]> git.proxmox.com Git - qemu.git/blob - exec.c
3859b02d5776d4e011995f1b3b2f2681abbb156e
[qemu.git] / exec.c
1 /*
2 * Virtual page mapping
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "config.h"
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
26
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "tcg.h"
30 #include "hw/hw.h"
31 #include "hw/qdev.h"
32 #include "qemu/osdep.h"
33 #include "sysemu/kvm.h"
34 #include "sysemu/sysemu.h"
35 #include "hw/xen/xen.h"
36 #include "qemu/timer.h"
37 #include "qemu/config-file.h"
38 #include "exec/memory.h"
39 #include "sysemu/dma.h"
40 #include "exec/address-spaces.h"
41 #if defined(CONFIG_USER_ONLY)
42 #include <qemu.h>
43 #else /* !CONFIG_USER_ONLY */
44 #include "sysemu/xen-mapcache.h"
45 #include "trace.h"
46 #endif
47 #include "exec/cpu-all.h"
48
49 #include "exec/cputlb.h"
50 #include "translate-all.h"
51
52 #include "exec/memory-internal.h"
53
54 //#define DEBUG_SUBPAGE
55
56 #if !defined(CONFIG_USER_ONLY)
57 static int in_migration;
58
59 RAMList ram_list = { .blocks = QTAILQ_HEAD_INITIALIZER(ram_list.blocks) };
60
61 static MemoryRegion *system_memory;
62 static MemoryRegion *system_io;
63
64 AddressSpace address_space_io;
65 AddressSpace address_space_memory;
66
67 MemoryRegion io_mem_rom, io_mem_notdirty;
68 static MemoryRegion io_mem_unassigned;
69
70 #endif
71
72 struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
73 /* current CPU in the current thread. It is only valid inside
74 cpu_exec() */
75 DEFINE_TLS(CPUState *, current_cpu);
76 /* 0 = Do not count executed instructions.
77 1 = Precise instruction counting.
78 2 = Adaptive rate instruction counting. */
79 int use_icount;
80
81 #if !defined(CONFIG_USER_ONLY)
82
83 typedef struct PhysPageEntry PhysPageEntry;
84
85 struct PhysPageEntry {
86 uint16_t is_leaf : 1;
87 /* index into phys_sections (is_leaf) or phys_map_nodes (!is_leaf) */
88 uint16_t ptr : 15;
89 };
90
91 typedef PhysPageEntry Node[L2_SIZE];
92
93 struct AddressSpaceDispatch {
94 /* This is a multi-level map on the physical address space.
95 * The bottom level has pointers to MemoryRegionSections.
96 */
97 PhysPageEntry phys_map;
98 Node *nodes;
99 MemoryRegionSection *sections;
100 AddressSpace *as;
101 };
102
103 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
104 typedef struct subpage_t {
105 MemoryRegion iomem;
106 AddressSpace *as;
107 hwaddr base;
108 uint16_t sub_section[TARGET_PAGE_SIZE];
109 } subpage_t;
110
111 #define PHYS_SECTION_UNASSIGNED 0
112 #define PHYS_SECTION_NOTDIRTY 1
113 #define PHYS_SECTION_ROM 2
114 #define PHYS_SECTION_WATCH 3
115
116 typedef struct PhysPageMap {
117 unsigned sections_nb;
118 unsigned sections_nb_alloc;
119 unsigned nodes_nb;
120 unsigned nodes_nb_alloc;
121 Node *nodes;
122 MemoryRegionSection *sections;
123 } PhysPageMap;
124
125 static PhysPageMap *prev_map;
126 static PhysPageMap next_map;
127
128 #define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1)
129
130 static void io_mem_init(void);
131 static void memory_map_init(void);
132 static void *qemu_safe_ram_ptr(ram_addr_t addr);
133
134 static MemoryRegion io_mem_watch;
135 #endif
136
137 #if !defined(CONFIG_USER_ONLY)
138
139 static void phys_map_node_reserve(unsigned nodes)
140 {
141 if (next_map.nodes_nb + nodes > next_map.nodes_nb_alloc) {
142 next_map.nodes_nb_alloc = MAX(next_map.nodes_nb_alloc * 2,
143 16);
144 next_map.nodes_nb_alloc = MAX(next_map.nodes_nb_alloc,
145 next_map.nodes_nb + nodes);
146 next_map.nodes = g_renew(Node, next_map.nodes,
147 next_map.nodes_nb_alloc);
148 }
149 }
150
151 static uint16_t phys_map_node_alloc(void)
152 {
153 unsigned i;
154 uint16_t ret;
155
156 ret = next_map.nodes_nb++;
157 assert(ret != PHYS_MAP_NODE_NIL);
158 assert(ret != next_map.nodes_nb_alloc);
159 for (i = 0; i < L2_SIZE; ++i) {
160 next_map.nodes[ret][i].is_leaf = 0;
161 next_map.nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
162 }
163 return ret;
164 }
165
166 static void phys_page_set_level(PhysPageEntry *lp, hwaddr *index,
167 hwaddr *nb, uint16_t leaf,
168 int level)
169 {
170 PhysPageEntry *p;
171 int i;
172 hwaddr step = (hwaddr)1 << (level * L2_BITS);
173
174 if (!lp->is_leaf && lp->ptr == PHYS_MAP_NODE_NIL) {
175 lp->ptr = phys_map_node_alloc();
176 p = next_map.nodes[lp->ptr];
177 if (level == 0) {
178 for (i = 0; i < L2_SIZE; i++) {
179 p[i].is_leaf = 1;
180 p[i].ptr = PHYS_SECTION_UNASSIGNED;
181 }
182 }
183 } else {
184 p = next_map.nodes[lp->ptr];
185 }
186 lp = &p[(*index >> (level * L2_BITS)) & (L2_SIZE - 1)];
187
188 while (*nb && lp < &p[L2_SIZE]) {
189 if ((*index & (step - 1)) == 0 && *nb >= step) {
190 lp->is_leaf = true;
191 lp->ptr = leaf;
192 *index += step;
193 *nb -= step;
194 } else {
195 phys_page_set_level(lp, index, nb, leaf, level - 1);
196 }
197 ++lp;
198 }
199 }
200
201 static void phys_page_set(AddressSpaceDispatch *d,
202 hwaddr index, hwaddr nb,
203 uint16_t leaf)
204 {
205 /* Wildly overreserve - it doesn't matter much. */
206 phys_map_node_reserve(3 * P_L2_LEVELS);
207
208 phys_page_set_level(&d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
209 }
210
211 static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr index,
212 Node *nodes, MemoryRegionSection *sections)
213 {
214 PhysPageEntry *p;
215 int i;
216
217 for (i = P_L2_LEVELS - 1; i >= 0 && !lp.is_leaf; i--) {
218 if (lp.ptr == PHYS_MAP_NODE_NIL) {
219 return &sections[PHYS_SECTION_UNASSIGNED];
220 }
221 p = nodes[lp.ptr];
222 lp = p[(index >> (i * L2_BITS)) & (L2_SIZE - 1)];
223 }
224 return &sections[lp.ptr];
225 }
226
227 bool memory_region_is_unassigned(MemoryRegion *mr)
228 {
229 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
230 && mr != &io_mem_watch;
231 }
232
233 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
234 hwaddr addr,
235 bool resolve_subpage)
236 {
237 MemoryRegionSection *section;
238 subpage_t *subpage;
239
240 section = phys_page_find(d->phys_map, addr >> TARGET_PAGE_BITS,
241 d->nodes, d->sections);
242 if (resolve_subpage && section->mr->subpage) {
243 subpage = container_of(section->mr, subpage_t, iomem);
244 section = &d->sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
245 }
246 return section;
247 }
248
249 static MemoryRegionSection *
250 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
251 hwaddr *plen, bool resolve_subpage)
252 {
253 MemoryRegionSection *section;
254 Int128 diff;
255
256 section = address_space_lookup_region(d, addr, resolve_subpage);
257 /* Compute offset within MemoryRegionSection */
258 addr -= section->offset_within_address_space;
259
260 /* Compute offset within MemoryRegion */
261 *xlat = addr + section->offset_within_region;
262
263 diff = int128_sub(section->mr->size, int128_make64(addr));
264 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
265 return section;
266 }
267
268 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
269 hwaddr *xlat, hwaddr *plen,
270 bool is_write)
271 {
272 IOMMUTLBEntry iotlb;
273 MemoryRegionSection *section;
274 MemoryRegion *mr;
275 hwaddr len = *plen;
276
277 for (;;) {
278 section = address_space_translate_internal(as->dispatch, addr, &addr, plen, true);
279 mr = section->mr;
280
281 if (!mr->iommu_ops) {
282 break;
283 }
284
285 iotlb = mr->iommu_ops->translate(mr, addr);
286 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
287 | (addr & iotlb.addr_mask));
288 len = MIN(len, (addr | iotlb.addr_mask) - addr + 1);
289 if (!(iotlb.perm & (1 << is_write))) {
290 mr = &io_mem_unassigned;
291 break;
292 }
293
294 as = iotlb.target_as;
295 }
296
297 *plen = len;
298 *xlat = addr;
299 return mr;
300 }
301
302 MemoryRegionSection *
303 address_space_translate_for_iotlb(AddressSpace *as, hwaddr addr, hwaddr *xlat,
304 hwaddr *plen)
305 {
306 MemoryRegionSection *section;
307 section = address_space_translate_internal(as->dispatch, addr, xlat, plen, false);
308
309 assert(!section->mr->iommu_ops);
310 return section;
311 }
312 #endif
313
314 void cpu_exec_init_all(void)
315 {
316 #if !defined(CONFIG_USER_ONLY)
317 qemu_mutex_init(&ram_list.mutex);
318 memory_map_init();
319 io_mem_init();
320 #endif
321 }
322
