]> git.proxmox.com Git - mirror_qemu.git/blob - exec-all.h
Avoid duplicated definitions: move common definitions from exec-all.h
[mirror_qemu.git] / exec-all.h
1 /*
2 * internal execution defines for qemu
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20
21 /* allow to see translation results - the slowdown should be negligible, so we leave it */
22 #define DEBUG_DISAS
23
24 /* is_jmp field values */
25 #define DISAS_NEXT 0 /* next instruction can be analyzed */
26 #define DISAS_JUMP 1 /* only pc was modified dynamically */
27 #define DISAS_UPDATE 2 /* cpu state was modified dynamically */
28 #define DISAS_TB_JUMP 3 /* only pc was modified statically */
29
30 struct TranslationBlock;
31
32 /* XXX: make safe guess about sizes */
33 #define MAX_OP_PER_INSTR 32
34 #define OPC_BUF_SIZE 512
35 #define OPC_MAX_SIZE (OPC_BUF_SIZE - MAX_OP_PER_INSTR)
36
37 #define OPPARAM_BUF_SIZE (OPC_BUF_SIZE * 3)
38
39 extern uint16_t gen_opc_buf[OPC_BUF_SIZE];
40 extern uint32_t gen_opparam_buf[OPPARAM_BUF_SIZE];
41 extern long gen_labels[OPC_BUF_SIZE];
42 extern int nb_gen_labels;
43 extern target_ulong gen_opc_pc[OPC_BUF_SIZE];
44 extern target_ulong gen_opc_npc[OPC_BUF_SIZE];
45 extern uint8_t gen_opc_cc_op[OPC_BUF_SIZE];
46 extern uint8_t gen_opc_instr_start[OPC_BUF_SIZE];
47 extern target_ulong gen_opc_jump_pc[2];
48 extern uint32_t gen_opc_hflags[OPC_BUF_SIZE];
49
50 typedef void (GenOpFunc)(void);
51 typedef void (GenOpFunc1)(long);
52 typedef void (GenOpFunc2)(long, long);
53 typedef void (GenOpFunc3)(long, long, long);
54
55 #if defined(TARGET_I386)
56
57 void optimize_flags_init(void);
58
59 #endif
60
61 extern FILE *logfile;
62 extern int loglevel;
63
64 int gen_intermediate_code(CPUState *env, struct TranslationBlock *tb);
65 int gen_intermediate_code_pc(CPUState *env, struct TranslationBlock *tb);
66 void dump_ops(const uint16_t *opc_buf, const uint32_t *opparam_buf);
67 int cpu_gen_code(CPUState *env, struct TranslationBlock *tb,
68 int max_code_size, int *gen_code_size_ptr);
69 int cpu_restore_state(struct TranslationBlock *tb,
70 CPUState *env, unsigned long searched_pc,
71 void *puc);
72 int cpu_gen_code_copy(CPUState *env, struct TranslationBlock *tb,
73 int max_code_size, int *gen_code_size_ptr);
74 int cpu_restore_state_copy(struct TranslationBlock *tb,
75 CPUState *env, unsigned long searched_pc,
76 void *puc);
77 void cpu_resume_from_signal(CPUState *env1, void *puc);
78 void cpu_exec_init(CPUState *env);
79 int page_unprotect(target_ulong address, unsigned long pc, void *puc);
80 void tb_invalidate_phys_page_range(target_ulong start, target_ulong end,
81 int is_cpu_write_access);
82 void tb_invalidate_page_range(target_ulong start, target_ulong end);
83 void tlb_flush_page(CPUState *env, target_ulong addr);
84 void tlb_flush(CPUState *env, int flush_global);
85 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
86 target_phys_addr_t paddr, int prot,
87 int mmu_idx, int is_softmmu);
88 static inline int tlb_set_page(CPUState *env, target_ulong vaddr,
89 target_phys_addr_t paddr, int prot,
90 int mmu_idx, int is_softmmu)
91 {
92 if (prot & PAGE_READ)
93 prot |= PAGE_EXEC;
94 return tlb_set_page_exec(env, vaddr, paddr, prot, mmu_idx, is_softmmu);
95 }
96
97 #define CODE_GEN_MAX_SIZE 65536
98 #define CODE_GEN_ALIGN 16 /* must be >= of the size of a icache line */
99
100 #define CODE_GEN_PHYS_HASH_BITS 15
101 #define CODE_GEN_PHYS_HASH_SIZE (1 << CODE_GEN_PHYS_HASH_BITS)
102
