]> git.proxmox.com Git - mirror_qemu.git/blob - dump.c
Merge remote-tracking branch 'remotes/bonzini/configure' into staging
[mirror_qemu.git] / dump.c
1 /*
2 * QEMU dump
3 *
4 * Copyright Fujitsu, Corp. 2011, 2012
5 *
6 * Authors:
7 * Wen Congyang <wency@cn.fujitsu.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
11 *
12 */
13
14 #include "qemu-common.h"
15 #include "elf.h"
16 #include "cpu.h"
17 #include "exec/cpu-all.h"
18 #include "exec/hwaddr.h"
19 #include "monitor/monitor.h"
20 #include "sysemu/kvm.h"
21 #include "sysemu/dump.h"
22 #include "sysemu/sysemu.h"
23 #include "sysemu/memory_mapping.h"
24 #include "sysemu/cpus.h"
25 #include "qapi/error.h"
26 #include "qmp-commands.h"
27
28 #include <zlib.h>
29 #ifdef CONFIG_LZO
30 #include <lzo/lzo1x.h>
31 #endif
32 #ifdef CONFIG_SNAPPY
33 #include <snappy-c.h>
34 #endif
35 #ifndef ELF_MACHINE_UNAME
36 #define ELF_MACHINE_UNAME "Unknown"
37 #endif
38
39 static uint16_t cpu_convert_to_target16(uint16_t val, int endian)
40 {
41 if (endian == ELFDATA2LSB) {
42 val = cpu_to_le16(val);
43 } else {
44 val = cpu_to_be16(val);
45 }
46
47 return val;
48 }
49
50 static uint32_t cpu_convert_to_target32(uint32_t val, int endian)
51 {
52 if (endian == ELFDATA2LSB) {
53 val = cpu_to_le32(val);
54 } else {
55 val = cpu_to_be32(val);
56 }
57
58 return val;
59 }
60
61 static uint64_t cpu_convert_to_target64(uint64_t val, int endian)
62 {
63 if (endian == ELFDATA2LSB) {
64 val = cpu_to_le64(val);
65 } else {
66 val = cpu_to_be64(val);
67 }
68
69 return val;
70 }
71
72 typedef struct DumpState {
73 GuestPhysBlockList guest_phys_blocks;
74 ArchDumpInfo dump_info;
75 MemoryMappingList list;
76 uint16_t phdr_num;
77 uint32_t sh_info;
78 bool have_section;
79 bool resume;
80 ssize_t note_size;
81 hwaddr memory_offset;
82 int fd;
83
84 GuestPhysBlock *next_block;
85 ram_addr_t start;
86 bool has_filter;
87 int64_t begin;
88 int64_t length;
89
90 uint8_t *note_buf; /* buffer for notes */
91 size_t note_buf_offset; /* the writing place in note_buf */
92 uint32_t nr_cpus; /* number of guest's cpu */
93 size_t page_size; /* guest's page size */
94 uint32_t page_shift; /* guest's page shift */
95 uint64_t max_mapnr; /* the biggest guest's phys-mem's number */
96 size_t len_dump_bitmap; /* the size of the place used to store
97 dump_bitmap in vmcore */
98 off_t offset_dump_bitmap; /* offset of dump_bitmap part in vmcore */
99 off_t offset_page; /* offset of page part in vmcore */
100 size_t num_dumpable; /* number of page that can be dumped */
101 uint32_t flag_compress; /* indicate the compression format */
102 } DumpState;
103
104 static int dump_cleanup(DumpState *s)
105 {
106 int ret = 0;
107
108 guest_phys_blocks_free(&s->guest_phys_blocks);
109 memory_mapping_list_free(&s->list);
110 if (s->fd != -1) {
111 close(s->fd);
112 }
113 if (s->resume) {
114 vm_start();
115 }
116
117 return ret;
118 }
119
120 static void dump_error(DumpState *s, const char *reason)
121 {
122 dump_cleanup(s);
123 }
124
125 static int fd_write_vmcore(const void *buf, size_t size, void *opaque)
126 {
127 DumpState *s = opaque;
128 size_t written_size;
129
130 written_size = qemu_write_full(s->fd, buf, size);
131 if (written_size != size) {
132 return -1;
133 }
134
135 return 0;
136 }
137
138 static int write_elf64_header(DumpState *s)
139 {
140 Elf64_Ehdr elf_header;
141 int ret;
142 int endian = s->dump_info.d_endian;
143
144 memset(&elf_header, 0, sizeof(Elf64_Ehdr));
145 memcpy(&elf_header, ELFMAG, SELFMAG);
146 elf_header.e_ident[EI_CLASS] = ELFCLASS64;
147 elf_header.e_ident[EI_DATA] = s->dump_info.d_endian;
148 elf_header.e_ident[EI_VERSION] = EV_CURRENT;
149 elf_header.e_type = cpu_convert_to_target16(ET_CORE, endian);
150 elf_header.e_machine = cpu_convert_to_target16(s->dump_info.d_machine,
151 endian);
152 elf_header.e_version = cpu_convert_to_target32(EV_CURRENT, endian);
153 elf_header.e_ehsize = cpu_convert_to_target16(sizeof(elf_header), endian);
154 elf_header.e_phoff = cpu_convert_to_target64(sizeof(Elf64_Ehdr), endian);
155 elf_header.e_phentsize = cpu_convert_to_target16(sizeof(Elf64_Phdr),
156 endian);
157 elf_header.e_phnum = cpu_convert_to_target16(s->phdr_num, endian);
158 if (s->have_section) {
159 uint64_t shoff = sizeof(Elf64_Ehdr) + sizeof(Elf64_Phdr) * s->sh_info;
160
161 elf_header.e_shoff = cpu_convert_to_target64(shoff, endian);
162 elf_header.e_shentsize = cpu_convert_to_target16(sizeof(Elf64_Shdr),
163 endian);
164 elf_header.e_shnum = cpu_convert_to_target16(1, endian);
165 }
166
167 ret = fd_write_vmcore(&elf_header, sizeof(elf_header), s);
168 if (ret < 0) {
169 dump_error(s, "dump: failed to write elf header.\n");
170 return -1;
171 }
172
173 return 0;
174 }
175
176 static int write_elf32_header(DumpState *s)
177 {
178 Elf32_Ehdr elf_header;
179 int ret;
180 int endian = s->dump_info.d_endian;
181
182 memset(&elf_header, 0, sizeof(Elf32_Ehdr));
183 memcpy(&elf_header, ELFMAG, SELFMAG);
184 elf_header.e_ident[EI_CLASS] = ELFCLASS32;
185 elf_header.e_ident[EI_DATA] = endian;
186 elf_header.e_ident[EI_VERSION] = EV_CURRENT;
187 elf_header.e_type = cpu_convert_to_target16(ET_CORE, endian);
188 elf_header.e_machine = cpu_convert_to_target16(s->dump_info.d_machine,
189 endian);
190 elf_header.e_version = cpu_convert_to_target32(EV_CURRENT, endian);
191 elf_header.e_ehsize = cpu_convert_to_target16(sizeof(elf_header), endian);
192 elf_header.e_phoff = cpu_convert_to_target32(sizeof(Elf32_Ehdr), endian);
193 elf_header.e_phentsize = cpu_convert_to_target16(sizeof(Elf32_Phdr),
194 endian);
195 elf_header.e_phnum = cpu_convert_to_target16(s->phdr_num, endian);
196 if (s->have_section) {
197 uint32_t shoff = sizeof(Elf32_Ehdr) + sizeof(Elf32_Phdr) * s->sh_info;
198
199 elf_header.e_shoff = cpu_convert_to_target32(shoff, endian);
200 elf_header.e_shentsize = cpu_convert_to_target16(sizeof(Elf32_Shdr),
201 endian);
202 elf_header.e_shnum = cpu_convert_to_target16(1, endian);
203 }
204
205 ret = fd_write_vmcore(&elf_header, sizeof(elf_header), s);
206 if (ret < 0) {
207 dump_error(s, "dump: failed to write elf header.\n");
208 return -1;
209 }
210
211 return 0;
212 }
213
214 static int write_elf64_load(DumpState *s, MemoryMapping *memory_mapping,
215 int phdr_index, hwaddr offset,
216 hwaddr filesz)
217 {
218 Elf64_Phdr phdr;
219 int ret;
220 int endian = s->dump_info.d_endian;
221
222 memset(&phdr, 0, sizeof(Elf64_Phdr));
223 phdr.p_type = cpu_convert_to_target32(PT_LOAD, endian);
224 phdr.p_offset = cpu_convert_to_target64(offset, endian);
225 phdr.p_paddr = cpu_convert_to_target64(memory_mapping->phys_addr, endian);
226 phdr.p_filesz = cpu_convert_to_target64(filesz, endian);
227 phdr.p_memsz = cpu_convert_to_target64(memory_mapping->length, endian);
228 phdr.p_vaddr = cpu_convert_to_target64(memory_mapping->virt_addr, endian);
229
230 assert(memory_mapping->length >= filesz);
231
