]> git.proxmox.com Git - mirror_qemu.git/blob - dump.c
dump: select header bitness based on ELF class, not ELF architecture
[mirror_qemu.git] / dump.c
1 /*
2 * QEMU dump
3 *
4 * Copyright Fujitsu, Corp. 2011, 2012
5 *
6 * Authors:
7 * Wen Congyang <wency@cn.fujitsu.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
11 *
12 */
13
14 #include "qemu-common.h"
15 #include "elf.h"
16 #include "cpu.h"
17 #include "exec/cpu-all.h"
18 #include "exec/hwaddr.h"
19 #include "monitor/monitor.h"
20 #include "sysemu/kvm.h"
21 #include "sysemu/dump.h"
22 #include "sysemu/sysemu.h"
23 #include "sysemu/memory_mapping.h"
24 #include "sysemu/cpus.h"
25 #include "qapi/error.h"
26 #include "qmp-commands.h"
27
28 #include <zlib.h>
29 #ifdef CONFIG_LZO
30 #include <lzo/lzo1x.h>
31 #endif
32 #ifdef CONFIG_SNAPPY
33 #include <snappy-c.h>
34 #endif
35 #ifndef ELF_MACHINE_UNAME
36 #define ELF_MACHINE_UNAME "Unknown"
37 #endif
38
39 static uint16_t cpu_convert_to_target16(uint16_t val, int endian)
40 {
41 if (endian == ELFDATA2LSB) {
42 val = cpu_to_le16(val);
43 } else {
44 val = cpu_to_be16(val);
45 }
46
47 return val;
48 }
49
50 static uint32_t cpu_convert_to_target32(uint32_t val, int endian)
51 {
52 if (endian == ELFDATA2LSB) {
53 val = cpu_to_le32(val);
54 } else {
55 val = cpu_to_be32(val);
56 }
57
58 return val;
59 }
60
61 static uint64_t cpu_convert_to_target64(uint64_t val, int endian)
62 {
63 if (endian == ELFDATA2LSB) {
64 val = cpu_to_le64(val);
65 } else {
66 val = cpu_to_be64(val);
67 }
68
69 return val;
70 }
71
72 typedef struct DumpState {
73 GuestPhysBlockList guest_phys_blocks;
74 ArchDumpInfo dump_info;
75 MemoryMappingList list;
76 uint16_t phdr_num;
77 uint32_t sh_info;
78 bool have_section;
79 bool resume;
80 ssize_t note_size;
81 hwaddr memory_offset;
82 int fd;
83
84 GuestPhysBlock *next_block;
85 ram_addr_t start;
86 bool has_filter;
87 int64_t begin;
88 int64_t length;
89
90 uint8_t *note_buf; /* buffer for notes */
91 size_t note_buf_offset; /* the writing place in note_buf */
92 uint32_t nr_cpus; /* number of guest's cpu */
93 uint64_t max_mapnr; /* the biggest guest's phys-mem's number */
94 size_t len_dump_bitmap; /* the size of the place used to store
95 dump_bitmap in vmcore */
96 off_t offset_dump_bitmap; /* offset of dump_bitmap part in vmcore */
97 off_t offset_page; /* offset of page part in vmcore */
98 size_t num_dumpable; /* number of page that can be dumped */
99 uint32_t flag_compress; /* indicate the compression format */
100 } DumpState;
101
102 static int dump_cleanup(DumpState *s)
103 {
104 int ret = 0;
105
106 guest_phys_blocks_free(&s->guest_phys_blocks);
107 memory_mapping_list_free(&s->list);
108 if (s->fd != -1) {
109 close(s->fd);
110 }
111 if (s->resume) {
112 vm_start();
113 }
114
115 return ret;
116 }
117
118 static void dump_error(DumpState *s, const char *reason)
119 {
120 dump_cleanup(s);
121 }
122
123 static int fd_write_vmcore(const void *buf, size_t size, void *opaque)
124 {
125 DumpState *s = opaque;
126 size_t written_size;
127
128 written_size = qemu_write_full(s->fd, buf, size);
129 if (written_size != size) {
130 return -1;
131 }
132
133 return 0;
134 }
135
136 static int write_elf64_header(DumpState *s)
137 {
138 Elf64_Ehdr elf_header;
139 int ret;
140 int endian = s->dump_info.d_endian;
141
142 memset(&elf_header, 0, sizeof(Elf64_Ehdr));
143 memcpy(&elf_header, ELFMAG, SELFMAG);
144 elf_header.e_ident[EI_CLASS] = ELFCLASS64;
145 elf_header.e_ident[EI_DATA] = s->dump_info.d_endian;
146 elf_header.e_ident[EI_VERSION] = EV_CURRENT;
147 elf_header.e_type = cpu_convert_to_target16(ET_CORE, endian);
148 elf_header.e_machine = cpu_convert_to_target16(s->dump_info.d_machine,
149 endian);
150 elf_header.e_version = cpu_convert_to_target32(EV_CURRENT, endian);
151 elf_header.e_ehsize = cpu_convert_to_target16(sizeof(elf_header), endian);
152 elf_header.e_phoff = cpu_convert_to_target64(sizeof(Elf64_Ehdr), endian);
153 elf_header.e_phentsize = cpu_convert_to_target16(sizeof(Elf64_Phdr),
154 endian);
155 elf_header.e_phnum = cpu_convert_to_target16(s->phdr_num, endian);
156 if (s->have_section) {
157 uint64_t shoff = sizeof(Elf64_Ehdr) + sizeof(Elf64_Phdr) * s->sh_info;
158
159 elf_header.e_shoff = cpu_convert_to_target64(shoff, endian);
160 elf_header.e_shentsize = cpu_convert_to_target16(sizeof(Elf64_Shdr),
161 endian);
162 elf_header.e_shnum = cpu_convert_to_target16(1, endian);
163 }
164
165 ret = fd_write_vmcore(&elf_header, sizeof(elf_header), s);
166 if (ret < 0) {
167 dump_error(s, "dump: failed to write elf header.\n");
168 return -1;
169 }
170
171 return 0;
172 }
173
174 static int write_elf32_header(DumpState *s)
175 {
176 Elf32_Ehdr elf_header;
177 int ret;
178 int endian = s->dump_info.d_endian;
179
180 memset(&elf_header, 0, sizeof(Elf32_Ehdr));
181 memcpy(&elf_header, ELFMAG, SELFMAG);
182 elf_header.e_ident[EI_CLASS] = ELFCLASS32;
183 elf_header.e_ident[EI_DATA] = endian;
184 elf_header.e_ident[EI_VERSION] = EV_CURRENT;
185 elf_header.e_type = cpu_convert_to_target16(ET_CORE, endian);
186 elf_header.e_machine = cpu_convert_to_target16(s->dump_info.d_machine,
187 endian);
188 elf_header.e_version = cpu_convert_to_target32(EV_CURRENT, endian);
189 elf_header.e_ehsize = cpu_convert_to_target16(sizeof(elf_header), endian);
190 elf_header.e_phoff = cpu_convert_to_target32(sizeof(Elf32_Ehdr), endian);
191 elf_header.e_phentsize = cpu_convert_to_target16(sizeof(Elf32_Phdr),
192 endian);
193 elf_header.e_phnum = cpu_convert_to_target16(s->phdr_num, endian);
194 if (s->have_section) {
195 uint32_t shoff = sizeof(Elf32_Ehdr) + sizeof(Elf32_Phdr) * s->sh_info;
196
197 elf_header.e_shoff = cpu_convert_to_target32(shoff, endian);
198 elf_header.e_shentsize = cpu_convert_to_target16(sizeof(Elf32_Shdr),
199 endian);
200 elf_header.e_shnum = cpu_convert_to_target16(1, endian);
201 }
202
203 ret = fd_write_vmcore(&elf_header, sizeof(elf_header), s);
204 if (ret < 0) {
205 dump_error(s, "dump: failed to write elf header.\n");
206 return -1;
207 }
208
209 return 0;
210 }
211
212 static int write_elf64_load(DumpState *s, MemoryMapping *memory_mapping,
213 int phdr_index, hwaddr offset,
214 hwaddr filesz)
215 {
216 Elf64_Phdr phdr;
217 int ret;
218 int endian = s->dump_info.d_endian;
219
220 memset(&phdr, 0, sizeof(Elf64_Phdr));
221 phdr.p_type = cpu_convert_to_target32(PT_LOAD, endian);
222 phdr.p_offset = cpu_convert_to_target64(offset, endian);
223 phdr.p_paddr = cpu_convert_to_target64(memory_mapping->phys_addr, endian);
224 phdr.p_filesz = cpu_convert_to_target64(filesz, endian);
225 phdr.p_memsz = cpu_convert_to_target64(memory_mapping->length, endian);
226 phdr.p_vaddr = cpu_convert_to_target64(memory_mapping->virt_addr, endian);
227
228 assert(memory_mapping->length >= filesz);
229
230 ret = fd_write_vmcore(&phdr, sizeof(Elf64_Phdr), s);
