]> git.proxmox.com Git - mirror_qemu.git/blob - dump/dump.c
Merge tag 'block-pull-request' of https://gitlab.com/stefanha/qemu into staging
[mirror_qemu.git] / dump / dump.c
1 /*
2 * QEMU dump
3 *
4 * Copyright Fujitsu, Corp. 2011, 2012
5 *
6 * Authors:
7 * Wen Congyang <wency@cn.fujitsu.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
11 *
12 */
13
14 #include "qemu/osdep.h"
15 #include "qemu/cutils.h"
16 #include "elf.h"
17 #include "exec/hwaddr.h"
18 #include "monitor/monitor.h"
19 #include "sysemu/kvm.h"
20 #include "sysemu/dump.h"
21 #include "sysemu/memory_mapping.h"
22 #include "sysemu/runstate.h"
23 #include "sysemu/cpus.h"
24 #include "qapi/error.h"
25 #include "qapi/qapi-commands-dump.h"
26 #include "qapi/qapi-events-dump.h"
27 #include "qapi/qmp/qerror.h"
28 #include "qemu/error-report.h"
29 #include "qemu/main-loop.h"
30 #include "hw/misc/vmcoreinfo.h"
31 #include "migration/blocker.h"
32
33 #ifdef TARGET_X86_64
34 #include "win_dump.h"
35 #endif
36
37 #include <zlib.h>
38 #ifdef CONFIG_LZO
39 #include <lzo/lzo1x.h>
40 #endif
41 #ifdef CONFIG_SNAPPY
42 #include <snappy-c.h>
43 #endif
44 #ifndef ELF_MACHINE_UNAME
45 #define ELF_MACHINE_UNAME "Unknown"
46 #endif
47
48 #define MAX_GUEST_NOTE_SIZE (1 << 20) /* 1MB should be enough */
49
50 static Error *dump_migration_blocker;
51
52 #define ELF_NOTE_SIZE(hdr_size, name_size, desc_size) \
53 ((DIV_ROUND_UP((hdr_size), 4) + \
54 DIV_ROUND_UP((name_size), 4) + \
55 DIV_ROUND_UP((desc_size), 4)) * 4)
56
57 static inline bool dump_is_64bit(DumpState *s)
58 {
59 return s->dump_info.d_class == ELFCLASS64;
60 }
61
62 static inline bool dump_has_filter(DumpState *s)
63 {
64 return s->filter_area_length > 0;
65 }
66
67 uint16_t cpu_to_dump16(DumpState *s, uint16_t val)
68 {
69 if (s->dump_info.d_endian == ELFDATA2LSB) {
70 val = cpu_to_le16(val);
71 } else {
72 val = cpu_to_be16(val);
73 }
74
75 return val;
76 }
77
78 uint32_t cpu_to_dump32(DumpState *s, uint32_t val)
79 {
80 if (s->dump_info.d_endian == ELFDATA2LSB) {
81 val = cpu_to_le32(val);
82 } else {
83 val = cpu_to_be32(val);
84 }
85
86 return val;
87 }
88
89 uint64_t cpu_to_dump64(DumpState *s, uint64_t val)
90 {
91 if (s->dump_info.d_endian == ELFDATA2LSB) {
92 val = cpu_to_le64(val);
93 } else {
94 val = cpu_to_be64(val);
95 }
96
97 return val;
98 }
99
100 static int dump_cleanup(DumpState *s)
101 {
102 guest_phys_blocks_free(&s->guest_phys_blocks);
103 memory_mapping_list_free(&s->list);
104 close(s->fd);
105 g_free(s->guest_note);
106 g_array_unref(s->string_table_buf);
107 s->guest_note = NULL;
108 if (s->resume) {
109 if (s->detached) {
110 qemu_mutex_lock_iothread();
111 }
112 vm_start();
113 if (s->detached) {
114 qemu_mutex_unlock_iothread();
115 }
116 }
117 migrate_del_blocker(dump_migration_blocker);
118
119 return 0;
120 }
121
122 static int fd_write_vmcore(const void *buf, size_t size, void *opaque)
123 {
124 DumpState *s = opaque;
125 size_t written_size;
126
127 written_size = qemu_write_full(s->fd, buf, size);
128 if (written_size != size) {
129 return -errno;
130 }
131
132 return 0;
133 }
134
135 static void prepare_elf64_header(DumpState *s, Elf64_Ehdr *elf_header)
136 {
137 /*
138 * phnum in the elf header is 16 bit, if we have more segments we
139 * set phnum to PN_XNUM and write the real number of segments to a
140 * special section.
141 */
142 uint16_t phnum = MIN(s->phdr_num, PN_XNUM);
143
144 memset(elf_header, 0, sizeof(Elf64_Ehdr));
145 memcpy(elf_header, ELFMAG, SELFMAG);
146 elf_header->e_ident[EI_CLASS] = ELFCLASS64;
147 elf_header->e_ident[EI_DATA] = s->dump_info.d_endian;
148 elf_header->e_ident[EI_VERSION] = EV_CURRENT;
149 elf_header->e_type = cpu_to_dump16(s, ET_CORE);
150 elf_header->e_machine = cpu_to_dump16(s, s->dump_info.d_machine);
151 elf_header->e_version = cpu_to_dump32(s, EV_CURRENT);
152 elf_header->e_ehsize = cpu_to_dump16(s, sizeof(elf_header));
153 elf_header->e_phoff = cpu_to_dump64(s, s->phdr_offset);
154 elf_header->e_phentsize = cpu_to_dump16(s, sizeof(Elf64_Phdr));
155 elf_header->e_phnum = cpu_to_dump16(s, phnum);
156 elf_header->e_shoff = cpu_to_dump64(s, s->shdr_offset);
157 elf_header->e_shentsize = cpu_to_dump16(s, sizeof(Elf64_Shdr));
158 elf_header->e_shnum = cpu_to_dump16(s, s->shdr_num);
159 elf_header->e_shstrndx = cpu_to_dump16(s, s->shdr_num - 1);
160 }
161
162 static void prepare_elf32_header(DumpState *s, Elf32_Ehdr *elf_header)
163 {
164 /*
165 * phnum in the elf header is 16 bit, if we have more segments we
166 * set phnum to PN_XNUM and write the real number of segments to a
167 * special section.
168 */
169 uint16_t phnum = MIN(s->phdr_num, PN_XNUM);
170
171 memset(elf_header, 0, sizeof(Elf32_Ehdr));
172 memcpy(elf_header, ELFMAG, SELFMAG);
173 elf_header->e_ident[EI_CLASS] = ELFCLASS32;
174 elf_header->e_ident[EI_DATA] = s->dump_info.d_endian;
175 elf_header->e_ident[EI_VERSION] = EV_CURRENT;
176 elf_header->e_type = cpu_to_dump16(s, ET_CORE);
177 elf_header->e_machine = cpu_to_dump16(s, s->dump_info.d_machine);
178 elf_header->e_version = cpu_to_dump32(s, EV_CURRENT);
179 elf_header->e_ehsize = cpu_to_dump16(s, sizeof(elf_header));
180 elf_header->e_phoff = cpu_to_dump32(s, s->phdr_offset);
181 elf_header->e_phentsize = cpu_to_dump16(s, sizeof(Elf32_Phdr));
182 elf_header->e_phnum = cpu_to_dump16(s, phnum);
183 elf_header->e_shoff = cpu_to_dump32(s, s->shdr_offset);
184 elf_header->e_shentsize = cpu_to_dump16(s, sizeof(Elf32_Shdr));
185 elf_header->e_shnum = cpu_to_dump16(s, s->shdr_num);
186 elf_header->e_shstrndx = cpu_to_dump16(s, s->shdr_num - 1);
187 }
188
189 static void write_elf_header(DumpState *s, Error **errp)
190 {
191 Elf32_Ehdr elf32_header;
192 Elf64_Ehdr elf64_header;
193 size_t header_size;
194 void *header_ptr;
195 int ret;
196
197 /* The NULL header and the shstrtab are always defined */
198 assert(s->shdr_num >= 2);
199 if (dump_is_64bit(s)) {
200 prepare_elf64_header(s, &elf64_header);
201 header_size = sizeof(elf64_header);
202 header_ptr = &elf64_header;
203 } else {
204 prepare_elf32_header(s, &elf32_header);
205 header_size = sizeof(elf32_header);
206 header_ptr = &elf32_header;
207 }
208
209 ret = fd_write_vmcore(header_ptr, header_size, s);
210 if (ret < 0) {
211 error_setg_errno(errp, -ret, "dump: failed to write elf header");
212 }
213 }
214
215 static void write_elf64_load(DumpState *s, MemoryMapping *memory_mapping,
216 int phdr_index, hwaddr offset,
217 hwaddr filesz, Error **errp)
218 {
219 Elf64_Phdr phdr;
220 int ret;
221
222 memset(&phdr, 0, sizeof(Elf64_Phdr));
223 phdr.p_type = cpu_to_dump32(s, PT_LOAD);
224 phdr.p_offset = cpu_to_dump64(s, offset);
225 phdr.p_paddr = cpu_to_dump64(s, memory_mapping->phys_addr);
226 phdr.p_filesz = cpu_to_dump64(s, filesz);
227 phdr.p_memsz = cpu_to_dump64(s, memory_mapping->length);
228 phdr.p_vaddr = cpu_to_dump64(s, memory_mapping->virt_addr) ?: phdr.p_paddr;
229
230 assert(memory_mapping->length >= filesz);
231
232 ret = fd_write_vmcore(&phdr, sizeof(Elf64_Phdr), s);
233 if (ret < 0) {
234 error_setg_errno(errp, -ret,
235 "dump: failed to write program header table");
236 }
237 }
238
239 static void write_elf32_load(DumpState *s, MemoryMapping *memory_mapping,
240 int phdr_index, hwaddr offset,
241 hwaddr filesz, Error **errp)
242 {
243 Elf32_Phdr phdr;
244 int ret;
245
246 memset(&phdr, 0, sizeof(Elf32_Phdr));
247 phdr.p_type = cpu_to_dump32(s, PT_LOAD);
248 phdr.p_offset = cpu_to_dump32(s, offset);
249 phdr.p_paddr = cpu_to_dump32(s, memory_mapping->phys_addr);
250 phdr.p_filesz = cpu_to_dump32(s, filesz);
251 phdr.p_memsz = cpu_to_dump32(s, memory_mapping->length);
252 phdr.p_vaddr =
253 cpu_to_dump32(s, memory_mapping->virt_addr) ?: phdr.p_paddr;
254
255 assert(memory_mapping->length >= filesz);
256
257 ret = fd_write_vmcore(&phdr, sizeof(Elf32_Phdr), s);
258 if (ret < 0) {
259 error_setg_errno(errp, -ret,
260 "dump: failed to write program header table");
261 }
262 }
263
264 static void prepare_elf64_phdr_note(DumpState *s, Elf64_Phdr *phdr)
265 {
266 memset(phdr, 0, sizeof(*phdr));
267 phdr->p_type = cpu_to_dump32(s, PT_NOTE);
268 phdr->p_offset = cpu_to_dump64(s, s->note_offset);
269 phdr->p_paddr = 0;
270 phdr->p_filesz = cpu_to_dump64(s, s->note_size);
271 phdr->p_memsz = cpu_to_dump64(s, s->note_size);
272 phdr->p_vaddr = 0;
273 }
274
275 static inline int cpu_index(CPUState *cpu)
276 {
277 return cpu->cpu_index + 1;
278 }
279
280 static void write_guest_note(WriteCoreDumpFunction f, DumpState *s,
281 Error **errp)
282 {
283 int ret;
284
285 if (s->guest_note) {
286 ret = f(s->guest_note, s->guest_note_size, s);
287 if (ret < 0) {
