]> git.proxmox.com Git - mirror_qemu.git/blob - dump/dump.c
Merge tag 'migration-20231103-pull-request' of https://gitlab.com/juan.quintela/qemu...
[mirror_qemu.git] / dump / dump.c
1 /*
2 * QEMU dump
3 *
4 * Copyright Fujitsu, Corp. 2011, 2012
5 *
6 * Authors:
7 * Wen Congyang <wency@cn.fujitsu.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
11 *
12 */
13
14 #include "qemu/osdep.h"
15 #include "qemu/cutils.h"
16 #include "elf.h"
17 #include "qemu/bswap.h"
18 #include "exec/target_page.h"
19 #include "monitor/monitor.h"
20 #include "sysemu/dump.h"
21 #include "sysemu/runstate.h"
22 #include "sysemu/cpus.h"
23 #include "qapi/error.h"
24 #include "qapi/qapi-commands-dump.h"
25 #include "qapi/qapi-events-dump.h"
26 #include "qapi/qmp/qerror.h"
27 #include "qemu/error-report.h"
28 #include "qemu/main-loop.h"
29 #include "hw/misc/vmcoreinfo.h"
30 #include "migration/blocker.h"
31 #include "hw/core/cpu.h"
32 #include "win_dump.h"
33
34 #include <zlib.h>
35 #ifdef CONFIG_LZO
36 #include <lzo/lzo1x.h>
37 #endif
38 #ifdef CONFIG_SNAPPY
39 #include <snappy-c.h>
40 #endif
41 #ifndef ELF_MACHINE_UNAME
42 #define ELF_MACHINE_UNAME "Unknown"
43 #endif
44
45 #define MAX_GUEST_NOTE_SIZE (1 << 20) /* 1MB should be enough */
46
47 static Error *dump_migration_blocker;
48
49 #define ELF_NOTE_SIZE(hdr_size, name_size, desc_size) \
50 ((DIV_ROUND_UP((hdr_size), 4) + \
51 DIV_ROUND_UP((name_size), 4) + \
52 DIV_ROUND_UP((desc_size), 4)) * 4)
53
54 static inline bool dump_is_64bit(DumpState *s)
55 {
56 return s->dump_info.d_class == ELFCLASS64;
57 }
58
59 static inline bool dump_has_filter(DumpState *s)
60 {
61 return s->filter_area_length > 0;
62 }
63
64 uint16_t cpu_to_dump16(DumpState *s, uint16_t val)
65 {
66 if (s->dump_info.d_endian == ELFDATA2LSB) {
67 val = cpu_to_le16(val);
68 } else {
69 val = cpu_to_be16(val);
70 }
71
72 return val;
73 }
74
75 uint32_t cpu_to_dump32(DumpState *s, uint32_t val)
76 {
77 if (s->dump_info.d_endian == ELFDATA2LSB) {
78 val = cpu_to_le32(val);
79 } else {
80 val = cpu_to_be32(val);
81 }
82
83 return val;
84 }
85
86 uint64_t cpu_to_dump64(DumpState *s, uint64_t val)
87 {
88 if (s->dump_info.d_endian == ELFDATA2LSB) {
89 val = cpu_to_le64(val);
90 } else {
91 val = cpu_to_be64(val);
92 }
93
94 return val;
95 }
96
97 static int dump_cleanup(DumpState *s)
98 {
99 guest_phys_blocks_free(&s->guest_phys_blocks);
100 memory_mapping_list_free(&s->list);
101 close(s->fd);
102 g_free(s->guest_note);
103 g_clear_pointer(&s->string_table_buf, g_array_unref);
104 s->guest_note = NULL;
105 if (s->resume) {
106 if (s->detached) {
107 qemu_mutex_lock_iothread();
108 }
109 vm_start();
110 if (s->detached) {
111 qemu_mutex_unlock_iothread();
112 }
113 }
114 migrate_del_blocker(&dump_migration_blocker);
115
116 return 0;
117 }
118
119 static int fd_write_vmcore(const void *buf, size_t size, void *opaque)
120 {
121 DumpState *s = opaque;
122 size_t written_size;
123
124 written_size = qemu_write_full(s->fd, buf, size);
125 if (written_size != size) {
126 return -errno;
127 }
128
129 return 0;
130 }
131
132 static void prepare_elf64_header(DumpState *s, Elf64_Ehdr *elf_header)
133 {
134 /*
135 * phnum in the elf header is 16 bit, if we have more segments we
136 * set phnum to PN_XNUM and write the real number of segments to a
137 * special section.
138 */
139 uint16_t phnum = MIN(s->phdr_num, PN_XNUM);
140
141 memset(elf_header, 0, sizeof(Elf64_Ehdr));
142 memcpy(elf_header, ELFMAG, SELFMAG);
143 elf_header->e_ident[EI_CLASS] = ELFCLASS64;
144 elf_header->e_ident[EI_DATA] = s->dump_info.d_endian;
145 elf_header->e_ident[EI_VERSION] = EV_CURRENT;
146 elf_header->e_type = cpu_to_dump16(s, ET_CORE);
147 elf_header->e_machine = cpu_to_dump16(s, s->dump_info.d_machine);
148 elf_header->e_version = cpu_to_dump32(s, EV_CURRENT);
149 elf_header->e_ehsize = cpu_to_dump16(s, sizeof(elf_header));
150 elf_header->e_phoff = cpu_to_dump64(s, s->phdr_offset);
151 elf_header->e_phentsize = cpu_to_dump16(s, sizeof(Elf64_Phdr));
152 elf_header->e_phnum = cpu_to_dump16(s, phnum);
153 elf_header->e_shoff = cpu_to_dump64(s, s->shdr_offset);
154 elf_header->e_shentsize = cpu_to_dump16(s, sizeof(Elf64_Shdr));
155 elf_header->e_shnum = cpu_to_dump16(s, s->shdr_num);
156 elf_header->e_shstrndx = cpu_to_dump16(s, s->shdr_num - 1);
157 }
158
159 static void prepare_elf32_header(DumpState *s, Elf32_Ehdr *elf_header)
160 {
161 /*
162 * phnum in the elf header is 16 bit, if we have more segments we
163 * set phnum to PN_XNUM and write the real number of segments to a
164 * special section.
165 */
166 uint16_t phnum = MIN(s->phdr_num, PN_XNUM);
167
168 memset(elf_header, 0, sizeof(Elf32_Ehdr));
169 memcpy(elf_header, ELFMAG, SELFMAG);
170 elf_header->e_ident[EI_CLASS] = ELFCLASS32;
171 elf_header->e_ident[EI_DATA] = s->dump_info.d_endian;
172 elf_header->e_ident[EI_VERSION] = EV_CURRENT;
173 elf_header->e_type = cpu_to_dump16(s, ET_CORE);
174 elf_header->e_machine = cpu_to_dump16(s, s->dump_info.d_machine);
175 elf_header->e_version = cpu_to_dump32(s, EV_CURRENT);
176 elf_header->e_ehsize = cpu_to_dump16(s, sizeof(elf_header));
177 elf_header->e_phoff = cpu_to_dump32(s, s->phdr_offset);
178 elf_header->e_phentsize = cpu_to_dump16(s, sizeof(Elf32_Phdr));
179 elf_header->e_phnum = cpu_to_dump16(s, phnum);
180 elf_header->e_shoff = cpu_to_dump32(s, s->shdr_offset);
181 elf_header->e_shentsize = cpu_to_dump16(s, sizeof(Elf32_Shdr));
182 elf_header->e_shnum = cpu_to_dump16(s, s->shdr_num);
183 elf_header->e_shstrndx = cpu_to_dump16(s, s->shdr_num - 1);
184 }
185
186 static void write_elf_header(DumpState *s, Error **errp)
187 {
188 Elf32_Ehdr elf32_header;
189 Elf64_Ehdr elf64_header;
190 size_t header_size;
191 void *header_ptr;
192 int ret;
193
194 /* The NULL header and the shstrtab are always defined */
195 assert(s->shdr_num >= 2);
196 if (dump_is_64bit(s)) {
197 prepare_elf64_header(s, &elf64_header);
198 header_size = sizeof(elf64_header);
199 header_ptr = &elf64_header;
200 } else {
201 prepare_elf32_header(s, &elf32_header);
202 header_size = sizeof(elf32_header);
203 header_ptr = &elf32_header;
204 }
205
206 ret = fd_write_vmcore(header_ptr, header_size, s);
207 if (ret < 0) {
208 error_setg_errno(errp, -ret, "dump: failed to write elf header");
209 }
210 }
211
212 static void write_elf64_load(DumpState *s, MemoryMapping *memory_mapping,
213 int phdr_index, hwaddr offset,
214 hwaddr filesz, Error **errp)
215 {
216 Elf64_Phdr phdr;
217 int ret;
218
219 memset(&phdr, 0, sizeof(Elf64_Phdr));
220 phdr.p_type = cpu_to_dump32(s, PT_LOAD);
221 phdr.p_offset = cpu_to_dump64(s, offset);
222 phdr.p_paddr = cpu_to_dump64(s, memory_mapping->phys_addr);
223 phdr.p_filesz = cpu_to_dump64(s, filesz);
224 phdr.p_memsz = cpu_to_dump64(s, memory_mapping->length);
225 phdr.p_vaddr = cpu_to_dump64(s, memory_mapping->virt_addr) ?: phdr.p_paddr;
226
227 assert(memory_mapping->length >= filesz);
228
229 ret = fd_write_vmcore(&phdr, sizeof(Elf64_Phdr), s);
230 if (ret < 0) {
231 error_setg_errno(errp, -ret,
232 "dump: failed to write program header table");
233 }
234 }
235
236 static void write_elf32_load(DumpState *s, MemoryMapping *memory_mapping,
237 int phdr_index, hwaddr offset,
238 hwaddr filesz, Error **errp)
239 {
240 Elf32_Phdr phdr;
241 int ret;
242
243 memset(&phdr, 0, sizeof(Elf32_Phdr));
244 phdr.p_type = cpu_to_dump32(s, PT_LOAD);
245 phdr.p_offset = cpu_to_dump32(s, offset);
246 phdr.p_paddr = cpu_to_dump32(s, memory_mapping->phys_addr);
247 phdr.p_filesz = cpu_to_dump32(s, filesz);
248 phdr.p_memsz = cpu_to_dump32(s, memory_mapping->length);
249 phdr.p_vaddr =
250 cpu_to_dump32(s, memory_mapping->virt_addr) ?: phdr.p_paddr;
251
252 assert(memory_mapping->length >= filesz);
253
254 ret = fd_write_vmcore(&phdr, sizeof(Elf32_Phdr), s);
255 if (ret < 0) {
256 error_setg_errno(errp, -ret,
257 "dump: failed to write program header table");
258 }
259 }
260
261 static void prepare_elf64_phdr_note(DumpState *s, Elf64_Phdr *phdr)
262 {
263 memset(phdr, 0, sizeof(*phdr));
264 phdr->p_type = cpu_to_dump32(s, PT_NOTE);
265 phdr->p_offset = cpu_to_dump64(s, s->note_offset);
266 phdr->p_paddr = 0;
267 phdr->p_filesz = cpu_to_dump64(s, s->note_size);
268 phdr->p_memsz = cpu_to_dump64(s, s->note_size);
269 phdr->p_vaddr = 0;
270 }
271
272 static inline int cpu_index(CPUState *cpu)
273 {
274 return cpu->cpu_index + 1;
275 }
276
277 static void write_guest_note(WriteCoreDumpFunction f, DumpState *s,
278 Error **errp)
279 {
280 int ret;
281
282 if (s->guest_note) {
283 ret = f(s->guest_note, s->guest_note_size, s);
284 if (ret < 0) {