103 /* maximum total translate dcode allocated */
104
105 /* NOTE: the translated code area cannot be too big because on some
106 archs the range of "fast" function calls is limited. Here is a
107 summary of the ranges:
108
109 i386 : signed 32 bits
110 arm : signed 26 bits
111 ppc : signed 24 bits
112 sparc : signed 32 bits
113 alpha : signed 23 bits
114 */
115
116 #if defined(__alpha__)
117 #define CODE_GEN_BUFFER_SIZE (2 * 1024 * 1024)
118 #elif defined(__ia64)
119 #define CODE_GEN_BUFFER_SIZE (4 * 1024 * 1024) /* range of addl */
120 #elif defined(__powerpc__)
121 #define CODE_GEN_BUFFER_SIZE (6 * 1024 * 1024)
122 #else
123 #define CODE_GEN_BUFFER_SIZE (16 * 1024 * 1024)
124 #endif
125
126 //#define CODE_GEN_BUFFER_SIZE (128 * 1024)
127
128 /* estimated block size for TB allocation */
129 /* XXX: use a per code average code fragment size and modulate it
130 according to the host CPU */
131 #if defined(CONFIG_SOFTMMU)
132 #define CODE_GEN_AVG_BLOCK_SIZE 128
133 #else
134 #define CODE_GEN_AVG_BLOCK_SIZE 64
135 #endif
136
137 #define CODE_GEN_MAX_BLOCKS (CODE_GEN_BUFFER_SIZE / CODE_GEN_AVG_BLOCK_SIZE)
138
139 #if defined(__powerpc__)
140 #define USE_DIRECT_JUMP
141 #endif
142 #if defined(__i386__) && !defined(_WIN32)
143 #define USE_DIRECT_JUMP
144 #endif
145
146 typedef struct TranslationBlock {
147 target_ulong pc; /* simulated PC corresponding to this block (EIP + CS base) */
148 target_ulong cs_base; /* CS base for this block */
149 uint64_t flags; /* flags defining in which context the code was generated */
150 uint16_t size; /* size of target code for this block (1 <=
151 size <= TARGET_PAGE_SIZE) */
152 uint16_t cflags; /* compile flags */
153 #define CF_CODE_COPY 0x0001 /* block was generated in code copy mode */
154 #define CF_TB_FP_USED 0x0002 /* fp ops are used in the TB */
155 #define CF_FP_USED 0x0004 /* fp ops are used in the TB or in a chained TB */
156 #define CF_SINGLE_INSN 0x0008 /* compile only a single instruction */
157
158 uint8_t *tc_ptr; /* pointer to the translated code */
159 /* next matching tb for physical address. */
160 struct TranslationBlock *phys_hash_next;
161 /* first and second physical page containing code. The lower bit
162 of the pointer tells the index in page_next[] */
163 struct TranslationBlock *page_next[2];
164 target_ulong page_addr[2];
165
166 /* the following data are used to directly call another TB from
167 the code of this one. */
168 uint16_t tb_next_offset[2]; /* offset of original jump target */
169 #ifdef USE_DIRECT_JUMP
170 uint16_t tb_jmp_offset[4]; /* offset of jump instruction */
171 #else
172 uint32_t tb_next[2]; /* address of jump generated code */
173 #endif
174 /* list of TBs jumping to this one. This is a circular list using
175 the two least significant bits of the pointers to tell what is
176 the next pointer: 0 = jmp_next[0], 1 = jmp_next[1], 2 =
177 jmp_first */
178 struct TranslationBlock *jmp_next[2];
179 struct TranslationBlock *jmp_first;
180 } TranslationBlock;
181
182 static inline unsigned int tb_jmp_cache_hash_page(target_ulong pc)
183 {
184 target_ulong tmp;
185 tmp = pc ^ (pc >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS));
186 return (tmp >> TB_JMP_PAGE_BITS) & TB_JMP_PAGE_MASK;
187 }
188
189 static inline unsigned int tb_jmp_cache_hash_func(target_ulong pc)
190 {
191 target_ulong tmp;
192 tmp = pc ^ (pc >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS));
193 return (((tmp >> TB_JMP_PAGE_BITS) & TB_JMP_PAGE_MASK) |