231 if (ret < 0) {
232 dump_error(s, "dump: failed to write program header table.\n");
233 return -1;
234 }
235
236 return 0;
237 }
238
239 static int write_elf32_load(DumpState *s, MemoryMapping *memory_mapping,
240 int phdr_index, hwaddr offset,
241 hwaddr filesz)
242 {
243 Elf32_Phdr phdr;
244 int ret;
245 int endian = s->dump_info.d_endian;
246
247 memset(&phdr, 0, sizeof(Elf32_Phdr));
248 phdr.p_type = cpu_convert_to_target32(PT_LOAD, endian);
249 phdr.p_offset = cpu_convert_to_target32(offset, endian);
250 phdr.p_paddr = cpu_convert_to_target32(memory_mapping->phys_addr, endian);
251 phdr.p_filesz = cpu_convert_to_target32(filesz, endian);
252 phdr.p_memsz = cpu_convert_to_target32(memory_mapping->length, endian);
253 phdr.p_vaddr = cpu_convert_to_target32(memory_mapping->virt_addr, endian);
254
255 assert(memory_mapping->length >= filesz);
256
257 ret = fd_write_vmcore(&phdr, sizeof(Elf32_Phdr), s);
258 if (ret < 0) {
259 dump_error(s, "dump: failed to write program header table.\n");
260 return -1;
261 }
262
263 return 0;
264 }
265
266 static int write_elf64_note(DumpState *s)
267 {
268 Elf64_Phdr phdr;
269 int endian = s->dump_info.d_endian;
270 hwaddr begin = s->memory_offset - s->note_size;
271 int ret;
272
273 memset(&phdr, 0, sizeof(Elf64_Phdr));
274 phdr.p_type = cpu_convert_to_target32(PT_NOTE, endian);
275 phdr.p_offset = cpu_convert_to_target64(begin, endian);
276 phdr.p_paddr = 0;
277 phdr.p_filesz = cpu_convert_to_target64(s->note_size, endian);
278 phdr.p_memsz = cpu_convert_to_target64(s->note_size, endian);
279 phdr.p_vaddr = 0;
280
281 ret = fd_write_vmcore(&phdr, sizeof(Elf64_Phdr), s);
282 if (ret < 0) {
283 dump_error(s, "dump: failed to write program header table.\n");
284 return -1;
285 }
286
287 return 0;
288 }
289
290 static inline int cpu_index(CPUState *cpu)
291 {
292 return cpu->cpu_index + 1;
293 }
294
295 static int write_elf64_notes(WriteCoreDumpFunction f, DumpState *s)
296 {
297 CPUState *cpu;
298 int ret;
299 int id;
300
301 CPU_FOREACH(cpu) {
302 id = cpu_index(cpu);
303 ret = cpu_write_elf64_note(f, cpu, id, s);
304 if (ret < 0) {
305 dump_error(s, "dump: failed to write elf notes.\n");
306 return -1;
307 }
308 }
309
310 CPU_FOREACH(cpu) {
311 ret = cpu_write_elf64_qemunote(f, cpu, s);
312 if (ret < 0) {
313 dump_error(s, "dump: failed to write CPU status.\n");
314 return -1;
315 }
316 }
317
318 return 0;
319 }
320
321 static int write_elf32_note(DumpState *s)
322 {
323 hwaddr begin = s->memory_offset - s->note_size;
324 Elf32_Phdr phdr;
325 int endian = s->dump_info.d_endian;
326 int ret;
327
328 memset(&phdr, 0, sizeof(Elf32_Phdr));
329 phdr.p_type = cpu_convert_to_target32(PT_NOTE, endian);
330 phdr.p_offset = cpu_convert_to_target32(begin, endian);
331 phdr.p_paddr = 0;
332 phdr.p_filesz = cpu_convert_to_target32(s->note_size, endian);
333 phdr.p_memsz = cpu_convert_to_target32(s->note_size, endian);
334 phdr.p_vaddr = 0;
335
336 ret = fd_write_vmcore(&phdr, sizeof(Elf32_Phdr), s);
337 if (ret < 0) {
338 dump_error(s, "dump: failed to write program header table.\n");
339 return -1;
340 }
341
342 return 0;
343 }
344
345 static int write_elf32_notes(WriteCoreDumpFunction f, DumpState *s)
346 {
347 CPUState *cpu;
348 int ret;
349 int id;
350
351 CPU_FOREACH(cpu) {
352 id = cpu_index(cpu);
353 ret = cpu_write_elf32_note(f, cpu, id, s);
354 if (ret < 0) {
355 dump_error(s, "dump: failed to write elf notes.\n");
356 return -1;
357 }
358 }
359
360 CPU_FOREACH(cpu) {
361 ret = cpu_write_elf32_qemunote(f, cpu, s);
362 if (ret < 0) {
363 dump_error(s, "dump: failed to write CPU status.\n");
364 return -1;
365 }
366 }
367
368 return 0;
369 }
370
371 static int write_elf_section(DumpState *s, int type)
372 {
373 Elf32_Shdr shdr32;
374 Elf64_Shdr shdr64;
375 int endian = s->dump_info.d_endian;
376 int shdr_size;
377 void *shdr;
378 int ret;
379
380 if (type == 0) {
381 shdr_size = sizeof(Elf32_Shdr);
382 memset(&shdr32, 0, shdr_size);
383 shdr32.sh_info = cpu_convert_to_target32(s->sh_info, endian);
384 shdr = &shdr32;
385 } else {
386 shdr_size = sizeof(Elf64_Shdr);
387 memset(&shdr64, 0, shdr_size);
388 shdr64.sh_info = cpu_convert_to_target32(s->sh_info, endian);
389 shdr = &shdr64;
390 }
391
392 ret = fd_write_vmcore(&shdr, shdr_size, s);
393 if (ret < 0) {
394 dump_error(s, "dump: failed to write section header table.\n");
395 return -1;
396 }
397
398 return 0;
399 }
400
401 static int write_data(DumpState *s, void *buf, int length)
402 {
403 int ret;
404
405 ret = fd_write_vmcore(buf, length, s);
406 if (ret < 0) {
407 dump_error(s, "dump: failed to save memory.\n");
408 return -1;
409 }
410
411 return 0;
412 }
413
414 /* write the memroy to vmcore. 1 page per I/O. */
415 static int write_memory(DumpState *s, GuestPhysBlock *block, ram_addr_t start,
416 int64_t size)
417 {
418 int64_t i;
419 int ret;
420
421 for (i = 0; i < size / TARGET_PAGE_SIZE; i++) {
422 ret = write_data(s, block->host_addr + start + i * TARGET_PAGE_SIZE,
423 TARGET_PAGE_SIZE);
424 if (ret < 0) {
425 return ret;
426 }
427 }
428
429 if ((size % TARGET_PAGE_SIZE) != 0) {
430 ret = write_data(s, block->host_addr + start + i * TARGET_PAGE_SIZE,
431 size % TARGET_PAGE_SIZE);
432 if (ret < 0) {
433 return ret;
434 }
435 }
436
437 return 0;
438 }
439
440 /* get the memory's offset and size in the vmcore */
441 static void get_offset_range(hwaddr phys_addr,
442 ram_addr_t mapping_length,
443 DumpState *s,
444 hwaddr *p_offset,
445 hwaddr *p_filesz)
446 {
447 GuestPhysBlock *block;
448 hwaddr offset = s->memory_offset;
449 int64_t size_in_block, start;
450
451 /* When the memory is not stored into vmcore, offset will be -1 */
452 *p_offset = -1;
453 *p_filesz = 0;
454
455 if (s->has_filter) {
456 if (phys_addr < s->begin || phys_addr >= s->begin + s->length) {
457 return;
458 }
459 }
460
461 QTAILQ_FOREACH(block, &s->guest_phys_blocks.head, next) {
462 if (s->has_filter) {
463 if (block->target_start >= s->begin + s->length ||
464 block->target_end <= s->begin) {
465 /* This block is out of the range */
466 continue;
467 }
468
469 if (s->begin <= block->target_start) {
470 start = block->target_start;
471 } else {
472 start = s->begin;
473 }
474
475 size_in_block = block->target_end - start;
476 if (s->begin + s->length < block->target_end) {
477 size_in_block -= block->target_end - (s->begin + s->length);
478 }
479 } else {
480 start = block->target_start;
481 size_in_block = block->target_end - block->target_start;
482 }
483
484 if (phys_addr >= start && phys_addr < start + size_in_block) {
485 *p_offset = phys_addr - start + offset;
486
487 /* The offset range mapped from the vmcore file must not spill over
488 * the GuestPhysBlock, clamp it. The rest of the mapping will be
489 * zero-filled in memory at load time; see
490 * <http://refspecs.linuxbase.org/elf/gabi4+/ch5.pheader.html>.
