]> git.proxmox.com Git - mirror_qemu.git/blob - exec.c
memory: add owner argument to initialization functions
[mirror_qemu.git] / exec.c
1 /*
2 * Virtual page mapping
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "config.h"
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
26
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "tcg.h"
30 #include "hw/hw.h"
31 #include "hw/qdev.h"
32 #include "qemu/osdep.h"
33 #include "sysemu/kvm.h"
34 #include "hw/xen/xen.h"
35 #include "qemu/timer.h"
36 #include "qemu/config-file.h"
37 #include "exec/memory.h"
38 #include "sysemu/dma.h"
39 #include "exec/address-spaces.h"
40 #if defined(CONFIG_USER_ONLY)
41 #include <qemu.h>
42 #else /* !CONFIG_USER_ONLY */
43 #include "sysemu/xen-mapcache.h"
44 #include "trace.h"
45 #endif
46 #include "exec/cpu-all.h"
47
48 #include "exec/cputlb.h"
49 #include "translate-all.h"
50
51 #include "exec/memory-internal.h"
52
53 //#define DEBUG_SUBPAGE
54
55 #if !defined(CONFIG_USER_ONLY)
56 int phys_ram_fd;
57 static int in_migration;
58
59 RAMList ram_list = { .blocks = QTAILQ_HEAD_INITIALIZER(ram_list.blocks) };
60
61 static MemoryRegion *system_memory;
62 static MemoryRegion *system_io;
63
64 AddressSpace address_space_io;
65 AddressSpace address_space_memory;
66
67 MemoryRegion io_mem_rom, io_mem_notdirty;
68 static MemoryRegion io_mem_unassigned;
69
70 #endif
71
72 CPUArchState *first_cpu;
73 /* current CPU in the current thread. It is only valid inside
74 cpu_exec() */
75 DEFINE_TLS(CPUArchState *,cpu_single_env);
76 /* 0 = Do not count executed instructions.
77 1 = Precise instruction counting.
78 2 = Adaptive rate instruction counting. */
79 int use_icount;
80
81 #if !defined(CONFIG_USER_ONLY)
82
83 typedef struct PhysPageEntry PhysPageEntry;
84
85 struct PhysPageEntry {
86 uint16_t is_leaf : 1;
87 /* index into phys_sections (is_leaf) or phys_map_nodes (!is_leaf) */
88 uint16_t ptr : 15;
89 };
90
91 struct AddressSpaceDispatch {
92 /* This is a multi-level map on the physical address space.
93 * The bottom level has pointers to MemoryRegionSections.
94 */
95 PhysPageEntry phys_map;
96 MemoryListener listener;
97 AddressSpace *as;
98 };
99
100 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
101 typedef struct subpage_t {
102 MemoryRegion iomem;
103 AddressSpace *as;
104 hwaddr base;
105 uint16_t sub_section[TARGET_PAGE_SIZE];
106 } subpage_t;
107
108 static MemoryRegionSection *phys_sections;
109 static unsigned phys_sections_nb, phys_sections_nb_alloc;
110 static uint16_t phys_section_unassigned;
111 static uint16_t phys_section_notdirty;
112 static uint16_t phys_section_rom;
113 static uint16_t phys_section_watch;
114
115 /* Simple allocator for PhysPageEntry nodes */
116 static PhysPageEntry (*phys_map_nodes)[L2_SIZE];
117 static unsigned phys_map_nodes_nb, phys_map_nodes_nb_alloc;
118
119 #define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1)
120
121 static void io_mem_init(void);
122 static void memory_map_init(void);
123 static void *qemu_safe_ram_ptr(ram_addr_t addr);
124
125 static MemoryRegion io_mem_watch;
126 #endif
127
128 #if !defined(CONFIG_USER_ONLY)
129
130 static void phys_map_node_reserve(unsigned nodes)
131 {
132 if (phys_map_nodes_nb + nodes > phys_map_nodes_nb_alloc) {
133 typedef PhysPageEntry Node[L2_SIZE];
