]> git.proxmox.com Git - mirror_qemu.git/blob - dump.c
Merge remote-tracking branch 'remotes/riku/linux-user-for-upstream' into staging
[mirror_qemu.git] / dump.c
1 /*
2 * QEMU dump
3 *
4 * Copyright Fujitsu, Corp. 2011, 2012
5 *
6 * Authors:
7 * Wen Congyang <wency@cn.fujitsu.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
11 *
12 */
13
14 #include "qemu-common.h"
15 #include "elf.h"
16 #include "cpu.h"
17 #include "exec/cpu-all.h"
18 #include "exec/hwaddr.h"
19 #include "monitor/monitor.h"
20 #include "sysemu/kvm.h"
21 #include "sysemu/dump.h"
22 #include "sysemu/sysemu.h"
23 #include "sysemu/memory_mapping.h"
24 #include "sysemu/cpus.h"
25 #include "qapi/error.h"
26 #include "qmp-commands.h"
27
28 #include <zlib.h>
29 #ifdef CONFIG_LZO
30 #include <lzo/lzo1x.h>
31 #endif
32 #ifdef CONFIG_SNAPPY
33 #include <snappy-c.h>
34 #endif
35 #ifndef ELF_MACHINE_UNAME
36 #define ELF_MACHINE_UNAME "Unknown"
37 #endif
38
39 static uint16_t cpu_convert_to_target16(uint16_t val, int endian)
40 {
41 if (endian == ELFDATA2LSB) {
42 val = cpu_to_le16(val);
43 } else {
44 val = cpu_to_be16(val);
45 }
46
47 return val;
48 }
49
50 static uint32_t cpu_convert_to_target32(uint32_t val, int endian)
51 {
52 if (endian == ELFDATA2LSB) {
53 val = cpu_to_le32(val);
54 } else {
55 val = cpu_to_be32(val);
56 }
57
58 return val;
59 }
60
61 static uint64_t cpu_convert_to_target64(uint64_t val, int endian)
62 {
63 if (endian == ELFDATA2LSB) {
64 val = cpu_to_le64(val);
65 } else {
66 val = cpu_to_be64(val);
67 }
68
69 return val;
70 }
71
72 typedef struct DumpState {
73 GuestPhysBlockList guest_phys_blocks;
74 ArchDumpInfo dump_info;
75 MemoryMappingList list;
76 uint16_t phdr_num;
77 uint32_t sh_info;
78 bool have_section;
79 bool resume;
80 ssize_t note_size;
81 hwaddr memory_offset;
82 int fd;
83
84 GuestPhysBlock *next_block;
85 ram_addr_t start;
86 bool has_filter;
87 int64_t begin;
88 int64_t length;
89 Error **errp;
90
91 uint8_t *note_buf; /* buffer for notes */
92 size_t note_buf_offset; /* the writing place in note_buf */
93 uint32_t nr_cpus; /* number of guest's cpu */
94 size_t page_size; /* guest's page size */
95 uint32_t page_shift; /* guest's page shift */
96 uint64_t max_mapnr; /* the biggest guest's phys-mem's number */
97 size_t len_dump_bitmap; /* the size of the place used to store
98 dump_bitmap in vmcore */
99 off_t offset_dump_bitmap; /* offset of dump_bitmap part in vmcore */
100 off_t offset_page; /* offset of page part in vmcore */
101 size_t num_dumpable; /* number of page that can be dumped */
102 uint32_t flag_compress; /* indicate the compression format */
103 } DumpState;
104
105 static int dump_cleanup(DumpState *s)
106 {
107 int ret = 0;
108
109 guest_phys_blocks_free(&s->guest_phys_blocks);
110 memory_mapping_list_free(&s->list);
111 if (s->fd != -1) {
112 close(s->fd);
113 }
114 if (s->resume) {
115 vm_start();
116 }
117
118 return ret;
119 }
120
121 static void dump_error(DumpState *s, const char *reason)
122 {
123 dump_cleanup(s);
124 }
125
126 static int fd_write_vmcore(const void *buf, size_t size, void *opaque)
127 {
128 DumpState *s = opaque;
129 size_t written_size;
130
131 written_size = qemu_write_full(s->fd, buf, size);
132 if (written_size != size) {
133 return -1;
134 }
135
136 return 0;
137 }
138
139 static int write_elf64_header(DumpState *s)
140 {
141 Elf64_Ehdr elf_header;
142 int ret;
143 int endian = s->dump_info.d_endian;
144
145 memset(&elf_header, 0, sizeof(Elf64_Ehdr));
146 memcpy(&elf_header, ELFMAG, SELFMAG);
147 elf_header.e_ident[EI_CLASS] = ELFCLASS64;
148 elf_header.e_ident[EI_DATA] = s->dump_info.d_endian;
149 elf_header.e_ident[EI_VERSION] = EV_CURRENT;
150 elf_header.e_type = cpu_convert_to_target16(ET_CORE, endian);
151 elf_header.e_machine = cpu_convert_to_target16(s->dump_info.d_machine,
152 endian);
153 elf_header.e_version = cpu_convert_to_target32(EV_CURRENT, endian);
154 elf_header.e_ehsize = cpu_convert_to_target16(sizeof(elf_header), endian);
155 elf_header.e_phoff = cpu_convert_to_target64(sizeof(Elf64_Ehdr), endian);
156 elf_header.e_phentsize = cpu_convert_to_target16(sizeof(Elf64_Phdr),
157 endian);
158 elf_header.e_phnum = cpu_convert_to_target16(s->phdr_num, endian);
159 if (s->have_section) {
160 uint64_t shoff = sizeof(Elf64_Ehdr) + sizeof(Elf64_Phdr) * s->sh_info;
161
162 elf_header.e_shoff = cpu_convert_to_target64(shoff, endian);
163 elf_header.e_shentsize = cpu_convert_to_target16(sizeof(Elf64_Shdr),
164 endian);
165 elf_header.e_shnum = cpu_convert_to_target16(1, endian);
166 }
167
168 ret = fd_write_vmcore(&elf_header, sizeof(elf_header), s);
169 if (ret < 0) {
170 dump_error(s, "dump: failed to write elf header.\n");
171 return -1;
172 }
173
174 return 0;
175 }
176
177 static int write_elf32_header(DumpState *s)
178 {
179 Elf32_Ehdr elf_header;
180 int ret;
181 int endian = s->dump_info.d_endian;
182
183 memset(&elf_header, 0, sizeof(Elf32_Ehdr));
184 memcpy(&elf_header, ELFMAG, SELFMAG);
185 elf_header.e_ident[EI_CLASS] = ELFCLASS32;
186 elf_header.e_ident[EI_DATA] = endian;
187 elf_header.e_ident[EI_VERSION] = EV_CURRENT;
188 elf_header.e_type = cpu_convert_to_target16(ET_CORE, endian);
189 elf_header.e_machine = cpu_convert_to_target16(s->dump_info.d_machine,
190 endian);
191 elf_header.e_version = cpu_convert_to_target32(EV_CURRENT, endian);
192 elf_header.e_ehsize = cpu_convert_to_target16(sizeof(elf_header), endian);
193 elf_header.e_phoff = cpu_convert_to_target32(sizeof(Elf32_Ehdr), endian);
194 elf_header.e_phentsize = cpu_convert_to_target16(sizeof(Elf32_Phdr),
195 endian);
196 elf_header.e_phnum = cpu_convert_to_target16(s->phdr_num, endian);
197 if (s->have_section) {
198 uint32_t shoff = sizeof(Elf32_Ehdr) + sizeof(Elf32_Phdr) * s->sh_info;
199
200 elf_header.e_shoff = cpu_convert_to_target32(shoff, endian);
201 elf_header.e_shentsize = cpu_convert_to_target16(sizeof(Elf32_Shdr),
202 endian);
203 elf_header.e_shnum = cpu_convert_to_target16(1, endian);
204 }
205
206 ret = fd_write_vmcore(&elf_header, sizeof(elf_header), s);
207 if (ret < 0) {
208 dump_error(s, "dump: failed to write elf header.\n");
209 return -1;
210 }
211
212 return 0;
213 }
214
215 static int write_elf64_load(DumpState *s, MemoryMapping *memory_mapping,
216 int phdr_index, hwaddr offset,
217 hwaddr filesz)
218 {
219 Elf64_Phdr phdr;
220 int ret;
221 int endian = s->dump_info.d_endian;
222
223 memset(&phdr, 0, sizeof(Elf64_Phdr));
224 phdr.p_type = cpu_convert_to_target32(PT_LOAD, endian);
225 phdr.p_offset = cpu_convert_to_target64(offset, endian);
226 phdr.p_paddr = cpu_convert_to_target64(memory_mapping->phys_addr, endian);
227 phdr.p_filesz = cpu_convert_to_target64(filesz, endian);
228 phdr.p_memsz = cpu_convert_to_target64(memory_mapping->length, endian);
229 phdr.p_vaddr = cpu_convert_to_target64(memory_mapping->virt_addr, endian);
230
231 assert(memory_mapping->length >= filesz);
232