288 error_setg(errp, "dump: failed to write guest note");
289 }
290 }
291 }
292
293 static void write_elf64_notes(WriteCoreDumpFunction f, DumpState *s,
294 Error **errp)
295 {
296 CPUState *cpu;
297 int ret;
298 int id;
299
300 CPU_FOREACH(cpu) {
301 id = cpu_index(cpu);
302 ret = cpu_write_elf64_note(f, cpu, id, s);
303 if (ret < 0) {
304 error_setg(errp, "dump: failed to write elf notes");
305 return;
306 }
307 }
308
309 CPU_FOREACH(cpu) {
310 ret = cpu_write_elf64_qemunote(f, cpu, s);
311 if (ret < 0) {
312 error_setg(errp, "dump: failed to write CPU status");
313 return;
314 }
315 }
316
317 write_guest_note(f, s, errp);
318 }
319
320 static void prepare_elf32_phdr_note(DumpState *s, Elf32_Phdr *phdr)
321 {
322 memset(phdr, 0, sizeof(*phdr));
323 phdr->p_type = cpu_to_dump32(s, PT_NOTE);
324 phdr->p_offset = cpu_to_dump32(s, s->note_offset);
325 phdr->p_paddr = 0;
326 phdr->p_filesz = cpu_to_dump32(s, s->note_size);
327 phdr->p_memsz = cpu_to_dump32(s, s->note_size);
328 phdr->p_vaddr = 0;
329 }
330
331 static void write_elf32_notes(WriteCoreDumpFunction f, DumpState *s,
332 Error **errp)
333 {
334 CPUState *cpu;
335 int ret;
336 int id;
337
338 CPU_FOREACH(cpu) {
339 id = cpu_index(cpu);
340 ret = cpu_write_elf32_note(f, cpu, id, s);
341 if (ret < 0) {
342 error_setg(errp, "dump: failed to write elf notes");
343 return;
344 }
345 }
346
347 CPU_FOREACH(cpu) {
348 ret = cpu_write_elf32_qemunote(f, cpu, s);
349 if (ret < 0) {
350 error_setg(errp, "dump: failed to write CPU status");
351 return;
352 }
353 }
354
355 write_guest_note(f, s, errp);
356 }
357
358 static void write_elf_phdr_note(DumpState *s, Error **errp)
359 {
360 ERRP_GUARD();
361 Elf32_Phdr phdr32;
362 Elf64_Phdr phdr64;
363 void *phdr;
364 size_t size;
365 int ret;
366
367 if (dump_is_64bit(s)) {
368 prepare_elf64_phdr_note(s, &phdr64);
369 size = sizeof(phdr64);
370 phdr = &phdr64;
371 } else {
372 prepare_elf32_phdr_note(s, &phdr32);
373 size = sizeof(phdr32);
374 phdr = &phdr32;
375 }
376
377 ret = fd_write_vmcore(phdr, size, s);
378 if (ret < 0) {
379 error_setg_errno(errp, -ret,
380 "dump: failed to write program header table");
381 }
382 }
383
384 static void prepare_elf_section_hdr_zero(DumpState *s)
385 {
386 if (dump_is_64bit(s)) {
387 Elf64_Shdr *shdr64 = s->elf_section_hdrs;
388
389 shdr64->sh_info = cpu_to_dump32(s, s->phdr_num);
390 } else {
391 Elf32_Shdr *shdr32 = s->elf_section_hdrs;
392
393 shdr32->sh_info = cpu_to_dump32(s, s->phdr_num);
394 }
395 }
396
397 static void prepare_elf_section_hdr_string(DumpState *s, void *buff)
398 {
399 uint64_t index = s->string_table_buf->len;
400 const char strtab[] = ".shstrtab";
401 Elf32_Shdr shdr32 = {};
402 Elf64_Shdr shdr64 = {};
403 int shdr_size;
404 void *shdr;
405
406 g_array_append_vals(s->string_table_buf, strtab, sizeof(strtab));
407 if (dump_is_64bit(s)) {
408 shdr_size = sizeof(Elf64_Shdr);
409 shdr64.sh_type = SHT_STRTAB;
410 shdr64.sh_offset = s->section_offset + s->elf_section_data_size;
411 shdr64.sh_name = index;
412 shdr64.sh_size = s->string_table_buf->len;
413 shdr = &shdr64;
414 } else {
415 shdr_size = sizeof(Elf32_Shdr);
416 shdr32.sh_type = SHT_STRTAB;
417 shdr32.sh_offset = s->section_offset + s->elf_section_data_size;
418 shdr32.sh_name = index;
419 shdr32.sh_size = s->string_table_buf->len;
420 shdr = &shdr32;
421 }
422 memcpy(buff, shdr, shdr_size);
423 }
424
425 static bool prepare_elf_section_hdrs(DumpState *s, Error **errp)
426 {
427 size_t len, sizeof_shdr;
428 void *buff_hdr;
429
430 /*
431 * Section ordering:
432 * - HDR zero
433 * - Arch section hdrs
434 * - String table hdr
435 */
436 sizeof_shdr = dump_is_64bit(s) ? sizeof(Elf64_Shdr) : sizeof(Elf32_Shdr);
437 len = sizeof_shdr * s->shdr_num;
438 s->elf_section_hdrs = g_malloc0(len);
439 buff_hdr = s->elf_section_hdrs;
440
441 /*
442 * The first section header is ALWAYS a special initial section
443 * header.
444 *
445 * The header should be 0 with one exception being that if
446 * phdr_num is PN_XNUM then the sh_info field contains the real
447 * number of segment entries.
448 *
449 * As we zero allocate the buffer we will only need to modify
450 * sh_info for the PN_XNUM case.
451 */
452 if (s->phdr_num >= PN_XNUM) {
453 prepare_elf_section_hdr_zero(s);
454 }
455 buff_hdr += sizeof_shdr;
456
457 /* Add architecture defined section headers */
458 if (s->dump_info.arch_sections_write_hdr_fn
459 && s->shdr_num > 2) {
460 buff_hdr += s->dump_info.arch_sections_write_hdr_fn(s, buff_hdr);
461
462 if (s->shdr_num >= SHN_LORESERVE) {
463 error_setg_errno(errp, EINVAL,
464 "dump: too many architecture defined sections");
465 return false;
466 }
467 }
468
469 /*
470 * String table is the last section since strings are added via
471 * arch_sections_write_hdr().
472 */
473 prepare_elf_section_hdr_string(s, buff_hdr);
474 return true;
475 }
476
477 static void write_elf_section_headers(DumpState *s, Error **errp)
478 {
479 size_t sizeof_shdr = dump_is_64bit(s) ? sizeof(Elf64_Shdr) : sizeof(Elf32_Shdr);
480 int ret;
481
482 if (!prepare_elf_section_hdrs(s, errp)) {
483 return;
484 }
485
486 ret = fd_write_vmcore(s->elf_section_hdrs, s->shdr_num * sizeof_shdr, s);
487 if (ret < 0) {
488 error_setg_errno(errp, -ret, "dump: failed to write section headers");
489 }
490
491 g_free(s->elf_section_hdrs);
492 }
493
494 static void write_elf_sections(DumpState *s, Error **errp)
495 {
496 int ret;
497
498 if (s->elf_section_data_size) {
499 /* Write architecture section data */
500 ret = fd_write_vmcore(s->elf_section_data,
501 s->elf_section_data_size, s);
502 if (ret < 0) {
503 error_setg_errno(errp, -ret,
504 "dump: failed to write architecture section data");
505 return;
506 }
507 }
508
509 /* Write string table */
510 ret = fd_write_vmcore(s->string_table_buf->data,
511 s->string_table_buf->len, s);
512 if (ret < 0) {
513 error_setg_errno(errp, -ret, "dump: failed to write string table data");
514 }
515 }
516
517 static void write_data(DumpState *s, void *buf, int length, Error **errp)
518 {
519 int ret;
520
521 ret = fd_write_vmcore(buf, length, s);
522 if (ret < 0) {
523 error_setg_errno(errp, -ret, "dump: failed to save memory");
524 } else {
525 s->written_size += length;
526 }
527 }
528
529 /* write the memory to vmcore. 1 page per I/O. */
530 static void write_memory(DumpState *s, GuestPhysBlock *block, ram_addr_t start,
531 int64_t size, Error **errp)
532 {
533 ERRP_GUARD();
534 int64_t i;
535
536 for (i = 0; i < size / s->dump_info.page_size; i++) {
537 write_data(s, block->host_addr + start + i * s->dump_info.page_size,
538 s->dump_info.page_size, errp);
539 if (*errp) {
540 return;
541 }
542 }
543
544 if ((size % s->dump_info.page_size) != 0) {
545 write_data(s, block->host_addr + start + i * s->dump_info.page_size,
546 size % s->dump_info.page_size, errp);
547 if (*errp) {
548 return;
549 }
550 }
551 }
552
553 /* get the memory's offset and size in the vmcore */
554 static void get_offset_range(hwaddr phys_addr,
555 ram_addr_t mapping_length,
556 DumpState *s,
557 hwaddr *p_offset,
558 hwaddr *p_filesz)
559 {
560 GuestPhysBlock *block;
561 hwaddr offset = s->memory_offset;
562 int64_t size_in_block, start;
563
564 /* When the memory is not stored into vmcore, offset will be -1 */
565 *p_offset = -1;
566 *p_filesz = 0;
567
568 if (dump_has_filter(s)) {
569 if (phys_addr < s->filter_area_begin ||
570 phys_addr >= s->filter_area_begin + s->filter_area_length) {
571 return;
572 }
573 }
574
575 QTAILQ_FOREACH(block, &s->guest_phys_blocks.head, next) {
576 if (dump_has_filter(s)) {
577 if (block->target_start >= s->filter_area_begin + s->filter_area_length ||
578 block->target_end <= s->filter_area_begin) {
579 /* This block is out of the range */
580 continue;
581 }
582
583 if (s->filter_area_begin <= block->target_start) {
584 start = block->target_start;
585 } else {
586 start = s->filter_area_begin;
587 }
588
589 size_in_block = block->target_end - start;
590 if (s->filter_area_begin + s->filter_area_length < block->target_end) {
591 size_in_block -= block->target_end - (s->filter_area_begin + s->filter_area_length);
592 }
593 } else {
594 start = block->target_start;
595 size_in_block = block->target_end - block->target_start;
596 }
597
598 if (phys_addr >= start && phys_addr < start + size_in_block) {
599 *p_offset = phys_addr - start + offset;
600
601 /* The offset range mapped from the vmcore file must not spill over
602 * the GuestPhysBlock, clamp it. The rest of the mapping will be
603 * zero-filled in memory at load time; see
604 * <http://refspecs.linuxbase.org/elf/gabi4+/ch5.pheader.html>.
