]> git.proxmox.com Git - qemu.git/blob - exec.c
3a1fcd7bfaf7566aa2361a77bba86946c4934bd2
[qemu.git] / exec.c
1 /*
2 * virtual page mapping and translated block handling
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "config.h"
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
26 #include <stdlib.h>
27 #include <stdio.h>
28 #include <stdarg.h>
29 #include <string.h>
30 #include <errno.h>
31 #include <unistd.h>
32 #include <inttypes.h>
33
34 #include "cpu.h"
35 #include "exec-all.h"
36 #include "qemu-common.h"
37 #include "tcg.h"
38 #include "hw/hw.h"
39 #include "osdep.h"
40 #include "kvm.h"
41 #if defined(CONFIG_USER_ONLY)
42 #include <qemu.h>
43 #include <signal.h>
44 #endif
45
46 //#define DEBUG_TB_INVALIDATE
47 //#define DEBUG_FLUSH
48 //#define DEBUG_TLB
49 //#define DEBUG_UNASSIGNED
50
51 /* make various TB consistency checks */
52 //#define DEBUG_TB_CHECK
53 //#define DEBUG_TLB_CHECK
54
55 //#define DEBUG_IOPORT
56 //#define DEBUG_SUBPAGE
57
58 #if !defined(CONFIG_USER_ONLY)
59 /* TB consistency checks only implemented for usermode emulation. */
60 #undef DEBUG_TB_CHECK
61 #endif
62
63 #define SMC_BITMAP_USE_THRESHOLD 10
64
65 static TranslationBlock *tbs;
66 int code_gen_max_blocks;
67 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
68 static int nb_tbs;
69 /* any access to the tbs or the page table must use this lock */
70 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
71
72 #if defined(__arm__) || defined(__sparc_v9__)
73 /* The prologue must be reachable with a direct jump. ARM and Sparc64
74 have limited branch ranges (possibly also PPC) so place it in a
75 section close to code segment. */
76 #define code_gen_section \
77 __attribute__((__section__(".gen_code"))) \
78 __attribute__((aligned (32)))
79 #elif defined(_WIN32)
80 /* Maximum alignment for Win32 is 16. */
81 #define code_gen_section \
82 __attribute__((aligned (16)))
83 #else
84 #define code_gen_section \
85 __attribute__((aligned (32)))
86 #endif
87
88 uint8_t code_gen_prologue[1024] code_gen_section;
89 static uint8_t *code_gen_buffer;
90 static unsigned long code_gen_buffer_size;
91 /* threshold to flush the translated code buffer */
92 static unsigned long code_gen_buffer_max_size;
93 uint8_t *code_gen_ptr;
94
95 #if !defined(CONFIG_USER_ONLY)
96 int phys_ram_fd;
97 uint8_t *phys_ram_dirty;
98 static int in_migration;
99
100 typedef struct RAMBlock {
101 uint8_t *host;
102 ram_addr_t offset;
103 ram_addr_t length;
104 struct RAMBlock *next;
105 } RAMBlock;
106
107 static RAMBlock *ram_blocks;
108 /* TODO: When we implement (and use) ram deallocation (e.g. for hotplug)
109 then we can no longer assume contiguous ram offsets, and external uses
110 of this variable will break. */
111 ram_addr_t last_ram_offset;
112 #endif
113
114 CPUState *first_cpu;
115 /* current CPU in the current thread. It is only valid inside
116 cpu_exec() */
117 CPUState *cpu_single_env;
118 /* 0 = Do not count executed instructions.
119 1 = Precise instruction counting.
120 2 = Adaptive rate instruction counting. */
121 int use_icount = 0;
122 /* Current instruction counter. While executing translated code this may
123 include some instructions that have not yet been executed. */
124 int64_t qemu_icount;
125
126 typedef struct PageDesc {
127 /* list of TBs intersecting this ram page */
128 TranslationBlock *first_tb;
129 /* in order to optimize self modifying code, we count the number
130 of lookups we do to a given page to use a bitmap */
131 unsigned int code_write_count;
132 uint8_t *code_bitmap;
133 #if defined(CONFIG_USER_ONLY)
134 unsigned long flags;
135 #endif
136 } PageDesc;
137
138 typedef struct PhysPageDesc {
139 /* offset in host memory of the page + io_index in the low bits */
140 ram_addr_t phys_offset;
141 ram_addr_t region_offset;
142 } PhysPageDesc;
143
144 /* In system mode we want L1_MAP to be based on physical addresses,
145 while in user mode we want it to be based on virtual addresses. */
146 #if !defined(CONFIG_USER_ONLY)
147 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
148 #else
149 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
150 #endif
151
152 /* Size of the L2 (and L3, etc) page tables. */
153 #define L2_BITS 10
154 #define L2_SIZE (1 << L2_BITS)
155
156 /* The bits remaining after N lower levels of page tables. */
157 #define P_L1_BITS_REM \
158 ((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
159 #define V_L1_BITS_REM \
160 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
161
162 /* Size of the L1 page table. Avoid silly small sizes. */
163 #if P_L1_BITS_REM < 4
164 #define P_L1_BITS (P_L1_BITS_REM + L2_BITS)
165 #else
166 #define P_L1_BITS P_L1_BITS_REM
167 #endif
168
169 #if V_L1_BITS_REM < 4
170 #define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
171 #else
172 #define V_L1_BITS V_L1_BITS_REM
173 #endif
174
175 #define P_L1_SIZE ((target_phys_addr_t)1 << P_L1_BITS)
176 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
177
178 #define P_L1_SHIFT (TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - P_L1_BITS)
179 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
180
181 unsigned long qemu_real_host_page_size;
182 unsigned long qemu_host_page_bits;
183 unsigned long qemu_host_page_size;
184 unsigned long qemu_host_page_mask;
185
186 /* This is a multi-level map on the virtual address space.
187 The bottom level has pointers to PageDesc. */
188 static void *l1_map[V_L1_SIZE];
189
190 #if !defined(CONFIG_USER_ONLY)
191 /* This is a multi-level map on the physical address space.
192 The bottom level has pointers to PhysPageDesc. */
193 static void *l1_phys_map[P_L1_SIZE];
194
195 static void io_mem_init(void);
196
197 /* io memory support */
198 CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
199 CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
200 void *io_mem_opaque[IO_MEM_NB_ENTRIES];
201 static char io_mem_used[IO_MEM_NB_ENTRIES];
202 static int io_mem_watch;
203 #endif
204
205 /* log support */
206 #ifdef WIN32
207 static const char *logfilename = "qemu.log";
208 #else
209 static const char *logfilename = "/tmp/qemu.log";
210 #endif
211 FILE *logfile;
212 int loglevel;
213 static int log_append = 0;
214
215 /* statistics */
216 static int tlb_flush_count;
217 static int tb_flush_count;
218 static int tb_phys_invalidate_count;
219
220 #ifdef _WIN32
221 static void map_exec(void *addr, long size)
222 {
223 DWORD old_protect;
224 VirtualProtect(addr, size,
225 PAGE_EXECUTE_READWRITE, &old_protect);
226
227 }
228 #else
229 static void map_exec(void *addr, long size)
230 {
231 unsigned long start, end, page_size;
232
233 page_size = getpagesize();
234 start = (unsigned long)addr;
235 start &= ~(page_size - 1);
236
237 end = (unsigned long)addr + size;
238 end += page_size - 1;
239 end &= ~(page_size - 1);
240
241 mprotect((void *)start, end - start,
242 PROT_READ | PROT_WRITE | PROT_EXEC);
243 }
244 #endif
245
246 static void page_init(void)
247 {
248 /* NOTE: we can always suppose that qemu_host_page_size >=
249 TARGET_PAGE_SIZE */
250 #ifdef _WIN32
251 {
252 SYSTEM_INFO system_info;
253
254 GetSystemInfo(&system_info);
255 qemu_real_host_page_size = system_info.dwPageSize;
256 }
257 #else
258 qemu_real_host_page_size = getpagesize();
259 #endif
260 if (qemu_host_page_size == 0)
261 qemu_host_page_size = qemu_real_host_page_size;
262 if (qemu_host_page_size < TARGET_PAGE_SIZE)
263 qemu_host_page_size = TARGET_PAGE_SIZE;
264 qemu_host_page_bits = 0;
265 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
266 qemu_host_page_bits++;
267 qemu_host_page_mask = ~(qemu_host_page_size - 1);
268
269 #if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
270 {
271 FILE *f;
272
273 last_brk = (unsigned long)sbrk(0);
274
275 f = fopen("/proc/self/maps", "r");
276 if (f) {
277 mmap_lock();
278
279 do {
280 unsigned long startaddr, endaddr;
281 int n;
282
283 n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
284
285 if (n == 2 && h2g_valid(startaddr)) {
286 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
287
288 if (h2g_valid(endaddr)) {
289 endaddr = h2g(endaddr);
290 } else {
291 endaddr = ~0ul;
292 }
293 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
294 }
295 } while (!feof(f));
296
297 fclose(f);
298 mmap_unlock();
299 }
300 }
301 #endif
302 }
303
304 static PageDesc *page_find_alloc(target_ulong index, int alloc)
305 {
306 #if defined(CONFIG_USER_ONLY)
307 /* We can't use qemu_malloc because it may recurse into a locked mutex.
308 Neither can we record the new pages we reserve while allocating a
309 given page because that may recurse into an unallocated page table
310 entry. Stuff the allocations we do make into a queue and process
311 them after having completed one entire page table allocation. */
312
313 unsigned long reserve[2 * (V_L1_SHIFT / L2_BITS)];
314 int reserve_idx = 0;
315
316 # define ALLOC(P, SIZE) \
317 do { \
318 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
319 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
320 if (h2g_valid(P)) { \
321 reserve[reserve_idx] = h2g(P); \
322 reserve[reserve_idx + 1] = SIZE; \
323 reserve_idx += 2; \
324 } \
325 } while (0)
326 #else
327 # define ALLOC(P, SIZE) \
328 do { P = qemu_mallocz(SIZE); } while (0)
329 #endif
330
331 PageDesc *pd;
332 void **lp;
333 int i;
334
335 /* Level 1. Always allocated. */
336 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
337
338 /* Level 2..N-1. */
339 for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
340 void **p = *lp;
341
342 if (p == NULL) {
343 if (!alloc) {
344 return NULL;
345 }
346 ALLOC(p, sizeof(void *) * L2_SIZE);
347 *lp = p;
348 }
349
350 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
351 }
352
353 pd = *lp;
354 if (pd == NULL) {
355 if (!alloc) {
356 return NULL;
357 }
358 ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
359 *lp = pd;
360 }
361
362 #undef ALLOC
363 #if defined(CONFIG_USER_ONLY)
364 for (i = 0; i < reserve_idx; i += 2) {
365 unsigned long addr = reserve[i];
366 unsigned long len = reserve[i + 1];
367
368 page_set_flags(addr & TARGET_PAGE_MASK,
369 TARGET_PAGE_ALIGN(addr + len),
370 PAGE_RESERVED);
371 }
372 #endif
373
374 return pd + (index & (L2_SIZE - 1));
375 }
376
377 static inline PageDesc *page_find(target_ulong index)
378 {
379 return page_find_alloc(index, 0);
380 }
381
382 #if !defined(CONFIG_USER_ONLY)
383 static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
384 {
385 PhysPageDesc *pd;
386 void **lp;
387 int i;
388
389 /* Level 1. Always allocated. */
390 lp = l1_phys_map + ((index >> P_L1_SHIFT) & (P_L1_SIZE - 1));
391
392 /* Level 2..N-1. */
393 for (i = P_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
394 void **p = *lp;
395 if (p == NULL) {
396 if (!alloc) {
397 return NULL;
398 }
399 *lp = p = qemu_mallocz(sizeof(void *) * L2_SIZE);
400 }
401 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
402 }
403
404 pd = *lp;
405 if (pd == NULL) {
406 int i;
407
408 if (!alloc) {
409 return NULL;
410 }
411
412 *lp = pd = qemu_malloc(sizeof(PhysPageDesc) * L2_SIZE);
413
414 for (i = 0; i < L2_SIZE; i++) {
415 pd[i].phys_offset = IO_MEM_UNASSIGNED;
416 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
417 }
418 }
419
420 return pd + (index & (L2_SIZE - 1));
421 }
422
423 static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
424 {
425 return phys_page_find_alloc(index, 0);
426 }
427
428 static void tlb_protect_code(ram_addr_t ram_addr);
429 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
430 target_ulong vaddr);
431 #define mmap_lock() do { } while(0)
432 #define mmap_unlock() do { } while(0)
433 #endif
434
435 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
436
437 #if defined(CONFIG_USER_ONLY)
438 /* Currently it is not recommended to allocate big chunks of data in
439 user mode. It will change when a dedicated libc will be used */
440 #define USE_STATIC_CODE_GEN_BUFFER
441 #endif
442
443 #ifdef USE_STATIC_CODE_GEN_BUFFER
444 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
445 #endif
446
447 static void code_gen_alloc(unsigned long tb_size)
448 {
449 #ifdef USE_STATIC_CODE_GEN_BUFFER
450 code_gen_buffer = static_code_gen_buffer;
451 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
452 map_exec(code_gen_buffer, code_gen_buffer_size);
453 #else
454 code_gen_buffer_size = tb_size;
455 if (code_gen_buffer_size == 0) {
456 #if defined(CONFIG_USER_ONLY)
457 /* in user mode, phys_ram_size is not meaningful */
458 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
459 #else
460 /* XXX: needs adjustments */
461 code_gen_buffer_size = (unsigned long)(ram_size / 4);
462 #endif
463 }
464 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
465 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
466 /* The code gen buffer location may have constraints depending on
467 the host cpu and OS */
468 #if defined(__linux__)
469 {
470 int flags;
471 void *start = NULL;
472
473 flags = MAP_PRIVATE | MAP_ANONYMOUS;
474 #if defined(__x86_64__)
475 flags |= MAP_32BIT;
476 /* Cannot map more than that */
477 if (code_gen_buffer_size > (800 * 1024 * 1024))
478 code_gen_buffer_size = (800 * 1024 * 1024);
479 #elif defined(__sparc_v9__)
480 // Map the buffer below 2G, so we can use direct calls and branches
481 flags |= MAP_FIXED;
482 start = (void *) 0x60000000UL;
483 if (code_gen_buffer_size > (512 * 1024 * 1024))
484 code_gen_buffer_size = (512 * 1024 * 1024);
485 #elif defined(__arm__)
486 /* Map the buffer below 32M, so we can use direct calls and branches */
487 flags |= MAP_FIXED;
488 start = (void *) 0x01000000UL;
489 if (code_gen_buffer_size > 16 * 1024 * 1024)
490 code_gen_buffer_size = 16 * 1024 * 1024;
491 #endif
492 code_gen_buffer = mmap(start, code_gen_buffer_size,
493 PROT_WRITE | PROT_READ | PROT_EXEC,
494 flags, -1, 0);
495 if (code_gen_buffer == MAP_FAILED) {
496 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
497 exit(1);
498 }
499 }
500 #elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
501 {
502 int flags;
503 void *addr = NULL;
504 flags = MAP_PRIVATE | MAP_ANONYMOUS;
505 #if defined(__x86_64__)
506 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
507 * 0x40000000 is free */
508 flags |= MAP_FIXED;
509 addr = (void *)0x40000000;
510 /* Cannot map more than that */
511 if (code_gen_buffer_size > (800 * 1024 * 1024))
512 code_gen_buffer_size = (800 * 1024 * 1024);
513 #endif
514 code_gen_buffer = mmap(addr, code_gen_buffer_size,
515 PROT_WRITE | PROT_READ | PROT_EXEC,
516 flags, -1, 0);
517 if (code_gen_buffer == MAP_FAILED) {
518 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
519 exit(1);
520 }
521 }
522 #else
523 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
524 map_exec(code_gen_buffer, code_gen_buffer_size);
525 #endif
526 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
527 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
528 code_gen_buffer_max_size = code_gen_buffer_size -