323 #if !defined(CONFIG_USER_ONLY)
324
325 static int cpu_common_post_load(void *opaque, int version_id)
326 {
327 CPUState *cpu = opaque;
328
329 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
330 version_id is increased. */
331 cpu->interrupt_request &= ~0x01;
332 tlb_flush(cpu->env_ptr, 1);
333
334 return 0;
335 }
336
337 const VMStateDescription vmstate_cpu_common = {
338 .name = "cpu_common",
339 .version_id = 1,
340 .minimum_version_id = 1,
341 .minimum_version_id_old = 1,
342 .post_load = cpu_common_post_load,
343 .fields = (VMStateField []) {
344 VMSTATE_UINT32(halted, CPUState),
345 VMSTATE_UINT32(interrupt_request, CPUState),
346 VMSTATE_END_OF_LIST()
347 }
348 };
349
350 #endif
351
352 CPUState *qemu_get_cpu(int index)
353 {
354 CPUState *cpu;
355
356 CPU_FOREACH(cpu) {
357 if (cpu->cpu_index == index) {
358 return cpu;
359 }
360 }
361
362 return NULL;
363 }
364
365 void cpu_exec_init(CPUArchState *env)
366 {
367 CPUState *cpu = ENV_GET_CPU(env);
368 CPUClass *cc = CPU_GET_CLASS(cpu);
369 CPUState *some_cpu;
370 int cpu_index;
371
372 #if defined(CONFIG_USER_ONLY)
373 cpu_list_lock();
374 #endif
375 cpu_index = 0;
376 CPU_FOREACH(some_cpu) {
377 cpu_index++;
378 }
379 cpu->cpu_index = cpu_index;
380 cpu->numa_node = 0;
381 QTAILQ_INIT(&env->breakpoints);
382 QTAILQ_INIT(&env->watchpoints);
383 #ifndef CONFIG_USER_ONLY
384 cpu->thread_id = qemu_get_thread_id();
385 #endif
386 QTAILQ_INSERT_TAIL(&cpus, cpu, node);
387 #if defined(CONFIG_USER_ONLY)
388 cpu_list_unlock();
389 #endif
390 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
391 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu);
392 }
393 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
394 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
395 cpu_save, cpu_load, env);
396 assert(cc->vmsd == NULL);
397 assert(qdev_get_vmsd(DEVICE(cpu)) == NULL);
398 #endif
399 if (cc->vmsd != NULL) {
400 vmstate_register(NULL, cpu_index, cc->vmsd, cpu);
401 }
402 }
403
404 #if defined(TARGET_HAS_ICE)
405 #if defined(CONFIG_USER_ONLY)
406 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
407 {
408 tb_invalidate_phys_page_range(pc, pc + 1, 0);
409 }
410 #else
411 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
412 {
413 tb_invalidate_phys_addr(cpu_get_phys_page_debug(cpu, pc) |
414 (pc & ~TARGET_PAGE_MASK));
415 }
416 #endif
417 #endif /* TARGET_HAS_ICE */
418
419 #if defined(CONFIG_USER_ONLY)
420 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
421
422 {
423 }
424
425 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
426 int flags, CPUWatchpoint **watchpoint)
427 {
428 return -ENOSYS;
429 }
430 #else
431 /* Add a watchpoint. */
432 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
433 int flags, CPUWatchpoint **watchpoint)
434 {
435 target_ulong len_mask = ~(len - 1);
436 CPUWatchpoint *wp;
437
438 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
439 if ((len & (len - 1)) || (addr & ~len_mask) ||
440 len == 0 || len > TARGET_PAGE_SIZE) {
441 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
442 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
443 return -EINVAL;
444 }
445 wp = g_malloc(sizeof(*wp));
446
447 wp->vaddr = addr;
448 wp->len_mask = len_mask;
449 wp->flags = flags;
450
451 /* keep all GDB-injected watchpoints in front */
452 if (flags & BP_GDB)
453 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
454 else
455 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
456
457 tlb_flush_page(env, addr);
458
459 if (watchpoint)
460 *watchpoint = wp;
461 return 0;
462 }
463
464 /* Remove a specific watchpoint. */
465 int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr, target_ulong len,
466 int flags)
467 {
468 target_ulong len_mask = ~(len - 1);
469 CPUWatchpoint *wp;
470
471 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
472 if (addr == wp->vaddr && len_mask == wp->len_mask
473 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
474 cpu_watchpoint_remove_by_ref(env, wp);
475 return 0;
476 }
477 }
478 return -ENOENT;
479 }
480
481 /* Remove a specific watchpoint by reference. */
482 void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint)
483 {
484 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
485
486 tlb_flush_page(env, watchpoint->vaddr);
487
488 g_free(watchpoint);
489 }
490
491 /* Remove all matching watchpoints. */
492 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
493 {
494 CPUWatchpoint *wp, *next;
495
496 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
497 if (wp->flags & mask)
498 cpu_watchpoint_remove_by_ref(env, wp);
499 }
500 }
501 #endif
502
503 /* Add a breakpoint. */
504 int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
505 CPUBreakpoint **breakpoint)
506 {
507 #if defined(TARGET_HAS_ICE)
508 CPUBreakpoint *bp;
509
510 bp = g_malloc(sizeof(*bp));
511
512 bp->pc = pc;
513 bp->flags = flags;
514
515 /* keep all GDB-injected breakpoints in front */
516 if (flags & BP_GDB) {
517 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
518 } else {
519 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
520 }
521
522 breakpoint_invalidate(ENV_GET_CPU(env), pc);
523
524 if (breakpoint) {
525 *breakpoint = bp;
526 }
527 return 0;
528 #else
529 return -ENOSYS;
530 #endif
531 }
532
533 /* Remove a specific breakpoint. */
534 int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags)
535 {
536 #if defined(TARGET_HAS_ICE)
537 CPUBreakpoint *bp;
538
539 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
540 if (bp->pc == pc && bp->flags == flags) {
541 cpu_breakpoint_remove_by_ref(env, bp);
542 return 0;
543 }
544 }
545 return -ENOENT;
546 #else
547 return -ENOSYS;
548 #endif
549 }
550
551 /* Remove a specific breakpoint by reference. */
552 void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint)
553 {
554 #if defined(TARGET_HAS_ICE)
555 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
556
557 breakpoint_invalidate(ENV_GET_CPU(env), breakpoint->pc);
558
559 g_free(breakpoint);
560 #endif
561 }
562
563 /* Remove all matching breakpoints. */
564 void cpu_breakpoint_remove_all(CPUArchState *env, int mask)
565 {
566 #if defined(TARGET_HAS_ICE)
567 CPUBreakpoint *bp, *next;
568
569 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
570 if (bp->flags & mask)
571 cpu_breakpoint_remove_by_ref(env, bp);
572 }
573 #endif
574 }
575
576 /* enable or disable single step mode. EXCP_DEBUG is returned by the
577 CPU loop after each instruction */
578 void cpu_single_step(CPUState *cpu, int enabled)
579 {
580 #if defined(TARGET_HAS_ICE)
581 if (cpu->singlestep_enabled != enabled) {
582 cpu->singlestep_enabled = enabled;
583 if (kvm_enabled()) {
584 kvm_update_guest_debug(cpu, 0);
585 } else {
586 /* must flush all the translated code to avoid inconsistencies */
587 /* XXX: only flush what is necessary */
588 CPUArchState *env = cpu->env_ptr;
589 tb_flush(env);
590 }
591 }
592 #endif
593 }
594
595 void cpu_abort(CPUArchState *env, const char *fmt, ...)
596 {
597 CPUState *cpu = ENV_GET_CPU(env);
598 va_list ap;
599 va_list ap2;
600
601 va_start(ap, fmt);
602 va_copy(ap2, ap);
603 fprintf(stderr, "qemu: fatal: ");
604 vfprintf(stderr, fmt, ap);
605 fprintf(stderr, "\n");
606 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
607 if (qemu_log_enabled()) {
608 qemu_log("qemu: fatal: ");
609 qemu_log_vprintf(fmt, ap2);
610 qemu_log("\n");
611 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
612 qemu_log_flush();
613 qemu_log_close();
614 }
615 va_end(ap2);
616 va_end(ap);
617 #if defined(CONFIG_USER_ONLY)
618 {
619 struct sigaction act;
620 sigfillset(&act.sa_mask);
621 act.sa_handler = SIG_DFL;
622 sigaction(SIGABRT, &act, NULL);
623 }
624 #endif
625 abort();
626 }
627
628 CPUArchState *cpu_copy(CPUArchState *env)
629 {
630 CPUArchState *new_env = cpu_init(env->cpu_model_str);
631 #if defined(TARGET_HAS_ICE)
632 CPUBreakpoint *bp;
633 CPUWatchpoint *wp;
634 #endif
635
636 /* Reset non arch specific state */
637 cpu_reset(ENV_GET_CPU(new_env));
638
639 /* Copy arch specific state into the new CPU */
640 memcpy(new_env, env, sizeof(CPUArchState));
641
642 /* Clone all break/watchpoints.