605 */
606 *p_filesz = phys_addr + mapping_length <= start + size_in_block ?
607 mapping_length :
608 size_in_block - (phys_addr - start);
609 return;
610 }
611
612 offset += size_in_block;
613 }
614 }
615
616 static void write_elf_phdr_loads(DumpState *s, Error **errp)
617 {
618 ERRP_GUARD();
619 hwaddr offset, filesz;
620 MemoryMapping *memory_mapping;
621 uint32_t phdr_index = 1;
622
623 QTAILQ_FOREACH(memory_mapping, &s->list.head, next) {
624 get_offset_range(memory_mapping->phys_addr,
625 memory_mapping->length,
626 s, &offset, &filesz);
627 if (dump_is_64bit(s)) {
628 write_elf64_load(s, memory_mapping, phdr_index++, offset,
629 filesz, errp);
630 } else {
631 write_elf32_load(s, memory_mapping, phdr_index++, offset,
632 filesz, errp);
633 }
634
635 if (*errp) {
636 return;
637 }
638
639 if (phdr_index >= s->phdr_num) {
640 break;
641 }
642 }
643 }
644
645 static void write_elf_notes(DumpState *s, Error **errp)
646 {
647 if (dump_is_64bit(s)) {
648 write_elf64_notes(fd_write_vmcore, s, errp);
649 } else {
650 write_elf32_notes(fd_write_vmcore, s, errp);
651 }
652 }
653
654 /* write elf header, PT_NOTE and elf note to vmcore. */
655 static void dump_begin(DumpState *s, Error **errp)
656 {
657 ERRP_GUARD();
658
659 /*
660 * the vmcore's format is:
661 * --------------
662 * | elf header |
663 * --------------
664 * | sctn_hdr |
665 * --------------
666 * | PT_NOTE |
667 * --------------
668 * | PT_LOAD |
669 * --------------
670 * | ...... |
671 * --------------
672 * | PT_LOAD |
673 * --------------
674 * | elf note |
675 * --------------
676 * | memory |
677 * --------------
678 *
679 * we only know where the memory is saved after we write elf note into
680 * vmcore.
681 */
682
683 /* write elf header to vmcore */
684 write_elf_header(s, errp);
685 if (*errp) {
686 return;
687 }
688
689 /* write section headers to vmcore */
690 write_elf_section_headers(s, errp);
691 if (*errp) {
692 return;
693 }
694
695 /* write PT_NOTE to vmcore */
696 write_elf_phdr_note(s, errp);
697 if (*errp) {
698 return;
699 }
700
701 /* write all PT_LOADs to vmcore */
702 write_elf_phdr_loads(s, errp);
703 if (*errp) {
704 return;
705 }
706
707 /* write notes to vmcore */
708 write_elf_notes(s, errp);
709 }
710
711 int64_t dump_filtered_memblock_size(GuestPhysBlock *block,
712 int64_t filter_area_start,
713 int64_t filter_area_length)
714 {
715 int64_t size, left, right;
716
717 /* No filter, return full size */
718 if (!filter_area_length) {
719 return block->target_end - block->target_start;
720 }
721
722 /* calculate the overlapped region. */
723 left = MAX(filter_area_start, block->target_start);
724 right = MIN(filter_area_start + filter_area_length, block->target_end);
725 size = right - left;
726 size = size > 0 ? size : 0;
727
728 return size;
729 }
730
731 int64_t dump_filtered_memblock_start(GuestPhysBlock *block,
732 int64_t filter_area_start,
733 int64_t filter_area_length)
734 {
735 if (filter_area_length) {
736 /* return -1 if the block is not within filter area */
737 if (block->target_start >= filter_area_start + filter_area_length ||
738 block->target_end <= filter_area_start) {
739 return -1;
740 }
741
742 if (filter_area_start > block->target_start) {
743 return filter_area_start - block->target_start;
744 }
745 }
746
747 return 0;
748 }
749
750 /* write all memory to vmcore */
751 static void dump_iterate(DumpState *s, Error **errp)
752 {
753 ERRP_GUARD();
754 GuestPhysBlock *block;
755 int64_t memblock_size, memblock_start;
756
757 QTAILQ_FOREACH(block, &s->guest_phys_blocks.head, next) {
758 memblock_start = dump_filtered_memblock_start(block, s->filter_area_begin, s->filter_area_length);
759 if (memblock_start == -1) {
760 continue;
761 }
762
763 memblock_size = dump_filtered_memblock_size(block, s->filter_area_begin, s->filter_area_length);
764
765 /* Write the memory to file */
766 write_memory(s, block, memblock_start, memblock_size, errp);
767 if (*errp) {
768 return;
769 }
770 }
771 }
772
773 static void dump_end(DumpState *s, Error **errp)
774 {
775 int rc;
776 ERRP_GUARD();
777
778 if (s->elf_section_data_size) {
779 s->elf_section_data = g_malloc0(s->elf_section_data_size);
780 }
781
782 /* Adds the architecture defined section data to s->elf_section_data */
783 if (s->dump_info.arch_sections_write_fn &&
784 s->elf_section_data_size) {
785 rc = s->dump_info.arch_sections_write_fn(s, s->elf_section_data);
786 if (rc) {
787 error_setg_errno(errp, rc,
788 "dump: failed to get arch section data");
789 g_free(s->elf_section_data);
790 return;
791 }
792 }
793
794 /* write sections to vmcore */
795 write_elf_sections(s, errp);
796 }
797
798 static void create_vmcore(DumpState *s, Error **errp)
799 {
800 ERRP_GUARD();
801
802 dump_begin(s, errp);
803 if (*errp) {
804 return;
805 }
806
807 /* Iterate over memory and dump it to file */
808 dump_iterate(s, errp);
809 if (*errp) {
810 return;
811 }
812
813 /* Write the section data */
814 dump_end(s, errp);
815 }
816
817 static int write_start_flat_header(int fd)
818 {
819 MakedumpfileHeader *mh;
820 int ret = 0;
821
822 QEMU_BUILD_BUG_ON(sizeof *mh > MAX_SIZE_MDF_HEADER);
823 mh = g_malloc0(MAX_SIZE_MDF_HEADER);
824
825 memcpy(mh->signature, MAKEDUMPFILE_SIGNATURE,
826 MIN(sizeof mh->signature, sizeof MAKEDUMPFILE_SIGNATURE));
827
828 mh->type = cpu_to_be64(TYPE_FLAT_HEADER);
829 mh->version = cpu_to_be64(VERSION_FLAT_HEADER);
830
831 size_t written_size;
832 written_size = qemu_write_full(fd, mh, MAX_SIZE_MDF_HEADER);
833 if (written_size != MAX_SIZE_MDF_HEADER) {
834 ret = -1;
835 }
836
837 g_free(mh);
838 return ret;
839 }
840
841 static int write_end_flat_header(int fd)
842 {
843 MakedumpfileDataHeader mdh;
844
845 mdh.offset = END_FLAG_FLAT_HEADER;
846 mdh.buf_size = END_FLAG_FLAT_HEADER;
847
848 size_t written_size;
849 written_size = qemu_write_full(fd, &mdh, sizeof(mdh));
850 if (written_size != sizeof(mdh)) {
851 return -1;
852 }
853
854 return 0;
855 }
856
857 static int write_buffer(int fd, off_t offset, const void *buf, size_t size)
858 {
859 size_t written_size;
860 MakedumpfileDataHeader mdh;
861
862 mdh.offset = cpu_to_be64(offset);
863 mdh.buf_size = cpu_to_be64(size);
864
865 written_size = qemu_write_full(fd, &mdh, sizeof(mdh));
866 if (written_size != sizeof(mdh)) {
867 return -1;
868 }
869
870 written_size = qemu_write_full(fd, buf, size);
871 if (written_size != size) {
872 return -1;
873 }
874
875 return 0;
876 }
877
878 static int buf_write_note(const void *buf, size_t size, void *opaque)
879 {
880 DumpState *s = opaque;
881
882 /* note_buf is not enough */
883 if (s->note_buf_offset + size > s->note_size) {
884 return -1;
885 }
886
887 memcpy(s->note_buf + s->note_buf_offset, buf, size);
888
889 s->note_buf_offset += size;
890
891 return 0;
892 }
893
894 /*
895 * This function retrieves various sizes from an elf header.
896 *
897 * @note has to be a valid ELF note. The return sizes are unmodified
898 * (not padded or rounded up to be multiple of 4).