134 phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc * 2, 16);
135 phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc,
136 phys_map_nodes_nb + nodes);
137 phys_map_nodes = g_renew(Node, phys_map_nodes,
138 phys_map_nodes_nb_alloc);
139 }
140 }
141
142 static uint16_t phys_map_node_alloc(void)
143 {
144 unsigned i;
145 uint16_t ret;
146
147 ret = phys_map_nodes_nb++;
148 assert(ret != PHYS_MAP_NODE_NIL);
149 assert(ret != phys_map_nodes_nb_alloc);
150 for (i = 0; i < L2_SIZE; ++i) {
151 phys_map_nodes[ret][i].is_leaf = 0;
152 phys_map_nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
153 }
154 return ret;
155 }
156
157 static void phys_map_nodes_reset(void)
158 {
159 phys_map_nodes_nb = 0;
160 }
161
162
163 static void phys_page_set_level(PhysPageEntry *lp, hwaddr *index,
164 hwaddr *nb, uint16_t leaf,
165 int level)
166 {
167 PhysPageEntry *p;
168 int i;
169 hwaddr step = (hwaddr)1 << (level * L2_BITS);
170
171 if (!lp->is_leaf && lp->ptr == PHYS_MAP_NODE_NIL) {
172 lp->ptr = phys_map_node_alloc();
173 p = phys_map_nodes[lp->ptr];
174 if (level == 0) {
175 for (i = 0; i < L2_SIZE; i++) {
176 p[i].is_leaf = 1;
177 p[i].ptr = phys_section_unassigned;
178 }
179 }
180 } else {
181 p = phys_map_nodes[lp->ptr];
182 }
183 lp = &p[(*index >> (level * L2_BITS)) & (L2_SIZE - 1)];
184
185 while (*nb && lp < &p[L2_SIZE]) {
186 if ((*index & (step - 1)) == 0 && *nb >= step) {
187 lp->is_leaf = true;
188 lp->ptr = leaf;
189 *index += step;
190 *nb -= step;
191 } else {
192 phys_page_set_level(lp, index, nb, leaf, level - 1);
193 }
194 ++lp;
195 }
196 }
197
198 static void phys_page_set(AddressSpaceDispatch *d,
199 hwaddr index, hwaddr nb,
200 uint16_t leaf)
201 {
202 /* Wildly overreserve - it doesn't matter much. */
203 phys_map_node_reserve(3 * P_L2_LEVELS);
204
205 phys_page_set_level(&d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
206 }
207
208 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr index)
209 {
210 PhysPageEntry lp = d->phys_map;
211 PhysPageEntry *p;
212 int i;
213
214 for (i = P_L2_LEVELS - 1; i >= 0 && !lp.is_leaf; i--) {
215 if (lp.ptr == PHYS_MAP_NODE_NIL) {
216 return &phys_sections[phys_section_unassigned];
217 }
218 p = phys_map_nodes[lp.ptr];
219 lp = p[(index >> (i * L2_BITS)) & (L2_SIZE - 1)];
220 }
221 return &phys_sections[lp.ptr];
222 }
223
224 bool memory_region_is_unassigned(MemoryRegion *mr)
225 {
226 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
227 && mr != &io_mem_watch;
228 }
229
230 static MemoryRegionSection *address_space_lookup_region(AddressSpace *as,
231 hwaddr addr,
232 bool resolve_subpage)
233 {
234 MemoryRegionSection *section;
235 subpage_t *subpage;
236
237 section = phys_page_find(as->dispatch, addr >> TARGET_PAGE_BITS);
238 if (resolve_subpage && section->mr->subpage) {
239 subpage = container_of(section->mr, subpage_t, iomem);
240 section = &phys_sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
241 }
242 return section;
243 }
244
245 static MemoryRegionSection *
246 address_space_translate_internal(AddressSpace *as, hwaddr addr, hwaddr *xlat,
247 hwaddr *plen, bool resolve_subpage)
248 {
249 MemoryRegionSection *section;
250 Int128 diff;
251
252 section = address_space_lookup_region(as, addr, resolve_subpage);
253 /* Compute offset within MemoryRegionSection */
