]> git.proxmox.com Git - mirror_qemu.git/blob - exec.c
CRIS: Translator updates.
[mirror_qemu.git] / exec.c
1 /*
2 * virtual page mapping and translated block handling
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20 #include "config.h"
21 #ifdef _WIN32
22 #define WIN32_LEAN_AND_MEAN
23 #include <windows.h>
24 #else
25 #include <sys/types.h>
26 #include <sys/mman.h>
27 #endif
28 #include <stdlib.h>
29 #include <stdio.h>
30 #include <stdarg.h>
31 #include <string.h>
32 #include <errno.h>
33 #include <unistd.h>
34 #include <inttypes.h>
35
36 #include "cpu.h"
37 #include "exec-all.h"
38 #include "qemu-common.h"
39 #include "tcg.h"
40 #if defined(CONFIG_USER_ONLY)
41 #include <qemu.h>
42 #endif
43
44 //#define DEBUG_TB_INVALIDATE
45 //#define DEBUG_FLUSH
46 //#define DEBUG_TLB
47 //#define DEBUG_UNASSIGNED
48
49 /* make various TB consistency checks */
50 //#define DEBUG_TB_CHECK
51 //#define DEBUG_TLB_CHECK
52
53 //#define DEBUG_IOPORT
54 //#define DEBUG_SUBPAGE
55
56 #if !defined(CONFIG_USER_ONLY)
57 /* TB consistency checks only implemented for usermode emulation. */
58 #undef DEBUG_TB_CHECK
59 #endif
60
61 #define SMC_BITMAP_USE_THRESHOLD 10
62
63 #define MMAP_AREA_START 0x00000000
64 #define MMAP_AREA_END 0xa8000000
65
66 #if defined(TARGET_SPARC64)
67 #define TARGET_PHYS_ADDR_SPACE_BITS 41
68 #elif defined(TARGET_SPARC)
69 #define TARGET_PHYS_ADDR_SPACE_BITS 36
70 #elif defined(TARGET_ALPHA)
71 #define TARGET_PHYS_ADDR_SPACE_BITS 42
72 #define TARGET_VIRT_ADDR_SPACE_BITS 42
73 #elif defined(TARGET_PPC64)
74 #define TARGET_PHYS_ADDR_SPACE_BITS 42
75 #elif defined(TARGET_X86_64) && !defined(USE_KQEMU)
76 #define TARGET_PHYS_ADDR_SPACE_BITS 42
77 #elif defined(TARGET_I386) && !defined(USE_KQEMU)
78 #define TARGET_PHYS_ADDR_SPACE_BITS 36
79 #else
80 /* Note: for compatibility with kqemu, we use 32 bits for x86_64 */
81 #define TARGET_PHYS_ADDR_SPACE_BITS 32
82 #endif
83
84 TranslationBlock *tbs;
85 int code_gen_max_blocks;
86 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
87 int nb_tbs;
88 /* any access to the tbs or the page table must use this lock */
89 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
90
91 uint8_t code_gen_prologue[1024] __attribute__((aligned (32)));
92 uint8_t *code_gen_buffer;
93 unsigned long code_gen_buffer_size;
94 /* threshold to flush the translated code buffer */
95 unsigned long code_gen_buffer_max_size;
96 uint8_t *code_gen_ptr;
97
98 #if !defined(CONFIG_USER_ONLY)
99 ram_addr_t phys_ram_size;
100 int phys_ram_fd;
101 uint8_t *phys_ram_base;
102 uint8_t *phys_ram_dirty;
103 static ram_addr_t phys_ram_alloc_offset = 0;
104 #endif
105
106 CPUState *first_cpu;
107 /* current CPU in the current thread. It is only valid inside
108 cpu_exec() */
109 CPUState *cpu_single_env;
110
111 typedef struct PageDesc {
112 /* list of TBs intersecting this ram page */
113 TranslationBlock *first_tb;
114 /* in order to optimize self modifying code, we count the number
115 of lookups we do to a given page to use a bitmap */
116 unsigned int code_write_count;
117 uint8_t *code_bitmap;
118 #if defined(CONFIG_USER_ONLY)
119 unsigned long flags;
120 #endif
121 } PageDesc;
122
123 typedef struct PhysPageDesc {
124 /* offset in host memory of the page + io_index in the low bits */
125 ram_addr_t phys_offset;
126 } PhysPageDesc;
127
128 #define L2_BITS 10
129 #if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
130 /* XXX: this is a temporary hack for alpha target.
131 * In the future, this is to be replaced by a multi-level table
132 * to actually be able to handle the complete 64 bits address space.
133 */
134 #define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
135 #else
136 #define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
137 #endif
138
139 #define L1_SIZE (1 << L1_BITS)
140 #define L2_SIZE (1 << L2_BITS)
141
142 unsigned long qemu_real_host_page_size;
143 unsigned long qemu_host_page_bits;
144 unsigned long qemu_host_page_size;
145 unsigned long qemu_host_page_mask;
146
147 /* XXX: for system emulation, it could just be an array */
148 static PageDesc *l1_map[L1_SIZE];
149 PhysPageDesc **l1_phys_map;
150
151 #if !defined(CONFIG_USER_ONLY)
152 static void io_mem_init(void);
153
154 /* io memory support */
155 CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
156 CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
157 void *io_mem_opaque[IO_MEM_NB_ENTRIES];
158 static int io_mem_nb;
159 static int io_mem_watch;
160 #endif
161
162 /* log support */
163 char *logfilename = "/tmp/qemu.log";
164 FILE *logfile;
165 int loglevel;
166 static int log_append = 0;
167
168 /* statistics */
169 static int tlb_flush_count;
170 static int tb_flush_count;
171 static int tb_phys_invalidate_count;
172
173 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
174 typedef struct subpage_t {
175 target_phys_addr_t base;
176 CPUReadMemoryFunc **mem_read[TARGET_PAGE_SIZE][4];
177 CPUWriteMemoryFunc **mem_write[TARGET_PAGE_SIZE][4];
178 void *opaque[TARGET_PAGE_SIZE][2][4];
179 } subpage_t;
180
181 #ifdef _WIN32
182 static void map_exec(void *addr, long size)
183 {
184 DWORD old_protect;
185 VirtualProtect(addr, size,
186 PAGE_EXECUTE_READWRITE, &old_protect);
187
188 }
189 #else
190 static void map_exec(void *addr, long size)
191 {
192 unsigned long start, end, page_size;
193
194 page_size = getpagesize();
195 start = (unsigned long)addr;
196 start &= ~(page_size - 1);
197
198 end = (unsigned long)addr + size;
199 end += page_size - 1;
200 end &= ~(page_size - 1);
201
202 mprotect((void *)start, end - start,
203 PROT_READ | PROT_WRITE | PROT_EXEC);
204 }
205 #endif
206
207 static void page_init(void)
208 {
209 /* NOTE: we can always suppose that qemu_host_page_size >=
210 TARGET_PAGE_SIZE */
211 #ifdef _WIN32
212 {
213 SYSTEM_INFO system_info;
214 DWORD old_protect;
215
216 GetSystemInfo(&system_info);
217 qemu_real_host_page_size = system_info.dwPageSize;
218 }
219 #else
220 qemu_real_host_page_size = getpagesize();
221 #endif
222 if (qemu_host_page_size == 0)
223 qemu_host_page_size = qemu_real_host_page_size;
224 if (qemu_host_page_size < TARGET_PAGE_SIZE)
225 qemu_host_page_size = TARGET_PAGE_SIZE;
226 qemu_host_page_bits = 0;
227 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
228 qemu_host_page_bits++;
229 qemu_host_page_mask = ~(qemu_host_page_size - 1);
230 l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
231 memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
232
233 #if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
234 {
235 long long startaddr, endaddr;
236 FILE *f;
237 int n;
238
239 mmap_lock();
240 last_brk = (unsigned long)sbrk(0);
241 f = fopen("/proc/self/maps", "r");
242 if (f) {
243 do {
244 n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
245 if (n == 2) {
246 startaddr = MIN(startaddr,
247 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
248 endaddr = MIN(endaddr,
249 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
250 page_set_flags(startaddr & TARGET_PAGE_MASK,
251 TARGET_PAGE_ALIGN(endaddr),
252 PAGE_RESERVED);
253 }
254 } while (!feof(f));
255 fclose(f);
256 }
257 mmap_unlock();
258 }
259 #endif
260 }
261
262 static inline PageDesc *page_find_alloc(target_ulong index)
263 {
264 PageDesc **lp, *p;
265
266 #if TARGET_LONG_BITS > 32
267 /* Host memory outside guest VM. For 32-bit targets we have already
268 excluded high addresses. */
269 if (index > ((target_ulong)L2_SIZE * L1_SIZE * TARGET_PAGE_SIZE))
270 return NULL;
271 #endif
272 lp = &l1_map[index >> L2_BITS];
273 p = *lp;
274 if (!p) {
275 /* allocate if not found */
276 #if defined(CONFIG_USER_ONLY)
277 unsigned long addr;
278 size_t len = sizeof(PageDesc) * L2_SIZE;
279 /* Don't use qemu_malloc because it may recurse. */
280 p = mmap(0, len, PROT_READ | PROT_WRITE,
281 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
282 *lp = p;
283 addr = h2g(p);
284 if (addr == (target_ulong)addr) {
285 page_set_flags(addr & TARGET_PAGE_MASK,
286 TARGET_PAGE_ALIGN(addr + len),
287 PAGE_RESERVED);
288 }
289 #else
290 p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE);
291 *lp = p;
292 #endif
293 }
294 return p + (index & (L2_SIZE - 1));
295 }
296
297 static inline PageDesc *page_find(target_ulong index)
298 {
299 PageDesc *p;
300
301 p = l1_map[index >> L2_BITS];
302 if (!p)
303 return 0;
304 return p + (index & (L2_SIZE - 1));
305 }
306
307 static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
308 {
309 void **lp, **p;
310 PhysPageDesc *pd;
311
312 p = (void **)l1_phys_map;
313 #if TARGET_PHYS_ADDR_SPACE_BITS > 32
314
315 #if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
316 #error unsupported TARGET_PHYS_ADDR_SPACE_BITS
317 #endif
318 lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
319 p = *lp;
320 if (!p) {
321 /* allocate if not found */
322 if (!alloc)
323 return NULL;
324 p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
325 memset(p, 0, sizeof(void *) * L1_SIZE);
326 *lp = p;
327 }
328 #endif
329 lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
330 pd = *lp;
331 if (!pd) {
332 int i;
333 /* allocate if not found */
334 if (!alloc)
335 return NULL;
336 pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
337 *lp = pd;
338 for (i = 0; i < L2_SIZE; i++)
339 pd[i].phys_offset = IO_MEM_UNASSIGNED;
340 }
341 return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
342 }
343
344 static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
345 {
346 return phys_page_find_alloc(index, 0);
347 }
348
349 #if !defined(CONFIG_USER_ONLY)
350 static void tlb_protect_code(ram_addr_t ram_addr);
351 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
352 target_ulong vaddr);
353 #define mmap_lock() do { } while(0)
354 #define mmap_unlock() do { } while(0)
355 #endif
356
357 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
358
359 #if defined(CONFIG_USER_ONLY)
360 /* Currently it is not recommanded to allocate big chunks of data in
361 user mode. It will change when a dedicated libc will be used */
362 #define USE_STATIC_CODE_GEN_BUFFER
363 #endif
364
365 #ifdef USE_STATIC_CODE_GEN_BUFFER
366 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
367 #endif
368
369 void code_gen_alloc(unsigned long tb_size)
370 {
371 #ifdef USE_STATIC_CODE_GEN_BUFFER
372 code_gen_buffer = static_code_gen_buffer;
373 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
374 map_exec(code_gen_buffer, code_gen_buffer_size);
375 #else
376 code_gen_buffer_size = tb_size;
377 if (code_gen_buffer_size == 0) {
378 #if defined(CONFIG_USER_ONLY)
379 /* in user mode, phys_ram_size is not meaningful */
380 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
381 #else
382 /* XXX: needs ajustments */
383 code_gen_buffer_size = (int)(phys_ram_size / 4);
384 #endif
385 }
386 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
387 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
388 /* The code gen buffer location may have constraints depending on
389 the host cpu and OS */
390 #if defined(__linux__)
391 {
392 int flags;
393 flags = MAP_PRIVATE | MAP_ANONYMOUS;
394 #if defined(__x86_64__)
395 flags |= MAP_32BIT;
396 /* Cannot map more than that */
397 if (code_gen_buffer_size > (800 * 1024 * 1024))
398 code_gen_buffer_size = (800 * 1024 * 1024);
399 #endif
400 code_gen_buffer = mmap(NULL, code_gen_buffer_size,
401 PROT_WRITE | PROT_READ | PROT_EXEC,
402 flags, -1, 0);
403 if (code_gen_buffer == MAP_FAILED) {
404 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
405 exit(1);
406 }
407 }
408 #else
409 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
410 if (!code_gen_buffer) {
411 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
412 exit(1);
413 }
414 map_exec(code_gen_buffer, code_gen_buffer_size);
415 #endif
416 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
417 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
418 code_gen_buffer_max_size = code_gen_buffer_size -
419 code_gen_max_block_size();
420 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
421 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
422 }
423
424 /* Must be called before using the QEMU cpus. 'tb_size' is the size
425 (in bytes) allocated to the translation buffer. Zero means default
426 size. */
427 void cpu_exec_init_all(unsigned long tb_size)
428 {
429 cpu_gen_init();
430 code_gen_alloc(tb_size);
431 code_gen_ptr = code_gen_buffer;
432 page_init();
433 #if !defined(CONFIG_USER_ONLY)
434 io_mem_init();
435 #endif
436 }
437
438 void cpu_exec_init(CPUState *env)
439 {
440 CPUState **penv;
441 int cpu_index;
442
443 env->next_cpu = NULL;
444 penv = &first_cpu;
445 cpu_index = 0;
446 while (*penv != NULL) {
447 penv = (CPUState **)&(*penv)->next_cpu;
448 cpu_index++;
449 }
450 env->cpu_index = cpu_index;
451 env->nb_watchpoints = 0;
452 *penv = env;
453 }
454
455 static inline void invalidate_page_bitmap(PageDesc *p)
456 {
457 if (p->code_bitmap) {
458 qemu_free(p->code_bitmap);
459 p->code_bitmap = NULL;
460 }
461 p->code_write_count = 0;
462 }
463
464 /* set to NULL all the 'first_tb' fields in all PageDescs */
465 static void page_flush_tb(void)
466 {
467 int i, j;
468 PageDesc *p;
469
470 for(i = 0; i < L1_SIZE; i++) {
471 p = l1_map[i];
472 if (p) {
473 for(j = 0; j < L2_SIZE; j++) {
474 p->first_tb = NULL;
475 invalidate_page_bitmap(p);
476 p++;
477 }
478 }
479 }
480 }
481
482 /* flush all the translation blocks */
483 /* XXX: tb_flush is currently not thread safe */
484 void tb_flush(CPUState *env1)
485 {
486 CPUState *env;
487 #if defined(DEBUG_FLUSH)
488 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
489 (unsigned long)(code_gen_ptr - code_gen_buffer),
490 nb_tbs, nb_tbs > 0 ?
