to_local_pfn(bfn);
96 phys_addr_t paddr = (phys_addr_t)xen_pfn << XEN_PAGE_SHIFT;
97
98 /* If the address is outside our domain, it CAN
99 * have the same virtual address as another address
100 * in our domain. Therefore _only_ check address within our domain.
101 */
102 if (pfn_valid(PFN_DOWN(paddr)))
103 return is_swiotlb_buffer(dev, paddr);
104 return 0;
105 }
106
107 static int xen_swiotlb_fixup(void *buf, unsigned long nslabs)
108 {
109 int rc;
110 unsigned int order = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT);
111 unsigned int i, dma_bits = order + PAGE_SHIFT;
112 dma_addr_t dma_handle;
113 phys_addr_t p = virt_to_phys(buf);
114
115 BUILD_BUG_ON(IO_TLB_SEGSIZE & (IO_TLB_SEGSIZE - 1));
116 BUG_ON(nslabs % IO_TLB_SEGSIZE);
117
118 i = 0;
119 do {
120 do {
121 rc = xen_create_contiguous_region(
122 p + (i << IO_TLB_SHIFT), order,
123 dma_bits, &dma_handle);
124 } while (rc && dma_bits++ < MAX_DMA_BITS);
125 if (rc)
126 return rc;
127
128 i += IO_TLB_SEGSIZE;
129 } while (i < nslabs);
130 return 0;
131 }
132
133 enum xen_swiotlb_err {
134 XEN_SWIOTLB_UNKNOWN = 0,
135 XEN_SWIOTLB_ENOMEM,
136 XEN_SWIOTLB_EFIXUP
137 };
138
139 static const char *xen_swiotlb_error(enum xen_swiotlb_err err)
140 {
141 switch (err) {
142 case XEN_SWIOTLB_ENOMEM:
143 return "Cannot allocate Xen-SWIOTLB buffer\n";
144 case XEN_SWIOTLB_EFIXUP:
145 return "Failed to get contiguous memory for DMA from Xen!\n"\
146 "You either: don't have the permissions, do not have"\
147 " enough free memory under 4GB, or the hypervisor memory"\
148 " is too fragmented!";
149 default:
150 break;
151 }
152 return "";
153 }
154
155 int xen_swiotlb_init(void)
156 {
157 enum xen_swiotlb_err m_ret = XEN_SWIOTLB_UNKNOWN;
158 unsigned long bytes = swiotlb_size_or_default();
159 unsigned long nslabs = bytes >> IO_TLB_SHIFT;
160 unsigned int order, repeat = 3;
161 int rc = -ENOMEM;
162 char *start;
163
164 if (io_tlb_default_mem.nslabs) {
165 pr_warn("swiotlb buffer already initialized\n");
166 return -EEXIST;
167 }
168
169 retry:
170 m_ret = XEN_SWIOTLB_ENOMEM;
171 order = get_order(bytes);
172
173 /*
174 * Get IO TLB memory from any location.
175 */
176 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
177 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
178 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
179 start = (void *)xen_get_swiotlb_free_pages(order);
180 if (start)
181 break;
182 order--;
183 }
184 if (!start)
185 goto exit;
186 if (order != get_order(bytes)) {
187 pr_warn("Warning: only able to allocate %ld MB for software IO TLB\n",
188 (PAGE_SIZE << order) >> 20);
189 nslabs = SLABS_PER_PAGE << order;
190 bytes = nslabs << IO_TLB_SHIFT;
191 }
192
193 /*
194 * And replace that memory with pages under 4GB.
195 */
196 rc = xen_swiotlb_fixup(start, nslabs);
197 if (rc) {
198 free_pages((unsigned long)start, order);
199 m_ret = XEN_SWIOTLB_EFIXUP;
200 goto error;
201 }
202 rc = swiotlb_late_init_with_tbl(start, nslabs);
203 if (rc)
204 return rc;
205 swiotlb_set_max_segment(PAGE_SIZE);
206 return 0;
207 error:
208 if (nslabs > 1024 && repeat--) {
209 /* Min is 2MB */
210 nslabs = max(1024UL, ALIGN(nslabs >> 1, IO_TLB_SEGSIZE));
211 bytes = nslabs << IO_TLB_SHIFT;
212 pr_info("Lowering to %luMB\n", bytes >> 20);
213 goto retry;
214 }
215 exit:
216 pr_err("%s (rc:%d)\n", xen_swiotlb_error(m_ret), rc);
217 return rc;
218 }
219
220 #ifdef CONFIG_X86
221 void __init xen_swiotlb_init_early(void)
222 {
223 unsigned long bytes = swiotlb_size_or_default();
224 unsigned long nslabs = bytes >> IO_TLB_SHIFT;
225 unsigned int repeat = 3;
226 char *start;
227 int rc;
228
229 retry:
230 /*
231 * Get IO TLB memory from any location.