899 */
900 static void get_note_sizes(DumpState *s, const void *note,
901 uint64_t *note_head_size,
902 uint64_t *name_size,
903 uint64_t *desc_size)
904 {
905 uint64_t note_head_sz;
906 uint64_t name_sz;
907 uint64_t desc_sz;
908
909 if (dump_is_64bit(s)) {
910 const Elf64_Nhdr *hdr = note;
911 note_head_sz = sizeof(Elf64_Nhdr);
912 name_sz = tswap64(hdr->n_namesz);
913 desc_sz = tswap64(hdr->n_descsz);
914 } else {
915 const Elf32_Nhdr *hdr = note;
916 note_head_sz = sizeof(Elf32_Nhdr);
917 name_sz = tswap32(hdr->n_namesz);
918 desc_sz = tswap32(hdr->n_descsz);
919 }
920
921 if (note_head_size) {
922 *note_head_size = note_head_sz;
923 }
924 if (name_size) {
925 *name_size = name_sz;
926 }
927 if (desc_size) {
928 *desc_size = desc_sz;
929 }
930 }
931
932 static bool note_name_equal(DumpState *s,
933 const uint8_t *note, const char *name)
934 {
935 int len = strlen(name) + 1;
936 uint64_t head_size, name_size;
937
938 get_note_sizes(s, note, &head_size, &name_size, NULL);
939 head_size = ROUND_UP(head_size, 4);
940
941 return name_size == len && memcmp(note + head_size, name, len) == 0;
942 }
943
944 /* write common header, sub header and elf note to vmcore */
945 static void create_header32(DumpState *s, Error **errp)
946 {
947 ERRP_GUARD();
948 DiskDumpHeader32 *dh = NULL;
949 KdumpSubHeader32 *kh = NULL;
950 size_t size;
951 uint32_t block_size;
952 uint32_t sub_hdr_size;
953 uint32_t bitmap_blocks;
954 uint32_t status = 0;
955 uint64_t offset_note;
956
957 /* write common header, the version of kdump-compressed format is 6th */
958 size = sizeof(DiskDumpHeader32);
959 dh = g_malloc0(size);
960
961 memcpy(dh->signature, KDUMP_SIGNATURE, SIG_LEN);
962 dh->header_version = cpu_to_dump32(s, 6);
963 block_size = s->dump_info.page_size;
964 dh->block_size = cpu_to_dump32(s, block_size);
965 sub_hdr_size = sizeof(struct KdumpSubHeader32) + s->note_size;
966 sub_hdr_size = DIV_ROUND_UP(sub_hdr_size, block_size);
967 dh->sub_hdr_size = cpu_to_dump32(s, sub_hdr_size);
968 /* dh->max_mapnr may be truncated, full 64bit is in kh.max_mapnr_64 */
969 dh->max_mapnr = cpu_to_dump32(s, MIN(s->max_mapnr, UINT_MAX));
970 dh->nr_cpus = cpu_to_dump32(s, s->nr_cpus);
971 bitmap_blocks = DIV_ROUND_UP(s->len_dump_bitmap, block_size) * 2;
972 dh->bitmap_blocks = cpu_to_dump32(s, bitmap_blocks);
973 strncpy(dh->utsname.machine, ELF_MACHINE_UNAME, sizeof(dh->utsname.machine));
974
975 if (s->flag_compress & DUMP_DH_COMPRESSED_ZLIB) {
976 status |= DUMP_DH_COMPRESSED_ZLIB;
977 }
978 #ifdef CONFIG_LZO
979 if (s->flag_compress & DUMP_DH_COMPRESSED_LZO) {
980 status |= DUMP_DH_COMPRESSED_LZO;
981 }
982 #endif
983 #ifdef CONFIG_SNAPPY
984 if (s->flag_compress & DUMP_DH_COMPRESSED_SNAPPY) {
985 status |= DUMP_DH_COMPRESSED_SNAPPY;
986 }
987 #endif
988 dh->status = cpu_to_dump32(s, status);
989
990 if (write_buffer(s->fd, 0, dh, size) < 0) {
991 error_setg(errp, "dump: failed to write disk dump header");
992 goto out;
993 }
994
995 /* write sub header */
996 size = sizeof(KdumpSubHeader32);
997 kh = g_malloc0(size);
998
999 /* 64bit max_mapnr_64 */
1000 kh->max_mapnr_64 = cpu_to_dump64(s, s->max_mapnr);
1001 kh->phys_base = cpu_to_dump32(s, s->dump_info.phys_base);
1002 kh->dump_level = cpu_to_dump32(s, DUMP_LEVEL);
1003
1004 offset_note = DISKDUMP_HEADER_BLOCKS * block_size + size;
1005 if (s->guest_note &&
1006 note_name_equal(s, s->guest_note, "VMCOREINFO")) {
1007 uint64_t hsize, name_size, size_vmcoreinfo_desc, offset_vmcoreinfo;
1008
1009 get_note_sizes(s, s->guest_note,
1010 &hsize, &name_size, &size_vmcoreinfo_desc);
1011 offset_vmcoreinfo = offset_note + s->note_size - s->guest_note_size +
1012 (DIV_ROUND_UP(hsize, 4) + DIV_ROUND_UP(name_size, 4)) * 4;
1013 kh->offset_vmcoreinfo = cpu_to_dump64(s, offset_vmcoreinfo);
1014 kh->size_vmcoreinfo = cpu_to_dump32(s, size_vmcoreinfo_desc);
1015 }
1016
1017 kh->offset_note = cpu_to_dump64(s, offset_note);
1018 kh->note_size = cpu_to_dump32(s, s->note_size);
1019
1020 if (write_buffer(s->fd, DISKDUMP_HEADER_BLOCKS *
1021 block_size, kh, size) < 0) {
1022 error_setg(errp, "dump: failed to write kdump sub header");
1023 goto out;
1024 }
1025
1026 /* write note */
1027 s->note_buf = g_malloc0(s->note_size);
1028 s->note_buf_offset = 0;
1029
1030 /* use s->note_buf to store notes temporarily */
1031 write_elf32_notes(buf_write_note, s, errp);
1032 if (*errp) {
1033 goto out;
1034 }
1035 if (write_buffer(s->fd, offset_note, s->note_buf,
1036 s->note_size) < 0) {
1037 error_setg(errp, "dump: failed to write notes");
1038 goto out;
1039 }
1040
1041 /* get offset of dump_bitmap */
1042 s->offset_dump_bitmap = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size) *
1043 block_size;
1044
1045 /* get offset of page */
1046 s->offset_page = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size + bitmap_blocks) *
1047 block_size;
1048
1049 out:
1050 g_free(dh);
1051 g_free(kh);
1052 g_free(s->note_buf);
1053 }
1054
1055 /* write common header, sub header and elf note to vmcore */
1056 static void create_header64(DumpState *s, Error **errp)
1057 {
1058 ERRP_GUARD();
1059 DiskDumpHeader64 *dh = NULL;
1060 KdumpSubHeader64 *kh = NULL;
1061 size_t size;
1062 uint32_t block_size;
1063 uint32_t sub_hdr_size;
1064 uint32_t bitmap_blocks;
1065 uint32_t status = 0;
1066 uint64_t offset_note;
1067
1068 /* write common header, the version of kdump-compressed format is 6th */
1069 size = sizeof(DiskDumpHeader64);
1070 dh = g_malloc0(size);
1071
1072 memcpy(dh->signature, KDUMP_SIGNATURE, SIG_LEN);
1073 dh->header_version = cpu_to_dump32(s, 6);
1074 block_size = s->dump_info.page_size;
1075 dh->block_size = cpu_to_dump32(s, block_size);
1076 sub_hdr_size = sizeof(struct KdumpSubHeader64) + s->note_size;
1077 sub_hdr_size = DIV_ROUND_UP(sub_hdr_size, block_size);
1078 dh->sub_hdr_size = cpu_to_dump32(s, sub_hdr_size);
1079 /* dh->max_mapnr may be truncated, full 64bit is in kh.max_mapnr_64 */
1080 dh->max_mapnr = cpu_to_dump32(s, MIN(s->max_mapnr, UINT_MAX));
1081 dh->nr_cpus = cpu_to_dump32(s, s->nr_cpus);
1082 bitmap_blocks = DIV_ROUND_UP(s->len_dump_bitmap, block_size) * 2;
1083 dh->bitmap_blocks = cpu_to_dump32(s, bitmap_blocks);
1084 strncpy(dh->utsname.machine, ELF_MACHINE_UNAME, sizeof(dh->utsname.machine));
1085
1086 if (s->flag_compress & DUMP_DH_COMPRESSED_ZLIB) {
1087 status |= DUMP_DH_COMPRESSED_ZLIB;
1088 }
1089 #ifdef CONFIG_LZO
1090 if (s->flag_compress & DUMP_DH_COMPRESSED_LZO) {
1091 status |= DUMP_DH_COMPRESSED_LZO;
1092 }
1093 #endif
1094 #ifdef CONFIG_SNAPPY
1095 if (s->flag_compress & DUMP_DH_COMPRESSED_SNAPPY) {
1096 status |= DUMP_DH_COMPRESSED_SNAPPY;
1097 }
1098 #endif
1099 dh->status = cpu_to_dump32(s, status);
1100
1101 if (write_buffer(s->fd, 0, dh, size) < 0) {
1102 error_setg(errp, "dump: failed to write disk dump header");
1103 goto out;
1104 }
1105
1106 /* write sub header */
1107 size = sizeof(KdumpSubHeader64);
1108 kh = g_malloc0(size);
1109
1110 /* 64bit max_mapnr_64 */
1111 kh->max_mapnr_64 = cpu_to_dump64(s, s->max_mapnr);
1112 kh->phys_base = cpu_to_dump64(s, s->dump_info.phys_base);
1113 kh->dump_level = cpu_to_dump32(s, DUMP_LEVEL);
1114
1115 offset_note = DISKDUMP_HEADER_BLOCKS * block_size + size;
1116 if (s->guest_note &&
1117 note_name_equal(s, s->guest_note, "VMCOREINFO")) {
1118 uint64_t hsize, name_size, size_vmcoreinfo_desc, offset_vmcoreinfo;
1119
1120 get_note_sizes(s, s->guest_note,
1121 &hsize, &name_size, &size_vmcoreinfo_desc);
1122 offset_vmcoreinfo = offset_note + s->note_size - s->guest_note_size +
1123 (DIV_ROUND_UP(hsize, 4) + DIV_ROUND_UP(name_size, 4)) * 4;
1124 kh->offset_vmcoreinfo = cpu_to_dump64(s, offset_vmcoreinfo);
1125 kh->size_vmcoreinfo = cpu_to_dump64(s, size_vmcoreinfo_desc);
1126 }
1127
1128 kh->offset_note = cpu_to_dump64(s, offset_note);
1129 kh->note_size = cpu_to_dump64(s, s->note_size);
1130
1131 if (write_buffer(s->fd, DISKDUMP_HEADER_BLOCKS *
1132 block_size, kh, size) < 0) {
1133 error_setg(errp, "dump: failed to write kdump sub header");
1134 goto out;
1135 }
1136
1137 /* write note */
1138 s->note_buf = g_malloc0(s->note_size);
1139 s->note_buf_offset = 0;
1140
1141 /* use s->note_buf to store notes temporarily */
1142 write_elf64_notes(buf_write_note, s, errp);
1143 if (*errp) {
1144 goto out;
1145 }
1146
1147 if (write_buffer(s->fd, offset_note, s->note_buf,
1148 s->note_size) < 0) {
1149 error_setg(errp, "dump: failed to write notes");
1150 goto out;
1151 }
1152
1153 /* get offset of dump_bitmap */
1154 s->offset_dump_bitmap = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size) *
1155 block_size;
1156
1157 /* get offset of page */
1158 s->offset_page = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size + bitmap_blocks) *
1159 block_size;
1160
1161 out:
1162 g_free(dh);
1163 g_free(kh);
1164 g_free(s->note_buf);
1165 }
1166
1167 static void write_dump_header(DumpState *s, Error **errp)
1168 {
1169 if (dump_is_64bit(s)) {
1170 create_header64(s, errp);
1171 } else {
1172 create_header32(s, errp);
1173 }
1174 }
1175
1176 static size_t dump_bitmap_get_bufsize(DumpState *s)
1177 {
1178 return s->dump_info.page_size;
1179 }
1180
1181 /*
1182 * set dump_bitmap sequencely. the bit before last_pfn is not allowed to be
1183 * rewritten, so if need to set the first bit, set last_pfn and pfn to 0.