232 ret = fd_write_vmcore(&phdr, sizeof(Elf64_Phdr), s);
233 if (ret < 0) {
234 dump_error(s, "dump: failed to write program header table.\n");
235 return -1;
236 }
237
238 return 0;
239 }
240
241 static int write_elf32_load(DumpState *s, MemoryMapping *memory_mapping,
242 int phdr_index, hwaddr offset,
243 hwaddr filesz)
244 {
245 Elf32_Phdr phdr;
246 int ret;
247 int endian = s->dump_info.d_endian;
248
249 memset(&phdr, 0, sizeof(Elf32_Phdr));
250 phdr.p_type = cpu_convert_to_target32(PT_LOAD, endian);
251 phdr.p_offset = cpu_convert_to_target32(offset, endian);
252 phdr.p_paddr = cpu_convert_to_target32(memory_mapping->phys_addr, endian);
253 phdr.p_filesz = cpu_convert_to_target32(filesz, endian);
254 phdr.p_memsz = cpu_convert_to_target32(memory_mapping->length, endian);
255 phdr.p_vaddr = cpu_convert_to_target32(memory_mapping->virt_addr, endian);
256
257 assert(memory_mapping->length >= filesz);
258
259 ret = fd_write_vmcore(&phdr, sizeof(Elf32_Phdr), s);
260 if (ret < 0) {
261 dump_error(s, "dump: failed to write program header table.\n");
262 return -1;
263 }
264
265 return 0;
266 }
267
268 static int write_elf64_note(DumpState *s)
269 {
270 Elf64_Phdr phdr;
271 int endian = s->dump_info.d_endian;
272 hwaddr begin = s->memory_offset - s->note_size;
273 int ret;
274
275 memset(&phdr, 0, sizeof(Elf64_Phdr));
276 phdr.p_type = cpu_convert_to_target32(PT_NOTE, endian);
277 phdr.p_offset = cpu_convert_to_target64(begin, endian);
278 phdr.p_paddr = 0;
279 phdr.p_filesz = cpu_convert_to_target64(s->note_size, endian);
280 phdr.p_memsz = cpu_convert_to_target64(s->note_size, endian);
281 phdr.p_vaddr = 0;
282
283 ret = fd_write_vmcore(&phdr, sizeof(Elf64_Phdr), s);
284 if (ret < 0) {
285 dump_error(s, "dump: failed to write program header table.\n");
286 return -1;
287 }
288
289 return 0;
290 }
291
292 static inline int cpu_index(CPUState *cpu)
293 {
294 return cpu->cpu_index + 1;
295 }
296
297 static int write_elf64_notes(WriteCoreDumpFunction f, DumpState *s)
298 {
299 CPUState *cpu;
300 int ret;
301 int id;
302
303 CPU_FOREACH(cpu) {
304 id = cpu_index(cpu);
305 ret = cpu_write_elf64_note(f, cpu, id, s);
306 if (ret < 0) {
307 dump_error(s, "dump: failed to write elf notes.\n");
308 return -1;
309 }
310 }
311
312 CPU_FOREACH(cpu) {
313 ret = cpu_write_elf64_qemunote(f, cpu, s);
314 if (ret < 0) {
315 dump_error(s, "dump: failed to write CPU status.\n");
316 return -1;
317 }
318 }
319
320 return 0;
321 }
322
323 static int write_elf32_note(DumpState *s)
324 {
325 hwaddr begin = s->memory_offset - s->note_size;
326 Elf32_Phdr phdr;
327 int endian = s->dump_info.d_endian;
328 int ret;
329
330 memset(&phdr, 0, sizeof(Elf32_Phdr));
331 phdr.p_type = cpu_convert_to_target32(PT_NOTE, endian);
332 phdr.p_offset = cpu_convert_to_target32(begin, endian);
333 phdr.p_paddr = 0;
334 phdr.p_filesz = cpu_convert_to_target32(s->note_size, endian);
335 phdr.p_memsz = cpu_convert_to_target32(s->note_size, endian);
336 phdr.p_vaddr = 0;
337
338 ret = fd_write_vmcore(&phdr, sizeof(Elf32_Phdr), s);
339 if (ret < 0) {
340 dump_error(s, "dump: failed to write program header table.\n");
341 return -1;
342 }
343
344 return 0;
345 }
346
347 static int write_elf32_notes(WriteCoreDumpFunction f, DumpState *s)
348 {
349 CPUState *cpu;
350 int ret;
351 int id;
352
353 CPU_FOREACH(cpu) {
354 id = cpu_index(cpu);
355 ret = cpu_write_elf32_note(f, cpu, id, s);
356 if (ret < 0) {
357 dump_error(s, "dump: failed to write elf notes.\n");
358 return -1;
359 }
360 }
361
362 CPU_FOREACH(cpu) {
363 ret = cpu_write_elf32_qemunote(f, cpu, s);
364 if (ret < 0) {
365 dump_error(s, "dump: failed to write CPU status.\n");
366 return -1;
367 }
368 }
369
370 return 0;
371 }
372
373 static int write_elf_section(DumpState *s, int type)
374 {
375 Elf32_Shdr shdr32;
376 Elf64_Shdr shdr64;
377 int endian = s->dump_info.d_endian;
378 int shdr_size;
379 void *shdr;
380 int ret;
381
382 if (type == 0) {
383 shdr_size = sizeof(Elf32_Shdr);
384 memset(&shdr32, 0, shdr_size);
385 shdr32.sh_info = cpu_convert_to_target32(s->sh_info, endian);
386 shdr = &shdr32;
387 } else {
388 shdr_size = sizeof(Elf64_Shdr);
389 memset(&shdr64, 0, shdr_size);
390 shdr64.sh_info = cpu_convert_to_target32(s->sh_info, endian);
391 shdr = &shdr64;
392 }
393
394 ret = fd_write_vmcore(&shdr, shdr_size, s);
395 if (ret < 0) {
396 dump_error(s, "dump: failed to write section header table.\n");
397 return -1;
398 }
399
400 return 0;
401 }
402
403 static int write_data(DumpState *s, void *buf, int length)
404 {
405 int ret;
406
407 ret = fd_write_vmcore(buf, length, s);
408 if (ret < 0) {
409 dump_error(s, "dump: failed to save memory.\n");
410 return -1;
411 }
412
413 return 0;
414 }
415
416 /* write the memroy to vmcore. 1 page per I/O. */
417 static int write_memory(DumpState *s, GuestPhysBlock *block, ram_addr_t start,
418 int64_t size)
419 {
420 int64_t i;
421 int ret;
422
423 for (i = 0; i < size / TARGET_PAGE_SIZE; i++) {
424 ret = write_data(s, block->host_addr + start + i * TARGET_PAGE_SIZE,
425 TARGET_PAGE_SIZE);
426 if (ret < 0) {
427 return ret;
428 }
429 }
430
431 if ((size % TARGET_PAGE_SIZE) != 0) {
432 ret = write_data(s, block->host_addr + start + i * TARGET_PAGE_SIZE,
433 size % TARGET_PAGE_SIZE);
434 if (ret < 0) {
435 return ret;
436 }
437 }
438
439 return 0;
440 }
441
442 /* get the memory's offset and size in the vmcore */
443 static void get_offset_range(hwaddr phys_addr,
444 ram_addr_t mapping_length,
445 DumpState *s,
446 hwaddr *p_offset,
447 hwaddr *p_filesz)
448 {
449 GuestPhysBlock *block;
450 hwaddr offset = s->memory_offset;
451 int64_t size_in_block, start;
452
453 /* When the memory is not stored into vmcore, offset will be -1 */
454 *p_offset = -1;
455 *p_filesz = 0;
456
457 if (s->has_filter) {
458 if (phys_addr < s->begin || phys_addr >= s->begin + s->length) {
459 return;
460 }
461 }
462
463 QTAILQ_FOREACH(block, &s->guest_phys_blocks.head, next) {
464 if (s->has_filter) {
465 if (block->target_start >= s->begin + s->length ||
466 block->target_end <= s->begin) {
467 /* This block is out of the range */
468 continue;
469 }
470
471 if (s->begin <= block->target_start) {
472 start = block->target_start;
473 } else {
474 start = s->begin;
475 }
476
477 size_in_block = block->target_end - start;
478 if (s->begin + s->length < block->target_end) {
479 size_in_block -= block->target_end - (s->begin + s->length);
480 }
481 } else {
482 start = block->target_start;
483 size_in_block = block->target_end - block->target_start;
484 }
485
486 if (phys_addr >= start && phys_addr < start + size_in_block) {
487 *p_offset = phys_addr - start + offset;
488
489 /* The offset range mapped from the vmcore file must not spill over
490 * the GuestPhysBlock, clamp it. The rest of the mapping will be
491 * zero-filled in memory at load time; see
492 * <http://refspecs.linuxbase.org/elf/gabi4+/ch5.pheader.html>.