491 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
492 #endif
493 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
494 cpu_abort(env1, "Internal error: code buffer overflow\n");
495
496 nb_tbs = 0;
497
498 for(env = first_cpu; env != NULL; env = env->next_cpu) {
499 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
500 }
501
502 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
503 page_flush_tb();
504
505 code_gen_ptr = code_gen_buffer;
506 /* XXX: flush processor icache at this point if cache flush is
507 expensive */
508 tb_flush_count++;
509 }
510
511 #ifdef DEBUG_TB_CHECK
512
513 static void tb_invalidate_check(target_ulong address)
514 {
515 TranslationBlock *tb;
516 int i;
517 address &= TARGET_PAGE_MASK;
518 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
519 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
520 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
521 address >= tb->pc + tb->size)) {
522 printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n",
523 address, (long)tb->pc, tb->size);
524 }
525 }
526 }
527 }
528
529 /* verify that all the pages have correct rights for code */
530 static void tb_page_check(void)
531 {
532 TranslationBlock *tb;
533 int i, flags1, flags2;
534
535 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
536 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
537 flags1 = page_get_flags(tb->pc);
538 flags2 = page_get_flags(tb->pc + tb->size - 1);
539 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
540 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
541 (long)tb->pc, tb->size, flags1, flags2);
542 }
543 }
544 }
545 }
546
547 void tb_jmp_check(TranslationBlock *tb)
548 {
549 TranslationBlock *tb1;
550 unsigned int n1;
551
552 /* suppress any remaining jumps to this TB */
553 tb1 = tb->jmp_first;
554 for(;;) {
555 n1 = (long)tb1 & 3;
556 tb1 = (TranslationBlock *)((long)tb1 & ~3);
557 if (n1 == 2)
558 break;
559 tb1 = tb1->jmp_next[n1];
560 }
561 /* check end of list */
562 if (tb1 != tb) {
563 printf("ERROR: jmp_list from 0x%08lx\n", (long)tb);
564 }
565 }
566
567 #endif
568
569 /* invalidate one TB */
570 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
571 int next_offset)
572 {
573 TranslationBlock *tb1;
574 for(;;) {
575 tb1 = *ptb;
576 if (tb1 == tb) {
577 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
578 break;
579 }
580 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
581 }
582 }
583
584 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
585 {
586 TranslationBlock *tb1;
587 unsigned int n1;
588
589 for(;;) {
590 tb1 = *ptb;
591 n1 = (long)tb1 & 3;
592 tb1 = (TranslationBlock *)((long)tb1 & ~3);
593 if (tb1 == tb) {
594 *ptb = tb1->page_next[n1];
595 break;
596 }
597 ptb = &tb1->page_next[n1];
598 }
599 }
600
601 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
602 {
603 TranslationBlock *tb1, **ptb;
604 unsigned int n1;
605
606 ptb = &tb->jmp_next[n];
607 tb1 = *ptb;
608 if (tb1) {
609 /* find tb(n) in circular list */
610 for(;;) {
611 tb1 = *ptb;
612 n1 = (long)tb1 & 3;
613 tb1 = (TranslationBlock *)((long)tb1 & ~3);
614 if (n1 == n && tb1 == tb)
615 break;
616 if (n1 == 2) {
617 ptb = &tb1->jmp_first;
618 } else {
619 ptb = &tb1->jmp_next[n1];
620 }
621 }
622 /* now we can suppress tb(n) from the list */
623 *ptb = tb->jmp_next[n];
624
625 tb->jmp_next[n] = NULL;
626 }
627 }
628
629 /* reset the jump entry 'n' of a TB so that it is not chained to
630 another TB */
631 static inline void tb_reset_jump(TranslationBlock *tb, int n)
632 {
633 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
634 }
635
636 static inline void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
637 {
638 CPUState *env;
639 PageDesc *p;
640 unsigned int h, n1;
641 target_phys_addr_t phys_pc;
642 TranslationBlock *tb1, *tb2;
643
644 /* remove the TB from the hash list */
645 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
646 h = tb_phys_hash_func(phys_pc);
647 tb_remove(&tb_phys_hash[h], tb,
648 offsetof(TranslationBlock, phys_hash_next));
649
650 /* remove the TB from the page list */
651 if (tb->page_addr[0] != page_addr) {
652 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
653 tb_page_remove(&p->first_tb, tb);
654 invalidate_page_bitmap(p);
655 }
656 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
657 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
658 tb_page_remove(&p->first_tb, tb);
659 invalidate_page_bitmap(p);
660 }
661
662 tb_invalidated_flag = 1;
663
664 /* remove the TB from the hash list */
665 h = tb_jmp_cache_hash_func(tb->pc);
666 for(env = first_cpu; env != NULL; env = env->next_cpu) {
667 if (env->tb_jmp_cache[h] == tb)
668 env->tb_jmp_cache[h] = NULL;
669 }
670
671 /* suppress this TB from the two jump lists */
672 tb_jmp_remove(tb, 0);
673 tb_jmp_remove(tb, 1);
674
675 /* suppress any remaining jumps to this TB */
676 tb1 = tb->jmp_first;
677 for(;;) {
678 n1 = (long)tb1 & 3;
679 if (n1 == 2)
680 break;
681 tb1 = (TranslationBlock *)((long)tb1 & ~3);
682 tb2 = tb1->jmp_next[n1];
683 tb_reset_jump(tb1, n1);
684 tb1->jmp_next[n1] = NULL;
685 tb1 = tb2;
686 }
687 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
688
689 tb_phys_invalidate_count++;
690 }
691
692 static inline void set_bits(uint8_t *tab, int start, int len)
693 {
694 int end, mask, end1;
695
696 end = start + len;
697 tab += start >> 3;
698 mask = 0xff << (start & 7);
699 if ((start & ~7) == (end & ~7)) {
700 if (start < end) {
701 mask &= ~(0xff << (end & 7));
702 *tab |= mask;
703 }
704 } else {
705 *tab++ |= mask;
706 start = (start + 8) & ~7;
707 end1 = end & ~7;
708 while (start < end1) {
709 *tab++ = 0xff;
710 start += 8;
711 }
712 if (start < end) {
713 mask = ~(0xff << (end & 7));
714 *tab |= mask;
715 }
716 }
717 }
718
719 static void build_page_bitmap(PageDesc *p)
720 {
721 int n, tb_start, tb_end;
722 TranslationBlock *tb;
723
724 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
725 if (!p->code_bitmap)
726 return;
727
728 tb = p->first_tb;
729 while (tb != NULL) {
730 n = (long)tb & 3;
731 tb = (TranslationBlock *)((long)tb & ~3);
732 /* NOTE: this is subtle as a TB may span two physical pages */
733 if (n == 0) {
734 /* NOTE: tb_end may be after the end of the page, but
735 it is not a problem */
736 tb_start = tb->pc & ~TARGET_PAGE_MASK;
737 tb_end = tb_start + tb->size;
738 if (tb_end > TARGET_PAGE_SIZE)
739 tb_end = TARGET_PAGE_SIZE;
740 } else {
741 tb_start = 0;
742 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
743 }
744 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
745 tb = tb->page_next[n];
746 }
747 }
748
749 #ifdef TARGET_HAS_PRECISE_SMC
750
751 static void tb_gen_code(CPUState *env,
752 target_ulong pc, target_ulong cs_base, int flags,
753 int cflags)
754 {
755 TranslationBlock *tb;
756 uint8_t *tc_ptr;
757 target_ulong phys_pc, phys_page2, virt_page2;
758 int code_gen_size;
759
760 phys_pc = get_phys_addr_code(env, pc);
761 tb = tb_alloc(pc);
762 if (!tb) {
763 /* flush must be done */
764 tb_flush(env);
765 /* cannot fail at this point */
766 tb = tb_alloc(pc);
767 }
768 tc_ptr = code_gen_ptr;
769 tb->tc_ptr = tc_ptr;
770 tb->cs_base = cs_base;
771 tb->flags = flags;
772 tb->cflags = cflags;
773 cpu_gen_code(env, tb, &code_gen_size);
774 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
775
776 /* check next page if needed */
777 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
778 phys_page2 = -1;
779 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
780 phys_page2 = get_phys_addr_code(env, virt_page2);
781 }
782 tb_link_phys(tb, phys_pc, phys_page2);
783 }
784 #endif
785
786 /* invalidate all TBs which intersect with the target physical page
787 starting in range [start;end[. NOTE: start and end must refer to
788 the same physical page. 'is_cpu_write_access' should be true if called
789 from a real cpu write access: the virtual CPU will exit the current
790 TB if code is modified inside this TB. */
791 void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
792 int is_cpu_write_access)
793 {
794 int n, current_tb_modified, current_tb_not_found, current_flags;
795 CPUState *env = cpu_single_env;
796 PageDesc *p;
797 TranslationBlock *tb, *tb_next, *current_tb, *saved_tb;
798 target_ulong tb_start, tb_end;
799 target_ulong current_pc, current_cs_base;
800
801 p = page_find(start >> TARGET_PAGE_BITS);
802 if (!p)
803 return;
804 if (!p->code_bitmap &&
805 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
806 is_cpu_write_access) {
807 /* build code bitmap */
808 build_page_bitmap(p);
809 }
810
811 /* we remove all the TBs in the range [start, end[ */
812 /* XXX: see if in some cases it could be faster to invalidate all the code */
813 current_tb_not_found = is_cpu_write_access;
814 current_tb_modified = 0;
815 current_tb = NULL; /* avoid warning */
816 current_pc = 0; /* avoid warning */
817 current_cs_base = 0; /* avoid warning */
818 current_flags = 0; /* avoid warning */
819 tb = p->first_tb;
820 while (tb != NULL) {
821 n = (long)tb & 3;
822 tb = (TranslationBlock *)((long)tb & ~3);
823 tb_next = tb->page_next[n];
824 /* NOTE: this is subtle as a TB may span two physical pages */