254 addr -= section->offset_within_address_space;
255
256 /* Compute offset within MemoryRegion */
257 *xlat = addr + section->offset_within_region;
258
259 diff = int128_sub(section->mr->size, int128_make64(addr));
260 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
261 return section;
262 }
263
264 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
265 hwaddr *xlat, hwaddr *plen,
266 bool is_write)
267 {
268 IOMMUTLBEntry iotlb;
269 MemoryRegionSection *section;
270 MemoryRegion *mr;
271 hwaddr len = *plen;
272
273 for (;;) {
274 section = address_space_translate_internal(as, addr, &addr, plen, true);
275 mr = section->mr;
276
277 if (!mr->iommu_ops) {
278 break;
279 }
280
281 iotlb = mr->iommu_ops->translate(mr, addr);
282 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
283 | (addr & iotlb.addr_mask));
284 len = MIN(len, (addr | iotlb.addr_mask) - addr + 1);
285 if (!(iotlb.perm & (1 << is_write))) {
286 mr = &io_mem_unassigned;
287 break;
288 }
289
290 as = iotlb.target_as;
291 }
292
293 *plen = len;
294 *xlat = addr;
295 return mr;
296 }
297
298 MemoryRegionSection *
299 address_space_translate_for_iotlb(AddressSpace *as, hwaddr addr, hwaddr *xlat,
300 hwaddr *plen)
301 {
302 MemoryRegionSection *section;
303 section = address_space_translate_internal(as, addr, xlat, plen, false);
304
305 assert(!section->mr->iommu_ops);
306 return section;
307 }
308 #endif
309
310 void cpu_exec_init_all(void)
311 {
312 #if !defined(CONFIG_USER_ONLY)
313 qemu_mutex_init(&ram_list.mutex);
314 memory_map_init();
315 io_mem_init();
316 #endif
317 }
318
319 #if !defined(CONFIG_USER_ONLY)
320
321 static int cpu_common_post_load(void *opaque, int version_id)
322 {
323 CPUState *cpu = opaque;
324
325 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
326 version_id is increased. */
327 cpu->interrupt_request &= ~0x01;
328 tlb_flush(cpu->env_ptr, 1);
329
330 return 0;
331 }
332
333 const VMStateDescription vmstate_cpu_common = {
334 .name = "cpu_common",
335 .version_id = 1,
336 .minimum_version_id = 1,
337 .minimum_version_id_old = 1,
338 .post_load = cpu_common_post_load,
339 .fields = (VMStateField []) {
340 VMSTATE_UINT32(halted, CPUState),
341 VMSTATE_UINT32(interrupt_request, CPUState),
342 VMSTATE_END_OF_LIST()
343 }
344 };
345
346 #endif
347
348 CPUState *qemu_get_cpu(int index)
349 {
350 CPUArchState *env = first_cpu;
351 CPUState *cpu = NULL;
352
353 while (env) {
354 cpu = ENV_GET_CPU(env);
355 if (cpu->cpu_index == index) {
356 break;
357 }
358 env = env->next_cpu;
359 }
360
361 return env ? cpu : NULL;
362 }
363
364 void qemu_for_each_cpu(void (*func)(CPUState *cpu, void *data), void *data)
365 {
366 CPUArchState *env = first_cpu;
367
368 while (env) {
369 func(ENV_GET_CPU(env), data);
370 env = env->next_cpu;
371 }
372 }
373
374 void cpu_exec_init(CPUArchState *env)
375 {
376 CPUState *cpu = ENV_GET_CPU(env);
377 CPUClass *cc = CPU_GET_CLASS(cpu);
378 CPUArchState **penv;
379 int cpu_index;
380
381 #if defined(CONFIG_USER_ONLY)
382 cpu_list_lock();
383 #endif
384 env->next_cpu = NULL;
385 penv = &first_cpu;
386 cpu_index = 0;
387 while (*penv != NULL) {
388 penv = &(*penv)->next_cpu;
389 cpu_index++;
390 }
391 cpu->cpu_index = cpu_index;
392 cpu->numa_node = 0;
393 QTAILQ_INIT(&env->breakpoints);