643 Note: Once we support ptrace with hw-debug register access, make sure
644 BP_CPU break/watchpoints are handled correctly on clone. */
645 QTAILQ_INIT(&env->breakpoints);
646 QTAILQ_INIT(&env->watchpoints);
647 #if defined(TARGET_HAS_ICE)
648 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
649 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
650 }
651 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
652 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
653 wp->flags, NULL);
654 }
655 #endif
656
657 return new_env;
658 }
659
660 #if !defined(CONFIG_USER_ONLY)
661 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t end,
662 uintptr_t length)
663 {
664 uintptr_t start1;
665
666 /* we modify the TLB cache so that the dirty bit will be set again
667 when accessing the range */
668 start1 = (uintptr_t)qemu_safe_ram_ptr(start);
669 /* Check that we don't span multiple blocks - this breaks the
670 address comparisons below. */
671 if ((uintptr_t)qemu_safe_ram_ptr(end - 1) - start1
672 != (end - 1) - start) {
673 abort();
674 }
675 cpu_tlb_reset_dirty_all(start1, length);
676
677 }
678
679 /* Note: start and end must be within the same ram block. */
680 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
681 int dirty_flags)
682 {
683 uintptr_t length;
684
685 start &= TARGET_PAGE_MASK;
686 end = TARGET_PAGE_ALIGN(end);
687
688 length = end - start;
689 if (length == 0)
690 return;
691 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
692
693 if (tcg_enabled()) {
694 tlb_reset_dirty_range_all(start, end, length);
695 }
696 }
697
698 static int cpu_physical_memory_set_dirty_tracking(int enable)
699 {
700 int ret = 0;
701 in_migration = enable;
702 return ret;
703 }
704
705 hwaddr memory_region_section_get_iotlb(CPUArchState *env,
706 MemoryRegionSection *section,
707 target_ulong vaddr,
708 hwaddr paddr, hwaddr xlat,
709 int prot,
710 target_ulong *address)
711 {
712 hwaddr iotlb;
713 CPUWatchpoint *wp;
714
715 if (memory_region_is_ram(section->mr)) {
716 /* Normal RAM. */
717 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
718 + xlat;
719 if (!section->readonly) {
720 iotlb |= PHYS_SECTION_NOTDIRTY;
721 } else {
722 iotlb |= PHYS_SECTION_ROM;
723 }
724 } else {
725 iotlb = section - address_space_memory.dispatch->sections;
726 iotlb += xlat;
727 }
728
729 /* Make accesses to pages with watchpoints go via the
730 watchpoint trap routines. */
731 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
732 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
733 /* Avoid trapping reads of pages with a write breakpoint. */
734 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
735 iotlb = PHYS_SECTION_WATCH + paddr;
736 *address |= TLB_MMIO;
737 break;
738 }
739 }
740 }
741
742 return iotlb;
743 }
744 #endif /* defined(CONFIG_USER_ONLY) */
745
746 #if !defined(CONFIG_USER_ONLY)
747
748 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
749 uint16_t section);
750 static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
751
752 static uint16_t phys_section_add(MemoryRegionSection *section)
753 {
754 /* The physical section number is ORed with a page-aligned
755 * pointer to produce the iotlb entries. Thus it should
756 * never overflow into the page-aligned value.
757 */
758 assert(next_map.sections_nb < TARGET_PAGE_SIZE);
759
760 if (next_map.sections_nb == next_map.sections_nb_alloc) {
761 next_map.sections_nb_alloc = MAX(next_map.sections_nb_alloc * 2,
762 16);
763 next_map.sections = g_renew(MemoryRegionSection, next_map.sections,
764 next_map.sections_nb_alloc);
765 }
766 next_map.sections[next_map.sections_nb] = *section;
767 memory_region_ref(section->mr);
768 return next_map.sections_nb++;
769 }
770
771 static void phys_section_destroy(MemoryRegion *mr)
772 {
773 memory_region_unref(mr);
774
775 if (mr->subpage) {
776 subpage_t *subpage = container_of(mr, subpage_t, iomem);
777 memory_region_destroy(&subpage->iomem);
778 g_free(subpage);
779 }
780 }
781
782 static void phys_sections_free(PhysPageMap *map)
783 {
784 while (map->sections_nb > 0) {
785 MemoryRegionSection *section = &map->sections[--map->sections_nb];
786 phys_section_destroy(section->mr);
787 }
788 g_free(map->sections);
789 g_free(map->nodes);
790 g_free(map);
791 }
792
793 static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
794 {
795 subpage_t *subpage;
796 hwaddr base = section->offset_within_address_space
797 & TARGET_PAGE_MASK;
798 MemoryRegionSection *existing = phys_page_find(d->phys_map, base >> TARGET_PAGE_BITS,
799 next_map.nodes, next_map.sections);
800 MemoryRegionSection subsection = {
801 .offset_within_address_space = base,
802 .size = int128_make64(TARGET_PAGE_SIZE),
803 };
804 hwaddr start, end;
805
806 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
807
808 if (!(existing->mr->subpage)) {
809 subpage = subpage_init(d->as, base);
810 subsection.mr = &subpage->iomem;
811 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
812 phys_section_add(&subsection));
813 } else {
814 subpage = container_of(existing->mr, subpage_t, iomem);
815 }
816 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
817 end = start + int128_get64(section->size) - 1;
818 subpage_register(subpage, start, end, phys_section_add(section));
819 }
820
821
822 static void register_multipage(AddressSpaceDispatch *d,
823 MemoryRegionSection *section)
824 {
825 hwaddr start_addr = section->offset_within_address_space;
826 uint16_t section_index = phys_section_add(section);
827 uint64_t num_pages = int128_get64(int128_rshift(section->size,
828 TARGET_PAGE_BITS));
829
830 assert(num_pages);
831 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
832 }
833
834 static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
835 {
836 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
837 AddressSpaceDispatch *d = as->next_dispatch;
838 MemoryRegionSection now = *section, remain = *section;
839 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
840
841 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
842 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
843 - now.offset_within_address_space;
844
845 now.size = int128_min(int128_make64(left), now.size);
846 register_subpage(d, &now);
847 } else {
848 now.size = int128_zero();
849 }
850 while (int128_ne(remain.size, now.size)) {
851 remain.size = int128_sub(remain.size, now.size);
852 remain.offset_within_address_space += int128_get64(now.size);
853 remain.offset_within_region += int128_get64(now.size);
854 now = remain;
855 if (int128_lt(remain.size, page_size)) {
856 register_subpage(d, &now);
857 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
858 now.size = page_size;
859 register_subpage(d, &now);
860 } else {
861 now.size = int128_and(now.size, int128_neg(page_size));
862 register_multipage(d, &now);
863 }
864 }
865 }
866
867 void qemu_flush_coalesced_mmio_buffer(void)
868 {
869 if (kvm_enabled())
870 kvm_flush_coalesced_mmio_buffer();
871 }
872
873 void qemu_mutex_lock_ramlist(void)
874 {
875 qemu_mutex_lock(&ram_list.mutex);
876 }
877
878 void qemu_mutex_unlock_ramlist(void)
879 {
880 qemu_mutex_unlock(&ram_list.mutex);
881 }
882
883 #if defined(__linux__) && !defined(TARGET_S390X)
884
885 #include <sys/vfs.h>
886
887 #define HUGETLBFS_MAGIC 0x958458f6
888
889 static long gethugepagesize(const char *path)
890 {
891 struct statfs fs;
892 int ret;
893
894 do {
895 ret = statfs(path, &fs);
896 } while (ret != 0 && errno == EINTR);
897
898 if (ret != 0) {
899 perror(path);
900 return 0;
901 }
902
903 if (fs.f_type != HUGETLBFS_MAGIC)
904 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
905
906 return fs.f_bsize;
907 }
908
909 static void *file_ram_alloc(RAMBlock *block,
910 ram_addr_t memory,
911 const char *path)
912 {
913 char *filename;
914 char *sanitized_name;
915 char *c;
916 void *area;
917 int fd;
918 #ifdef MAP_POPULATE
919 int flags;
920 #endif
921 unsigned long hpagesize;
922
923 hpagesize = gethugepagesize(path);
924 if (!hpagesize) {
925 return NULL;
926 }
927
928 if (memory < hpagesize) {
929 return NULL;
930 }
931
932 if (kvm_enabled() && !kvm_has_sync_mmu()) {
933 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
934 return NULL;
935 }
936
937 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
938 sanitized_name = g_strdup(block->mr->name);
939 for (c = sanitized_name; *c != '\0'; c++) {
940 if (*c == '/')
941 *c = '_';
942 }
943
944 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
945 sanitized_name);
946 g_free(sanitized_name);
947
948 fd = mkstemp(filename);
949 if (fd < 0) {
950 perror("unable to create backing store for hugepages");
951 g_free(filename);
952 return NULL;
953 }
954 unlink(filename);
955 g_free(filename);
956
957 memory = (memory+hpagesize-1) & ~(hpagesize-1);
958
959 /*
960 * ftruncate is not supported by hugetlbfs in older
961 * hosts, so don't bother bailing out on errors.
962 * If anything goes wrong with it under other filesystems,
963 * mmap will fail.
964 */
965 if (ftruncate(fd, memory))
966 perror("ftruncate");
967
968 #ifdef MAP_POPULATE
969 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
970 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
971 * to sidestep this quirk.
