]> git.proxmox.com Git - mirror_qemu.git/blob - exec-all.h
Move likely and unlikely macros in a common place (Aurelien Jarno).
[mirror_qemu.git] / exec-all.h
1 /*
2 * internal execution defines for qemu
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20
21 /* allow to see translation results - the slowdown should be negligible, so we leave it */
22 #define DEBUG_DISAS
23
24 #ifndef glue
25 #define xglue(x, y) x ## y
26 #define glue(x, y) xglue(x, y)
27 #define stringify(s) tostring(s)
28 #define tostring(s) #s
29 #endif
30
31 #if __GNUC__ < 3
32 #define __builtin_expect(x, n) (x)
33 #endif
34
35 #define likely(x) __builtin_expect(!!(x), 1)
36 #define unlikely(x) __builtin_expect(!!(x), 0)
37
38 #ifdef __i386__
39 #define REGPARM(n) __attribute((regparm(n)))
40 #else
41 #define REGPARM(n)
42 #endif
43
44 /* is_jmp field values */
45 #define DISAS_NEXT 0 /* next instruction can be analyzed */
46 #define DISAS_JUMP 1 /* only pc was modified dynamically */
47 #define DISAS_UPDATE 2 /* cpu state was modified dynamically */
48 #define DISAS_TB_JUMP 3 /* only pc was modified statically */
49
50 struct TranslationBlock;
51
52 /* XXX: make safe guess about sizes */
53 #define MAX_OP_PER_INSTR 32
54 #define OPC_BUF_SIZE 512
55 #define OPC_MAX_SIZE (OPC_BUF_SIZE - MAX_OP_PER_INSTR)
56
57 #define OPPARAM_BUF_SIZE (OPC_BUF_SIZE * 3)
58
59 extern uint16_t gen_opc_buf[OPC_BUF_SIZE];
60 extern uint32_t gen_opparam_buf[OPPARAM_BUF_SIZE];
61 extern long gen_labels[OPC_BUF_SIZE];
62 extern int nb_gen_labels;
63 extern target_ulong gen_opc_pc[OPC_BUF_SIZE];
64 extern target_ulong gen_opc_npc[OPC_BUF_SIZE];
65 extern uint8_t gen_opc_cc_op[OPC_BUF_SIZE];
66 extern uint8_t gen_opc_instr_start[OPC_BUF_SIZE];
67 extern target_ulong gen_opc_jump_pc[2];
68 extern uint32_t gen_opc_hflags[OPC_BUF_SIZE];
69
70 typedef void (GenOpFunc)(void);
71 typedef void (GenOpFunc1)(long);
72 typedef void (GenOpFunc2)(long, long);
73 typedef void (GenOpFunc3)(long, long, long);
74
75 #if defined(TARGET_I386)
76
77 void optimize_flags_init(void);
78
79 #endif
80
81 extern FILE *logfile;
82 extern int loglevel;
83
84 void muls64(int64_t *phigh, int64_t *plow, int64_t a, int64_t b);
85 void mulu64(uint64_t *phigh, uint64_t *plow, uint64_t a, uint64_t b);
86
87 int gen_intermediate_code(CPUState *env, struct TranslationBlock *tb);
88 int gen_intermediate_code_pc(CPUState *env, struct TranslationBlock *tb);
89 void dump_ops(const uint16_t *opc_buf, const uint32_t *opparam_buf);
90 int cpu_gen_code(CPUState *env, struct TranslationBlock *tb,
91 int max_code_size, int *gen_code_size_ptr);
92 int cpu_restore_state(struct TranslationBlock *tb,
93 CPUState *env, unsigned long searched_pc,
94 void *puc);
95 int cpu_gen_code_copy(CPUState *env, struct TranslationBlock *tb,
96 int max_code_size, int *gen_code_size_ptr);
97 int cpu_restore_state_copy(struct TranslationBlock *tb,
98 CPUState *env, unsigned long searched_pc,
99 void *puc);
100 void cpu_resume_from_signal(CPUState *env1, void *puc);
101 void cpu_exec_init(CPUState *env);
102 int page_unprotect(target_ulong address, unsigned long pc, void *puc);
103 void tb_invalidate_phys_page_range(target_ulong start, target_ulong end,