285 error_setg(errp, "dump: failed to write guest note");
286 }
287 }
288 }
289
290 static void write_elf64_notes(WriteCoreDumpFunction f, DumpState *s,
291 Error **errp)
292 {
293 CPUState *cpu;
294 int ret;
295 int id;
296
297 CPU_FOREACH(cpu) {
298 id = cpu_index(cpu);
299 ret = cpu_write_elf64_note(f, cpu, id, s);
300 if (ret < 0) {
301 error_setg(errp, "dump: failed to write elf notes");
302 return;
303 }
304 }
305
306 CPU_FOREACH(cpu) {
307 ret = cpu_write_elf64_qemunote(f, cpu, s);
308 if (ret < 0) {
309 error_setg(errp, "dump: failed to write CPU status");
310 return;
311 }
312 }
313
314 write_guest_note(f, s, errp);
315 }
316
317 static void prepare_elf32_phdr_note(DumpState *s, Elf32_Phdr *phdr)
318 {
319 memset(phdr, 0, sizeof(*phdr));
320 phdr->p_type = cpu_to_dump32(s, PT_NOTE);
321 phdr->p_offset = cpu_to_dump32(s, s->note_offset);
322 phdr->p_paddr = 0;
323 phdr->p_filesz = cpu_to_dump32(s, s->note_size);
324 phdr->p_memsz = cpu_to_dump32(s, s->note_size);
325 phdr->p_vaddr = 0;
326 }
327
328 static void write_elf32_notes(WriteCoreDumpFunction f, DumpState *s,
329 Error **errp)
330 {
331 CPUState *cpu;
332 int ret;
333 int id;
334
335 CPU_FOREACH(cpu) {
336 id = cpu_index(cpu);
337 ret = cpu_write_elf32_note(f, cpu, id, s);
338 if (ret < 0) {
339 error_setg(errp, "dump: failed to write elf notes");
340 return;
341 }
342 }
343
344 CPU_FOREACH(cpu) {
345 ret = cpu_write_elf32_qemunote(f, cpu, s);
346 if (ret < 0) {
347 error_setg(errp, "dump: failed to write CPU status");
348 return;
349 }
350 }
351
352 write_guest_note(f, s, errp);
353 }
354
355 static void write_elf_phdr_note(DumpState *s, Error **errp)
356 {
357 Elf32_Phdr phdr32;
358 Elf64_Phdr phdr64;
359 void *phdr;
360 size_t size;
361 int ret;
362
363 if (dump_is_64bit(s)) {
364 prepare_elf64_phdr_note(s, &phdr64);
365 size = sizeof(phdr64);
366 phdr = &phdr64;
367 } else {
368 prepare_elf32_phdr_note(s, &phdr32);
369 size = sizeof(phdr32);
370 phdr = &phdr32;
371 }
372
373 ret = fd_write_vmcore(phdr, size, s);
374 if (ret < 0) {
375 error_setg_errno(errp, -ret,
376 "dump: failed to write program header table");
377 }
378 }
379
380 static void prepare_elf_section_hdr_zero(DumpState *s)
381 {
382 if (dump_is_64bit(s)) {
383 Elf64_Shdr *shdr64 = s->elf_section_hdrs;
384
385 shdr64->sh_info = cpu_to_dump32(s, s->phdr_num);
386 } else {
387 Elf32_Shdr *shdr32 = s->elf_section_hdrs;
388
389 shdr32->sh_info = cpu_to_dump32(s, s->phdr_num);
390 }
391 }
392
393 static void prepare_elf_section_hdr_string(DumpState *s, void *buff)
394 {
395 uint64_t index = s->string_table_buf->len;
396 const char strtab[] = ".shstrtab";
397 Elf32_Shdr shdr32 = {};
398 Elf64_Shdr shdr64 = {};
399 int shdr_size;
400 void *shdr;
401
402 g_array_append_vals(s->string_table_buf, strtab, sizeof(strtab));
403 if (dump_is_64bit(s)) {
404 shdr_size = sizeof(Elf64_Shdr);
405 shdr64.sh_type = SHT_STRTAB;
406 shdr64.sh_offset = s->section_offset + s->elf_section_data_size;
407 shdr64.sh_name = index;
408 shdr64.sh_size = s->string_table_buf->len;
409 shdr = &shdr64;
410 } else {
411 shdr_size = sizeof(Elf32_Shdr);
412 shdr32.sh_type = SHT_STRTAB;
413 shdr32.sh_offset = s->section_offset + s->elf_section_data_size;
414 shdr32.sh_name = index;
415 shdr32.sh_size = s->string_table_buf->len;
416 shdr = &shdr32;
417 }
418 memcpy(buff, shdr, shdr_size);
419 }
420
421 static bool prepare_elf_section_hdrs(DumpState *s, Error **errp)
422 {
423 size_t len, sizeof_shdr;
424 void *buff_hdr;
425
426 /*
427 * Section ordering:
428 * - HDR zero
429 * - Arch section hdrs
430 * - String table hdr
431 */
432 sizeof_shdr = dump_is_64bit(s) ? sizeof(Elf64_Shdr) : sizeof(Elf32_Shdr);
433 len = sizeof_shdr * s->shdr_num;
434 s->elf_section_hdrs = g_malloc0(len);
435 buff_hdr = s->elf_section_hdrs;
436
437 /*
438 * The first section header is ALWAYS a special initial section
439 * header.
440 *
441 * The header should be 0 with one exception being that if
442 * phdr_num is PN_XNUM then the sh_info field contains the real
443 * number of segment entries.
444 *
445 * As we zero allocate the buffer we will only need to modify
446 * sh_info for the PN_XNUM case.
447 */
448 if (s->phdr_num >= PN_XNUM) {
449 prepare_elf_section_hdr_zero(s);
450 }
451 buff_hdr += sizeof_shdr;
452
453 /* Add architecture defined section headers */
454 if (s->dump_info.arch_sections_write_hdr_fn
455 && s->shdr_num > 2) {
456 buff_hdr += s->dump_info.arch_sections_write_hdr_fn(s, buff_hdr);
457
458 if (s->shdr_num >= SHN_LORESERVE) {
459 error_setg_errno(errp, EINVAL,
460 "dump: too many architecture defined sections");
461 return false;
462 }
463 }
464
465 /*
466 * String table is the last section since strings are added via
467 * arch_sections_write_hdr().
468 */
469 prepare_elf_section_hdr_string(s, buff_hdr);
470 return true;
471 }
472
473 static void write_elf_section_headers(DumpState *s, Error **errp)
474 {
475 size_t sizeof_shdr = dump_is_64bit(s) ? sizeof(Elf64_Shdr) : sizeof(Elf32_Shdr);
476 int ret;
477
478 if (!prepare_elf_section_hdrs(s, errp)) {
479 return;
480 }
481
482 ret = fd_write_vmcore(s->elf_section_hdrs, s->shdr_num * sizeof_shdr, s);
483 if (ret < 0) {
484 error_setg_errno(errp, -ret, "dump: failed to write section headers");
485 }
486
487 g_free(s->elf_section_hdrs);
488 }
489
490 static void write_elf_sections(DumpState *s, Error **errp)
491 {
492 int ret;
493
494 if (s->elf_section_data_size) {
495 /* Write architecture section data */
496 ret = fd_write_vmcore(s->elf_section_data,
497 s->elf_section_data_size, s);
498 if (ret < 0) {
499 error_setg_errno(errp, -ret,
500 "dump: failed to write architecture section data");
501 return;
502 }
503 }
504
505 /* Write string table */
506 ret = fd_write_vmcore(s->string_table_buf->data,
507 s->string_table_buf->len, s);
508 if (ret < 0) {
509 error_setg_errno(errp, -ret, "dump: failed to write string table data");
510 }
511 }
512
513 static void write_data(DumpState *s, void *buf, int length, Error **errp)
514 {
515 int ret;
516
517 ret = fd_write_vmcore(buf, length, s);
518 if (ret < 0) {
519 error_setg_errno(errp, -ret, "dump: failed to save memory");
520 } else {
521 s->written_size += length;
522 }
523 }
524
525 /* write the memory to vmcore. 1 page per I/O. */
526 static void write_memory(DumpState *s, GuestPhysBlock *block, ram_addr_t start,
527 int64_t size, Error **errp)
528 {
529 ERRP_GUARD();
530 int64_t i;
531
532 for (i = 0; i < size / s->dump_info.page_size; i++) {
533 write_data(s, block->host_addr + start + i * s->dump_info.page_size,
534 s->dump_info.page_size, errp);
535 if (*errp) {
536 return;
537 }
538 }
539
540 if ((size % s->dump_info.page_size) != 0) {
541 write_data(s, block->host_addr + start + i * s->dump_info.page_size,
542 size % s->dump_info.page_size, errp);
543 if (*errp) {
544 return;
545 }
546 }
547 }
548
549 /* get the memory's offset and size in the vmcore */
550 static void get_offset_range(hwaddr phys_addr,
551 ram_addr_t mapping_length,
552 DumpState *s,
553 hwaddr *p_offset,
554 hwaddr *p_filesz)
555 {
556 GuestPhysBlock *block;
557 hwaddr offset = s->memory_offset;
558 int64_t size_in_block, start;
559
560 /* When the memory is not stored into vmcore, offset will be -1 */
561 *p_offset = -1;
562 *p_filesz = 0;
563
564 if (dump_has_filter(s)) {
565 if (phys_addr < s->filter_area_begin ||
566 phys_addr >= s->filter_area_begin + s->filter_area_length) {
567 return;
568 }
569 }
570
571 QTAILQ_FOREACH(block, &s->guest_phys_blocks.head, next) {
572 if (dump_has_filter(s)) {
573 if (block->target_start >= s->filter_area_begin + s->filter_area_length ||
574 block->target_end <= s->filter_area_begin) {
575 /* This block is out of the range */
576 continue;
577 }
578
579 if (s->filter_area_begin <= block->target_start) {
580 start = block->target_start;
581 } else {
582 start = s->filter_area_begin;
583 }
584
585 size_in_block = block->target_end - start;
586 if (s->filter_area_begin + s->filter_area_length < block->target_end) {
587 size_in_block -= block->target_end - (s->filter_area_begin + s->filter_area_length);
588 }
589 } else {
590 start = block->target_start;
591 size_in_block = block->target_end - block->target_start;
592 }
593
594 if (phys_addr >= start && phys_addr < start + size_in_block) {
595 *p_offset = phys_addr - start + offset;
596
597 /* The offset range mapped from the vmcore file must not spill over
598 * the GuestPhysBlock, clamp it. The rest of the mapping will be
599 * zero-filled in memory at load time; see
600 * <http://refspecs.linuxbase.org/elf/gabi4+/ch5.pheader.html>.