825 if (n == 0) {
826 /* NOTE: tb_end may be after the end of the page, but
827 it is not a problem */
828 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
829 tb_end = tb_start + tb->size;
830 } else {
831 tb_start = tb->page_addr[1];
832 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
833 }
834 if (!(tb_end <= start || tb_start >= end)) {
835 #ifdef TARGET_HAS_PRECISE_SMC
836 if (current_tb_not_found) {
837 current_tb_not_found = 0;
838 current_tb = NULL;
839 if (env->mem_write_pc) {
840 /* now we have a real cpu fault */
841 current_tb = tb_find_pc(env->mem_write_pc);
842 }
843 }
844 if (current_tb == tb &&
845 !(current_tb->cflags & CF_SINGLE_INSN)) {
846 /* If we are modifying the current TB, we must stop
847 its execution. We could be more precise by checking
848 that the modification is after the current PC, but it
849 would require a specialized function to partially
850 restore the CPU state */
851
852 current_tb_modified = 1;
853 cpu_restore_state(current_tb, env,
854 env->mem_write_pc, NULL);
855 #if defined(TARGET_I386)
856 current_flags = env->hflags;
857 current_flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
858 current_cs_base = (target_ulong)env->segs[R_CS].base;
859 current_pc = current_cs_base + env->eip;
860 #else
861 #error unsupported CPU
862 #endif
863 }
864 #endif /* TARGET_HAS_PRECISE_SMC */
865 /* we need to do that to handle the case where a signal
866 occurs while doing tb_phys_invalidate() */
867 saved_tb = NULL;
868 if (env) {
869 saved_tb = env->current_tb;
870 env->current_tb = NULL;
871 }
872 tb_phys_invalidate(tb, -1);
873 if (env) {
874 env->current_tb = saved_tb;
875 if (env->interrupt_request && env->current_tb)
876 cpu_interrupt(env, env->interrupt_request);
877 }
878 }
879 tb = tb_next;
880 }
881 #if !defined(CONFIG_USER_ONLY)
882 /* if no code remaining, no need to continue to use slow writes */
883 if (!p->first_tb) {
884 invalidate_page_bitmap(p);
885 if (is_cpu_write_access) {
886 tlb_unprotect_code_phys(env, start, env->mem_write_vaddr);
887 }
888 }
889 #endif
890 #ifdef TARGET_HAS_PRECISE_SMC
891 if (current_tb_modified) {
892 /* we generate a block containing just the instruction
893 modifying the memory. It will ensure that it cannot modify
894 itself */
895 env->current_tb = NULL;
896 tb_gen_code(env, current_pc, current_cs_base, current_flags,
897 CF_SINGLE_INSN);
898 cpu_resume_from_signal(env, NULL);
899 }
900 #endif
901 }
902
903 /* len must be <= 8 and start must be a multiple of len */
904 static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
905 {
906 PageDesc *p;
907 int offset, b;
908 #if 0
909 if (1) {
910 if (loglevel) {
911 fprintf(logfile, "modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
912 cpu_single_env->mem_write_vaddr, len,
913 cpu_single_env->eip,
914 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
915 }
916 }
917 #endif
918 p = page_find(start >> TARGET_PAGE_BITS);
919 if (!p)
920 return;
921 if (p->code_bitmap) {
922 offset = start & ~TARGET_PAGE_MASK;
923 b = p->code_bitmap[offset >> 3] >> (offset & 7);
924 if (b & ((1 << len) - 1))
925 goto do_invalidate;
926 } else {
927 do_invalidate:
928 tb_invalidate_phys_page_range(start, start + len, 1);
929 }
930 }
931
932 #if !defined(CONFIG_SOFTMMU)
933 static void tb_invalidate_phys_page(target_phys_addr_t addr,
934 unsigned long pc, void *puc)
935 {
936 int n, current_flags, current_tb_modified;
937 target_ulong current_pc, current_cs_base;
938 PageDesc *p;
939 TranslationBlock *tb, *current_tb;
940 #ifdef TARGET_HAS_PRECISE_SMC
941 CPUState *env = cpu_single_env;
942 #endif
943
944 addr &= TARGET_PAGE_MASK;
945 p = page_find(addr >> TARGET_PAGE_BITS);
946 if (!p)
947 return;
948 tb = p->first_tb;
949 current_tb_modified = 0;
950 current_tb = NULL;
951 current_pc = 0; /* avoid warning */
952 current_cs_base = 0; /* avoid warning */
953 current_flags = 0; /* avoid warning */
954 #ifdef TARGET_HAS_PRECISE_SMC
955 if (tb && pc != 0) {
956 current_tb = tb_find_pc(pc);
957 }
958 #endif
959 while (tb != NULL) {
960 n = (long)tb & 3;
961 tb = (TranslationBlock *)((long)tb & ~3);
962 #ifdef TARGET_HAS_PRECISE_SMC
963 if (current_tb == tb &&
964 !(current_tb->cflags & CF_SINGLE_INSN)) {
965 /* If we are modifying the current TB, we must stop
966 its execution. We could be more precise by checking
967 that the modification is after the current PC, but it
968 would require a specialized function to partially
969 restore the CPU state */
970
971 current_tb_modified = 1;
972 cpu_restore_state(current_tb, env, pc, puc);
973 #if defined(TARGET_I386)
974 current_flags = env->hflags;
975 current_flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
976 current_cs_base = (target_ulong)env->segs[R_CS].base;
977 current_pc = current_cs_base + env->eip;
978 #else
979 #error unsupported CPU
980 #endif
981 }
982 #endif /* TARGET_HAS_PRECISE_SMC */
983 tb_phys_invalidate(tb, addr);
984 tb = tb->page_next[n];
985 }
986 p->first_tb = NULL;
987 #ifdef TARGET_HAS_PRECISE_SMC
988 if (current_tb_modified) {
989 /* we generate a block containing just the instruction
990 modifying the memory. It will ensure that it cannot modify
991 itself */
992 env->current_tb = NULL;
993 tb_gen_code(env, current_pc, current_cs_base, current_flags,
994 CF_SINGLE_INSN);
995 cpu_resume_from_signal(env, puc);
996 }
997 #endif
998 }
999 #endif
1000
1001 /* add the tb in the target page and protect it if necessary */
1002 static inline void tb_alloc_page(TranslationBlock *tb,
1003 unsigned int n, target_ulong page_addr)
1004 {
1005 PageDesc *p;
1006 TranslationBlock *last_first_tb;
1007
1008 tb->page_addr[n] = page_addr;
1009 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
1010 tb->page_next[n] = p->first_tb;
1011 last_first_tb = p->first_tb;
1012 p->first_tb = (TranslationBlock *)((long)tb | n);
1013 invalidate_page_bitmap(p);
1014
1015 #if defined(TARGET_HAS_SMC) || 1
1016
1017 #if defined(CONFIG_USER_ONLY)
1018 if (p->flags & PAGE_WRITE) {
1019 target_ulong addr;
1020 PageDesc *p2;
1021 int prot;
1022
1023 /* force the host page as non writable (writes will have a
1024 page fault + mprotect overhead) */
1025 page_addr &= qemu_host_page_mask;
1026 prot = 0;
1027 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1028 addr += TARGET_PAGE_SIZE) {
1029
1030 p2 = page_find (addr >> TARGET_PAGE_BITS);
1031 if (!p2)
1032 continue;
1033 prot |= p2->flags;
1034 p2->flags &= ~PAGE_WRITE;
1035 page_get_flags(addr);
1036 }
1037 mprotect(g2h(page_addr), qemu_host_page_size,
1038 (prot & PAGE_BITS) & ~PAGE_WRITE);
1039 #ifdef DEBUG_TB_INVALIDATE
1040 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1041 page_addr);
1042 #endif
1043 }
1044 #else
1045 /* if some code is already present, then the pages are already
1046 protected. So we handle the case where only the first TB is
1047 allocated in a physical page */
1048 if (!last_first_tb) {
1049 tlb_protect_code(page_addr);
1050 }
1051 #endif
1052
1053 #endif /* TARGET_HAS_SMC */
1054 }
1055
1056 /* Allocate a new translation block. Flush the translation buffer if
1057 too many translation blocks or too much generated code. */
1058 TranslationBlock *tb_alloc(target_ulong pc)
1059 {
1060 TranslationBlock *tb;
1061
1062 if (nb_tbs >= code_gen_max_blocks ||
1063 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
1064 return NULL;
1065 tb = &tbs[nb_tbs++];
1066 tb->pc = pc;
1067 tb->cflags = 0;
1068 return tb;
1069 }
1070
1071 /* add a new TB and link it to the physical page tables. phys_page2 is
1072 (-1) to indicate that only one page contains the TB. */
1073 void tb_link_phys(TranslationBlock *tb,
1074 target_ulong phys_pc, target_ulong phys_page2)
1075 {
1076 unsigned int h;
1077 TranslationBlock **ptb;
1078
1079 /* Grab the mmap lock to stop another thread invalidating this TB
1080 before we are done. */
1081 mmap_lock();
1082 /* add in the physical hash table */
1083 h = tb_phys_hash_func(phys_pc);
1084 ptb = &tb_phys_hash[h];
1085 tb->phys_hash_next = *ptb;
1086 *ptb = tb;
1087
1088 /* add in the page list */
1089 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1090 if (phys_page2 != -1)
1091 tb_alloc_page(tb, 1, phys_page2);
1092 else
1093 tb->page_addr[1] = -1;
1094
1095 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1096 tb->jmp_next[0] = NULL;
1097 tb->jmp_next[1] = NULL;
1098
1099 /* init original jump addresses */
1100 if (tb->tb_next_offset[0] != 0xffff)
1101 tb_reset_jump(tb, 0);
1102 if (tb->tb_next_offset[1] != 0xffff)
1103 tb_reset_jump(tb, 1);
1104
1105 #ifdef DEBUG_TB_CHECK
1106 tb_page_check();
1107 #endif
1108 mmap_unlock();
1109 }
1110
1111 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1112 tb[1].tc_ptr. Return NULL if not found */
1113 TranslationBlock *tb_find_pc(unsigned long tc_ptr)
1114 {
1115 int m_min, m_max, m;
1116 unsigned long v;
1117 TranslationBlock *tb;
1118
1119 if (nb_tbs <= 0)
1120 return NULL;
1121 if (tc_ptr < (unsigned long)code_gen_buffer ||
1122 tc_ptr >= (unsigned long)code_gen_ptr)
1123 return NULL;
1124 /* binary search (cf Knuth) */
1125 m_min = 0;
1126 m_max = nb_tbs - 1;
1127 while (m_min <= m_max) {