232 */
233 start = memblock_alloc(PAGE_ALIGN(bytes),
234 IO_TLB_SEGSIZE << IO_TLB_SHIFT);
235 if (!start)
236 panic("%s: Failed to allocate %lu bytes\n",
237 __func__, PAGE_ALIGN(bytes));
238
239 /*
240 * And replace that memory with pages under 4GB.
241 */
242 rc = xen_swiotlb_fixup(start, nslabs);
243 if (rc) {
244 memblock_free(__pa(start), PAGE_ALIGN(bytes));
245 if (nslabs > 1024 && repeat--) {
246 /* Min is 2MB */
247 nslabs = max(1024UL, ALIGN(nslabs >> 1, IO_TLB_SEGSIZE));
248 bytes = nslabs << IO_TLB_SHIFT;
249 pr_info("Lowering to %luMB\n", bytes >> 20);
250 goto retry;
251 }
252 panic("%s (rc:%d)", xen_swiotlb_error(XEN_SWIOTLB_EFIXUP), rc);
253 }
254
255 if (swiotlb_init_with_tbl(start, nslabs, true))
256 panic("Cannot allocate SWIOTLB buffer");
257 swiotlb_set_max_segment(PAGE_SIZE);
258 }
259 #endif /* CONFIG_X86 */
260
261 static void *
262 xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size,
263 dma_addr_t *dma_handle, gfp_t flags,
264 unsigned long attrs)
265 {
266 void *ret;
267 int order = get_order(size);
268 u64 dma_mask = DMA_BIT_MASK(32);
269 phys_addr_t phys;
270 dma_addr_t dev_addr;
271
272 /*
273 * Ignore region specifiers - the kernel's ideas of
274 * pseudo-phys memory layout has nothing to do with the
275 * machine physical layout. We can't allocate highmem
276 * because we can't return a pointer to it.
277 */
278 flags &= ~(__GFP_DMA | __GFP_HIGHMEM);
279
280 /* Convert the size to actually allocated. */
281 size = 1UL << (order + XEN_PAGE_SHIFT);
282
283 /* On ARM this function returns an ioremap'ped virtual address for
284 * which virt_to_phys doesn't return the corresponding physical
285 * address. In fact on ARM virt_to_phys only works for kernel direct
286 * mapped RAM memory. Also see comment below.
287 */
288 ret = xen_alloc_coherent_pages(hwdev, size, dma_handle, flags, attrs);
289
290 if (!ret)
291 return ret;
292
293 if (hwdev && hwdev->coherent_dma_mask)
294 dma_mask = hwdev->coherent_dma_mask;
295
296 /* At this point dma_handle is the dma address, next we are
297 * going to set it to the machine address.
298 * Do not use virt_to_phys(ret) because on ARM it doesn't correspond
299 * to *dma_handle. */
300 phys = dma_to_phys(hwdev, *dma_handle);
301 dev_addr = xen_phys_to_dma(hwdev, phys);
302 if (((dev_addr + size - 1 <= dma_mask)) &&
303 !range_straddles_page_boundary(phys, size))
304 *dma_handle = dev_addr;
305 else {
306 if (xen_create_contiguous_region(phys, order,
307 fls64(dma_mask), dma_handle) != 0) {
308 xen_free_coherent_pages(hwdev, size, ret, (dma_addr_t)phys, attrs);
309 return NULL;
310 }
311 *dma_handle = phys_to_dma(hwdev, *dma_handle);
312 SetPageXenRemapped(virt_to_page(ret));
313 }
314 memset(ret, 0, size);
315 return ret;
316 }
317
318 static void
319 xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
320 dma_addr_t dev_addr, unsigned long attrs)
321 {
322 int order = get_order(size);
323 phys_addr_t phys;
324 u64 dma_mask = DMA_BIT_MASK(32);
325 struct page *page;
326
327 if (hwdev && hwdev->coherent_dma_mask)
328 dma_mask = hwdev->coherent_dma_mask;
329
330 /* do not use virt_to_phys because on ARM it doesn't return you the
331 * physical address */
332 phys = xen_dma_to_phys(hwdev, dev_addr);
333
334 /* Convert the size to actually allocated. */
335 size = 1UL << (order + XEN_PAGE_SHIFT);
336
337 if (is_vmalloc_addr(vaddr))
338 page = vmalloc_to_page(vaddr);
339 else
340 page = virt_to_page(vaddr);
341
342 if (!WARN_ON((dev_addr + size - 1 > dma_mask) ||
343 range_straddles_page_boundary(phys, size)) &&
344 TestClearPageXenRemapped(page))
345 xen_destroy_contiguous_region(phys, order);
346
347 xen_free_coherent_pages(hwdev, size, vaddr, phys_to_dma(hwdev, phys),
348 attrs);
349 }
350
351 /*
352 * Map a single buffer of the indicated size for DMA in streaming mode. The
353 * physical address to use is returned.