233 ret = fd_write_vmcore(&phdr, sizeof(Elf64_Phdr), s);
234 if (ret < 0) {
235 dump_error(s, "dump: failed to write program header table.\n");
236 return -1;
237 }
238
239 return 0;
240 }
241
242 static int write_elf32_load(DumpState *s, MemoryMapping *memory_mapping,
243 int phdr_index, hwaddr offset,
244 hwaddr filesz)
245 {
246 Elf32_Phdr phdr;
247 int ret;
248 int endian = s->dump_info.d_endian;
249
250 memset(&phdr, 0, sizeof(Elf32_Phdr));
251 phdr.p_type = cpu_convert_to_target32(PT_LOAD, endian);
252 phdr.p_offset = cpu_convert_to_target32(offset, endian);
253 phdr.p_paddr = cpu_convert_to_target32(memory_mapping->phys_addr, endian);
254 phdr.p_filesz = cpu_convert_to_target32(filesz, endian);
255 phdr.p_memsz = cpu_convert_to_target32(memory_mapping->length, endian);
256 phdr.p_vaddr = cpu_convert_to_target32(memory_mapping->virt_addr, endian);
257
258 assert(memory_mapping->length >= filesz);
259
260 ret = fd_write_vmcore(&phdr, sizeof(Elf32_Phdr), s);
261 if (ret < 0) {
262 dump_error(s, "dump: failed to write program header table.\n");
263 return -1;
264 }
265
266 return 0;
267 }
268
269 static int write_elf64_note(DumpState *s)
270 {
271 Elf64_Phdr phdr;
272 int endian = s->dump_info.d_endian;
273 hwaddr begin = s->memory_offset - s->note_size;
274 int ret;
275
276 memset(&phdr, 0, sizeof(Elf64_Phdr));
277 phdr.p_type = cpu_convert_to_target32(PT_NOTE, endian);
278 phdr.p_offset = cpu_convert_to_target64(begin, endian);
279 phdr.p_paddr = 0;
280 phdr.p_filesz = cpu_convert_to_target64(s->note_size, endian);
281 phdr.p_memsz = cpu_convert_to_target64(s->note_size, endian);
282 phdr.p_vaddr = 0;
283
284 ret = fd_write_vmcore(&phdr, sizeof(Elf64_Phdr), s);
285 if (ret < 0) {
286 dump_error(s, "dump: failed to write program header table.\n");
287 return -1;
288 }
289
290 return 0;
291 }
292
293 static inline int cpu_index(CPUState *cpu)
294 {
295 return cpu->cpu_index + 1;
296 }
297
298 static int write_elf64_notes(WriteCoreDumpFunction f, DumpState *s)
299 {
300 CPUState *cpu;
301 int ret;
302 int id;
303
304 CPU_FOREACH(cpu) {
305 id = cpu_index(cpu);
306 ret = cpu_write_elf64_note(f, cpu, id, s);
307 if (ret < 0) {
308 dump_error(s, "dump: failed to write elf notes.\n");
309 return -1;
310 }
311 }
312
313 CPU_FOREACH(cpu) {
314 ret = cpu_write_elf64_qemunote(f, cpu, s);
315 if (ret < 0) {
316 dump_error(s, "dump: failed to write CPU status.\n");
317 return -1;
318 }
319 }
320
321 return 0;
322 }
323
324 static int write_elf32_note(DumpState *s)
325 {
326 hwaddr begin = s->memory_offset - s->note_size;
327 Elf32_Phdr phdr;
328 int endian = s->dump_info.d_endian;
329 int ret;
330
331 memset(&phdr, 0, sizeof(Elf32_Phdr));
332 phdr.p_type = cpu_convert_to_target32(PT_NOTE, endian);
333 phdr.p_offset = cpu_convert_to_target32(begin, endian);
334 phdr.p_paddr = 0;
335 phdr.p_filesz = cpu_convert_to_target32(s->note_size, endian);
336 phdr.p_memsz = cpu_convert_to_target32(s->note_size, endian);
337 phdr.p_vaddr = 0;
338
339 ret = fd_write_vmcore(&phdr, sizeof(Elf32_Phdr), s);
340 if (ret < 0) {
341 dump_error(s, "dump: failed to write program header table.\n");
342 return -1;
343 }
344
345 return 0;
346 }
347
348 static int write_elf32_notes(WriteCoreDumpFunction f, DumpState *s)
349 {
350 CPUState *cpu;
351 int ret;
352 int id;
353
354 CPU_FOREACH(cpu) {
355 id = cpu_index(cpu);
356 ret = cpu_write_elf32_note(f, cpu, id, s);
357 if (ret < 0) {
358 dump_error(s, "dump: failed to write elf notes.\n");
359 return -1;
360 }
361 }
362
363 CPU_FOREACH(cpu) {
364 ret = cpu_write_elf32_qemunote(f, cpu, s);
365 if (ret < 0) {
366 dump_error(s, "dump: failed to write CPU status.\n");
367 return -1;
368 }
369 }
370
371 return 0;
372 }
373
374 static int write_elf_section(DumpState *s, int type)
375 {
376 Elf32_Shdr shdr32;
377 Elf64_Shdr shdr64;
378 int endian = s->dump_info.d_endian;
379 int shdr_size;
380 void *shdr;
381 int ret;
382
383 if (type == 0) {
384 shdr_size = sizeof(Elf32_Shdr);
385 memset(&shdr32, 0, shdr_size);
386 shdr32.sh_info = cpu_convert_to_target32(s->sh_info, endian);
387 shdr = &shdr32;
388 } else {
389 shdr_size = sizeof(Elf64_Shdr);
390 memset(&shdr64, 0, shdr_size);
391 shdr64.sh_info = cpu_convert_to_target32(s->sh_info, endian);
392 shdr = &shdr64;
393 }
394
395 ret = fd_write_vmcore(&shdr, shdr_size, s);
396 if (ret < 0) {
397 dump_error(s, "dump: failed to write section header table.\n");
398 return -1;
399 }
400
401 return 0;
402 }
403
404 static int write_data(DumpState *s, void *buf, int length)
405 {
406 int ret;
407
408 ret = fd_write_vmcore(buf, length, s);
409 if (ret < 0) {
410 dump_error(s, "dump: failed to save memory.\n");
411 return -1;
412 }
413
414 return 0;
415 }
416
417 /* write the memroy to vmcore. 1 page per I/O. */
418 static int write_memory(DumpState *s, GuestPhysBlock *block, ram_addr_t start,
419 int64_t size)
420 {
421 int64_t i;
422 int ret;
423
424 for (i = 0; i < size / TARGET_PAGE_SIZE; i++) {
425 ret = write_data(s, block->host_addr + start + i * TARGET_PAGE_SIZE,
426 TARGET_PAGE_SIZE);
427 if (ret < 0) {
428 return ret;
429 }
430 }
431
432 if ((size % TARGET_PAGE_SIZE) != 0) {
433 ret = write_data(s, block->host_addr + start + i * TARGET_PAGE_SIZE,
434 size % TARGET_PAGE_SIZE);
435 if (ret < 0) {
436 return ret;
437 }
438 }
439
440 return 0;
441 }
442
443 /* get the memory's offset and size in the vmcore */
444 static void get_offset_range(hwaddr phys_addr,
445 ram_addr_t mapping_length,
446 DumpState *s,
447 hwaddr *p_offset,
448 hwaddr *p_filesz)
449 {
450 GuestPhysBlock *block;
451 hwaddr offset = s->memory_offset;
452 int64_t size_in_block, start;
453
454 /* When the memory is not stored into vmcore, offset will be -1 */
455 *p_offset = -1;
456 *p_filesz = 0;
457
458 if (s->has_filter) {
459 if (phys_addr < s->begin || phys_addr >= s->begin + s->length) {
460 return;
461 }
462 }
463
464 QTAILQ_FOREACH(block, &s->guest_phys_blocks.head, next) {
465 if (s->has_filter) {
466 if (block->target_start >= s->begin + s->length ||
467 block->target_end <= s->begin) {
468 /* This block is out of the range */
469 continue;
470 }
471
472 if (s->begin <= block->target_start) {
473 start = block->target_start;
474 } else {
475 start = s->begin;
476 }
477
478 size_in_block = block->target_end - start;
479 if (s->begin + s->length < block->target_end) {
480 size_in_block -= block->target_end - (s->begin + s->length);
481 }
482 } else {
483 start = block->target_start;
484 size_in_block = block->target_end - block->target_start;
485 }
486
487 if (phys_addr >= start && phys_addr < start + size_in_block) {
488 *p_offset = phys_addr - start + offset;
489
490 /* The offset range mapped from the vmcore file must not spill over
491 * the GuestPhysBlock, clamp it. The rest of the mapping will be
492 * zero-filled in memory at load time; see
493 * <http://refspecs.linuxbase.org/elf/gabi4+/ch5.pheader.html>.