529 code_gen_max_block_size();
530 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
531 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
532 }
533
534 /* Must be called before using the QEMU cpus. 'tb_size' is the size
535 (in bytes) allocated to the translation buffer. Zero means default
536 size. */
537 void cpu_exec_init_all(unsigned long tb_size)
538 {
539 cpu_gen_init();
540 code_gen_alloc(tb_size);
541 code_gen_ptr = code_gen_buffer;
542 page_init();
543 #if !defined(CONFIG_USER_ONLY)
544 io_mem_init();
545 #endif
546 }
547
548 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
549
550 static int cpu_common_post_load(void *opaque, int version_id)
551 {
552 CPUState *env = opaque;
553
554 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
555 version_id is increased. */
556 env->interrupt_request &= ~0x01;
557 tlb_flush(env, 1);
558
559 return 0;
560 }
561
562 static const VMStateDescription vmstate_cpu_common = {
563 .name = "cpu_common",
564 .version_id = 1,
565 .minimum_version_id = 1,
566 .minimum_version_id_old = 1,
567 .post_load = cpu_common_post_load,
568 .fields = (VMStateField []) {
569 VMSTATE_UINT32(halted, CPUState),
570 VMSTATE_UINT32(interrupt_request, CPUState),
571 VMSTATE_END_OF_LIST()
572 }
573 };
574 #endif
575
576 CPUState *qemu_get_cpu(int cpu)
577 {
578 CPUState *env = first_cpu;
579
580 while (env) {
581 if (env->cpu_index == cpu)
582 break;
583 env = env->next_cpu;
584 }
585
586 return env;
587 }
588
589 void cpu_exec_init(CPUState *env)
590 {
591 CPUState **penv;
592 int cpu_index;
593
594 #if defined(CONFIG_USER_ONLY)
595 cpu_list_lock();
596 #endif
597 env->next_cpu = NULL;
598 penv = &first_cpu;
599 cpu_index = 0;
600 while (*penv != NULL) {
601 penv = &(*penv)->next_cpu;
602 cpu_index++;
603 }
604 env->cpu_index = cpu_index;
605 env->numa_node = 0;
606 QTAILQ_INIT(&env->breakpoints);
607 QTAILQ_INIT(&env->watchpoints);
608 *penv = env;
609 #if defined(CONFIG_USER_ONLY)
610 cpu_list_unlock();
611 #endif
612 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
613 vmstate_register(cpu_index, &vmstate_cpu_common, env);
614 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
615 cpu_save, cpu_load, env);
616 #endif
617 }
618
619 static inline void invalidate_page_bitmap(PageDesc *p)
620 {
621 if (p->code_bitmap) {
622 qemu_free(p->code_bitmap);
623 p->code_bitmap = NULL;
624 }
625 p->code_write_count = 0;
626 }
627
628 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
629
630 static void page_flush_tb_1 (int level, void **lp)
631 {
632 int i;
633
634 if (*lp == NULL) {
635 return;
636 }
637 if (level == 0) {
638 PageDesc *pd = *lp;
639 for (i = 0; i < L2_BITS; ++i) {
640 pd[i].first_tb = NULL;
641 invalidate_page_bitmap(pd + i);
642 }
643 } else {
644 void **pp = *lp;
645 for (i = 0; i < L2_BITS; ++i) {
646 page_flush_tb_1 (level - 1, pp + i);
647 }
648 }
649 }
650
651 static void page_flush_tb(void)
652 {
653 int i;
654 for (i = 0; i < V_L1_SIZE; i++) {
655 page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
656 }
657 }
658
659 /* flush all the translation blocks */
660 /* XXX: tb_flush is currently not thread safe */
661 void tb_flush(CPUState *env1)
662 {
663 CPUState *env;
664 #if defined(DEBUG_FLUSH)
665 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
666 (unsigned long)(code_gen_ptr - code_gen_buffer),
667 nb_tbs, nb_tbs > 0 ?
668 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
669 #endif
670 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
671 cpu_abort(env1, "Internal error: code buffer overflow\n");
672
673 nb_tbs = 0;
674
675 for(env = first_cpu; env != NULL; env = env->next_cpu) {
676 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
677 }
678
679 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
680 page_flush_tb();
681
682 code_gen_ptr = code_gen_buffer;
683 /* XXX: flush processor icache at this point if cache flush is
684 expensive */
685 tb_flush_count++;
686 }
687
688 #ifdef DEBUG_TB_CHECK
689
690 static void tb_invalidate_check(target_ulong address)
691 {
692 TranslationBlock *tb;
693 int i;
694 address &= TARGET_PAGE_MASK;
695 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
696 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
697 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
698 address >= tb->pc + tb->size)) {
699 printf("ERROR invalidate: address=" TARGET_FMT_lx
700 " PC=%08lx size=%04x\n",
701 address, (long)tb->pc, tb->size);
702 }
703 }
704 }
705 }
706
707 /* verify that all the pages have correct rights for code */
708 static void tb_page_check(void)
709 {
710 TranslationBlock *tb;
711 int i, flags1, flags2;
712
713 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
714 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
715 flags1 = page_get_flags(tb->pc);
716 flags2 = page_get_flags(tb->pc + tb->size - 1);
717 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
718 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
719 (long)tb->pc, tb->size, flags1, flags2);
720 }
721 }
722 }
723 }
724
725 #endif
726
727 /* invalidate one TB */
728 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
729 int next_offset)
730 {
731 TranslationBlock *tb1;
732 for(;;) {
733 tb1 = *ptb;
734 if (tb1 == tb) {
735 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
736 break;
737 }
738 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
739 }
740 }
741
742 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
743 {
744 TranslationBlock *tb1;
745 unsigned int n1;
746
747 for(;;) {
748 tb1 = *ptb;
749 n1 = (long)tb1 & 3;
750 tb1 = (TranslationBlock *)((long)tb1 & ~3);
751 if (tb1 == tb) {
752 *ptb = tb1->page_next[n1];
753 break;
754 }
755 ptb = &tb1->page_next[n1];
756 }
757 }
758
759 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
760 {
761 TranslationBlock *tb1, **ptb;
762 unsigned int n1;
763
764 ptb = &tb->jmp_next[n];
765 tb1 = *ptb;
766 if (tb1) {
767 /* find tb(n) in circular list */
768 for(;;) {
769 tb1 = *ptb;
770 n1 = (long)tb1 & 3;
771 tb1 = (TranslationBlock *)((long)tb1 & ~3);
772 if (n1 == n && tb1 == tb)
773 break;
774 if (n1 == 2) {
775 ptb = &tb1->jmp_first;
776 } else {
777 ptb = &tb1->jmp_next[n1];
778 }
779 }
780 /* now we can suppress tb(n) from the list */
781 *ptb = tb->jmp_next[n];
782
783 tb->jmp_next[n] = NULL;
784 }
785 }
786
787 /* reset the jump entry 'n' of a TB so that it is not chained to
788 another TB */
789 static inline void tb_reset_jump(TranslationBlock *tb, int n)
790 {
791 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
792 }
793
794 void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
795 {
796 CPUState *env;
797 PageDesc *p;
798 unsigned int h, n1;
799 target_phys_addr_t phys_pc;
800 TranslationBlock *tb1, *tb2;
801
802 /* remove the TB from the hash list */
803 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
804 h = tb_phys_hash_func(phys_pc);
805 tb_remove(&tb_phys_hash[h], tb,
806 offsetof(TranslationBlock, phys_hash_next));
807
808 /* remove the TB from the page list */
809 if (tb->page_addr[0] != page_addr) {
810 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
811 tb_page_remove(&p->first_tb, tb);
812 invalidate_page_bitmap(p);
813 }
814 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
815 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
816 tb_page_remove(&p->first_tb, tb);
817 invalidate_page_bitmap(p);
818 }
819
820 tb_invalidated_flag = 1;
821
822 /* remove the TB from the hash list */
823 h = tb_jmp_cache_hash_func(tb->pc);
824 for(env = first_cpu; env != NULL; env = env->next_cpu) {
825 if (env->tb_jmp_cache[h] == tb)
826 env->tb_jmp_cache[h] = NULL;
827 }
828
829 /* suppress this TB from the two jump lists */
830 tb_jmp_remove(tb, 0);
831 tb_jmp_remove(tb, 1);
832
833 /* suppress any remaining jumps to this TB */
834 tb1 = tb->jmp_first;
835 for(;;) {
836 n1 = (long)tb1 & 3;
837 if (n1 == 2)
838 break;
839 tb1 = (TranslationBlock *)((long)tb1 & ~3);
840 tb2 = tb1->jmp_next[n1];
841 tb_reset_jump(tb1, n1);
842 tb1->jmp_next[n1] = NULL;
843 tb1 = tb2;
844 }
845 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
846
847 tb_phys_invalidate_count++;
848 }
849
850 static inline void set_bits(uint8_t *tab, int start, int len)
851 {
852 int end, mask, end1;
853
854 end = start + len;
855 tab += start >> 3;
856 mask = 0xff << (start & 7);
857 if ((start & ~7) == (end & ~7)) {
858 if (start < end) {
859 mask &= ~(0xff << (end & 7));
860 *tab |= mask;
861 }
862 } else {
863 *tab++ |= mask;
864 start = (start + 8) & ~7;
865 end1 = end & ~7;
866 while (start < end1) {
867 *tab++ = 0xff;
868 start += 8;
869 }
870 if (start < end) {
871 mask = ~(0xff << (end & 7));
872 *tab |= mask;
873 }
874 }
875 }
876
877 static void build_page_bitmap(PageDesc *p)
878 {
879 int n, tb_start, tb_end;
880 TranslationBlock *tb;
881
882 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
883
884 tb = p->first_tb;
885 while (tb != NULL) {
886 n = (long)tb & 3;
887 tb = (TranslationBlock *)((long)tb & ~3);
888 /* NOTE: this is subtle as a TB may span two physical pages */
889 if (n == 0) {
890 /* NOTE: tb_end may be after the end of the page, but
891 it is not a problem */
892 tb_start = tb->pc & ~TARGET_PAGE_MASK;
893 tb_end = tb_start + tb->size;
894 if (tb_end > TARGET_PAGE_SIZE)
895 tb_end = TARGET_PAGE_SIZE;
896 } else {
897 tb_start = 0;
898 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
899 }
900 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
901 tb = tb->page_next[n];
902 }
903 }
904
905 TranslationBlock *tb_gen_code(CPUState *env,
906 target_ulong pc, target_ulong cs_base,
907 int flags, int cflags)
908 {
909 TranslationBlock *tb;
910 uint8_t *tc_ptr;
911 target_ulong phys_pc, phys_page2, virt_page2;
912 int code_gen_size;
913
914 phys_pc = get_phys_addr_code(env, pc);
915 tb = tb_alloc(pc);
916 if (!tb) {
917 /* flush must be done */
918 tb_flush(env);
919 /* cannot fail at this point */
920 tb = tb_alloc(pc);
921 /* Don't forget to invalidate previous TB info. */
922 tb_invalidated_flag = 1;
923 }
924 tc_ptr = code_gen_ptr;
925 tb->tc_ptr = tc_ptr;
926 tb->cs_base = cs_base;
927 tb->flags = flags;
928 tb->cflags = cflags;
929 cpu_gen_code(env, tb, &code_gen_size);
930 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
931
932 /* check next page if needed */
933 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
934 phys_page2 = -1;
935 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
936 phys_page2 = get_phys_addr_code(env, virt_page2);
937 }
938 tb_link_phys(tb, phys_pc, phys_page2);
939 return tb;
940 }
941
942 /* invalidate all TBs which intersect with the target physical page
943 starting in range [start;end[. NOTE: start and end must refer to
944 the same physical page. 'is_cpu_write_access' should be true if called
945 from a real cpu write access: the virtual CPU will exit the current
946 TB if code is modified inside this TB. */
947 void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
948 int is_cpu_write_access)
949 {
950 TranslationBlock *tb, *tb_next, *saved_tb;
951 CPUState *env = cpu_single_env;
952 target_ulong tb_start, tb_end;
953 PageDesc *p;
954 int n;
955 #ifdef TARGET_HAS_PRECISE_SMC
956 int current_tb_not_found = is_cpu_write_access;
957 TranslationBlock *current_tb = NULL;
958 int current_tb_modified = 0;
959 target_ulong current_pc = 0;
960 target_ulong current_cs_base = 0;
961 int current_flags = 0;
962 #endif /* TARGET_HAS_PRECISE_SMC */
963
964 p = page_find(start >> TARGET_PAGE_BITS);
965 if (!p)
966 return;
967 if (!p->code_bitmap &&
968 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
969 is_cpu_write_access) {
970 /* build code bitmap */
971 build_page_bitmap(p);
972 }
973
974 /* we remove all the TBs in the range [start, end[ */
975 /* XXX: see if in some cases it could be faster to invalidate all the code */
976 tb = p->first_tb;
977 while (tb != NULL) {
978 n = (long)tb & 3;
979 tb = (TranslationBlock *)((long)tb & ~3);
980 tb_next = tb->page_next[n];
981 /* NOTE: this is subtle as a TB may span two physical pages */
982 if (n == 0) {
983 /* NOTE: tb_end may be after the end of the page, but
984 it is not a problem */
985 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
986 tb_end = tb_start + tb->size;
987 } else {
988 tb_start = tb->page_addr[1];
989 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
990 }
991 if (!(tb_end <= start || tb_start >= end)) {
992 #ifdef TARGET_HAS_PRECISE_SMC
993 if (current_tb_not_found) {
994 current_tb_not_found = 0;
995 current_tb = NULL;
996 if (env->mem_io_pc) {
997 /* now we have a real cpu fault */
998 current_tb = tb_find_pc(env->mem_io_pc);
999 }
1000 }
1001 if (current_tb == tb &&
1002 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1003 /* If we are modifying the current TB, we must stop
1004 its execution. We could be more precise by checking
1005 that the modification is after the current PC, but it
1006 would require a specialized function to partially
1007 restore the CPU state */
1008
1009 current_tb_modified = 1;
1010 cpu_restore_state(current_tb, env,
1011 env->mem_io_pc, NULL);
1012 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1013 &current_flags);
1014 }
1015 #endif /* TARGET_HAS_PRECISE_SMC */
1016 /* we need to do that to handle the case where a signal
1017 occurs while doing tb_phys_invalidate() */
1018 saved_tb = NULL;
1019 if (env) {
1020 saved_tb = env->current_tb;
1021 env->current_tb = NULL;
1022 }
1023 tb_phys_invalidate(tb, -1);
1024 if (env) {
1025 env->current_tb = saved_tb;
1026 if (env->interrupt_request && env->current_tb)
1027 cpu_interrupt(env, env->interrupt_request);
1028 }
1029 }
1030 tb = tb_next;
1031 }
1032 #if !defined(CONFIG_USER_ONLY)
1033 /* if no code remaining, no need to continue to use slow writes */
1034 if (!p->first_tb) {
1035 invalidate_page_bitmap(p);
1036 if (is_cpu_write_access) {
1037 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
1038 }
1039 }
1040 #endif
1041 #ifdef TARGET_HAS_PRECISE_SMC
1042 if (current_tb_modified) {
1043 /* we generate a block containing just the instruction
1044 modifying the memory. It will ensure that it cannot modify
1045 itself */
1046 env->current_tb = NULL;
1047 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1048 cpu_resume_from_signal(env, NULL);
1049 }
1050 #endif
1051 }
1052
1053 /* len must be <= 8 and start must be a multiple of len */
1054 static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
1055 {
1056 PageDesc *p;
1057 int offset, b;
1058 #if 0
1059 if (1) {
1060 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1061 cpu_single_env->mem_io_vaddr, len,
1062 cpu_single_env->eip,
1063 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
1064 }
1065 #endif
1066 p = page_find(start >> TARGET_PAGE_BITS);
1067 if (!p)
1068 return;
1069 if (p->code_bitmap) {
1070 offset = start & ~TARGET_PAGE_MASK;
1071 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1072 if (b & ((1 << len) - 1))