491 */
492 *p_filesz = phys_addr + mapping_length <= start + size_in_block ?
493 mapping_length :
494 size_in_block - (phys_addr - start);
495 return;
496 }
497
498 offset += size_in_block;
499 }
500 }
501
502 static int write_elf_loads(DumpState *s)
503 {
504 hwaddr offset, filesz;
505 MemoryMapping *memory_mapping;
506 uint32_t phdr_index = 1;
507 int ret;
508 uint32_t max_index;
509
510 if (s->have_section) {
511 max_index = s->sh_info;
512 } else {
513 max_index = s->phdr_num;
514 }
515
516 QTAILQ_FOREACH(memory_mapping, &s->list.head, next) {
517 get_offset_range(memory_mapping->phys_addr,
518 memory_mapping->length,
519 s, &offset, &filesz);
520 if (s->dump_info.d_class == ELFCLASS64) {
521 ret = write_elf64_load(s, memory_mapping, phdr_index++, offset,
522 filesz);
523 } else {
524 ret = write_elf32_load(s, memory_mapping, phdr_index++, offset,
525 filesz);
526 }
527
528 if (ret < 0) {
529 return -1;
530 }
531
532 if (phdr_index >= max_index) {
533 break;
534 }
535 }
536
537 return 0;
538 }
539
540 /* write elf header, PT_NOTE and elf note to vmcore. */
541 static int dump_begin(DumpState *s)
542 {
543 int ret;
544
545 /*
546 * the vmcore's format is:
547 * --------------
548 * | elf header |
549 * --------------
550 * | PT_NOTE |
551 * --------------
552 * | PT_LOAD |
553 * --------------
554 * | ...... |
555 * --------------
556 * | PT_LOAD |
557 * --------------
558 * | sec_hdr |
559 * --------------
560 * | elf note |
561 * --------------
562 * | memory |
563 * --------------
564 *
565 * we only know where the memory is saved after we write elf note into
566 * vmcore.
567 */
568
569 /* write elf header to vmcore */
570 if (s->dump_info.d_class == ELFCLASS64) {
571 ret = write_elf64_header(s);
572 } else {
573 ret = write_elf32_header(s);
574 }
575 if (ret < 0) {
576 return -1;
577 }
578
579 if (s->dump_info.d_class == ELFCLASS64) {
580 /* write PT_NOTE to vmcore */
581 if (write_elf64_note(s) < 0) {
582 return -1;
583 }
584
585 /* write all PT_LOAD to vmcore */
586 if (write_elf_loads(s) < 0) {
587 return -1;
588 }
589
590 /* write section to vmcore */
591 if (s->have_section) {
592 if (write_elf_section(s, 1) < 0) {
593 return -1;
594 }
595 }
596
597 /* write notes to vmcore */
598 if (write_elf64_notes(fd_write_vmcore, s) < 0) {
599 return -1;
600 }
601
602 } else {
603 /* write PT_NOTE to vmcore */
604 if (write_elf32_note(s) < 0) {
605 return -1;
606 }
607
608 /* write all PT_LOAD to vmcore */
609 if (write_elf_loads(s) < 0) {
610 return -1;
611 }
612
613 /* write section to vmcore */
614 if (s->have_section) {
615 if (write_elf_section(s, 0) < 0) {
616 return -1;
617 }
618 }
619
620 /* write notes to vmcore */
621 if (write_elf32_notes(fd_write_vmcore, s) < 0) {
622 return -1;
623 }
624 }
625
626 return 0;
627 }
628
629 /* write PT_LOAD to vmcore */
630 static int dump_completed(DumpState *s)
631 {
632 dump_cleanup(s);
633 return 0;
634 }
635
636 static int get_next_block(DumpState *s, GuestPhysBlock *block)
637 {
638 while (1) {
639 block = QTAILQ_NEXT(block, next);
640 if (!block) {
641 /* no more block */
642 return 1;
643 }
644
645 s->start = 0;
646 s->next_block = block;
647 if (s->has_filter) {
648 if (block->target_start >= s->begin + s->length ||
649 block->target_end <= s->begin) {
650 /* This block is out of the range */
651 continue;
652 }
653
654 if (s->begin > block->target_start) {
655 s->start = s->begin - block->target_start;
656 }
657 }
658
659 return 0;
660 }
661 }
662
663 /* write all memory to vmcore */
664 static int dump_iterate(DumpState *s)
665 {
666 GuestPhysBlock *block;
667 int64_t size;
668 int ret;
669
670 while (1) {
671 block = s->next_block;
672
673 size = block->target_end - block->target_start;
674 if (s->has_filter) {
675 size -= s->start;
676 if (s->begin + s->length < block->target_end) {
677 size -= block->target_end - (s->begin + s->length);
678 }
679 }
680 ret = write_memory(s, block, s->start, size);
681 if (ret == -1) {
682 return ret;
683 }
684
685 ret = get_next_block(s, block);
686 if (ret == 1) {
687 dump_completed(s);
688 return 0;
689 }
690 }
691 }
692
693 static int create_vmcore(DumpState *s)
694 {
695 int ret;
696
697 ret = dump_begin(s);
698 if (ret < 0) {
699 return -1;
700 }
701
702 ret = dump_iterate(s);
703 if (ret < 0) {
704 return -1;
705 }
706
707 return 0;
708 }
709
710 static int write_start_flat_header(int fd)
711 {
712 MakedumpfileHeader *mh;
713 int ret = 0;
714
715 QEMU_BUILD_BUG_ON(sizeof *mh > MAX_SIZE_MDF_HEADER);
716 mh = g_malloc0(MAX_SIZE_MDF_HEADER);
717
718 memcpy(mh->signature, MAKEDUMPFILE_SIGNATURE,
719 MIN(sizeof mh->signature, sizeof MAKEDUMPFILE_SIGNATURE));
720
721 mh->type = cpu_to_be64(TYPE_FLAT_HEADER);
722 mh->version = cpu_to_be64(VERSION_FLAT_HEADER);
723
724 size_t written_size;
725 written_size = qemu_write_full(fd, mh, MAX_SIZE_MDF_HEADER);
726 if (written_size != MAX_SIZE_MDF_HEADER) {
727 ret = -1;
728 }
729
730 g_free(mh);
731 return ret;
732 }
733
734 static int write_end_flat_header(int fd)
735 {
736 MakedumpfileDataHeader mdh;
737
738 mdh.offset = END_FLAG_FLAT_HEADER;
739 mdh.buf_size = END_FLAG_FLAT_HEADER;
740
741 size_t written_size;
742 written_size = qemu_write_full(fd, &mdh, sizeof(mdh));
743 if (written_size != sizeof(mdh)) {
744 return -1;
745 }
746
747 return 0;
748 }
749
750 static int write_buffer(int fd, off_t offset, const void *buf, size_t size)
751 {
752 size_t written_size;
753 MakedumpfileDataHeader mdh;
754
755 mdh.offset = cpu_to_be64(offset);
756 mdh.buf_size = cpu_to_be64(size);
757
758 written_size = qemu_write_full(fd, &mdh, sizeof(mdh));
759 if (written_size != sizeof(mdh)) {
760 return -1;
761 }
762
763 written_size = qemu_write_full(fd, buf, size);
764 if (written_size != size) {
765 return -1;
766 }
767
768 return 0;
769 }
770
771 static int buf_write_note(const void *buf, size_t size, void *opaque)
772 {
773 DumpState *s = opaque;
774
775 /* note_buf is not enough */
776 if (s->note_buf_offset + size > s->note_size) {
777 return -1;
778 }
779
780 memcpy(s->note_buf + s->note_buf_offset, buf, size);
781
782 s->note_buf_offset += size;
783
784 return 0;
785 }
786
787 /* write common header, sub header and elf note to vmcore */
788 static int create_header32(DumpState *s)
789 {
790 int ret = 0;
791 DiskDumpHeader32 *dh = NULL;
792 KdumpSubHeader32 *kh = NULL;
793 size_t size;
794 int endian = s->dump_info.d_endian;
795 uint32_t block_size;
796 uint32_t sub_hdr_size;
797 uint32_t bitmap_blocks;
798 uint32_t status = 0;
799 uint64_t offset_note;
800
801 /* write common header, the version of kdump-compressed format is 6th */
802 size = sizeof(DiskDumpHeader32);
803 dh = g_malloc0(size);
804
805 strncpy(dh->signature, KDUMP_SIGNATURE, strlen(KDUMP_SIGNATURE));