1184 * set_dump_bitmap will always leave the recently set bit un-sync. And setting
1185 * (last bit + sizeof(buf) * 8) to 0 will do flushing the content in buf into
1186 * vmcore, ie. synchronizing un-sync bit into vmcore.
1187 */
1188 static int set_dump_bitmap(uint64_t last_pfn, uint64_t pfn, bool value,
1189 uint8_t *buf, DumpState *s)
1190 {
1191 off_t old_offset, new_offset;
1192 off_t offset_bitmap1, offset_bitmap2;
1193 uint32_t byte, bit;
1194 size_t bitmap_bufsize = dump_bitmap_get_bufsize(s);
1195 size_t bits_per_buf = bitmap_bufsize * CHAR_BIT;
1196
1197 /* should not set the previous place */
1198 assert(last_pfn <= pfn);
1199
1200 /*
1201 * if the bit needed to be set is not cached in buf, flush the data in buf
1202 * to vmcore firstly.
1203 * making new_offset be bigger than old_offset can also sync remained data
1204 * into vmcore.
1205 */
1206 old_offset = bitmap_bufsize * (last_pfn / bits_per_buf);
1207 new_offset = bitmap_bufsize * (pfn / bits_per_buf);
1208
1209 while (old_offset < new_offset) {
1210 /* calculate the offset and write dump_bitmap */
1211 offset_bitmap1 = s->offset_dump_bitmap + old_offset;
1212 if (write_buffer(s->fd, offset_bitmap1, buf,
1213 bitmap_bufsize) < 0) {
1214 return -1;
1215 }
1216
1217 /* dump level 1 is chosen, so 1st and 2nd bitmap are same */
1218 offset_bitmap2 = s->offset_dump_bitmap + s->len_dump_bitmap +
1219 old_offset;
1220 if (write_buffer(s->fd, offset_bitmap2, buf,
1221 bitmap_bufsize) < 0) {
1222 return -1;
1223 }
1224
1225 memset(buf, 0, bitmap_bufsize);
1226 old_offset += bitmap_bufsize;
1227 }
1228
1229 /* get the exact place of the bit in the buf, and set it */
1230 byte = (pfn % bits_per_buf) / CHAR_BIT;
1231 bit = (pfn % bits_per_buf) % CHAR_BIT;
1232 if (value) {
1233 buf[byte] |= 1u << bit;
1234 } else {
1235 buf[byte] &= ~(1u << bit);
1236 }
1237
1238 return 0;
1239 }
1240
1241 static uint64_t dump_paddr_to_pfn(DumpState *s, uint64_t addr)
1242 {
1243 int target_page_shift = ctz32(s->dump_info.page_size);
1244
1245 return (addr >> target_page_shift) - ARCH_PFN_OFFSET;
1246 }
1247
1248 static uint64_t dump_pfn_to_paddr(DumpState *s, uint64_t pfn)
1249 {
1250 int target_page_shift = ctz32(s->dump_info.page_size);
1251
1252 return (pfn + ARCH_PFN_OFFSET) << target_page_shift;
1253 }
1254
1255 /*
1256 * Return the page frame number and the page content in *bufptr. bufptr can be
1257 * NULL. If not NULL, *bufptr must contains a target page size of pre-allocated
1258 * memory. This is not necessarily the memory returned.
1259 */
1260 static bool get_next_page(GuestPhysBlock **blockptr, uint64_t *pfnptr,
1261 uint8_t **bufptr, DumpState *s)
1262 {
1263 GuestPhysBlock *block = *blockptr;
1264 uint32_t page_size = s->dump_info.page_size;
1265 uint8_t *buf = NULL, *hbuf;
1266 hwaddr addr;
1267
1268 /* block == NULL means the start of the iteration */
1269 if (!block) {
1270 block = QTAILQ_FIRST(&s->guest_phys_blocks.head);
1271 *blockptr = block;
1272 addr = block->target_start;
1273 *pfnptr = dump_paddr_to_pfn(s, addr);
1274 } else {
1275 *pfnptr += 1;
1276 addr = dump_pfn_to_paddr(s, *pfnptr);
1277 }
1278 assert(block != NULL);
1279
1280 while (1) {
1281 if (addr >= block->target_start && addr < block->target_end) {
1282 size_t n = MIN(block->target_end - addr, page_size - addr % page_size);
1283 hbuf = block->host_addr + (addr - block->target_start);
1284 if (!buf) {
1285 if (n == page_size) {
1286 /* this is a whole target page, go for it */
1287 assert(addr % page_size == 0);
1288 buf = hbuf;
1289 break;
1290 } else if (bufptr) {
1291 assert(*bufptr);
1292 buf = *bufptr;
1293 memset(buf, 0, page_size);
1294 } else {
1295 return true;
1296 }
1297 }
1298
1299 memcpy(buf + addr % page_size, hbuf, n);
1300 addr += n;
1301 if (addr % page_size == 0) {
1302 /* we filled up the page */
1303 break;
1304 }
1305 } else {
1306 /* the next page is in the next block */
1307 *blockptr = block = QTAILQ_NEXT(block, next);
1308 if (!block) {
1309 break;
1310 }
1311
1312 addr = block->target_start;
1313 /* are we still in the same page? */
1314 if (dump_paddr_to_pfn(s, addr) != *pfnptr) {
1315 if (buf) {
1316 /* no, but we already filled something earlier, return it */
1317 break;
1318 } else {
1319 /* else continue from there */
1320 *pfnptr = dump_paddr_to_pfn(s, addr);
1321 }
1322 }
1323 }
1324 }
1325
1326 if (bufptr) {
1327 *bufptr = buf;
1328 }
1329
1330 return buf != NULL;
1331 }
1332
1333 static void write_dump_bitmap(DumpState *s, Error **errp)
1334 {
1335 int ret = 0;
1336 uint64_t last_pfn, pfn;
1337 void *dump_bitmap_buf;
1338 size_t num_dumpable;
1339 GuestPhysBlock *block_iter = NULL;
1340 size_t bitmap_bufsize = dump_bitmap_get_bufsize(s);
1341 size_t bits_per_buf = bitmap_bufsize * CHAR_BIT;
1342
1343 /* dump_bitmap_buf is used to store dump_bitmap temporarily */
1344 dump_bitmap_buf = g_malloc0(bitmap_bufsize);
1345
1346 num_dumpable = 0;
1347 last_pfn = 0;
1348
1349 /*
1350 * exam memory page by page, and set the bit in dump_bitmap corresponded
1351 * to the existing page.
1352 */
1353 while (get_next_page(&block_iter, &pfn, NULL, s)) {
1354 ret = set_dump_bitmap(last_pfn, pfn, true, dump_bitmap_buf, s);
1355 if (ret < 0) {
1356 error_setg(errp, "dump: failed to set dump_bitmap");
1357 goto out;
1358 }
1359
1360 last_pfn = pfn;
1361 num_dumpable++;
1362 }
1363
1364 /*
1365 * set_dump_bitmap will always leave the recently set bit un-sync. Here we
1366 * set the remaining bits from last_pfn to the end of the bitmap buffer to
1367 * 0. With those set, the un-sync bit will be synchronized into the vmcore.
1368 */
1369 if (num_dumpable > 0) {
1370 ret = set_dump_bitmap(last_pfn, last_pfn + bits_per_buf, false,
1371 dump_bitmap_buf, s);
1372 if (ret < 0) {
1373 error_setg(errp, "dump: failed to sync dump_bitmap");
1374 goto out;
1375 }
1376 }
1377
1378 /* number of dumpable pages that will be dumped later */
1379 s->num_dumpable = num_dumpable;
1380
1381 out:
1382 g_free(dump_bitmap_buf);
1383 }
1384
1385 static void prepare_data_cache(DataCache *data_cache, DumpState *s,
1386 off_t offset)
1387 {
1388 data_cache->fd = s->fd;
1389 data_cache->data_size = 0;
1390 data_cache->buf_size = 4 * dump_bitmap_get_bufsize(s);
1391 data_cache->buf = g_malloc0(data_cache->buf_size);
1392 data_cache->offset = offset;
1393 }
1394
1395 static int write_cache(DataCache *dc, const void *buf, size_t size,
1396 bool flag_sync)
1397 {
1398 /*
1399 * dc->buf_size should not be less than size, otherwise dc will never be
1400 * enough
1401 */
1402 assert(size <= dc->buf_size);
1403
1404 /*
1405 * if flag_sync is set, synchronize data in dc->buf into vmcore.