354 *
355 * Once the device is given the dma address, the device owns this memory until
356 * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
357 */
358 static dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page,
359 unsigned long offset, size_t size,
360 enum dma_data_direction dir,
361 unsigned long attrs)
362 {
363 phys_addr_t map, phys = page_to_phys(page) + offset;
364 dma_addr_t dev_addr = xen_phys_to_dma(dev, phys);
365
366 BUG_ON(dir == DMA_NONE);
367 /*
368 * If the address happens to be in the device's DMA window,
369 * we can safely return the device addr and not worry about bounce
370 * buffering it.
371 */
372 if (dma_capable(dev, dev_addr, size, true) &&
373 !range_straddles_page_boundary(phys, size) &&
374 !xen_arch_need_swiotlb(dev, phys, dev_addr) &&
375 !is_swiotlb_force_bounce(dev))
376 goto done;
377
378 /*
379 * Oh well, have to allocate and map a bounce buffer.
380 */
381 trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
382
383 map = swiotlb_tbl_map_single(dev, phys, size, size, 0, dir, attrs);
384 if (map == (phys_addr_t)DMA_MAPPING_ERROR)
385 return DMA_MAPPING_ERROR;
386
387 phys = map;
388 dev_addr = xen_phys_to_dma(dev, map);
389
390 /*
391 * Ensure that the address returned is DMA'ble
392 */
393 if (unlikely(!dma_capable(dev, dev_addr, size, true))) {
394 swiotlb_tbl_unmap_single(dev, map, size, dir,
395 attrs | DMA_ATTR_SKIP_CPU_SYNC);
396 return DMA_MAPPING_ERROR;
397 }
398
399 done:
400 if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) {
401 if (pfn_valid(PFN_DOWN(dma_to_phys(dev, dev_addr))))
402 arch_sync_dma_for_device(phys, size, dir);
403 else
404 xen_dma_sync_for_device(dev, dev_addr, size, dir);
405 }
406 return dev_addr;
407 }
408
409 /*
410 * Unmap a single streaming mode DMA translation. The dma_addr and size must
411 * match what was provided for in a previous xen_swiotlb_map_page call. All
412 * other usages are undefined.
413 *
414 * After this call, reads by the cpu to the buffer are guaranteed to see
415 * whatever the device wrote there.
416 */
417 static void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
418 size_t size, enum dma_data_direction dir, unsigned long attrs)
419 {
420 phys_addr_t paddr = xen_dma_to_phys(hwdev, dev_addr);
421
422 BUG_ON(dir == DMA_NONE);
423
424 if (!dev_is_dma_coherent(hwdev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) {
425 if (pfn_valid(PFN_DOWN(dma_to_phys(hwdev, dev_addr))))
426 arch_sync_dma_for_cpu(paddr, size, dir);
427 else
428 xen_dma_sync_for_cpu(hwdev, dev_addr, size, dir);
429 }
430
431 /* NOTE: We use dev_addr here, not paddr! */
432 if (is_xen_swiotlb_buffer(hwdev, dev_addr))
433 swiotlb_tbl_unmap_single(hwdev, paddr, size, dir, attrs);
434 }
435
436 static void
437 xen_swiotlb_sync_single_for_cpu(struct device *dev, dma_addr_t dma_addr,
438 size_t size, enum dma_data_direction dir)
439 {
440 phys_addr_t paddr = xen_dma_to_phys(dev, dma_addr);
441
442 if (!dev_is_dma_coherent(dev)) {
443 if (pfn_valid(PFN_DOWN(dma_to_phys(dev, dma_addr))))
444 arch_sync_dma_for_cpu(paddr, size, dir);
445 else
446 xen_dma_sync_for_cpu(dev, dma_addr, size, dir);
447 }
448
449 if (is_xen_swiotlb_buffer(dev, dma_addr))
450 swiotlb_sync_single_for_cpu(dev, paddr, size, dir);
451 }
452
453 static void
454 xen_swiotlb_sync_single_for_device(struct device *dev, dma_addr_t dma_addr,
455 size_t size, enum dma_data_direction dir)
456 {
457 phys_addr_t paddr = xen_dma_to_phys(dev, dma_addr);
458
459 if (is_xen_swiotlb_buffer(dev, dma_addr))
460 swiotlb_sync_single_for_device(dev, paddr, size, dir);
461
462 if (!dev_is_dma_coherent(dev)) {
463 if (pfn_valid(PFN_DOWN(dma_to_phys(dev, dma_addr))))
464 arch_sync_dma_for_device(paddr, size, dir);
465 else
466 xen_dma_sync_for_device(dev, dma_addr, size, dir);
467 }
468 }
469
470 /*
471 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
472 * concerning calls here are the same as for swiotlb_unmap_page() above.