1073 goto do_invalidate;
1074 } else {
1075 do_invalidate:
1076 tb_invalidate_phys_page_range(start, start + len, 1);
1077 }
1078 }
1079
1080 #if !defined(CONFIG_SOFTMMU)
1081 static void tb_invalidate_phys_page(target_phys_addr_t addr,
1082 unsigned long pc, void *puc)
1083 {
1084 TranslationBlock *tb;
1085 PageDesc *p;
1086 int n;
1087 #ifdef TARGET_HAS_PRECISE_SMC
1088 TranslationBlock *current_tb = NULL;
1089 CPUState *env = cpu_single_env;
1090 int current_tb_modified = 0;
1091 target_ulong current_pc = 0;
1092 target_ulong current_cs_base = 0;
1093 int current_flags = 0;
1094 #endif
1095
1096 addr &= TARGET_PAGE_MASK;
1097 p = page_find(addr >> TARGET_PAGE_BITS);
1098 if (!p)
1099 return;
1100 tb = p->first_tb;
1101 #ifdef TARGET_HAS_PRECISE_SMC
1102 if (tb && pc != 0) {
1103 current_tb = tb_find_pc(pc);
1104 }
1105 #endif
1106 while (tb != NULL) {
1107 n = (long)tb & 3;
1108 tb = (TranslationBlock *)((long)tb & ~3);
1109 #ifdef TARGET_HAS_PRECISE_SMC
1110 if (current_tb == tb &&
1111 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1112 /* If we are modifying the current TB, we must stop
1113 its execution. We could be more precise by checking
1114 that the modification is after the current PC, but it
1115 would require a specialized function to partially
1116 restore the CPU state */
1117
1118 current_tb_modified = 1;
1119 cpu_restore_state(current_tb, env, pc, puc);
1120 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1121 &current_flags);
1122 }
1123 #endif /* TARGET_HAS_PRECISE_SMC */
1124 tb_phys_invalidate(tb, addr);
1125 tb = tb->page_next[n];
1126 }
1127 p->first_tb = NULL;
1128 #ifdef TARGET_HAS_PRECISE_SMC
1129 if (current_tb_modified) {
1130 /* we generate a block containing just the instruction
1131 modifying the memory. It will ensure that it cannot modify
1132 itself */
1133 env->current_tb = NULL;
1134 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1135 cpu_resume_from_signal(env, puc);
1136 }
1137 #endif
1138 }
1139 #endif
1140
1141 /* add the tb in the target page and protect it if necessary */
1142 static inline void tb_alloc_page(TranslationBlock *tb,
1143 unsigned int n, target_ulong page_addr)
1144 {
1145 PageDesc *p;
1146 TranslationBlock *last_first_tb;
1147
1148 tb->page_addr[n] = page_addr;
1149 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1150 tb->page_next[n] = p->first_tb;
1151 last_first_tb = p->first_tb;
1152 p->first_tb = (TranslationBlock *)((long)tb | n);
1153 invalidate_page_bitmap(p);
1154
1155 #if defined(TARGET_HAS_SMC) || 1
1156
1157 #if defined(CONFIG_USER_ONLY)
1158 if (p->flags & PAGE_WRITE) {
1159 target_ulong addr;
1160 PageDesc *p2;
1161 int prot;
1162
1163 /* force the host page as non writable (writes will have a
1164 page fault + mprotect overhead) */
1165 page_addr &= qemu_host_page_mask;
1166 prot = 0;
1167 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1168 addr += TARGET_PAGE_SIZE) {
1169
1170 p2 = page_find (addr >> TARGET_PAGE_BITS);
1171 if (!p2)
1172 continue;
1173 prot |= p2->flags;
1174 p2->flags &= ~PAGE_WRITE;
1175 page_get_flags(addr);
1176 }
1177 mprotect(g2h(page_addr), qemu_host_page_size,
1178 (prot & PAGE_BITS) & ~PAGE_WRITE);
1179 #ifdef DEBUG_TB_INVALIDATE
1180 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1181 page_addr);
1182 #endif
1183 }
1184 #else
1185 /* if some code is already present, then the pages are already
1186 protected. So we handle the case where only the first TB is
1187 allocated in a physical page */
1188 if (!last_first_tb) {
1189 tlb_protect_code(page_addr);
1190 }
1191 #endif
1192
1193 #endif /* TARGET_HAS_SMC */
1194 }
1195
1196 /* Allocate a new translation block. Flush the translation buffer if
1197 too many translation blocks or too much generated code. */
1198 TranslationBlock *tb_alloc(target_ulong pc)
1199 {
1200 TranslationBlock *tb;
1201
1202 if (nb_tbs >= code_gen_max_blocks ||
1203 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
1204 return NULL;
1205 tb = &tbs[nb_tbs++];
1206 tb->pc = pc;
1207 tb->cflags = 0;
1208 return tb;
1209 }
1210
1211 void tb_free(TranslationBlock *tb)
1212 {
1213 /* In practice this is mostly used for single use temporary TB
1214 Ignore the hard cases and just back up if this TB happens to
1215 be the last one generated. */
1216 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1217 code_gen_ptr = tb->tc_ptr;
1218 nb_tbs--;
1219 }
1220 }
1221
1222 /* add a new TB and link it to the physical page tables. phys_page2 is
1223 (-1) to indicate that only one page contains the TB. */
1224 void tb_link_phys(TranslationBlock *tb,
1225 target_ulong phys_pc, target_ulong phys_page2)
1226 {
1227 unsigned int h;
1228 TranslationBlock **ptb;
1229
1230 /* Grab the mmap lock to stop another thread invalidating this TB
1231 before we are done. */
1232 mmap_lock();
1233 /* add in the physical hash table */
1234 h = tb_phys_hash_func(phys_pc);
1235 ptb = &tb_phys_hash[h];
1236 tb->phys_hash_next = *ptb;
1237 *ptb = tb;
1238
1239 /* add in the page list */
1240 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1241 if (phys_page2 != -1)
1242 tb_alloc_page(tb, 1, phys_page2);
1243 else
1244 tb->page_addr[1] = -1;
1245
1246 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1247 tb->jmp_next[0] = NULL;
1248 tb->jmp_next[1] = NULL;
1249
1250 /* init original jump addresses */
1251 if (tb->tb_next_offset[0] != 0xffff)
1252 tb_reset_jump(tb, 0);
1253 if (tb->tb_next_offset[1] != 0xffff)
1254 tb_reset_jump(tb, 1);
1255
1256 #ifdef DEBUG_TB_CHECK
1257 tb_page_check();
1258 #endif
1259 mmap_unlock();
1260 }
1261
1262 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1263 tb[1].tc_ptr. Return NULL if not found */
1264 TranslationBlock *tb_find_pc(unsigned long tc_ptr)
1265 {
1266 int m_min, m_max, m;
1267 unsigned long v;
1268 TranslationBlock *tb;
1269
1270 if (nb_tbs <= 0)
1271 return NULL;
1272 if (tc_ptr < (unsigned long)code_gen_buffer ||
1273 tc_ptr >= (unsigned long)code_gen_ptr)
1274 return NULL;
1275 /* binary search (cf Knuth) */
1276 m_min = 0;
1277 m_max = nb_tbs - 1;
1278 while (m_min <= m_max) {
1279 m = (m_min + m_max) >> 1;
1280 tb = &tbs[m];
1281 v = (unsigned long)tb->tc_ptr;
1282 if (v == tc_ptr)
1283 return tb;
1284 else if (tc_ptr < v) {
1285 m_max = m - 1;
1286 } else {
1287 m_min = m + 1;
1288 }
1289 }
1290 return &tbs[m_max];
1291 }
1292
1293 static void tb_reset_jump_recursive(TranslationBlock *tb);
1294
1295 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1296 {
1297 TranslationBlock *tb1, *tb_next, **ptb;
1298 unsigned int n1;
1299
1300 tb1 = tb->jmp_next[n];
1301 if (tb1 != NULL) {
1302 /* find head of list */
1303 for(;;) {
1304 n1 = (long)tb1 & 3;
1305 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1306 if (n1 == 2)
1307 break;
1308 tb1 = tb1->jmp_next[n1];
1309 }
1310 /* we are now sure now that tb jumps to tb1 */
1311 tb_next = tb1;
1312
1313 /* remove tb from the jmp_first list */
1314 ptb = &tb_next->jmp_first;
1315 for(;;) {
1316 tb1 = *ptb;
1317 n1 = (long)tb1 & 3;
1318 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1319 if (n1 == n && tb1 == tb)
1320 break;
1321 ptb = &tb1->jmp_next[n1];
1322 }
1323 *ptb = tb->jmp_next[n];
1324 tb->jmp_next[n] = NULL;
1325
1326 /* suppress the jump to next tb in generated code */
1327 tb_reset_jump(tb, n);
1328
1329 /* suppress jumps in the tb on which we could have jumped */
1330 tb_reset_jump_recursive(tb_next);
1331 }
1332 }
1333
1334 static void tb_reset_jump_recursive(TranslationBlock *tb)
1335 {
1336 tb_reset_jump_recursive2(tb, 0);
1337 tb_reset_jump_recursive2(tb, 1);
1338 }
1339
1340 #if defined(TARGET_HAS_ICE)
1341 #if defined(CONFIG_USER_ONLY)
1342 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1343 {
1344 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1345 }
1346 #else
1347 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1348 {
1349 target_phys_addr_t addr;
1350 target_ulong pd;
1351 ram_addr_t ram_addr;
1352 PhysPageDesc *p;
1353
1354 addr = cpu_get_phys_page_debug(env, pc);
1355 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1356 if (!p) {
1357 pd = IO_MEM_UNASSIGNED;
1358 } else {
1359 pd = p->phys_offset;
1360 }
1361 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
1362 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1363 }
1364 #endif
1365 #endif /* TARGET_HAS_ICE */
1366
1367 #if defined(CONFIG_USER_ONLY)
1368 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1369
1370 {
1371 }
1372
1373 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1374 int flags, CPUWatchpoint **watchpoint)
1375 {
1376 return -ENOSYS;
1377 }
1378 #else
1379 /* Add a watchpoint. */
1380 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1381 int flags, CPUWatchpoint **watchpoint)
1382 {
1383 target_ulong len_mask = ~(len - 1);
1384 CPUWatchpoint *wp;
1385
1386 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1387 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1388 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1389 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1390 return -EINVAL;
1391 }
1392 wp = qemu_malloc(sizeof(*wp));
1393
1394 wp->vaddr = addr;
1395 wp->len_mask = len_mask;
1396 wp->flags = flags;
1397
1398 /* keep all GDB-injected watchpoints in front */
1399 if (flags & BP_GDB)
1400 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1401 else
1402 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
1403
1404 tlb_flush_page(env, addr);
1405
1406 if (watchpoint)
1407 *watchpoint = wp;
1408 return 0;
1409 }
1410
1411 /* Remove a specific watchpoint. */
1412 int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1413 int flags)
1414 {
1415 target_ulong len_mask = ~(len - 1);
1416 CPUWatchpoint *wp;
1417
1418 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1419 if (addr == wp->vaddr && len_mask == wp->len_mask
1420 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1421 cpu_watchpoint_remove_by_ref(env, wp);
1422 return 0;
1423 }
1424 }
1425 return -ENOENT;
1426 }
1427
1428 /* Remove a specific watchpoint by reference. */
1429 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1430 {
1431 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
1432
1433 tlb_flush_page(env, watchpoint->vaddr);
1434
1435 qemu_free(watchpoint);
1436 }
1437
1438 /* Remove all matching watchpoints. */
1439 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1440 {
1441 CPUWatchpoint *wp, *next;
1442
1443 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
1444 if (wp->flags & mask)
1445 cpu_watchpoint_remove_by_ref(env, wp);
1446 }
1447 }
1448 #endif
1449
1450 /* Add a breakpoint. */
1451 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1452 CPUBreakpoint **breakpoint)
1453 {
1454 #if defined(TARGET_HAS_ICE)
1455 CPUBreakpoint *bp;
1456
1457 bp = qemu_malloc(sizeof(*bp));
1458
1459 bp->pc = pc;
1460 bp->flags = flags;
1461
1462 /* keep all GDB-injected breakpoints in front */
1463 if (flags & BP_GDB)
1464 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1465 else
1466 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
1467
1468 breakpoint_invalidate(env, pc);
1469
1470 if (breakpoint)
1471 *breakpoint = bp;
1472 return 0;
1473 #else
1474 return -ENOSYS;
1475 #endif
1476 }
1477
1478 /* Remove a specific breakpoint. */
1479 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1480 {
1481 #if defined(TARGET_HAS_ICE)
1482 CPUBreakpoint *bp;
1483
1484 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1485 if (bp->pc == pc && bp->flags == flags) {
1486 cpu_breakpoint_remove_by_ref(env, bp);
1487 return 0;
1488 }
1489 }
1490 return -ENOENT;
1491 #else
1492 return -ENOSYS;
1493 #endif
1494 }
1495
1496 /* Remove a specific breakpoint by reference. */
1497 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
1498 {
1499 #if defined(TARGET_HAS_ICE)
1500 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
1501
1502 breakpoint_invalidate(env, breakpoint->pc);
1503
1504 qemu_free(breakpoint);
1505 #endif
1506 }
1507
1508 /* Remove all matching breakpoints. */
1509 void cpu_breakpoint_remove_all(CPUState *env, int mask)
1510 {
1511 #if defined(TARGET_HAS_ICE)
1512 CPUBreakpoint *bp, *next;
1513
1514 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
1515 if (bp->flags & mask)
1516 cpu_breakpoint_remove_by_ref(env, bp);
1517 }
1518 #endif
1519 }
1520
1521 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1522 CPU loop after each instruction */
1523 void cpu_single_step(CPUState *env, int enabled)
1524 {
1525 #if defined(TARGET_HAS_ICE)
1526 if (env->singlestep_enabled != enabled) {
1527 env->singlestep_enabled = enabled;
1528 if (kvm_enabled())
1529 kvm_update_guest_debug(env, 0);
1530 else {
1531 /* must flush all the translated code to avoid inconsistencies */
1532 /* XXX: only flush what is necessary */
1533 tb_flush(env);
1534 }
1535 }
1536 #endif
1537 }
1538
1539 /* enable or disable low levels log */
1540 void cpu_set_log(int log_flags)
1541 {
1542 loglevel = log_flags;
1543 if (loglevel && !logfile) {
1544 logfile = fopen(logfilename, log_append ? "a" : "w");
1545 if (!logfile) {
1546 perror(logfilename);
1547 _exit(1);
1548 }
1549 #if !defined(CONFIG_SOFTMMU)
1550 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1551 {
1552 static char logfile_buf[4096];
1553 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1554 }
1555 #elif !defined(_WIN32)
1556 /* Win32 doesn't support line-buffering and requires size >= 2 */
1557 setvbuf(logfile, NULL, _IOLBF, 0);
1558 #endif
1559 log_append = 1;
1560 }
1561 if (!loglevel && logfile) {
1562 fclose(logfile);
1563 logfile = NULL;
1564 }
1565 }
1566
1567 void cpu_set_log_filename(const char *filename)
1568 {
1569 logfilename = strdup(filename);
1570 if (logfile) {
1571 fclose(logfile);
1572 logfile = NULL;
1573 }
1574 cpu_set_log(loglevel);
1575 }
1576
1577 static void cpu_unlink_tb(CPUState *env)
1578 {
1579 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1580 problem and hope the cpu will stop of its own accord. For userspace
1581 emulation this often isn't actually as bad as it sounds. Often
1582 signals are used primarily to interrupt blocking syscalls. */
1583 TranslationBlock *tb;
1584 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1585
1586 spin_lock(&interrupt_lock);
1587 tb = env->current_tb;
1588 /* if the cpu is currently executing code, we must unlink it and
1589 all the potentially executing TB */
1590 if (tb) {
1591 env->current_tb = NULL;
1592 tb_reset_jump_recursive(tb);
1593 }
1594 spin_unlock(&interrupt_lock);
1595 }
1596
1597 /* mask must never be zero, except for A20 change call */
1598 void cpu_interrupt(CPUState *env, int mask)
1599 {
1600 int old_mask;
1601
1602 old_mask = env->interrupt_request;
1603 env->interrupt_request |= mask;
1604
1605 #ifndef CONFIG_USER_ONLY
1606 /*
1607 * If called from iothread context, wake the target cpu in
1608 * case its halted.