394 QTAILQ_INIT(&env->watchpoints);
395 #ifndef CONFIG_USER_ONLY
396 cpu->thread_id = qemu_get_thread_id();
397 #endif
398 *penv = env;
399 #if defined(CONFIG_USER_ONLY)
400 cpu_list_unlock();
401 #endif
402 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu);
403 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
404 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
405 cpu_save, cpu_load, env);
406 assert(cc->vmsd == NULL);
407 #endif
408 if (cc->vmsd != NULL) {
409 vmstate_register(NULL, cpu_index, cc->vmsd, cpu);
410 }
411 }
412
413 #if defined(TARGET_HAS_ICE)
414 #if defined(CONFIG_USER_ONLY)
415 static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
416 {
417 tb_invalidate_phys_page_range(pc, pc + 1, 0);
418 }
419 #else
420 static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
421 {
422 tb_invalidate_phys_addr(cpu_get_phys_page_debug(env, pc) |
423 (pc & ~TARGET_PAGE_MASK));
424 }
425 #endif
426 #endif /* TARGET_HAS_ICE */
427
428 #if defined(CONFIG_USER_ONLY)
429 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
430
431 {
432 }
433
434 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
435 int flags, CPUWatchpoint **watchpoint)
436 {
437 return -ENOSYS;
438 }
439 #else
440 /* Add a watchpoint. */
441 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
442 int flags, CPUWatchpoint **watchpoint)
443 {
444 target_ulong len_mask = ~(len - 1);
445 CPUWatchpoint *wp;
446
447 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
448 if ((len & (len - 1)) || (addr & ~len_mask) ||
449 len == 0 || len > TARGET_PAGE_SIZE) {
450 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
451 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
452 return -EINVAL;
453 }
454 wp = g_malloc(sizeof(*wp));
455
456 wp->vaddr = addr;
457 wp->len_mask = len_mask;
458 wp->flags = flags;
459
460 /* keep all GDB-injected watchpoints in front */
461 if (flags & BP_GDB)
462 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
463 else
464 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
465
466 tlb_flush_page(env, addr);
467
468 if (watchpoint)
469 *watchpoint = wp;
470 return 0;
471 }
472
473 /* Remove a specific watchpoint. */
474 int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr, target_ulong len,
475 int flags)
476 {
477 target_ulong len_mask = ~(len - 1);
478 CPUWatchpoint *wp;
479
480 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
481 if (addr == wp->vaddr && len_mask == wp->len_mask
482 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
483 cpu_watchpoint_remove_by_ref(env, wp);
484 return 0;
485 }
486 }
487 return -ENOENT;
488 }
489
490 /* Remove a specific watchpoint by reference. */
491 void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint)
492 {
493 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
494
495 tlb_flush_page(env, watchpoint->vaddr);
496
497 g_free(watchpoint);
498 }
499
500 /* Remove all matching watchpoints. */
501 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
502 {
503 CPUWatchpoint *wp, *next;
504
505 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
506 if (wp->flags & mask)
507 cpu_watchpoint_remove_by_ref(env, wp);
508 }
509 }
510 #endif
511
512 /* Add a breakpoint. */
513 int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
514 CPUBreakpoint **breakpoint)