493 */
494 *p_filesz = phys_addr + mapping_length <= start + size_in_block ?
495 mapping_length :
496 size_in_block - (phys_addr - start);
497 return;
498 }
499
500 offset += size_in_block;
501 }
502 }
503
504 static int write_elf_loads(DumpState *s)
505 {
506 hwaddr offset, filesz;
507 MemoryMapping *memory_mapping;
508 uint32_t phdr_index = 1;
509 int ret;
510 uint32_t max_index;
511
512 if (s->have_section) {
513 max_index = s->sh_info;
514 } else {
515 max_index = s->phdr_num;
516 }
517
518 QTAILQ_FOREACH(memory_mapping, &s->list.head, next) {
519 get_offset_range(memory_mapping->phys_addr,
520 memory_mapping->length,
521 s, &offset, &filesz);
522 if (s->dump_info.d_class == ELFCLASS64) {
523 ret = write_elf64_load(s, memory_mapping, phdr_index++, offset,
524 filesz);
525 } else {
526 ret = write_elf32_load(s, memory_mapping, phdr_index++, offset,
527 filesz);
528 }
529
530 if (ret < 0) {
531 return -1;
532 }
533
534 if (phdr_index >= max_index) {
535 break;
536 }
537 }
538
539 return 0;
540 }
541
542 /* write elf header, PT_NOTE and elf note to vmcore. */
543 static int dump_begin(DumpState *s)
544 {
545 int ret;
546
547 /*
548 * the vmcore's format is:
549 * --------------
550 * | elf header |
551 * --------------
552 * | PT_NOTE |
553 * --------------
554 * | PT_LOAD |
555 * --------------
556 * | ...... |
557 * --------------
558 * | PT_LOAD |
559 * --------------
560 * | sec_hdr |
561 * --------------
562 * | elf note |
563 * --------------
564 * | memory |
565 * --------------
566 *
567 * we only know where the memory is saved after we write elf note into
568 * vmcore.
569 */
570
571 /* write elf header to vmcore */
572 if (s->dump_info.d_class == ELFCLASS64) {
573 ret = write_elf64_header(s);
574 } else {
575 ret = write_elf32_header(s);
576 }
577 if (ret < 0) {
578 return -1;
579 }
580
581 if (s->dump_info.d_class == ELFCLASS64) {
582 /* write PT_NOTE to vmcore */
583 if (write_elf64_note(s) < 0) {
584 return -1;
585 }
586
587 /* write all PT_LOAD to vmcore */
588 if (write_elf_loads(s) < 0) {
589 return -1;
590 }
591
592 /* write section to vmcore */
593 if (s->have_section) {
594 if (write_elf_section(s, 1) < 0) {
595 return -1;
596 }
597 }
598
599 /* write notes to vmcore */
600 if (write_elf64_notes(fd_write_vmcore, s) < 0) {
601 return -1;
602 }
603
604 } else {
605 /* write PT_NOTE to vmcore */
606 if (write_elf32_note(s) < 0) {
607 return -1;
608 }
609
610 /* write all PT_LOAD to vmcore */
611 if (write_elf_loads(s) < 0) {
612 return -1;
613 }
614
615 /* write section to vmcore */
616 if (s->have_section) {
617 if (write_elf_section(s, 0) < 0) {
618 return -1;
619 }
620 }
621
622 /* write notes to vmcore */
623 if (write_elf32_notes(fd_write_vmcore, s) < 0) {
624 return -1;
625 }
626 }
627
628 return 0;
629 }
630
631 /* write PT_LOAD to vmcore */
632 static int dump_completed(DumpState *s)
633 {
634 dump_cleanup(s);
635 return 0;
636 }
637
638 static int get_next_block(DumpState *s, GuestPhysBlock *block)
639 {
640 while (1) {
641 block = QTAILQ_NEXT(block, next);
642 if (!block) {
643 /* no more block */
644 return 1;
645 }
646
647 s->start = 0;
648 s->next_block = block;
649 if (s->has_filter) {
650 if (block->target_start >= s->begin + s->length ||
651 block->target_end <= s->begin) {
652 /* This block is out of the range */
653 continue;
654 }
655
656 if (s->begin > block->target_start) {
657 s->start = s->begin - block->target_start;
658 }
659 }
660
661 return 0;
662 }
663 }
664
665 /* write all memory to vmcore */
666 static int dump_iterate(DumpState *s)
667 {
668 GuestPhysBlock *block;
669 int64_t size;
670 int ret;
671
672 while (1) {
673 block = s->next_block;
674
675 size = block->target_end - block->target_start;
676 if (s->has_filter) {
677 size -= s->start;
678 if (s->begin + s->length < block->target_end) {
679 size -= block->target_end - (s->begin + s->length);
680 }
681 }
682 ret = write_memory(s, block, s->start, size);
683 if (ret == -1) {
684 return ret;
685 }
686
687 ret = get_next_block(s, block);
688 if (ret == 1) {
689 dump_completed(s);
690 return 0;
691 }
692 }
693 }
694
695 static int create_vmcore(DumpState *s)
696 {
697 int ret;
698
699 ret = dump_begin(s);
700 if (ret < 0) {
701 return -1;
702 }
703
704 ret = dump_iterate(s);
705 if (ret < 0) {
706 return -1;
707 }
708
709 return 0;
710 }
711
712 static int write_start_flat_header(int fd)
713 {
714 uint8_t *buf;
715 MakedumpfileHeader mh;
716 int ret = 0;
717
718 memset(&mh, 0, sizeof(mh));
719 strncpy(mh.signature, MAKEDUMPFILE_SIGNATURE,
720 strlen(MAKEDUMPFILE_SIGNATURE));
721
722 mh.type = cpu_to_be64(TYPE_FLAT_HEADER);
723 mh.version = cpu_to_be64(VERSION_FLAT_HEADER);
724
725 buf = g_malloc0(MAX_SIZE_MDF_HEADER);
726 memcpy(buf, &mh, sizeof(mh));
727
728 size_t written_size;
729 written_size = qemu_write_full(fd, buf, MAX_SIZE_MDF_HEADER);
730 if (written_size != MAX_SIZE_MDF_HEADER) {
731 ret = -1;
732 }
733
734 g_free(buf);
735 return ret;
736 }
737
738 static int write_end_flat_header(int fd)
739 {
740 MakedumpfileDataHeader mdh;
741
742 mdh.offset = END_FLAG_FLAT_HEADER;
743 mdh.buf_size = END_FLAG_FLAT_HEADER;
744
745 size_t written_size;
746 written_size = qemu_write_full(fd, &mdh, sizeof(mdh));
747 if (written_size != sizeof(mdh)) {
748 return -1;
749 }
750
751 return 0;
752 }
753
754 static int write_buffer(int fd, off_t offset, const void *buf, size_t size)
755 {
756 size_t written_size;
757 MakedumpfileDataHeader mdh;
758
759 mdh.offset = cpu_to_be64(offset);
760 mdh.buf_size = cpu_to_be64(size);
761
762 written_size = qemu_write_full(fd, &mdh, sizeof(mdh));
763 if (written_size != sizeof(mdh)) {
764 return -1;
765 }
766
767 written_size = qemu_write_full(fd, buf, size);
768 if (written_size != size) {
769 return -1;
770 }
771
772 return 0;
773 }
774
775 static int buf_write_note(const void *buf, size_t size, void *opaque)
776 {
777 DumpState *s = opaque;
778
779 /* note_buf is not enough */
780 if (s->note_buf_offset + size > s->note_size) {
781 return -1;
782 }
783
784 memcpy(s->note_buf + s->note_buf_offset, buf, size);
785
786 s->note_buf_offset += size;
787
788 return 0;
789 }
790
791 /* write common header, sub header and elf note to vmcore */
792 static int create_header32(DumpState *s)
793 {
794 int ret = 0;
795 DiskDumpHeader32 *dh = NULL;
796 KdumpSubHeader32 *kh = NULL;
797 size_t size;
798 int endian = s->dump_info.d_endian;
799 uint32_t block_size;
800 uint32_t sub_hdr_size;
801 uint32_t bitmap_blocks;
802 uint32_t status = 0;
803 uint64_t offset_note;
804
805 /* write common header, the version of kdump-compressed format is 6th */
806 size = sizeof(DiskDumpHeader32);
807 dh = g_malloc0(size);
808
809 strncpy(dh->signature, KDUMP_SIGNATURE, strlen(KDUMP_SIGNATURE));