104 int is_cpu_write_access);
105 void tb_invalidate_page_range(target_ulong start, target_ulong end);
106 void tlb_flush_page(CPUState *env, target_ulong addr);
107 void tlb_flush(CPUState *env, int flush_global);
108 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
109 target_phys_addr_t paddr, int prot,
110 int is_user, int is_softmmu);
111 static inline int tlb_set_page(CPUState *env, target_ulong vaddr,
112 target_phys_addr_t paddr, int prot,
113 int is_user, int is_softmmu)
114 {
115 if (prot & PAGE_READ)
116 prot |= PAGE_EXEC;
117 return tlb_set_page_exec(env, vaddr, paddr, prot, is_user, is_softmmu);
118 }
119
120 #define CODE_GEN_MAX_SIZE 65536
121 #define CODE_GEN_ALIGN 16 /* must be >= of the size of a icache line */
122
123 #define CODE_GEN_PHYS_HASH_BITS 15
124 #define CODE_GEN_PHYS_HASH_SIZE (1 << CODE_GEN_PHYS_HASH_BITS)
125
126 /* maximum total translate dcode allocated */
127
128 /* NOTE: the translated code area cannot be too big because on some
129 archs the range of "fast" function calls is limited. Here is a
130 summary of the ranges:
131
132 i386 : signed 32 bits
133 arm : signed 26 bits
134 ppc : signed 24 bits
135 sparc : signed 32 bits
136 alpha : signed 23 bits
137 */
138
139 #if defined(__alpha__)
140 #define CODE_GEN_BUFFER_SIZE (2 * 1024 * 1024)
141 #elif defined(__ia64)
142 #define CODE_GEN_BUFFER_SIZE (4 * 1024 * 1024) /* range of addl */
143 #elif defined(__powerpc__)
144 #define CODE_GEN_BUFFER_SIZE (6 * 1024 * 1024)
145 #else
146 #define CODE_GEN_BUFFER_SIZE (16 * 1024 * 1024)
147 #endif
148
149 //#define CODE_GEN_BUFFER_SIZE (128 * 1024)
150
151 /* estimated block size for TB allocation */
152 /* XXX: use a per code average code fragment size and modulate it
153 according to the host CPU */
154 #if defined(CONFIG_SOFTMMU)
155 #define CODE_GEN_AVG_BLOCK_SIZE 128
156 #else
157 #define CODE_GEN_AVG_BLOCK_SIZE 64
158 #endif
159
160 #define CODE_GEN_MAX_BLOCKS (CODE_GEN_BUFFER_SIZE / CODE_GEN_AVG_BLOCK_SIZE)
161
162 #if defined(__powerpc__)
163 #define USE_DIRECT_JUMP
164 #endif
165 #if defined(__i386__) && !defined(_WIN32)
166 #define USE_DIRECT_JUMP
167 #endif
168
169 typedef struct TranslationBlock {
170 target_ulong pc; /* simulated PC corresponding to this block (EIP + CS base) */
171 target_ulong cs_base; /* CS base for this block */
172 unsigned int flags; /* flags defining in which context the code was generated */
173 uint16_t size; /* size of target code for this block (1 <=
174 size <= TARGET_PAGE_SIZE) */
175 uint16_t cflags; /* compile flags */
176 #define CF_CODE_COPY 0x0001 /* block was generated in code copy mode */
177 #define CF_TB_FP_USED 0x0002 /* fp ops are used in the TB */
178 #define CF_FP_USED 0x0004 /* fp ops are used in the TB or in a chained TB */
179 #define CF_SINGLE_INSN 0x0008 /* compile only a single instruction */
180
181 uint8_t *tc_ptr; /* pointer to the translated code */
182 /* next matching tb for physical address. */
183 struct TranslationBlock *phys_hash_next;
184 /* first and second physical page containing code. The lower bit
185 of the pointer tells the index in page_next[] */
186 struct TranslationBlock *page_next[2];