194 (tmp & TB_JMP_ADDR_MASK));
195 }
196
197 static inline unsigned int tb_phys_hash_func(unsigned long pc)
198 {
199 return pc & (CODE_GEN_PHYS_HASH_SIZE - 1);
200 }
201
202 TranslationBlock *tb_alloc(target_ulong pc);
203 void tb_flush(CPUState *env);
204 void tb_link_phys(TranslationBlock *tb,
205 target_ulong phys_pc, target_ulong phys_page2);
206
207 extern TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
208
209 extern uint8_t code_gen_buffer[CODE_GEN_BUFFER_SIZE];
210 extern uint8_t *code_gen_ptr;
211
212 #if defined(USE_DIRECT_JUMP)
213
214 #if defined(__powerpc__)
215 static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr)
216 {
217 uint32_t val, *ptr;
218
219 /* patch the branch destination */
220 ptr = (uint32_t *)jmp_addr;
221 val = *ptr;
222 val = (val & ~0x03fffffc) | ((addr - jmp_addr) & 0x03fffffc);
223 *ptr = val;
224 /* flush icache */
225 asm volatile ("dcbst 0,%0" : : "r"(ptr) : "memory");
226 asm volatile ("sync" : : : "memory");
227 asm volatile ("icbi 0,%0" : : "r"(ptr) : "memory");
228 asm volatile ("sync" : : : "memory");
229 asm volatile ("isync" : : : "memory");
230 }
231 #elif defined(__i386__)
232 static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr)
233 {
234 /* patch the branch destination */
235 *(uint32_t *)jmp_addr = addr - (jmp_addr + 4);
236 /* no need to flush icache explicitely */
237 }
238 #endif
239
240 static inline void tb_set_jmp_target(TranslationBlock *tb,
241 int n, unsigned long addr)
242 {
243 unsigned long offset;
244
245 offset = tb->tb_jmp_offset[n];
246 tb_set_jmp_target1((unsigned long)(tb->tc_ptr + offset), addr);
247 offset = tb->tb_jmp_offset[n + 2];
248 if (offset != 0xffff)
249 tb_set_jmp_target1((unsigned long)(tb->tc_ptr + offset), addr);
250 }
251
252 #else
253
254 /* set the jump target */
255 static inline void tb_set_jmp_target(TranslationBlock *tb,
256 int n, unsigned long addr)
257 {
258 tb->tb_next[n] = addr;
259 }
260
261 #endif
262
263 static inline void tb_add_jump(TranslationBlock *tb, int n,
264 TranslationBlock *tb_next)
265 {
266 /* NOTE: this test is only needed for thread safety */
267 if (!tb->jmp_next[n]) {
268 /* patch the native jump address */
269 tb_set_jmp_target(tb, n, (unsigned long)tb_next->tc_ptr);
270
271 /* add in TB jmp circular list */
272 tb->jmp_next[n] = tb_next->jmp_first;
273 tb_next->jmp_first = (TranslationBlock *)((long)(tb) | (n));
274 }
275 }
276
277 TranslationBlock *tb_find_pc(unsigned long pc_ptr);
278
279 #ifndef offsetof
280 #define offsetof(type, field) ((size_t) &((type *)0)->field)
281 #endif
282
283 #if defined(_WIN32)
284 #define ASM_DATA_SECTION ".section \".data\"\n"
285 #define ASM_PREVIOUS_SECTION ".section .text\n"
286 #elif defined(__APPLE__)
287 #define ASM_DATA_SECTION ".data\n"
288 #define ASM_PREVIOUS_SECTION ".text\n"
289 #else
290 #define ASM_DATA_SECTION ".section \".data\"\n"
291 #define ASM_PREVIOUS_SECTION ".previous\n"
292 #endif
293
294 #define ASM_OP_LABEL_NAME(n, opname) \
295 ASM_NAME(__op_label) #n "." ASM_NAME(opname)
296
297 #if defined(__powerpc__)
298
299 /* we patch the jump instruction directly */
300 #define GOTO_TB(opname, tbparam, n)\
301 do {\
302 asm volatile (ASM_DATA_SECTION\
303 ASM_OP_LABEL_NAME(n, opname) ":\n"\
304 ".long 1f\n"\
305 ASM_PREVIOUS_SECTION \
306 "b " ASM_NAME(__op_jmp) #n "\n"\
307 "1:\n");\
308 } while (0)
309
310 #elif defined(__i386__) && defined(USE_DIRECT_JUMP)
311
312 /* we patch the jump instruction directly */