810 dh->header_version = cpu_convert_to_target32(6, endian);
811 block_size = s->page_size;
812 dh->block_size = cpu_convert_to_target32(block_size, endian);
813 sub_hdr_size = sizeof(struct KdumpSubHeader32) + s->note_size;
814 sub_hdr_size = DIV_ROUND_UP(sub_hdr_size, block_size);
815 dh->sub_hdr_size = cpu_convert_to_target32(sub_hdr_size, endian);
816 /* dh->max_mapnr may be truncated, full 64bit is in kh.max_mapnr_64 */
817 dh->max_mapnr = cpu_convert_to_target32(MIN(s->max_mapnr, UINT_MAX),
818 endian);
819 dh->nr_cpus = cpu_convert_to_target32(s->nr_cpus, endian);
820 bitmap_blocks = DIV_ROUND_UP(s->len_dump_bitmap, block_size) * 2;
821 dh->bitmap_blocks = cpu_convert_to_target32(bitmap_blocks, endian);
822 strncpy(dh->utsname.machine, ELF_MACHINE_UNAME, sizeof(dh->utsname.machine));
823
824 if (s->flag_compress & DUMP_DH_COMPRESSED_ZLIB) {
825 status |= DUMP_DH_COMPRESSED_ZLIB;
826 }
827 #ifdef CONFIG_LZO
828 if (s->flag_compress & DUMP_DH_COMPRESSED_LZO) {
829 status |= DUMP_DH_COMPRESSED_LZO;
830 }
831 #endif
832 #ifdef CONFIG_SNAPPY
833 if (s->flag_compress & DUMP_DH_COMPRESSED_SNAPPY) {
834 status |= DUMP_DH_COMPRESSED_SNAPPY;
835 }
836 #endif
837 dh->status = cpu_convert_to_target32(status, endian);
838
839 if (write_buffer(s->fd, 0, dh, size) < 0) {
840 dump_error(s, "dump: failed to write disk dump header.\n");
841 ret = -1;
842 goto out;
843 }
844
845 /* write sub header */
846 size = sizeof(KdumpSubHeader32);
847 kh = g_malloc0(size);
848
849 /* 64bit max_mapnr_64 */
850 kh->max_mapnr_64 = cpu_convert_to_target64(s->max_mapnr, endian);
851 kh->phys_base = cpu_convert_to_target32(PHYS_BASE, endian);
852 kh->dump_level = cpu_convert_to_target32(DUMP_LEVEL, endian);
853
854 offset_note = DISKDUMP_HEADER_BLOCKS * block_size + size;
855 kh->offset_note = cpu_convert_to_target64(offset_note, endian);
856 kh->note_size = cpu_convert_to_target32(s->note_size, endian);
857
858 if (write_buffer(s->fd, DISKDUMP_HEADER_BLOCKS *
859 block_size, kh, size) < 0) {
860 dump_error(s, "dump: failed to write kdump sub header.\n");
861 ret = -1;
862 goto out;
863 }
864
865 /* write note */
866 s->note_buf = g_malloc0(s->note_size);
867 s->note_buf_offset = 0;
868
869 /* use s->note_buf to store notes temporarily */
870 if (write_elf32_notes(buf_write_note, s) < 0) {
871 ret = -1;
872 goto out;
873 }
874
875 if (write_buffer(s->fd, offset_note, s->note_buf,
876 s->note_size) < 0) {
877 dump_error(s, "dump: failed to write notes");
878 ret = -1;
879 goto out;
880 }
881
882 /* get offset of dump_bitmap */
883 s->offset_dump_bitmap = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size) *
884 block_size;
885
886 /* get offset of page */
887 s->offset_page = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size + bitmap_blocks) *
888 block_size;
889
890 out:
891 g_free(dh);
892 g_free(kh);
893 g_free(s->note_buf);
894
895 return ret;
896 }
897
898 /* write common header, sub header and elf note to vmcore */
899 static int create_header64(DumpState *s)
900 {
901 int ret = 0;
902 DiskDumpHeader64 *dh = NULL;
903 KdumpSubHeader64 *kh = NULL;
904 size_t size;
905 int endian = s->dump_info.d_endian;
906 uint32_t block_size;
907 uint32_t sub_hdr_size;
908 uint32_t bitmap_blocks;
909 uint32_t status = 0;
910 uint64_t offset_note;
911
912 /* write common header, the version of kdump-compressed format is 6th */
913 size = sizeof(DiskDumpHeader64);
914 dh = g_malloc0(size);
915
916 strncpy(dh->signature, KDUMP_SIGNATURE, strlen(KDUMP_SIGNATURE));
917 dh->header_version = cpu_convert_to_target32(6, endian);
918 block_size = s->page_size;
919 dh->block_size = cpu_convert_to_target32(block_size, endian);
920 sub_hdr_size = sizeof(struct KdumpSubHeader64) + s->note_size;
921 sub_hdr_size = DIV_ROUND_UP(sub_hdr_size, block_size);
922 dh->sub_hdr_size = cpu_convert_to_target32(sub_hdr_size, endian);
923 /* dh->max_mapnr may be truncated, full 64bit is in kh.max_mapnr_64 */
924 dh->max_mapnr = cpu_convert_to_target32(MIN(s->max_mapnr, UINT_MAX),
925 endian);
926 dh->nr_cpus = cpu_convert_to_target32(s->nr_cpus, endian);
927 bitmap_blocks = DIV_ROUND_UP(s->len_dump_bitmap, block_size) * 2;
928 dh->bitmap_blocks = cpu_convert_to_target32(bitmap_blocks, endian);
929 strncpy(dh->utsname.machine, ELF_MACHINE_UNAME, sizeof(dh->utsname.machine));
930
931 if (s->flag_compress & DUMP_DH_COMPRESSED_ZLIB) {
932 status |= DUMP_DH_COMPRESSED_ZLIB;
933 }
934 #ifdef CONFIG_LZO
935 if (s->flag_compress & DUMP_DH_COMPRESSED_LZO) {
936 status |= DUMP_DH_COMPRESSED_LZO;
937 }
938 #endif
939 #ifdef CONFIG_SNAPPY
940 if (s->flag_compress & DUMP_DH_COMPRESSED_SNAPPY) {
941 status |= DUMP_DH_COMPRESSED_SNAPPY;
942 }
943 #endif
944 dh->status = cpu_convert_to_target32(status, endian);
945
946 if (write_buffer(s->fd, 0, dh, size) < 0) {
947 dump_error(s, "dump: failed to write disk dump header.\n");
948 ret = -1;
949 goto out;
950 }
951
952 /* write sub header */
953 size = sizeof(KdumpSubHeader64);
954 kh = g_malloc0(size);
955
956 /* 64bit max_mapnr_64 */
957 kh->max_mapnr_64 = cpu_convert_to_target64(s->max_mapnr, endian);
958 kh->phys_base = cpu_convert_to_target64(PHYS_BASE, endian);
959 kh->dump_level = cpu_convert_to_target32(DUMP_LEVEL, endian);
960
961 offset_note = DISKDUMP_HEADER_BLOCKS * block_size + size;
962 kh->offset_note = cpu_convert_to_target64(offset_note, endian);
963 kh->note_size = cpu_convert_to_target64(s->note_size, endian);
964
965 if (write_buffer(s->fd, DISKDUMP_HEADER_BLOCKS *
966 block_size, kh, size) < 0) {
967 dump_error(s, "dump: failed to write kdump sub header.\n");
968 ret = -1;
969 goto out;
970 }
971
972 /* write note */
973 s->note_buf = g_malloc0(s->note_size);
974 s->note_buf_offset = 0;
975
976 /* use s->note_buf to store notes temporarily */
977 if (write_elf64_notes(buf_write_note, s) < 0) {
978 ret = -1;
979 goto out;
980 }
981
982 if (write_buffer(s->fd, offset_note, s->note_buf,
983 s->note_size) < 0) {
984 dump_error(s, "dump: failed to write notes");
985 ret = -1;
986 goto out;
987 }
988
989 /* get offset of dump_bitmap */
990 s->offset_dump_bitmap = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size) *
991 block_size;
992
993 /* get offset of page */
994 s->offset_page = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size + bitmap_blocks) *
995 block_size;
996
997 out:
998 g_free(dh);
999 g_free(kh);
1000 g_free(s->note_buf);
1001
1002 return ret;
1003 }
1004
1005 static int write_dump_header(DumpState *s)
1006 {
1007 if (s->dump_info.d_machine == EM_386) {
1008 return create_header32(s);
1009 } else {
1010 return create_header64(s);
1011 }
1012 }
1013
1014 /*
1015 * set dump_bitmap sequencely. the bit before last_pfn is not allowed to be
1016 * rewritten, so if need to set the first bit, set last_pfn and pfn to 0.