1406 * otherwise check if the space is enough for caching data in buf, if not,
1407 * write the data in dc->buf to dc->fd and reset dc->buf
1408 */
1409 if ((!flag_sync && dc->data_size + size > dc->buf_size) ||
1410 (flag_sync && dc->data_size > 0)) {
1411 if (write_buffer(dc->fd, dc->offset, dc->buf, dc->data_size) < 0) {
1412 return -1;
1413 }
1414
1415 dc->offset += dc->data_size;
1416 dc->data_size = 0;
1417 }
1418
1419 if (!flag_sync) {
1420 memcpy(dc->buf + dc->data_size, buf, size);
1421 dc->data_size += size;
1422 }
1423
1424 return 0;
1425 }
1426
1427 static void free_data_cache(DataCache *data_cache)
1428 {
1429 g_free(data_cache->buf);
1430 }
1431
1432 static size_t get_len_buf_out(size_t page_size, uint32_t flag_compress)
1433 {
1434 switch (flag_compress) {
1435 case DUMP_DH_COMPRESSED_ZLIB:
1436 return compressBound(page_size);
1437
1438 case DUMP_DH_COMPRESSED_LZO:
1439 /*
1440 * LZO will expand incompressible data by a little amount. Please check
1441 * the following URL to see the expansion calculation:
1442 * http://www.oberhumer.com/opensource/lzo/lzofaq.php
1443 */
1444 return page_size + page_size / 16 + 64 + 3;
1445
1446 #ifdef CONFIG_SNAPPY
1447 case DUMP_DH_COMPRESSED_SNAPPY:
1448 return snappy_max_compressed_length(page_size);
1449 #endif
1450 }
1451 return 0;
1452 }
1453
1454 static void write_dump_pages(DumpState *s, Error **errp)
1455 {
1456 int ret = 0;
1457 DataCache page_desc, page_data;
1458 size_t len_buf_out, size_out;
1459 #ifdef CONFIG_LZO
1460 lzo_bytep wrkmem = NULL;
1461 #endif
1462 uint8_t *buf_out = NULL;
1463 off_t offset_desc, offset_data;
1464 PageDescriptor pd, pd_zero;
1465 uint8_t *buf;
1466 GuestPhysBlock *block_iter = NULL;
1467 uint64_t pfn_iter;
1468 g_autofree uint8_t *page = NULL;
1469
1470 /* get offset of page_desc and page_data in dump file */
1471 offset_desc = s->offset_page;
1472 offset_data = offset_desc + sizeof(PageDescriptor) * s->num_dumpable;
1473
1474 prepare_data_cache(&page_desc, s, offset_desc);
1475 prepare_data_cache(&page_data, s, offset_data);
1476
1477 /* prepare buffer to store compressed data */
1478 len_buf_out = get_len_buf_out(s->dump_info.page_size, s->flag_compress);
1479 assert(len_buf_out != 0);
1480
1481 #ifdef CONFIG_LZO
1482 wrkmem = g_malloc(LZO1X_1_MEM_COMPRESS);
1483 #endif
1484
1485 buf_out = g_malloc(len_buf_out);
1486
1487 /*
1488 * init zero page's page_desc and page_data, because every zero page
1489 * uses the same page_data
1490 */
1491 pd_zero.size = cpu_to_dump32(s, s->dump_info.page_size);
1492 pd_zero.flags = cpu_to_dump32(s, 0);
1493 pd_zero.offset = cpu_to_dump64(s, offset_data);
1494 pd_zero.page_flags = cpu_to_dump64(s, 0);
1495 buf = g_malloc0(s->dump_info.page_size);
1496 ret = write_cache(&page_data, buf, s->dump_info.page_size, false);
1497 g_free(buf);
1498 if (ret < 0) {
1499 error_setg(errp, "dump: failed to write page data (zero page)");
1500 goto out;
1501 }
1502
1503 offset_data += s->dump_info.page_size;
1504 page = g_malloc(s->dump_info.page_size);
1505
1506 /*
1507 * dump memory to vmcore page by page. zero page will all be resided in the
1508 * first page of page section
1509 */
1510 for (buf = page; get_next_page(&block_iter, &pfn_iter, &buf, s); buf = page) {
1511 /* check zero page */
1512 if (buffer_is_zero(buf, s->dump_info.page_size)) {
1513 ret = write_cache(&page_desc, &pd_zero, sizeof(PageDescriptor),
1514 false);
1515 if (ret < 0) {
1516 error_setg(errp, "dump: failed to write page desc");
1517 goto out;
1518 }
1519 } else {
1520 /*
1521 * not zero page, then:
1522 * 1. compress the page
1523 * 2. write the compressed page into the cache of page_data
1524 * 3. get page desc of the compressed page and write it into the
1525 * cache of page_desc
1526 *
1527 * only one compression format will be used here, for
1528 * s->flag_compress is set. But when compression fails to work,
1529 * we fall back to save in plaintext.
1530 */
1531 size_out = len_buf_out;
1532 if ((s->flag_compress & DUMP_DH_COMPRESSED_ZLIB) &&
1533 (compress2(buf_out, (uLongf *)&size_out, buf,
1534 s->dump_info.page_size, Z_BEST_SPEED) == Z_OK) &&
1535 (size_out < s->dump_info.page_size)) {
1536 pd.flags = cpu_to_dump32(s, DUMP_DH_COMPRESSED_ZLIB);
1537 pd.size = cpu_to_dump32(s, size_out);
1538
1539 ret = write_cache(&page_data, buf_out, size_out, false);
1540 if (ret < 0) {
1541 error_setg(errp, "dump: failed to write page data");
1542 goto out;
1543 }
1544 #ifdef CONFIG_LZO
1545 } else if ((s->flag_compress & DUMP_DH_COMPRESSED_LZO) &&
1546 (lzo1x_1_compress(buf, s->dump_info.page_size, buf_out,
1547 (lzo_uint *)&size_out, wrkmem) == LZO_E_OK) &&
1548 (size_out < s->dump_info.page_size)) {
1549 pd.flags = cpu_to_dump32(s, DUMP_DH_COMPRESSED_LZO);
1550 pd.size = cpu_to_dump32(s, size_out);
1551
1552 ret = write_cache(&page_data, buf_out, size_out, false);
1553 if (ret < 0) {
1554 error_setg(errp, "dump: failed to write page data");
1555 goto out;
1556 }
1557 #endif
1558 #ifdef CONFIG_SNAPPY
1559 } else if ((s->flag_compress & DUMP_DH_COMPRESSED_SNAPPY) &&
1560 (snappy_compress((char *)buf, s->dump_info.page_size,
1561 (char *)buf_out, &size_out) == SNAPPY_OK) &&
1562 (size_out < s->dump_info.page_size)) {
1563 pd.flags = cpu_to_dump32(s, DUMP_DH_COMPRESSED_SNAPPY);
1564 pd.size = cpu_to_dump32(s, size_out);
1565
1566 ret = write_cache(&page_data, buf_out, size_out, false);
1567 if (ret < 0) {
1568 error_setg(errp, "dump: failed to write page data");
1569 goto out;
1570 }
1571 #endif
1572 } else {
1573 /*
1574 * fall back to save in plaintext, size_out should be
1575 * assigned the target's page size
1576 */
1577 pd.flags = cpu_to_dump32(s, 0);
1578 size_out = s->dump_info.page_size;
1579 pd.size = cpu_to_dump32(s, size_out);
1580
1581 ret = write_cache(&page_data, buf,
1582 s->dump_info.page_size, false);
1583 if (ret < 0) {
1584 error_setg(errp, "dump: failed to write page data");
1585 goto out;
1586 }
1587 }
1588
1589 /* get and write page desc here */
1590 pd.page_flags = cpu_to_dump64(s, 0);
1591 pd.offset = cpu_to_dump64(s, offset_data);
1592 offset_data += size_out;
1593
1594 ret = write_cache(&page_desc, &pd, sizeof(PageDescriptor), false);
1595 if (ret < 0) {
1596 error_setg(errp, "dump: failed to write page desc");
1597 goto out;
1598 }
1599 }
1600 s->written_size += s->dump_info.page_size;
1601 }
1602
1603 ret = write_cache(&page_desc, NULL, 0, true);
1604 if (ret < 0) {
1605 error_setg(errp, "dump: failed to sync cache for page_desc");
1606 goto out;
1607 }
1608 ret = write_cache(&page_data, NULL, 0, true);
1609 if (ret < 0) {
1610 error_setg(errp, "dump: failed to sync cache for page_data");
1611 goto out;
1612 }
1613
1614 out:
1615 free_data_cache(&page_desc);
1616 free_data_cache(&page_data);
1617
1618 #ifdef CONFIG_LZO
1619 g_free(wrkmem);
1620 #endif
1621
1622 g_free(buf_out);
1623 }
1624
1625 static void create_kdump_vmcore(DumpState *s, Error **errp)
1626 {
1627 ERRP_GUARD();
1628 int ret;
1629
1630 /*
1631 * the kdump-compressed format is:
1632 * File offset
1633 * +------------------------------------------+ 0x0
1634 * | main header (struct disk_dump_header) |
1635 * |------------------------------------------+ block 1
1636 * | sub header (struct kdump_sub_header) |
1637 * |------------------------------------------+ block 2
1638 * | 1st-dump_bitmap |
1639 * |------------------------------------------+ block 2 + X blocks
1640 * | 2nd-dump_bitmap | (aligned by block)
1641 * |------------------------------------------+ block 2 + 2 * X blocks
1642 * | page desc for pfn 0 (struct page_desc) | (aligned by block)
1643 * | page desc for pfn 1 (struct page_desc) |
1644 * | : |
1645 * |------------------------------------------| (not aligned by block)
1646 * | page data (pfn 0) |
1647 * | page data (pfn 1) |
1648 * | : |
1649 * +------------------------------------------+
1650 */
1651
1652 ret = write_start_flat_header(s->fd);
1653 if (ret < 0) {
1654 error_setg(errp, "dump: failed to write start flat header");
1655 return;
1656 }
1657
1658 write_dump_header(s, errp);
1659 if (*errp) {
1660 return;
1661 }
1662
1663 write_dump_bitmap(s, errp);
1664 if (*errp) {
1665 return;
1666 }
1667
1668 write_dump_pages(s, errp);
1669 if (*errp) {
1670 return;
1671 }
1672
1673 ret = write_end_flat_header(s->fd);
1674 if (ret < 0) {
1675 error_setg(errp, "dump: failed to write end flat header");
1676 return;
1677 }
1678 }
1679
1680 static int validate_start_block(DumpState *s)
1681 {
1682 GuestPhysBlock *block;
1683
1684 if (!dump_has_filter(s)) {
1685 return 0;
1686 }
1687
1688 QTAILQ_FOREACH(block, &s->guest_phys_blocks.head, next) {
1689 /* This block is out of the range */
1690 if (block->target_start >= s->filter_area_begin + s->filter_area_length ||
1691 block->target_end <= s->filter_area_begin) {
1692 continue;
1693 }
1694 return 0;
1695 }
1696
1697 return -1;
1698 }
1699
1700 static void get_max_mapnr(DumpState *s)
1701 {
1702 GuestPhysBlock *last_block;
1703
1704 last_block = QTAILQ_LAST(&s->guest_phys_blocks.head);
1705 s->max_mapnr = dump_paddr_to_pfn(s, last_block->target_end);
1706 }
1707
1708 static DumpState dump_state_global = { .status = DUMP_STATUS_NONE };
1709
1710 static void dump_state_prepare(DumpState *s)
1711 {
1712 /* zero the struct, setting status to active */
1713 *s = (DumpState) { .status = DUMP_STATUS_ACTIVE };
1714 }
1715
1716 bool qemu_system_dump_in_progress(void)
1717 {
1718 DumpState *state = &dump_state_global;
1719 return (qatomic_read(&state->status) == DUMP_STATUS_ACTIVE);
1720 }
1721
1722 /*
1723 * calculate total size of memory to be dumped (taking filter into
1724 * account.)