601 */
602 *p_filesz = phys_addr + mapping_length <= start + size_in_block ?
603 mapping_length :
604 size_in_block - (phys_addr - start);
605 return;
606 }
607
608 offset += size_in_block;
609 }
610 }
611
612 static void write_elf_phdr_loads(DumpState *s, Error **errp)
613 {
614 ERRP_GUARD();
615 hwaddr offset, filesz;
616 MemoryMapping *memory_mapping;
617 uint32_t phdr_index = 1;
618
619 QTAILQ_FOREACH(memory_mapping, &s->list.head, next) {
620 get_offset_range(memory_mapping->phys_addr,
621 memory_mapping->length,
622 s, &offset, &filesz);
623 if (dump_is_64bit(s)) {
624 write_elf64_load(s, memory_mapping, phdr_index++, offset,
625 filesz, errp);
626 } else {
627 write_elf32_load(s, memory_mapping, phdr_index++, offset,
628 filesz, errp);
629 }
630
631 if (*errp) {
632 return;
633 }
634
635 if (phdr_index >= s->phdr_num) {
636 break;
637 }
638 }
639 }
640
641 static void write_elf_notes(DumpState *s, Error **errp)
642 {
643 if (dump_is_64bit(s)) {
644 write_elf64_notes(fd_write_vmcore, s, errp);
645 } else {
646 write_elf32_notes(fd_write_vmcore, s, errp);
647 }
648 }
649
650 /* write elf header, PT_NOTE and elf note to vmcore. */
651 static void dump_begin(DumpState *s, Error **errp)
652 {
653 ERRP_GUARD();
654
655 /*
656 * the vmcore's format is:
657 * --------------
658 * | elf header |
659 * --------------
660 * | sctn_hdr |
661 * --------------
662 * | PT_NOTE |
663 * --------------
664 * | PT_LOAD |
665 * --------------
666 * | ...... |
667 * --------------
668 * | PT_LOAD |
669 * --------------
670 * | elf note |
671 * --------------
672 * | memory |
673 * --------------
674 *
675 * we only know where the memory is saved after we write elf note into
676 * vmcore.
677 */
678
679 /* write elf header to vmcore */
680 write_elf_header(s, errp);
681 if (*errp) {
682 return;
683 }
684
685 /* write section headers to vmcore */
686 write_elf_section_headers(s, errp);
687 if (*errp) {
688 return;
689 }
690
691 /* write PT_NOTE to vmcore */
692 write_elf_phdr_note(s, errp);
693 if (*errp) {
694 return;
695 }
696
697 /* write all PT_LOADs to vmcore */
698 write_elf_phdr_loads(s, errp);
699 if (*errp) {
700 return;
701 }
702
703 /* write notes to vmcore */
704 write_elf_notes(s, errp);
705 }
706
707 int64_t dump_filtered_memblock_size(GuestPhysBlock *block,
708 int64_t filter_area_start,
709 int64_t filter_area_length)
710 {
711 int64_t size, left, right;
712
713 /* No filter, return full size */
714 if (!filter_area_length) {
715 return block->target_end - block->target_start;
716 }
717
718 /* calculate the overlapped region. */
719 left = MAX(filter_area_start, block->target_start);
720 right = MIN(filter_area_start + filter_area_length, block->target_end);
721 size = right - left;
722 size = size > 0 ? size : 0;
723
724 return size;
725 }
726
727 int64_t dump_filtered_memblock_start(GuestPhysBlock *block,
728 int64_t filter_area_start,
729 int64_t filter_area_length)
730 {
731 if (filter_area_length) {
732 /* return -1 if the block is not within filter area */
733 if (block->target_start >= filter_area_start + filter_area_length ||
734 block->target_end <= filter_area_start) {
735 return -1;
736 }
737
738 if (filter_area_start > block->target_start) {
739 return filter_area_start - block->target_start;
740 }
741 }
742
743 return 0;
744 }
745
746 /* write all memory to vmcore */
747 static void dump_iterate(DumpState *s, Error **errp)
748 {
749 ERRP_GUARD();
750 GuestPhysBlock *block;
751 int64_t memblock_size, memblock_start;
752
753 QTAILQ_FOREACH(block, &s->guest_phys_blocks.head, next) {
754 memblock_start = dump_filtered_memblock_start(block, s->filter_area_begin, s->filter_area_length);
755 if (memblock_start == -1) {
756 continue;
757 }
758
759 memblock_size = dump_filtered_memblock_size(block, s->filter_area_begin, s->filter_area_length);
760
761 /* Write the memory to file */
762 write_memory(s, block, memblock_start, memblock_size, errp);
763 if (*errp) {
764 return;
765 }
766 }
767 }
768
769 static void dump_end(DumpState *s, Error **errp)
770 {
771 int rc;
772
773 if (s->elf_section_data_size) {
774 s->elf_section_data = g_malloc0(s->elf_section_data_size);
775 }
776
777 /* Adds the architecture defined section data to s->elf_section_data */
778 if (s->dump_info.arch_sections_write_fn &&
779 s->elf_section_data_size) {
780 rc = s->dump_info.arch_sections_write_fn(s, s->elf_section_data);
781 if (rc) {
782 error_setg_errno(errp, rc,
783 "dump: failed to get arch section data");
784 g_free(s->elf_section_data);
785 return;
786 }
787 }
788
789 /* write sections to vmcore */
790 write_elf_sections(s, errp);
791 }
792
793 static void create_vmcore(DumpState *s, Error **errp)
794 {
795 ERRP_GUARD();
796
797 dump_begin(s, errp);
798 if (*errp) {
799 return;
800 }
801
802 /* Iterate over memory and dump it to file */
803 dump_iterate(s, errp);
804 if (*errp) {
805 return;
806 }
807
808 /* Write the section data */
809 dump_end(s, errp);
810 }
811
812 static int write_start_flat_header(DumpState *s)
813 {
814 MakedumpfileHeader *mh;
815 int ret = 0;
816
817 if (s->kdump_raw) {
818 return 0;
819 }
820
821 QEMU_BUILD_BUG_ON(sizeof *mh > MAX_SIZE_MDF_HEADER);
822 mh = g_malloc0(MAX_SIZE_MDF_HEADER);
823
824 memcpy(mh->signature, MAKEDUMPFILE_SIGNATURE,
825 MIN(sizeof mh->signature, sizeof MAKEDUMPFILE_SIGNATURE));
826
827 mh->type = cpu_to_be64(TYPE_FLAT_HEADER);
828 mh->version = cpu_to_be64(VERSION_FLAT_HEADER);
829
830 size_t written_size;
831 written_size = qemu_write_full(s->fd, mh, MAX_SIZE_MDF_HEADER);
832 if (written_size != MAX_SIZE_MDF_HEADER) {
833 ret = -1;
834 }
835
836 g_free(mh);
837 return ret;
838 }
839
840 static int write_end_flat_header(DumpState *s)
841 {
842 MakedumpfileDataHeader mdh;
843
844 if (s->kdump_raw) {
845 return 0;
846 }
847
848 mdh.offset = END_FLAG_FLAT_HEADER;
849 mdh.buf_size = END_FLAG_FLAT_HEADER;
850
851 size_t written_size;
852 written_size = qemu_write_full(s->fd, &mdh, sizeof(mdh));
853 if (written_size != sizeof(mdh)) {
854 return -1;
855 }
856
857 return 0;
858 }
859
860 static int write_buffer(DumpState *s, off_t offset, const void *buf, size_t size)
861 {
862 size_t written_size;
863 MakedumpfileDataHeader mdh;
864 off_t seek_loc;
865
866 if (s->kdump_raw) {
867 seek_loc = lseek(s->fd, offset, SEEK_SET);
868 if (seek_loc == (off_t) -1) {
869 return -1;
870 }
871 } else {
872 mdh.offset = cpu_to_be64(offset);
873 mdh.buf_size = cpu_to_be64(size);
874
875 written_size = qemu_write_full(s->fd, &mdh, sizeof(mdh));
876 if (written_size != sizeof(mdh)) {
877 return -1;
878 }
879 }
880
881 written_size = qemu_write_full(s->fd, buf, size);
882 if (written_size != size) {
883 return -1;
884 }
885
886 return 0;
887 }
888
889 static int buf_write_note(const void *buf, size_t size, void *opaque)
890 {
891 DumpState *s = opaque;
892
893 /* note_buf is not enough */
894 if (s->note_buf_offset + size > s->note_size) {
895 return -1;
896 }
897
898 memcpy(s->note_buf + s->note_buf_offset, buf, size);
899
900 s->note_buf_offset += size;
901
902 return 0;
903 }
904
905 /*
906 * This function retrieves various sizes from an elf header.
907 *
908 * @note has to be a valid ELF note. The return sizes are unmodified
909 * (not padded or rounded up to be multiple of 4).