494 */
495 *p_filesz = phys_addr + mapping_length <= start + size_in_block ?
496 mapping_length :
497 size_in_block - (phys_addr - start);
498 return;
499 }
500
501 offset += size_in_block;
502 }
503 }
504
505 static int write_elf_loads(DumpState *s)
506 {
507 hwaddr offset, filesz;
508 MemoryMapping *memory_mapping;
509 uint32_t phdr_index = 1;
510 int ret;
511 uint32_t max_index;
512
513 if (s->have_section) {
514 max_index = s->sh_info;
515 } else {
516 max_index = s->phdr_num;
517 }
518
519 QTAILQ_FOREACH(memory_mapping, &s->list.head, next) {
520 get_offset_range(memory_mapping->phys_addr,
521 memory_mapping->length,
522 s, &offset, &filesz);
523 if (s->dump_info.d_class == ELFCLASS64) {
524 ret = write_elf64_load(s, memory_mapping, phdr_index++, offset,
525 filesz);
526 } else {
527 ret = write_elf32_load(s, memory_mapping, phdr_index++, offset,
528 filesz);
529 }
530
531 if (ret < 0) {
532 return -1;
533 }
534
535 if (phdr_index >= max_index) {
536 break;
537 }
538 }
539
540 return 0;
541 }
542
543 /* write elf header, PT_NOTE and elf note to vmcore. */
544 static int dump_begin(DumpState *s)
545 {
546 int ret;
547
548 /*
549 * the vmcore's format is:
550 * --------------
551 * | elf header |
552 * --------------
553 * | PT_NOTE |
554 * --------------
555 * | PT_LOAD |
556 * --------------
557 * | ...... |
558 * --------------
559 * | PT_LOAD |
560 * --------------
561 * | sec_hdr |
562 * --------------
563 * | elf note |
564 * --------------
565 * | memory |
566 * --------------
567 *
568 * we only know where the memory is saved after we write elf note into
569 * vmcore.
570 */
571
572 /* write elf header to vmcore */
573 if (s->dump_info.d_class == ELFCLASS64) {
574 ret = write_elf64_header(s);
575 } else {
576 ret = write_elf32_header(s);
577 }
578 if (ret < 0) {
579 return -1;
580 }
581
582 if (s->dump_info.d_class == ELFCLASS64) {
583 /* write PT_NOTE to vmcore */
584 if (write_elf64_note(s) < 0) {
585 return -1;
586 }
587
588 /* write all PT_LOAD to vmcore */
589 if (write_elf_loads(s) < 0) {
590 return -1;
591 }
592
593 /* write section to vmcore */
594 if (s->have_section) {
595 if (write_elf_section(s, 1) < 0) {
596 return -1;
597 }
598 }
599
600 /* write notes to vmcore */
601 if (write_elf64_notes(fd_write_vmcore, s) < 0) {
602 return -1;
603 }
604
605 } else {
606 /* write PT_NOTE to vmcore */
607 if (write_elf32_note(s) < 0) {
608 return -1;
609 }
610
611 /* write all PT_LOAD to vmcore */
612 if (write_elf_loads(s) < 0) {
613 return -1;
614 }
615
616 /* write section to vmcore */
617 if (s->have_section) {
618 if (write_elf_section(s, 0) < 0) {
619 return -1;
620 }
621 }
622
623 /* write notes to vmcore */
624 if (write_elf32_notes(fd_write_vmcore, s) < 0) {
625 return -1;
626 }
627 }
628
629 return 0;
630 }
631
632 /* write PT_LOAD to vmcore */
633 static int dump_completed(DumpState *s)
634 {
635 dump_cleanup(s);
636 return 0;
637 }
638
639 static int get_next_block(DumpState *s, GuestPhysBlock *block)
640 {
641 while (1) {
642 block = QTAILQ_NEXT(block, next);
643 if (!block) {
644 /* no more block */
645 return 1;
646 }
647
648 s->start = 0;
649 s->next_block = block;
650 if (s->has_filter) {
651 if (block->target_start >= s->begin + s->length ||
652 block->target_end <= s->begin) {
653 /* This block is out of the range */
654 continue;
655 }
656
657 if (s->begin > block->target_start) {
658 s->start = s->begin - block->target_start;
659 }
660 }
661
662 return 0;
663 }
664 }
665
666 /* write all memory to vmcore */
667 static int dump_iterate(DumpState *s)
668 {
669 GuestPhysBlock *block;
670 int64_t size;
671 int ret;
672
673 while (1) {
674 block = s->next_block;
675
676 size = block->target_end - block->target_start;
677 if (s->has_filter) {
678 size -= s->start;
679 if (s->begin + s->length < block->target_end) {
680 size -= block->target_end - (s->begin + s->length);
681 }
682 }
683 ret = write_memory(s, block, s->start, size);
684 if (ret == -1) {
685 return ret;
686 }
687
688 ret = get_next_block(s, block);
689 if (ret == 1) {
690 dump_completed(s);
691 return 0;
692 }
693 }
694 }
695
696 static int create_vmcore(DumpState *s)
697 {
698 int ret;
699
700 ret = dump_begin(s);
701 if (ret < 0) {
702 return -1;
703 }
704
705 ret = dump_iterate(s);
706 if (ret < 0) {
707 return -1;
708 }
709
710 return 0;
711 }
712
713 static int write_start_flat_header(int fd)
714 {
715 uint8_t *buf;
716 MakedumpfileHeader mh;
717 int ret = 0;
718
719 memset(&mh, 0, sizeof(mh));
720 strncpy(mh.signature, MAKEDUMPFILE_SIGNATURE,
721 strlen(MAKEDUMPFILE_SIGNATURE));
722
723 mh.type = cpu_to_be64(TYPE_FLAT_HEADER);
724 mh.version = cpu_to_be64(VERSION_FLAT_HEADER);
725
726 buf = g_malloc0(MAX_SIZE_MDF_HEADER);
727 memcpy(buf, &mh, sizeof(mh));
728
729 size_t written_size;
730 written_size = qemu_write_full(fd, buf, MAX_SIZE_MDF_HEADER);
731 if (written_size != MAX_SIZE_MDF_HEADER) {
732 ret = -1;
733 }
734
735 g_free(buf);
736 return ret;
737 }
738
739 static int write_end_flat_header(int fd)
740 {
741 MakedumpfileDataHeader mdh;
742
743 mdh.offset = END_FLAG_FLAT_HEADER;
744 mdh.buf_size = END_FLAG_FLAT_HEADER;
745
746 size_t written_size;
747 written_size = qemu_write_full(fd, &mdh, sizeof(mdh));
748 if (written_size != sizeof(mdh)) {
749 return -1;
750 }
751
752 return 0;
753 }
754
755 static int write_buffer(int fd, off_t offset, const void *buf, size_t size)
756 {
757 size_t written_size;
758 MakedumpfileDataHeader mdh;
759
760 mdh.offset = cpu_to_be64(offset);
761 mdh.buf_size = cpu_to_be64(size);
762
763 written_size = qemu_write_full(fd, &mdh, sizeof(mdh));
764 if (written_size != sizeof(mdh)) {
765 return -1;
766 }
767
768 written_size = qemu_write_full(fd, buf, size);
769 if (written_size != size) {
770 return -1;
771 }
772
773 return 0;
774 }
775
776 static int buf_write_note(const void *buf, size_t size, void *opaque)
777 {
778 DumpState *s = opaque;
779
780 /* note_buf is not enough */
781 if (s->note_buf_offset + size > s->note_size) {
782 return -1;
783 }
784
785 memcpy(s->note_buf + s->note_buf_offset, buf, size);
786
787 s->note_buf_offset += size;
788
789 return 0;
790 }
791
792 /* write common header, sub header and elf note to vmcore */
793 static int create_header32(DumpState *s)
794 {
795 int ret = 0;
796 DiskDumpHeader32 *dh = NULL;
797 KdumpSubHeader32 *kh = NULL;
798 size_t size;
799 int endian = s->dump_info.d_endian;
800 uint32_t block_size;
801 uint32_t sub_hdr_size;
802 uint32_t bitmap_blocks;
803 uint32_t status = 0;
804 uint64_t offset_note;
805
806 /* write common header, the version of kdump-compressed format is 6th */
807 size = sizeof(DiskDumpHeader32);
808 dh = g_malloc0(size);
809
810 strncpy(dh->signature, KDUMP_SIGNATURE, strlen(KDUMP_SIGNATURE));