515 {
516 #if defined(TARGET_HAS_ICE)
517 CPUBreakpoint *bp;
518
519 bp = g_malloc(sizeof(*bp));
520
521 bp->pc = pc;
522 bp->flags = flags;
523
524 /* keep all GDB-injected breakpoints in front */
525 if (flags & BP_GDB)
526 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
527 else
528 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
529
530 breakpoint_invalidate(env, pc);
531
532 if (breakpoint)
533 *breakpoint = bp;
534 return 0;
535 #else
536 return -ENOSYS;
537 #endif
538 }
539
540 /* Remove a specific breakpoint. */
541 int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags)
542 {
543 #if defined(TARGET_HAS_ICE)
544 CPUBreakpoint *bp;
545
546 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
547 if (bp->pc == pc && bp->flags == flags) {
548 cpu_breakpoint_remove_by_ref(env, bp);
549 return 0;
550 }
551 }
552 return -ENOENT;
553 #else
554 return -ENOSYS;
555 #endif
556 }
557
558 /* Remove a specific breakpoint by reference. */
559 void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint)
560 {
561 #if defined(TARGET_HAS_ICE)
562 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
563
564 breakpoint_invalidate(env, breakpoint->pc);
565
566 g_free(breakpoint);
567 #endif
568 }
569
570 /* Remove all matching breakpoints. */
571 void cpu_breakpoint_remove_all(CPUArchState *env, int mask)
572 {
573 #if defined(TARGET_HAS_ICE)
574 CPUBreakpoint *bp, *next;
575
576 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
577 if (bp->flags & mask)
578 cpu_breakpoint_remove_by_ref(env, bp);
579 }
580 #endif
581 }
582
583 /* enable or disable single step mode. EXCP_DEBUG is returned by the
584 CPU loop after each instruction */
585 void cpu_single_step(CPUArchState *env, int enabled)
586 {
587 #if defined(TARGET_HAS_ICE)
588 if (env->singlestep_enabled != enabled) {
589 env->singlestep_enabled = enabled;
590 if (kvm_enabled())
591 kvm_update_guest_debug(env, 0);
592 else {
593 /* must flush all the translated code to avoid inconsistencies */
594 /* XXX: only flush what is necessary */
595 tb_flush(env);
596 }
597 }
598 #endif
599 }
600
601 void cpu_abort(CPUArchState *env, const char *fmt, ...)
602 {
603 CPUState *cpu = ENV_GET_CPU(env);
604 va_list ap;
605 va_list ap2;
606
607 va_start(ap, fmt);
608 va_copy(ap2, ap);
609 fprintf(stderr, "qemu: fatal: ");
610 vfprintf(stderr, fmt, ap);
611 fprintf(stderr, "\n");
612 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
613 if (qemu_log_enabled()) {
614 qemu_log("qemu: fatal: ");
615 qemu_log_vprintf(fmt, ap2);
616 qemu_log("\n");
617 log_cpu_state(env, CPU_DUMP_FPU | CPU_DUMP_CCOP);
618 qemu_log_flush();
619 qemu_log_close();
620 }
621 va_end(ap2);
622 va_end(ap);
623 #if defined(CONFIG_USER_ONLY)
624 {
625 struct sigaction act;
626 sigfillset(&act.sa_mask);
627 act.sa_handler = SIG_DFL;
628 sigaction(SIGABRT, &act, NULL);
629 }
630 #endif
631 abort();
632 }
633
634 CPUArchState *cpu_copy(CPUArchState *env)
635 {
636 CPUArchState *new_env = cpu_init(env->cpu_model_str);
637 CPUArchState *next_cpu = new_env->next_cpu;
638 #if defined(TARGET_HAS_ICE)
639 CPUBreakpoint *bp;
640 CPUWatchpoint *wp;
641 #endif
642
643 memcpy(new_env, env, sizeof(CPUArchState));
644
645 /* Preserve chaining. */
646 new_env->next_cpu = next_cpu;
647
648 /* Clone all break/watchpoints.