910 */
911 static void get_note_sizes(DumpState *s, const void *note,
912 uint64_t *note_head_size,
913 uint64_t *name_size,
914 uint64_t *desc_size)
915 {
916 uint64_t note_head_sz;
917 uint64_t name_sz;
918 uint64_t desc_sz;
919
920 if (dump_is_64bit(s)) {
921 const Elf64_Nhdr *hdr = note;
922 note_head_sz = sizeof(Elf64_Nhdr);
923 name_sz = cpu_to_dump64(s, hdr->n_namesz);
924 desc_sz = cpu_to_dump64(s, hdr->n_descsz);
925 } else {
926 const Elf32_Nhdr *hdr = note;
927 note_head_sz = sizeof(Elf32_Nhdr);
928 name_sz = cpu_to_dump32(s, hdr->n_namesz);
929 desc_sz = cpu_to_dump32(s, hdr->n_descsz);
930 }
931
932 if (note_head_size) {
933 *note_head_size = note_head_sz;
934 }
935 if (name_size) {
936 *name_size = name_sz;
937 }
938 if (desc_size) {
939 *desc_size = desc_sz;
940 }
941 }
942
943 static bool note_name_equal(DumpState *s,
944 const uint8_t *note, const char *name)
945 {
946 int len = strlen(name) + 1;
947 uint64_t head_size, name_size;
948
949 get_note_sizes(s, note, &head_size, &name_size, NULL);
950 head_size = ROUND_UP(head_size, 4);
951
952 return name_size == len && memcmp(note + head_size, name, len) == 0;
953 }
954
955 /* write common header, sub header and elf note to vmcore */
956 static void create_header32(DumpState *s, Error **errp)
957 {
958 ERRP_GUARD();
959 DiskDumpHeader32 *dh = NULL;
960 KdumpSubHeader32 *kh = NULL;
961 size_t size;
962 uint32_t block_size;
963 uint32_t sub_hdr_size;
964 uint32_t bitmap_blocks;
965 uint32_t status = 0;
966 uint64_t offset_note;
967
968 /* write common header, the version of kdump-compressed format is 6th */
969 size = sizeof(DiskDumpHeader32);
970 dh = g_malloc0(size);
971
972 memcpy(dh->signature, KDUMP_SIGNATURE, SIG_LEN);
973 dh->header_version = cpu_to_dump32(s, 6);
974 block_size = s->dump_info.page_size;
975 dh->block_size = cpu_to_dump32(s, block_size);
976 sub_hdr_size = sizeof(struct KdumpSubHeader32) + s->note_size;
977 sub_hdr_size = DIV_ROUND_UP(sub_hdr_size, block_size);
978 dh->sub_hdr_size = cpu_to_dump32(s, sub_hdr_size);
979 /* dh->max_mapnr may be truncated, full 64bit is in kh.max_mapnr_64 */
980 dh->max_mapnr = cpu_to_dump32(s, MIN(s->max_mapnr, UINT_MAX));
981 dh->nr_cpus = cpu_to_dump32(s, s->nr_cpus);
982 bitmap_blocks = DIV_ROUND_UP(s->len_dump_bitmap, block_size) * 2;
983 dh->bitmap_blocks = cpu_to_dump32(s, bitmap_blocks);
984 strncpy(dh->utsname.machine, ELF_MACHINE_UNAME, sizeof(dh->utsname.machine));
985
986 if (s->flag_compress & DUMP_DH_COMPRESSED_ZLIB) {
987 status |= DUMP_DH_COMPRESSED_ZLIB;
988 }
989 #ifdef CONFIG_LZO
990 if (s->flag_compress & DUMP_DH_COMPRESSED_LZO) {
991 status |= DUMP_DH_COMPRESSED_LZO;
992 }
993 #endif
994 #ifdef CONFIG_SNAPPY
995 if (s->flag_compress & DUMP_DH_COMPRESSED_SNAPPY) {
996 status |= DUMP_DH_COMPRESSED_SNAPPY;
997 }
998 #endif
999 dh->status = cpu_to_dump32(s, status);
1000
1001 if (write_buffer(s, 0, dh, size) < 0) {
1002 error_setg(errp, "dump: failed to write disk dump header");
1003 goto out;
1004 }
1005
1006 /* write sub header */
1007 size = sizeof(KdumpSubHeader32);
1008 kh = g_malloc0(size);
1009
1010 /* 64bit max_mapnr_64 */
1011 kh->max_mapnr_64 = cpu_to_dump64(s, s->max_mapnr);
1012 kh->phys_base = cpu_to_dump32(s, s->dump_info.phys_base);
1013 kh->dump_level = cpu_to_dump32(s, DUMP_LEVEL);
1014
1015 offset_note = DISKDUMP_HEADER_BLOCKS * block_size + size;
1016 if (s->guest_note &&
1017 note_name_equal(s, s->guest_note, "VMCOREINFO")) {
1018 uint64_t hsize, name_size, size_vmcoreinfo_desc, offset_vmcoreinfo;
1019
1020 get_note_sizes(s, s->guest_note,
1021 &hsize, &name_size, &size_vmcoreinfo_desc);
1022 offset_vmcoreinfo = offset_note + s->note_size - s->guest_note_size +
1023 (DIV_ROUND_UP(hsize, 4) + DIV_ROUND_UP(name_size, 4)) * 4;
1024 kh->offset_vmcoreinfo = cpu_to_dump64(s, offset_vmcoreinfo);
1025 kh->size_vmcoreinfo = cpu_to_dump32(s, size_vmcoreinfo_desc);
1026 }
1027
1028 kh->offset_note = cpu_to_dump64(s, offset_note);
1029 kh->note_size = cpu_to_dump32(s, s->note_size);
1030
1031 if (write_buffer(s, DISKDUMP_HEADER_BLOCKS *
1032 block_size, kh, size) < 0) {
1033 error_setg(errp, "dump: failed to write kdump sub header");
1034 goto out;
1035 }
1036
1037 /* write note */
1038 s->note_buf = g_malloc0(s->note_size);
1039 s->note_buf_offset = 0;
1040
1041 /* use s->note_buf to store notes temporarily */
1042 write_elf32_notes(buf_write_note, s, errp);
1043 if (*errp) {
1044 goto out;
1045 }
1046 if (write_buffer(s, offset_note, s->note_buf,
1047 s->note_size) < 0) {
1048 error_setg(errp, "dump: failed to write notes");
1049 goto out;
1050 }
1051
1052 /* get offset of dump_bitmap */
1053 s->offset_dump_bitmap = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size) *
1054 block_size;
1055
1056 /* get offset of page */
1057 s->offset_page = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size + bitmap_blocks) *
1058 block_size;
1059
1060 out:
1061 g_free(dh);
1062 g_free(kh);
1063 g_free(s->note_buf);
1064 }
1065
1066 /* write common header, sub header and elf note to vmcore */
1067 static void create_header64(DumpState *s, Error **errp)
1068 {
1069 ERRP_GUARD();
1070 DiskDumpHeader64 *dh = NULL;
1071 KdumpSubHeader64 *kh = NULL;
1072 size_t size;
1073 uint32_t block_size;
1074 uint32_t sub_hdr_size;
1075 uint32_t bitmap_blocks;
1076 uint32_t status = 0;
1077 uint64_t offset_note;
1078
1079 /* write common header, the version of kdump-compressed format is 6th */
1080 size = sizeof(DiskDumpHeader64);
1081 dh = g_malloc0(size);
1082
1083 memcpy(dh->signature, KDUMP_SIGNATURE, SIG_LEN);
1084 dh->header_version = cpu_to_dump32(s, 6);
1085 block_size = s->dump_info.page_size;
1086 dh->block_size = cpu_to_dump32(s, block_size);
1087 sub_hdr_size = sizeof(struct KdumpSubHeader64) + s->note_size;
1088 sub_hdr_size = DIV_ROUND_UP(sub_hdr_size, block_size);
1089 dh->sub_hdr_size = cpu_to_dump32(s, sub_hdr_size);
1090 /* dh->max_mapnr may be truncated, full 64bit is in kh.max_mapnr_64 */
1091 dh->max_mapnr = cpu_to_dump32(s, MIN(s->max_mapnr, UINT_MAX));
1092 dh->nr_cpus = cpu_to_dump32(s, s->nr_cpus);
1093 bitmap_blocks = DIV_ROUND_UP(s->len_dump_bitmap, block_size) * 2;
1094 dh->bitmap_blocks = cpu_to_dump32(s, bitmap_blocks);
1095 strncpy(dh->utsname.machine, ELF_MACHINE_UNAME, sizeof(dh->utsname.machine));
1096
1097 if (s->flag_compress & DUMP_DH_COMPRESSED_ZLIB) {
1098 status |= DUMP_DH_COMPRESSED_ZLIB;
1099 }
1100 #ifdef CONFIG_LZO
1101 if (s->flag_compress & DUMP_DH_COMPRESSED_LZO) {
1102 status |= DUMP_DH_COMPRESSED_LZO;
1103 }
1104 #endif
1105 #ifdef CONFIG_SNAPPY
1106 if (s->flag_compress & DUMP_DH_COMPRESSED_SNAPPY) {
1107 status |= DUMP_DH_COMPRESSED_SNAPPY;
1108 }
1109 #endif
1110 dh->status = cpu_to_dump32(s, status);
1111
1112 if (write_buffer(s, 0, dh, size) < 0) {
1113 error_setg(errp, "dump: failed to write disk dump header");
1114 goto out;
1115 }
1116
1117 /* write sub header */
1118 size = sizeof(KdumpSubHeader64);
1119 kh = g_malloc0(size);
1120
1121 /* 64bit max_mapnr_64 */
1122 kh->max_mapnr_64 = cpu_to_dump64(s, s->max_mapnr);
1123 kh->phys_base = cpu_to_dump64(s, s->dump_info.phys_base);
1124 kh->dump_level = cpu_to_dump32(s, DUMP_LEVEL);
1125
1126 offset_note = DISKDUMP_HEADER_BLOCKS * block_size + size;
1127 if (s->guest_note &&
1128 note_name_equal(s, s->guest_note, "VMCOREINFO")) {
1129 uint64_t hsize, name_size, size_vmcoreinfo_desc, offset_vmcoreinfo;
1130
1131 get_note_sizes(s, s->guest_note,
1132 &hsize, &name_size, &size_vmcoreinfo_desc);
1133 offset_vmcoreinfo = offset_note + s->note_size - s->guest_note_size +
1134 (DIV_ROUND_UP(hsize, 4) + DIV_ROUND_UP(name_size, 4)) * 4;
1135 kh->offset_vmcoreinfo = cpu_to_dump64(s, offset_vmcoreinfo);
1136 kh->size_vmcoreinfo = cpu_to_dump64(s, size_vmcoreinfo_desc);
1137 }
1138
1139 kh->offset_note = cpu_to_dump64(s, offset_note);
1140 kh->note_size = cpu_to_dump64(s, s->note_size);
1141
1142 if (write_buffer(s, DISKDUMP_HEADER_BLOCKS *
1143 block_size, kh, size) < 0) {
1144 error_setg(errp, "dump: failed to write kdump sub header");
1145 goto out;
1146 }
1147
1148 /* write note */
1149 s->note_buf = g_malloc0(s->note_size);
1150 s->note_buf_offset = 0;
1151
1152 /* use s->note_buf to store notes temporarily */
1153 write_elf64_notes(buf_write_note, s, errp);
1154 if (*errp) {
1155 goto out;
1156 }
1157
1158 if (write_buffer(s, offset_note, s->note_buf,
1159 s->note_size) < 0) {
1160 error_setg(errp, "dump: failed to write notes");
1161 goto out;
1162 }
1163
1164 /* get offset of dump_bitmap */
1165 s->offset_dump_bitmap = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size) *
1166 block_size;
1167
1168 /* get offset of page */
1169 s->offset_page = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size + bitmap_blocks) *
1170 block_size;
1171
1172 out:
1173 g_free(dh);
1174 g_free(kh);
1175 g_free(s->note_buf);
1176 }
1177
1178 static void write_dump_header(DumpState *s, Error **errp)
1179 {
1180 if (dump_is_64bit(s)) {
1181 create_header64(s, errp);
1182 } else {
1183 create_header32(s, errp);
1184 }
1185 }
1186
1187 static size_t dump_bitmap_get_bufsize(DumpState *s)
1188 {
1189 return s->dump_info.page_size;
1190 }
1191
1192 /*
1193 * set dump_bitmap sequencely. the bit before last_pfn is not allowed to be
1194 * rewritten, so if need to set the first bit, set last_pfn and pfn to 0.