972 */
973 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
974 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
975 #else
976 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
977 #endif
978 if (area == MAP_FAILED) {
979 perror("file_ram_alloc: can't mmap RAM pages");
980 close(fd);
981 return (NULL);
982 }
983 block->fd = fd;
984 return area;
985 }
986 #endif
987
988 static ram_addr_t find_ram_offset(ram_addr_t size)
989 {
990 RAMBlock *block, *next_block;
991 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
992
993 assert(size != 0); /* it would hand out same offset multiple times */
994
995 if (QTAILQ_EMPTY(&ram_list.blocks))
996 return 0;
997
998 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
999 ram_addr_t end, next = RAM_ADDR_MAX;
1000
1001 end = block->offset + block->length;
1002
1003 QTAILQ_FOREACH(next_block, &ram_list.blocks, next) {
1004 if (next_block->offset >= end) {
1005 next = MIN(next, next_block->offset);
1006 }
1007 }
1008 if (next - end >= size && next - end < mingap) {
1009 offset = end;
1010 mingap = next - end;
1011 }
1012 }
1013
1014 if (offset == RAM_ADDR_MAX) {
1015 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1016 (uint64_t)size);
1017 abort();
1018 }
1019
1020 return offset;
1021 }
1022
1023 ram_addr_t last_ram_offset(void)
1024 {
1025 RAMBlock *block;
1026 ram_addr_t last = 0;
1027
1028 QTAILQ_FOREACH(block, &ram_list.blocks, next)
1029 last = MAX(last, block->offset + block->length);
1030
1031 return last;
1032 }
1033
1034 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1035 {
1036 int ret;
1037
1038 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1039 if (!qemu_opt_get_bool(qemu_get_machine_opts(),
1040 "dump-guest-core", true)) {
1041 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1042 if (ret) {
1043 perror("qemu_madvise");
1044 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1045 "but dump_guest_core=off specified\n");
1046 }
1047 }
1048 }
1049
1050 void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
1051 {
1052 RAMBlock *new_block, *block;
1053
1054 new_block = NULL;
1055 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1056 if (block->offset == addr) {
1057 new_block = block;
1058 break;
1059 }
1060 }
1061 assert(new_block);
1062 assert(!new_block->idstr[0]);
1063
1064 if (dev) {
1065 char *id = qdev_get_dev_path(dev);
1066 if (id) {
1067 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1068 g_free(id);
1069 }
1070 }
1071 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1072
1073 /* This assumes the iothread lock is taken here too. */
1074 qemu_mutex_lock_ramlist();
1075 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1076 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
1077 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1078 new_block->idstr);
1079 abort();
1080 }
1081 }
1082 qemu_mutex_unlock_ramlist();
1083 }
1084
1085 static int memory_try_enable_merging(void *addr, size_t len)
1086 {
1087 if (!qemu_opt_get_bool(qemu_get_machine_opts(), "mem-merge", true)) {
1088 /* disabled by the user */
1089 return 0;
1090 }
1091
1092 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1093 }
1094
1095 ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
1096 MemoryRegion *mr)
1097 {
1098 RAMBlock *block, *new_block;
1099
1100 size = TARGET_PAGE_ALIGN(size);
1101 new_block = g_malloc0(sizeof(*new_block));
1102
1103 /* This assumes the iothread lock is taken here too. */
1104 qemu_mutex_lock_ramlist();
1105 new_block->mr = mr;
1106 new_block->offset = find_ram_offset(size);
1107 if (host) {
1108 new_block->host = host;
1109 new_block->flags |= RAM_PREALLOC_MASK;
1110 } else {
1111 if (mem_path) {
1112 #if defined (__linux__) && !defined(TARGET_S390X)
1113 new_block->host = file_ram_alloc(new_block, size, mem_path);
1114 if (!new_block->host) {
1115 new_block->host = qemu_anon_ram_alloc(size);
1116 memory_try_enable_merging(new_block->host, size);
1117 }
1118 #else
1119 fprintf(stderr, "-mem-path option unsupported\n");
1120 exit(1);
1121 #endif
1122 } else {
1123 if (xen_enabled()) {
1124 xen_ram_alloc(new_block->offset, size, mr);
1125 } else if (kvm_enabled()) {
1126 /* some s390/kvm configurations have special constraints */
1127 new_block->host = kvm_ram_alloc(size);
1128 } else {
1129 new_block->host = qemu_anon_ram_alloc(size);
1130 }
1131 memory_try_enable_merging(new_block->host, size);
1132 }
1133 }
1134 new_block->length = size;
1135
1136 /* Keep the list sorted from biggest to smallest block. */
1137 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1138 if (block->length < new_block->length) {
1139 break;
1140 }
1141 }
1142 if (block) {
1143 QTAILQ_INSERT_BEFORE(block, new_block, next);
1144 } else {
1145 QTAILQ_INSERT_TAIL(&ram_list.blocks, new_block, next);
1146 }
1147 ram_list.mru_block = NULL;
1148
1149 ram_list.version++;
1150 qemu_mutex_unlock_ramlist();
1151
1152 ram_list.phys_dirty = g_realloc(ram_list.phys_dirty,
1153 last_ram_offset() >> TARGET_PAGE_BITS);
1154 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
1155 0, size >> TARGET_PAGE_BITS);
1156 cpu_physical_memory_set_dirty_range(new_block->offset, size, 0xff);
1157
1158 qemu_ram_setup_dump(new_block->host, size);
1159 qemu_madvise(new_block->host, size, QEMU_MADV_HUGEPAGE);
1160
1161 if (kvm_enabled())
1162 kvm_setup_guest_memory(new_block->host, size);
1163
1164 return new_block->offset;
1165 }
1166
1167 ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr)
1168 {
1169 return qemu_ram_alloc_from_ptr(size, NULL, mr);
1170 }
1171
1172 void qemu_ram_free_from_ptr(ram_addr_t addr)
1173 {
1174 RAMBlock *block;
1175
1176 /* This assumes the iothread lock is taken here too. */
1177 qemu_mutex_lock_ramlist();
1178 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1179 if (addr == block->offset) {
1180 QTAILQ_REMOVE(&ram_list.blocks, block, next);
1181 ram_list.mru_block = NULL;
1182 ram_list.version++;
1183 g_free(block);
1184 break;
1185 }
1186 }
1187 qemu_mutex_unlock_ramlist();
1188 }
1189
1190 void qemu_ram_free(ram_addr_t addr)
1191 {
1192 RAMBlock *block;
1193
1194 /* This assumes the iothread lock is taken here too. */
1195 qemu_mutex_lock_ramlist();
1196 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1197 if (addr == block->offset) {
1198 QTAILQ_REMOVE(&ram_list.blocks, block, next);
1199 ram_list.mru_block = NULL;
1200 ram_list.version++;
1201 if (block->flags & RAM_PREALLOC_MASK) {
1202 ;
1203 } else if (mem_path) {
1204 #if defined (__linux__) && !defined(TARGET_S390X)
1205 if (block->fd) {
1206 munmap(block->host, block->length);
1207 close(block->fd);
1208 } else {
1209 qemu_anon_ram_free(block->host, block->length);
1210 }
1211 #else
1212 abort();
1213 #endif
1214 } else {
1215 if (xen_enabled()) {
1216 xen_invalidate_map_cache_entry(block->host);
1217 } else {
1218 qemu_anon_ram_free(block->host, block->length);
1219 }
1220 }
1221 g_free(block);
1222 break;
1223 }
1224 }
1225 qemu_mutex_unlock_ramlist();
1226
1227 }
1228
1229 #ifndef _WIN32
1230 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
1231 {
1232 RAMBlock *block;
1233 ram_addr_t offset;
1234 int flags;
1235 void *area, *vaddr;
1236
1237 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1238 offset = addr - block->offset;
1239 if (offset < block->length) {
1240 vaddr = block->host + offset;
1241 if (block->flags & RAM_PREALLOC_MASK) {
1242 ;
1243 } else {
1244 flags = MAP_FIXED;
1245 munmap(vaddr, length);
1246 if (mem_path) {
1247 #if defined(__linux__) && !defined(TARGET_S390X)
1248 if (block->fd) {
1249 #ifdef MAP_POPULATE
1250 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
1251 MAP_PRIVATE;
1252 #else
1253 flags |= MAP_PRIVATE;
1254 #endif
1255 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1256 flags, block->fd, offset);
1257 } else {
1258 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1259 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1260 flags, -1, 0);
1261 }
1262 #else
1263 abort();
1264 #endif
1265 } else {
1266 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
1267 flags |= MAP_SHARED | MAP_ANONYMOUS;
1268 area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
1269 flags, -1, 0);
1270 #else
1271 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1272 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1273 flags, -1, 0);
1274 #endif
1275 }
1276 if (area != vaddr) {
1277 fprintf(stderr, "Could not remap addr: "
1278 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
1279 length, addr);
1280 exit(1);
1281 }
1282 memory_try_enable_merging(vaddr, length);
1283 qemu_ram_setup_dump(vaddr, length);
1284 }
1285 return;
1286 }
1287 }
1288 }
1289 #endif /* !_WIN32 */
1290
1291 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1292 {
1293 RAMBlock *block;
1294
1295 /* The list is protected by the iothread lock here. */
1296 block = ram_list.mru_block;
1297 if (block && addr - block->offset < block->length) {
1298 goto found;
1299 }
1300 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1301 if (addr - block->offset < block->length) {
1302 goto found;
1303 }
1304 }
1305
1306 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1307 abort();
1308
1309 found:
1310 ram_list.mru_block = block;
1311 return block;
1312 }
1313
1314 /* Return a host pointer to ram allocated with qemu_ram_alloc.
1315 With the exception of the softmmu code in this file, this should
1316 only be used for local memory (e.g. video ram) that the device owns,
1317 and knows it isn't going to access beyond the end of the block.
1318
1319 It should not be used for general purpose DMA.
1320 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
1321 */
1322 void *qemu_get_ram_ptr(ram_addr_t addr)
1323 {
1324 RAMBlock *block = qemu_get_ram_block(addr);
1325
1326 if (xen_enabled()) {
1327 /* We need to check if the requested address is in the RAM
1328 * because we don't want to map the entire memory in QEMU.
1329 * In that case just map until the end of the page.
1330 */
1331 if (block->offset == 0) {
1332 return xen_map_cache(addr, 0, 0);
1333 } else if (block->host == NULL) {
1334 block->host =
1335 xen_map_cache(block->offset, block->length, 1);
1336 }
1337 }
1338 return block->host + (addr - block->offset);
1339 }
1340
1341 /* Return a host pointer to ram allocated with qemu_ram_alloc. Same as
1342 * qemu_get_ram_ptr but do not touch ram_list.mru_block.
1343 *
1344 * ??? Is this still necessary?
1345 */
1346 static void *qemu_safe_ram_ptr(ram_addr_t addr)
1347 {
1348 RAMBlock *block;
1349
1350 /* The list is protected by the iothread lock here. */
1351 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1352 if (addr - block->offset < block->length) {
1353 if (xen_enabled()) {
1354 /* We need to check if the requested address is in the RAM
1355 * because we don't want to map the entire memory in QEMU.
1356 * In that case just map until the end of the page.