187 target_ulong page_addr[2];
188
189 /* the following data are used to directly call another TB from
190 the code of this one. */
191 uint16_t tb_next_offset[2]; /* offset of original jump target */
192 #ifdef USE_DIRECT_JUMP
193 uint16_t tb_jmp_offset[4]; /* offset of jump instruction */
194 #else
195 uint32_t tb_next[2]; /* address of jump generated code */
196 #endif
197 /* list of TBs jumping to this one. This is a circular list using
198 the two least significant bits of the pointers to tell what is
199 the next pointer: 0 = jmp_next[0], 1 = jmp_next[1], 2 =
200 jmp_first */
201 struct TranslationBlock *jmp_next[2];
202 struct TranslationBlock *jmp_first;
203 } TranslationBlock;
204
205 static inline unsigned int tb_jmp_cache_hash_page(target_ulong pc)
206 {
207 target_ulong tmp;
208 tmp = pc ^ (pc >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS));
209 return (tmp >> TB_JMP_PAGE_BITS) & TB_JMP_PAGE_MASK;
210 }
211
212 static inline unsigned int tb_jmp_cache_hash_func(target_ulong pc)
213 {
214 target_ulong tmp;
215 tmp = pc ^ (pc >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS));
216 return (((tmp >> TB_JMP_PAGE_BITS) & TB_JMP_PAGE_MASK) |
217 (tmp & TB_JMP_ADDR_MASK));
218 }
219
220 static inline unsigned int tb_phys_hash_func(unsigned long pc)
221 {
222 return pc & (CODE_GEN_PHYS_HASH_SIZE - 1);
223 }
224
225 TranslationBlock *tb_alloc(target_ulong pc);
226 void tb_flush(CPUState *env);
227 void tb_link_phys(TranslationBlock *tb,
228 target_ulong phys_pc, target_ulong phys_page2);
229
230 extern TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
231
232 extern uint8_t code_gen_buffer[CODE_GEN_BUFFER_SIZE];
233 extern uint8_t *code_gen_ptr;
234
235 #if defined(USE_DIRECT_JUMP)
236
237 #if defined(__powerpc__)
238 static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr)
239 {
240 uint32_t val, *ptr;
241
242 /* patch the branch destination */
243 ptr = (uint32_t *)jmp_addr;
244 val = *ptr;
245 val = (val & ~0x03fffffc) | ((addr - jmp_addr) & 0x03fffffc);
246 *ptr = val;
247 /* flush icache */
248 asm volatile ("dcbst 0,%0" : : "r"(ptr) : "memory");
249 asm volatile ("sync" : : : "memory");
250 asm volatile ("icbi 0,%0" : : "r"(ptr) : "memory");
251 asm volatile ("sync" : : : "memory");
252 asm volatile ("isync" : : : "memory");
253 }
254 #elif defined(__i386__)
255 static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr)
256 {
257 /* patch the branch destination */
258 *(uint32_t *)jmp_addr = addr - (jmp_addr + 4);
259 /* no need to flush icache explicitely */
260 }
261 #endif
262
263 static inline void tb_set_jmp_target(TranslationBlock *tb,
264 int n, unsigned long addr)
265 {
266 unsigned long offset;
267
268 offset = tb->tb_jmp_offset[n];
269 tb_set_jmp_target1((unsigned long)(tb->tc_ptr + offset), addr);
270 offset = tb->tb_jmp_offset[n + 2];
271 if (offset != 0xffff)
272 tb_set_jmp_target1((unsigned long)(tb->tc_ptr + offset), addr);
273 }
274
275 #else
276
277 /* set the jump target */
278 static inline void tb_set_jmp_target(TranslationBlock *tb,
279 int n, unsigned long addr)
280 {
281 tb->tb_next[n] = addr;
282 }
283
284 #endif
285
286 static inline void tb_add_jump(TranslationBlock *tb, int n,