1609 */
1610 if (!qemu_cpu_self(env)) {
1611 qemu_cpu_kick(env);
1612 return;
1613 }
1614 #endif
1615
1616 if (use_icount) {
1617 env->icount_decr.u16.high = 0xffff;
1618 #ifndef CONFIG_USER_ONLY
1619 if (!can_do_io(env)
1620 && (mask & ~old_mask) != 0) {
1621 cpu_abort(env, "Raised interrupt while not in I/O function");
1622 }
1623 #endif
1624 } else {
1625 cpu_unlink_tb(env);
1626 }
1627 }
1628
1629 void cpu_reset_interrupt(CPUState *env, int mask)
1630 {
1631 env->interrupt_request &= ~mask;
1632 }
1633
1634 void cpu_exit(CPUState *env)
1635 {
1636 env->exit_request = 1;
1637 cpu_unlink_tb(env);
1638 }
1639
1640 const CPULogItem cpu_log_items[] = {
1641 { CPU_LOG_TB_OUT_ASM, "out_asm",
1642 "show generated host assembly code for each compiled TB" },
1643 { CPU_LOG_TB_IN_ASM, "in_asm",
1644 "show target assembly code for each compiled TB" },
1645 { CPU_LOG_TB_OP, "op",
1646 "show micro ops for each compiled TB" },
1647 { CPU_LOG_TB_OP_OPT, "op_opt",
1648 "show micro ops "
1649 #ifdef TARGET_I386
1650 "before eflags optimization and "
1651 #endif
1652 "after liveness analysis" },
1653 { CPU_LOG_INT, "int",
1654 "show interrupts/exceptions in short format" },
1655 { CPU_LOG_EXEC, "exec",
1656 "show trace before each executed TB (lots of logs)" },
1657 { CPU_LOG_TB_CPU, "cpu",
1658 "show CPU state before block translation" },
1659 #ifdef TARGET_I386
1660 { CPU_LOG_PCALL, "pcall",
1661 "show protected mode far calls/returns/exceptions" },
1662 { CPU_LOG_RESET, "cpu_reset",
1663 "show CPU state before CPU resets" },
1664 #endif
1665 #ifdef DEBUG_IOPORT
1666 { CPU_LOG_IOPORT, "ioport",
1667 "show all i/o ports accesses" },
1668 #endif
1669 { 0, NULL, NULL },
1670 };
1671
1672 #ifndef CONFIG_USER_ONLY
1673 static QLIST_HEAD(memory_client_list, CPUPhysMemoryClient) memory_client_list
1674 = QLIST_HEAD_INITIALIZER(memory_client_list);
1675
1676 static void cpu_notify_set_memory(target_phys_addr_t start_addr,
1677 ram_addr_t size,
1678 ram_addr_t phys_offset)
1679 {
1680 CPUPhysMemoryClient *client;
1681 QLIST_FOREACH(client, &memory_client_list, list) {
1682 client->set_memory(client, start_addr, size, phys_offset);
1683 }
1684 }
1685
1686 static int cpu_notify_sync_dirty_bitmap(target_phys_addr_t start,
1687 target_phys_addr_t end)
1688 {
1689 CPUPhysMemoryClient *client;
1690 QLIST_FOREACH(client, &memory_client_list, list) {
1691 int r = client->sync_dirty_bitmap(client, start, end);
1692 if (r < 0)
1693 return r;
1694 }
1695 return 0;
1696 }
1697
1698 static int cpu_notify_migration_log(int enable)
1699 {
1700 CPUPhysMemoryClient *client;
1701 QLIST_FOREACH(client, &memory_client_list, list) {
1702 int r = client->migration_log(client, enable);
1703 if (r < 0)
1704 return r;
1705 }
1706 return 0;
1707 }
1708
1709 static void phys_page_for_each_1(CPUPhysMemoryClient *client,
1710 int level, void **lp)
1711 {
1712 int i;
1713
1714 if (*lp == NULL) {
1715 return;
1716 }
1717 if (level == 0) {
1718 PhysPageDesc *pd = *lp;
1719 for (i = 0; i < L2_BITS; ++i) {
1720 if (pd[i].phys_offset != IO_MEM_UNASSIGNED) {
1721 client->set_memory(client, pd[i].region_offset,
1722 TARGET_PAGE_SIZE, pd[i].phys_offset);
1723 }
1724 }
1725 } else {
1726 void **pp = *lp;
1727 for (i = 0; i < L2_BITS; ++i) {
1728 phys_page_for_each_1(client, level - 1, pp + i);
1729 }
1730 }
1731 }
1732
1733 static void phys_page_for_each(CPUPhysMemoryClient *client)
1734 {
1735 int i;
1736 for (i = 0; i < P_L1_SIZE; ++i) {
1737 phys_page_for_each_1(client, P_L1_SHIFT / L2_BITS - 1,
1738 l1_phys_map + 1);
1739 }
1740 }
1741
1742 void cpu_register_phys_memory_client(CPUPhysMemoryClient *client)
1743 {
1744 QLIST_INSERT_HEAD(&memory_client_list, client, list);
1745 phys_page_for_each(client);
1746 }
1747
1748 void cpu_unregister_phys_memory_client(CPUPhysMemoryClient *client)
1749 {
1750 QLIST_REMOVE(client, list);
1751 }
1752 #endif
1753
1754 static int cmp1(const char *s1, int n, const char *s2)
1755 {
1756 if (strlen(s2) != n)
1757 return 0;
1758 return memcmp(s1, s2, n) == 0;
1759 }
1760
1761 /* takes a comma separated list of log masks. Return 0 if error. */
1762 int cpu_str_to_log_mask(const char *str)
1763 {
1764 const CPULogItem *item;
1765 int mask;
1766 const char *p, *p1;
1767
1768 p = str;
1769 mask = 0;
1770 for(;;) {
1771 p1 = strchr(p, ',');
1772 if (!p1)
1773 p1 = p + strlen(p);
1774 if(cmp1(p,p1-p,"all")) {
1775 for(item = cpu_log_items; item->mask != 0; item++) {
1776 mask |= item->mask;
1777 }
1778 } else {
1779 for(item = cpu_log_items; item->mask != 0; item++) {
1780 if (cmp1(p, p1 - p, item->name))
1781 goto found;
1782 }
1783 return 0;
1784 }
1785 found:
1786 mask |= item->mask;
1787 if (*p1 != ',')
1788 break;
1789 p = p1 + 1;
1790 }
1791 return mask;
1792 }
1793
1794 void cpu_abort(CPUState *env, const char *fmt, ...)
1795 {
1796 va_list ap;
1797 va_list ap2;
1798
1799 va_start(ap, fmt);
1800 va_copy(ap2, ap);
1801 fprintf(stderr, "qemu: fatal: ");
1802 vfprintf(stderr, fmt, ap);
1803 fprintf(stderr, "\n");
1804 #ifdef TARGET_I386
1805 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1806 #else
1807 cpu_dump_state(env, stderr, fprintf, 0);
1808 #endif
1809 if (qemu_log_enabled()) {
1810 qemu_log("qemu: fatal: ");
1811 qemu_log_vprintf(fmt, ap2);
1812 qemu_log("\n");
1813 #ifdef TARGET_I386
1814 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
1815 #else
1816 log_cpu_state(env, 0);
1817 #endif
1818 qemu_log_flush();
1819 qemu_log_close();
1820 }
1821 va_end(ap2);
1822 va_end(ap);
1823 #if defined(CONFIG_USER_ONLY)
1824 {
1825 struct sigaction act;
1826 sigfillset(&act.sa_mask);
1827 act.sa_handler = SIG_DFL;
1828 sigaction(SIGABRT, &act, NULL);
1829 }
1830 #endif
1831 abort();
1832 }
1833
1834 CPUState *cpu_copy(CPUState *env)
1835 {
1836 CPUState *new_env = cpu_init(env->cpu_model_str);
1837 CPUState *next_cpu = new_env->next_cpu;
1838 int cpu_index = new_env->cpu_index;
1839 #if defined(TARGET_HAS_ICE)
1840 CPUBreakpoint *bp;
1841 CPUWatchpoint *wp;
1842 #endif
1843
1844 memcpy(new_env, env, sizeof(CPUState));
1845
1846 /* Preserve chaining and index. */
1847 new_env->next_cpu = next_cpu;
1848 new_env->cpu_index = cpu_index;
1849
1850 /* Clone all break/watchpoints.