1357 */
1358 if (block->offset == 0) {
1359 return xen_map_cache(addr, 0, 0);
1360 } else if (block->host == NULL) {
1361 block->host =
1362 xen_map_cache(block->offset, block->length, 1);
1363 }
1364 }
1365 return block->host + (addr - block->offset);
1366 }
1367 }
1368
1369 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1370 abort();
1371
1372 return NULL;
1373 }
1374
1375 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
1376 * but takes a size argument */
1377 static void *qemu_ram_ptr_length(ram_addr_t addr, hwaddr *size)
1378 {
1379 if (*size == 0) {
1380 return NULL;
1381 }
1382 if (xen_enabled()) {
1383 return xen_map_cache(addr, *size, 1);
1384 } else {
1385 RAMBlock *block;
1386
1387 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1388 if (addr - block->offset < block->length) {
1389 if (addr - block->offset + *size > block->length)
1390 *size = block->length - addr + block->offset;
1391 return block->host + (addr - block->offset);
1392 }
1393 }
1394
1395 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1396 abort();
1397 }
1398 }
1399
1400 /* Some of the softmmu routines need to translate from a host pointer
1401 (typically a TLB entry) back to a ram offset. */
1402 MemoryRegion *qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
1403 {
1404 RAMBlock *block;
1405 uint8_t *host = ptr;
1406
1407 if (xen_enabled()) {
1408 *ram_addr = xen_ram_addr_from_mapcache(ptr);
1409 return qemu_get_ram_block(*ram_addr)->mr;
1410 }
1411
1412 block = ram_list.mru_block;
1413 if (block && block->host && host - block->host < block->length) {
1414 goto found;
1415 }
1416
1417 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1418 /* This case append when the block is not mapped. */
1419 if (block->host == NULL) {
1420 continue;
1421 }
1422 if (host - block->host < block->length) {
1423 goto found;
1424 }
1425 }
1426
1427 return NULL;
1428
1429 found:
1430 *ram_addr = block->offset + (host - block->host);
1431 return block->mr;
1432 }
1433
1434 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
1435 uint64_t val, unsigned size)
1436 {
1437 int dirty_flags;
1438 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
1439 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
1440 tb_invalidate_phys_page_fast(ram_addr, size);
1441 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
1442 }
1443 switch (size) {
1444 case 1:
1445 stb_p(qemu_get_ram_ptr(ram_addr), val);
1446 break;
1447 case 2:
1448 stw_p(qemu_get_ram_ptr(ram_addr), val);
1449 break;
1450 case 4:
1451 stl_p(qemu_get_ram_ptr(ram_addr), val);
1452 break;
1453 default:
1454 abort();
1455 }
1456 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
1457 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
1458 /* we remove the notdirty callback only if the code has been
1459 flushed */
1460 if (dirty_flags == 0xff) {
1461 CPUArchState *env = current_cpu->env_ptr;
1462 tlb_set_dirty(env, env->mem_io_vaddr);
1463 }
1464 }
1465
1466 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
1467 unsigned size, bool is_write)
1468 {
1469 return is_write;
1470 }
1471
1472 static const MemoryRegionOps notdirty_mem_ops = {
1473 .write = notdirty_mem_write,
1474 .valid.accepts = notdirty_mem_accepts,
1475 .endianness = DEVICE_NATIVE_ENDIAN,
1476 };
1477
1478 /* Generate a debug exception if a watchpoint has been hit. */
1479 static void check_watchpoint(int offset, int len_mask, int flags)
1480 {
1481 CPUArchState *env = current_cpu->env_ptr;
1482 target_ulong pc, cs_base;
1483 target_ulong vaddr;
1484 CPUWatchpoint *wp;
1485 int cpu_flags;
1486
1487 if (env->watchpoint_hit) {
1488 /* We re-entered the check after replacing the TB. Now raise
1489 * the debug interrupt so that is will trigger after the
1490 * current instruction. */
1491 cpu_interrupt(ENV_GET_CPU(env), CPU_INTERRUPT_DEBUG);
1492 return;
1493 }
1494 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
1495 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1496 if ((vaddr == (wp->vaddr & len_mask) ||
1497 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
1498 wp->flags |= BP_WATCHPOINT_HIT;
1499 if (!env->watchpoint_hit) {
1500 env->watchpoint_hit = wp;
1501 tb_check_watchpoint(env);
1502 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
1503 env->exception_index = EXCP_DEBUG;
1504 cpu_loop_exit(env);
1505 } else {
1506 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
1507 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
1508 cpu_resume_from_signal(env, NULL);
1509 }
1510 }
1511 } else {
1512 wp->flags &= ~BP_WATCHPOINT_HIT;
1513 }
1514 }
1515 }
1516
1517 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
1518 so these check for a hit then pass through to the normal out-of-line
1519 phys routines. */
1520 static uint64_t watch_mem_read(void *opaque, hwaddr addr,
1521 unsigned size)
1522 {
1523 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ);
1524 switch (size) {
1525 case 1: return ldub_phys(addr);
1526 case 2: return lduw_phys(addr);
1527 case 4: return ldl_phys(addr);
1528 default: abort();
1529 }
1530 }
1531
1532 static void watch_mem_write(void *opaque, hwaddr addr,
1533 uint64_t val, unsigned size)
1534 {
1535 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE);
1536 switch (size) {
1537 case 1:
1538 stb_phys(addr, val);
1539 break;
1540 case 2:
1541 stw_phys(addr, val);
1542 break;
1543 case 4:
1544 stl_phys(addr, val);
1545 break;
1546 default: abort();
1547 }
1548 }
1549
1550 static const MemoryRegionOps watch_mem_ops = {
1551 .read = watch_mem_read,
1552 .write = watch_mem_write,
1553 .endianness = DEVICE_NATIVE_ENDIAN,
1554 };
1555
1556 static uint64_t subpage_read(void *opaque, hwaddr addr,
1557 unsigned len)
1558 {
1559 subpage_t *subpage = opaque;
1560 uint8_t buf[4];
1561
1562 #if defined(DEBUG_SUBPAGE)
1563 printf("%s: subpage %p len %d addr " TARGET_FMT_plx "\n", __func__,
1564 subpage, len, addr);
1565 #endif
1566 address_space_read(subpage->as, addr + subpage->base, buf, len);
1567 switch (len) {
1568 case 1:
1569 return ldub_p(buf);
1570 case 2:
1571 return lduw_p(buf);
1572 case 4:
1573 return ldl_p(buf);
1574 default:
1575 abort();
1576 }
1577 }
1578
1579 static void subpage_write(void *opaque, hwaddr addr,
1580 uint64_t value, unsigned len)
1581 {
1582 subpage_t *subpage = opaque;
1583 uint8_t buf[4];
1584
1585 #if defined(DEBUG_SUBPAGE)
1586 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
1587 " value %"PRIx64"\n",
1588 __func__, subpage, len, addr, value);
1589 #endif
1590 switch (len) {
1591 case 1:
1592 stb_p(buf, value);
1593 break;
1594 case 2:
1595 stw_p(buf, value);
1596 break;
1597 case 4:
1598 stl_p(buf, value);
1599 break;
1600 default:
1601 abort();
1602 }
1603 address_space_write(subpage->as, addr + subpage->base, buf, len);
1604 }
1605
1606 static bool subpage_accepts(void *opaque, hwaddr addr,
1607 unsigned size, bool is_write)
1608 {
1609 subpage_t *subpage = opaque;
1610 #if defined(DEBUG_SUBPAGE)
1611 printf("%s: subpage %p %c len %d addr " TARGET_FMT_plx "\n",
1612 __func__, subpage, is_write ? 'w' : 'r', len, addr);
1613 #endif
1614
1615 return address_space_access_valid(subpage->as, addr + subpage->base,
1616 size, is_write);
1617 }
1618
1619 static const MemoryRegionOps subpage_ops = {
1620 .read = subpage_read,
1621 .write = subpage_write,
1622 .valid.accepts = subpage_accepts,
1623 .endianness = DEVICE_NATIVE_ENDIAN,
1624 };
1625
1626 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1627 uint16_t section)
1628 {
1629 int idx, eidx;
1630
1631 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
1632 return -1;
1633 idx = SUBPAGE_IDX(start);
1634 eidx = SUBPAGE_IDX(end);
1635 #if defined(DEBUG_SUBPAGE)
1636 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
1637 mmio, start, end, idx, eidx, memory);
1638 #endif
1639 for (; idx <= eidx; idx++) {
1640 mmio->sub_section[idx] = section;
1641 }
1642
1643 return 0;
1644 }
1645
1646 static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
1647 {
1648 subpage_t *mmio;
1649
1650 mmio = g_malloc0(sizeof(subpage_t));
1651
1652 mmio->as = as;
1653 mmio->base = base;
1654 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
1655 "subpage", TARGET_PAGE_SIZE);
1656 mmio->iomem.subpage = true;
1657 #if defined(DEBUG_SUBPAGE)
1658 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
1659 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
1660 #endif
1661 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
1662
1663 return mmio;
1664 }
1665
1666 static uint16_t dummy_section(MemoryRegion *mr)
1667 {
1668 MemoryRegionSection section = {
1669 .mr = mr,
1670 .offset_within_address_space = 0,
1671 .offset_within_region = 0,
1672 .size = int128_2_64(),
1673 };
1674
1675 return phys_section_add(&section);
1676 }
1677
1678 MemoryRegion *iotlb_to_region(hwaddr index)
1679 {
1680 return address_space_memory.dispatch->sections[index & ~TARGET_PAGE_MASK].mr;
1681 }
1682
1683 static void io_mem_init(void)
1684 {
1685 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, "rom", UINT64_MAX);
1686 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1687 "unassigned", UINT64_MAX);
1688 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
1689 "notdirty", UINT64_MAX);
1690 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1691 "watch", UINT64_MAX);
1692 }
1693
1694 static void mem_begin(MemoryListener *listener)
1695 {
1696 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
1697 AddressSpaceDispatch *d = g_new(AddressSpaceDispatch, 1);
1698
1699 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .is_leaf = 0 };
1700 d->as = as;
1701 as->next_dispatch = d;
1702 }
1703
1704 static void mem_commit(MemoryListener *listener)
1705 {
1706 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
1707 AddressSpaceDispatch *cur = as->dispatch;
1708 AddressSpaceDispatch *next = as->next_dispatch;
1709
1710 next->nodes = next_map.nodes;
1711 next->sections = next_map.sections;
1712
1713 as->dispatch = next;
1714 g_free(cur);
1715 }
1716
1717 static void core_begin(MemoryListener *listener)
1718 {
1719 uint16_t n;
1720
1721 prev_map = g_new(PhysPageMap, 1);
1722 *prev_map = next_map;
1723
1724 memset(&next_map, 0, sizeof(next_map));
1725 n = dummy_section(&io_mem_unassigned);
1726 assert(n == PHYS_SECTION_UNASSIGNED);
1727 n = dummy_section(&io_mem_notdirty);
1728 assert(n == PHYS_SECTION_NOTDIRTY);
1729 n = dummy_section(&io_mem_rom);
1730 assert(n == PHYS_SECTION_ROM);
1731 n = dummy_section(&io_mem_watch);
1732 assert(n == PHYS_SECTION_WATCH);
1733 }
1734
1735 /* This listener's commit run after the other AddressSpaceDispatch listeners'.