1128 m = (m_min + m_max) >> 1;
1129 tb = &tbs[m];
1130 v = (unsigned long)tb->tc_ptr;
1131 if (v == tc_ptr)
1132 return tb;
1133 else if (tc_ptr < v) {
1134 m_max = m - 1;
1135 } else {
1136 m_min = m + 1;
1137 }
1138 }
1139 return &tbs[m_max];
1140 }
1141
1142 static void tb_reset_jump_recursive(TranslationBlock *tb);
1143
1144 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1145 {
1146 TranslationBlock *tb1, *tb_next, **ptb;
1147 unsigned int n1;
1148
1149 tb1 = tb->jmp_next[n];
1150 if (tb1 != NULL) {
1151 /* find head of list */
1152 for(;;) {
1153 n1 = (long)tb1 & 3;
1154 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1155 if (n1 == 2)
1156 break;
1157 tb1 = tb1->jmp_next[n1];
1158 }
1159 /* we are now sure now that tb jumps to tb1 */
1160 tb_next = tb1;
1161
1162 /* remove tb from the jmp_first list */
1163 ptb = &tb_next->jmp_first;
1164 for(;;) {
1165 tb1 = *ptb;
1166 n1 = (long)tb1 & 3;
1167 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1168 if (n1 == n && tb1 == tb)
1169 break;
1170 ptb = &tb1->jmp_next[n1];
1171 }
1172 *ptb = tb->jmp_next[n];
1173 tb->jmp_next[n] = NULL;
1174
1175 /* suppress the jump to next tb in generated code */
1176 tb_reset_jump(tb, n);
1177
1178 /* suppress jumps in the tb on which we could have jumped */
1179 tb_reset_jump_recursive(tb_next);
1180 }
1181 }
1182
1183 static void tb_reset_jump_recursive(TranslationBlock *tb)
1184 {
1185 tb_reset_jump_recursive2(tb, 0);
1186 tb_reset_jump_recursive2(tb, 1);
1187 }
1188
1189 #if defined(TARGET_HAS_ICE)
1190 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1191 {
1192 target_phys_addr_t addr;
1193 target_ulong pd;
1194 ram_addr_t ram_addr;
1195 PhysPageDesc *p;
1196
1197 addr = cpu_get_phys_page_debug(env, pc);
1198 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1199 if (!p) {
1200 pd = IO_MEM_UNASSIGNED;
1201 } else {
1202 pd = p->phys_offset;
1203 }
1204 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
1205 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1206 }
1207 #endif
1208
1209 /* Add a watchpoint. */
1210 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, int type)
1211 {
1212 int i;
1213
1214 for (i = 0; i < env->nb_watchpoints; i++) {
1215 if (addr == env->watchpoint[i].vaddr)
1216 return 0;
1217 }
1218 if (env->nb_watchpoints >= MAX_WATCHPOINTS)
1219 return -1;
1220
1221 i = env->nb_watchpoints++;
1222 env->watchpoint[i].vaddr = addr;
1223 env->watchpoint[i].type = type;
1224 tlb_flush_page(env, addr);
1225 /* FIXME: This flush is needed because of the hack to make memory ops
1226 terminate the TB. It can be removed once the proper IO trap and
1227 re-execute bits are in. */
1228 tb_flush(env);
1229 return i;
1230 }
1231
1232 /* Remove a watchpoint. */
1233 int cpu_watchpoint_remove(CPUState *env, target_ulong addr)
1234 {
1235 int i;
1236
1237 for (i = 0; i < env->nb_watchpoints; i++) {
1238 if (addr == env->watchpoint[i].vaddr) {
1239 env->nb_watchpoints--;
1240 env->watchpoint[i] = env->watchpoint[env->nb_watchpoints];
1241 tlb_flush_page(env, addr);
1242 return 0;
1243 }
1244 }
1245 return -1;
1246 }
1247
1248 /* Remove all watchpoints. */
1249 void cpu_watchpoint_remove_all(CPUState *env) {
1250 int i;
1251
1252 for (i = 0; i < env->nb_watchpoints; i++) {
1253 tlb_flush_page(env, env->watchpoint[i].vaddr);
1254 }
1255 env->nb_watchpoints = 0;
1256 }
1257
1258 /* add a breakpoint. EXCP_DEBUG is returned by the CPU loop if a
1259 breakpoint is reached */
1260 int cpu_breakpoint_insert(CPUState *env, target_ulong pc)
1261 {
1262 #if defined(TARGET_HAS_ICE)
1263 int i;
1264
1265 for(i = 0; i < env->nb_breakpoints; i++) {
1266 if (env->breakpoints[i] == pc)
1267 return 0;
1268 }
1269
1270 if (env->nb_breakpoints >= MAX_BREAKPOINTS)
1271 return -1;
1272 env->breakpoints[env->nb_breakpoints++] = pc;
1273
1274 breakpoint_invalidate(env, pc);
1275 return 0;
1276 #else
1277 return -1;
1278 #endif
1279 }
1280
1281 /* remove all breakpoints */
1282 void cpu_breakpoint_remove_all(CPUState *env) {
1283 #if defined(TARGET_HAS_ICE)
1284 int i;
1285 for(i = 0; i < env->nb_breakpoints; i++) {
1286 breakpoint_invalidate(env, env->breakpoints[i]);
1287 }
1288 env->nb_breakpoints = 0;
1289 #endif
1290 }
1291
1292 /* remove a breakpoint */
1293 int cpu_breakpoint_remove(CPUState *env, target_ulong pc)
1294 {
1295 #if defined(TARGET_HAS_ICE)
1296 int i;
1297 for(i = 0; i < env->nb_breakpoints; i++) {
1298 if (env->breakpoints[i] == pc)
1299 goto found;
1300 }
1301 return -1;
1302 found:
1303 env->nb_breakpoints--;
1304 if (i < env->nb_breakpoints)
1305 env->breakpoints[i] = env->breakpoints[env->nb_breakpoints];
1306
1307 breakpoint_invalidate(env, pc);
1308 return 0;
1309 #else
1310 return -1;
1311 #endif
1312 }
1313
1314 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1315 CPU loop after each instruction */
1316 void cpu_single_step(CPUState *env, int enabled)
1317 {
1318 #if defined(TARGET_HAS_ICE)
1319 if (env->singlestep_enabled != enabled) {
1320 env->singlestep_enabled = enabled;
1321 /* must flush all the translated code to avoid inconsistancies */
1322 /* XXX: only flush what is necessary */
1323 tb_flush(env);
1324 }
1325 #endif
1326 }
1327
1328 /* enable or disable low levels log */
1329 void cpu_set_log(int log_flags)
1330 {
1331 loglevel = log_flags;
1332 if (loglevel && !logfile) {
1333 logfile = fopen(logfilename, log_append ? "a" : "w");
1334 if (!logfile) {
1335 perror(logfilename);
1336 _exit(1);
1337 }
1338 #if !defined(CONFIG_SOFTMMU)
1339 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1340 {
1341 static uint8_t logfile_buf[4096];
1342 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1343 }
1344 #else
1345 setvbuf(logfile, NULL, _IOLBF, 0);
1346 #endif
1347 log_append = 1;
1348 }
1349 if (!loglevel && logfile) {
1350 fclose(logfile);
1351 logfile = NULL;
1352 }
1353 }
1354
1355 void cpu_set_log_filename(const char *filename)
1356 {
1357 logfilename = strdup(filename);
1358 if (logfile) {
1359 fclose(logfile);
1360 logfile = NULL;
1361 }
1362 cpu_set_log(loglevel);
1363 }
1364
1365 /* mask must never be zero, except for A20 change call */
1366 void cpu_interrupt(CPUState *env, int mask)
1367 {
1368 #if !defined(USE_NPTL)
1369 TranslationBlock *tb;
1370 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1371 #endif
1372
1373 /* FIXME: This is probably not threadsafe. A different thread could
1374 be in the mittle of a read-modify-write operation. */
1375 env->interrupt_request |= mask;
1376 #if defined(USE_NPTL)
1377 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1378 problem and hope the cpu will stop of its own accord. For userspace
1379 emulation this often isn't actually as bad as it sounds. Often
1380 signals are used primarily to interrupt blocking syscalls. */
1381 #else
1382 /* if the cpu is currently executing code, we must unlink it and
1383 all the potentially executing TB */
1384 tb = env->current_tb;
1385 if (tb && !testandset(&interrupt_lock)) {
1386 env->current_tb = NULL;
1387 tb_reset_jump_recursive(tb);
1388 resetlock(&interrupt_lock);
1389 }
1390 #endif
1391 }
1392
1393 void cpu_reset_interrupt(CPUState *env, int mask)
1394 {
1395 env->interrupt_request &= ~mask;
1396 }
1397
1398 CPULogItem cpu_log_items[] = {
1399 { CPU_LOG_TB_OUT_ASM, "out_asm",
1400 "show generated host assembly code for each compiled TB" },
1401 { CPU_LOG_TB_IN_ASM, "in_asm",
1402 "show target assembly code for each compiled TB" },
1403 { CPU_LOG_TB_OP, "op",
1404 "show micro ops for each compiled TB" },
1405 { CPU_LOG_TB_OP_OPT, "op_opt",
1406 "show micro ops "
1407 #ifdef TARGET_I386
1408 "before eflags optimization and "
1409 #endif
1410 "after liveness analysis" },
1411 { CPU_LOG_INT, "int",
1412 "show interrupts/exceptions in short format" },
1413 { CPU_LOG_EXEC, "exec",
1414 "show trace before each executed TB (lots of logs)" },
1415 { CPU_LOG_TB_CPU, "cpu",
1416 "show CPU state before block translation" },
1417 #ifdef TARGET_I386
1418 { CPU_LOG_PCALL, "pcall",
1419 "show protected mode far calls/returns/exceptions" },
1420 #endif
1421 #ifdef DEBUG_IOPORT
1422 { CPU_LOG_IOPORT, "ioport",
1423 "show all i/o ports accesses" },
1424 #endif
1425 { 0, NULL, NULL },
1426 };
1427
1428 static int cmp1(const char *s1, int n, const char *s2)
1429 {
1430 if (strlen(s2) != n)
1431 return 0;
1432 return memcmp(s1, s2, n) == 0;
1433 }
1434
1435 /* takes a comma separated list of log masks. Return 0 if error. */
1436 int cpu_str_to_log_mask(const char *str)
1437 {
1438 CPULogItem *item;
1439 int mask;
1440 const char *p, *p1;
1441
1442 p = str;
1443 mask = 0;
1444 for(;;) {
1445 p1 = strchr(p, ',');
1446 if (!p1)
1447 p1 = p + strlen(p);
1448 if(cmp1(p,p1-p,"all")) {
1449 for(item = cpu_log_items; item->mask != 0; item++) {
1450 mask |= item->mask;
1451 }
1452 } else {
1453 for(item = cpu_log_items; item->mask != 0; item++) {
1454 if (cmp1(p, p1 - p, item->name))
1455 goto found;
1456 }
1457 return 0;
1458 }
1459 found:
1460 mask |= item->mask;
1461 if (*p1 != ',')
1462 break;
1463 p = p1 + 1;
1464 }
1465 return mask;
1466 }
1467
1468 void cpu_abort(CPUState *env, const char *fmt, ...)