806 dh->header_version = cpu_convert_to_target32(6, endian);
807 block_size = TARGET_PAGE_SIZE;
808 dh->block_size = cpu_convert_to_target32(block_size, endian);
809 sub_hdr_size = sizeof(struct KdumpSubHeader32) + s->note_size;
810 sub_hdr_size = DIV_ROUND_UP(sub_hdr_size, block_size);
811 dh->sub_hdr_size = cpu_convert_to_target32(sub_hdr_size, endian);
812 /* dh->max_mapnr may be truncated, full 64bit is in kh.max_mapnr_64 */
813 dh->max_mapnr = cpu_convert_to_target32(MIN(s->max_mapnr, UINT_MAX),
814 endian);
815 dh->nr_cpus = cpu_convert_to_target32(s->nr_cpus, endian);
816 bitmap_blocks = DIV_ROUND_UP(s->len_dump_bitmap, block_size) * 2;
817 dh->bitmap_blocks = cpu_convert_to_target32(bitmap_blocks, endian);
818 strncpy(dh->utsname.machine, ELF_MACHINE_UNAME, sizeof(dh->utsname.machine));
819
820 if (s->flag_compress & DUMP_DH_COMPRESSED_ZLIB) {
821 status |= DUMP_DH_COMPRESSED_ZLIB;
822 }
823 #ifdef CONFIG_LZO
824 if (s->flag_compress & DUMP_DH_COMPRESSED_LZO) {
825 status |= DUMP_DH_COMPRESSED_LZO;
826 }
827 #endif
828 #ifdef CONFIG_SNAPPY
829 if (s->flag_compress & DUMP_DH_COMPRESSED_SNAPPY) {
830 status |= DUMP_DH_COMPRESSED_SNAPPY;
831 }
832 #endif
833 dh->status = cpu_convert_to_target32(status, endian);
834
835 if (write_buffer(s->fd, 0, dh, size) < 0) {
836 dump_error(s, "dump: failed to write disk dump header.\n");
837 ret = -1;
838 goto out;
839 }
840
841 /* write sub header */
842 size = sizeof(KdumpSubHeader32);
843 kh = g_malloc0(size);
844
845 /* 64bit max_mapnr_64 */
846 kh->max_mapnr_64 = cpu_convert_to_target64(s->max_mapnr, endian);
847 kh->phys_base = cpu_convert_to_target32(PHYS_BASE, endian);
848 kh->dump_level = cpu_convert_to_target32(DUMP_LEVEL, endian);
849
850 offset_note = DISKDUMP_HEADER_BLOCKS * block_size + size;
851 kh->offset_note = cpu_convert_to_target64(offset_note, endian);
852 kh->note_size = cpu_convert_to_target32(s->note_size, endian);
853
854 if (write_buffer(s->fd, DISKDUMP_HEADER_BLOCKS *
855 block_size, kh, size) < 0) {
856 dump_error(s, "dump: failed to write kdump sub header.\n");
857 ret = -1;
858 goto out;
859 }
860
861 /* write note */
862 s->note_buf = g_malloc0(s->note_size);
863 s->note_buf_offset = 0;
864
865 /* use s->note_buf to store notes temporarily */
866 if (write_elf32_notes(buf_write_note, s) < 0) {
867 ret = -1;
868 goto out;
869 }
870
871 if (write_buffer(s->fd, offset_note, s->note_buf,
872 s->note_size) < 0) {
873 dump_error(s, "dump: failed to write notes");
874 ret = -1;
875 goto out;
876 }
877
878 /* get offset of dump_bitmap */
879 s->offset_dump_bitmap = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size) *
880 block_size;
881
882 /* get offset of page */
883 s->offset_page = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size + bitmap_blocks) *
884 block_size;
885
886 out:
887 g_free(dh);
888 g_free(kh);
889 g_free(s->note_buf);
890
891 return ret;
892 }
893
894 /* write common header, sub header and elf note to vmcore */
895 static int create_header64(DumpState *s)
896 {
897 int ret = 0;
898 DiskDumpHeader64 *dh = NULL;
899 KdumpSubHeader64 *kh = NULL;
900 size_t size;
901 int endian = s->dump_info.d_endian;
902 uint32_t block_size;
903 uint32_t sub_hdr_size;
904 uint32_t bitmap_blocks;
905 uint32_t status = 0;
906 uint64_t offset_note;
907
908 /* write common header, the version of kdump-compressed format is 6th */
909 size = sizeof(DiskDumpHeader64);
910 dh = g_malloc0(size);
911
912 strncpy(dh->signature, KDUMP_SIGNATURE, strlen(KDUMP_SIGNATURE));
913 dh->header_version = cpu_convert_to_target32(6, endian);
914 block_size = TARGET_PAGE_SIZE;
915 dh->block_size = cpu_convert_to_target32(block_size, endian);
916 sub_hdr_size = sizeof(struct KdumpSubHeader64) + s->note_size;
917 sub_hdr_size = DIV_ROUND_UP(sub_hdr_size, block_size);
918 dh->sub_hdr_size = cpu_convert_to_target32(sub_hdr_size, endian);
919 /* dh->max_mapnr may be truncated, full 64bit is in kh.max_mapnr_64 */
920 dh->max_mapnr = cpu_convert_to_target32(MIN(s->max_mapnr, UINT_MAX),
921 endian);
922 dh->nr_cpus = cpu_convert_to_target32(s->nr_cpus, endian);
923 bitmap_blocks = DIV_ROUND_UP(s->len_dump_bitmap, block_size) * 2;
924 dh->bitmap_blocks = cpu_convert_to_target32(bitmap_blocks, endian);
925 strncpy(dh->utsname.machine, ELF_MACHINE_UNAME, sizeof(dh->utsname.machine));
926
927 if (s->flag_compress & DUMP_DH_COMPRESSED_ZLIB) {
928 status |= DUMP_DH_COMPRESSED_ZLIB;
929 }
930 #ifdef CONFIG_LZO
931 if (s->flag_compress & DUMP_DH_COMPRESSED_LZO) {
932 status |= DUMP_DH_COMPRESSED_LZO;
933 }
934 #endif
935 #ifdef CONFIG_SNAPPY
936 if (s->flag_compress & DUMP_DH_COMPRESSED_SNAPPY) {
937 status |= DUMP_DH_COMPRESSED_SNAPPY;
938 }
939 #endif
940 dh->status = cpu_convert_to_target32(status, endian);
941
942 if (write_buffer(s->fd, 0, dh, size) < 0) {
943 dump_error(s, "dump: failed to write disk dump header.\n");
944 ret = -1;
945 goto out;
946 }
947
948 /* write sub header */
949 size = sizeof(KdumpSubHeader64);
950 kh = g_malloc0(size);
951
952 /* 64bit max_mapnr_64 */
953 kh->max_mapnr_64 = cpu_convert_to_target64(s->max_mapnr, endian);
954 kh->phys_base = cpu_convert_to_target64(PHYS_BASE, endian);
955 kh->dump_level = cpu_convert_to_target32(DUMP_LEVEL, endian);
956
957 offset_note = DISKDUMP_HEADER_BLOCKS * block_size + size;
958 kh->offset_note = cpu_convert_to_target64(offset_note, endian);
959 kh->note_size = cpu_convert_to_target64(s->note_size, endian);
960
961 if (write_buffer(s->fd, DISKDUMP_HEADER_BLOCKS *
962 block_size, kh, size) < 0) {
963 dump_error(s, "dump: failed to write kdump sub header.\n");
964 ret = -1;
965 goto out;
966 }
967
968 /* write note */
969 s->note_buf = g_malloc0(s->note_size);
970 s->note_buf_offset = 0;
971
972 /* use s->note_buf to store notes temporarily */
973 if (write_elf64_notes(buf_write_note, s) < 0) {
974 ret = -1;
975 goto out;
976 }
977
978 if (write_buffer(s->fd, offset_note, s->note_buf,
979 s->note_size) < 0) {
980 dump_error(s, "dump: failed to write notes");
981 ret = -1;
982 goto out;
983 }
984
985 /* get offset of dump_bitmap */
986 s->offset_dump_bitmap = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size) *
987 block_size;
988
989 /* get offset of page */
990 s->offset_page = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size + bitmap_blocks) *
991 block_size;
992
993 out:
994 g_free(dh);
995 g_free(kh);
996 g_free(s->note_buf);
997
998 return ret;
999 }
1000
1001 static int write_dump_header(DumpState *s)
1002 {
1003 if (s->dump_info.d_class == ELFCLASS32) {
1004 return create_header32(s);
1005 } else {
1006 return create_header64(s);
1007 }
1008 }
1009
1010 /*
1011 * set dump_bitmap sequencely. the bit before last_pfn is not allowed to be
1012 * rewritten, so if need to set the first bit, set last_pfn and pfn to 0.