287 TranslationBlock *tb_next)
288 {
289 /* NOTE: this test is only needed for thread safety */
290 if (!tb->jmp_next[n]) {
291 /* patch the native jump address */
292 tb_set_jmp_target(tb, n, (unsigned long)tb_next->tc_ptr);
293
294 /* add in TB jmp circular list */
295 tb->jmp_next[n] = tb_next->jmp_first;
296 tb_next->jmp_first = (TranslationBlock *)((long)(tb) | (n));
297 }
298 }
299
300 TranslationBlock *tb_find_pc(unsigned long pc_ptr);
301
302 #ifndef offsetof
303 #define offsetof(type, field) ((size_t) &((type *)0)->field)
304 #endif
305
306 #if defined(_WIN32)
307 #define ASM_DATA_SECTION ".section \".data\"\n"
308 #define ASM_PREVIOUS_SECTION ".section .text\n"
309 #elif defined(__APPLE__)
310 #define ASM_DATA_SECTION ".data\n"
311 #define ASM_PREVIOUS_SECTION ".text\n"
312 #else
313 #define ASM_DATA_SECTION ".section \".data\"\n"
314 #define ASM_PREVIOUS_SECTION ".previous\n"
315 #endif
316
317 #define ASM_OP_LABEL_NAME(n, opname) \
318 ASM_NAME(__op_label) #n "." ASM_NAME(opname)
319
320 #if defined(__powerpc__)
321
322 /* we patch the jump instruction directly */
323 #define GOTO_TB(opname, tbparam, n)\
324 do {\
325 asm volatile (ASM_DATA_SECTION\
326 ASM_OP_LABEL_NAME(n, opname) ":\n"\
327 ".long 1f\n"\
328 ASM_PREVIOUS_SECTION \
329 "b " ASM_NAME(__op_jmp) #n "\n"\
330 "1:\n");\
331 } while (0)
332
333 #elif defined(__i386__) && defined(USE_DIRECT_JUMP)
334
335 /* we patch the jump instruction directly */
336 #define GOTO_TB(opname, tbparam, n)\
337 do {\
338 asm volatile (".section .data\n"\
339 ASM_OP_LABEL_NAME(n, opname) ":\n"\
340 ".long 1f\n"\
341 ASM_PREVIOUS_SECTION \
342 "jmp " ASM_NAME(__op_jmp) #n "\n"\
343 "1:\n");\
344 } while (0)
345
346 #elif defined(__s390__)
347 /* GCC spills R13, so we have to restore it before branching away */
348
349 #define GOTO_TB(opname, tbparam, n)\
350 do {\
351 static void __attribute__((used)) *dummy ## n = &&dummy_label ## n;\
352 static void __attribute__((used)) *__op_label ## n \
353 __asm__(ASM_OP_LABEL_NAME(n, opname)) = &&label ## n;\
354 __asm__ __volatile__ ( \
355 "l %%r13,52(%%r15)\n" \
356 "br %0\n" \
357 : : "r" (((TranslationBlock*)tbparam)->tb_next[n]));\
358 \
359 for(;*((int*)0);); /* just to keep GCC busy */ \
360 label ## n: ;\
361 dummy_label ## n: ;\
362 } while(0)
363
364 #else
365
366 /* jump to next block operations (more portable code, does not need
367 cache flushing, but slower because of indirect jump) */
368 #define GOTO_TB(opname, tbparam, n)\
369 do {\
370 static void __attribute__((used)) *dummy ## n = &&dummy_label ## n;\
371 static void __attribute__((used)) *__op_label ## n \
372 __asm__(ASM_OP_LABEL_NAME(n, opname)) = &&label ## n;\
373 goto *(void *)(((TranslationBlock *)tbparam)->tb_next[n]);\
374 label ## n: ;\
375 dummy_label ## n: ;\
376 } while (0)
377
378 #endif
379
380 extern CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
381 extern CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
382 extern void *io_mem_opaque[IO_MEM_NB_ENTRIES];
383
384 #if defined(__powerpc__)
385 static inline int testandset (int *p)
386 {
387 int ret;
388 __asm__ __volatile__ (
389 "0: lwarx %0,0,%1\n"