811 dh->header_version = cpu_convert_to_target32(6, endian);
812 block_size = s->page_size;
813 dh->block_size = cpu_convert_to_target32(block_size, endian);
814 sub_hdr_size = sizeof(struct KdumpSubHeader32) + s->note_size;
815 sub_hdr_size = DIV_ROUND_UP(sub_hdr_size, block_size);
816 dh->sub_hdr_size = cpu_convert_to_target32(sub_hdr_size, endian);
817 /* dh->max_mapnr may be truncated, full 64bit is in kh.max_mapnr_64 */
818 dh->max_mapnr = cpu_convert_to_target32(MIN(s->max_mapnr, UINT_MAX),
819 endian);
820 dh->nr_cpus = cpu_convert_to_target32(s->nr_cpus, endian);
821 bitmap_blocks = DIV_ROUND_UP(s->len_dump_bitmap, block_size) * 2;
822 dh->bitmap_blocks = cpu_convert_to_target32(bitmap_blocks, endian);
823 strncpy(dh->utsname.machine, ELF_MACHINE_UNAME, sizeof(dh->utsname.machine));
824
825 if (s->flag_compress & DUMP_DH_COMPRESSED_ZLIB) {
826 status |= DUMP_DH_COMPRESSED_ZLIB;
827 }
828 #ifdef CONFIG_LZO
829 if (s->flag_compress & DUMP_DH_COMPRESSED_LZO) {
830 status |= DUMP_DH_COMPRESSED_LZO;
831 }
832 #endif
833 #ifdef CONFIG_SNAPPY
834 if (s->flag_compress & DUMP_DH_COMPRESSED_SNAPPY) {
835 status |= DUMP_DH_COMPRESSED_SNAPPY;
836 }
837 #endif
838 dh->status = cpu_convert_to_target32(status, endian);
839
840 if (write_buffer(s->fd, 0, dh, size) < 0) {
841 dump_error(s, "dump: failed to write disk dump header.\n");
842 ret = -1;
843 goto out;
844 }
845
846 /* write sub header */
847 size = sizeof(KdumpSubHeader32);
848 kh = g_malloc0(size);
849
850 /* 64bit max_mapnr_64 */
851 kh->max_mapnr_64 = cpu_convert_to_target64(s->max_mapnr, endian);
852 kh->phys_base = cpu_convert_to_target32(PHYS_BASE, endian);
853 kh->dump_level = cpu_convert_to_target32(DUMP_LEVEL, endian);
854
855 offset_note = DISKDUMP_HEADER_BLOCKS * block_size + size;
856 kh->offset_note = cpu_convert_to_target64(offset_note, endian);
857 kh->note_size = cpu_convert_to_target32(s->note_size, endian);
858
859 if (write_buffer(s->fd, DISKDUMP_HEADER_BLOCKS *
860 block_size, kh, size) < 0) {
861 dump_error(s, "dump: failed to write kdump sub header.\n");
862 ret = -1;
863 goto out;
864 }
865
866 /* write note */
867 s->note_buf = g_malloc0(s->note_size);
868 s->note_buf_offset = 0;
869
870 /* use s->note_buf to store notes temporarily */
871 if (write_elf32_notes(buf_write_note, s) < 0) {
872 ret = -1;
873 goto out;
874 }
875
876 if (write_buffer(s->fd, offset_note, s->note_buf,
877 s->note_size) < 0) {
878 dump_error(s, "dump: failed to write notes");
879 ret = -1;
880 goto out;
881 }
882
883 /* get offset of dump_bitmap */
884 s->offset_dump_bitmap = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size) *
885 block_size;
886
887 /* get offset of page */
888 s->offset_page = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size + bitmap_blocks) *
889 block_size;
890
891 out:
892 g_free(dh);
893 g_free(kh);
894 g_free(s->note_buf);
895
896 return ret;
897 }
898
899 /* write common header, sub header and elf note to vmcore */
900 static int create_header64(DumpState *s)
901 {
902 int ret = 0;
903 DiskDumpHeader64 *dh = NULL;
904 KdumpSubHeader64 *kh = NULL;
905 size_t size;
906 int endian = s->dump_info.d_endian;
907 uint32_t block_size;
908 uint32_t sub_hdr_size;
909 uint32_t bitmap_blocks;
910 uint32_t status = 0;
911 uint64_t offset_note;
912
913 /* write common header, the version of kdump-compressed format is 6th */
914 size = sizeof(DiskDumpHeader64);
915 dh = g_malloc0(size);
916
917 strncpy(dh->signature, KDUMP_SIGNATURE, strlen(KDUMP_SIGNATURE));
918 dh->header_version = cpu_convert_to_target32(6, endian);
919 block_size = s->page_size;
920 dh->block_size = cpu_convert_to_target32(block_size, endian);
921 sub_hdr_size = sizeof(struct KdumpSubHeader64) + s->note_size;
922 sub_hdr_size = DIV_ROUND_UP(sub_hdr_size, block_size);
923 dh->sub_hdr_size = cpu_convert_to_target32(sub_hdr_size, endian);
924 /* dh->max_mapnr may be truncated, full 64bit is in kh.max_mapnr_64 */
925 dh->max_mapnr = cpu_convert_to_target32(MIN(s->max_mapnr, UINT_MAX),
926 endian);
927 dh->nr_cpus = cpu_convert_to_target32(s->nr_cpus, endian);
928 bitmap_blocks = DIV_ROUND_UP(s->len_dump_bitmap, block_size) * 2;
929 dh->bitmap_blocks = cpu_convert_to_target32(bitmap_blocks, endian);
930 strncpy(dh->utsname.machine, ELF_MACHINE_UNAME, sizeof(dh->utsname.machine));
931
932 if (s->flag_compress & DUMP_DH_COMPRESSED_ZLIB) {
933 status |= DUMP_DH_COMPRESSED_ZLIB;
934 }
935 #ifdef CONFIG_LZO
936 if (s->flag_compress & DUMP_DH_COMPRESSED_LZO) {
937 status |= DUMP_DH_COMPRESSED_LZO;
938 }
939 #endif
940 #ifdef CONFIG_SNAPPY
941 if (s->flag_compress & DUMP_DH_COMPRESSED_SNAPPY) {
942 status |= DUMP_DH_COMPRESSED_SNAPPY;
943 }
944 #endif
945 dh->status = cpu_convert_to_target32(status, endian);
946
947 if (write_buffer(s->fd, 0, dh, size) < 0) {
948 dump_error(s, "dump: failed to write disk dump header.\n");
949 ret = -1;
950 goto out;
951 }
952
953 /* write sub header */
954 size = sizeof(KdumpSubHeader64);
955 kh = g_malloc0(size);
956
957 /* 64bit max_mapnr_64 */
958 kh->max_mapnr_64 = cpu_convert_to_target64(s->max_mapnr, endian);
959 kh->phys_base = cpu_convert_to_target64(PHYS_BASE, endian);
960 kh->dump_level = cpu_convert_to_target32(DUMP_LEVEL, endian);
961
962 offset_note = DISKDUMP_HEADER_BLOCKS * block_size + size;
963 kh->offset_note = cpu_convert_to_target64(offset_note, endian);
964 kh->note_size = cpu_convert_to_target64(s->note_size, endian);
965
966 if (write_buffer(s->fd, DISKDUMP_HEADER_BLOCKS *
967 block_size, kh, size) < 0) {
968 dump_error(s, "dump: failed to write kdump sub header.\n");
969 ret = -1;
970 goto out;
971 }
972
973 /* write note */
974 s->note_buf = g_malloc0(s->note_size);
975 s->note_buf_offset = 0;
976
977 /* use s->note_buf to store notes temporarily */
978 if (write_elf64_notes(buf_write_note, s) < 0) {
979 ret = -1;
980 goto out;
981 }
982
983 if (write_buffer(s->fd, offset_note, s->note_buf,
984 s->note_size) < 0) {
985 dump_error(s, "dump: failed to write notes");
986 ret = -1;
987 goto out;
988 }
989
990 /* get offset of dump_bitmap */
991 s->offset_dump_bitmap = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size) *
992 block_size;
993
994 /* get offset of page */
995 s->offset_page = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size + bitmap_blocks) *
996 block_size;
997
998 out:
999 g_free(dh);
1000 g_free(kh);
1001 g_free(s->note_buf);
1002
1003 return ret;
1004 }
1005
1006 static int write_dump_header(DumpState *s)
1007 {
1008 if (s->dump_info.d_machine == EM_386) {
1009 return create_header32(s);
1010 } else {
1011 return create_header64(s);
1012 }
1013 }
1014
1015 /*
1016 * set dump_bitmap sequencely. the bit before last_pfn is not allowed to be
1017 * rewritten, so if need to set the first bit, set last_pfn and pfn to 0.