1195 * set_dump_bitmap will always leave the recently set bit un-sync. And setting
1196 * (last bit + sizeof(buf) * 8) to 0 will do flushing the content in buf into
1197 * vmcore, ie. synchronizing un-sync bit into vmcore.
1198 */
1199 static int set_dump_bitmap(uint64_t last_pfn, uint64_t pfn, bool value,
1200 uint8_t *buf, DumpState *s)
1201 {
1202 off_t old_offset, new_offset;
1203 off_t offset_bitmap1, offset_bitmap2;
1204 uint32_t byte, bit;
1205 size_t bitmap_bufsize = dump_bitmap_get_bufsize(s);
1206 size_t bits_per_buf = bitmap_bufsize * CHAR_BIT;
1207
1208 /* should not set the previous place */
1209 assert(last_pfn <= pfn);
1210
1211 /*
1212 * if the bit needed to be set is not cached in buf, flush the data in buf
1213 * to vmcore firstly.
1214 * making new_offset be bigger than old_offset can also sync remained data
1215 * into vmcore.
1216 */
1217 old_offset = bitmap_bufsize * (last_pfn / bits_per_buf);
1218 new_offset = bitmap_bufsize * (pfn / bits_per_buf);
1219
1220 while (old_offset < new_offset) {
1221 /* calculate the offset and write dump_bitmap */
1222 offset_bitmap1 = s->offset_dump_bitmap + old_offset;
1223 if (write_buffer(s, offset_bitmap1, buf,
1224 bitmap_bufsize) < 0) {
1225 return -1;
1226 }
1227
1228 /* dump level 1 is chosen, so 1st and 2nd bitmap are same */
1229 offset_bitmap2 = s->offset_dump_bitmap + s->len_dump_bitmap +
1230 old_offset;
1231 if (write_buffer(s, offset_bitmap2, buf,
1232 bitmap_bufsize) < 0) {
1233 return -1;
1234 }
1235
1236 memset(buf, 0, bitmap_bufsize);
1237 old_offset += bitmap_bufsize;
1238 }
1239
1240 /* get the exact place of the bit in the buf, and set it */
1241 byte = (pfn % bits_per_buf) / CHAR_BIT;
1242 bit = (pfn % bits_per_buf) % CHAR_BIT;
1243 if (value) {
1244 buf[byte] |= 1u << bit;
1245 } else {
1246 buf[byte] &= ~(1u << bit);
1247 }
1248
1249 return 0;
1250 }
1251
1252 static uint64_t dump_paddr_to_pfn(DumpState *s, uint64_t addr)
1253 {
1254 int target_page_shift = ctz32(s->dump_info.page_size);
1255
1256 return (addr >> target_page_shift) - ARCH_PFN_OFFSET;
1257 }
1258
1259 static uint64_t dump_pfn_to_paddr(DumpState *s, uint64_t pfn)
1260 {
1261 int target_page_shift = ctz32(s->dump_info.page_size);
1262
1263 return (pfn + ARCH_PFN_OFFSET) << target_page_shift;
1264 }
1265
1266 /*
1267 * Return the page frame number and the page content in *bufptr. bufptr can be
1268 * NULL. If not NULL, *bufptr must contains a target page size of pre-allocated
1269 * memory. This is not necessarily the memory returned.
1270 */
1271 static bool get_next_page(GuestPhysBlock **blockptr, uint64_t *pfnptr,
1272 uint8_t **bufptr, DumpState *s)
1273 {
1274 GuestPhysBlock *block = *blockptr;
1275 uint32_t page_size = s->dump_info.page_size;
1276 uint8_t *buf = NULL, *hbuf;
1277 hwaddr addr;
1278
1279 /* block == NULL means the start of the iteration */
1280 if (!block) {
1281 block = QTAILQ_FIRST(&s->guest_phys_blocks.head);
1282 *blockptr = block;
1283 addr = block->target_start;
1284 *pfnptr = dump_paddr_to_pfn(s, addr);
1285 } else {
1286 *pfnptr += 1;
1287 addr = dump_pfn_to_paddr(s, *pfnptr);
1288 }
1289 assert(block != NULL);
1290
1291 while (1) {
1292 if (addr >= block->target_start && addr < block->target_end) {
1293 size_t n = MIN(block->target_end - addr, page_size - addr % page_size);
1294 hbuf = block->host_addr + (addr - block->target_start);
1295 if (!buf) {
1296 if (n == page_size) {
1297 /* this is a whole target page, go for it */
1298 assert(addr % page_size == 0);
1299 buf = hbuf;
1300 break;
1301 } else if (bufptr) {
1302 assert(*bufptr);
1303 buf = *bufptr;
1304 memset(buf, 0, page_size);
1305 } else {
1306 return true;
1307 }
1308 }
1309
1310 memcpy(buf + addr % page_size, hbuf, n);
1311 addr += n;
1312 if (addr % page_size == 0 || addr >= block->target_end) {
1313 /* we filled up the page or the current block is finished */
1314 break;
1315 }
1316 } else {
1317 /* the next page is in the next block */
1318 *blockptr = block = QTAILQ_NEXT(block, next);
1319 if (!block) {
1320 break;
1321 }
1322
1323 addr = block->target_start;
1324 /* are we still in the same page? */
1325 if (dump_paddr_to_pfn(s, addr) != *pfnptr) {
1326 if (buf) {
1327 /* no, but we already filled something earlier, return it */
1328 break;
1329 } else {
1330 /* else continue from there */
1331 *pfnptr = dump_paddr_to_pfn(s, addr);
1332 }
1333 }
1334 }
1335 }
1336
1337 if (bufptr) {
1338 *bufptr = buf;
1339 }
1340
1341 return buf != NULL;
1342 }
1343
1344 static void write_dump_bitmap(DumpState *s, Error **errp)
1345 {
1346 int ret = 0;
1347 uint64_t last_pfn, pfn;
1348 void *dump_bitmap_buf;
1349 size_t num_dumpable;
1350 GuestPhysBlock *block_iter = NULL;
1351 size_t bitmap_bufsize = dump_bitmap_get_bufsize(s);
1352 size_t bits_per_buf = bitmap_bufsize * CHAR_BIT;
1353
1354 /* dump_bitmap_buf is used to store dump_bitmap temporarily */
1355 dump_bitmap_buf = g_malloc0(bitmap_bufsize);
1356
1357 num_dumpable = 0;
1358 last_pfn = 0;
1359
1360 /*
1361 * exam memory page by page, and set the bit in dump_bitmap corresponded
1362 * to the existing page.
1363 */
1364 while (get_next_page(&block_iter, &pfn, NULL, s)) {
1365 ret = set_dump_bitmap(last_pfn, pfn, true, dump_bitmap_buf, s);
1366 if (ret < 0) {
1367 error_setg(errp, "dump: failed to set dump_bitmap");
1368 goto out;
1369 }
1370
1371 last_pfn = pfn;
1372 num_dumpable++;
1373 }
1374
1375 /*
1376 * set_dump_bitmap will always leave the recently set bit un-sync. Here we
1377 * set the remaining bits from last_pfn to the end of the bitmap buffer to
1378 * 0. With those set, the un-sync bit will be synchronized into the vmcore.
1379 */
1380 if (num_dumpable > 0) {
1381 ret = set_dump_bitmap(last_pfn, last_pfn + bits_per_buf, false,
1382 dump_bitmap_buf, s);
1383 if (ret < 0) {
1384 error_setg(errp, "dump: failed to sync dump_bitmap");
1385 goto out;
1386 }
1387 }
1388
1389 /* number of dumpable pages that will be dumped later */
1390 s->num_dumpable = num_dumpable;
1391
1392 out:
1393 g_free(dump_bitmap_buf);
1394 }
1395
1396 static void prepare_data_cache(DataCache *data_cache, DumpState *s,
1397 off_t offset)
1398 {
1399 data_cache->state = s;
1400 data_cache->data_size = 0;
1401 data_cache->buf_size = 4 * dump_bitmap_get_bufsize(s);
1402 data_cache->buf = g_malloc0(data_cache->buf_size);
1403 data_cache->offset = offset;
1404 }
1405
1406 static int write_cache(DataCache *dc, const void *buf, size_t size,
1407 bool flag_sync)
1408 {
1409 /*
1410 * dc->buf_size should not be less than size, otherwise dc will never be
1411 * enough
1412 */
1413 assert(size <= dc->buf_size);
1414
1415 /*
1416 * if flag_sync is set, synchronize data in dc->buf into vmcore.