1013 * set_dump_bitmap will always leave the recently set bit un-sync. And setting
1014 * (last bit + sizeof(buf) * 8) to 0 will do flushing the content in buf into
1015 * vmcore, ie. synchronizing un-sync bit into vmcore.
1016 */
1017 static int set_dump_bitmap(uint64_t last_pfn, uint64_t pfn, bool value,
1018 uint8_t *buf, DumpState *s)
1019 {
1020 off_t old_offset, new_offset;
1021 off_t offset_bitmap1, offset_bitmap2;
1022 uint32_t byte, bit;
1023
1024 /* should not set the previous place */
1025 assert(last_pfn <= pfn);
1026
1027 /*
1028 * if the bit needed to be set is not cached in buf, flush the data in buf
1029 * to vmcore firstly.
1030 * making new_offset be bigger than old_offset can also sync remained data
1031 * into vmcore.
1032 */
1033 old_offset = BUFSIZE_BITMAP * (last_pfn / PFN_BUFBITMAP);
1034 new_offset = BUFSIZE_BITMAP * (pfn / PFN_BUFBITMAP);
1035
1036 while (old_offset < new_offset) {
1037 /* calculate the offset and write dump_bitmap */
1038 offset_bitmap1 = s->offset_dump_bitmap + old_offset;
1039 if (write_buffer(s->fd, offset_bitmap1, buf,
1040 BUFSIZE_BITMAP) < 0) {
1041 return -1;
1042 }
1043
1044 /* dump level 1 is chosen, so 1st and 2nd bitmap are same */
1045 offset_bitmap2 = s->offset_dump_bitmap + s->len_dump_bitmap +
1046 old_offset;
1047 if (write_buffer(s->fd, offset_bitmap2, buf,
1048 BUFSIZE_BITMAP) < 0) {
1049 return -1;
1050 }
1051
1052 memset(buf, 0, BUFSIZE_BITMAP);
1053 old_offset += BUFSIZE_BITMAP;
1054 }
1055
1056 /* get the exact place of the bit in the buf, and set it */
1057 byte = (pfn % PFN_BUFBITMAP) / CHAR_BIT;
1058 bit = (pfn % PFN_BUFBITMAP) % CHAR_BIT;
1059 if (value) {
1060 buf[byte] |= 1u << bit;
1061 } else {
1062 buf[byte] &= ~(1u << bit);
1063 }
1064
1065 return 0;
1066 }
1067
1068 /*
1069 * exam every page and return the page frame number and the address of the page.
1070 * bufptr can be NULL. note: the blocks here is supposed to reflect guest-phys
1071 * blocks, so block->target_start and block->target_end should be interal
1072 * multiples of the target page size.
1073 */
1074 static bool get_next_page(GuestPhysBlock **blockptr, uint64_t *pfnptr,
1075 uint8_t **bufptr, DumpState *s)
1076 {
1077 GuestPhysBlock *block = *blockptr;
1078 hwaddr addr;
1079 uint8_t *buf;
1080
1081 /* block == NULL means the start of the iteration */
1082 if (!block) {
1083 block = QTAILQ_FIRST(&s->guest_phys_blocks.head);
1084 *blockptr = block;
1085 assert((block->target_start & ~TARGET_PAGE_MASK) == 0);
1086 assert((block->target_end & ~TARGET_PAGE_MASK) == 0);
1087 *pfnptr = paddr_to_pfn(block->target_start);
1088 if (bufptr) {
1089 *bufptr = block->host_addr;
1090 }
1091 return true;
1092 }
1093
1094 *pfnptr = *pfnptr + 1;
1095 addr = pfn_to_paddr(*pfnptr);
1096
1097 if ((addr >= block->target_start) &&
1098 (addr + TARGET_PAGE_SIZE <= block->target_end)) {
1099 buf = block->host_addr + (addr - block->target_start);
1100 } else {
1101 /* the next page is in the next block */
1102 block = QTAILQ_NEXT(block, next);
1103 *blockptr = block;
1104 if (!block) {
1105 return false;
1106 }
1107 assert((block->target_start & ~TARGET_PAGE_MASK) == 0);
1108 assert((block->target_end & ~TARGET_PAGE_MASK) == 0);
1109 *pfnptr = paddr_to_pfn(block->target_start);
1110 buf = block->host_addr;
1111 }
1112
1113 if (bufptr) {
1114 *bufptr = buf;
1115 }
1116
1117 return true;
1118 }
1119
1120 static int write_dump_bitmap(DumpState *s)
1121 {
1122 int ret = 0;
1123 uint64_t last_pfn, pfn;
1124 void *dump_bitmap_buf;
1125 size_t num_dumpable;
1126 GuestPhysBlock *block_iter = NULL;
1127
1128 /* dump_bitmap_buf is used to store dump_bitmap temporarily */
1129 dump_bitmap_buf = g_malloc0(BUFSIZE_BITMAP);
1130
1131 num_dumpable = 0;
1132 last_pfn = 0;
1133
1134 /*
1135 * exam memory page by page, and set the bit in dump_bitmap corresponded
1136 * to the existing page.
1137 */
1138 while (get_next_page(&block_iter, &pfn, NULL, s)) {
1139 ret = set_dump_bitmap(last_pfn, pfn, true, dump_bitmap_buf, s);
1140 if (ret < 0) {
1141 dump_error(s, "dump: failed to set dump_bitmap.\n");
1142 ret = -1;
1143 goto out;
1144 }
1145
1146 last_pfn = pfn;
1147 num_dumpable++;
1148 }
1149
1150 /*
1151 * set_dump_bitmap will always leave the recently set bit un-sync. Here we
1152 * set last_pfn + PFN_BUFBITMAP to 0 and those set but un-sync bit will be
1153 * synchronized into vmcore.