1725 */
1726 static int64_t dump_calculate_size(DumpState *s)
1727 {
1728 GuestPhysBlock *block;
1729 int64_t total = 0;
1730
1731 QTAILQ_FOREACH(block, &s->guest_phys_blocks.head, next) {
1732 total += dump_filtered_memblock_size(block,
1733 s->filter_area_begin,
1734 s->filter_area_length);
1735 }
1736
1737 return total;
1738 }
1739
1740 static void vmcoreinfo_update_phys_base(DumpState *s)
1741 {
1742 uint64_t size, note_head_size, name_size, phys_base;
1743 char **lines;
1744 uint8_t *vmci;
1745 size_t i;
1746
1747 if (!note_name_equal(s, s->guest_note, "VMCOREINFO")) {
1748 return;
1749 }
1750
1751 get_note_sizes(s, s->guest_note, &note_head_size, &name_size, &size);
1752 note_head_size = ROUND_UP(note_head_size, 4);
1753
1754 vmci = s->guest_note + note_head_size + ROUND_UP(name_size, 4);
1755 *(vmci + size) = '\0';
1756
1757 lines = g_strsplit((char *)vmci, "\n", -1);
1758 for (i = 0; lines[i]; i++) {
1759 const char *prefix = NULL;
1760
1761 if (s->dump_info.d_machine == EM_X86_64) {
1762 prefix = "NUMBER(phys_base)=";
1763 } else if (s->dump_info.d_machine == EM_AARCH64) {
1764 prefix = "NUMBER(PHYS_OFFSET)=";
1765 }
1766
1767 if (prefix && g_str_has_prefix(lines[i], prefix)) {
1768 if (qemu_strtou64(lines[i] + strlen(prefix), NULL, 16,
1769 &phys_base) < 0) {
1770 warn_report("Failed to read %s", prefix);
1771 } else {
1772 s->dump_info.phys_base = phys_base;
1773 }
1774 break;
1775 }
1776 }
1777
1778 g_strfreev(lines);
1779 }
1780
1781 static void dump_init(DumpState *s, int fd, bool has_format,
1782 DumpGuestMemoryFormat format, bool paging, bool has_filter,
1783 int64_t begin, int64_t length, Error **errp)
1784 {
1785 ERRP_GUARD();
1786 VMCoreInfoState *vmci = vmcoreinfo_find();
1787 CPUState *cpu;
1788 int nr_cpus;
1789 int ret;
1790
1791 s->has_format = has_format;
1792 s->format = format;
1793 s->written_size = 0;
1794
1795 /* kdump-compressed is conflict with paging and filter */
1796 if (has_format && format != DUMP_GUEST_MEMORY_FORMAT_ELF) {
1797 assert(!paging && !has_filter);
1798 }
1799
1800 if (runstate_is_running()) {
1801 vm_stop(RUN_STATE_SAVE_VM);
1802 s->resume = true;
1803 } else {
1804 s->resume = false;
1805 }
1806
1807 /* If we use KVM, we should synchronize the registers before we get dump
1808 * info or physmap info.
1809 */
1810 cpu_synchronize_all_states();
1811 nr_cpus = 0;
1812 CPU_FOREACH(cpu) {
1813 nr_cpus++;
1814 }
1815
1816 s->fd = fd;
1817 if (has_filter && !length) {
1818 error_setg(errp, QERR_INVALID_PARAMETER, "length");
1819 goto cleanup;
1820 }
1821 s->filter_area_begin = begin;
1822 s->filter_area_length = length;
1823
1824 /* First index is 0, it's the special null name */
1825 s->string_table_buf = g_array_new(FALSE, TRUE, 1);
1826 /*
1827 * Allocate the null name, due to the clearing option set to true
1828 * it will be 0.
1829 */
1830 g_array_set_size(s->string_table_buf, 1);
1831
1832 memory_mapping_list_init(&s->list);
1833
1834 guest_phys_blocks_init(&s->guest_phys_blocks);
1835 guest_phys_blocks_append(&s->guest_phys_blocks);
1836 s->total_size = dump_calculate_size(s);
1837 #ifdef DEBUG_DUMP_GUEST_MEMORY
1838 fprintf(stderr, "DUMP: total memory to dump: %lu\n", s->total_size);
1839 #endif
1840
1841 /* it does not make sense to dump non-existent memory */
1842 if (!s->total_size) {
1843 error_setg(errp, "dump: no guest memory to dump");
1844 goto cleanup;
1845 }
1846
1847 /* Is the filter filtering everything? */
1848 if (validate_start_block(s) == -1) {
1849 error_setg(errp, QERR_INVALID_PARAMETER, "begin");
1850 goto cleanup;
1851 }
1852
1853 /* get dump info: endian, class and architecture.
1854 * If the target architecture is not supported, cpu_get_dump_info() will
1855 * return -1.
1856 */
1857 ret = cpu_get_dump_info(&s->dump_info, &s->guest_phys_blocks);
1858 if (ret < 0) {
1859 error_setg(errp, QERR_UNSUPPORTED);
1860 goto cleanup;
1861 }
1862
1863 if (!s->dump_info.page_size) {
1864 s->dump_info.page_size = TARGET_PAGE_SIZE;
1865 }
1866
1867 s->note_size = cpu_get_note_size(s->dump_info.d_class,
1868 s->dump_info.d_machine, nr_cpus);
1869 if (s->note_size < 0) {
1870 error_setg(errp, QERR_UNSUPPORTED);
1871 goto cleanup;
1872 }
1873
1874 /*
1875 * The goal of this block is to (a) update the previously guessed
1876 * phys_base, (b) copy the guest note out of the guest.
1877 * Failure to do so is not fatal for dumping.
1878 */
1879 if (vmci) {
1880 uint64_t addr, note_head_size, name_size, desc_size;
1881 uint32_t size;
1882 uint16_t format;
1883
1884 note_head_size = dump_is_64bit(s) ?
1885 sizeof(Elf64_Nhdr) : sizeof(Elf32_Nhdr);
1886
1887 format = le16_to_cpu(vmci->vmcoreinfo.guest_format);
1888 size = le32_to_cpu(vmci->vmcoreinfo.size);
1889 addr = le64_to_cpu(vmci->vmcoreinfo.paddr);
1890 if (!vmci->has_vmcoreinfo) {
1891 warn_report("guest note is not present");
1892 } else if (size < note_head_size || size > MAX_GUEST_NOTE_SIZE) {
1893 warn_report("guest note size is invalid: %" PRIu32, size);
1894 } else if (format != FW_CFG_VMCOREINFO_FORMAT_ELF) {
1895 warn_report("guest note format is unsupported: %" PRIu16, format);
1896 } else {
1897 s->guest_note = g_malloc(size + 1); /* +1 for adding \0 */
1898 cpu_physical_memory_read(addr, s->guest_note, size);
1899
1900 get_note_sizes(s, s->guest_note, NULL, &name_size, &desc_size);
1901 s->guest_note_size = ELF_NOTE_SIZE(note_head_size, name_size,
1902 desc_size);
1903 if (name_size > MAX_GUEST_NOTE_SIZE ||
1904 desc_size > MAX_GUEST_NOTE_SIZE ||
1905 s->guest_note_size > size) {
1906 warn_report("Invalid guest note header");
1907 g_free(s->guest_note);
1908 s->guest_note = NULL;
1909 } else {
1910 vmcoreinfo_update_phys_base(s);
1911 s->note_size += s->guest_note_size;
1912 }
1913 }
1914 }
1915
1916 /* get memory mapping */
1917 if (paging) {
1918 qemu_get_guest_memory_mapping(&s->list, &s->guest_phys_blocks, errp);
1919 if (*errp) {
1920 goto cleanup;
1921 }
1922 } else {
1923 qemu_get_guest_simple_memory_mapping(&s->list, &s->guest_phys_blocks);
1924 }
1925
1926 s->nr_cpus = nr_cpus;
1927
1928 get_max_mapnr(s);
1929
1930 uint64_t tmp;
1931 tmp = DIV_ROUND_UP(DIV_ROUND_UP(s->max_mapnr, CHAR_BIT),
1932 s->dump_info.page_size);
1933 s->len_dump_bitmap = tmp * s->dump_info.page_size;
1934
1935 /* init for kdump-compressed format */
1936 if (has_format && format != DUMP_GUEST_MEMORY_FORMAT_ELF) {
1937 switch (format) {
1938 case DUMP_GUEST_MEMORY_FORMAT_KDUMP_ZLIB:
1939 s->flag_compress = DUMP_DH_COMPRESSED_ZLIB;
1940 break;
1941
1942 case DUMP_GUEST_MEMORY_FORMAT_KDUMP_LZO:
1943 #ifdef CONFIG_LZO
1944 if (lzo_init() != LZO_E_OK) {
1945 error_setg(errp, "failed to initialize the LZO library");
1946 goto cleanup;
1947 }
1948 #endif
1949 s->flag_compress = DUMP_DH_COMPRESSED_LZO;
1950 break;
1951
1952 case DUMP_GUEST_MEMORY_FORMAT_KDUMP_SNAPPY:
1953 s->flag_compress = DUMP_DH_COMPRESSED_SNAPPY;
1954 break;
1955
1956 default:
1957 s->flag_compress = 0;
1958 }
1959
1960 return;
1961 }
1962
1963 if (dump_has_filter(s)) {
1964 memory_mapping_filter(&s->list, s->filter_area_begin, s->filter_area_length);
1965 }
1966
1967 /*
1968 * The first section header is always a special one in which most
1969 * fields are 0. The section header string table is also always
1970 * set.