1417 * otherwise check if the space is enough for caching data in buf, if not,
1418 * write the data in dc->buf to dc->state->fd and reset dc->buf
1419 */
1420 if ((!flag_sync && dc->data_size + size > dc->buf_size) ||
1421 (flag_sync && dc->data_size > 0)) {
1422 if (write_buffer(dc->state, dc->offset, dc->buf, dc->data_size) < 0) {
1423 return -1;
1424 }
1425
1426 dc->offset += dc->data_size;
1427 dc->data_size = 0;
1428 }
1429
1430 if (!flag_sync) {
1431 memcpy(dc->buf + dc->data_size, buf, size);
1432 dc->data_size += size;
1433 }
1434
1435 return 0;
1436 }
1437
1438 static void free_data_cache(DataCache *data_cache)
1439 {
1440 g_free(data_cache->buf);
1441 }
1442
1443 static size_t get_len_buf_out(size_t page_size, uint32_t flag_compress)
1444 {
1445 switch (flag_compress) {
1446 case DUMP_DH_COMPRESSED_ZLIB:
1447 return compressBound(page_size);
1448
1449 case DUMP_DH_COMPRESSED_LZO:
1450 /*
1451 * LZO will expand incompressible data by a little amount. Please check
1452 * the following URL to see the expansion calculation:
1453 * http://www.oberhumer.com/opensource/lzo/lzofaq.php
1454 */
1455 return page_size + page_size / 16 + 64 + 3;
1456
1457 #ifdef CONFIG_SNAPPY
1458 case DUMP_DH_COMPRESSED_SNAPPY:
1459 return snappy_max_compressed_length(page_size);
1460 #endif
1461 }
1462 return 0;
1463 }
1464
1465 static void write_dump_pages(DumpState *s, Error **errp)
1466 {
1467 int ret = 0;
1468 DataCache page_desc, page_data;
1469 size_t len_buf_out, size_out;
1470 #ifdef CONFIG_LZO
1471 lzo_bytep wrkmem = NULL;
1472 #endif
1473 uint8_t *buf_out = NULL;
1474 off_t offset_desc, offset_data;
1475 PageDescriptor pd, pd_zero;
1476 uint8_t *buf;
1477 GuestPhysBlock *block_iter = NULL;
1478 uint64_t pfn_iter;
1479 g_autofree uint8_t *page = NULL;
1480
1481 /* get offset of page_desc and page_data in dump file */
1482 offset_desc = s->offset_page;
1483 offset_data = offset_desc + sizeof(PageDescriptor) * s->num_dumpable;
1484
1485 prepare_data_cache(&page_desc, s, offset_desc);
1486 prepare_data_cache(&page_data, s, offset_data);
1487
1488 /* prepare buffer to store compressed data */
1489 len_buf_out = get_len_buf_out(s->dump_info.page_size, s->flag_compress);
1490 assert(len_buf_out != 0);
1491
1492 #ifdef CONFIG_LZO
1493 wrkmem = g_malloc(LZO1X_1_MEM_COMPRESS);
1494 #endif
1495
1496 buf_out = g_malloc(len_buf_out);
1497
1498 /*
1499 * init zero page's page_desc and page_data, because every zero page
1500 * uses the same page_data
1501 */
1502 pd_zero.size = cpu_to_dump32(s, s->dump_info.page_size);
1503 pd_zero.flags = cpu_to_dump32(s, 0);
1504 pd_zero.offset = cpu_to_dump64(s, offset_data);
1505 pd_zero.page_flags = cpu_to_dump64(s, 0);
1506 buf = g_malloc0(s->dump_info.page_size);
1507 ret = write_cache(&page_data, buf, s->dump_info.page_size, false);
1508 g_free(buf);
1509 if (ret < 0) {
1510 error_setg(errp, "dump: failed to write page data (zero page)");
1511 goto out;
1512 }
1513
1514 offset_data += s->dump_info.page_size;
1515 page = g_malloc(s->dump_info.page_size);
1516
1517 /*
1518 * dump memory to vmcore page by page. zero page will all be resided in the
1519 * first page of page section
1520 */
1521 for (buf = page; get_next_page(&block_iter, &pfn_iter, &buf, s); buf = page) {
1522 /* check zero page */
1523 if (buffer_is_zero(buf, s->dump_info.page_size)) {
1524 ret = write_cache(&page_desc, &pd_zero, sizeof(PageDescriptor),
1525 false);
1526 if (ret < 0) {
1527 error_setg(errp, "dump: failed to write page desc");
1528 goto out;
1529 }
1530 } else {
1531 /*
1532 * not zero page, then:
1533 * 1. compress the page
1534 * 2. write the compressed page into the cache of page_data
1535 * 3. get page desc of the compressed page and write it into the
1536 * cache of page_desc
1537 *
1538 * only one compression format will be used here, for
1539 * s->flag_compress is set. But when compression fails to work,
1540 * we fall back to save in plaintext.
1541 */
1542 size_out = len_buf_out;
1543 if ((s->flag_compress & DUMP_DH_COMPRESSED_ZLIB) &&
1544 (compress2(buf_out, (uLongf *)&size_out, buf,
1545 s->dump_info.page_size, Z_BEST_SPEED) == Z_OK) &&
1546 (size_out < s->dump_info.page_size)) {
1547 pd.flags = cpu_to_dump32(s, DUMP_DH_COMPRESSED_ZLIB);
1548 pd.size = cpu_to_dump32(s, size_out);
1549
1550 ret = write_cache(&page_data, buf_out, size_out, false);
1551 if (ret < 0) {
1552 error_setg(errp, "dump: failed to write page data");
1553 goto out;
1554 }
1555 #ifdef CONFIG_LZO
1556 } else if ((s->flag_compress & DUMP_DH_COMPRESSED_LZO) &&
1557 (lzo1x_1_compress(buf, s->dump_info.page_size, buf_out,
1558 (lzo_uint *)&size_out, wrkmem) == LZO_E_OK) &&
1559 (size_out < s->dump_info.page_size)) {
1560 pd.flags = cpu_to_dump32(s, DUMP_DH_COMPRESSED_LZO);
1561 pd.size = cpu_to_dump32(s, size_out);
1562
1563 ret = write_cache(&page_data, buf_out, size_out, false);
1564 if (ret < 0) {
1565 error_setg(errp, "dump: failed to write page data");
1566 goto out;
1567 }
1568 #endif
1569 #ifdef CONFIG_SNAPPY
1570 } else if ((s->flag_compress & DUMP_DH_COMPRESSED_SNAPPY) &&
1571 (snappy_compress((char *)buf, s->dump_info.page_size,
1572 (char *)buf_out, &size_out) == SNAPPY_OK) &&
1573 (size_out < s->dump_info.page_size)) {
1574 pd.flags = cpu_to_dump32(s, DUMP_DH_COMPRESSED_SNAPPY);
1575 pd.size = cpu_to_dump32(s, size_out);
1576
1577 ret = write_cache(&page_data, buf_out, size_out, false);
1578 if (ret < 0) {
1579 error_setg(errp, "dump: failed to write page data");
1580 goto out;
1581 }
1582 #endif
1583 } else {
1584 /*
1585 * fall back to save in plaintext, size_out should be
1586 * assigned the target's page size
1587 */
1588 pd.flags = cpu_to_dump32(s, 0);
1589 size_out = s->dump_info.page_size;
1590 pd.size = cpu_to_dump32(s, size_out);
1591
1592 ret = write_cache(&page_data, buf,
1593 s->dump_info.page_size, false);
1594 if (ret < 0) {
1595 error_setg(errp, "dump: failed to write page data");
1596 goto out;
1597 }
1598 }
1599
1600 /* get and write page desc here */
1601 pd.page_flags = cpu_to_dump64(s, 0);
1602 pd.offset = cpu_to_dump64(s, offset_data);
1603 offset_data += size_out;
1604
1605 ret = write_cache(&page_desc, &pd, sizeof(PageDescriptor), false);
1606 if (ret < 0) {
1607 error_setg(errp, "dump: failed to write page desc");
1608 goto out;
1609 }
1610 }
1611 s->written_size += s->dump_info.page_size;
1612 }
1613
1614 ret = write_cache(&page_desc, NULL, 0, true);
1615 if (ret < 0) {
1616 error_setg(errp, "dump: failed to sync cache for page_desc");
1617 goto out;
1618 }
1619 ret = write_cache(&page_data, NULL, 0, true);
1620 if (ret < 0) {
1621 error_setg(errp, "dump: failed to sync cache for page_data");
1622 goto out;
1623 }
1624
1625 out:
1626 free_data_cache(&page_desc);
1627 free_data_cache(&page_data);
1628
1629 #ifdef CONFIG_LZO
1630 g_free(wrkmem);
1631 #endif
1632
1633 g_free(buf_out);
1634 }
1635
1636 static void create_kdump_vmcore(DumpState *s, Error **errp)
1637 {
1638 ERRP_GUARD();
1639 int ret;
1640
1641 /*
1642 * the kdump-compressed format is:
1643 * File offset
1644 * +------------------------------------------+ 0x0
1645 * | main header (struct disk_dump_header) |
1646 * |------------------------------------------+ block 1
1647 * | sub header (struct kdump_sub_header) |
1648 * |------------------------------------------+ block 2
1649 * | 1st-dump_bitmap |
1650 * |------------------------------------------+ block 2 + X blocks
1651 * | 2nd-dump_bitmap | (aligned by block)
1652 * |------------------------------------------+ block 2 + 2 * X blocks
1653 * | page desc for pfn 0 (struct page_desc) | (aligned by block)
1654 * | page desc for pfn 1 (struct page_desc) |
1655 * | : |
1656 * |------------------------------------------| (not aligned by block)
1657 * | page data (pfn 0) |
1658 * | page data (pfn 1) |
1659 * | : |
1660 * +------------------------------------------+
1661 */
1662
1663 ret = write_start_flat_header(s);
1664 if (ret < 0) {
1665 error_setg(errp, "dump: failed to write start flat header");
1666 return;
1667 }
1668
1669 write_dump_header(s, errp);
1670 if (*errp) {
1671 return;
1672 }
1673
1674 write_dump_bitmap(s, errp);
1675 if (*errp) {
1676 return;
1677 }
1678
1679 write_dump_pages(s, errp);
1680 if (*errp) {
1681 return;
1682 }
1683
1684 ret = write_end_flat_header(s);
1685 if (ret < 0) {
1686 error_setg(errp, "dump: failed to write end flat header");
1687 return;
1688 }
1689 }
1690
1691 static void get_max_mapnr(DumpState *s)
1692 {
1693 GuestPhysBlock *last_block;
1694
1695 last_block = QTAILQ_LAST(&s->guest_phys_blocks.head);
1696 s->max_mapnr = dump_paddr_to_pfn(s, last_block->target_end);
1697 }
1698
1699 static DumpState dump_state_global = { .status = DUMP_STATUS_NONE };
1700
1701 static void dump_state_prepare(DumpState *s)
1702 {
1703 /* zero the struct, setting status to active */
1704 *s = (DumpState) { .status = DUMP_STATUS_ACTIVE };
1705 }
1706
1707 bool qemu_system_dump_in_progress(void)
1708 {
1709 DumpState *state = &dump_state_global;
1710 return (qatomic_read(&state->status) == DUMP_STATUS_ACTIVE);
1711 }
1712
1713 /*
1714 * calculate total size of memory to be dumped (taking filter into
1715 * account.)