1851 Note: Once we support ptrace with hw-debug register access, make sure
1852 BP_CPU break/watchpoints are handled correctly on clone. */
1853 QTAILQ_INIT(&env->breakpoints);
1854 QTAILQ_INIT(&env->watchpoints);
1855 #if defined(TARGET_HAS_ICE)
1856 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1857 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1858 }
1859 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1860 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1861 wp->flags, NULL);
1862 }
1863 #endif
1864
1865 return new_env;
1866 }
1867
1868 #if !defined(CONFIG_USER_ONLY)
1869
1870 static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1871 {
1872 unsigned int i;
1873
1874 /* Discard jump cache entries for any tb which might potentially
1875 overlap the flushed page. */
1876 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1877 memset (&env->tb_jmp_cache[i], 0,
1878 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1879
1880 i = tb_jmp_cache_hash_page(addr);
1881 memset (&env->tb_jmp_cache[i], 0,
1882 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1883 }
1884
1885 static CPUTLBEntry s_cputlb_empty_entry = {
1886 .addr_read = -1,
1887 .addr_write = -1,
1888 .addr_code = -1,
1889 .addend = -1,
1890 };
1891
1892 /* NOTE: if flush_global is true, also flush global entries (not
1893 implemented yet) */
1894 void tlb_flush(CPUState *env, int flush_global)
1895 {
1896 int i;
1897
1898 #if defined(DEBUG_TLB)
1899 printf("tlb_flush:\n");
1900 #endif
1901 /* must reset current TB so that interrupts cannot modify the
1902 links while we are modifying them */
1903 env->current_tb = NULL;
1904
1905 for(i = 0; i < CPU_TLB_SIZE; i++) {
1906 int mmu_idx;
1907 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1908 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
1909 }
1910 }
1911
1912 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
1913
1914 tlb_flush_count++;
1915 }
1916
1917 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
1918 {
1919 if (addr == (tlb_entry->addr_read &
1920 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1921 addr == (tlb_entry->addr_write &
1922 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1923 addr == (tlb_entry->addr_code &
1924 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1925 *tlb_entry = s_cputlb_empty_entry;
1926 }
1927 }
1928
1929 void tlb_flush_page(CPUState *env, target_ulong addr)
1930 {
1931 int i;
1932 int mmu_idx;
1933
1934 #if defined(DEBUG_TLB)
1935 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
1936 #endif
1937 /* must reset current TB so that interrupts cannot modify the
1938 links while we are modifying them */
1939 env->current_tb = NULL;
1940
1941 addr &= TARGET_PAGE_MASK;
1942 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1943 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1944 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
1945
1946 tlb_flush_jmp_cache(env, addr);
1947 }
1948
1949 /* update the TLBs so that writes to code in the virtual page 'addr'
1950 can be detected */
1951 static void tlb_protect_code(ram_addr_t ram_addr)
1952 {
1953 cpu_physical_memory_reset_dirty(ram_addr,
1954 ram_addr + TARGET_PAGE_SIZE,
1955 CODE_DIRTY_FLAG);
1956 }
1957
1958 /* update the TLB so that writes in physical page 'phys_addr' are no longer
1959 tested for self modifying code */
1960 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
1961 target_ulong vaddr)
1962 {
1963 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1964 }
1965
1966 static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1967 unsigned long start, unsigned long length)
1968 {
1969 unsigned long addr;
1970 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1971 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1972 if ((addr - start) < length) {
1973 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1974 }
1975 }
1976 }
1977
1978 /* Note: start and end must be within the same ram block. */
1979 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
1980 int dirty_flags)
1981 {
1982 CPUState *env;
1983 unsigned long length, start1;
1984 int i, mask, len;
1985 uint8_t *p;
1986
1987 start &= TARGET_PAGE_MASK;
1988 end = TARGET_PAGE_ALIGN(end);
1989
1990 length = end - start;
1991 if (length == 0)
1992 return;
1993 len = length >> TARGET_PAGE_BITS;
1994 mask = ~dirty_flags;
1995 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1996 for(i = 0; i < len; i++)
1997 p[i] &= mask;
1998
1999 /* we modify the TLB cache so that the dirty bit will be set again
2000 when accessing the range */
2001 start1 = (unsigned long)qemu_get_ram_ptr(start);
2002 /* Chek that we don't span multiple blocks - this breaks the
2003 address comparisons below. */
2004 if ((unsigned long)qemu_get_ram_ptr(end - 1) - start1
2005 != (end - 1) - start) {
2006 abort();
2007 }
2008
2009 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2010 int mmu_idx;
2011 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2012 for(i = 0; i < CPU_TLB_SIZE; i++)
2013 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
2014 start1, length);
2015 }
2016 }
2017 }
2018
2019 int cpu_physical_memory_set_dirty_tracking(int enable)
2020 {
2021 int ret = 0;
2022 in_migration = enable;
2023 ret = cpu_notify_migration_log(!!enable);
2024 return ret;
2025 }
2026
2027 int cpu_physical_memory_get_dirty_tracking(void)
2028 {
2029 return in_migration;
2030 }
2031
2032 int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
2033 target_phys_addr_t end_addr)
2034 {
2035 int ret;
2036
2037 ret = cpu_notify_sync_dirty_bitmap(start_addr, end_addr);
2038 return ret;
2039 }
2040
2041 static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
2042 {
2043 ram_addr_t ram_addr;
2044 void *p;
2045
2046 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2047 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
2048 + tlb_entry->addend);
2049 ram_addr = qemu_ram_addr_from_host(p);
2050 if (!cpu_physical_memory_is_dirty(ram_addr)) {
2051 tlb_entry->addr_write |= TLB_NOTDIRTY;
2052 }
2053 }
2054 }
2055
2056 /* update the TLB according to the current state of the dirty bits */
2057 void cpu_tlb_update_dirty(CPUState *env)
2058 {
2059 int i;
2060 int mmu_idx;
2061 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2062 for(i = 0; i < CPU_TLB_SIZE; i++)
2063 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
2064 }
2065 }
2066
2067 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
2068 {
2069 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
2070 tlb_entry->addr_write = vaddr;
2071 }
2072
2073 /* update the TLB corresponding to virtual page vaddr
2074 so that it is no longer dirty */
2075 static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
2076 {
2077 int i;
2078 int mmu_idx;
2079
2080 vaddr &= TARGET_PAGE_MASK;
2081 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2082 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2083 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
2084 }
2085
2086 /* add a new TLB entry. At most one entry for a given virtual address
2087 is permitted. Return 0 if OK or 2 if the page could not be mapped
2088 (can only happen in non SOFTMMU mode for I/O pages or pages
2089 conflicting with the host address space). */
2090 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
2091 target_phys_addr_t paddr, int prot,
2092 int mmu_idx, int is_softmmu)
2093 {
2094 PhysPageDesc *p;
2095 unsigned long pd;
2096 unsigned int index;
2097 target_ulong address;
2098 target_ulong code_address;
2099 target_phys_addr_t addend;
2100 int ret;
2101 CPUTLBEntry *te;
2102 CPUWatchpoint *wp;
2103 target_phys_addr_t iotlb;
2104
2105 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
2106 if (!p) {
2107 pd = IO_MEM_UNASSIGNED;
2108 } else {
2109 pd = p->phys_offset;
2110 }
2111 #if defined(DEBUG_TLB)
2112 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
2113 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
2114 #endif
2115
2116 ret = 0;
2117 address = vaddr;
2118 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2119 /* IO memory case (romd handled later) */
2120 address |= TLB_MMIO;
2121 }
2122 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
2123 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2124 /* Normal RAM. */
2125 iotlb = pd & TARGET_PAGE_MASK;
2126 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2127 iotlb |= IO_MEM_NOTDIRTY;
2128 else
2129 iotlb |= IO_MEM_ROM;
2130 } else {
2131 /* IO handlers are currently passed a physical address.
2132 It would be nice to pass an offset from the base address
2133 of that region. This would avoid having to special case RAM,
2134 and avoid full address decoding in every device.
2135 We can't use the high bits of pd for this because
2136 IO_MEM_ROMD uses these as a ram address. */
2137 iotlb = (pd & ~TARGET_PAGE_MASK);
2138 if (p) {
2139 iotlb += p->region_offset;
2140 } else {
2141 iotlb += paddr;
2142 }
2143 }
2144
2145 code_address = address;
2146 /* Make accesses to pages with watchpoints go via the
2147 watchpoint trap routines. */
2148 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
2149 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
2150 iotlb = io_mem_watch + paddr;
2151 /* TODO: The memory case can be optimized by not trapping
2152 reads of pages with a write breakpoint. */
2153 address |= TLB_MMIO;
2154 }
2155 }
2156
2157 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2158 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2159 te = &env->tlb_table[mmu_idx][index];
2160 te->addend = addend - vaddr;
2161 if (prot & PAGE_READ) {
2162 te->addr_read = address;
2163 } else {
2164 te->addr_read = -1;
2165 }
2166
2167 if (prot & PAGE_EXEC) {
2168 te->addr_code = code_address;
2169 } else {
2170 te->addr_code = -1;
2171 }
2172 if (prot & PAGE_WRITE) {
2173 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2174 (pd & IO_MEM_ROMD)) {
2175 /* Write access calls the I/O callback. */
2176 te->addr_write = address | TLB_MMIO;
2177 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2178 !cpu_physical_memory_is_dirty(pd)) {
2179 te->addr_write = address | TLB_NOTDIRTY;
2180 } else {
2181 te->addr_write = address;
2182 }
2183 } else {
2184 te->addr_write = -1;
2185 }
2186 return ret;
2187 }
2188
2189 #else
2190
2191 void tlb_flush(CPUState *env, int flush_global)
2192 {
2193 }
2194
2195 void tlb_flush_page(CPUState *env, target_ulong addr)
2196 {
2197 }
2198
2199 /*
2200 * Walks guest process memory "regions" one by one
2201 * and calls callback function 'fn' for each region.
2202 */
2203
2204 struct walk_memory_regions_data
2205 {
2206 walk_memory_regions_fn fn;
2207 void *priv;
2208 unsigned long start;
2209 int prot;
2210 };
2211
2212 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
2213 unsigned long end, int new_prot)
2214 {
2215 if (data->start != -1ul) {
2216 int rc = data->fn(data->priv, data->start, end, data->prot);
2217 if (rc != 0) {
2218 return rc;
2219 }
2220 }
2221
2222 data->start = (new_prot ? end : -1ul);
2223 data->prot = new_prot;
2224
2225 return 0;
2226 }
2227
2228 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
2229 unsigned long base, int level, void **lp)
2230 {
2231 unsigned long pa;
2232 int i, rc;
2233
2234 if (*lp == NULL) {
2235 return walk_memory_regions_end(data, base, 0);
2236 }
2237
2238 if (level == 0) {
2239 PageDesc *pd = *lp;
2240 for (i = 0; i < L2_BITS; ++i) {
2241 int prot = pd[i].flags;
2242
2243 pa = base | (i << TARGET_PAGE_BITS);
2244 if (prot != data->prot) {
2245 rc = walk_memory_regions_end(data, pa, prot);
2246 if (rc != 0) {
2247 return rc;
2248 }
2249 }
2250 }
2251 } else {
2252 void **pp = *lp;
2253 for (i = 0; i < L2_BITS; ++i) {
2254 pa = base | (i << (TARGET_PAGE_BITS + L2_BITS * level));
2255 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2256 if (rc != 0) {
2257 return rc;
2258 }
2259 }
2260 }
2261
2262 return 0;
2263 }
2264
2265 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2266 {
2267 struct walk_memory_regions_data data;
2268 unsigned long i;
2269
2270 data.fn = fn;
2271 data.priv = priv;
2272 data.start = -1ul;
2273 data.prot = 0;
2274
2275 for (i = 0; i < V_L1_SIZE; i++) {
2276 int rc = walk_memory_regions_1(&data, i << V_L1_SHIFT,
2277 V_L1_SHIFT / L2_BITS - 1, l1_map + i);
2278 if (rc != 0) {
2279 return rc;
2280 }
2281 }
2282
2283 return walk_memory_regions_end(&data, 0, 0);
2284 }
2285
2286 static int dump_region(void *priv, unsigned long start,
2287 unsigned long end, unsigned long prot)
2288 {
2289 FILE *f = (FILE *)priv;
2290
2291 (void) fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
2292 start, end, end - start,
2293 ((prot & PAGE_READ) ? 'r' : '-'),
2294 ((prot & PAGE_WRITE) ? 'w' : '-'),
2295 ((prot & PAGE_EXEC) ? 'x' : '-'));
2296
2297 return (0);
2298 }
2299
2300 /* dump memory mappings */
2301 void page_dump(FILE *f)
2302 {
2303 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2304 "start", "end", "size", "prot");
2305 walk_memory_regions(f, dump_region);
2306 }
2307
2308 int page_get_flags(target_ulong address)
2309 {
2310 PageDesc *p;
2311
2312 p = page_find(address >> TARGET_PAGE_BITS);
2313 if (!p)
2314 return 0;
2315 return p->flags;
2316 }
2317
2318 /* modify the flags of a page and invalidate the code if
2319 necessary. The flag PAGE_WRITE_ORG is positioned automatically
2320 depending on PAGE_WRITE */
2321 void page_set_flags(target_ulong start, target_ulong end, int flags)
2322 {
2323 PageDesc *p;
2324 target_ulong addr;
2325
2326 /* mmap_lock should already be held. */
2327 start = start & TARGET_PAGE_MASK;
2328 end = TARGET_PAGE_ALIGN(end);
2329 if (flags & PAGE_WRITE)
2330 flags |= PAGE_WRITE_ORG;
2331 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2332 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
2333 /* We may be called for host regions that are outside guest
2334 address space. */
2335 if (!p)
2336 return;
2337 /* if the write protection is set, then we invalidate the code
2338 inside */
2339 if (!(p->flags & PAGE_WRITE) &&
2340 (flags & PAGE_WRITE) &&
2341 p->first_tb) {
2342 tb_invalidate_phys_page(addr, 0, NULL);
2343 }
2344 p->flags = flags;
2345 }
2346 }
2347
2348 int page_check_range(target_ulong start, target_ulong len, int flags)
2349 {
2350 PageDesc *p;
2351 target_ulong end;
2352 target_ulong addr;
2353
2354 if (start + len < start)
2355 /* we've wrapped around */
2356 return -1;
2357
2358 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2359 start = start & TARGET_PAGE_MASK;
2360
2361 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2362 p = page_find(addr >> TARGET_PAGE_BITS);
2363 if( !p )
2364 return -1;
2365 if( !(p->flags & PAGE_VALID) )
2366 return -1;
2367
2368 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
2369 return -1;
2370 if (flags & PAGE_WRITE) {
2371 if (!(p->flags & PAGE_WRITE_ORG))
2372 return -1;
2373 /* unprotect the page if it was put read-only because it
2374 contains translated code */
2375 if (!(p->flags & PAGE_WRITE)) {
2376 if (!page_unprotect(addr, 0, NULL))
2377 return -1;
2378 }
2379 return 0;
2380 }
2381 }
2382 return 0;
2383 }
2384
2385 /* called from signal handler: invalidate the code and unprotect the
2386 page. Return TRUE if the fault was successfully handled. */
2387 int page_unprotect(target_ulong address, unsigned long pc, void *puc)
2388 {
2389 unsigned int page_index, prot, pindex;
2390 PageDesc *p, *p1;
2391 target_ulong host_start, host_end, addr;
2392
2393 /* Technically this isn't safe inside a signal handler. However we
2394 know this only ever happens in a synchronous SEGV handler, so in
2395 practice it seems to be ok. */
2396 mmap_lock();
2397
2398 host_start = address & qemu_host_page_mask;
2399 page_index = host_start >> TARGET_PAGE_BITS;
2400 p1 = page_find(page_index);
2401 if (!p1) {
2402 mmap_unlock();
2403 return 0;
2404 }
2405 host_end = host_start + qemu_host_page_size;
2406 p = p1;
2407 prot = 0;
2408 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
2409 prot |= p->flags;
2410 p++;
2411 }
2412 /* if the page was really writable, then we change its
2413 protection back to writable */
2414 if (prot & PAGE_WRITE_ORG) {
2415 pindex = (address - host_start) >> TARGET_PAGE_BITS;
2416 if (!(p1[pindex].flags & PAGE_WRITE)) {
2417 mprotect((void *)g2h(host_start), qemu_host_page_size,
2418 (prot & PAGE_BITS) | PAGE_WRITE);
2419 p1[pindex].flags |= PAGE_WRITE;
2420 /* and since the content will be modified, we must invalidate
2421 the corresponding translated code. */
2422 tb_invalidate_phys_page(address, pc, puc);
2423 #ifdef DEBUG_TB_CHECK
2424 tb_invalidate_check(address);
2425 #endif
2426 mmap_unlock();
2427 return 1;
2428 }
2429 }
2430 mmap_unlock();
2431 return 0;
2432 }
2433
2434 static inline void tlb_set_dirty(CPUState *env,
2435 unsigned long addr, target_ulong vaddr)
2436 {
2437 }
2438 #endif /* defined(CONFIG_USER_ONLY) */
2439
2440 #if !defined(CONFIG_USER_ONLY)
2441
2442 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2443 typedef struct subpage_t {
2444 target_phys_addr_t base;
2445 CPUReadMemoryFunc * const *mem_read[TARGET_PAGE_SIZE][4];
2446 CPUWriteMemoryFunc * const *mem_write[TARGET_PAGE_SIZE][4];
2447 void *opaque[TARGET_PAGE_SIZE][2][4];
2448 ram_addr_t region_offset[TARGET_PAGE_SIZE][2][4];
2449 } subpage_t;
2450
2451 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2452 ram_addr_t memory, ram_addr_t region_offset);
2453 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2454 ram_addr_t orig_memory, ram_addr_t region_offset);
2455 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2456 need_subpage) \
2457 do { \
2458 if (addr > start_addr) \
2459 start_addr2 = 0; \
2460 else { \
2461 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2462 if (start_addr2 > 0) \
2463 need_subpage = 1; \
2464 } \
2465 \
2466 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2467 end_addr2 = TARGET_PAGE_SIZE - 1; \
2468 else { \
2469 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2470 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2471 need_subpage = 1; \
2472 } \
2473 } while (0)
2474
2475 /* register physical memory.