313 #define GOTO_TB(opname, tbparam, n)\
314 do {\
315 asm volatile (".section .data\n"\
316 ASM_OP_LABEL_NAME(n, opname) ":\n"\
317 ".long 1f\n"\
318 ASM_PREVIOUS_SECTION \
319 "jmp " ASM_NAME(__op_jmp) #n "\n"\
320 "1:\n");\
321 } while (0)
322
323 #else
324
325 /* jump to next block operations (more portable code, does not need
326 cache flushing, but slower because of indirect jump) */
327 #define GOTO_TB(opname, tbparam, n)\
328 do {\
329 static void __attribute__((used)) *dummy ## n = &&dummy_label ## n;\
330 static void __attribute__((used)) *__op_label ## n \
331 __asm__(ASM_OP_LABEL_NAME(n, opname)) = &&label ## n;\
332 goto *(void *)(((TranslationBlock *)tbparam)->tb_next[n]);\
333 label ## n: ;\
334 dummy_label ## n: ;\
335 } while (0)
336
337 #endif
338
339 extern CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
340 extern CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
341 extern void *io_mem_opaque[IO_MEM_NB_ENTRIES];
342
343 #if defined(__powerpc__)
344 static inline int testandset (int *p)
345 {
346 int ret;
347 __asm__ __volatile__ (
348 "0: lwarx %0,0,%1\n"
349 " xor. %0,%3,%0\n"
350 " bne 1f\n"
351 " stwcx. %2,0,%1\n"
352 " bne- 0b\n"
353 "1: "
354 : "=&r" (ret)
355 : "r" (p), "r" (1), "r" (0)
356 : "cr0", "memory");
357 return ret;
358 }
359 #elif defined(__i386__)
360 static inline int testandset (int *p)
361 {
362 long int readval = 0;
363
364 __asm__ __volatile__ ("lock; cmpxchgl %2, %0"
365 : "+m" (*p), "+a" (readval)
366 : "r" (1)
367 : "cc");
368 return readval;
369 }
370 #elif defined(__x86_64__)
371 static inline int testandset (int *p)
372 {
373 long int readval = 0;
374
375 __asm__ __volatile__ ("lock; cmpxchgl %2, %0"
376 : "+m" (*p), "+a" (readval)
377 : "r" (1)
378 : "cc");
379 return readval;
380 }
381 #elif defined(__s390__)
382 static inline int testandset (int *p)
383 {
384 int ret;
385
386 __asm__ __volatile__ ("0: cs %0,%1,0(%2)\n"
387 " jl 0b"
388 : "=&d" (ret)
389 : "r" (1), "a" (p), "0" (*p)
390 : "cc", "memory" );
391 return ret;
392 }
393 #elif defined(__alpha__)
394 static inline int testandset (int *p)
395 {
396 int ret;
397 unsigned long one;
398
399 __asm__ __volatile__ ("0: mov 1,%2\n"
400 " ldl_l %0,%1\n"
401 " stl_c %2,%1\n"
402 " beq %2,1f\n"
403 ".subsection 2\n"
404 "1: br 0b\n"
405 ".previous"
406 : "=r" (ret), "=m" (*p), "=r" (one)
407 : "m" (*p));
408 return ret;
409 }
410 #elif defined(__sparc__)
411 static inline int testandset (int *p)
412 {
413 int ret;
414
415 __asm__ __volatile__("ldstub [%1], %0"
416 : "=r" (ret)
417 : "r" (p)
418 : "memory");
419
420 return (ret ? 1 : 0);
421 }
422 #elif defined(__arm__)
423 static inline int testandset (int *spinlock)
424 {
425 register unsigned int ret;
426 __asm__ __volatile__("swp %0, %1, [%2]"
427 : "=r"(ret)
428 : "0"(1), "r"(spinlock));
429
430 return ret;
431 }
432 #elif defined(__mc68000)
433 static inline int testandset (int *p)
434 {
435 char ret;
436 __asm__ __volatile__("tas %1; sne %0"
437 : "=r" (ret)
438 : "m" (p)
439 : "cc","memory");
440 return ret;
441 }
442 #elif defined(__ia64)
443
444 #include <ia64intrin.h>
445
446 static inline int testandset (int *p)
447 {
448 return __sync_lock_test_and_set (p, 1);
449 }
450 #elif defined(__mips__)
451 static inline int testandset (int *p)
452 {
453 int ret;
454
455 __asm__ __volatile__ (
456 " .set push \n"
457 " .set noat \n"
458 " .set mips2 \n"
459 "1: li $1, 1 \n"
460 " ll %0, %1 \n"
461 " sc $1, %1 \n"