1018 * set_dump_bitmap will always leave the recently set bit un-sync. And setting
1019 * (last bit + sizeof(buf) * 8) to 0 will do flushing the content in buf into
1020 * vmcore, ie. synchronizing un-sync bit into vmcore.
1021 */
1022 static int set_dump_bitmap(uint64_t last_pfn, uint64_t pfn, bool value,
1023 uint8_t *buf, DumpState *s)
1024 {
1025 off_t old_offset, new_offset;
1026 off_t offset_bitmap1, offset_bitmap2;
1027 uint32_t byte, bit;
1028
1029 /* should not set the previous place */
1030 assert(last_pfn <= pfn);
1031
1032 /*
1033 * if the bit needed to be set is not cached in buf, flush the data in buf
1034 * to vmcore firstly.
1035 * making new_offset be bigger than old_offset can also sync remained data
1036 * into vmcore.
1037 */
1038 old_offset = BUFSIZE_BITMAP * (last_pfn / PFN_BUFBITMAP);
1039 new_offset = BUFSIZE_BITMAP * (pfn / PFN_BUFBITMAP);
1040
1041 while (old_offset < new_offset) {
1042 /* calculate the offset and write dump_bitmap */
1043 offset_bitmap1 = s->offset_dump_bitmap + old_offset;
1044 if (write_buffer(s->fd, offset_bitmap1, buf,
1045 BUFSIZE_BITMAP) < 0) {
1046 return -1;
1047 }
1048
1049 /* dump level 1 is chosen, so 1st and 2nd bitmap are same */
1050 offset_bitmap2 = s->offset_dump_bitmap + s->len_dump_bitmap +
1051 old_offset;
1052 if (write_buffer(s->fd, offset_bitmap2, buf,
1053 BUFSIZE_BITMAP) < 0) {
1054 return -1;
1055 }
1056
1057 memset(buf, 0, BUFSIZE_BITMAP);
1058 old_offset += BUFSIZE_BITMAP;
1059 }
1060
1061 /* get the exact place of the bit in the buf, and set it */
1062 byte = (pfn % PFN_BUFBITMAP) / CHAR_BIT;
1063 bit = (pfn % PFN_BUFBITMAP) % CHAR_BIT;
1064 if (value) {
1065 buf[byte] |= 1u << bit;
1066 } else {
1067 buf[byte] &= ~(1u << bit);
1068 }
1069
1070 return 0;
1071 }
1072
1073 /*
1074 * exam every page and return the page frame number and the address of the page.
1075 * bufptr can be NULL. note: the blocks here is supposed to reflect guest-phys
1076 * blocks, so block->target_start and block->target_end should be interal
1077 * multiples of the target page size.
1078 */
1079 static bool get_next_page(GuestPhysBlock **blockptr, uint64_t *pfnptr,
1080 uint8_t **bufptr, DumpState *s)
1081 {
1082 GuestPhysBlock *block = *blockptr;
1083 hwaddr addr;
1084 uint8_t *buf;
1085
1086 /* block == NULL means the start of the iteration */
1087 if (!block) {
1088 block = QTAILQ_FIRST(&s->guest_phys_blocks.head);
1089 *blockptr = block;
1090 assert(block->target_start % s->page_size == 0);
1091 assert(block->target_end % s->page_size == 0);
1092 *pfnptr = paddr_to_pfn(block->target_start, s->page_shift);
1093 if (bufptr) {
1094 *bufptr = block->host_addr;
1095 }
1096 return true;
1097 }
1098
1099 *pfnptr = *pfnptr + 1;
1100 addr = pfn_to_paddr(*pfnptr, s->page_shift);
1101
1102 if ((addr >= block->target_start) &&
1103 (addr + s->page_size <= block->target_end)) {
1104 buf = block->host_addr + (addr - block->target_start);
1105 } else {
1106 /* the next page is in the next block */
1107 block = QTAILQ_NEXT(block, next);
1108 *blockptr = block;
1109 if (!block) {
1110 return false;
1111 }
1112 assert(block->target_start % s->page_size == 0);
1113 assert(block->target_end % s->page_size == 0);
1114 *pfnptr = paddr_to_pfn(block->target_start, s->page_shift);
1115 buf = block->host_addr;
1116 }
1117
1118 if (bufptr) {
1119 *bufptr = buf;
1120 }
1121
1122 return true;
1123 }
1124
1125 static int write_dump_bitmap(DumpState *s)
1126 {
1127 int ret = 0;
1128 uint64_t last_pfn, pfn;
1129 void *dump_bitmap_buf;
1130 size_t num_dumpable;
1131 GuestPhysBlock *block_iter = NULL;
1132
1133 /* dump_bitmap_buf is used to store dump_bitmap temporarily */
1134 dump_bitmap_buf = g_malloc0(BUFSIZE_BITMAP);
1135
1136 num_dumpable = 0;
1137 last_pfn = 0;
1138
1139 /*
1140 * exam memory page by page, and set the bit in dump_bitmap corresponded
1141 * to the existing page.
1142 */
1143 while (get_next_page(&block_iter, &pfn, NULL, s)) {
1144 ret = set_dump_bitmap(last_pfn, pfn, true, dump_bitmap_buf, s);
1145 if (ret < 0) {
1146 dump_error(s, "dump: failed to set dump_bitmap.\n");
1147 ret = -1;
1148 goto out;
1149 }
1150
1151 last_pfn = pfn;
1152 num_dumpable++;
1153 }
1154
1155 /*
1156 * set_dump_bitmap will always leave the recently set bit un-sync. Here we
1157 * set last_pfn + PFN_BUFBITMAP to 0 and those set but un-sync bit will be
1158 * synchronized into vmcore.