1154 */
1155 if (num_dumpable > 0) {
1156 ret = set_dump_bitmap(last_pfn, last_pfn + PFN_BUFBITMAP, false,
1157 dump_bitmap_buf, s);
1158 if (ret < 0) {
1159 dump_error(s, "dump: failed to sync dump_bitmap.\n");
1160 ret = -1;
1161 goto out;
1162 }
1163 }
1164
1165 /* number of dumpable pages that will be dumped later */
1166 s->num_dumpable = num_dumpable;
1167
1168 out:
1169 g_free(dump_bitmap_buf);
1170
1171 return ret;
1172 }
1173
1174 static void prepare_data_cache(DataCache *data_cache, DumpState *s,
1175 off_t offset)
1176 {
1177 data_cache->fd = s->fd;
1178 data_cache->data_size = 0;
1179 data_cache->buf_size = BUFSIZE_DATA_CACHE;
1180 data_cache->buf = g_malloc0(BUFSIZE_DATA_CACHE);
1181 data_cache->offset = offset;
1182 }
1183
1184 static int write_cache(DataCache *dc, const void *buf, size_t size,
1185 bool flag_sync)
1186 {
1187 /*
1188 * dc->buf_size should not be less than size, otherwise dc will never be
1189 * enough
1190 */
1191 assert(size <= dc->buf_size);
1192
1193 /*
1194 * if flag_sync is set, synchronize data in dc->buf into vmcore.
1195 * otherwise check if the space is enough for caching data in buf, if not,
1196 * write the data in dc->buf to dc->fd and reset dc->buf
1197 */
1198 if ((!flag_sync && dc->data_size + size > dc->buf_size) ||
1199 (flag_sync && dc->data_size > 0)) {
1200 if (write_buffer(dc->fd, dc->offset, dc->buf, dc->data_size) < 0) {
1201 return -1;
1202 }
1203
1204 dc->offset += dc->data_size;
1205 dc->data_size = 0;
1206 }
1207
1208 if (!flag_sync) {
1209 memcpy(dc->buf + dc->data_size, buf, size);
1210 dc->data_size += size;
1211 }
1212
1213 return 0;
1214 }
1215
1216 static void free_data_cache(DataCache *data_cache)
1217 {
1218 g_free(data_cache->buf);
1219 }
1220
1221 static size_t get_len_buf_out(size_t page_size, uint32_t flag_compress)
1222 {
1223 size_t len_buf_out_zlib, len_buf_out_lzo, len_buf_out_snappy;
1224 size_t len_buf_out;
1225
1226 /* init buf_out */
1227 len_buf_out_zlib = len_buf_out_lzo = len_buf_out_snappy = 0;
1228
1229 /* buf size for zlib */
1230 len_buf_out_zlib = compressBound(page_size);
1231
1232 /* buf size for lzo */
1233 #ifdef CONFIG_LZO
1234 if (flag_compress & DUMP_DH_COMPRESSED_LZO) {
1235 if (lzo_init() != LZO_E_OK) {
1236 /* return 0 to indicate lzo is unavailable */
1237 return 0;
1238 }
1239 }
1240
1241 /*
1242 * LZO will expand incompressible data by a little amount. please check the
1243 * following URL to see the expansion calculation:
1244 * http://www.oberhumer.com/opensource/lzo/lzofaq.php
1245 */
1246 len_buf_out_lzo = page_size + page_size / 16 + 64 + 3;
1247 #endif
1248
1249 #ifdef CONFIG_SNAPPY
1250 /* buf size for snappy */
1251 len_buf_out_snappy = snappy_max_compressed_length(page_size);
1252 #endif
1253
1254 /* get the biggest that can store all kinds of compressed page */
1255 len_buf_out = MAX(len_buf_out_zlib,
1256 MAX(len_buf_out_lzo, len_buf_out_snappy));
1257
1258 return len_buf_out;
1259 }
1260
1261 /*
1262 * check if the page is all 0
1263 */
1264 static inline bool is_zero_page(const uint8_t *buf, size_t page_size)
1265 {
1266 return buffer_is_zero(buf, page_size);
1267 }
1268
1269 static int write_dump_pages(DumpState *s)
1270 {
1271 int ret = 0;
1272 DataCache page_desc, page_data;
1273 size_t len_buf_out, size_out;
1274 #ifdef CONFIG_LZO
1275 lzo_bytep wrkmem = NULL;
1276 #endif
1277 uint8_t *buf_out = NULL;
1278 off_t offset_desc, offset_data;
1279 PageDescriptor pd, pd_zero;
1280 uint8_t *buf;
1281 int endian = s->dump_info.d_endian;
1282 GuestPhysBlock *block_iter = NULL;
1283 uint64_t pfn_iter;
1284
1285 /* get offset of page_desc and page_data in dump file */
1286 offset_desc = s->offset_page;
1287 offset_data = offset_desc + sizeof(PageDescriptor) * s->num_dumpable;
1288
1289 prepare_data_cache(&page_desc, s, offset_desc);
1290 prepare_data_cache(&page_data, s, offset_data);
1291
1292 /* prepare buffer to store compressed data */
1293 len_buf_out = get_len_buf_out(TARGET_PAGE_SIZE, s->flag_compress);
1294 if (len_buf_out == 0) {
1295 dump_error(s, "dump: failed to get length of output buffer.\n");
1296 goto out;
1297 }
1298
1299 #ifdef CONFIG_LZO
1300 wrkmem = g_malloc(LZO1X_1_MEM_COMPRESS);
1301 #endif
1302
1303 buf_out = g_malloc(len_buf_out);
1304
1305 /*
1306 * init zero page's page_desc and page_data, because every zero page
1307 * uses the same page_data
1308 */
1309 pd_zero.size = cpu_convert_to_target32(TARGET_PAGE_SIZE, endian);
1310 pd_zero.flags = cpu_convert_to_target32(0, endian);
1311 pd_zero.offset = cpu_convert_to_target64(offset_data, endian);
1312 pd_zero.page_flags = cpu_convert_to_target64(0, endian);
1313 buf = g_malloc0(TARGET_PAGE_SIZE);
1314 ret = write_cache(&page_data, buf, TARGET_PAGE_SIZE, false);
1315 g_free(buf);
1316 if (ret < 0) {
1317 dump_error(s, "dump: failed to write page data(zero page).\n");
1318 goto out;
1319 }
1320
1321 offset_data += TARGET_PAGE_SIZE;
1322
1323 /*
1324 * dump memory to vmcore page by page. zero page will all be resided in the
1325 * first page of page section
1326 */
1327 while (get_next_page(&block_iter, &pfn_iter, &buf, s)) {
1328 /* check zero page */
1329 if (is_zero_page(buf, TARGET_PAGE_SIZE)) {
1330 ret = write_cache(&page_desc, &pd_zero, sizeof(PageDescriptor),
1331 false);
1332 if (ret < 0) {
1333 dump_error(s, "dump: failed to write page desc.\n");
1334 goto out;
1335 }
1336 } else {
1337 /*
1338 * not zero page, then:
1339 * 1. compress the page
1340 * 2. write the compressed page into the cache of page_data
1341 * 3. get page desc of the compressed page and write it into the
1342 * cache of page_desc
1343 *
1344 * only one compression format will be used here, for
1345 * s->flag_compress is set. But when compression fails to work,
1346 * we fall back to save in plaintext.