1469 {
1470 va_list ap;
1471 va_list ap2;
1472
1473 va_start(ap, fmt);
1474 va_copy(ap2, ap);
1475 fprintf(stderr, "qemu: fatal: ");
1476 vfprintf(stderr, fmt, ap);
1477 fprintf(stderr, "\n");
1478 #ifdef TARGET_I386
1479 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1480 #else
1481 cpu_dump_state(env, stderr, fprintf, 0);
1482 #endif
1483 if (logfile) {
1484 fprintf(logfile, "qemu: fatal: ");
1485 vfprintf(logfile, fmt, ap2);
1486 fprintf(logfile, "\n");
1487 #ifdef TARGET_I386
1488 cpu_dump_state(env, logfile, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1489 #else
1490 cpu_dump_state(env, logfile, fprintf, 0);
1491 #endif
1492 fflush(logfile);
1493 fclose(logfile);
1494 }
1495 va_end(ap2);
1496 va_end(ap);
1497 abort();
1498 }
1499
1500 CPUState *cpu_copy(CPUState *env)
1501 {
1502 CPUState *new_env = cpu_init(env->cpu_model_str);
1503 /* preserve chaining and index */
1504 CPUState *next_cpu = new_env->next_cpu;
1505 int cpu_index = new_env->cpu_index;
1506 memcpy(new_env, env, sizeof(CPUState));
1507 new_env->next_cpu = next_cpu;
1508 new_env->cpu_index = cpu_index;
1509 return new_env;
1510 }
1511
1512 #if !defined(CONFIG_USER_ONLY)
1513
1514 static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1515 {
1516 unsigned int i;
1517
1518 /* Discard jump cache entries for any tb which might potentially
1519 overlap the flushed page. */
1520 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1521 memset (&env->tb_jmp_cache[i], 0,
1522 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1523
1524 i = tb_jmp_cache_hash_page(addr);
1525 memset (&env->tb_jmp_cache[i], 0,
1526 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1527 }
1528
1529 /* NOTE: if flush_global is true, also flush global entries (not
1530 implemented yet) */
1531 void tlb_flush(CPUState *env, int flush_global)
1532 {
1533 int i;
1534
1535 #if defined(DEBUG_TLB)
1536 printf("tlb_flush:\n");
1537 #endif
1538 /* must reset current TB so that interrupts cannot modify the
1539 links while we are modifying them */
1540 env->current_tb = NULL;
1541
1542 for(i = 0; i < CPU_TLB_SIZE; i++) {
1543 env->tlb_table[0][i].addr_read = -1;
1544 env->tlb_table[0][i].addr_write = -1;
1545 env->tlb_table[0][i].addr_code = -1;
1546 env->tlb_table[1][i].addr_read = -1;
1547 env->tlb_table[1][i].addr_write = -1;
1548 env->tlb_table[1][i].addr_code = -1;
1549 #if (NB_MMU_MODES >= 3)
1550 env->tlb_table[2][i].addr_read = -1;
1551 env->tlb_table[2][i].addr_write = -1;
1552 env->tlb_table[2][i].addr_code = -1;
1553 #if (NB_MMU_MODES == 4)
1554 env->tlb_table[3][i].addr_read = -1;
1555 env->tlb_table[3][i].addr_write = -1;
1556 env->tlb_table[3][i].addr_code = -1;
1557 #endif
1558 #endif
1559 }
1560
1561 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
1562
1563 #ifdef USE_KQEMU
1564 if (env->kqemu_enabled) {
1565 kqemu_flush(env, flush_global);
1566 }
1567 #endif
1568 tlb_flush_count++;
1569 }
1570
1571 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
1572 {
1573 if (addr == (tlb_entry->addr_read &
1574 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1575 addr == (tlb_entry->addr_write &
1576 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1577 addr == (tlb_entry->addr_code &
1578 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1579 tlb_entry->addr_read = -1;
1580 tlb_entry->addr_write = -1;
1581 tlb_entry->addr_code = -1;
1582 }
1583 }
1584
1585 void tlb_flush_page(CPUState *env, target_ulong addr)
1586 {
1587 int i;
1588
1589 #if defined(DEBUG_TLB)
1590 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
1591 #endif
1592 /* must reset current TB so that interrupts cannot modify the
1593 links while we are modifying them */
1594 env->current_tb = NULL;
1595
1596 addr &= TARGET_PAGE_MASK;
1597 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1598 tlb_flush_entry(&env->tlb_table[0][i], addr);
1599 tlb_flush_entry(&env->tlb_table[1][i], addr);
1600 #if (NB_MMU_MODES >= 3)
1601 tlb_flush_entry(&env->tlb_table[2][i], addr);
1602 #if (NB_MMU_MODES == 4)
1603 tlb_flush_entry(&env->tlb_table[3][i], addr);
1604 #endif
1605 #endif
1606
1607 tlb_flush_jmp_cache(env, addr);
1608
1609 #ifdef USE_KQEMU
1610 if (env->kqemu_enabled) {
1611 kqemu_flush_page(env, addr);
1612 }
1613 #endif
1614 }
1615
1616 /* update the TLBs so that writes to code in the virtual page 'addr'
1617 can be detected */
1618 static void tlb_protect_code(ram_addr_t ram_addr)
1619 {
1620 cpu_physical_memory_reset_dirty(ram_addr,
1621 ram_addr + TARGET_PAGE_SIZE,
1622 CODE_DIRTY_FLAG);
1623 }
1624
1625 /* update the TLB so that writes in physical page 'phys_addr' are no longer
1626 tested for self modifying code */
1627 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
1628 target_ulong vaddr)
1629 {
1630 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1631 }
1632
1633 static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1634 unsigned long start, unsigned long length)
1635 {
1636 unsigned long addr;
1637 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1638 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1639 if ((addr - start) < length) {
1640 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1641 }
1642 }
1643 }
1644
1645 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
1646 int dirty_flags)
1647 {
1648 CPUState *env;
1649 unsigned long length, start1;
1650 int i, mask, len;
1651 uint8_t *p;
1652
1653 start &= TARGET_PAGE_MASK;
1654 end = TARGET_PAGE_ALIGN(end);
1655
1656 length = end - start;
1657 if (length == 0)
1658 return;
1659 len = length >> TARGET_PAGE_BITS;
1660 #ifdef USE_KQEMU
1661 /* XXX: should not depend on cpu context */
1662 env = first_cpu;
1663 if (env->kqemu_enabled) {
1664 ram_addr_t addr;
1665 addr = start;
1666 for(i = 0; i < len; i++) {
1667 kqemu_set_notdirty(env, addr);
1668 addr += TARGET_PAGE_SIZE;
1669 }
1670 }
1671 #endif
1672 mask = ~dirty_flags;
1673 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1674 for(i = 0; i < len; i++)
1675 p[i] &= mask;
1676
1677 /* we modify the TLB cache so that the dirty bit will be set again
1678 when accessing the range */
1679 start1 = start + (unsigned long)phys_ram_base;
1680 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1681 for(i = 0; i < CPU_TLB_SIZE; i++)
1682 tlb_reset_dirty_range(&env->tlb_table[0][i], start1, length);
1683 for(i = 0; i < CPU_TLB_SIZE; i++)
1684 tlb_reset_dirty_range(&env->tlb_table[1][i], start1, length);
1685 #if (NB_MMU_MODES >= 3)
1686 for(i = 0; i < CPU_TLB_SIZE; i++)
1687 tlb_reset_dirty_range(&env->tlb_table[2][i], start1, length);
1688 #if (NB_MMU_MODES == 4)
1689 for(i = 0; i < CPU_TLB_SIZE; i++)
1690 tlb_reset_dirty_range(&env->tlb_table[3][i], start1, length);
1691 #endif
1692 #endif
1693 }
1694 }
1695
1696 static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
1697 {
1698 ram_addr_t ram_addr;
1699
1700 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1701 ram_addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) +
1702 tlb_entry->addend - (unsigned long)phys_ram_base;
1703 if (!cpu_physical_memory_is_dirty(ram_addr)) {
1704 tlb_entry->addr_write |= TLB_NOTDIRTY;
1705 }
1706 }
1707 }
1708
1709 /* update the TLB according to the current state of the dirty bits */
1710 void cpu_tlb_update_dirty(CPUState *env)
1711 {
1712 int i;
1713 for(i = 0; i < CPU_TLB_SIZE; i++)
1714 tlb_update_dirty(&env->tlb_table[0][i]);
1715 for(i = 0; i < CPU_TLB_SIZE; i++)
1716 tlb_update_dirty(&env->tlb_table[1][i]);
1717 #if (NB_MMU_MODES >= 3)
1718 for(i = 0; i < CPU_TLB_SIZE; i++)
1719 tlb_update_dirty(&env->tlb_table[2][i]);
1720 #if (NB_MMU_MODES == 4)
1721 for(i = 0; i < CPU_TLB_SIZE; i++)
1722 tlb_update_dirty(&env->tlb_table[3][i]);
1723 #endif
1724 #endif
1725 }
1726
1727 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1728 {
1729 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
1730 tlb_entry->addr_write = vaddr;
1731 }
1732
1733 /* update the TLB corresponding to virtual page vaddr
1734 so that it is no longer dirty */
1735 static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1736 {
1737 int i;
1738
1739 vaddr &= TARGET_PAGE_MASK;
1740 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1741 tlb_set_dirty1(&env->tlb_table[0][i], vaddr);
1742 tlb_set_dirty1(&env->tlb_table[1][i], vaddr);
1743 #if (NB_MMU_MODES >= 3)
1744 tlb_set_dirty1(&env->tlb_table[2][i], vaddr);
1745 #if (NB_MMU_MODES == 4)
1746 tlb_set_dirty1(&env->tlb_table[3][i], vaddr);
1747 #endif
1748 #endif
1749 }
1750
1751 /* add a new TLB entry. At most one entry for a given virtual address
1752 is permitted. Return 0 if OK or 2 if the page could not be mapped
1753 (can only happen in non SOFTMMU mode for I/O pages or pages
1754 conflicting with the host address space). */
1755 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
1756 target_phys_addr_t paddr, int prot,
1757 int mmu_idx, int is_softmmu)
1758 {
1759 PhysPageDesc *p;
1760 unsigned long pd;
1761 unsigned int index;
1762 target_ulong address;
1763 target_ulong code_address;
1764 target_phys_addr_t addend;
1765 int ret;
1766 CPUTLBEntry *te;
1767 int i;
1768 target_phys_addr_t iotlb;
1769
1770 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
1771 if (!p) {
1772 pd = IO_MEM_UNASSIGNED;
1773 } else {
1774 pd = p->phys_offset;
1775 }
1776 #if defined(DEBUG_TLB)
1777 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
1778 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
1779 #endif
1780
1781 ret = 0;
1782 address = vaddr;
1783 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
1784 /* IO memory case (romd handled later) */
1785 address |= TLB_MMIO;
1786 }
1787 addend = (unsigned long)phys_ram_base + (pd & TARGET_PAGE_MASK);
1788 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
1789 /* Normal RAM. */
1790 iotlb = pd & TARGET_PAGE_MASK;
1791 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
1792 iotlb |= IO_MEM_NOTDIRTY;
1793 else
1794 iotlb |= IO_MEM_ROM;
1795 } else {
1796 /* IO handlers are currently passed a phsical address.
1797 It would be nice to pass an offset from the base address
1798 of that region. This would avoid having to special case RAM,
1799 and avoid full address decoding in every device.