462 " beqz $1, 1b \n"
463 " .set pop "
464 : "=r" (ret), "+R" (*p)
465 :
466 : "memory");
467
468 return ret;
469 }
470 #else
471 #error unimplemented CPU support
472 #endif
473
474 typedef int spinlock_t;
475
476 #define SPIN_LOCK_UNLOCKED 0
477
478 #if defined(CONFIG_USER_ONLY)
479 static inline void spin_lock(spinlock_t *lock)
480 {
481 while (testandset(lock));
482 }
483
484 static inline void spin_unlock(spinlock_t *lock)
485 {
486 *lock = 0;
487 }
488
489 static inline int spin_trylock(spinlock_t *lock)
490 {
491 return !testandset(lock);
492 }
493 #else
494 static inline void spin_lock(spinlock_t *lock)
495 {
496 }
497
498 static inline void spin_unlock(spinlock_t *lock)
499 {
500 }
501
502 static inline int spin_trylock(spinlock_t *lock)
503 {
504 return 1;
505 }
506 #endif
507
508 extern spinlock_t tb_lock;
509
510 extern int tb_invalidated_flag;
511
512 #if !defined(CONFIG_USER_ONLY)
513
514 void tlb_fill(target_ulong addr, int is_write, int mmu_idx,
515 void *retaddr);
516
517 #define ACCESS_TYPE (NB_MMU_MODES + 1)
518 #define MEMSUFFIX _code
519 #define env cpu_single_env
520
521 #define DATA_SIZE 1
522 #include "softmmu_header.h"
523
524 #define DATA_SIZE 2
525 #include "softmmu_header.h"
526
527 #define DATA_SIZE 4
528 #include "softmmu_header.h"
529
530 #define DATA_SIZE 8
531 #include "softmmu_header.h"
532
533 #undef ACCESS_TYPE
534 #undef MEMSUFFIX
535 #undef env
536
537 #endif
538
539 #if defined(CONFIG_USER_ONLY)
540 static inline target_ulong get_phys_addr_code(CPUState *env, target_ulong addr)
541 {
542 return addr;
543 }
544 #else
545 /* NOTE: this function can trigger an exception */
546 /* NOTE2: the returned address is not exactly the physical address: it
547 is the offset relative to phys_ram_base */
548 static inline target_ulong get_phys_addr_code(CPUState *env, target_ulong addr)
549 {
550 int mmu_idx, index, pd;
551
552 index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
553 mmu_idx = cpu_mmu_index(env);
554 if (__builtin_expect(env->tlb_table[mmu_idx][index].addr_code !=
555 (addr & TARGET_PAGE_MASK), 0)) {
556 ldub_code(addr);
557 }
558 pd = env->tlb_table[mmu_idx][index].addr_code & ~TARGET_PAGE_MASK;
559 if (pd > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
560 #if defined(TARGET_SPARC) || defined(TARGET_MIPS)
561 do_unassigned_access(addr, 0, 1, 0);
562 #else
563 cpu_abort(env, "Trying to execute code outside RAM or ROM at 0x" TARGET_FMT_lx "\n", addr);
564 #endif
565 }
566 return addr + env->tlb_table[mmu_idx][index].addend - (unsigned long)phys_ram_base;
567 }
568 #endif
569
570 #ifdef USE_KQEMU
571 #define KQEMU_MODIFY_PAGE_MASK (0xff & ~(VGA_DIRTY_FLAG | CODE_DIRTY_FLAG))
572
573 int kqemu_init(CPUState *env);
574 int kqemu_cpu_exec(CPUState *env);
575 void kqemu_flush_page(CPUState *env, target_ulong addr);
576 void kqemu_flush(CPUState *env, int global);
577 void kqemu_set_notdirty(CPUState *env, ram_addr_t ram_addr);
578 void kqemu_modify_page(CPUState *env, ram_addr_t ram_addr);
579 void kqemu_cpu_interrupt(CPUState *env);
580 void kqemu_record_dump(void);
581
582 static inline int kqemu_is_ok(CPUState *env)
583 {
584 return(env->kqemu_enabled &&
585 (env->cr[0] & CR0_PE_MASK) &&
586 !(env->hflags & HF_INHIBIT_IRQ_MASK) &&
587 (env->eflags & IF_MASK) &&
588 !(env->eflags & VM_MASK) &&
589 (env->kqemu_enabled == 2 ||
590 ((env->hflags & HF_CPL_MASK) == 3 &&
591 (env->eflags & IOPL_MASK) != IOPL_MASK)));
592 }
593
594 #endif