1159 */
1160 if (num_dumpable > 0) {
1161 ret = set_dump_bitmap(last_pfn, last_pfn + PFN_BUFBITMAP, false,
1162 dump_bitmap_buf, s);
1163 if (ret < 0) {
1164 dump_error(s, "dump: failed to sync dump_bitmap.\n");
1165 ret = -1;
1166 goto out;
1167 }
1168 }
1169
1170 /* number of dumpable pages that will be dumped later */
1171 s->num_dumpable = num_dumpable;
1172
1173 out:
1174 g_free(dump_bitmap_buf);
1175
1176 return ret;
1177 }
1178
1179 static void prepare_data_cache(DataCache *data_cache, DumpState *s,
1180 off_t offset)
1181 {
1182 data_cache->fd = s->fd;
1183 data_cache->data_size = 0;
1184 data_cache->buf_size = BUFSIZE_DATA_CACHE;
1185 data_cache->buf = g_malloc0(BUFSIZE_DATA_CACHE);
1186 data_cache->offset = offset;
1187 }
1188
1189 static int write_cache(DataCache *dc, const void *buf, size_t size,
1190 bool flag_sync)
1191 {
1192 /*
1193 * dc->buf_size should not be less than size, otherwise dc will never be
1194 * enough
1195 */
1196 assert(size <= dc->buf_size);
1197
1198 /*
1199 * if flag_sync is set, synchronize data in dc->buf into vmcore.
1200 * otherwise check if the space is enough for caching data in buf, if not,
1201 * write the data in dc->buf to dc->fd and reset dc->buf
1202 */
1203 if ((!flag_sync && dc->data_size + size > dc->buf_size) ||
1204 (flag_sync && dc->data_size > 0)) {
1205 if (write_buffer(dc->fd, dc->offset, dc->buf, dc->data_size) < 0) {
1206 return -1;
1207 }
1208
1209 dc->offset += dc->data_size;
1210 dc->data_size = 0;
1211 }
1212
1213 if (!flag_sync) {
1214 memcpy(dc->buf + dc->data_size, buf, size);
1215 dc->data_size += size;
1216 }
1217
1218 return 0;
1219 }
1220
1221 static void free_data_cache(DataCache *data_cache)
1222 {
1223 g_free(data_cache->buf);
1224 }
1225
1226 static size_t get_len_buf_out(size_t page_size, uint32_t flag_compress)
1227 {
1228 size_t len_buf_out_zlib, len_buf_out_lzo, len_buf_out_snappy;
1229 size_t len_buf_out;
1230
1231 /* init buf_out */
1232 len_buf_out_zlib = len_buf_out_lzo = len_buf_out_snappy = 0;
1233
1234 /* buf size for zlib */
1235 len_buf_out_zlib = compressBound(page_size);
1236
1237 /* buf size for lzo */
1238 #ifdef CONFIG_LZO
1239 if (flag_compress & DUMP_DH_COMPRESSED_LZO) {
1240 if (lzo_init() != LZO_E_OK) {
1241 /* return 0 to indicate lzo is unavailable */
1242 return 0;
1243 }
1244 }
1245
1246 /*
1247 * LZO will expand incompressible data by a little amount. please check the
1248 * following URL to see the expansion calculation:
1249 * http://www.oberhumer.com/opensource/lzo/lzofaq.php
1250 */
1251 len_buf_out_lzo = page_size + page_size / 16 + 64 + 3;
1252 #endif
1253
1254 #ifdef CONFIG_SNAPPY
1255 /* buf size for snappy */
1256 len_buf_out_snappy = snappy_max_compressed_length(page_size);
1257 #endif
1258
1259 /* get the biggest that can store all kinds of compressed page */
1260 len_buf_out = MAX(len_buf_out_zlib,
1261 MAX(len_buf_out_lzo, len_buf_out_snappy));
1262
1263 return len_buf_out;
1264 }
1265
1266 /*
1267 * check if the page is all 0
1268 */
1269 static inline bool is_zero_page(const uint8_t *buf, size_t page_size)
1270 {
1271 return buffer_is_zero(buf, page_size);
1272 }
1273
1274 static int write_dump_pages(DumpState *s)
1275 {
1276 int ret = 0;
1277 DataCache page_desc, page_data;
1278 size_t len_buf_out, size_out;
1279 #ifdef CONFIG_LZO
1280 lzo_bytep wrkmem = NULL;
1281 #endif
1282 uint8_t *buf_out = NULL;
1283 off_t offset_desc, offset_data;
1284 PageDescriptor pd, pd_zero;
1285 uint8_t *buf;
1286 int endian = s->dump_info.d_endian;
1287 GuestPhysBlock *block_iter = NULL;
1288 uint64_t pfn_iter;
1289
1290 /* get offset of page_desc and page_data in dump file */
1291 offset_desc = s->offset_page;
1292 offset_data = offset_desc + sizeof(PageDescriptor) * s->num_dumpable;
1293
1294 prepare_data_cache(&page_desc, s, offset_desc);
1295 prepare_data_cache(&page_data, s, offset_data);
1296
1297 /* prepare buffer to store compressed data */
1298 len_buf_out = get_len_buf_out(s->page_size, s->flag_compress);
1299 if (len_buf_out == 0) {
1300 dump_error(s, "dump: failed to get length of output buffer.\n");
1301 goto out;
1302 }
1303
1304 #ifdef CONFIG_LZO
1305 wrkmem = g_malloc(LZO1X_1_MEM_COMPRESS);
1306 #endif
1307
1308 buf_out = g_malloc(len_buf_out);
1309
1310 /*
1311 * init zero page's page_desc and page_data, because every zero page
1312 * uses the same page_data
1313 */
1314 pd_zero.size = cpu_convert_to_target32(s->page_size, endian);
1315 pd_zero.flags = cpu_convert_to_target32(0, endian);
1316 pd_zero.offset = cpu_convert_to_target64(offset_data, endian);
1317 pd_zero.page_flags = cpu_convert_to_target64(0, endian);
1318 buf = g_malloc0(s->page_size);
1319 ret = write_cache(&page_data, buf, s->page_size, false);
1320 g_free(buf);
1321 if (ret < 0) {
1322 dump_error(s, "dump: failed to write page data(zero page).\n");
1323 goto out;
1324 }
1325
1326 offset_data += s->page_size;
1327
1328 /*
1329 * dump memory to vmcore page by page. zero page will all be resided in the
1330 * first page of page section
1331 */
1332 while (get_next_page(&block_iter, &pfn_iter, &buf, s)) {
1333 /* check zero page */
1334 if (is_zero_page(buf, s->page_size)) {
1335 ret = write_cache(&page_desc, &pd_zero, sizeof(PageDescriptor),
1336 false);
1337 if (ret < 0) {
1338 dump_error(s, "dump: failed to write page desc.\n");
1339 goto out;
1340 }
1341 } else {
1342 /*
1343 * not zero page, then:
1344 * 1. compress the page
1345 * 2. write the compressed page into the cache of page_data
1346 * 3. get page desc of the compressed page and write it into the
1347 * cache of page_desc
1348 *
1349 * only one compression format will be used here, for
1350 * s->flag_compress is set. But when compression fails to work,
1351 * we fall back to save in plaintext.