1347 */
1348 size_out = len_buf_out;
1349 if ((s->flag_compress & DUMP_DH_COMPRESSED_ZLIB) &&
1350 (compress2(buf_out, (uLongf *)&size_out, buf,
1351 TARGET_PAGE_SIZE, Z_BEST_SPEED) == Z_OK) &&
1352 (size_out < TARGET_PAGE_SIZE)) {
1353 pd.flags = cpu_convert_to_target32(DUMP_DH_COMPRESSED_ZLIB,
1354 endian);
1355 pd.size = cpu_convert_to_target32(size_out, endian);
1356
1357 ret = write_cache(&page_data, buf_out, size_out, false);
1358 if (ret < 0) {
1359 dump_error(s, "dump: failed to write page data.\n");
1360 goto out;
1361 }
1362 #ifdef CONFIG_LZO
1363 } else if ((s->flag_compress & DUMP_DH_COMPRESSED_LZO) &&
1364 (lzo1x_1_compress(buf, TARGET_PAGE_SIZE, buf_out,
1365 (lzo_uint *)&size_out, wrkmem) == LZO_E_OK) &&
1366 (size_out < TARGET_PAGE_SIZE)) {
1367 pd.flags = cpu_convert_to_target32(DUMP_DH_COMPRESSED_LZO,
1368 endian);
1369 pd.size = cpu_convert_to_target32(size_out, endian);
1370
1371 ret = write_cache(&page_data, buf_out, size_out, false);
1372 if (ret < 0) {
1373 dump_error(s, "dump: failed to write page data.\n");
1374 goto out;
1375 }
1376 #endif
1377 #ifdef CONFIG_SNAPPY
1378 } else if ((s->flag_compress & DUMP_DH_COMPRESSED_SNAPPY) &&
1379 (snappy_compress((char *)buf, TARGET_PAGE_SIZE,
1380 (char *)buf_out, &size_out) == SNAPPY_OK) &&
1381 (size_out < TARGET_PAGE_SIZE)) {
1382 pd.flags = cpu_convert_to_target32(
1383 DUMP_DH_COMPRESSED_SNAPPY, endian);
1384 pd.size = cpu_convert_to_target32(size_out, endian);
1385
1386 ret = write_cache(&page_data, buf_out, size_out, false);
1387 if (ret < 0) {
1388 dump_error(s, "dump: failed to write page data.\n");
1389 goto out;
1390 }
1391 #endif
1392 } else {
1393 /*
1394 * fall back to save in plaintext, size_out should be
1395 * assigned TARGET_PAGE_SIZE
1396 */
1397 pd.flags = cpu_convert_to_target32(0, endian);
1398 size_out = TARGET_PAGE_SIZE;
1399 pd.size = cpu_convert_to_target32(size_out, endian);
1400
1401 ret = write_cache(&page_data, buf, TARGET_PAGE_SIZE, false);
1402 if (ret < 0) {
1403 dump_error(s, "dump: failed to write page data.\n");
1404 goto out;
1405 }
1406 }
1407
1408 /* get and write page desc here */
1409 pd.page_flags = cpu_convert_to_target64(0, endian);
1410 pd.offset = cpu_convert_to_target64(offset_data, endian);
1411 offset_data += size_out;
1412
1413 ret = write_cache(&page_desc, &pd, sizeof(PageDescriptor), false);
1414 if (ret < 0) {
1415 dump_error(s, "dump: failed to write page desc.\n");
1416 goto out;
1417 }
1418 }
1419 }
1420
1421 ret = write_cache(&page_desc, NULL, 0, true);
1422 if (ret < 0) {
1423 dump_error(s, "dump: failed to sync cache for page_desc.\n");
1424 goto out;
1425 }
1426 ret = write_cache(&page_data, NULL, 0, true);
1427 if (ret < 0) {
1428 dump_error(s, "dump: failed to sync cache for page_data.\n");
1429 goto out;
1430 }
1431
1432 out:
1433 free_data_cache(&page_desc);
1434 free_data_cache(&page_data);
1435
1436 #ifdef CONFIG_LZO
1437 g_free(wrkmem);
1438 #endif
1439
1440 g_free(buf_out);
1441
1442 return ret;
1443 }
1444
1445 static int create_kdump_vmcore(DumpState *s)
1446 {
1447 int ret;
1448
1449 /*
1450 * the kdump-compressed format is:
1451 * File offset
1452 * +------------------------------------------+ 0x0
1453 * | main header (struct disk_dump_header) |
1454 * |------------------------------------------+ block 1
1455 * | sub header (struct kdump_sub_header) |
1456 * |------------------------------------------+ block 2
1457 * | 1st-dump_bitmap |
1458 * |------------------------------------------+ block 2 + X blocks
1459 * | 2nd-dump_bitmap | (aligned by block)
1460 * |------------------------------------------+ block 2 + 2 * X blocks
1461 * | page desc for pfn 0 (struct page_desc) | (aligned by block)
1462 * | page desc for pfn 1 (struct page_desc) |
1463 * | : |
1464 * |------------------------------------------| (not aligned by block)
1465 * | page data (pfn 0) |
1466 * | page data (pfn 1) |
1467 * | : |
1468 * +------------------------------------------+
1469 */
1470
1471 ret = write_start_flat_header(s->fd);
1472 if (ret < 0) {
1473 dump_error(s, "dump: failed to write start flat header.\n");
1474 return -1;
1475 }
1476
1477 ret = write_dump_header(s);
1478 if (ret < 0) {
1479 return -1;
1480 }
1481
1482 ret = write_dump_bitmap(s);
1483 if (ret < 0) {
1484 return -1;
1485 }
1486
1487 ret = write_dump_pages(s);
1488 if (ret < 0) {
1489 return -1;
1490 }
1491
1492 ret = write_end_flat_header(s->fd);
1493 if (ret < 0) {
1494 dump_error(s, "dump: failed to write end flat header.\n");
1495 return -1;
1496 }
1497
1498 dump_completed(s);
1499
1500 return 0;
1501 }
1502
1503 static ram_addr_t get_start_block(DumpState *s)
1504 {
1505 GuestPhysBlock *block;
1506
1507 if (!s->has_filter) {
1508 s->next_block = QTAILQ_FIRST(&s->guest_phys_blocks.head);
1509 return 0;
1510 }
1511
1512 QTAILQ_FOREACH(block, &s->guest_phys_blocks.head, next) {
1513 if (block->target_start >= s->begin + s->length ||
1514 block->target_end <= s->begin) {
1515 /* This block is out of the range */
1516 continue;
1517 }
1518
1519 s->next_block = block;
1520 if (s->begin > block->target_start) {
1521 s->start = s->begin - block->target_start;
1522 } else {
1523 s->start = 0;
1524 }
1525 return s->start;
1526 }
1527
1528 return -1;
1529 }
1530
1531 static void get_max_mapnr(DumpState *s)
1532 {
1533 GuestPhysBlock *last_block;
1534
1535 last_block = QTAILQ_LAST(&s->guest_phys_blocks.head, GuestPhysBlockHead);
1536 s->max_mapnr = paddr_to_pfn(last_block->target_end);
1537 }
1538
1539 static int dump_init(DumpState *s, int fd, bool has_format,
1540 DumpGuestMemoryFormat format, bool paging, bool has_filter,
1541 int64_t begin, int64_t length, Error **errp)
1542 {
1543 CPUState *cpu;
1544 int nr_cpus;
1545 Error *err = NULL;
1546 int ret;
1547
1548 /* kdump-compressed is conflict with paging and filter */
1549 if (has_format && format != DUMP_GUEST_MEMORY_FORMAT_ELF) {
1550 assert(!paging && !has_filter);
1551 }
1552
1553 if (runstate_is_running()) {
1554 vm_stop(RUN_STATE_SAVE_VM);
1555 s->resume = true;
1556 } else {
1557 s->resume = false;
1558 }
1559
1560 /* If we use KVM, we should synchronize the registers before we get dump
1561 * info or physmap info.
1562 */
1563 cpu_synchronize_all_states();
1564 nr_cpus = 0;
1565 CPU_FOREACH(cpu) {
1566 nr_cpus++;
1567 }
1568
1569 s->fd = fd;
1570 s->has_filter = has_filter;
1571 s->begin = begin;
1572 s->length = length;
1573
1574 guest_phys_blocks_init(&s->guest_phys_blocks);
1575 guest_phys_blocks_append(&s->guest_phys_blocks);
1576
1577 s->start = get_start_block(s);
1578 if (s->start == -1) {
1579 error_set(errp, QERR_INVALID_PARAMETER, "begin");
1580 goto cleanup;
1581 }
1582
1583 /* get dump info: endian, class and architecture.
1584 * If the target architecture is not supported, cpu_get_dump_info() will
1585 * return -1.