1017 * set_dump_bitmap will always leave the recently set bit un-sync. And setting
1018 * (last bit + sizeof(buf) * 8) to 0 will do flushing the content in buf into
1019 * vmcore, ie. synchronizing un-sync bit into vmcore.
1020 */
1021 static int set_dump_bitmap(uint64_t last_pfn, uint64_t pfn, bool value,
1022 uint8_t *buf, DumpState *s)
1023 {
1024 off_t old_offset, new_offset;
1025 off_t offset_bitmap1, offset_bitmap2;
1026 uint32_t byte, bit;
1027
1028 /* should not set the previous place */
1029 assert(last_pfn <= pfn);
1030
1031 /*
1032 * if the bit needed to be set is not cached in buf, flush the data in buf
1033 * to vmcore firstly.
1034 * making new_offset be bigger than old_offset can also sync remained data
1035 * into vmcore.
1036 */
1037 old_offset = BUFSIZE_BITMAP * (last_pfn / PFN_BUFBITMAP);
1038 new_offset = BUFSIZE_BITMAP * (pfn / PFN_BUFBITMAP);
1039
1040 while (old_offset < new_offset) {
1041 /* calculate the offset and write dump_bitmap */
1042 offset_bitmap1 = s->offset_dump_bitmap + old_offset;
1043 if (write_buffer(s->fd, offset_bitmap1, buf,
1044 BUFSIZE_BITMAP) < 0) {
1045 return -1;
1046 }
1047
1048 /* dump level 1 is chosen, so 1st and 2nd bitmap are same */
1049 offset_bitmap2 = s->offset_dump_bitmap + s->len_dump_bitmap +
1050 old_offset;
1051 if (write_buffer(s->fd, offset_bitmap2, buf,
1052 BUFSIZE_BITMAP) < 0) {
1053 return -1;
1054 }
1055
1056 memset(buf, 0, BUFSIZE_BITMAP);
1057 old_offset += BUFSIZE_BITMAP;
1058 }
1059
1060 /* get the exact place of the bit in the buf, and set it */
1061 byte = (pfn % PFN_BUFBITMAP) / CHAR_BIT;
1062 bit = (pfn % PFN_BUFBITMAP) % CHAR_BIT;
1063 if (value) {
1064 buf[byte] |= 1u << bit;
1065 } else {
1066 buf[byte] &= ~(1u << bit);
1067 }
1068
1069 return 0;
1070 }
1071
1072 /*
1073 * exam every page and return the page frame number and the address of the page.
1074 * bufptr can be NULL. note: the blocks here is supposed to reflect guest-phys
1075 * blocks, so block->target_start and block->target_end should be interal
1076 * multiples of the target page size.
1077 */
1078 static bool get_next_page(GuestPhysBlock **blockptr, uint64_t *pfnptr,
1079 uint8_t **bufptr, DumpState *s)
1080 {
1081 GuestPhysBlock *block = *blockptr;
1082 hwaddr addr;
1083 uint8_t *buf;
1084
1085 /* block == NULL means the start of the iteration */
1086 if (!block) {
1087 block = QTAILQ_FIRST(&s->guest_phys_blocks.head);
1088 *blockptr = block;
1089 assert(block->target_start % s->page_size == 0);
1090 assert(block->target_end % s->page_size == 0);
1091 *pfnptr = paddr_to_pfn(block->target_start, s->page_shift);
1092 if (bufptr) {
1093 *bufptr = block->host_addr;
1094 }
1095 return true;
1096 }
1097
1098 *pfnptr = *pfnptr + 1;
1099 addr = pfn_to_paddr(*pfnptr, s->page_shift);
1100
1101 if ((addr >= block->target_start) &&
1102 (addr + s->page_size <= block->target_end)) {
1103 buf = block->host_addr + (addr - block->target_start);
1104 } else {
1105 /* the next page is in the next block */
1106 block = QTAILQ_NEXT(block, next);
1107 *blockptr = block;
1108 if (!block) {
1109 return false;
1110 }
1111 assert(block->target_start % s->page_size == 0);
1112 assert(block->target_end % s->page_size == 0);
1113 *pfnptr = paddr_to_pfn(block->target_start, s->page_shift);
1114 buf = block->host_addr;
1115 }
1116
1117 if (bufptr) {
1118 *bufptr = buf;
1119 }
1120
1121 return true;
1122 }
1123
1124 static int write_dump_bitmap(DumpState *s)
1125 {
1126 int ret = 0;
1127 uint64_t last_pfn, pfn;
1128 void *dump_bitmap_buf;
1129 size_t num_dumpable;
1130 GuestPhysBlock *block_iter = NULL;
1131
1132 /* dump_bitmap_buf is used to store dump_bitmap temporarily */
1133 dump_bitmap_buf = g_malloc0(BUFSIZE_BITMAP);
1134
1135 num_dumpable = 0;
1136 last_pfn = 0;
1137
1138 /*
1139 * exam memory page by page, and set the bit in dump_bitmap corresponded
1140 * to the existing page.
1141 */
1142 while (get_next_page(&block_iter, &pfn, NULL, s)) {
1143 ret = set_dump_bitmap(last_pfn, pfn, true, dump_bitmap_buf, s);
1144 if (ret < 0) {
1145 dump_error(s, "dump: failed to set dump_bitmap.\n");
1146 ret = -1;
1147 goto out;
1148 }
1149
1150 last_pfn = pfn;
1151 num_dumpable++;
1152 }
1153
1154 /*
1155 * set_dump_bitmap will always leave the recently set bit un-sync. Here we
1156 * set last_pfn + PFN_BUFBITMAP to 0 and those set but un-sync bit will be
1157 * synchronized into vmcore.