1352 */
1353 size_out = len_buf_out;
1354 if ((s->flag_compress & DUMP_DH_COMPRESSED_ZLIB) &&
1355 (compress2(buf_out, (uLongf *)&size_out, buf, s->page_size,
1356 Z_BEST_SPEED) == Z_OK) && (size_out < s->page_size)) {
1357 pd.flags = cpu_convert_to_target32(DUMP_DH_COMPRESSED_ZLIB,
1358 endian);
1359 pd.size = cpu_convert_to_target32(size_out, endian);
1360
1361 ret = write_cache(&page_data, buf_out, size_out, false);
1362 if (ret < 0) {
1363 dump_error(s, "dump: failed to write page data.\n");
1364 goto out;
1365 }
1366 #ifdef CONFIG_LZO
1367 } else if ((s->flag_compress & DUMP_DH_COMPRESSED_LZO) &&
1368 (lzo1x_1_compress(buf, s->page_size, buf_out,
1369 (lzo_uint *)&size_out, wrkmem) == LZO_E_OK) &&
1370 (size_out < s->page_size)) {
1371 pd.flags = cpu_convert_to_target32(DUMP_DH_COMPRESSED_LZO,
1372 endian);
1373 pd.size = cpu_convert_to_target32(size_out, endian);
1374
1375 ret = write_cache(&page_data, buf_out, size_out, false);
1376 if (ret < 0) {
1377 dump_error(s, "dump: failed to write page data.\n");
1378 goto out;
1379 }
1380 #endif
1381 #ifdef CONFIG_SNAPPY
1382 } else if ((s->flag_compress & DUMP_DH_COMPRESSED_SNAPPY) &&
1383 (snappy_compress((char *)buf, s->page_size,
1384 (char *)buf_out, &size_out) == SNAPPY_OK) &&
1385 (size_out < s->page_size)) {
1386 pd.flags = cpu_convert_to_target32(
1387 DUMP_DH_COMPRESSED_SNAPPY, endian);
1388 pd.size = cpu_convert_to_target32(size_out, endian);
1389
1390 ret = write_cache(&page_data, buf_out, size_out, false);
1391 if (ret < 0) {
1392 dump_error(s, "dump: failed to write page data.\n");
1393 goto out;
1394 }
1395 #endif
1396 } else {
1397 /*
1398 * fall back to save in plaintext, size_out should be
1399 * assigned to s->page_size
1400 */
1401 pd.flags = cpu_convert_to_target32(0, endian);
1402 size_out = s->page_size;
1403 pd.size = cpu_convert_to_target32(size_out, endian);
1404
1405 ret = write_cache(&page_data, buf, s->page_size, false);
1406 if (ret < 0) {
1407 dump_error(s, "dump: failed to write page data.\n");
1408 goto out;
1409 }
1410 }
1411
1412 /* get and write page desc here */
1413 pd.page_flags = cpu_convert_to_target64(0, endian);
1414 pd.offset = cpu_convert_to_target64(offset_data, endian);
1415 offset_data += size_out;
1416
1417 ret = write_cache(&page_desc, &pd, sizeof(PageDescriptor), false);
1418 if (ret < 0) {
1419 dump_error(s, "dump: failed to write page desc.\n");
1420 goto out;
1421 }
1422 }
1423 }
1424
1425 ret = write_cache(&page_desc, NULL, 0, true);
1426 if (ret < 0) {
1427 dump_error(s, "dump: failed to sync cache for page_desc.\n");
1428 goto out;
1429 }
1430 ret = write_cache(&page_data, NULL, 0, true);
1431 if (ret < 0) {
1432 dump_error(s, "dump: failed to sync cache for page_data.\n");
1433 goto out;
1434 }
1435
1436 out:
1437 free_data_cache(&page_desc);
1438 free_data_cache(&page_data);
1439
1440 #ifdef CONFIG_LZO
1441 g_free(wrkmem);
1442 #endif
1443
1444 g_free(buf_out);
1445
1446 return ret;
1447 }
1448
1449 static int create_kdump_vmcore(DumpState *s)
1450 {
1451 int ret;
1452
1453 /*
1454 * the kdump-compressed format is:
1455 * File offset
1456 * +------------------------------------------+ 0x0
1457 * | main header (struct disk_dump_header) |
1458 * |------------------------------------------+ block 1
1459 * | sub header (struct kdump_sub_header) |
1460 * |------------------------------------------+ block 2
1461 * | 1st-dump_bitmap |
1462 * |------------------------------------------+ block 2 + X blocks
1463 * | 2nd-dump_bitmap | (aligned by block)
1464 * |------------------------------------------+ block 2 + 2 * X blocks
1465 * | page desc for pfn 0 (struct page_desc) | (aligned by block)
1466 * | page desc for pfn 1 (struct page_desc) |
1467 * | : |
1468 * |------------------------------------------| (not aligned by block)
1469 * | page data (pfn 0) |
1470 * | page data (pfn 1) |
1471 * | : |
1472 * +------------------------------------------+
1473 */
1474
1475 ret = write_start_flat_header(s->fd);
1476 if (ret < 0) {
1477 dump_error(s, "dump: failed to write start flat header.\n");
1478 return -1;
1479 }
1480
1481 ret = write_dump_header(s);
1482 if (ret < 0) {
1483 return -1;
1484 }
1485
1486 ret = write_dump_bitmap(s);
1487 if (ret < 0) {
1488 return -1;
1489 }
1490
1491 ret = write_dump_pages(s);
1492 if (ret < 0) {
1493 return -1;
1494 }
1495
1496 ret = write_end_flat_header(s->fd);
1497 if (ret < 0) {
1498 dump_error(s, "dump: failed to write end flat header.\n");
1499 return -1;
1500 }
1501
1502 dump_completed(s);
1503
1504 return 0;
1505 }
1506
1507 static ram_addr_t get_start_block(DumpState *s)
1508 {
1509 GuestPhysBlock *block;
1510
1511 if (!s->has_filter) {
1512 s->next_block = QTAILQ_FIRST(&s->guest_phys_blocks.head);
1513 return 0;
1514 }
1515
1516 QTAILQ_FOREACH(block, &s->guest_phys_blocks.head, next) {
1517 if (block->target_start >= s->begin + s->length ||
1518 block->target_end <= s->begin) {
1519 /* This block is out of the range */
1520 continue;
1521 }
1522
1523 s->next_block = block;
1524 if (s->begin > block->target_start) {
1525 s->start = s->begin - block->target_start;
1526 } else {
1527 s->start = 0;
1528 }
1529 return s->start;
1530 }
1531
1532 return -1;
1533 }
1534
1535 static void get_max_mapnr(DumpState *s)
1536 {
1537 GuestPhysBlock *last_block;
1538
1539 last_block = QTAILQ_LAST(&s->guest_phys_blocks.head, GuestPhysBlockHead);
1540 s->max_mapnr = paddr_to_pfn(last_block->target_end, s->page_shift);
1541 }
1542
1543 static int dump_init(DumpState *s, int fd, bool has_format,
1544 DumpGuestMemoryFormat format, bool paging, bool has_filter,
1545 int64_t begin, int64_t length, Error **errp)
1546 {
1547 CPUState *cpu;
1548 int nr_cpus;
1549 Error *err = NULL;
1550 int ret;
1551
1552 /* kdump-compressed is conflict with paging and filter */
1553 if (has_format && format != DUMP_GUEST_MEMORY_FORMAT_ELF) {
1554 assert(!paging && !has_filter);
1555 }
1556
1557 if (runstate_is_running()) {
1558 vm_stop(RUN_STATE_SAVE_VM);
1559 s->resume = true;
1560 } else {
1561 s->resume = false;
1562 }
1563
1564 /* If we use KVM, we should synchronize the registers before we get dump
1565 * info or physmap info.
1566 */
1567 cpu_synchronize_all_states();
1568 nr_cpus = 0;
1569 CPU_FOREACH(cpu) {
1570 nr_cpus++;
1571 }
1572
1573 s->errp = errp;
1574 s->fd = fd;
1575 s->has_filter = has_filter;
1576 s->begin = begin;
1577 s->length = length;
1578
1579 guest_phys_blocks_init(&s->guest_phys_blocks);
1580 guest_phys_blocks_append(&s->guest_phys_blocks);
1581
1582 s->start = get_start_block(s);
1583 if (s->start == -1) {
1584 error_set(errp, QERR_INVALID_PARAMETER, "begin");
1585 goto cleanup;
1586 }
1587
1588 /* get dump info: endian, class and architecture.
1589 * If the target architecture is not supported, cpu_get_dump_info() will
1590 * return -1.