390 " xor. %0,%3,%0\n"
391 " bne 1f\n"
392 " stwcx. %2,0,%1\n"
393 " bne- 0b\n"
394 "1: "
395 : "=&r" (ret)
396 : "r" (p), "r" (1), "r" (0)
397 : "cr0", "memory");
398 return ret;
399 }
400 #elif defined(__i386__)
401 static inline int testandset (int *p)
402 {
403 long int readval = 0;
404
405 __asm__ __volatile__ ("lock; cmpxchgl %2, %0"
406 : "+m" (*p), "+a" (readval)
407 : "r" (1)
408 : "cc");
409 return readval;
410 }
411 #elif defined(__x86_64__)
412 static inline int testandset (int *p)
413 {
414 long int readval = 0;
415
416 __asm__ __volatile__ ("lock; cmpxchgl %2, %0"
417 : "+m" (*p), "+a" (readval)
418 : "r" (1)
419 : "cc");
420 return readval;
421 }
422 #elif defined(__s390__)
423 static inline int testandset (int *p)
424 {
425 int ret;
426
427 __asm__ __volatile__ ("0: cs %0,%1,0(%2)\n"
428 " jl 0b"
429 : "=&d" (ret)
430 : "r" (1), "a" (p), "0" (*p)
431 : "cc", "memory" );
432 return ret;
433 }
434 #elif defined(__alpha__)
435 static inline int testandset (int *p)
436 {
437 int ret;
438 unsigned long one;
439
440 __asm__ __volatile__ ("0: mov 1,%2\n"
441 " ldl_l %0,%1\n"
442 " stl_c %2,%1\n"
443 " beq %2,1f\n"
444 ".subsection 2\n"
445 "1: br 0b\n"
446 ".previous"
447 : "=r" (ret), "=m" (*p), "=r" (one)
448 : "m" (*p));
449 return ret;
450 }
451 #elif defined(__sparc__)
452 static inline int testandset (int *p)
453 {
454 int ret;
455
456 __asm__ __volatile__("ldstub [%1], %0"
457 : "=r" (ret)
458 : "r" (p)
459 : "memory");
460
461 return (ret ? 1 : 0);
462 }
463 #elif defined(__arm__)
464 static inline int testandset (int *spinlock)
465 {
466 register unsigned int ret;
467 __asm__ __volatile__("swp %0, %1, [%2]"
468 : "=r"(ret)
469 : "0"(1), "r"(spinlock));
470
471 return ret;
472 }
473 #elif defined(__mc68000)
474 static inline int testandset (int *p)
475 {
476 char ret;
477 __asm__ __volatile__("tas %1; sne %0"
478 : "=r" (ret)
479 : "m" (p)
480 : "cc","memory");
481 return ret;
482 }
483 #elif defined(__ia64)
484
485 #include <ia64intrin.h>
486
487 static inline int testandset (int *p)
488 {
489 return __sync_lock_test_and_set (p, 1);
490 }
491 #elif defined(__mips__)
492 static inline int testandset (int *p)
493 {
494 int ret;
495
496 __asm__ __volatile__ (
497 " .set push \n"
498 " .set noat \n"
499 " .set mips2 \n"
500 "1: li $1, 1 \n"
501 " ll %0, %1 \n"
502 " sc $1, %1 \n"
503 " beqz $1, 1b \n"
504 " .set pop "
505 : "=r" (ret), "+R" (*p)
506 :
507 : "memory");
508
509 return ret;
510 }
511 #else
512 #error unimplemented CPU support
513 #endif
514
515 typedef int spinlock_t;
516
517 #define SPIN_LOCK_UNLOCKED 0
518
519 #if defined(CONFIG_USER_ONLY)
520 static inline void spin_lock(spinlock_t *lock)
521 {
522 while (testandset(lock));
523 }
524
525 static inline void spin_unlock(spinlock_t *lock)
526 {
527 *lock = 0;
528 }
529
530 static inline int spin_trylock(spinlock_t *lock)
531 {
532 return !testandset(lock);
533 }
534 #else
535 static inline void spin_lock(spinlock_t *lock)
536 {
537 }
538
539 static inline void spin_unlock(spinlock_t *lock)
540 {
541 }
542
543 static inline int spin_trylock(spinlock_t *lock)
544 {
545 return 1;
546 }
547 #endif
548
549 extern spinlock_t tb_lock;
550