1736 * All AddressSpaceDispatch instances have switched to the next map.
1737 */
1738 static void core_commit(MemoryListener *listener)
1739 {
1740 phys_sections_free(prev_map);
1741 }
1742
1743 static void tcg_commit(MemoryListener *listener)
1744 {
1745 CPUState *cpu;
1746
1747 /* since each CPU stores ram addresses in its TLB cache, we must
1748 reset the modified entries */
1749 /* XXX: slow ! */
1750 CPU_FOREACH(cpu) {
1751 CPUArchState *env = cpu->env_ptr;
1752
1753 tlb_flush(env, 1);
1754 }
1755 }
1756
1757 static void core_log_global_start(MemoryListener *listener)
1758 {
1759 cpu_physical_memory_set_dirty_tracking(1);
1760 }
1761
1762 static void core_log_global_stop(MemoryListener *listener)
1763 {
1764 cpu_physical_memory_set_dirty_tracking(0);
1765 }
1766
1767 static MemoryListener core_memory_listener = {
1768 .begin = core_begin,
1769 .commit = core_commit,
1770 .log_global_start = core_log_global_start,
1771 .log_global_stop = core_log_global_stop,
1772 .priority = 1,
1773 };
1774
1775 static MemoryListener tcg_memory_listener = {
1776 .commit = tcg_commit,
1777 };
1778
1779 void address_space_init_dispatch(AddressSpace *as)
1780 {
1781 as->dispatch = NULL;
1782 as->dispatch_listener = (MemoryListener) {
1783 .begin = mem_begin,
1784 .commit = mem_commit,
1785 .region_add = mem_add,
1786 .region_nop = mem_add,
1787 .priority = 0,
1788 };
1789 memory_listener_register(&as->dispatch_listener, as);
1790 }
1791
1792 void address_space_destroy_dispatch(AddressSpace *as)
1793 {
1794 AddressSpaceDispatch *d = as->dispatch;
1795
1796 memory_listener_unregister(&as->dispatch_listener);
1797 g_free(d);
1798 as->dispatch = NULL;
1799 }
1800
1801 static void memory_map_init(void)
1802 {
1803 system_memory = g_malloc(sizeof(*system_memory));
1804 memory_region_init(system_memory, NULL, "system", INT64_MAX);
1805 address_space_init(&address_space_memory, system_memory, "memory");
1806
1807 system_io = g_malloc(sizeof(*system_io));
1808 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
1809 65536);
1810 address_space_init(&address_space_io, system_io, "I/O");
1811
1812 memory_listener_register(&core_memory_listener, &address_space_memory);
1813 memory_listener_register(&tcg_memory_listener, &address_space_memory);
1814 }
1815
1816 MemoryRegion *get_system_memory(void)
1817 {
1818 return system_memory;
1819 }
1820
1821 MemoryRegion *get_system_io(void)
1822 {
1823 return system_io;
1824 }
1825
1826 #endif /* !defined(CONFIG_USER_ONLY) */
1827
1828 /* physical memory access (slow version, mainly for debug) */
1829 #if defined(CONFIG_USER_ONLY)
1830 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
1831 uint8_t *buf, int len, int is_write)
1832 {
1833 int l, flags;
1834 target_ulong page;
1835 void * p;
1836
1837 while (len > 0) {
1838 page = addr & TARGET_PAGE_MASK;
1839 l = (page + TARGET_PAGE_SIZE) - addr;
1840 if (l > len)
1841 l = len;
1842 flags = page_get_flags(page);
1843 if (!(flags & PAGE_VALID))
1844 return -1;
1845 if (is_write) {
1846 if (!(flags & PAGE_WRITE))
1847 return -1;
1848 /* XXX: this code should not depend on lock_user */
1849 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
1850 return -1;
1851 memcpy(p, buf, l);
1852 unlock_user(p, addr, l);
1853 } else {
1854 if (!(flags & PAGE_READ))
1855 return -1;
1856 /* XXX: this code should not depend on lock_user */
1857 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
1858 return -1;
1859 memcpy(buf, p, l);
1860 unlock_user(p, addr, 0);
1861 }
1862 len -= l;
1863 buf += l;
1864 addr += l;
1865 }
1866 return 0;
1867 }
1868
1869 #else
1870
1871 static void invalidate_and_set_dirty(hwaddr addr,
1872 hwaddr length)
1873 {
1874 if (!cpu_physical_memory_is_dirty(addr)) {
1875 /* invalidate code */
1876 tb_invalidate_phys_page_range(addr, addr + length, 0);
1877 /* set dirty bit */
1878 cpu_physical_memory_set_dirty_flags(addr, (0xff & ~CODE_DIRTY_FLAG));
1879 }
1880 xen_modified_memory(addr, length);
1881 }
1882
1883 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
1884 {
1885 if (memory_region_is_ram(mr)) {
1886 return !(is_write && mr->readonly);
1887 }
1888 if (memory_region_is_romd(mr)) {
1889 return !is_write;
1890 }
1891
1892 return false;
1893 }
1894
1895 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
1896 {
1897 unsigned access_size_max = mr->ops->valid.max_access_size;
1898
1899 /* Regions are assumed to support 1-4 byte accesses unless
1900 otherwise specified. */
1901 if (access_size_max == 0) {
1902 access_size_max = 4;
1903 }
1904
1905 /* Bound the maximum access by the alignment of the address. */
1906 if (!mr->ops->impl.unaligned) {
1907 unsigned align_size_max = addr & -addr;
1908 if (align_size_max != 0 && align_size_max < access_size_max) {
1909 access_size_max = align_size_max;
1910 }
1911 }
1912
1913 /* Don't attempt accesses larger than the maximum. */
1914 if (l > access_size_max) {
1915 l = access_size_max;
1916 }
1917 if (l & (l - 1)) {
1918 l = 1 << (qemu_fls(l) - 1);
1919 }
1920
1921 return l;
1922 }
1923
1924 bool address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf,
1925 int len, bool is_write)
1926 {
1927 hwaddr l;
1928 uint8_t *ptr;
1929 uint64_t val;
1930 hwaddr addr1;
1931 MemoryRegion *mr;
1932 bool error = false;
1933
1934 while (len > 0) {
1935 l = len;
1936 mr = address_space_translate(as, addr, &addr1, &l, is_write);
1937
1938 if (is_write) {
1939 if (!memory_access_is_direct(mr, is_write)) {
1940 l = memory_access_size(mr, l, addr1);
1941 /* XXX: could force current_cpu to NULL to avoid
1942 potential bugs */
1943 switch (l) {
1944 case 8:
1945 /* 64 bit write access */
1946 val = ldq_p(buf);
1947 error |= io_mem_write(mr, addr1, val, 8);
1948 break;
1949 case 4:
1950 /* 32 bit write access */
1951 val = ldl_p(buf);
1952 error |= io_mem_write(mr, addr1, val, 4);
1953 break;
1954 case 2:
1955 /* 16 bit write access */
1956 val = lduw_p(buf);
1957 error |= io_mem_write(mr, addr1, val, 2);
1958 break;
1959 case 1:
1960 /* 8 bit write access */
1961 val = ldub_p(buf);
1962 error |= io_mem_write(mr, addr1, val, 1);
1963 break;
1964 default:
1965 abort();
1966 }
1967 } else {
1968 addr1 += memory_region_get_ram_addr(mr);
1969 /* RAM case */
1970 ptr = qemu_get_ram_ptr(addr1);
1971 memcpy(ptr, buf, l);
1972 invalidate_and_set_dirty(addr1, l);
1973 }
1974 } else {
1975 if (!memory_access_is_direct(mr, is_write)) {
1976 /* I/O case */
1977 l = memory_access_size(mr, l, addr1);
1978 switch (l) {
1979 case 8:
1980 /* 64 bit read access */
1981 error |= io_mem_read(mr, addr1, &val, 8);
1982 stq_p(buf, val);
1983 break;
1984 case 4:
1985 /* 32 bit read access */
1986 error |= io_mem_read(mr, addr1, &val, 4);
1987 stl_p(buf, val);
1988 break;
1989 case 2:
1990 /* 16 bit read access */
1991 error |= io_mem_read(mr, addr1, &val, 2);
1992 stw_p(buf, val);
1993 break;
1994 case 1:
1995 /* 8 bit read access */
1996 error |= io_mem_read(mr, addr1, &val, 1);
1997 stb_p(buf, val);
1998 break;
1999 default:
2000 abort();
2001 }
2002 } else {
2003 /* RAM case */
2004 ptr = qemu_get_ram_ptr(mr->ram_addr + addr1);
2005 memcpy(buf, ptr, l);
2006 }
2007 }
2008 len -= l;
2009 buf += l;
2010 addr += l;
2011 }
2012
2013 return error;
2014 }
2015
2016 bool address_space_write(AddressSpace *as, hwaddr addr,
2017 const uint8_t *buf, int len)
2018 {
2019 return address_space_rw(as, addr, (uint8_t *)buf, len, true);
2020 }
2021
2022 bool address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len)
2023 {
2024 return address_space_rw(as, addr, buf, len, false);
2025 }
2026
2027
2028 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
2029 int len, int is_write)
2030 {
2031 address_space_rw(&address_space_memory, addr, buf, len, is_write);
2032 }
2033
2034 /* used for ROM loading : can write in RAM and ROM */
2035 void cpu_physical_memory_write_rom(hwaddr addr,
2036 const uint8_t *buf, int len)
2037 {
2038 hwaddr l;