1800 We can't use the high bits of pd for this because
1801 IO_MEM_ROMD uses these as a ram address. */
1802 iotlb = (pd & ~TARGET_PAGE_MASK) + paddr;
1803 }
1804
1805 code_address = address;
1806 /* Make accesses to pages with watchpoints go via the
1807 watchpoint trap routines. */
1808 for (i = 0; i < env->nb_watchpoints; i++) {
1809 if (vaddr == (env->watchpoint[i].vaddr & TARGET_PAGE_MASK)) {
1810 iotlb = io_mem_watch + paddr;
1811 /* TODO: The memory case can be optimized by not trapping
1812 reads of pages with a write breakpoint. */
1813 address |= TLB_MMIO;
1814 }
1815 }
1816
1817 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1818 env->iotlb[mmu_idx][index] = iotlb - vaddr;
1819 te = &env->tlb_table[mmu_idx][index];
1820 te->addend = addend - vaddr;
1821 if (prot & PAGE_READ) {
1822 te->addr_read = address;
1823 } else {
1824 te->addr_read = -1;
1825 }
1826
1827 if (prot & PAGE_EXEC) {
1828 te->addr_code = code_address;
1829 } else {
1830 te->addr_code = -1;
1831 }
1832 if (prot & PAGE_WRITE) {
1833 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
1834 (pd & IO_MEM_ROMD)) {
1835 /* Write access calls the I/O callback. */
1836 te->addr_write = address | TLB_MMIO;
1837 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
1838 !cpu_physical_memory_is_dirty(pd)) {
1839 te->addr_write = address | TLB_NOTDIRTY;
1840 } else {
1841 te->addr_write = address;
1842 }
1843 } else {
1844 te->addr_write = -1;
1845 }
1846 return ret;
1847 }
1848
1849 #else
1850
1851 void tlb_flush(CPUState *env, int flush_global)
1852 {
1853 }
1854
1855 void tlb_flush_page(CPUState *env, target_ulong addr)
1856 {
1857 }
1858
1859 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
1860 target_phys_addr_t paddr, int prot,
1861 int mmu_idx, int is_softmmu)
1862 {
1863 return 0;
1864 }
1865
1866 /* dump memory mappings */
1867 void page_dump(FILE *f)
1868 {
1869 unsigned long start, end;
1870 int i, j, prot, prot1;
1871 PageDesc *p;
1872
1873 fprintf(f, "%-8s %-8s %-8s %s\n",
1874 "start", "end", "size", "prot");
1875 start = -1;
1876 end = -1;
1877 prot = 0;
1878 for(i = 0; i <= L1_SIZE; i++) {
1879 if (i < L1_SIZE)
1880 p = l1_map[i];
1881 else
1882 p = NULL;
1883 for(j = 0;j < L2_SIZE; j++) {
1884 if (!p)
1885 prot1 = 0;
1886 else
1887 prot1 = p[j].flags;
1888 if (prot1 != prot) {
1889 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
1890 if (start != -1) {
1891 fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
1892 start, end, end - start,
1893 prot & PAGE_READ ? 'r' : '-',
1894 prot & PAGE_WRITE ? 'w' : '-',
1895 prot & PAGE_EXEC ? 'x' : '-');
1896 }
1897 if (prot1 != 0)
1898 start = end;
1899 else
1900 start = -1;
1901 prot = prot1;
1902 }
1903 if (!p)
1904 break;
1905 }
1906 }
1907 }
1908
1909 int page_get_flags(target_ulong address)
1910 {
1911 PageDesc *p;
1912
1913 p = page_find(address >> TARGET_PAGE_BITS);
1914 if (!p)
1915 return 0;
1916 return p->flags;
1917 }
1918
1919 /* modify the flags of a page and invalidate the code if
1920 necessary. The flag PAGE_WRITE_ORG is positionned automatically
1921 depending on PAGE_WRITE */
1922 void page_set_flags(target_ulong start, target_ulong end, int flags)
1923 {
1924 PageDesc *p;
1925 target_ulong addr;
1926
1927 /* mmap_lock should already be held. */
1928 start = start & TARGET_PAGE_MASK;
1929 end = TARGET_PAGE_ALIGN(end);
1930 if (flags & PAGE_WRITE)
1931 flags |= PAGE_WRITE_ORG;
1932 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
1933 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
1934 /* We may be called for host regions that are outside guest
1935 address space. */
1936 if (!p)
1937 return;
1938 /* if the write protection is set, then we invalidate the code
1939 inside */
1940 if (!(p->flags & PAGE_WRITE) &&
1941 (flags & PAGE_WRITE) &&
1942 p->first_tb) {
1943 tb_invalidate_phys_page(addr, 0, NULL);
1944 }
1945 p->flags = flags;
1946 }
1947 }
1948
1949 int page_check_range(target_ulong start, target_ulong len, int flags)
1950 {
1951 PageDesc *p;
1952 target_ulong end;
1953 target_ulong addr;
1954
1955 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
1956 start = start & TARGET_PAGE_MASK;
1957
1958 if( end < start )
1959 /* we've wrapped around */
1960 return -1;
1961 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
1962 p = page_find(addr >> TARGET_PAGE_BITS);
1963 if( !p )
1964 return -1;
1965 if( !(p->flags & PAGE_VALID) )
1966 return -1;
1967
1968 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
1969 return -1;
1970 if (flags & PAGE_WRITE) {
1971 if (!(p->flags & PAGE_WRITE_ORG))
1972 return -1;
1973 /* unprotect the page if it was put read-only because it
1974 contains translated code */
1975 if (!(p->flags & PAGE_WRITE)) {
1976 if (!page_unprotect(addr, 0, NULL))
1977 return -1;
1978 }
1979 return 0;
1980 }
1981 }
1982 return 0;
1983 }
1984
1985 /* called from signal handler: invalidate the code and unprotect the
1986 page. Return TRUE if the fault was succesfully handled. */
1987 int page_unprotect(target_ulong address, unsigned long pc, void *puc)
1988 {
1989 unsigned int page_index, prot, pindex;
1990 PageDesc *p, *p1;
1991 target_ulong host_start, host_end, addr;
1992
1993 /* Technically this isn't safe inside a signal handler. However we
1994 know this only ever happens in a synchronous SEGV handler, so in
1995 practice it seems to be ok. */
1996 mmap_lock();
1997
1998 host_start = address & qemu_host_page_mask;
1999 page_index = host_start >> TARGET_PAGE_BITS;
2000 p1 = page_find(page_index);
2001 if (!p1) {
2002 mmap_unlock();
2003 return 0;
2004 }
2005 host_end = host_start + qemu_host_page_size;
2006 p = p1;
2007 prot = 0;
2008 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
2009 prot |= p->flags;
2010 p++;
2011 }
2012 /* if the page was really writable, then we change its
2013 protection back to writable */
2014 if (prot & PAGE_WRITE_ORG) {
2015 pindex = (address - host_start) >> TARGET_PAGE_BITS;
2016 if (!(p1[pindex].flags & PAGE_WRITE)) {
2017 mprotect((void *)g2h(host_start), qemu_host_page_size,
2018 (prot & PAGE_BITS) | PAGE_WRITE);
2019 p1[pindex].flags |= PAGE_WRITE;
2020 /* and since the content will be modified, we must invalidate
2021 the corresponding translated code. */
2022 tb_invalidate_phys_page(address, pc, puc);
2023 #ifdef DEBUG_TB_CHECK
2024 tb_invalidate_check(address);
2025 #endif
2026 mmap_unlock();
2027 return 1;
2028 }
2029 }
2030 mmap_unlock();
2031 return 0;
2032 }
2033
2034 static inline void tlb_set_dirty(CPUState *env,
2035 unsigned long addr, target_ulong vaddr)
2036 {
2037 }
2038 #endif /* defined(CONFIG_USER_ONLY) */
2039
2040 #if !defined(CONFIG_USER_ONLY)
2041 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2042 ram_addr_t memory);
2043 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2044 ram_addr_t orig_memory);
2045 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2046 need_subpage) \
2047 do { \
2048 if (addr > start_addr) \
2049 start_addr2 = 0; \
2050 else { \
2051 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2052 if (start_addr2 > 0) \
2053 need_subpage = 1; \
2054 } \
2055 \
2056 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2057 end_addr2 = TARGET_PAGE_SIZE - 1; \
2058 else { \
2059 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2060 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2061 need_subpage = 1; \
2062 } \
2063 } while (0)
2064
2065 /* register physical memory. 'size' must be a multiple of the target
2066 page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2067 io memory page */
2068 void cpu_register_physical_memory(target_phys_addr_t start_addr,
2069 ram_addr_t size,
2070 ram_addr_t phys_offset)
2071 {
2072 target_phys_addr_t addr, end_addr;
2073 PhysPageDesc *p;
2074 CPUState *env;
2075 ram_addr_t orig_size = size;
2076 void *subpage;
2077
2078 #ifdef USE_KQEMU
2079 /* XXX: should not depend on cpu context */
2080 env = first_cpu;
2081 if (env->kqemu_enabled) {
2082 kqemu_set_phys_mem(start_addr, size, phys_offset);
2083 }
2084 #endif
2085 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
2086 end_addr = start_addr + (target_phys_addr_t)size;
2087 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
2088 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2089 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
2090 ram_addr_t orig_memory = p->phys_offset;
2091 target_phys_addr_t start_addr2, end_addr2;
2092 int need_subpage = 0;
2093
2094 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2095 need_subpage);
2096 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2097 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2098 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2099 &p->phys_offset, orig_memory);
2100 } else {
2101 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2102 >> IO_MEM_SHIFT];
2103 }
2104 subpage_register(subpage, start_addr2, end_addr2, phys_offset);
2105 } else {
2106 p->phys_offset = phys_offset;
2107 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2108 (phys_offset & IO_MEM_ROMD))
2109 phys_offset += TARGET_PAGE_SIZE;
2110 }
2111 } else {
2112 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2113 p->phys_offset = phys_offset;
2114 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2115 (phys_offset & IO_MEM_ROMD))
2116 phys_offset += TARGET_PAGE_SIZE;
2117 else {
2118 target_phys_addr_t start_addr2, end_addr2;
2119 int need_subpage = 0;
2120
2121 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2122 end_addr2, need_subpage);
2123
2124 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2125 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2126 &p->phys_offset, IO_MEM_UNASSIGNED);
2127 subpage_register(subpage, start_addr2, end_addr2,
2128 phys_offset);
2129 }
2130 }
2131 }
2132 }
2133
2134 /* since each CPU stores ram addresses in its TLB cache, we must
2135 reset the modified entries */
2136 /* XXX: slow ! */
2137 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2138 tlb_flush(env, 1);
2139 }
2140 }
2141
2142 /* XXX: temporary until new memory mapping API */
2143 ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
2144 {
2145 PhysPageDesc *p;
2146
2147 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2148 if (!p)
2149 return IO_MEM_UNASSIGNED;
2150 return p->phys_offset;
2151 }
2152
2153 /* XXX: better than nothing */
2154 ram_addr_t qemu_ram_alloc(ram_addr_t size)
2155 {
2156 ram_addr_t addr;
2157 if ((phys_ram_alloc_offset + size) > phys_ram_size) {
2158 fprintf(stderr, "Not enough memory (requested_size = %" PRIu64 ", max memory = %" PRIu64 "\n",
2159 (uint64_t)size, (uint64_t)phys_ram_size);
2160 abort();
2161 }
2162 addr = phys_ram_alloc_offset;
2163 phys_ram_alloc_offset = TARGET_PAGE_ALIGN(phys_ram_alloc_offset + size);
2164 return addr;
2165 }
2166
2167 void qemu_ram_free(ram_addr_t addr)
2168 {
2169 }
2170
2171 static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
2172 {
2173 #ifdef DEBUG_UNASSIGNED
2174 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2175 #endif
2176 #ifdef TARGET_SPARC