551 extern int tb_invalidated_flag;
552
553 #if !defined(CONFIG_USER_ONLY)
554
555 void tlb_fill(target_ulong addr, int is_write, int is_user,
556 void *retaddr);
557
558 #define ACCESS_TYPE 3
559 #define MEMSUFFIX _code
560 #define env cpu_single_env
561
562 #define DATA_SIZE 1
563 #include "softmmu_header.h"
564
565 #define DATA_SIZE 2
566 #include "softmmu_header.h"
567
568 #define DATA_SIZE 4
569 #include "softmmu_header.h"
570
571 #define DATA_SIZE 8
572 #include "softmmu_header.h"
573
574 #undef ACCESS_TYPE
575 #undef MEMSUFFIX
576 #undef env
577
578 #endif
579
580 #if defined(CONFIG_USER_ONLY)
581 static inline target_ulong get_phys_addr_code(CPUState *env, target_ulong addr)
582 {
583 return addr;
584 }
585 #else
586 /* NOTE: this function can trigger an exception */
587 /* NOTE2: the returned address is not exactly the physical address: it
588 is the offset relative to phys_ram_base */
589 static inline target_ulong get_phys_addr_code(CPUState *env, target_ulong addr)
590 {
591 int is_user, index, pd;
592
593 index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
594 #if defined(TARGET_I386)
595 is_user = ((env->hflags & HF_CPL_MASK) == 3);
596 #elif defined (TARGET_PPC)
597 is_user = msr_pr;
598 #elif defined (TARGET_MIPS)
599 is_user = ((env->hflags & MIPS_HFLAG_MODE) == MIPS_HFLAG_UM);
600 #elif defined (TARGET_SPARC)
601 is_user = (env->psrs == 0);
602 #elif defined (TARGET_ARM)
603 is_user = ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR);
604 #elif defined (TARGET_SH4)
605 is_user = ((env->sr & SR_MD) == 0);
606 #elif defined (TARGET_ALPHA)
607 is_user = ((env->ps >> 3) & 3);
608 #elif defined (TARGET_M68K)
609 is_user = ((env->sr & SR_S) == 0);
610 #else
611 #error unimplemented CPU
612 #endif
613 if (__builtin_expect(env->tlb_table[is_user][index].addr_code !=
614 (addr & TARGET_PAGE_MASK), 0)) {
615 ldub_code(addr);
616 }
617 pd = env->tlb_table[is_user][index].addr_code & ~TARGET_PAGE_MASK;
618 if (pd > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
619 #ifdef TARGET_SPARC
620 do_unassigned_access(addr, 0, 1, 0);
621 #else
622 cpu_abort(env, "Trying to execute code outside RAM or ROM at 0x" TARGET_FMT_lx "\n", addr);
623 #endif
624 }
625 return addr + env->tlb_table[is_user][index].addend - (unsigned long)phys_ram_base;
626 }
627 #endif
628
629 #ifdef USE_KQEMU
630 #define KQEMU_MODIFY_PAGE_MASK (0xff & ~(VGA_DIRTY_FLAG | CODE_DIRTY_FLAG))
631
632 int kqemu_init(CPUState *env);
633 int kqemu_cpu_exec(CPUState *env);
634 void kqemu_flush_page(CPUState *env, target_ulong addr);
635 void kqemu_flush(CPUState *env, int global);
636 void kqemu_set_notdirty(CPUState *env, ram_addr_t ram_addr);
637 void kqemu_modify_page(CPUState *env, ram_addr_t ram_addr);
638 void kqemu_cpu_interrupt(CPUState *env);
639 void kqemu_record_dump(void);
640
641 static inline int kqemu_is_ok(CPUState *env)
642 {
643 return(env->kqemu_enabled &&
644 (env->cr[0] & CR0_PE_MASK) &&
645 !(env->hflags & HF_INHIBIT_IRQ_MASK) &&
646 (env->eflags & IF_MASK) &&
647 !(env->eflags & VM_MASK) &&
648 (env->kqemu_enabled == 2 ||
649 ((env->hflags & HF_CPL_MASK) == 3 &&
650 (env->eflags & IOPL_MASK) != IOPL_MASK)));
651 }
652
653 #endif