1591 */
1592 ret = cpu_get_dump_info(&s->dump_info, &s->guest_phys_blocks);
1593 if (ret < 0) {
1594 error_set(errp, QERR_UNSUPPORTED);
1595 goto cleanup;
1596 }
1597
1598 s->note_size = cpu_get_note_size(s->dump_info.d_class,
1599 s->dump_info.d_machine, nr_cpus);
1600 if (s->note_size < 0) {
1601 error_set(errp, QERR_UNSUPPORTED);
1602 goto cleanup;
1603 }
1604
1605 /* get memory mapping */
1606 memory_mapping_list_init(&s->list);
1607 if (paging) {
1608 qemu_get_guest_memory_mapping(&s->list, &s->guest_phys_blocks, &err);
1609 if (err != NULL) {
1610 error_propagate(errp, err);
1611 goto cleanup;
1612 }
1613 } else {
1614 qemu_get_guest_simple_memory_mapping(&s->list, &s->guest_phys_blocks);
1615 }
1616
1617 s->nr_cpus = nr_cpus;
1618 s->page_size = TARGET_PAGE_SIZE;
1619 s->page_shift = ffs(s->page_size) - 1;
1620
1621 get_max_mapnr(s);
1622
1623 uint64_t tmp;
1624 tmp = DIV_ROUND_UP(DIV_ROUND_UP(s->max_mapnr, CHAR_BIT), s->page_size);
1625 s->len_dump_bitmap = tmp * s->page_size;
1626
1627 /* init for kdump-compressed format */
1628 if (has_format && format != DUMP_GUEST_MEMORY_FORMAT_ELF) {
1629 switch (format) {
1630 case DUMP_GUEST_MEMORY_FORMAT_KDUMP_ZLIB:
1631 s->flag_compress = DUMP_DH_COMPRESSED_ZLIB;
1632 break;
1633
1634 case DUMP_GUEST_MEMORY_FORMAT_KDUMP_LZO:
1635 s->flag_compress = DUMP_DH_COMPRESSED_LZO;
1636 break;
1637
1638 case DUMP_GUEST_MEMORY_FORMAT_KDUMP_SNAPPY:
1639 s->flag_compress = DUMP_DH_COMPRESSED_SNAPPY;
1640 break;
1641
1642 default:
1643 s->flag_compress = 0;
1644 }
1645
1646 return 0;
1647 }
1648
1649 if (s->has_filter) {
1650 memory_mapping_filter(&s->list, s->begin, s->length);
1651 }
1652
1653 /*
1654 * calculate phdr_num
1655 *
1656 * the type of ehdr->e_phnum is uint16_t, so we should avoid overflow
1657 */
1658 s->phdr_num = 1; /* PT_NOTE */
1659 if (s->list.num < UINT16_MAX - 2) {
1660 s->phdr_num += s->list.num;
1661 s->have_section = false;
1662 } else {
1663 s->have_section = true;
1664 s->phdr_num = PN_XNUM;
1665 s->sh_info = 1; /* PT_NOTE */
1666
1667 /* the type of shdr->sh_info is uint32_t, so we should avoid overflow */
1668 if (s->list.num <= UINT32_MAX - 1) {
1669 s->sh_info += s->list.num;
1670 } else {
1671 s->sh_info = UINT32_MAX;
1672 }
1673 }
1674
1675 if (s->dump_info.d_class == ELFCLASS64) {
1676 if (s->have_section) {
1677 s->memory_offset = sizeof(Elf64_Ehdr) +
1678 sizeof(Elf64_Phdr) * s->sh_info +
1679 sizeof(Elf64_Shdr) + s->note_size;
1680 } else {
1681 s->memory_offset = sizeof(Elf64_Ehdr) +
1682 sizeof(Elf64_Phdr) * s->phdr_num + s->note_size;
1683 }
1684 } else {
1685 if (s->have_section) {
1686 s->memory_offset = sizeof(Elf32_Ehdr) +
1687 sizeof(Elf32_Phdr) * s->sh_info +
1688 sizeof(Elf32_Shdr) + s->note_size;
1689 } else {
1690 s->memory_offset = sizeof(Elf32_Ehdr) +
1691 sizeof(Elf32_Phdr) * s->phdr_num + s->note_size;
1692 }
1693 }
1694
1695 return 0;
1696
1697 cleanup:
1698 guest_phys_blocks_free(&s->guest_phys_blocks);
1699
1700 if (s->resume) {
1701 vm_start();
1702 }
1703
1704 return -1;
1705 }
1706
1707 void qmp_dump_guest_memory(bool paging, const char *file, bool has_begin,
1708 int64_t begin, bool has_length,
1709 int64_t length, bool has_format,
1710 DumpGuestMemoryFormat format, Error **errp)
1711 {
1712 const char *p;
1713 int fd = -1;
1714 DumpState *s;
1715 int ret;
1716
1717 /*
1718 * kdump-compressed format need the whole memory dumped, so paging or
1719 * filter is not supported here.
1720 */
1721 if ((has_format && format != DUMP_GUEST_MEMORY_FORMAT_ELF) &&
1722 (paging || has_begin || has_length)) {
1723 error_setg(errp, "kdump-compressed format doesn't support paging or "
1724 "filter");
1725 return;
1726 }
1727 if (has_begin && !has_length) {
1728 error_set(errp, QERR_MISSING_PARAMETER, "length");
1729 return;
1730 }
1731 if (!has_begin && has_length) {
1732 error_set(errp, QERR_MISSING_PARAMETER, "begin");
1733 return;
1734 }
1735
1736 /* check whether lzo/snappy is supported */
1737 #ifndef CONFIG_LZO
1738 if (has_format && format == DUMP_GUEST_MEMORY_FORMAT_KDUMP_LZO) {
1739 error_setg(errp, "kdump-lzo is not available now");
1740 return;
1741 }
1742 #endif
1743
1744 #ifndef CONFIG_SNAPPY
1745 if (has_format && format == DUMP_GUEST_MEMORY_FORMAT_KDUMP_SNAPPY) {
1746 error_setg(errp, "kdump-snappy is not available now");
1747 return;
1748 }
1749 #endif
1750
1751 #if !defined(WIN32)
1752 if (strstart(file, "fd:", &p)) {
1753 fd = monitor_get_fd(cur_mon, p, errp);
1754 if (fd == -1) {
1755 return;
1756 }
1757 }
1758 #endif
1759
1760 if (strstart(file, "file:", &p)) {
1761 fd = qemu_open(p, O_WRONLY | O_CREAT | O_TRUNC | O_BINARY, S_IRUSR);
1762 if (fd < 0) {
1763 error_setg_file_open(errp, errno, p);
1764 return;
1765 }
1766 }
1767
1768 if (fd == -1) {
1769 error_set(errp, QERR_INVALID_PARAMETER, "protocol");
1770 return;
1771 }
1772
1773 s = g_malloc0(sizeof(DumpState));
1774
1775 ret = dump_init(s, fd, has_format, format, paging, has_begin,
1776 begin, length, errp);
1777 if (ret < 0) {
1778 g_free(s);
1779 return;
1780 }
1781
1782 if (has_format && format != DUMP_GUEST_MEMORY_FORMAT_ELF) {
1783 if (create_kdump_vmcore(s) < 0 && !error_is_set(s->errp)) {
1784 error_set(errp, QERR_IO_ERROR);
1785 }
1786 } else {
1787 if (create_vmcore(s) < 0 && !error_is_set(s->errp)) {
1788 error_set(errp, QERR_IO_ERROR);
1789 }
1790 }
1791
1792 g_free(s);
1793 }
1794
1795 DumpGuestMemoryCapability *qmp_query_dump_guest_memory_capability(Error **errp)
1796 {
1797 DumpGuestMemoryFormatList *item;
1798 DumpGuestMemoryCapability *cap =
1799 g_malloc0(sizeof(DumpGuestMemoryCapability));
1800
1801 /* elf is always available */
1802 item = g_malloc0(sizeof(DumpGuestMemoryFormatList));
1803 cap->formats = item;
1804 item->value = DUMP_GUEST_MEMORY_FORMAT_ELF;
1805
1806 /* kdump-zlib is always available */
1807 item->next = g_malloc0(sizeof(DumpGuestMemoryFormatList));
1808 item = item->next;
1809 item->value = DUMP_GUEST_MEMORY_FORMAT_KDUMP_ZLIB;
1810
1811 /* add new item if kdump-lzo is available */
1812 #ifdef CONFIG_LZO
1813 item->next = g_malloc0(sizeof(DumpGuestMemoryFormatList));
1814 item = item->next;
1815 item->value = DUMP_GUEST_MEMORY_FORMAT_KDUMP_LZO;
1816 #endif
1817
1818 /* add new item if kdump-snappy is available */
1819 #ifdef CONFIG_SNAPPY
1820 item->next = g_malloc0(sizeof(DumpGuestMemoryFormatList));
1821 item = item->next;
1822 item->value = DUMP_GUEST_MEMORY_FORMAT_KDUMP_SNAPPY;
1823 #endif
1824
1825 return cap;
1826 }