1971 */
1972 s->shdr_num = 2;
1973
1974 /*
1975 * Adds the number of architecture sections to shdr_num and sets
1976 * elf_section_data_size so we know the offsets and sizes of all
1977 * parts.
1978 */
1979 if (s->dump_info.arch_sections_add_fn) {
1980 s->dump_info.arch_sections_add_fn(s);
1981 }
1982
1983 /*
1984 * calculate shdr_num so we know the offsets and sizes of all
1985 * parts.
1986 * Calculate phdr_num
1987 *
1988 * The absolute maximum amount of phdrs is UINT32_MAX - 1 as
1989 * sh_info is 32 bit. There's special handling once we go over
1990 * UINT16_MAX - 1 but that is handled in the ehdr and section
1991 * code.
1992 */
1993 s->phdr_num = 1; /* Reserve PT_NOTE */
1994 if (s->list.num <= UINT32_MAX - 1) {
1995 s->phdr_num += s->list.num;
1996 } else {
1997 s->phdr_num = UINT32_MAX;
1998 }
1999
2000 /*
2001 * Now that the number of section and program headers is known we
2002 * can calculate the offsets of the headers and data.
2003 */
2004 if (dump_is_64bit(s)) {
2005 s->shdr_offset = sizeof(Elf64_Ehdr);
2006 s->phdr_offset = s->shdr_offset + sizeof(Elf64_Shdr) * s->shdr_num;
2007 s->note_offset = s->phdr_offset + sizeof(Elf64_Phdr) * s->phdr_num;
2008 } else {
2009 s->shdr_offset = sizeof(Elf32_Ehdr);
2010 s->phdr_offset = s->shdr_offset + sizeof(Elf32_Shdr) * s->shdr_num;
2011 s->note_offset = s->phdr_offset + sizeof(Elf32_Phdr) * s->phdr_num;
2012 }
2013 s->memory_offset = s->note_offset + s->note_size;
2014 s->section_offset = s->memory_offset + s->total_size;
2015
2016 return;
2017
2018 cleanup:
2019 dump_cleanup(s);
2020 }
2021
2022 /* this operation might be time consuming. */
2023 static void dump_process(DumpState *s, Error **errp)
2024 {
2025 ERRP_GUARD();
2026 DumpQueryResult *result = NULL;
2027
2028 if (s->has_format && s->format == DUMP_GUEST_MEMORY_FORMAT_WIN_DMP) {
2029 #ifdef TARGET_X86_64
2030 create_win_dump(s, errp);
2031 #endif
2032 } else if (s->has_format && s->format != DUMP_GUEST_MEMORY_FORMAT_ELF) {
2033 create_kdump_vmcore(s, errp);
2034 } else {
2035 create_vmcore(s, errp);
2036 }
2037
2038 /* make sure status is written after written_size updates */
2039 smp_wmb();
2040 qatomic_set(&s->status,
2041 (*errp ? DUMP_STATUS_FAILED : DUMP_STATUS_COMPLETED));
2042
2043 /* send DUMP_COMPLETED message (unconditionally) */
2044 result = qmp_query_dump(NULL);
2045 /* should never fail */
2046 assert(result);
2047 qapi_event_send_dump_completed(result, !!*errp, (*errp ?
2048 error_get_pretty(*errp) : NULL));
2049 qapi_free_DumpQueryResult(result);
2050
2051 dump_cleanup(s);
2052 }
2053
2054 static void *dump_thread(void *data)
2055 {
2056 DumpState *s = (DumpState *)data;
2057 dump_process(s, NULL);
2058 return NULL;
2059 }
2060
2061 DumpQueryResult *qmp_query_dump(Error **errp)
2062 {
2063 DumpQueryResult *result = g_new(DumpQueryResult, 1);
2064 DumpState *state = &dump_state_global;
2065 result->status = qatomic_read(&state->status);
2066 /* make sure we are reading status and written_size in order */
2067 smp_rmb();
2068 result->completed = state->written_size;
2069 result->total = state->total_size;
2070 return result;
2071 }
2072
2073 void qmp_dump_guest_memory(bool paging, const char *file,
2074 bool has_detach, bool detach,
2075 bool has_begin, int64_t begin, bool has_length,
2076 int64_t length, bool has_format,
2077 DumpGuestMemoryFormat format, Error **errp)
2078 {
2079 ERRP_GUARD();
2080 const char *p;
2081 int fd = -1;
2082 DumpState *s;
2083 bool detach_p = false;
2084
2085 if (runstate_check(RUN_STATE_INMIGRATE)) {
2086 error_setg(errp, "Dump not allowed during incoming migration.");
2087 return;
2088 }
2089
2090 /* if there is a dump in background, we should wait until the dump
2091 * finished */
2092 if (qemu_system_dump_in_progress()) {
2093 error_setg(errp, "There is a dump in process, please wait.");
2094 return;
2095 }
2096
2097 /*
2098 * kdump-compressed format need the whole memory dumped, so paging or
2099 * filter is not supported here.
2100 */
2101 if ((has_format && format != DUMP_GUEST_MEMORY_FORMAT_ELF) &&
2102 (paging || has_begin || has_length)) {
2103 error_setg(errp, "kdump-compressed format doesn't support paging or "
2104 "filter");
2105 return;
2106 }
2107 if (has_begin && !has_length) {
2108 error_setg(errp, QERR_MISSING_PARAMETER, "length");
2109 return;
2110 }
2111 if (!has_begin && has_length) {
2112 error_setg(errp, QERR_MISSING_PARAMETER, "begin");
2113 return;
2114 }
2115 if (has_detach) {
2116 detach_p = detach;
2117 }
2118
2119 /* check whether lzo/snappy is supported */
2120 #ifndef CONFIG_LZO
2121 if (has_format && format == DUMP_GUEST_MEMORY_FORMAT_KDUMP_LZO) {
2122 error_setg(errp, "kdump-lzo is not available now");
2123 return;
2124 }
2125 #endif
2126
2127 #ifndef CONFIG_SNAPPY
2128 if (has_format && format == DUMP_GUEST_MEMORY_FORMAT_KDUMP_SNAPPY) {
2129 error_setg(errp, "kdump-snappy is not available now");
2130 return;
2131 }
2132 #endif
2133
2134 #ifndef TARGET_X86_64
2135 if (has_format && format == DUMP_GUEST_MEMORY_FORMAT_WIN_DMP) {
2136 error_setg(errp, "Windows dump is only available for x86-64");
2137 return;
2138 }
2139 #endif
2140
2141 #if !defined(WIN32)
2142 if (strstart(file, "fd:", &p)) {
2143 fd = monitor_get_fd(monitor_cur(), p, errp);
2144 if (fd == -1) {
2145 return;
2146 }
2147 }
2148 #endif
2149
2150 if (strstart(file, "file:", &p)) {
2151 fd = qemu_open_old(p, O_WRONLY | O_CREAT | O_TRUNC | O_BINARY, S_IRUSR);
2152 if (fd < 0) {
2153 error_setg_file_open(errp, errno, p);
2154 return;
2155 }
2156 }
2157
2158 if (fd == -1) {
2159 error_setg(errp, QERR_INVALID_PARAMETER, "protocol");
2160 return;
2161 }
2162
2163 if (!dump_migration_blocker) {
2164 error_setg(&dump_migration_blocker,
2165 "Live migration disabled: dump-guest-memory in progress");
2166 }
2167
2168 /*
2169 * Allows even for -only-migratable, but forbid migration during the
2170 * process of dump guest memory.
2171 */
2172 if (migrate_add_blocker_internal(dump_migration_blocker, errp)) {
2173 /* Remember to release the fd before passing it over to dump state */
2174 close(fd);
2175 return;
2176 }
2177
2178 s = &dump_state_global;
2179 dump_state_prepare(s);
2180
2181 dump_init(s, fd, has_format, format, paging, has_begin,
2182 begin, length, errp);
2183 if (*errp) {
2184 qatomic_set(&s->status, DUMP_STATUS_FAILED);
2185 return;
2186 }
2187
2188 if (detach_p) {
2189 /* detached dump */
2190 s->detached = true;
2191 qemu_thread_create(&s->dump_thread, "dump_thread", dump_thread,
2192 s, QEMU_THREAD_DETACHED);
2193 } else {
2194 /* sync dump */
2195 dump_process(s, errp);
2196 }
2197 }
2198
2199 DumpGuestMemoryCapability *qmp_query_dump_guest_memory_capability(Error **errp)
2200 {
2201 DumpGuestMemoryCapability *cap =
2202 g_new0(DumpGuestMemoryCapability, 1);
2203 DumpGuestMemoryFormatList **tail = &cap->formats;
2204
2205 /* elf is always available */
2206 QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_ELF);
2207
2208 /* kdump-zlib is always available */
2209 QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_KDUMP_ZLIB);
2210
2211 /* add new item if kdump-lzo is available */
2212 #ifdef CONFIG_LZO
2213 QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_KDUMP_LZO);
2214 #endif
2215
2216 /* add new item if kdump-snappy is available */
2217 #ifdef CONFIG_SNAPPY
2218 QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_KDUMP_SNAPPY);
2219 #endif
2220
2221 /* Windows dump is available only if target is x86_64 */
2222 #ifdef TARGET_X86_64
2223 QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_WIN_DMP);
2224 #endif
2225
2226 return cap;
2227 }