1716 */
1717 static int64_t dump_calculate_size(DumpState *s)
1718 {
1719 GuestPhysBlock *block;
1720 int64_t total = 0;
1721
1722 QTAILQ_FOREACH(block, &s->guest_phys_blocks.head, next) {
1723 total += dump_filtered_memblock_size(block,
1724 s->filter_area_begin,
1725 s->filter_area_length);
1726 }
1727
1728 return total;
1729 }
1730
1731 static void vmcoreinfo_update_phys_base(DumpState *s)
1732 {
1733 uint64_t size, note_head_size, name_size, phys_base;
1734 char **lines;
1735 uint8_t *vmci;
1736 size_t i;
1737
1738 if (!note_name_equal(s, s->guest_note, "VMCOREINFO")) {
1739 return;
1740 }
1741
1742 get_note_sizes(s, s->guest_note, &note_head_size, &name_size, &size);
1743 note_head_size = ROUND_UP(note_head_size, 4);
1744
1745 vmci = s->guest_note + note_head_size + ROUND_UP(name_size, 4);
1746 *(vmci + size) = '\0';
1747
1748 lines = g_strsplit((char *)vmci, "\n", -1);
1749 for (i = 0; lines[i]; i++) {
1750 const char *prefix = NULL;
1751
1752 if (s->dump_info.d_machine == EM_X86_64) {
1753 prefix = "NUMBER(phys_base)=";
1754 } else if (s->dump_info.d_machine == EM_AARCH64) {
1755 prefix = "NUMBER(PHYS_OFFSET)=";
1756 }
1757
1758 if (prefix && g_str_has_prefix(lines[i], prefix)) {
1759 if (qemu_strtou64(lines[i] + strlen(prefix), NULL, 16,
1760 &phys_base) < 0) {
1761 warn_report("Failed to read %s", prefix);
1762 } else {
1763 s->dump_info.phys_base = phys_base;
1764 }
1765 break;
1766 }
1767 }
1768
1769 g_strfreev(lines);
1770 }
1771
1772 static void dump_init(DumpState *s, int fd, bool has_format,
1773 DumpGuestMemoryFormat format, bool paging, bool has_filter,
1774 int64_t begin, int64_t length, bool kdump_raw,
1775 Error **errp)
1776 {
1777 ERRP_GUARD();
1778 VMCoreInfoState *vmci = vmcoreinfo_find();
1779 CPUState *cpu;
1780 int nr_cpus;
1781 int ret;
1782
1783 s->has_format = has_format;
1784 s->format = format;
1785 s->written_size = 0;
1786 s->kdump_raw = kdump_raw;
1787
1788 /* kdump-compressed is conflict with paging and filter */
1789 if (has_format && format != DUMP_GUEST_MEMORY_FORMAT_ELF) {
1790 assert(!paging && !has_filter);
1791 }
1792
1793 if (runstate_is_running()) {
1794 vm_stop(RUN_STATE_SAVE_VM);
1795 s->resume = true;
1796 } else {
1797 s->resume = false;
1798 }
1799
1800 /* If we use KVM, we should synchronize the registers before we get dump
1801 * info or physmap info.
1802 */
1803 cpu_synchronize_all_states();
1804 nr_cpus = 0;
1805 CPU_FOREACH(cpu) {
1806 nr_cpus++;
1807 }
1808
1809 s->fd = fd;
1810 if (has_filter && !length) {
1811 error_setg(errp, "parameter 'length' expects a non-zero size");
1812 goto cleanup;
1813 }
1814 s->filter_area_begin = begin;
1815 s->filter_area_length = length;
1816
1817 /* First index is 0, it's the special null name */
1818 s->string_table_buf = g_array_new(FALSE, TRUE, 1);
1819 /*
1820 * Allocate the null name, due to the clearing option set to true
1821 * it will be 0.
1822 */
1823 g_array_set_size(s->string_table_buf, 1);
1824
1825 memory_mapping_list_init(&s->list);
1826
1827 guest_phys_blocks_init(&s->guest_phys_blocks);
1828 guest_phys_blocks_append(&s->guest_phys_blocks);
1829 s->total_size = dump_calculate_size(s);
1830 #ifdef DEBUG_DUMP_GUEST_MEMORY
1831 fprintf(stderr, "DUMP: total memory to dump: %lu\n", s->total_size);
1832 #endif
1833
1834 /* it does not make sense to dump non-existent memory */
1835 if (!s->total_size) {
1836 error_setg(errp, "dump: no guest memory to dump");
1837 goto cleanup;
1838 }
1839
1840 /* get dump info: endian, class and architecture.
1841 * If the target architecture is not supported, cpu_get_dump_info() will
1842 * return -1.
1843 */
1844 ret = cpu_get_dump_info(&s->dump_info, &s->guest_phys_blocks);
1845 if (ret < 0) {
1846 error_setg(errp,
1847 "dumping guest memory is not supported on this target");
1848 goto cleanup;
1849 }
1850
1851 if (!s->dump_info.page_size) {
1852 s->dump_info.page_size = qemu_target_page_size();
1853 }
1854
1855 s->note_size = cpu_get_note_size(s->dump_info.d_class,
1856 s->dump_info.d_machine, nr_cpus);
1857 assert(s->note_size >= 0);
1858
1859 /*
1860 * The goal of this block is to (a) update the previously guessed
1861 * phys_base, (b) copy the guest note out of the guest.
1862 * Failure to do so is not fatal for dumping.
1863 */
1864 if (vmci) {
1865 uint64_t addr, note_head_size, name_size, desc_size;
1866 uint32_t size;
1867 uint16_t guest_format;
1868
1869 note_head_size = dump_is_64bit(s) ?
1870 sizeof(Elf64_Nhdr) : sizeof(Elf32_Nhdr);
1871
1872 guest_format = le16_to_cpu(vmci->vmcoreinfo.guest_format);
1873 size = le32_to_cpu(vmci->vmcoreinfo.size);
1874 addr = le64_to_cpu(vmci->vmcoreinfo.paddr);
1875 if (!vmci->has_vmcoreinfo) {
1876 warn_report("guest note is not present");
1877 } else if (size < note_head_size || size > MAX_GUEST_NOTE_SIZE) {
1878 warn_report("guest note size is invalid: %" PRIu32, size);
1879 } else if (guest_format != FW_CFG_VMCOREINFO_FORMAT_ELF) {
1880 warn_report("guest note format is unsupported: %" PRIu16, guest_format);
1881 } else {
1882 s->guest_note = g_malloc(size + 1); /* +1 for adding \0 */
1883 cpu_physical_memory_read(addr, s->guest_note, size);
1884
1885 get_note_sizes(s, s->guest_note, NULL, &name_size, &desc_size);
1886 s->guest_note_size = ELF_NOTE_SIZE(note_head_size, name_size,
1887 desc_size);
1888 if (name_size > MAX_GUEST_NOTE_SIZE ||
1889 desc_size > MAX_GUEST_NOTE_SIZE ||
1890 s->guest_note_size > size) {
1891 warn_report("Invalid guest note header");
1892 g_free(s->guest_note);
1893 s->guest_note = NULL;
1894 } else {
1895 vmcoreinfo_update_phys_base(s);
1896 s->note_size += s->guest_note_size;
1897 }
1898 }
1899 }
1900
1901 /* get memory mapping */
1902 if (paging) {
1903 qemu_get_guest_memory_mapping(&s->list, &s->guest_phys_blocks, errp);
1904 if (*errp) {
1905 goto cleanup;
1906 }
1907 } else {
1908 qemu_get_guest_simple_memory_mapping(&s->list, &s->guest_phys_blocks);
1909 }
1910
1911 s->nr_cpus = nr_cpus;
1912
1913 get_max_mapnr(s);
1914
1915 uint64_t tmp;
1916 tmp = DIV_ROUND_UP(DIV_ROUND_UP(s->max_mapnr, CHAR_BIT),
1917 s->dump_info.page_size);
1918 s->len_dump_bitmap = tmp * s->dump_info.page_size;
1919
1920 /* init for kdump-compressed format */
1921 if (has_format && format != DUMP_GUEST_MEMORY_FORMAT_ELF) {
1922 switch (format) {
1923 case DUMP_GUEST_MEMORY_FORMAT_KDUMP_ZLIB:
1924 s->flag_compress = DUMP_DH_COMPRESSED_ZLIB;
1925 break;
1926
1927 case DUMP_GUEST_MEMORY_FORMAT_KDUMP_LZO:
1928 #ifdef CONFIG_LZO
1929 if (lzo_init() != LZO_E_OK) {
1930 error_setg(errp, "failed to initialize the LZO library");
1931 goto cleanup;
1932 }
1933 #endif
1934 s->flag_compress = DUMP_DH_COMPRESSED_LZO;
1935 break;
1936
1937 case DUMP_GUEST_MEMORY_FORMAT_KDUMP_SNAPPY:
1938 s->flag_compress = DUMP_DH_COMPRESSED_SNAPPY;
1939 break;
1940
1941 default:
1942 s->flag_compress = 0;
1943 }
1944
1945 return;
1946 }
1947
1948 if (dump_has_filter(s)) {
1949 memory_mapping_filter(&s->list, s->filter_area_begin, s->filter_area_length);
1950 }
1951
1952 /*
1953 * The first section header is always a special one in which most
1954 * fields are 0. The section header string table is also always
1955 * set.