2177 do_unassigned_access(addr, 0, 0, 0);
2178 #elif TARGET_CRIS
2179 do_unassigned_access(addr, 0, 0, 0);
2180 #endif
2181 return 0;
2182 }
2183
2184 static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
2185 {
2186 #ifdef DEBUG_UNASSIGNED
2187 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2188 #endif
2189 #ifdef TARGET_SPARC
2190 do_unassigned_access(addr, 1, 0, 0);
2191 #elif TARGET_CRIS
2192 do_unassigned_access(addr, 1, 0, 0);
2193 #endif
2194 }
2195
2196 static CPUReadMemoryFunc *unassigned_mem_read[3] = {
2197 unassigned_mem_readb,
2198 unassigned_mem_readb,
2199 unassigned_mem_readb,
2200 };
2201
2202 static CPUWriteMemoryFunc *unassigned_mem_write[3] = {
2203 unassigned_mem_writeb,
2204 unassigned_mem_writeb,
2205 unassigned_mem_writeb,
2206 };
2207
2208 static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
2209 uint32_t val)
2210 {
2211 int dirty_flags;
2212 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2213 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2214 #if !defined(CONFIG_USER_ONLY)
2215 tb_invalidate_phys_page_fast(ram_addr, 1);
2216 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2217 #endif
2218 }
2219 stb_p(phys_ram_base + ram_addr, val);
2220 #ifdef USE_KQEMU
2221 if (cpu_single_env->kqemu_enabled &&
2222 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2223 kqemu_modify_page(cpu_single_env, ram_addr);
2224 #endif
2225 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2226 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2227 /* we remove the notdirty callback only if the code has been
2228 flushed */
2229 if (dirty_flags == 0xff)
2230 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_write_vaddr);
2231 }
2232
2233 static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
2234 uint32_t val)
2235 {
2236 int dirty_flags;
2237 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2238 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2239 #if !defined(CONFIG_USER_ONLY)
2240 tb_invalidate_phys_page_fast(ram_addr, 2);
2241 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2242 #endif
2243 }
2244 stw_p(phys_ram_base + ram_addr, val);
2245 #ifdef USE_KQEMU
2246 if (cpu_single_env->kqemu_enabled &&
2247 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2248 kqemu_modify_page(cpu_single_env, ram_addr);
2249 #endif
2250 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2251 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2252 /* we remove the notdirty callback only if the code has been
2253 flushed */
2254 if (dirty_flags == 0xff)
2255 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_write_vaddr);
2256 }
2257
2258 static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
2259 uint32_t val)
2260 {
2261 int dirty_flags;
2262 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2263 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2264 #if !defined(CONFIG_USER_ONLY)
2265 tb_invalidate_phys_page_fast(ram_addr, 4);
2266 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2267 #endif
2268 }
2269 stl_p(phys_ram_base + ram_addr, val);
2270 #ifdef USE_KQEMU
2271 if (cpu_single_env->kqemu_enabled &&
2272 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2273 kqemu_modify_page(cpu_single_env, ram_addr);
2274 #endif
2275 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2276 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2277 /* we remove the notdirty callback only if the code has been
2278 flushed */
2279 if (dirty_flags == 0xff)
2280 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_write_vaddr);
2281 }
2282
2283 static CPUReadMemoryFunc *error_mem_read[3] = {
2284 NULL, /* never used */
2285 NULL, /* never used */
2286 NULL, /* never used */
2287 };
2288
2289 static CPUWriteMemoryFunc *notdirty_mem_write[3] = {
2290 notdirty_mem_writeb,
2291 notdirty_mem_writew,
2292 notdirty_mem_writel,
2293 };
2294
2295 /* Generate a debug exception if a watchpoint has been hit. */
2296 static void check_watchpoint(int offset, int flags)
2297 {
2298 CPUState *env = cpu_single_env;
2299 target_ulong vaddr;
2300 int i;
2301
2302 vaddr = (env->mem_write_vaddr & TARGET_PAGE_MASK) + offset;
2303 for (i = 0; i < env->nb_watchpoints; i++) {
2304 if (vaddr == env->watchpoint[i].vaddr
2305 && (env->watchpoint[i].type & flags)) {
2306 env->watchpoint_hit = i + 1;
2307 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2308 break;
2309 }
2310 }
2311 }
2312
2313 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2314 so these check for a hit then pass through to the normal out-of-line
2315 phys routines. */
2316 static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
2317 {
2318 check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_READ);
2319 return ldub_phys(addr);
2320 }
2321
2322 static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
2323 {
2324 check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_READ);
2325 return lduw_phys(addr);
2326 }
2327
2328 static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
2329 {
2330 check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_READ);
2331 return ldl_phys(addr);
2332 }
2333
2334 static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
2335 uint32_t val)
2336 {
2337 check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_WRITE);
2338 stb_phys(addr, val);
2339 }
2340
2341 static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
2342 uint32_t val)
2343 {
2344 check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_WRITE);
2345 stw_phys(addr, val);
2346 }
2347
2348 static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
2349 uint32_t val)
2350 {
2351 check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_WRITE);
2352 stl_phys(addr, val);
2353 }
2354
2355 static CPUReadMemoryFunc *watch_mem_read[3] = {
2356 watch_mem_readb,
2357 watch_mem_readw,
2358 watch_mem_readl,
2359 };
2360
2361 static CPUWriteMemoryFunc *watch_mem_write[3] = {
2362 watch_mem_writeb,
2363 watch_mem_writew,
2364 watch_mem_writel,
2365 };
2366
2367 static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
2368 unsigned int len)
2369 {
2370 uint32_t ret;
2371 unsigned int idx;
2372
2373 idx = SUBPAGE_IDX(addr - mmio->base);
2374 #if defined(DEBUG_SUBPAGE)
2375 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
2376 mmio, len, addr, idx);
2377 #endif
2378 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len], addr);
2379
2380 return ret;
2381 }
2382
2383 static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
2384 uint32_t value, unsigned int len)
2385 {
2386 unsigned int idx;
2387
2388 idx = SUBPAGE_IDX(addr - mmio->base);
2389 #if defined(DEBUG_SUBPAGE)
2390 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
2391 mmio, len, addr, idx, value);
2392 #endif
2393 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len], addr, value);
2394 }
2395
2396 static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
2397 {
2398 #if defined(DEBUG_SUBPAGE)
2399 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2400 #endif
2401
2402 return subpage_readlen(opaque, addr, 0);
2403 }
2404
2405 static void subpage_writeb (void *opaque, target_phys_addr_t addr,
2406 uint32_t value)
2407 {
2408 #if defined(DEBUG_SUBPAGE)
2409 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2410 #endif
2411 subpage_writelen(opaque, addr, value, 0);
2412 }
2413
2414 static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
2415 {
2416 #if defined(DEBUG_SUBPAGE)
2417 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2418 #endif
2419
2420 return subpage_readlen(opaque, addr, 1);
2421 }
2422
2423 static void subpage_writew (void *opaque, target_phys_addr_t addr,
2424 uint32_t value)
2425 {
2426 #if defined(DEBUG_SUBPAGE)
2427 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2428 #endif
2429 subpage_writelen(opaque, addr, value, 1);
2430 }
2431
2432 static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
2433 {
2434 #if defined(DEBUG_SUBPAGE)
2435 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2436 #endif
2437
2438 return subpage_readlen(opaque, addr, 2);
2439 }
2440
2441 static void subpage_writel (void *opaque,
2442 target_phys_addr_t addr, uint32_t value)
2443 {
2444 #if defined(DEBUG_SUBPAGE)
2445 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2446 #endif
2447 subpage_writelen(opaque, addr, value, 2);
2448 }
2449
2450 static CPUReadMemoryFunc *subpage_read[] = {
2451 &subpage_readb,
2452 &subpage_readw,
2453 &subpage_readl,
2454 };
2455
2456 static CPUWriteMemoryFunc *subpage_write[] = {
2457 &subpage_writeb,
2458 &subpage_writew,
2459 &subpage_writel,
2460 };
2461
2462 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2463 ram_addr_t memory)
2464 {
2465 int idx, eidx;
2466 unsigned int i;
2467
2468 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2469 return -1;
2470 idx = SUBPAGE_IDX(start);
2471 eidx = SUBPAGE_IDX(end);
2472 #if defined(DEBUG_SUBPAGE)
2473 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %d\n", __func__,
2474 mmio, start, end, idx, eidx, memory);
2475 #endif
2476 memory >>= IO_MEM_SHIFT;
2477 for (; idx <= eidx; idx++) {
2478 for (i = 0; i < 4; i++) {
2479 if (io_mem_read[memory][i]) {
2480 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
2481 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
2482 }
2483 if (io_mem_write[memory][i]) {
2484 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
2485 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
2486 }
2487 }
2488 }
2489
2490 return 0;
2491 }
2492
2493 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2494 ram_addr_t orig_memory)
2495 {
2496 subpage_t *mmio;
2497 int subpage_memory;
2498
2499 mmio = qemu_mallocz(sizeof(subpage_t));
2500 if (mmio != NULL) {
2501 mmio->base = base;
2502 subpage_memory = cpu_register_io_memory(0, subpage_read, subpage_write, mmio);
2503 #if defined(DEBUG_SUBPAGE)
2504 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
2505 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
2506 #endif
2507 *phys = subpage_memory | IO_MEM_SUBPAGE;
2508 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory);
2509 }
2510
2511 return mmio;
2512 }
2513
2514 static void io_mem_init(void)
2515 {
2516 cpu_register_io_memory(IO_MEM_ROM >> IO_MEM_SHIFT, error_mem_read, unassigned_mem_write, NULL);
2517 cpu_register_io_memory(IO_MEM_UNASSIGNED >> IO_MEM_SHIFT, unassigned_mem_read, unassigned_mem_write, NULL);
2518 cpu_register_io_memory(IO_MEM_NOTDIRTY >> IO_MEM_SHIFT, error_mem_read, notdirty_mem_write, NULL);
2519 io_mem_nb = 5;
2520
2521 io_mem_watch = cpu_register_io_memory(0, watch_mem_read,
2522 watch_mem_write, NULL);
2523 /* alloc dirty bits array */
2524 phys_ram_dirty = qemu_vmalloc(phys_ram_size >> TARGET_PAGE_BITS);
2525 memset(phys_ram_dirty, 0xff, phys_ram_size >> TARGET_PAGE_BITS);
2526 }
2527
2528 /* mem_read and mem_write are arrays of functions containing the
2529 function to access byte (index 0), word (index 1) and dword (index
2530 2). Functions can be omitted with a NULL function pointer. The
2531 registered functions may be modified dynamically later.