2476 For RAM, 'size' must be a multiple of the target page size.
2477 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2478 io memory page. The address used when calling the IO function is
2479 the offset from the start of the region, plus region_offset. Both
2480 start_addr and region_offset are rounded down to a page boundary
2481 before calculating this offset. This should not be a problem unless
2482 the low bits of start_addr and region_offset differ. */
2483 void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2484 ram_addr_t size,
2485 ram_addr_t phys_offset,
2486 ram_addr_t region_offset)
2487 {
2488 target_phys_addr_t addr, end_addr;
2489 PhysPageDesc *p;
2490 CPUState *env;
2491 ram_addr_t orig_size = size;
2492 void *subpage;
2493
2494 cpu_notify_set_memory(start_addr, size, phys_offset);
2495
2496 if (phys_offset == IO_MEM_UNASSIGNED) {
2497 region_offset = start_addr;
2498 }
2499 region_offset &= TARGET_PAGE_MASK;
2500 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
2501 end_addr = start_addr + (target_phys_addr_t)size;
2502 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
2503 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2504 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
2505 ram_addr_t orig_memory = p->phys_offset;
2506 target_phys_addr_t start_addr2, end_addr2;
2507 int need_subpage = 0;
2508
2509 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2510 need_subpage);
2511 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2512 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2513 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2514 &p->phys_offset, orig_memory,
2515 p->region_offset);
2516 } else {
2517 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2518 >> IO_MEM_SHIFT];
2519 }
2520 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2521 region_offset);
2522 p->region_offset = 0;
2523 } else {
2524 p->phys_offset = phys_offset;
2525 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2526 (phys_offset & IO_MEM_ROMD))
2527 phys_offset += TARGET_PAGE_SIZE;
2528 }
2529 } else {
2530 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2531 p->phys_offset = phys_offset;
2532 p->region_offset = region_offset;
2533 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2534 (phys_offset & IO_MEM_ROMD)) {
2535 phys_offset += TARGET_PAGE_SIZE;
2536 } else {
2537 target_phys_addr_t start_addr2, end_addr2;
2538 int need_subpage = 0;
2539
2540 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2541 end_addr2, need_subpage);
2542
2543 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2544 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2545 &p->phys_offset, IO_MEM_UNASSIGNED,
2546 addr & TARGET_PAGE_MASK);
2547 subpage_register(subpage, start_addr2, end_addr2,
2548 phys_offset, region_offset);
2549 p->region_offset = 0;
2550 }
2551 }
2552 }
2553 region_offset += TARGET_PAGE_SIZE;
2554 }
2555
2556 /* since each CPU stores ram addresses in its TLB cache, we must
2557 reset the modified entries */
2558 /* XXX: slow ! */
2559 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2560 tlb_flush(env, 1);
2561 }
2562 }
2563
2564 /* XXX: temporary until new memory mapping API */
2565 ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
2566 {
2567 PhysPageDesc *p;
2568
2569 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2570 if (!p)
2571 return IO_MEM_UNASSIGNED;
2572 return p->phys_offset;
2573 }
2574
2575 void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2576 {
2577 if (kvm_enabled())
2578 kvm_coalesce_mmio_region(addr, size);
2579 }
2580
2581 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2582 {
2583 if (kvm_enabled())
2584 kvm_uncoalesce_mmio_region(addr, size);
2585 }
2586
2587 void qemu_flush_coalesced_mmio_buffer(void)
2588 {
2589 if (kvm_enabled())
2590 kvm_flush_coalesced_mmio_buffer();
2591 }
2592
2593 #if defined(__linux__) && !defined(TARGET_S390X)
2594
2595 #include <sys/vfs.h>
2596
2597 #define HUGETLBFS_MAGIC 0x958458f6
2598
2599 static long gethugepagesize(const char *path)
2600 {
2601 struct statfs fs;
2602 int ret;
2603
2604 do {
2605 ret = statfs(path, &fs);
2606 } while (ret != 0 && errno == EINTR);
2607
2608 if (ret != 0) {
2609 perror("statfs");
2610 return 0;
2611 }
2612
2613 if (fs.f_type != HUGETLBFS_MAGIC)
2614 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
2615
2616 return fs.f_bsize;
2617 }
2618
2619 static void *file_ram_alloc(ram_addr_t memory, const char *path)
2620 {
2621 char *filename;
2622 void *area;
2623 int fd;
2624 #ifdef MAP_POPULATE
2625 int flags;
2626 #endif
2627 unsigned long hpagesize;
2628
2629 hpagesize = gethugepagesize(path);
2630 if (!hpagesize) {
2631 return NULL;
2632 }
2633
2634 if (memory < hpagesize) {
2635 return NULL;
2636 }
2637
2638 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2639 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2640 return NULL;
2641 }
2642
2643 if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
2644 return NULL;
2645 }
2646
2647 fd = mkstemp(filename);
2648 if (fd < 0) {
2649 perror("mkstemp");
2650 free(filename);
2651 return NULL;
2652 }
2653 unlink(filename);
2654 free(filename);
2655
2656 memory = (memory+hpagesize-1) & ~(hpagesize-1);
2657
2658 /*
2659 * ftruncate is not supported by hugetlbfs in older
2660 * hosts, so don't bother bailing out on errors.
2661 * If anything goes wrong with it under other filesystems,
2662 * mmap will fail.
2663 */
2664 if (ftruncate(fd, memory))
2665 perror("ftruncate");
2666
2667 #ifdef MAP_POPULATE
2668 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2669 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2670 * to sidestep this quirk.
2671 */
2672 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
2673 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
2674 #else
2675 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
2676 #endif
2677 if (area == MAP_FAILED) {
2678 perror("file_ram_alloc: can't mmap RAM pages");
2679 close(fd);
2680 return (NULL);
2681 }
2682 return area;
2683 }
2684 #endif
2685
2686 ram_addr_t qemu_ram_alloc(ram_addr_t size)
2687 {
2688 RAMBlock *new_block;
2689
2690 size = TARGET_PAGE_ALIGN(size);
2691 new_block = qemu_malloc(sizeof(*new_block));
2692
2693 if (mem_path) {
2694 #if defined (__linux__) && !defined(TARGET_S390X)
2695 new_block->host = file_ram_alloc(size, mem_path);
2696 if (!new_block->host)
2697 exit(1);
2698 #else
2699 fprintf(stderr, "-mem-path option unsupported\n");
2700 exit(1);
2701 #endif
2702 } else {
2703 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2704 /* XXX S390 KVM requires the topmost vma of the RAM to be < 256GB */
2705 new_block->host = mmap((void*)0x1000000, size,
2706 PROT_EXEC|PROT_READ|PROT_WRITE,
2707 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
2708 #else
2709 new_block->host = qemu_vmalloc(size);
2710 #endif
2711 #ifdef MADV_MERGEABLE
2712 madvise(new_block->host, size, MADV_MERGEABLE);
2713 #endif
2714 }
2715 new_block->offset = last_ram_offset;
2716 new_block->length = size;
2717
2718 new_block->next = ram_blocks;
2719 ram_blocks = new_block;
2720
2721 phys_ram_dirty = qemu_realloc(phys_ram_dirty,
2722 (last_ram_offset + size) >> TARGET_PAGE_BITS);
2723 memset(phys_ram_dirty + (last_ram_offset >> TARGET_PAGE_BITS),
2724 0xff, size >> TARGET_PAGE_BITS);
2725
2726 last_ram_offset += size;
2727
2728 if (kvm_enabled())
2729 kvm_setup_guest_memory(new_block->host, size);
2730
2731 return new_block->offset;
2732 }
2733
2734 void qemu_ram_free(ram_addr_t addr)
2735 {
2736 /* TODO: implement this. */
2737 }
2738
2739 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2740 With the exception of the softmmu code in this file, this should
2741 only be used for local memory (e.g. video ram) that the device owns,
2742 and knows it isn't going to access beyond the end of the block.
2743
2744 It should not be used for general purpose DMA.
2745 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2746 */
2747 void *qemu_get_ram_ptr(ram_addr_t addr)
2748 {
2749 RAMBlock *prev;
2750 RAMBlock **prevp;
2751 RAMBlock *block;
2752
2753 prev = NULL;
2754 prevp = &ram_blocks;
2755 block = ram_blocks;
2756 while (block && (block->offset > addr
2757 || block->offset + block->length <= addr)) {
2758 if (prev)
2759 prevp = &prev->next;
2760 prev = block;
2761 block = block->next;
2762 }
2763 if (!block) {
2764 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2765 abort();
2766 }
2767 /* Move this entry to to start of the list. */
2768 if (prev) {
2769 prev->next = block->next;
2770 block->next = *prevp;
2771 *prevp = block;
2772 }
2773 return block->host + (addr - block->offset);
2774 }
2775
2776 /* Some of the softmmu routines need to translate from a host pointer
2777 (typically a TLB entry) back to a ram offset. */
2778 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2779 {
2780 RAMBlock *prev;
2781 RAMBlock *block;
2782 uint8_t *host = ptr;
2783
2784 prev = NULL;
2785 block = ram_blocks;
2786 while (block && (block->host > host
2787 || block->host + block->length <= host)) {
2788 prev = block;
2789 block = block->next;
2790 }
2791 if (!block) {
2792 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2793 abort();
2794 }
2795 return block->offset + (host - block->host);
2796 }
2797
2798 static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
2799 {
2800 #ifdef DEBUG_UNASSIGNED
2801 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2802 #endif
2803 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2804 do_unassigned_access(addr, 0, 0, 0, 1);
2805 #endif
2806 return 0;
2807 }
2808
2809 static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
2810 {
2811 #ifdef DEBUG_UNASSIGNED
2812 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2813 #endif
2814 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2815 do_unassigned_access(addr, 0, 0, 0, 2);
2816 #endif
2817 return 0;
2818 }
2819
2820 static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
2821 {
2822 #ifdef DEBUG_UNASSIGNED
2823 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2824 #endif
2825 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2826 do_unassigned_access(addr, 0, 0, 0, 4);
2827 #endif
2828 return 0;
2829 }
2830
2831 static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
2832 {
2833 #ifdef DEBUG_UNASSIGNED
2834 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2835 #endif
2836 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2837 do_unassigned_access(addr, 1, 0, 0, 1);
2838 #endif
2839 }
2840
2841 static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
2842 {
2843 #ifdef DEBUG_UNASSIGNED
2844 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2845 #endif
2846 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2847 do_unassigned_access(addr, 1, 0, 0, 2);
2848 #endif
2849 }
2850
2851 static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
2852 {
2853 #ifdef DEBUG_UNASSIGNED
2854 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2855 #endif
2856 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2857 do_unassigned_access(addr, 1, 0, 0, 4);
2858 #endif
2859 }
2860
2861 static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
2862 unassigned_mem_readb,
2863 unassigned_mem_readw,
2864 unassigned_mem_readl,
2865 };
2866
2867 static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
2868 unassigned_mem_writeb,
2869 unassigned_mem_writew,
2870 unassigned_mem_writel,
2871 };
2872
2873 static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
2874 uint32_t val)
2875 {
2876 int dirty_flags;
2877 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2878 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2879 #if !defined(CONFIG_USER_ONLY)
2880 tb_invalidate_phys_page_fast(ram_addr, 1);
2881 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2882 #endif
2883 }
2884 stb_p(qemu_get_ram_ptr(ram_addr), val);
2885 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2886 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2887 /* we remove the notdirty callback only if the code has been
2888 flushed */
2889 if (dirty_flags == 0xff)
2890 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2891 }
2892
2893 static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
2894 uint32_t val)
2895 {
2896 int dirty_flags;
2897 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2898 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2899 #if !defined(CONFIG_USER_ONLY)
2900 tb_invalidate_phys_page_fast(ram_addr, 2);
2901 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2902 #endif
2903 }
2904 stw_p(qemu_get_ram_ptr(ram_addr), val);
2905 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2906 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2907 /* we remove the notdirty callback only if the code has been
2908 flushed */
2909 if (dirty_flags == 0xff)
2910 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2911 }
2912
2913 static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
2914 uint32_t val)
2915 {
2916 int dirty_flags;
2917 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2918 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2919 #if !defined(CONFIG_USER_ONLY)
2920 tb_invalidate_phys_page_fast(ram_addr, 4);
2921 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2922 #endif
2923 }
2924 stl_p(qemu_get_ram_ptr(ram_addr), val);
2925 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2926 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2927 /* we remove the notdirty callback only if the code has been
2928 flushed */
2929 if (dirty_flags == 0xff)
2930 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2931 }
2932
2933 static CPUReadMemoryFunc * const error_mem_read[3] = {
2934 NULL, /* never used */
2935 NULL, /* never used */
2936 NULL, /* never used */
2937 };
2938
2939 static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
2940 notdirty_mem_writeb,
2941 notdirty_mem_writew,
2942 notdirty_mem_writel,
2943 };
2944
2945 /* Generate a debug exception if a watchpoint has been hit. */
2946 static void check_watchpoint(int offset, int len_mask, int flags)
2947 {
2948 CPUState *env = cpu_single_env;
2949 target_ulong pc, cs_base;
2950 TranslationBlock *tb;
2951 target_ulong vaddr;
2952 CPUWatchpoint *wp;
2953 int cpu_flags;
2954
2955 if (env->watchpoint_hit) {
2956 /* We re-entered the check after replacing the TB. Now raise
2957 * the debug interrupt so that is will trigger after the
2958 * current instruction. */
2959 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2960 return;
2961 }
2962 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2963 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
2964 if ((vaddr == (wp->vaddr & len_mask) ||
2965 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
2966 wp->flags |= BP_WATCHPOINT_HIT;
2967 if (!env->watchpoint_hit) {
2968 env->watchpoint_hit = wp;
2969 tb = tb_find_pc(env->mem_io_pc);
2970 if (!tb) {
2971 cpu_abort(env, "check_watchpoint: could not find TB for "