1956 */
1957 s->shdr_num = 2;
1958
1959 /*
1960 * Adds the number of architecture sections to shdr_num and sets
1961 * elf_section_data_size so we know the offsets and sizes of all
1962 * parts.
1963 */
1964 if (s->dump_info.arch_sections_add_fn) {
1965 s->dump_info.arch_sections_add_fn(s);
1966 }
1967
1968 /*
1969 * calculate shdr_num so we know the offsets and sizes of all
1970 * parts.
1971 * Calculate phdr_num
1972 *
1973 * The absolute maximum amount of phdrs is UINT32_MAX - 1 as
1974 * sh_info is 32 bit. There's special handling once we go over
1975 * UINT16_MAX - 1 but that is handled in the ehdr and section
1976 * code.
1977 */
1978 s->phdr_num = 1; /* Reserve PT_NOTE */
1979 if (s->list.num <= UINT32_MAX - 1) {
1980 s->phdr_num += s->list.num;
1981 } else {
1982 s->phdr_num = UINT32_MAX;
1983 }
1984
1985 /*
1986 * Now that the number of section and program headers is known we
1987 * can calculate the offsets of the headers and data.
1988 */
1989 if (dump_is_64bit(s)) {
1990 s->shdr_offset = sizeof(Elf64_Ehdr);
1991 s->phdr_offset = s->shdr_offset + sizeof(Elf64_Shdr) * s->shdr_num;
1992 s->note_offset = s->phdr_offset + sizeof(Elf64_Phdr) * s->phdr_num;
1993 } else {
1994 s->shdr_offset = sizeof(Elf32_Ehdr);
1995 s->phdr_offset = s->shdr_offset + sizeof(Elf32_Shdr) * s->shdr_num;
1996 s->note_offset = s->phdr_offset + sizeof(Elf32_Phdr) * s->phdr_num;
1997 }
1998 s->memory_offset = s->note_offset + s->note_size;
1999 s->section_offset = s->memory_offset + s->total_size;
2000
2001 return;
2002
2003 cleanup:
2004 dump_cleanup(s);
2005 }
2006
2007 /* this operation might be time consuming. */
2008 static void dump_process(DumpState *s, Error **errp)
2009 {
2010 ERRP_GUARD();
2011 DumpQueryResult *result = NULL;
2012
2013 if (s->has_format && s->format == DUMP_GUEST_MEMORY_FORMAT_WIN_DMP) {
2014 create_win_dump(s, errp);
2015 } else if (s->has_format && s->format != DUMP_GUEST_MEMORY_FORMAT_ELF) {
2016 create_kdump_vmcore(s, errp);
2017 } else {
2018 create_vmcore(s, errp);
2019 }
2020
2021 /* make sure status is written after written_size updates */
2022 smp_wmb();
2023 qatomic_set(&s->status,
2024 (*errp ? DUMP_STATUS_FAILED : DUMP_STATUS_COMPLETED));
2025
2026 /* send DUMP_COMPLETED message (unconditionally) */
2027 result = qmp_query_dump(NULL);
2028 /* should never fail */
2029 assert(result);
2030 qapi_event_send_dump_completed(result,
2031 *errp ? error_get_pretty(*errp) : NULL);
2032 qapi_free_DumpQueryResult(result);
2033
2034 dump_cleanup(s);
2035 }
2036
2037 static void *dump_thread(void *data)
2038 {
2039 DumpState *s = (DumpState *)data;
2040 dump_process(s, NULL);
2041 return NULL;
2042 }
2043
2044 DumpQueryResult *qmp_query_dump(Error **errp)
2045 {
2046 DumpQueryResult *result = g_new(DumpQueryResult, 1);
2047 DumpState *state = &dump_state_global;
2048 result->status = qatomic_read(&state->status);
2049 /* make sure we are reading status and written_size in order */
2050 smp_rmb();
2051 result->completed = state->written_size;
2052 result->total = state->total_size;
2053 return result;
2054 }
2055
2056 void qmp_dump_guest_memory(bool paging, const char *protocol,
2057 bool has_detach, bool detach,
2058 bool has_begin, int64_t begin,
2059 bool has_length, int64_t length,
2060 bool has_format, DumpGuestMemoryFormat format,
2061 Error **errp)
2062 {
2063 ERRP_GUARD();
2064 const char *p;
2065 int fd;
2066 DumpState *s;
2067 bool detach_p = false;
2068 bool kdump_raw = false;
2069
2070 if (runstate_check(RUN_STATE_INMIGRATE)) {
2071 error_setg(errp, "Dump not allowed during incoming migration.");
2072 return;
2073 }
2074
2075 /* if there is a dump in background, we should wait until the dump
2076 * finished */
2077 if (qemu_system_dump_in_progress()) {
2078 error_setg(errp, "There is a dump in process, please wait.");
2079 return;
2080 }
2081
2082 /*
2083 * externally, we represent kdump-raw-* as separate formats, but internally
2084 * they are handled the same, except for the "raw" flag
2085 */
2086 if (has_format) {
2087 switch (format) {
2088 case DUMP_GUEST_MEMORY_FORMAT_KDUMP_RAW_ZLIB:
2089 format = DUMP_GUEST_MEMORY_FORMAT_KDUMP_ZLIB;
2090 kdump_raw = true;
2091 break;
2092 case DUMP_GUEST_MEMORY_FORMAT_KDUMP_RAW_LZO:
2093 format = DUMP_GUEST_MEMORY_FORMAT_KDUMP_LZO;
2094 kdump_raw = true;
2095 break;
2096 case DUMP_GUEST_MEMORY_FORMAT_KDUMP_RAW_SNAPPY:
2097 format = DUMP_GUEST_MEMORY_FORMAT_KDUMP_SNAPPY;
2098 kdump_raw = true;
2099 break;
2100 default:
2101 break;
2102 }
2103 }
2104
2105 /*
2106 * kdump-compressed format need the whole memory dumped, so paging or
2107 * filter is not supported here.
2108 */
2109 if ((has_format && format != DUMP_GUEST_MEMORY_FORMAT_ELF) &&
2110 (paging || has_begin || has_length)) {
2111 error_setg(errp, "kdump-compressed format doesn't support paging or "
2112 "filter");
2113 return;
2114 }
2115 if (has_begin && !has_length) {
2116 error_setg(errp, QERR_MISSING_PARAMETER, "length");
2117 return;
2118 }
2119 if (!has_begin && has_length) {
2120 error_setg(errp, QERR_MISSING_PARAMETER, "begin");
2121 return;
2122 }
2123 if (has_detach) {
2124 detach_p = detach;
2125 }
2126
2127 /* check whether lzo/snappy is supported */
2128 #ifndef CONFIG_LZO
2129 if (has_format && format == DUMP_GUEST_MEMORY_FORMAT_KDUMP_LZO) {
2130 error_setg(errp, "kdump-lzo is not available now");
2131 return;
2132 }
2133 #endif
2134
2135 #ifndef CONFIG_SNAPPY
2136 if (has_format && format == DUMP_GUEST_MEMORY_FORMAT_KDUMP_SNAPPY) {
2137 error_setg(errp, "kdump-snappy is not available now");
2138 return;
2139 }
2140 #endif
2141
2142 if (has_format && format == DUMP_GUEST_MEMORY_FORMAT_WIN_DMP
2143 && !win_dump_available(errp)) {
2144 return;
2145 }
2146
2147 if (strstart(protocol, "fd:", &p)) {
2148 fd = monitor_get_fd(monitor_cur(), p, errp);
2149 if (fd == -1) {
2150 return;
2151 }
2152 } else if (strstart(protocol, "file:", &p)) {
2153 fd = qemu_create(p, O_WRONLY | O_TRUNC | O_BINARY, S_IRUSR, errp);
2154 if (fd < 0) {
2155 return;
2156 }
2157 } else {
2158 error_setg(errp,
2159 "parameter 'protocol' must start with 'file:' or 'fd:'");
2160 return;
2161 }
2162 if (kdump_raw && lseek(fd, 0, SEEK_CUR) == (off_t) -1) {
2163 error_setg(errp, "kdump-raw formats require a seekable file");
2164 return;
2165 }
2166
2167 if (!dump_migration_blocker) {
2168 error_setg(&dump_migration_blocker,
2169 "Live migration disabled: dump-guest-memory in progress");
2170 }
2171
2172 /*
2173 * Allows even for -only-migratable, but forbid migration during the
2174 * process of dump guest memory.
2175 */
2176 if (migrate_add_blocker_internal(&dump_migration_blocker, errp)) {
2177 /* Remember to release the fd before passing it over to dump state */
2178 close(fd);
2179 return;
2180 }
2181
2182 s = &dump_state_global;
2183 dump_state_prepare(s);
2184
2185 dump_init(s, fd, has_format, format, paging, has_begin,
2186 begin, length, kdump_raw, errp);
2187 if (*errp) {
2188 qatomic_set(&s->status, DUMP_STATUS_FAILED);
2189 return;
2190 }
2191
2192 if (detach_p) {
2193 /* detached dump */
2194 s->detached = true;
2195 qemu_thread_create(&s->dump_thread, "dump_thread", dump_thread,
2196 s, QEMU_THREAD_DETACHED);
2197 } else {
2198 /* sync dump */
2199 dump_process(s, errp);
2200 }
2201 }
2202
2203 DumpGuestMemoryCapability *qmp_query_dump_guest_memory_capability(Error **errp)
2204 {
2205 DumpGuestMemoryCapability *cap =
2206 g_new0(DumpGuestMemoryCapability, 1);
2207 DumpGuestMemoryFormatList **tail = &cap->formats;
2208
2209 /* elf is always available */
2210 QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_ELF);
2211
2212 /* kdump-zlib is always available */
2213 QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_KDUMP_ZLIB);
2214 QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_KDUMP_RAW_ZLIB);
2215
2216 /* add new item if kdump-lzo is available */
2217 #ifdef CONFIG_LZO
2218 QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_KDUMP_LZO);
2219 QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_KDUMP_RAW_LZO);
2220 #endif
2221
2222 /* add new item if kdump-snappy is available */
2223 #ifdef CONFIG_SNAPPY
2224 QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_KDUMP_SNAPPY);
2225 QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_KDUMP_RAW_SNAPPY);
2226 #endif
2227
2228 if (win_dump_available(NULL)) {
2229 QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_WIN_DMP);
2230 }
2231
2232 return cap;
2233 }