1158 */
1159 if (num_dumpable > 0) {
1160 ret = set_dump_bitmap(last_pfn, last_pfn + PFN_BUFBITMAP, false,
1161 dump_bitmap_buf, s);
1162 if (ret < 0) {
1163 dump_error(s, "dump: failed to sync dump_bitmap.\n");
1164 ret = -1;
1165 goto out;
1166 }
1167 }
1168
1169 /* number of dumpable pages that will be dumped later */
1170 s->num_dumpable = num_dumpable;
1171
1172 out:
1173 g_free(dump_bitmap_buf);
1174
1175 return ret;
1176 }
1177
1178 static void prepare_data_cache(DataCache *data_cache, DumpState *s,
1179 off_t offset)
1180 {
1181 data_cache->fd = s->fd;
1182 data_cache->data_size = 0;
1183 data_cache->buf_size = BUFSIZE_DATA_CACHE;
1184 data_cache->buf = g_malloc0(BUFSIZE_DATA_CACHE);
1185 data_cache->offset = offset;
1186 }
1187
1188 static int write_cache(DataCache *dc, const void *buf, size_t size,
1189 bool flag_sync)
1190 {
1191 /*
1192 * dc->buf_size should not be less than size, otherwise dc will never be
1193 * enough
1194 */
1195 assert(size <= dc->buf_size);
1196
1197 /*
1198 * if flag_sync is set, synchronize data in dc->buf into vmcore.
1199 * otherwise check if the space is enough for caching data in buf, if not,
1200 * write the data in dc->buf to dc->fd and reset dc->buf
1201 */
1202 if ((!flag_sync && dc->data_size + size > dc->buf_size) ||
1203 (flag_sync && dc->data_size > 0)) {
1204 if (write_buffer(dc->fd, dc->offset, dc->buf, dc->data_size) < 0) {
1205 return -1;
1206 }
1207
1208 dc->offset += dc->data_size;
1209 dc->data_size = 0;
1210 }
1211
1212 if (!flag_sync) {
1213 memcpy(dc->buf + dc->data_size, buf, size);
1214 dc->data_size += size;
1215 }
1216
1217 return 0;
1218 }
1219
1220 static void free_data_cache(DataCache *data_cache)
1221 {
1222 g_free(data_cache->buf);
1223 }
1224
1225 static size_t get_len_buf_out(size_t page_size, uint32_t flag_compress)
1226 {
1227 size_t len_buf_out_zlib, len_buf_out_lzo, len_buf_out_snappy;
1228 size_t len_buf_out;
1229
1230 /* init buf_out */
1231 len_buf_out_zlib = len_buf_out_lzo = len_buf_out_snappy = 0;
1232
1233 /* buf size for zlib */
1234 len_buf_out_zlib = compressBound(page_size);
1235
1236 /* buf size for lzo */
1237 #ifdef CONFIG_LZO
1238 if (flag_compress & DUMP_DH_COMPRESSED_LZO) {
1239 if (lzo_init() != LZO_E_OK) {
1240 /* return 0 to indicate lzo is unavailable */
1241 return 0;
1242 }
1243 }
1244
1245 /*
1246 * LZO will expand incompressible data by a little amount. please check the
1247 * following URL to see the expansion calculation:
1248 * http://www.oberhumer.com/opensource/lzo/lzofaq.php
1249 */
1250 len_buf_out_lzo = page_size + page_size / 16 + 64 + 3;
1251 #endif
1252
1253 #ifdef CONFIG_SNAPPY
1254 /* buf size for snappy */
1255 len_buf_out_snappy = snappy_max_compressed_length(page_size);
1256 #endif
1257
1258 /* get the biggest that can store all kinds of compressed page */
1259 len_buf_out = MAX(len_buf_out_zlib,
1260 MAX(len_buf_out_lzo, len_buf_out_snappy));
1261
1262 return len_buf_out;
1263 }
1264
1265 /*
1266 * check if the page is all 0
1267 */
1268 static inline bool is_zero_page(const uint8_t *buf, size_t page_size)
1269 {
1270 return buffer_is_zero(buf, page_size);
1271 }
1272
1273 static int write_dump_pages(DumpState *s)
1274 {
1275 int ret = 0;
1276 DataCache page_desc, page_data;
1277 size_t len_buf_out, size_out;
1278 #ifdef CONFIG_LZO
1279 lzo_bytep wrkmem = NULL;
1280 #endif
1281 uint8_t *buf_out = NULL;
1282 off_t offset_desc, offset_data;
1283 PageDescriptor pd, pd_zero;
1284 uint8_t *buf;
1285 int endian = s->dump_info.d_endian;
1286 GuestPhysBlock *block_iter = NULL;
1287 uint64_t pfn_iter;
1288
1289 /* get offset of page_desc and page_data in dump file */
1290 offset_desc = s->offset_page;
1291 offset_data = offset_desc + sizeof(PageDescriptor) * s->num_dumpable;
1292
1293 prepare_data_cache(&page_desc, s, offset_desc);
1294 prepare_data_cache(&page_data, s, offset_data);
1295
1296 /* prepare buffer to store compressed data */
1297 len_buf_out = get_len_buf_out(s->page_size, s->flag_compress);
1298 if (len_buf_out == 0) {
1299 dump_error(s, "dump: failed to get length of output buffer.\n");
1300 goto out;
1301 }
1302
1303 #ifdef CONFIG_LZO
1304 wrkmem = g_malloc(LZO1X_1_MEM_COMPRESS);
1305 #endif
1306
1307 buf_out = g_malloc(len_buf_out);
1308
1309 /*
1310 * init zero page's page_desc and page_data, because every zero page
1311 * uses the same page_data
1312 */
1313 pd_zero.size = cpu_convert_to_target32(s->page_size, endian);
1314 pd_zero.flags = cpu_convert_to_target32(0, endian);
1315 pd_zero.offset = cpu_convert_to_target64(offset_data, endian);
1316 pd_zero.page_flags = cpu_convert_to_target64(0, endian);
1317 buf = g_malloc0(s->page_size);
1318 ret = write_cache(&page_data, buf, s->page_size, false);
1319 g_free(buf);
1320 if (ret < 0) {
1321 dump_error(s, "dump: failed to write page data(zero page).\n");
1322 goto out;
1323 }
1324
1325 offset_data += s->page_size;
1326
1327 /*
1328 * dump memory to vmcore page by page. zero page will all be resided in the
1329 * first page of page section
1330 */
1331 while (get_next_page(&block_iter, &pfn_iter, &buf, s)) {
1332 /* check zero page */
1333 if (is_zero_page(buf, s->page_size)) {
1334 ret = write_cache(&page_desc, &pd_zero, sizeof(PageDescriptor),
1335 false);
1336 if (ret < 0) {
1337 dump_error(s, "dump: failed to write page desc.\n");
1338 goto out;
1339 }
1340 } else {
1341 /*
1342 * not zero page, then:
1343 * 1. compress the page
1344 * 2. write the compressed page into the cache of page_data
1345 * 3. get page desc of the compressed page and write it into the
1346 * cache of page_desc
1347 *
1348 * only one compression format will be used here, for
1349 * s->flag_compress is set. But when compression fails to work,
1350 * we fall back to save in plaintext.