2972 "pc=%p", (void *)env->mem_io_pc);
2973 }
2974 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
2975 tb_phys_invalidate(tb, -1);
2976 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2977 env->exception_index = EXCP_DEBUG;
2978 } else {
2979 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2980 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
2981 }
2982 cpu_resume_from_signal(env, NULL);
2983 }
2984 } else {
2985 wp->flags &= ~BP_WATCHPOINT_HIT;
2986 }
2987 }
2988 }
2989
2990 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2991 so these check for a hit then pass through to the normal out-of-line
2992 phys routines. */
2993 static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
2994 {
2995 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
2996 return ldub_phys(addr);
2997 }
2998
2999 static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
3000 {
3001 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
3002 return lduw_phys(addr);
3003 }
3004
3005 static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
3006 {
3007 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
3008 return ldl_phys(addr);
3009 }
3010
3011 static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
3012 uint32_t val)
3013 {
3014 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
3015 stb_phys(addr, val);
3016 }
3017
3018 static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
3019 uint32_t val)
3020 {
3021 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
3022 stw_phys(addr, val);
3023 }
3024
3025 static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
3026 uint32_t val)
3027 {
3028 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
3029 stl_phys(addr, val);
3030 }
3031
3032 static CPUReadMemoryFunc * const watch_mem_read[3] = {
3033 watch_mem_readb,
3034 watch_mem_readw,
3035 watch_mem_readl,
3036 };
3037
3038 static CPUWriteMemoryFunc * const watch_mem_write[3] = {
3039 watch_mem_writeb,
3040 watch_mem_writew,
3041 watch_mem_writel,
3042 };
3043
3044 static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
3045 unsigned int len)
3046 {
3047 uint32_t ret;
3048 unsigned int idx;
3049
3050 idx = SUBPAGE_IDX(addr);
3051 #if defined(DEBUG_SUBPAGE)
3052 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
3053 mmio, len, addr, idx);
3054 #endif
3055 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len],
3056 addr + mmio->region_offset[idx][0][len]);
3057
3058 return ret;
3059 }
3060
3061 static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
3062 uint32_t value, unsigned int len)
3063 {
3064 unsigned int idx;
3065
3066 idx = SUBPAGE_IDX(addr);
3067 #if defined(DEBUG_SUBPAGE)
3068 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
3069 mmio, len, addr, idx, value);
3070 #endif
3071 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len],
3072 addr + mmio->region_offset[idx][1][len],
3073 value);
3074 }
3075
3076 static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
3077 {
3078 #if defined(DEBUG_SUBPAGE)
3079 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
3080 #endif
3081
3082 return subpage_readlen(opaque, addr, 0);
3083 }
3084
3085 static void subpage_writeb (void *opaque, target_phys_addr_t addr,
3086 uint32_t value)
3087 {
3088 #if defined(DEBUG_SUBPAGE)
3089 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
3090 #endif
3091 subpage_writelen(opaque, addr, value, 0);
3092 }
3093
3094 static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
3095 {
3096 #if defined(DEBUG_SUBPAGE)
3097 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
3098 #endif
3099
3100 return subpage_readlen(opaque, addr, 1);
3101 }
3102
3103 static void subpage_writew (void *opaque, target_phys_addr_t addr,
3104 uint32_t value)
3105 {
3106 #if defined(DEBUG_SUBPAGE)
3107 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
3108 #endif
3109 subpage_writelen(opaque, addr, value, 1);
3110 }
3111
3112 static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
3113 {
3114 #if defined(DEBUG_SUBPAGE)
3115 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
3116 #endif
3117
3118 return subpage_readlen(opaque, addr, 2);
3119 }
3120
3121 static void subpage_writel (void *opaque,
3122 target_phys_addr_t addr, uint32_t value)
3123 {
3124 #if defined(DEBUG_SUBPAGE)
3125 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
3126 #endif
3127 subpage_writelen(opaque, addr, value, 2);
3128 }
3129
3130 static CPUReadMemoryFunc * const subpage_read[] = {
3131 &subpage_readb,
3132 &subpage_readw,
3133 &subpage_readl,
3134 };
3135
3136 static CPUWriteMemoryFunc * const subpage_write[] = {
3137 &subpage_writeb,
3138 &subpage_writew,
3139 &subpage_writel,
3140 };
3141
3142 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
3143 ram_addr_t memory, ram_addr_t region_offset)
3144 {
3145 int idx, eidx;
3146 unsigned int i;
3147
3148 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3149 return -1;
3150 idx = SUBPAGE_IDX(start);
3151 eidx = SUBPAGE_IDX(end);
3152 #if defined(DEBUG_SUBPAGE)
3153 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
3154 mmio, start, end, idx, eidx, memory);
3155 #endif
3156 memory >>= IO_MEM_SHIFT;
3157 for (; idx <= eidx; idx++) {
3158 for (i = 0; i < 4; i++) {
3159 if (io_mem_read[memory][i]) {
3160 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
3161 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
3162 mmio->region_offset[idx][0][i] = region_offset;
3163 }
3164 if (io_mem_write[memory][i]) {
3165 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
3166 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
3167 mmio->region_offset[idx][1][i] = region_offset;
3168 }
3169 }
3170 }
3171
3172 return 0;
3173 }
3174
3175 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
3176 ram_addr_t orig_memory, ram_addr_t region_offset)
3177 {
3178 subpage_t *mmio;
3179 int subpage_memory;
3180
3181 mmio = qemu_mallocz(sizeof(subpage_t));
3182
3183 mmio->base = base;
3184 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio);
3185 #if defined(DEBUG_SUBPAGE)
3186 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3187 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
3188 #endif
3189 *phys = subpage_memory | IO_MEM_SUBPAGE;
3190 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory,
3191 region_offset);
3192
3193 return mmio;
3194 }
3195
3196 static int get_free_io_mem_idx(void)
3197 {
3198 int i;
3199
3200 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
3201 if (!io_mem_used[i]) {
3202 io_mem_used[i] = 1;
3203 return i;
3204 }
3205 fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
3206 return -1;
3207 }
3208
3209 /* mem_read and mem_write are arrays of functions containing the
3210 function to access byte (index 0), word (index 1) and dword (index
3211 2). Functions can be omitted with a NULL function pointer.
3212 If io_index is non zero, the corresponding io zone is
3213 modified. If it is zero, a new io zone is allocated. The return
3214 value can be used with cpu_register_physical_memory(). (-1) is
3215 returned if error. */
3216 static int cpu_register_io_memory_fixed(int io_index,
3217 CPUReadMemoryFunc * const *mem_read,
3218 CPUWriteMemoryFunc * const *mem_write,
3219 void *opaque)
3220 {
3221 int i, subwidth = 0;
3222
3223 if (io_index <= 0) {
3224 io_index = get_free_io_mem_idx();
3225 if (io_index == -1)
3226 return io_index;
3227 } else {
3228 io_index >>= IO_MEM_SHIFT;
3229 if (io_index >= IO_MEM_NB_ENTRIES)
3230 return -1;
3231 }
3232
3233 for(i = 0;i < 3; i++) {
3234 if (!mem_read[i] || !mem_write[i])
3235 subwidth = IO_MEM_SUBWIDTH;
3236 io_mem_read[io_index][i] = mem_read[i];
3237 io_mem_write[io_index][i] = mem_write[i];
3238 }
3239 io_mem_opaque[io_index] = opaque;
3240 return (io_index << IO_MEM_SHIFT) | subwidth;
3241 }
3242
3243 int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
3244 CPUWriteMemoryFunc * const *mem_write,
3245 void *opaque)
3246 {
3247 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque);
3248 }
3249
3250 void cpu_unregister_io_memory(int io_table_address)
3251 {
3252 int i;
3253 int io_index = io_table_address >> IO_MEM_SHIFT;
3254
3255 for (i=0;i < 3; i++) {
3256 io_mem_read[io_index][i] = unassigned_mem_read[i];
3257 io_mem_write[io_index][i] = unassigned_mem_write[i];
3258 }
3259 io_mem_opaque[io_index] = NULL;
3260 io_mem_used[io_index] = 0;
3261 }
3262
3263 static void io_mem_init(void)
3264 {
3265 int i;
3266
3267 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read, unassigned_mem_write, NULL);
3268 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read, unassigned_mem_write, NULL);
3269 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read, notdirty_mem_write, NULL);
3270 for (i=0; i<5; i++)
3271 io_mem_used[i] = 1;
3272
3273 io_mem_watch = cpu_register_io_memory(watch_mem_read,
3274 watch_mem_write, NULL);
3275 }
3276
3277 #endif /* !defined(CONFIG_USER_ONLY) */
3278
3279 /* physical memory access (slow version, mainly for debug) */
3280 #if defined(CONFIG_USER_ONLY)
3281 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3282 uint8_t *buf, int len, int is_write)
3283 {
3284 int l, flags;
3285 target_ulong page;
3286 void * p;
3287
3288 while (len > 0) {
3289 page = addr & TARGET_PAGE_MASK;
3290 l = (page + TARGET_PAGE_SIZE) - addr;
3291 if (l > len)
3292 l = len;
3293 flags = page_get_flags(page);
3294 if (!(flags & PAGE_VALID))
3295 return -1;
3296 if (is_write) {
3297 if (!(flags & PAGE_WRITE))
3298 return -1;
3299 /* XXX: this code should not depend on lock_user */
3300 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3301 return -1;
3302 memcpy(p, buf, l);
3303 unlock_user(p, addr, l);
3304 } else {
3305 if (!(flags & PAGE_READ))
3306 return -1;
3307 /* XXX: this code should not depend on lock_user */
3308 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3309 return -1;
3310 memcpy(buf, p, l);
3311 unlock_user(p, addr, 0);
3312 }
3313 len -= l;
3314 buf += l;
3315 addr += l;
3316 }
3317 return 0;
3318 }
3319
3320 #else
3321 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
3322 int len, int is_write)
3323 {
3324 int l, io_index;
3325 uint8_t *ptr;
3326 uint32_t val;
3327 target_phys_addr_t page;
3328 unsigned long pd;
3329 PhysPageDesc *p;
3330
3331 while (len > 0) {
3332 page = addr & TARGET_PAGE_MASK;
3333 l = (page + TARGET_PAGE_SIZE) - addr;
3334 if (l > len)
3335 l = len;
3336 p = phys_page_find(page >> TARGET_PAGE_BITS);
3337 if (!p) {
3338 pd = IO_MEM_UNASSIGNED;
3339 } else {
3340 pd = p->phys_offset;
3341 }
3342
3343 if (is_write) {
3344 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3345 target_phys_addr_t addr1 = addr;
3346 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3347 if (p)
3348 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3349 /* XXX: could force cpu_single_env to NULL to avoid
3350 potential bugs */
3351 if (l >= 4 && ((addr1 & 3) == 0)) {
3352 /* 32 bit write access */
3353 val = ldl_p(buf);
3354 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
3355 l = 4;
3356 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3357 /* 16 bit write access */
3358 val = lduw_p(buf);
3359 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
3360 l = 2;
3361 } else {
3362 /* 8 bit write access */
3363 val = ldub_p(buf);
3364 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
3365 l = 1;
3366 }
3367 } else {
3368 unsigned long addr1;
3369 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3370 /* RAM case */
3371 ptr = qemu_get_ram_ptr(addr1);
3372 memcpy(ptr, buf, l);
3373 if (!cpu_physical_memory_is_dirty(addr1)) {
3374 /* invalidate code */
3375 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3376 /* set dirty bit */
3377 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3378 (0xff & ~CODE_DIRTY_FLAG);
3379 }
3380 }
3381 } else {
3382 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3383 !(pd & IO_MEM_ROMD)) {
3384 target_phys_addr_t addr1 = addr;
3385 /* I/O case */
3386 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3387 if (p)
3388 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3389 if (l >= 4 && ((addr1 & 3) == 0)) {
3390 /* 32 bit read access */
3391 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
3392 stl_p(buf, val);
3393 l = 4;
3394 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3395 /* 16 bit read access */
3396 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
3397 stw_p(buf, val);
3398 l = 2;
3399 } else {
3400 /* 8 bit read access */
3401 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
3402 stb_p(buf, val);
3403 l = 1;
3404 }
3405 } else {
3406 /* RAM case */
3407 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3408 (addr & ~TARGET_PAGE_MASK);
3409 memcpy(buf, ptr, l);
3410 }
3411 }
3412 len -= l;
3413 buf += l;
3414 addr += l;
3415 }
3416 }
3417
3418 /* used for ROM loading : can write in RAM and ROM */
3419 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
3420 const uint8_t *buf, int len)
3421 {
3422 int l;
3423 uint8_t *ptr;
3424 target_phys_addr_t page;
3425 unsigned long pd;
3426 PhysPageDesc *p;
3427
3428 while (len > 0) {
3429 page = addr & TARGET_PAGE_MASK;
3430 l = (page + TARGET_PAGE_SIZE) - addr;
3431 if (l > len)
3432 l = len;
3433 p = phys_page_find(page >> TARGET_PAGE_BITS);
3434 if (!p) {
3435 pd = IO_MEM_UNASSIGNED;
3436 } else {
3437 pd = p->phys_offset;
3438 }
3439
3440 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
3441 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3442 !(pd & IO_MEM_ROMD)) {
3443 /* do nothing */
3444 } else {
3445 unsigned long addr1;
3446 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3447 /* ROM/RAM case */
3448 ptr = qemu_get_ram_ptr(addr1);
3449 memcpy(ptr, buf, l);
3450 }
3451 len -= l;
3452 buf += l;
3453 addr += l;
3454 }
3455 }
3456
3457 typedef struct {
3458 void *buffer;
3459 target_phys_addr_t addr;
3460 target_phys_addr_t len;
3461 } BounceBuffer;
3462
3463 static BounceBuffer bounce;
3464
3465 typedef struct MapClient {
3466 void *opaque;
3467 void (*callback)(void *opaque);
3468 QLIST_ENTRY(MapClient) link;
3469 } MapClient;
3470
3471 static QLIST_HEAD(map_client_list, MapClient) map_client_list
3472 = QLIST_HEAD_INITIALIZER(map_client_list);
3473
3474 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3475 {
3476 MapClient *client = qemu_malloc(sizeof(*client));
3477
3478 client->opaque = opaque;
3479 client->callback = callback;
3480 QLIST_INSERT_HEAD(&map_client_list, client, link);
3481 return client;
3482 }
3483
3484 void cpu_unregister_map_client(void *_client)
3485 {
3486 MapClient *client = (MapClient *)_client;
3487
3488 QLIST_REMOVE(client, link);
3489 qemu_free(client);
3490 }
3491
3492 static void cpu_notify_map_clients(void)
3493 {
3494 MapClient *client;
3495
3496 while (!QLIST_EMPTY(&map_client_list)) {
3497 client = QLIST_FIRST(&map_client_list);
3498 client->callback(client->opaque);
3499 cpu_unregister_map_client(client);
3500 }
3501 }
3502
3503 /* Map a physical memory region into a host virtual address.