1586 */
1587 ret = cpu_get_dump_info(&s->dump_info, &s->guest_phys_blocks);
1588 if (ret < 0) {
1589 error_set(errp, QERR_UNSUPPORTED);
1590 goto cleanup;
1591 }
1592
1593 s->note_size = cpu_get_note_size(s->dump_info.d_class,
1594 s->dump_info.d_machine, nr_cpus);
1595 if (s->note_size < 0) {
1596 error_set(errp, QERR_UNSUPPORTED);
1597 goto cleanup;
1598 }
1599
1600 /* get memory mapping */
1601 memory_mapping_list_init(&s->list);
1602 if (paging) {
1603 qemu_get_guest_memory_mapping(&s->list, &s->guest_phys_blocks, &err);
1604 if (err != NULL) {
1605 error_propagate(errp, err);
1606 goto cleanup;
1607 }
1608 } else {
1609 qemu_get_guest_simple_memory_mapping(&s->list, &s->guest_phys_blocks);
1610 }
1611
1612 s->nr_cpus = nr_cpus;
1613
1614 get_max_mapnr(s);
1615
1616 uint64_t tmp;
1617 tmp = DIV_ROUND_UP(DIV_ROUND_UP(s->max_mapnr, CHAR_BIT), TARGET_PAGE_SIZE);
1618 s->len_dump_bitmap = tmp * TARGET_PAGE_SIZE;
1619
1620 /* init for kdump-compressed format */
1621 if (has_format && format != DUMP_GUEST_MEMORY_FORMAT_ELF) {
1622 switch (format) {
1623 case DUMP_GUEST_MEMORY_FORMAT_KDUMP_ZLIB:
1624 s->flag_compress = DUMP_DH_COMPRESSED_ZLIB;
1625 break;
1626
1627 case DUMP_GUEST_MEMORY_FORMAT_KDUMP_LZO:
1628 s->flag_compress = DUMP_DH_COMPRESSED_LZO;
1629 break;
1630
1631 case DUMP_GUEST_MEMORY_FORMAT_KDUMP_SNAPPY:
1632 s->flag_compress = DUMP_DH_COMPRESSED_SNAPPY;
1633 break;
1634
1635 default:
1636 s->flag_compress = 0;
1637 }
1638
1639 return 0;
1640 }
1641
1642 if (s->has_filter) {
1643 memory_mapping_filter(&s->list, s->begin, s->length);
1644 }
1645
1646 /*
1647 * calculate phdr_num
1648 *
1649 * the type of ehdr->e_phnum is uint16_t, so we should avoid overflow
1650 */
1651 s->phdr_num = 1; /* PT_NOTE */
1652 if (s->list.num < UINT16_MAX - 2) {
1653 s->phdr_num += s->list.num;
1654 s->have_section = false;
1655 } else {
1656 s->have_section = true;
1657 s->phdr_num = PN_XNUM;
1658 s->sh_info = 1; /* PT_NOTE */
1659
1660 /* the type of shdr->sh_info is uint32_t, so we should avoid overflow */
1661 if (s->list.num <= UINT32_MAX - 1) {
1662 s->sh_info += s->list.num;
1663 } else {
1664 s->sh_info = UINT32_MAX;
1665 }
1666 }
1667
1668 if (s->dump_info.d_class == ELFCLASS64) {
1669 if (s->have_section) {
1670 s->memory_offset = sizeof(Elf64_Ehdr) +
1671 sizeof(Elf64_Phdr) * s->sh_info +
1672 sizeof(Elf64_Shdr) + s->note_size;
1673 } else {
1674 s->memory_offset = sizeof(Elf64_Ehdr) +
1675 sizeof(Elf64_Phdr) * s->phdr_num + s->note_size;
1676 }
1677 } else {
1678 if (s->have_section) {
1679 s->memory_offset = sizeof(Elf32_Ehdr) +
1680 sizeof(Elf32_Phdr) * s->sh_info +
1681 sizeof(Elf32_Shdr) + s->note_size;
1682 } else {
1683 s->memory_offset = sizeof(Elf32_Ehdr) +
1684 sizeof(Elf32_Phdr) * s->phdr_num + s->note_size;
1685 }
1686 }
1687
1688 return 0;
1689
1690 cleanup:
1691 guest_phys_blocks_free(&s->guest_phys_blocks);
1692
1693 if (s->resume) {
1694 vm_start();
1695 }
1696
1697 return -1;
1698 }
1699
1700 void qmp_dump_guest_memory(bool paging, const char *file, bool has_begin,
1701 int64_t begin, bool has_length,
1702 int64_t length, bool has_format,
1703 DumpGuestMemoryFormat format, Error **errp)
1704 {
1705 const char *p;
1706 int fd = -1;
1707 DumpState *s;
1708 int ret;
1709
1710 /*
1711 * kdump-compressed format need the whole memory dumped, so paging or
1712 * filter is not supported here.
1713 */
1714 if ((has_format && format != DUMP_GUEST_MEMORY_FORMAT_ELF) &&
1715 (paging || has_begin || has_length)) {
1716 error_setg(errp, "kdump-compressed format doesn't support paging or "
1717 "filter");
1718 return;
1719 }
1720 if (has_begin && !has_length) {
1721 error_set(errp, QERR_MISSING_PARAMETER, "length");
1722 return;
1723 }
1724 if (!has_begin && has_length) {
1725 error_set(errp, QERR_MISSING_PARAMETER, "begin");
1726 return;
1727 }
1728
1729 /* check whether lzo/snappy is supported */
1730 #ifndef CONFIG_LZO
1731 if (has_format && format == DUMP_GUEST_MEMORY_FORMAT_KDUMP_LZO) {
1732 error_setg(errp, "kdump-lzo is not available now");
1733 return;
1734 }
1735 #endif
1736
1737 #ifndef CONFIG_SNAPPY
1738 if (has_format && format == DUMP_GUEST_MEMORY_FORMAT_KDUMP_SNAPPY) {
1739 error_setg(errp, "kdump-snappy is not available now");
1740 return;
1741 }
1742 #endif
1743
1744 #if !defined(WIN32)
1745 if (strstart(file, "fd:", &p)) {
1746 fd = monitor_get_fd(cur_mon, p, errp);
1747 if (fd == -1) {
1748 return;
1749 }
1750 }
1751 #endif
1752
1753 if (strstart(file, "file:", &p)) {
1754 fd = qemu_open(p, O_WRONLY | O_CREAT | O_TRUNC | O_BINARY, S_IRUSR);
1755 if (fd < 0) {
1756 error_setg_file_open(errp, errno, p);
1757 return;
1758 }
1759 }
1760
1761 if (fd == -1) {
1762 error_set(errp, QERR_INVALID_PARAMETER, "protocol");
1763 return;
1764 }
1765
1766 s = g_malloc0(sizeof(DumpState));
1767
1768 ret = dump_init(s, fd, has_format, format, paging, has_begin,
1769 begin, length, errp);
1770 if (ret < 0) {
1771 g_free(s);
1772 return;
1773 }
1774
1775 if (has_format && format != DUMP_GUEST_MEMORY_FORMAT_ELF) {
1776 if (create_kdump_vmcore(s) < 0) {
1777 error_set(errp, QERR_IO_ERROR);
1778 }
1779 } else {
1780 if (create_vmcore(s) < 0) {
1781 error_set(errp, QERR_IO_ERROR);
1782 }
1783 }
1784
1785 g_free(s);
1786 }
1787
1788 DumpGuestMemoryCapability *qmp_query_dump_guest_memory_capability(Error **errp)
1789 {
1790 DumpGuestMemoryFormatList *item;
1791 DumpGuestMemoryCapability *cap =
1792 g_malloc0(sizeof(DumpGuestMemoryCapability));
1793
1794 /* elf is always available */
1795 item = g_malloc0(sizeof(DumpGuestMemoryFormatList));
1796 cap->formats = item;
1797 item->value = DUMP_GUEST_MEMORY_FORMAT_ELF;
1798
1799 /* kdump-zlib is always available */
1800 item->next = g_malloc0(sizeof(DumpGuestMemoryFormatList));
1801 item = item->next;
1802 item->value = DUMP_GUEST_MEMORY_FORMAT_KDUMP_ZLIB;
1803
1804 /* add new item if kdump-lzo is available */
1805 #ifdef CONFIG_LZO
1806 item->next = g_malloc0(sizeof(DumpGuestMemoryFormatList));
1807 item = item->next;
1808 item->value = DUMP_GUEST_MEMORY_FORMAT_KDUMP_LZO;
1809 #endif
1810
1811 /* add new item if kdump-snappy is available */
1812 #ifdef CONFIG_SNAPPY
1813 item->next = g_malloc0(sizeof(DumpGuestMemoryFormatList));
1814 item = item->next;
1815 item->value = DUMP_GUEST_MEMORY_FORMAT_KDUMP_SNAPPY;
1816 #endif
1817
1818 return cap;
1819 }