2039 uint8_t *ptr;
2040 hwaddr addr1;
2041 MemoryRegion *mr;
2042
2043 while (len > 0) {
2044 l = len;
2045 mr = address_space_translate(&address_space_memory,
2046 addr, &addr1, &l, true);
2047
2048 if (!(memory_region_is_ram(mr) ||
2049 memory_region_is_romd(mr))) {
2050 /* do nothing */
2051 } else {
2052 addr1 += memory_region_get_ram_addr(mr);
2053 /* ROM/RAM case */
2054 ptr = qemu_get_ram_ptr(addr1);
2055 memcpy(ptr, buf, l);
2056 invalidate_and_set_dirty(addr1, l);
2057 }
2058 len -= l;
2059 buf += l;
2060 addr += l;
2061 }
2062 }
2063
2064 typedef struct {
2065 MemoryRegion *mr;
2066 void *buffer;
2067 hwaddr addr;
2068 hwaddr len;
2069 } BounceBuffer;
2070
2071 static BounceBuffer bounce;
2072
2073 typedef struct MapClient {
2074 void *opaque;
2075 void (*callback)(void *opaque);
2076 QLIST_ENTRY(MapClient) link;
2077 } MapClient;
2078
2079 static QLIST_HEAD(map_client_list, MapClient) map_client_list
2080 = QLIST_HEAD_INITIALIZER(map_client_list);
2081
2082 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
2083 {
2084 MapClient *client = g_malloc(sizeof(*client));
2085
2086 client->opaque = opaque;
2087 client->callback = callback;
2088 QLIST_INSERT_HEAD(&map_client_list, client, link);
2089 return client;
2090 }
2091
2092 static void cpu_unregister_map_client(void *_client)
2093 {
2094 MapClient *client = (MapClient *)_client;
2095
2096 QLIST_REMOVE(client, link);
2097 g_free(client);
2098 }
2099
2100 static void cpu_notify_map_clients(void)
2101 {
2102 MapClient *client;
2103
2104 while (!QLIST_EMPTY(&map_client_list)) {
2105 client = QLIST_FIRST(&map_client_list);
2106 client->callback(client->opaque);
2107 cpu_unregister_map_client(client);
2108 }
2109 }
2110
2111 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
2112 {
2113 MemoryRegion *mr;
2114 hwaddr l, xlat;
2115
2116 while (len > 0) {
2117 l = len;
2118 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2119 if (!memory_access_is_direct(mr, is_write)) {
2120 l = memory_access_size(mr, l, addr);
2121 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
2122 return false;
2123 }
2124 }
2125
2126 len -= l;
2127 addr += l;
2128 }
2129 return true;
2130 }
2131
2132 /* Map a physical memory region into a host virtual address.
2133 * May map a subset of the requested range, given by and returned in *plen.
2134 * May return NULL if resources needed to perform the mapping are exhausted.
2135 * Use only for reads OR writes - not for read-modify-write operations.
2136 * Use cpu_register_map_client() to know when retrying the map operation is
2137 * likely to succeed.
2138 */
2139 void *address_space_map(AddressSpace *as,
2140 hwaddr addr,
2141 hwaddr *plen,
2142 bool is_write)
2143 {
2144 hwaddr len = *plen;
2145 hwaddr done = 0;
2146 hwaddr l, xlat, base;
2147 MemoryRegion *mr, *this_mr;
2148 ram_addr_t raddr;
2149
2150 if (len == 0) {
2151 return NULL;
2152 }
2153
2154 l = len;
2155 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2156 if (!memory_access_is_direct(mr, is_write)) {
2157 if (bounce.buffer) {
2158 return NULL;
2159 }
2160 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
2161 bounce.addr = addr;
2162 bounce.len = l;
2163
2164 memory_region_ref(mr);
2165 bounce.mr = mr;
2166 if (!is_write) {
2167 address_space_read(as, addr, bounce.buffer, l);
2168 }
2169
2170 *plen = l;
2171 return bounce.buffer;
2172 }
2173
2174 base = xlat;
2175 raddr = memory_region_get_ram_addr(mr);
2176
2177 for (;;) {
2178 len -= l;
2179 addr += l;
2180 done += l;
2181 if (len == 0) {
2182 break;
2183 }
2184
2185 l = len;
2186 this_mr = address_space_translate(as, addr, &xlat, &l, is_write);
2187 if (this_mr != mr || xlat != base + done) {
2188 break;
2189 }
2190 }
2191
2192 memory_region_ref(mr);
2193 *plen = done;
2194 return qemu_ram_ptr_length(raddr + base, plen);
2195 }
2196
2197 /* Unmaps a memory region previously mapped by address_space_map().
2198 * Will also mark the memory as dirty if is_write == 1. access_len gives
2199 * the amount of memory that was actually read or written by the caller.
2200 */
2201 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2202 int is_write, hwaddr access_len)
2203 {
2204 if (buffer != bounce.buffer) {
2205 MemoryRegion *mr;
2206 ram_addr_t addr1;
2207
2208 mr = qemu_ram_addr_from_host(buffer, &addr1);
2209 assert(mr != NULL);
2210 if (is_write) {
2211 while (access_len) {
2212 unsigned l;
2213 l = TARGET_PAGE_SIZE;
2214 if (l > access_len)
2215 l = access_len;
2216 invalidate_and_set_dirty(addr1, l);
2217 addr1 += l;
2218 access_len -= l;
2219 }
2220 }
2221 if (xen_enabled()) {
2222 xen_invalidate_map_cache_entry(buffer);
2223 }
2224 memory_region_unref(mr);
2225 return;
2226 }
2227 if (is_write) {
2228 address_space_write(as, bounce.addr, bounce.buffer, access_len);
2229 }
2230 qemu_vfree(bounce.buffer);
2231 bounce.buffer = NULL;
2232 memory_region_unref(bounce.mr);
2233 cpu_notify_map_clients();
2234 }
2235
2236 void *cpu_physical_memory_map(hwaddr addr,
2237 hwaddr *plen,
2238 int is_write)
2239 {
2240 return address_space_map(&address_space_memory, addr, plen, is_write);
2241 }
2242
2243 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
2244 int is_write, hwaddr access_len)
2245 {
2246 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
2247 }
2248
2249 /* warning: addr must be aligned */
2250 static inline uint32_t ldl_phys_internal(hwaddr addr,
2251 enum device_endian endian)
2252 {
2253 uint8_t *ptr;
2254 uint64_t val;
2255 MemoryRegion *mr;
2256 hwaddr l = 4;
2257 hwaddr addr1;
2258
2259 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2260 false);
2261 if (l < 4 || !memory_access_is_direct(mr, false)) {
2262 /* I/O case */
2263 io_mem_read(mr, addr1, &val, 4);
2264 #if defined(TARGET_WORDS_BIGENDIAN)
2265 if (endian == DEVICE_LITTLE_ENDIAN) {
2266 val = bswap32(val);
2267 }
2268 #else
2269 if (endian == DEVICE_BIG_ENDIAN) {
2270 val = bswap32(val);
2271 }
2272 #endif
2273 } else {
2274 /* RAM case */
2275 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2276 & TARGET_PAGE_MASK)
2277 + addr1);
2278 switch (endian) {
2279 case DEVICE_LITTLE_ENDIAN:
2280 val = ldl_le_p(ptr);
2281 break;
2282 case DEVICE_BIG_ENDIAN:
2283 val = ldl_be_p(ptr);
2284 break;
2285 default:
2286 val = ldl_p(ptr);
2287 break;
2288 }
2289 }
2290 return val;
2291 }
2292
2293 uint32_t ldl_phys(hwaddr addr)
2294 {
2295 return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2296 }
2297
2298 uint32_t ldl_le_phys(hwaddr addr)
2299 {
2300 return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2301 }
2302
2303 uint32_t ldl_be_phys(hwaddr addr)
2304 {
2305 return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
2306 }
2307
2308 /* warning: addr must be aligned */
2309 static inline uint64_t ldq_phys_internal(hwaddr addr,
2310 enum device_endian endian)
2311 {
2312 uint8_t *ptr;
2313 uint64_t val;
2314 MemoryRegion *mr;
2315 hwaddr l = 8;
2316 hwaddr addr1;
2317
2318 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2319 false);
2320 if (l < 8 || !memory_access_is_direct(mr, false)) {
2321 /* I/O case */
2322 io_mem_read(mr, addr1, &val, 8);
2323 #if defined(TARGET_WORDS_BIGENDIAN)
2324 if (endian == DEVICE_LITTLE_ENDIAN) {
2325 val = bswap64(val);
2326 }
2327 #else
2328 if (endian == DEVICE_BIG_ENDIAN) {
2329 val = bswap64(val);
2330 }
2331 #endif
2332 } else {
2333 /* RAM case */
2334 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2335 & TARGET_PAGE_MASK)
2336 + addr1);
2337 switch (endian) {
2338 case DEVICE_LITTLE_ENDIAN:
2339 val = ldq_le_p(ptr);
2340 break;
2341 case DEVICE_BIG_ENDIAN:
2342 val = ldq_be_p(ptr);
2343 break;
2344 default:
2345 val = ldq_p(ptr);
2346 break;
2347 }
2348 }
2349 return val;
2350 }
2351
2352 uint64_t ldq_phys(hwaddr addr)
2353 {
2354 return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2355 }
2356
2357 uint64_t ldq_le_phys(hwaddr addr)
2358 {