473 */
474 static void
475 xen_swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
476 enum dma_data_direction dir, unsigned long attrs)
477 {
478 struct scatterlist *sg;
479 int i;
480
481 BUG_ON(dir == DMA_NONE);
482
483 for_each_sg(sgl, sg, nelems, i)
484 xen_swiotlb_unmap_page(hwdev, sg->dma_address, sg_dma_len(sg),
485 dir, attrs);
486
487 }
488
489 static int
490 xen_swiotlb_map_sg(struct device *dev, struct scatterlist *sgl, int nelems,
491 enum dma_data_direction dir, unsigned long attrs)
492 {
493 struct scatterlist *sg;
494 int i;
495
496 BUG_ON(dir == DMA_NONE);
497
498 for_each_sg(sgl, sg, nelems, i) {
499 sg->dma_address = xen_swiotlb_map_page(dev, sg_page(sg),
500 sg->offset, sg->length, dir, attrs);
501 if (sg->dma_address == DMA_MAPPING_ERROR)
502 goto out_unmap;
503 sg_dma_len(sg) = sg->length;
504 }
505
506 return nelems;
507 out_unmap:
508 xen_swiotlb_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
509 sg_dma_len(sgl) = 0;
510 return -EIO;
511 }
512
513 static void
514 xen_swiotlb_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl,
515 int nelems, enum dma_data_direction dir)
516 {
517 struct scatterlist *sg;
518 int i;
519
520 for_each_sg(sgl, sg, nelems, i) {
521 xen_swiotlb_sync_single_for_cpu(dev, sg->dma_address,
522 sg->length, dir);
523 }
524 }
525
526 static void
527 xen_swiotlb_sync_sg_for_device(struct device *dev, struct scatterlist *sgl,
528 int nelems, enum dma_data_direction dir)
529 {
530 struct scatterlist *sg;
531 int i;
532
533 for_each_sg(sgl, sg, nelems, i) {
534 xen_swiotlb_sync_single_for_device(dev, sg->dma_address,
535 sg->length, dir);
536 }
537 }
538
539 /*
540 * Return whether the given device DMA address mask can be supported
541 * properly. For example, if your device can only drive the low 24-bits
542 * during bus mastering, then you would pass 0x00ffffff as the mask to
543 * this function.
544 */
545 static int
546 xen_swiotlb_dma_supported(struct device *hwdev, u64 mask)
547 {
548 return xen_phys_to_dma(hwdev, io_tlb_default_mem.end - 1) <= mask;
549 }
550
551 const struct dma_map_ops xen_swiotlb_dma_ops = {
552 .alloc = xen_swiotlb_alloc_coherent,
553 .free = xen_swiotlb_free_coherent,
554 .sync_single_for_cpu = xen_swiotlb_sync_single_for_cpu,
555 .sync_single_for_device = xen_swiotlb_sync_single_for_device,
556 .sync_sg_for_cpu = xen_swiotlb_sync_sg_for_cpu,
557 .sync_sg_for_device = xen_swiotlb_sync_sg_for_device,
558 .map_sg = xen_swiotlb_map_sg,
559 .unmap_sg = xen_swiotlb_unmap_sg,
560 .map_page = xen_swiotlb_map_page,
561 .unmap_page = xen_swiotlb_unmap_page,
562 .dma_supported = xen_swiotlb_dma_supported,
563 .mmap = dma_common_mmap,
564 .get_sgtable = dma_common_get_sgtable,
565 .alloc_pages = dma_common_alloc_pages,
566 .free_pages = dma_common_free_pages,
567 };