1351 */
1352 size_out = len_buf_out;
1353 if ((s->flag_compress & DUMP_DH_COMPRESSED_ZLIB) &&
1354 (compress2(buf_out, (uLongf *)&size_out, buf, s->page_size,
1355 Z_BEST_SPEED) == Z_OK) && (size_out < s->page_size)) {
1356 pd.flags = cpu_convert_to_target32(DUMP_DH_COMPRESSED_ZLIB,
1357 endian);
1358 pd.size = cpu_convert_to_target32(size_out, endian);
1359
1360 ret = write_cache(&page_data, buf_out, size_out, false);
1361 if (ret < 0) {
1362 dump_error(s, "dump: failed to write page data.\n");
1363 goto out;
1364 }
1365 #ifdef CONFIG_LZO
1366 } else if ((s->flag_compress & DUMP_DH_COMPRESSED_LZO) &&
1367 (lzo1x_1_compress(buf, s->page_size, buf_out,
1368 (lzo_uint *)&size_out, wrkmem) == LZO_E_OK) &&
1369 (size_out < s->page_size)) {
1370 pd.flags = cpu_convert_to_target32(DUMP_DH_COMPRESSED_LZO,
1371 endian);
1372 pd.size = cpu_convert_to_target32(size_out, endian);
1373
1374 ret = write_cache(&page_data, buf_out, size_out, false);
1375 if (ret < 0) {
1376 dump_error(s, "dump: failed to write page data.\n");
1377 goto out;
1378 }
1379 #endif
1380 #ifdef CONFIG_SNAPPY
1381 } else if ((s->flag_compress & DUMP_DH_COMPRESSED_SNAPPY) &&
1382 (snappy_compress((char *)buf, s->page_size,
1383 (char *)buf_out, &size_out) == SNAPPY_OK) &&
1384 (size_out < s->page_size)) {
1385 pd.flags = cpu_convert_to_target32(
1386 DUMP_DH_COMPRESSED_SNAPPY, endian);
1387 pd.size = cpu_convert_to_target32(size_out, endian);
1388
1389 ret = write_cache(&page_data, buf_out, size_out, false);
1390 if (ret < 0) {
1391 dump_error(s, "dump: failed to write page data.\n");
1392 goto out;
1393 }
1394 #endif
1395 } else {
1396 /*
1397 * fall back to save in plaintext, size_out should be
1398 * assigned to s->page_size
1399 */
1400 pd.flags = cpu_convert_to_target32(0, endian);
1401 size_out = s->page_size;
1402 pd.size = cpu_convert_to_target32(size_out, endian);
1403
1404 ret = write_cache(&page_data, buf, s->page_size, false);
1405 if (ret < 0) {
1406 dump_error(s, "dump: failed to write page data.\n");
1407 goto out;
1408 }
1409 }
1410
1411 /* get and write page desc here */
1412 pd.page_flags = cpu_convert_to_target64(0, endian);
1413 pd.offset = cpu_convert_to_target64(offset_data, endian);
1414 offset_data += size_out;
1415
1416 ret = write_cache(&page_desc, &pd, sizeof(PageDescriptor), false);
1417 if (ret < 0) {
1418 dump_error(s, "dump: failed to write page desc.\n");
1419 goto out;
1420 }
1421 }
1422 }
1423
1424 ret = write_cache(&page_desc, NULL, 0, true);
1425 if (ret < 0) {
1426 dump_error(s, "dump: failed to sync cache for page_desc.\n");
1427 goto out;
1428 }
1429 ret = write_cache(&page_data, NULL, 0, true);
1430 if (ret < 0) {
1431 dump_error(s, "dump: failed to sync cache for page_data.\n");
1432 goto out;
1433 }
1434
1435 out:
1436 free_data_cache(&page_desc);
1437 free_data_cache(&page_data);
1438
1439 #ifdef CONFIG_LZO
1440 g_free(wrkmem);
1441 #endif
1442
1443 g_free(buf_out);
1444
1445 return ret;
1446 }
1447
1448 static int create_kdump_vmcore(DumpState *s)
1449 {
1450 int ret;
1451
1452 /*
1453 * the kdump-compressed format is:
1454 * File offset
1455 * +------------------------------------------+ 0x0
1456 * | main header (struct disk_dump_header) |
1457 * |------------------------------------------+ block 1
1458 * | sub header (struct kdump_sub_header) |
1459 * |------------------------------------------+ block 2
1460 * | 1st-dump_bitmap |
1461 * |------------------------------------------+ block 2 + X blocks
1462 * | 2nd-dump_bitmap | (aligned by block)
1463 * |------------------------------------------+ block 2 + 2 * X blocks
1464 * | page desc for pfn 0 (struct page_desc) | (aligned by block)
1465 * | page desc for pfn 1 (struct page_desc) |
1466 * | : |
1467 * |------------------------------------------| (not aligned by block)
1468 * | page data (pfn 0) |
1469 * | page data (pfn 1) |
1470 * | : |
1471 * +------------------------------------------+
1472 */
1473
1474 ret = write_start_flat_header(s->fd);
1475 if (ret < 0) {
1476 dump_error(s, "dump: failed to write start flat header.\n");
1477 return -1;
1478 }
1479
1480 ret = write_dump_header(s);
1481 if (ret < 0) {
1482 return -1;
1483 }
1484
1485 ret = write_dump_bitmap(s);
1486 if (ret < 0) {
1487 return -1;
1488 }
1489
1490 ret = write_dump_pages(s);
1491 if (ret < 0) {
1492 return -1;
1493 }
1494
1495 ret = write_end_flat_header(s->fd);
1496 if (ret < 0) {
1497 dump_error(s, "dump: failed to write end flat header.\n");
1498 return -1;
1499 }
1500
1501 dump_completed(s);
1502
1503 return 0;
1504 }
1505
1506 static ram_addr_t get_start_block(DumpState *s)
1507 {
1508 GuestPhysBlock *block;
1509
1510 if (!s->has_filter) {
1511 s->next_block = QTAILQ_FIRST(&s->guest_phys_blocks.head);
1512 return 0;
1513 }
1514
1515 QTAILQ_FOREACH(block, &s->guest_phys_blocks.head, next) {
1516 if (block->target_start >= s->begin + s->length ||
1517 block->target_end <= s->begin) {
1518 /* This block is out of the range */
1519 continue;
1520 }
1521
1522 s->next_block = block;
1523 if (s->begin > block->target_start) {
1524 s->start = s->begin - block->target_start;
1525 } else {
1526 s->start = 0;
1527 }
1528 return s->start;
1529 }
1530
1531 return -1;
1532 }
1533
1534 static void get_max_mapnr(DumpState *s)
1535 {
1536 GuestPhysBlock *last_block;
1537
1538 last_block = QTAILQ_LAST(&s->guest_phys_blocks.head, GuestPhysBlockHead);
1539 s->max_mapnr = paddr_to_pfn(last_block->target_end, s->page_shift);
1540 }
1541
1542 static int dump_init(DumpState *s, int fd, bool has_format,
1543 DumpGuestMemoryFormat format, bool paging, bool has_filter,
1544 int64_t begin, int64_t length, Error **errp)
1545 {
1546 CPUState *cpu;
1547 int nr_cpus;
1548 Error *err = NULL;
1549 int ret;
1550
1551 /* kdump-compressed is conflict with paging and filter */
1552 if (has_format && format != DUMP_GUEST_MEMORY_FORMAT_ELF) {
1553 assert(!paging && !has_filter);
1554 }
1555
1556 if (runstate_is_running()) {
1557 vm_stop(RUN_STATE_SAVE_VM);
1558 s->resume = true;
1559 } else {
1560 s->resume = false;
1561 }
1562
1563 /* If we use KVM, we should synchronize the registers before we get dump
1564 * info or physmap info.
1565 */
1566 cpu_synchronize_all_states();
1567 nr_cpus = 0;
1568 CPU_FOREACH(cpu) {
1569 nr_cpus++;
1570 }
1571
1572 s->fd = fd;
1573 s->has_filter = has_filter;
1574 s->begin = begin;
1575 s->length = length;
1576
1577 guest_phys_blocks_init(&s->guest_phys_blocks);
1578 guest_phys_blocks_append(&s->guest_phys_blocks);
1579
1580 s->start = get_start_block(s);
1581 if (s->start == -1) {
1582 error_set(errp, QERR_INVALID_PARAMETER, "begin");
1583 goto cleanup;
1584 }
1585
1586 /* get dump info: endian, class and architecture.
1587 * If the target architecture is not supported, cpu_get_dump_info() will
1588 * return -1.