2532 If io_index is non zero, the corresponding io zone is
2533 modified. If it is zero, a new io zone is allocated. The return
2534 value can be used with cpu_register_physical_memory(). (-1) is
2535 returned if error. */
2536 int cpu_register_io_memory(int io_index,
2537 CPUReadMemoryFunc **mem_read,
2538 CPUWriteMemoryFunc **mem_write,
2539 void *opaque)
2540 {
2541 int i, subwidth = 0;
2542
2543 if (io_index <= 0) {
2544 if (io_mem_nb >= IO_MEM_NB_ENTRIES)
2545 return -1;
2546 io_index = io_mem_nb++;
2547 } else {
2548 if (io_index >= IO_MEM_NB_ENTRIES)
2549 return -1;
2550 }
2551
2552 for(i = 0;i < 3; i++) {
2553 if (!mem_read[i] || !mem_write[i])
2554 subwidth = IO_MEM_SUBWIDTH;
2555 io_mem_read[io_index][i] = mem_read[i];
2556 io_mem_write[io_index][i] = mem_write[i];
2557 }
2558 io_mem_opaque[io_index] = opaque;
2559 return (io_index << IO_MEM_SHIFT) | subwidth;
2560 }
2561
2562 CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index)
2563 {
2564 return io_mem_write[io_index >> IO_MEM_SHIFT];
2565 }
2566
2567 CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index)
2568 {
2569 return io_mem_read[io_index >> IO_MEM_SHIFT];
2570 }
2571
2572 #endif /* !defined(CONFIG_USER_ONLY) */
2573
2574 /* physical memory access (slow version, mainly for debug) */
2575 #if defined(CONFIG_USER_ONLY)
2576 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
2577 int len, int is_write)
2578 {
2579 int l, flags;
2580 target_ulong page;
2581 void * p;
2582
2583 while (len > 0) {
2584 page = addr & TARGET_PAGE_MASK;
2585 l = (page + TARGET_PAGE_SIZE) - addr;
2586 if (l > len)
2587 l = len;
2588 flags = page_get_flags(page);
2589 if (!(flags & PAGE_VALID))
2590 return;
2591 if (is_write) {
2592 if (!(flags & PAGE_WRITE))
2593 return;
2594 /* XXX: this code should not depend on lock_user */
2595 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
2596 /* FIXME - should this return an error rather than just fail? */
2597 return;
2598 memcpy(p, buf, l);
2599 unlock_user(p, addr, l);
2600 } else {
2601 if (!(flags & PAGE_READ))
2602 return;
2603 /* XXX: this code should not depend on lock_user */
2604 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
2605 /* FIXME - should this return an error rather than just fail? */
2606 return;
2607 memcpy(buf, p, l);
2608 unlock_user(p, addr, 0);
2609 }
2610 len -= l;
2611 buf += l;
2612 addr += l;
2613 }
2614 }
2615
2616 #else
2617 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
2618 int len, int is_write)
2619 {
2620 int l, io_index;
2621 uint8_t *ptr;
2622 uint32_t val;
2623 target_phys_addr_t page;
2624 unsigned long pd;
2625 PhysPageDesc *p;
2626
2627 while (len > 0) {
2628 page = addr & TARGET_PAGE_MASK;
2629 l = (page + TARGET_PAGE_SIZE) - addr;
2630 if (l > len)
2631 l = len;
2632 p = phys_page_find(page >> TARGET_PAGE_BITS);
2633 if (!p) {
2634 pd = IO_MEM_UNASSIGNED;
2635 } else {
2636 pd = p->phys_offset;
2637 }
2638
2639 if (is_write) {
2640 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
2641 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2642 /* XXX: could force cpu_single_env to NULL to avoid
2643 potential bugs */
2644 if (l >= 4 && ((addr & 3) == 0)) {
2645 /* 32 bit write access */
2646 val = ldl_p(buf);
2647 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
2648 l = 4;
2649 } else if (l >= 2 && ((addr & 1) == 0)) {
2650 /* 16 bit write access */
2651 val = lduw_p(buf);
2652 io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
2653 l = 2;
2654 } else {
2655 /* 8 bit write access */
2656 val = ldub_p(buf);
2657 io_mem_write[io_index][0](io_mem_opaque[io_index], addr, val);
2658 l = 1;
2659 }
2660 } else {
2661 unsigned long addr1;
2662 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
2663 /* RAM case */
2664 ptr = phys_ram_base + addr1;
2665 memcpy(ptr, buf, l);
2666 if (!cpu_physical_memory_is_dirty(addr1)) {
2667 /* invalidate code */
2668 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
2669 /* set dirty bit */
2670 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
2671 (0xff & ~CODE_DIRTY_FLAG);
2672 }
2673 }
2674 } else {
2675 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2676 !(pd & IO_MEM_ROMD)) {
2677 /* I/O case */
2678 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2679 if (l >= 4 && ((addr & 3) == 0)) {
2680 /* 32 bit read access */
2681 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
2682 stl_p(buf, val);
2683 l = 4;
2684 } else if (l >= 2 && ((addr & 1) == 0)) {
2685 /* 16 bit read access */
2686 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
2687 stw_p(buf, val);
2688 l = 2;
2689 } else {
2690 /* 8 bit read access */
2691 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr);
2692 stb_p(buf, val);
2693 l = 1;
2694 }
2695 } else {
2696 /* RAM case */
2697 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
2698 (addr & ~TARGET_PAGE_MASK);
2699 memcpy(buf, ptr, l);
2700 }
2701 }
2702 len -= l;
2703 buf += l;
2704 addr += l;
2705 }
2706 }
2707
2708 /* used for ROM loading : can write in RAM and ROM */
2709 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
2710 const uint8_t *buf, int len)
2711 {
2712 int l;
2713 uint8_t *ptr;
2714 target_phys_addr_t page;
2715 unsigned long pd;
2716 PhysPageDesc *p;
2717
2718 while (len > 0) {
2719 page = addr & TARGET_PAGE_MASK;
2720 l = (page + TARGET_PAGE_SIZE) - addr;
2721 if (l > len)
2722 l = len;
2723 p = phys_page_find(page >> TARGET_PAGE_BITS);
2724 if (!p) {
2725 pd = IO_MEM_UNASSIGNED;
2726 } else {
2727 pd = p->phys_offset;
2728 }
2729
2730 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
2731 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
2732 !(pd & IO_MEM_ROMD)) {
2733 /* do nothing */
2734 } else {
2735 unsigned long addr1;
2736 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
2737 /* ROM/RAM case */
2738 ptr = phys_ram_base + addr1;
2739 memcpy(ptr, buf, l);
2740 }
2741 len -= l;
2742 buf += l;
2743 addr += l;
2744 }
2745 }
2746
2747
2748 /* warning: addr must be aligned */
2749 uint32_t ldl_phys(target_phys_addr_t addr)
2750 {
2751 int io_index;
2752 uint8_t *ptr;
2753 uint32_t val;
2754 unsigned long pd;
2755 PhysPageDesc *p;
2756
2757 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2758 if (!p) {
2759 pd = IO_MEM_UNASSIGNED;
2760 } else {
2761 pd = p->phys_offset;
2762 }
2763
2764 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2765 !(pd & IO_MEM_ROMD)) {
2766 /* I/O case */
2767 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2768 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
2769 } else {
2770 /* RAM case */
2771 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
2772 (addr & ~TARGET_PAGE_MASK);
2773 val = ldl_p(ptr);
2774 }
2775 return val;
2776 }
2777
2778 /* warning: addr must be aligned */
2779 uint64_t ldq_phys(target_phys_addr_t addr)
2780 {
2781 int io_index;
2782 uint8_t *ptr;
2783 uint64_t val;
2784 unsigned long pd;
2785 PhysPageDesc *p;
2786
2787 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2788 if (!p) {
2789 pd = IO_MEM_UNASSIGNED;
2790 } else {
2791 pd = p->phys_offset;
2792 }
2793
2794 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2795 !(pd & IO_MEM_ROMD)) {
2796 /* I/O case */
2797 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2798 #ifdef TARGET_WORDS_BIGENDIAN
2799 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
2800 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
2801 #else
2802 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
2803 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
2804 #endif
2805 } else {
2806 /* RAM case */
2807 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
2808 (addr & ~TARGET_PAGE_MASK);
2809 val = ldq_p(ptr);
2810 }
2811 return val;
2812 }
2813
2814 /* XXX: optimize */
2815 uint32_t ldub_phys(target_phys_addr_t addr)
2816 {
2817 uint8_t val;
2818 cpu_physical_memory_read(addr, &val, 1);
2819 return val;
2820 }
2821
2822 /* XXX: optimize */
2823 uint32_t lduw_phys(target_phys_addr_t addr)
2824 {
2825 uint16_t val;
2826 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
2827 return tswap16(val);
2828 }
2829
2830 /* warning: addr must be aligned. The ram page is not masked as dirty
2831 and the code inside is not invalidated. It is useful if the dirty
2832 bits are used to track modified PTEs */
2833 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
2834 {
2835 int io_index;
2836 uint8_t *ptr;
2837 unsigned long pd;
2838 PhysPageDesc *p;
2839
2840 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2841 if (!p) {
2842 pd = IO_MEM_UNASSIGNED;
2843 } else {
2844 pd = p->phys_offset;
2845 }
2846
2847 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
2848 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2849 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
2850 } else {
2851 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
2852 (addr & ~TARGET_PAGE_MASK);
2853 stl_p(ptr, val);
2854 }
2855 }
2856
2857 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
2858 {
2859 int io_index;
2860 uint8_t *ptr;
2861 unsigned long pd;
2862 PhysPageDesc *p;
2863
2864 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2865 if (!p) {
2866 pd = IO_MEM_UNASSIGNED;
2867 } else {
2868 pd = p->phys_offset;
2869 }
2870
2871 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
2872 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2873 #ifdef TARGET_WORDS_BIGENDIAN
2874 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
2875 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
2876 #else
2877 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
2878 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
2879 #endif
2880 } else {
2881 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
2882 (addr & ~TARGET_PAGE_MASK);
2883 stq_p(ptr, val);
2884 }
2885 }
2886
2887 /* warning: addr must be aligned */
2888 void stl_phys(target_phys_addr_t addr, uint32_t val)
2889 {
2890 int io_index;
2891 uint8_t *ptr;
2892 unsigned long pd;
2893 PhysPageDesc *p;
2894
2895 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2896 if (!p) {
2897 pd = IO_MEM_UNASSIGNED;
2898 } else {
2899 pd = p->phys_offset;
2900 }
2901
2902 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
2903 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2904 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
2905 } else {
2906 unsigned long addr1;
2907 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
2908 /* RAM case */
2909 ptr = phys_ram_base + addr1;
2910 stl_p(ptr, val);
2911 if (!cpu_physical_memory_is_dirty(addr1)) {
2912 /* invalidate code */
2913 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
2914 /* set dirty bit */
2915 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
2916 (0xff & ~CODE_DIRTY_FLAG);
2917 }
2918 }
2919 }
2920
2921 /* XXX: optimize */
2922 void stb_phys(target_phys_addr_t addr, uint32_t val)
2923 {
2924 uint8_t v = val;
2925 cpu_physical_memory_write(addr, &v, 1);
2926 }
2927
2928 /* XXX: optimize */
2929 void stw_phys(target_phys_addr_t addr, uint32_t val)
2930 {
2931 uint16_t v = tswap16(val);
2932 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
2933 }
2934
2935 /* XXX: optimize */
2936 void stq_phys(target_phys_addr_t addr, uint64_t val)
2937 {
2938 val = tswap64(val);
2939 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
2940 }
2941
2942 #endif
2943
2944 /* virtual memory access for debug */
2945 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
2946 uint8_t *buf, int len, int is_write)
2947 {
2948 int l;
2949 target_phys_addr_t phys_addr;
2950 target_ulong page;
2951
2952 while (len > 0) {
2953 page = addr & TARGET_PAGE_MASK;
2954 phys_addr = cpu_get_phys_page_debug(env, page);
2955 /* if no physical page mapped, return an error */
2956 if (phys_addr == -1)
2957 return -1;
2958 l = (page + TARGET_PAGE_SIZE) - addr;
2959 if (l > len)
2960 l = len;
2961 cpu_physical_memory_rw(phys_addr + (addr & ~TARGET_PAGE_MASK),
2962 buf, l, is_write);
2963 len -= l;
2964 buf += l;
2965 addr += l;
2966 }
2967 return 0;
2968 }
2969
2970 void dump_exec_info(FILE *f,
2971 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
2972 {
2973 int i, target_code_size, max_target_code_size;
2974 int direct_jmp_count, direct_jmp2_count, cross_page;
2975 TranslationBlock *tb;
2976
2977 target_code_size = 0;
2978 max_target_code_size = 0;
2979 cross_page = 0;
2980 direct_jmp_count = 0;
2981 direct_jmp2_count = 0;
2982 for(i = 0; i < nb_tbs; i++) {
2983 tb = &tbs[i];
2984 target_code_size += tb->size;
2985 if (tb->size > max_target_code_size)
2986 max_target_code_size = tb->size;
2987 if (tb->page_addr[1] != -1)
2988 cross_page++;
2989 if (tb->tb_next_offset[0] != 0xffff) {
2990 direct_jmp_count++;
2991 if (tb->tb_next_offset[1] != 0xffff) {
2992 direct_jmp2_count++;
2993 }
2994 }
2995 }
2996 /* XXX: avoid using doubles ? */
2997 cpu_fprintf(f, "Translation buffer state:\n");
2998 cpu_fprintf(f, "gen code size %ld/%ld\n",
2999 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
3000 cpu_fprintf(f, "TB count %d/%d\n",
3001 nb_tbs, code_gen_max_blocks);
3002 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
3003 nb_tbs ? target_code_size / nb_tbs : 0,
3004 max_target_code_size);
3005 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
3006 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
3007 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
3008 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
3009 cross_page,
3010 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
3011 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
3012 direct_jmp_count,
3013 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
3014 direct_jmp2_count,
3015 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
3016 cpu_fprintf(f, "\nStatistics:\n");
3017 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
3018 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
3019 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
3020 tcg_dump_info(f, cpu_fprintf);
3021 }
3022
3023 #if !defined(CONFIG_USER_ONLY)
3024
3025 #define MMUSUFFIX _cmmu
3026 #define GETPC() NULL
3027 #define env cpu_single_env
3028 #define SOFTMMU_CODE_ACCESS
3029
3030 #define SHIFT 0
3031 #include "softmmu_template.h"
3032
3033 #define SHIFT 1
3034 #include "softmmu_template.h"
3035
3036 #define SHIFT 2
3037 #include "softmmu_template.h"
3038
3039 #define SHIFT 3
3040 #include "softmmu_template.h"
3041
3042 #undef env
3043
3044 #endif