2359 return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2360 }
2361
2362 uint64_t ldq_be_phys(hwaddr addr)
2363 {
2364 return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
2365 }
2366
2367 /* XXX: optimize */
2368 uint32_t ldub_phys(hwaddr addr)
2369 {
2370 uint8_t val;
2371 cpu_physical_memory_read(addr, &val, 1);
2372 return val;
2373 }
2374
2375 /* warning: addr must be aligned */
2376 static inline uint32_t lduw_phys_internal(hwaddr addr,
2377 enum device_endian endian)
2378 {
2379 uint8_t *ptr;
2380 uint64_t val;
2381 MemoryRegion *mr;
2382 hwaddr l = 2;
2383 hwaddr addr1;
2384
2385 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2386 false);
2387 if (l < 2 || !memory_access_is_direct(mr, false)) {
2388 /* I/O case */
2389 io_mem_read(mr, addr1, &val, 2);
2390 #if defined(TARGET_WORDS_BIGENDIAN)
2391 if (endian == DEVICE_LITTLE_ENDIAN) {
2392 val = bswap16(val);
2393 }
2394 #else
2395 if (endian == DEVICE_BIG_ENDIAN) {
2396 val = bswap16(val);
2397 }
2398 #endif
2399 } else {
2400 /* RAM case */
2401 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2402 & TARGET_PAGE_MASK)
2403 + addr1);
2404 switch (endian) {
2405 case DEVICE_LITTLE_ENDIAN:
2406 val = lduw_le_p(ptr);
2407 break;
2408 case DEVICE_BIG_ENDIAN:
2409 val = lduw_be_p(ptr);
2410 break;
2411 default:
2412 val = lduw_p(ptr);
2413 break;
2414 }
2415 }
2416 return val;
2417 }
2418
2419 uint32_t lduw_phys(hwaddr addr)
2420 {
2421 return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2422 }
2423
2424 uint32_t lduw_le_phys(hwaddr addr)
2425 {
2426 return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2427 }
2428
2429 uint32_t lduw_be_phys(hwaddr addr)
2430 {
2431 return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
2432 }
2433
2434 /* warning: addr must be aligned. The ram page is not masked as dirty
2435 and the code inside is not invalidated. It is useful if the dirty
2436 bits are used to track modified PTEs */
2437 void stl_phys_notdirty(hwaddr addr, uint32_t val)
2438 {
2439 uint8_t *ptr;
2440 MemoryRegion *mr;
2441 hwaddr l = 4;
2442 hwaddr addr1;
2443
2444 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2445 true);
2446 if (l < 4 || !memory_access_is_direct(mr, true)) {
2447 io_mem_write(mr, addr1, val, 4);
2448 } else {
2449 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2450 ptr = qemu_get_ram_ptr(addr1);
2451 stl_p(ptr, val);
2452
2453 if (unlikely(in_migration)) {
2454 if (!cpu_physical_memory_is_dirty(addr1)) {
2455 /* invalidate code */
2456 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
2457 /* set dirty bit */
2458 cpu_physical_memory_set_dirty_flags(
2459 addr1, (0xff & ~CODE_DIRTY_FLAG));
2460 }
2461 }
2462 }
2463 }
2464
2465 /* warning: addr must be aligned */
2466 static inline void stl_phys_internal(hwaddr addr, uint32_t val,
2467 enum device_endian endian)
2468 {
2469 uint8_t *ptr;
2470 MemoryRegion *mr;
2471 hwaddr l = 4;
2472 hwaddr addr1;
2473
2474 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2475 true);
2476 if (l < 4 || !memory_access_is_direct(mr, true)) {
2477 #if defined(TARGET_WORDS_BIGENDIAN)
2478 if (endian == DEVICE_LITTLE_ENDIAN) {
2479 val = bswap32(val);
2480 }
2481 #else
2482 if (endian == DEVICE_BIG_ENDIAN) {
2483 val = bswap32(val);
2484 }
2485 #endif
2486 io_mem_write(mr, addr1, val, 4);
2487 } else {
2488 /* RAM case */
2489 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2490 ptr = qemu_get_ram_ptr(addr1);
2491 switch (endian) {
2492 case DEVICE_LITTLE_ENDIAN:
2493 stl_le_p(ptr, val);
2494 break;
2495 case DEVICE_BIG_ENDIAN:
2496 stl_be_p(ptr, val);
2497 break;
2498 default:
2499 stl_p(ptr, val);
2500 break;
2501 }
2502 invalidate_and_set_dirty(addr1, 4);
2503 }
2504 }
2505
2506 void stl_phys(hwaddr addr, uint32_t val)
2507 {
2508 stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2509 }
2510
2511 void stl_le_phys(hwaddr addr, uint32_t val)
2512 {
2513 stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2514 }
2515
2516 void stl_be_phys(hwaddr addr, uint32_t val)
2517 {
2518 stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2519 }
2520
2521 /* XXX: optimize */
2522 void stb_phys(hwaddr addr, uint32_t val)
2523 {
2524 uint8_t v = val;
2525 cpu_physical_memory_write(addr, &v, 1);
2526 }
2527
2528 /* warning: addr must be aligned */
2529 static inline void stw_phys_internal(hwaddr addr, uint32_t val,
2530 enum device_endian endian)
2531 {
2532 uint8_t *ptr;
2533 MemoryRegion *mr;
2534 hwaddr l = 2;
2535 hwaddr addr1;
2536
2537 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2538 true);
2539 if (l < 2 || !memory_access_is_direct(mr, true)) {
2540 #if defined(TARGET_WORDS_BIGENDIAN)
2541 if (endian == DEVICE_LITTLE_ENDIAN) {
2542 val = bswap16(val);
2543 }
2544 #else
2545 if (endian == DEVICE_BIG_ENDIAN) {
2546 val = bswap16(val);
2547 }
2548 #endif
2549 io_mem_write(mr, addr1, val, 2);
2550 } else {
2551 /* RAM case */
2552 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2553 ptr = qemu_get_ram_ptr(addr1);
2554 switch (endian) {
2555 case DEVICE_LITTLE_ENDIAN:
2556 stw_le_p(ptr, val);
2557 break;
2558 case DEVICE_BIG_ENDIAN:
2559 stw_be_p(ptr, val);
2560 break;
2561 default:
2562 stw_p(ptr, val);
2563 break;
2564 }
2565 invalidate_and_set_dirty(addr1, 2);
2566 }
2567 }
2568
2569 void stw_phys(hwaddr addr, uint32_t val)
2570 {
2571 stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2572 }
2573
2574 void stw_le_phys(hwaddr addr, uint32_t val)
2575 {
2576 stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2577 }
2578
2579 void stw_be_phys(hwaddr addr, uint32_t val)
2580 {
2581 stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2582 }
2583
2584 /* XXX: optimize */
2585 void stq_phys(hwaddr addr, uint64_t val)
2586 {
2587 val = tswap64(val);
2588 cpu_physical_memory_write(addr, &val, 8);
2589 }
2590
2591 void stq_le_phys(hwaddr addr, uint64_t val)
2592 {
2593 val = cpu_to_le64(val);
2594 cpu_physical_memory_write(addr, &val, 8);
2595 }
2596
2597 void stq_be_phys(hwaddr addr, uint64_t val)
2598 {
2599 val = cpu_to_be64(val);
2600 cpu_physical_memory_write(addr, &val, 8);
2601 }
2602
2603 /* virtual memory access for debug (includes writing to ROM) */
2604 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
2605 uint8_t *buf, int len, int is_write)
2606 {
2607 int l;
2608 hwaddr phys_addr;
2609 target_ulong page;
2610
2611 while (len > 0) {
2612 page = addr & TARGET_PAGE_MASK;
2613 phys_addr = cpu_get_phys_page_debug(cpu, page);
2614 /* if no physical page mapped, return an error */
2615 if (phys_addr == -1)
2616 return -1;
2617 l = (page + TARGET_PAGE_SIZE) - addr;
2618 if (l > len)
2619 l = len;
2620 phys_addr += (addr & ~TARGET_PAGE_MASK);
2621 if (is_write)
2622 cpu_physical_memory_write_rom(phys_addr, buf, l);
2623 else
2624 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
2625 len -= l;
2626 buf += l;
2627 addr += l;
2628 }
2629 return 0;
2630 }
2631 #endif
2632
2633 #if !defined(CONFIG_USER_ONLY)
2634
2635 /*
2636 * A helper function for the _utterly broken_ virtio device model to find out if
2637 * it's running on a big endian machine. Don't do this at home kids!
2638 */
2639 bool virtio_is_big_endian(void);
2640 bool virtio_is_big_endian(void)
2641 {
2642 #if defined(TARGET_WORDS_BIGENDIAN)
2643 return true;
2644 #else
2645 return false;
2646 #endif
2647 }
2648
2649 #endif
2650
2651 #ifndef CONFIG_USER_ONLY
2652 bool cpu_physical_memory_is_io(hwaddr phys_addr)
2653 {
2654 MemoryRegion*mr;
2655 hwaddr l = 1;
2656
2657 mr = address_space_translate(&address_space_memory,
2658 phys_addr, &phys_addr, &l, false);
2659
2660 return !(memory_region_is_ram(mr) ||
2661 memory_region_is_romd(mr));
2662 }
2663
2664 void qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
2665 {
2666 RAMBlock *block;
2667
2668 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
2669 func(block->host, block->offset, block->length, opaque);
2670 }
2671 }
2672 #endif