3504 * May map a subset of the requested range, given by and returned in *plen.
3505 * May return NULL if resources needed to perform the mapping are exhausted.
3506 * Use only for reads OR writes - not for read-modify-write operations.
3507 * Use cpu_register_map_client() to know when retrying the map operation is
3508 * likely to succeed.
3509 */
3510 void *cpu_physical_memory_map(target_phys_addr_t addr,
3511 target_phys_addr_t *plen,
3512 int is_write)
3513 {
3514 target_phys_addr_t len = *plen;
3515 target_phys_addr_t done = 0;
3516 int l;
3517 uint8_t *ret = NULL;
3518 uint8_t *ptr;
3519 target_phys_addr_t page;
3520 unsigned long pd;
3521 PhysPageDesc *p;
3522 unsigned long addr1;
3523
3524 while (len > 0) {
3525 page = addr & TARGET_PAGE_MASK;
3526 l = (page + TARGET_PAGE_SIZE) - addr;
3527 if (l > len)
3528 l = len;
3529 p = phys_page_find(page >> TARGET_PAGE_BITS);
3530 if (!p) {
3531 pd = IO_MEM_UNASSIGNED;
3532 } else {
3533 pd = p->phys_offset;
3534 }
3535
3536 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3537 if (done || bounce.buffer) {
3538 break;
3539 }
3540 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3541 bounce.addr = addr;
3542 bounce.len = l;
3543 if (!is_write) {
3544 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3545 }
3546 ptr = bounce.buffer;
3547 } else {
3548 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3549 ptr = qemu_get_ram_ptr(addr1);
3550 }
3551 if (!done) {
3552 ret = ptr;
3553 } else if (ret + done != ptr) {
3554 break;
3555 }
3556
3557 len -= l;
3558 addr += l;
3559 done += l;
3560 }
3561 *plen = done;
3562 return ret;
3563 }
3564
3565 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3566 * Will also mark the memory as dirty if is_write == 1. access_len gives
3567 * the amount of memory that was actually read or written by the caller.
3568 */
3569 void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3570 int is_write, target_phys_addr_t access_len)
3571 {
3572 if (buffer != bounce.buffer) {
3573 if (is_write) {
3574 ram_addr_t addr1 = qemu_ram_addr_from_host(buffer);
3575 while (access_len) {
3576 unsigned l;
3577 l = TARGET_PAGE_SIZE;
3578 if (l > access_len)
3579 l = access_len;
3580 if (!cpu_physical_memory_is_dirty(addr1)) {
3581 /* invalidate code */
3582 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3583 /* set dirty bit */
3584 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3585 (0xff & ~CODE_DIRTY_FLAG);
3586 }
3587 addr1 += l;
3588 access_len -= l;
3589 }
3590 }
3591 return;
3592 }
3593 if (is_write) {
3594 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3595 }
3596 qemu_vfree(bounce.buffer);
3597 bounce.buffer = NULL;
3598 cpu_notify_map_clients();
3599 }
3600
3601 /* warning: addr must be aligned */
3602 uint32_t ldl_phys(target_phys_addr_t addr)
3603 {
3604 int io_index;
3605 uint8_t *ptr;
3606 uint32_t val;
3607 unsigned long pd;
3608 PhysPageDesc *p;
3609
3610 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3611 if (!p) {
3612 pd = IO_MEM_UNASSIGNED;
3613 } else {
3614 pd = p->phys_offset;
3615 }
3616
3617 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3618 !(pd & IO_MEM_ROMD)) {
3619 /* I/O case */
3620 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3621 if (p)
3622 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3623 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3624 } else {
3625 /* RAM case */
3626 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3627 (addr & ~TARGET_PAGE_MASK);
3628 val = ldl_p(ptr);
3629 }
3630 return val;
3631 }
3632
3633 /* warning: addr must be aligned */
3634 uint64_t ldq_phys(target_phys_addr_t addr)
3635 {
3636 int io_index;
3637 uint8_t *ptr;
3638 uint64_t val;
3639 unsigned long pd;
3640 PhysPageDesc *p;
3641
3642 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3643 if (!p) {
3644 pd = IO_MEM_UNASSIGNED;
3645 } else {
3646 pd = p->phys_offset;
3647 }
3648
3649 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3650 !(pd & IO_MEM_ROMD)) {
3651 /* I/O case */
3652 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3653 if (p)
3654 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3655 #ifdef TARGET_WORDS_BIGENDIAN
3656 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3657 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3658 #else
3659 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3660 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3661 #endif
3662 } else {
3663 /* RAM case */
3664 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3665 (addr & ~TARGET_PAGE_MASK);
3666 val = ldq_p(ptr);
3667 }
3668 return val;
3669 }
3670
3671 /* XXX: optimize */
3672 uint32_t ldub_phys(target_phys_addr_t addr)
3673 {
3674 uint8_t val;
3675 cpu_physical_memory_read(addr, &val, 1);
3676 return val;
3677 }
3678
3679 /* XXX: optimize */
3680 uint32_t lduw_phys(target_phys_addr_t addr)
3681 {
3682 uint16_t val;
3683 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
3684 return tswap16(val);
3685 }
3686
3687 /* warning: addr must be aligned. The ram page is not masked as dirty
3688 and the code inside is not invalidated. It is useful if the dirty
3689 bits are used to track modified PTEs */
3690 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
3691 {
3692 int io_index;
3693 uint8_t *ptr;
3694 unsigned long pd;
3695 PhysPageDesc *p;
3696
3697 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3698 if (!p) {
3699 pd = IO_MEM_UNASSIGNED;
3700 } else {
3701 pd = p->phys_offset;
3702 }
3703
3704 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3705 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3706 if (p)
3707 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3708 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3709 } else {
3710 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3711 ptr = qemu_get_ram_ptr(addr1);
3712 stl_p(ptr, val);
3713
3714 if (unlikely(in_migration)) {
3715 if (!cpu_physical_memory_is_dirty(addr1)) {
3716 /* invalidate code */
3717 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3718 /* set dirty bit */
3719 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3720 (0xff & ~CODE_DIRTY_FLAG);
3721 }
3722 }
3723 }
3724 }
3725
3726 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
3727 {
3728 int io_index;
3729 uint8_t *ptr;
3730 unsigned long pd;
3731 PhysPageDesc *p;
3732
3733 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3734 if (!p) {
3735 pd = IO_MEM_UNASSIGNED;
3736 } else {
3737 pd = p->phys_offset;
3738 }
3739
3740 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3741 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3742 if (p)
3743 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3744 #ifdef TARGET_WORDS_BIGENDIAN
3745 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3746 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3747 #else
3748 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3749 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3750 #endif
3751 } else {
3752 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3753 (addr & ~TARGET_PAGE_MASK);
3754 stq_p(ptr, val);
3755 }
3756 }
3757
3758 /* warning: addr must be aligned */
3759 void stl_phys(target_phys_addr_t addr, uint32_t val)
3760 {
3761 int io_index;
3762 uint8_t *ptr;
3763 unsigned long pd;
3764 PhysPageDesc *p;
3765
3766 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3767 if (!p) {
3768 pd = IO_MEM_UNASSIGNED;
3769 } else {
3770 pd = p->phys_offset;
3771 }
3772
3773 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3774 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3775 if (p)
3776 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3777 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3778 } else {
3779 unsigned long addr1;
3780 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3781 /* RAM case */
3782 ptr = qemu_get_ram_ptr(addr1);
3783 stl_p(ptr, val);
3784 if (!cpu_physical_memory_is_dirty(addr1)) {
3785 /* invalidate code */
3786 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3787 /* set dirty bit */
3788 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3789 (0xff & ~CODE_DIRTY_FLAG);
3790 }
3791 }
3792 }
3793
3794 /* XXX: optimize */
3795 void stb_phys(target_phys_addr_t addr, uint32_t val)
3796 {
3797 uint8_t v = val;
3798 cpu_physical_memory_write(addr, &v, 1);
3799 }
3800
3801 /* XXX: optimize */
3802 void stw_phys(target_phys_addr_t addr, uint32_t val)
3803 {
3804 uint16_t v = tswap16(val);
3805 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3806 }
3807
3808 /* XXX: optimize */
3809 void stq_phys(target_phys_addr_t addr, uint64_t val)
3810 {
3811 val = tswap64(val);
3812 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3813 }
3814
3815 /* virtual memory access for debug (includes writing to ROM) */
3816 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3817 uint8_t *buf, int len, int is_write)
3818 {
3819 int l;
3820 target_phys_addr_t phys_addr;
3821 target_ulong page;
3822
3823 while (len > 0) {
3824 page = addr & TARGET_PAGE_MASK;
3825 phys_addr = cpu_get_phys_page_debug(env, page);
3826 /* if no physical page mapped, return an error */
3827 if (phys_addr == -1)
3828 return -1;
3829 l = (page + TARGET_PAGE_SIZE) - addr;
3830 if (l > len)
3831 l = len;
3832 phys_addr += (addr & ~TARGET_PAGE_MASK);
3833 if (is_write)
3834 cpu_physical_memory_write_rom(phys_addr, buf, l);
3835 else
3836 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
3837 len -= l;
3838 buf += l;
3839 addr += l;
3840 }
3841 return 0;
3842 }
3843 #endif
3844
3845 /* in deterministic execution mode, instructions doing device I/Os
3846 must be at the end of the TB */
3847 void cpu_io_recompile(CPUState *env, void *retaddr)
3848 {
3849 TranslationBlock *tb;
3850 uint32_t n, cflags;
3851 target_ulong pc, cs_base;
3852 uint64_t flags;
3853
3854 tb = tb_find_pc((unsigned long)retaddr);
3855 if (!tb) {
3856 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3857 retaddr);
3858 }
3859 n = env->icount_decr.u16.low + tb->icount;
3860 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3861 /* Calculate how many instructions had been executed before the fault
3862 occurred. */
3863 n = n - env->icount_decr.u16.low;
3864 /* Generate a new TB ending on the I/O insn. */
3865 n++;
3866 /* On MIPS and SH, delay slot instructions can only be restarted if
3867 they were already the first instruction in the TB. If this is not
3868 the first instruction in a TB then re-execute the preceding
3869 branch. */
3870 #if defined(TARGET_MIPS)
3871 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3872 env->active_tc.PC -= 4;
3873 env->icount_decr.u16.low++;
3874 env->hflags &= ~MIPS_HFLAG_BMASK;
3875 }
3876 #elif defined(TARGET_SH4)
3877 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3878 && n > 1) {
3879 env->pc -= 2;
3880 env->icount_decr.u16.low++;
3881 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3882 }
3883 #endif
3884 /* This should never happen. */
3885 if (n > CF_COUNT_MASK)
3886 cpu_abort(env, "TB too big during recompile");
3887
3888 cflags = n | CF_LAST_IO;
3889 pc = tb->pc;
3890 cs_base = tb->cs_base;
3891 flags = tb->flags;
3892 tb_phys_invalidate(tb, -1);
3893 /* FIXME: In theory this could raise an exception. In practice
3894 we have already translated the block once so it's probably ok. */
3895 tb_gen_code(env, pc, cs_base, flags, cflags);
3896 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
3897 the first in the TB) then we end up generating a whole new TB and
3898 repeating the fault, which is horribly inefficient.
3899 Better would be to execute just this insn uncached, or generate a
3900 second new TB. */
3901 cpu_resume_from_signal(env, NULL);
3902 }
3903
3904 void dump_exec_info(FILE *f,
3905 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
3906 {
3907 int i, target_code_size, max_target_code_size;
3908 int direct_jmp_count, direct_jmp2_count, cross_page;
3909 TranslationBlock *tb;
3910
3911 target_code_size = 0;
3912 max_target_code_size = 0;
3913 cross_page = 0;
3914 direct_jmp_count = 0;
3915 direct_jmp2_count = 0;
3916 for(i = 0; i < nb_tbs; i++) {
3917 tb = &tbs[i];
3918 target_code_size += tb->size;
3919 if (tb->size > max_target_code_size)
3920 max_target_code_size = tb->size;
3921 if (tb->page_addr[1] != -1)
3922 cross_page++;
3923 if (tb->tb_next_offset[0] != 0xffff) {
3924 direct_jmp_count++;
3925 if (tb->tb_next_offset[1] != 0xffff) {
3926 direct_jmp2_count++;
3927 }
3928 }
3929 }
3930 /* XXX: avoid using doubles ? */
3931 cpu_fprintf(f, "Translation buffer state:\n");
3932 cpu_fprintf(f, "gen code size %ld/%ld\n",
3933 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
3934 cpu_fprintf(f, "TB count %d/%d\n",
3935 nb_tbs, code_gen_max_blocks);
3936 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
3937 nb_tbs ? target_code_size / nb_tbs : 0,
3938 max_target_code_size);
3939 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
3940 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
3941 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
3942 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
3943 cross_page,
3944 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
3945 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
3946 direct_jmp_count,
3947 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
3948 direct_jmp2_count,
3949 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
3950 cpu_fprintf(f, "\nStatistics:\n");
3951 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
3952 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
3953 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
3954 tcg_dump_info(f, cpu_fprintf);
3955 }
3956
3957 #if !defined(CONFIG_USER_ONLY)
3958
3959 #define MMUSUFFIX _cmmu
3960 #define GETPC() NULL
3961 #define env cpu_single_env
3962 #define SOFTMMU_CODE_ACCESS
3963
3964 #define SHIFT 0
3965 #include "softmmu_template.h"
3966
3967 #define SHIFT 1
3968 #include "softmmu_template.h"
3969
3970 #define SHIFT 2
3971 #include "softmmu_template.h"
3972
3973 #define SHIFT 3
3974 #include "softmmu_template.h"
3975
3976 #undef env
3977
3978 #endif