1589 */
1590 ret = cpu_get_dump_info(&s->dump_info, &s->guest_phys_blocks);
1591 if (ret < 0) {
1592 error_set(errp, QERR_UNSUPPORTED);
1593 goto cleanup;
1594 }
1595
1596 s->note_size = cpu_get_note_size(s->dump_info.d_class,
1597 s->dump_info.d_machine, nr_cpus);
1598 if (s->note_size < 0) {
1599 error_set(errp, QERR_UNSUPPORTED);
1600 goto cleanup;
1601 }
1602
1603 /* get memory mapping */
1604 memory_mapping_list_init(&s->list);
1605 if (paging) {
1606 qemu_get_guest_memory_mapping(&s->list, &s->guest_phys_blocks, &err);
1607 if (err != NULL) {
1608 error_propagate(errp, err);
1609 goto cleanup;
1610 }
1611 } else {
1612 qemu_get_guest_simple_memory_mapping(&s->list, &s->guest_phys_blocks);
1613 }
1614
1615 s->nr_cpus = nr_cpus;
1616 s->page_size = TARGET_PAGE_SIZE;
1617 s->page_shift = ffs(s->page_size) - 1;
1618
1619 get_max_mapnr(s);
1620
1621 uint64_t tmp;
1622 tmp = DIV_ROUND_UP(DIV_ROUND_UP(s->max_mapnr, CHAR_BIT), s->page_size);
1623 s->len_dump_bitmap = tmp * s->page_size;
1624
1625 /* init for kdump-compressed format */
1626 if (has_format && format != DUMP_GUEST_MEMORY_FORMAT_ELF) {
1627 switch (format) {
1628 case DUMP_GUEST_MEMORY_FORMAT_KDUMP_ZLIB:
1629 s->flag_compress = DUMP_DH_COMPRESSED_ZLIB;
1630 break;
1631
1632 case DUMP_GUEST_MEMORY_FORMAT_KDUMP_LZO:
1633 s->flag_compress = DUMP_DH_COMPRESSED_LZO;
1634 break;
1635
1636 case DUMP_GUEST_MEMORY_FORMAT_KDUMP_SNAPPY:
1637 s->flag_compress = DUMP_DH_COMPRESSED_SNAPPY;
1638 break;
1639
1640 default:
1641 s->flag_compress = 0;
1642 }
1643
1644 return 0;
1645 }
1646
1647 if (s->has_filter) {
1648 memory_mapping_filter(&s->list, s->begin, s->length);
1649 }
1650
1651 /*
1652 * calculate phdr_num
1653 *
1654 * the type of ehdr->e_phnum is uint16_t, so we should avoid overflow
1655 */
1656 s->phdr_num = 1; /* PT_NOTE */
1657 if (s->list.num < UINT16_MAX - 2) {
1658 s->phdr_num += s->list.num;
1659 s->have_section = false;
1660 } else {
1661 s->have_section = true;
1662 s->phdr_num = PN_XNUM;
1663 s->sh_info = 1; /* PT_NOTE */
1664
1665 /* the type of shdr->sh_info is uint32_t, so we should avoid overflow */
1666 if (s->list.num <= UINT32_MAX - 1) {
1667 s->sh_info += s->list.num;
1668 } else {
1669 s->sh_info = UINT32_MAX;
1670 }
1671 }
1672
1673 if (s->dump_info.d_class == ELFCLASS64) {
1674 if (s->have_section) {
1675 s->memory_offset = sizeof(Elf64_Ehdr) +
1676 sizeof(Elf64_Phdr) * s->sh_info +
1677 sizeof(Elf64_Shdr) + s->note_size;
1678 } else {
1679 s->memory_offset = sizeof(Elf64_Ehdr) +
1680 sizeof(Elf64_Phdr) * s->phdr_num + s->note_size;
1681 }
1682 } else {
1683 if (s->have_section) {
1684 s->memory_offset = sizeof(Elf32_Ehdr) +
1685 sizeof(Elf32_Phdr) * s->sh_info +
1686 sizeof(Elf32_Shdr) + s->note_size;
1687 } else {
1688 s->memory_offset = sizeof(Elf32_Ehdr) +
1689 sizeof(Elf32_Phdr) * s->phdr_num + s->note_size;
1690 }
1691 }
1692
1693 return 0;
1694
1695 cleanup:
1696 guest_phys_blocks_free(&s->guest_phys_blocks);
1697
1698 if (s->resume) {
1699 vm_start();
1700 }
1701
1702 return -1;
1703 }
1704
1705 void qmp_dump_guest_memory(bool paging, const char *file, bool has_begin,
1706 int64_t begin, bool has_length,
1707 int64_t length, bool has_format,
1708 DumpGuestMemoryFormat format, Error **errp)
1709 {
1710 const char *p;
1711 int fd = -1;
1712 DumpState *s;
1713 int ret;
1714
1715 /*
1716 * kdump-compressed format need the whole memory dumped, so paging or
1717 * filter is not supported here.
1718 */
1719 if ((has_format && format != DUMP_GUEST_MEMORY_FORMAT_ELF) &&
1720 (paging || has_begin || has_length)) {
1721 error_setg(errp, "kdump-compressed format doesn't support paging or "
1722 "filter");
1723 return;
1724 }
1725 if (has_begin && !has_length) {
1726 error_set(errp, QERR_MISSING_PARAMETER, "length");
1727 return;
1728 }
1729 if (!has_begin && has_length) {
1730 error_set(errp, QERR_MISSING_PARAMETER, "begin");
1731 return;
1732 }
1733
1734 /* check whether lzo/snappy is supported */
1735 #ifndef CONFIG_LZO
1736 if (has_format && format == DUMP_GUEST_MEMORY_FORMAT_KDUMP_LZO) {
1737 error_setg(errp, "kdump-lzo is not available now");
1738 return;
1739 }
1740 #endif
1741
1742 #ifndef CONFIG_SNAPPY
1743 if (has_format && format == DUMP_GUEST_MEMORY_FORMAT_KDUMP_SNAPPY) {
1744 error_setg(errp, "kdump-snappy is not available now");
1745 return;
1746 }
1747 #endif
1748
1749 #if !defined(WIN32)
1750 if (strstart(file, "fd:", &p)) {
1751 fd = monitor_get_fd(cur_mon, p, errp);
1752 if (fd == -1) {
1753 return;
1754 }
1755 }
1756 #endif
1757
1758 if (strstart(file, "file:", &p)) {
1759 fd = qemu_open(p, O_WRONLY | O_CREAT | O_TRUNC | O_BINARY, S_IRUSR);
1760 if (fd < 0) {
1761 error_setg_file_open(errp, errno, p);
1762 return;
1763 }
1764 }
1765
1766 if (fd == -1) {
1767 error_set(errp, QERR_INVALID_PARAMETER, "protocol");
1768 return;
1769 }
1770
1771 s = g_malloc0(sizeof(DumpState));
1772
1773 ret = dump_init(s, fd, has_format, format, paging, has_begin,
1774 begin, length, errp);
1775 if (ret < 0) {
1776 g_free(s);
1777 return;
1778 }
1779
1780 if (has_format && format != DUMP_GUEST_MEMORY_FORMAT_ELF) {
1781 if (create_kdump_vmcore(s) < 0) {
1782 error_set(errp, QERR_IO_ERROR);
1783 }
1784 } else {
1785 if (create_vmcore(s) < 0) {
1786 error_set(errp, QERR_IO_ERROR);
1787 }
1788 }
1789
1790 g_free(s);
1791 }
1792
1793 DumpGuestMemoryCapability *qmp_query_dump_guest_memory_capability(Error **errp)
1794 {
1795 DumpGuestMemoryFormatList *item;
1796 DumpGuestMemoryCapability *cap =
1797 g_malloc0(sizeof(DumpGuestMemoryCapability));
1798
1799 /* elf is always available */
1800 item = g_malloc0(sizeof(DumpGuestMemoryFormatList));
1801 cap->formats = item;
1802 item->value = DUMP_GUEST_MEMORY_FORMAT_ELF;
1803
1804 /* kdump-zlib is always available */
1805 item->next = g_malloc0(sizeof(DumpGuestMemoryFormatList));
1806 item = item->next;
1807 item->value = DUMP_GUEST_MEMORY_FORMAT_KDUMP_ZLIB;
1808
1809 /* add new item if kdump-lzo is available */
1810 #ifdef CONFIG_LZO
1811 item->next = g_malloc0(sizeof(DumpGuestMemoryFormatList));
1812 item = item->next;
1813 item->value = DUMP_GUEST_MEMORY_FORMAT_KDUMP_LZO;
1814 #endif
1815
1816 /* add new item if kdump-snappy is available */
1817 #ifdef CONFIG_SNAPPY
1818 item->next = g_malloc0(sizeof(DumpGuestMemoryFormatList));
1819 item = item->next;
1820 item->value = DUMP_GUEST_MEMORY_FORMAT_KDUMP_SNAPPY;
1821 #endif
1822
1823 return cap;
1824 }