649 Note: Once we support ptrace with hw-debug register access, make sure
650 BP_CPU break/watchpoints are handled correctly on clone. */
651 QTAILQ_INIT(&env->breakpoints);
652 QTAILQ_INIT(&env->watchpoints);
653 #if defined(TARGET_HAS_ICE)
654 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
655 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
656 }
657 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
658 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
659 wp->flags, NULL);
660 }
661 #endif
662
663 return new_env;
664 }
665
666 #if !defined(CONFIG_USER_ONLY)
667 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t end,
668 uintptr_t length)
669 {
670 uintptr_t start1;
671
672 /* we modify the TLB cache so that the dirty bit will be set again
673 when accessing the range */
674 start1 = (uintptr_t)qemu_safe_ram_ptr(start);
675 /* Check that we don't span multiple blocks - this breaks the
676 address comparisons below. */
677 if ((uintptr_t)qemu_safe_ram_ptr(end - 1) - start1
678 != (end - 1) - start) {
679 abort();
680 }
681 cpu_tlb_reset_dirty_all(start1, length);
682
683 }
684
685 /* Note: start and end must be within the same ram block. */
686 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
687 int dirty_flags)
688 {
689 uintptr_t length;
690
691 start &= TARGET_PAGE_MASK;
692 end = TARGET_PAGE_ALIGN(end);
693
694 length = end - start;
695 if (length == 0)
696 return;
697 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
698
699 if (tcg_enabled()) {
700 tlb_reset_dirty_range_all(start, end, length);
701 }
702 }
703
704 static int cpu_physical_memory_set_dirty_tracking(int enable)
705 {
706 int ret = 0;
707 in_migration = enable;
708 return ret;
709 }
710
711 hwaddr memory_region_section_get_iotlb(CPUArchState *env,
712 MemoryRegionSection *section,
713 target_ulong vaddr,
714 hwaddr paddr, hwaddr xlat,
715 int prot,
716 target_ulong *address)
717 {
718 hwaddr iotlb;
719 CPUWatchpoint *wp;
720
721 if (memory_region_is_ram(section->mr)) {
722 /* Normal RAM. */
723 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
724 + xlat;
725 if (!section->readonly) {
726 iotlb |= phys_section_notdirty;
727 } else {
728 iotlb |= phys_section_rom;
729 }
730 } else {
731 iotlb = section - phys_sections;
732 iotlb += xlat;
733 }
734
735 /* Make accesses to pages with watchpoints go via the
736 watchpoint trap routines. */
737 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
738 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
739 /* Avoid trapping reads of pages with a write breakpoint. */
740 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
741 iotlb = phys_section_watch + paddr;
742 *address |= TLB_MMIO;
743 break;
744 }
745 }
746 }
747
748 return iotlb;
749 }
750 #endif /* defined(CONFIG_USER_ONLY) */
751
752 #if !defined(CONFIG_USER_ONLY)
753
754 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
755 uint16_t section);
756 static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
757 static void destroy_page_desc(uint16_t section_index)
758 {
759 MemoryRegionSection *section = &phys_sections[section_index];
760 MemoryRegion *mr = section->mr;
761
762 if (mr->subpage) {
763 subpage_t *subpage = container_of(mr, subpage_t, iomem);
764 memory_region_destroy(&subpage->iomem);
765 g_free(subpage);
766 }
767 }
768
769 static void destroy_l2_mapping(PhysPageEntry *lp, unsigned level)
770 {
771 unsigned i;
772 PhysPageEntry *p;
773
774 if (lp->ptr == PHYS_MAP_NODE_NIL) {
775 return;
776 }
777
778 p = phys_map_nodes[lp->ptr];
779 for (i = 0; i < L2_SIZE; ++i) {
780 if (!p[i].is_leaf) {
781 destroy_l2_mapping(&p[i], level - 1);
782 } else {
783 destroy_page_desc(p[i].ptr);
784 }
785 }
786 lp->is_leaf = 0;
787 lp->ptr = PHYS_MAP_NODE_NIL;
788 }
789
790 static void destroy_all_mappings(AddressSpaceDispatch *d)
791 {
792 destroy_l2_mapping(&d->phys_map, P_L2_LEVELS - 1);
793 phys_map_nodes_reset();
794 }
795
796 static uint16_t phys_section_add(MemoryRegionSection *section)
797 {
798 /* The physical section number is ORed with a page-aligned
799 * pointer to produce the iotlb entries. Thus it should
800 * never overflow into the page-aligned value.
801 */
802 assert(phys_sections_nb < TARGET_PAGE_SIZE);
803
804 if (phys_sections_nb == phys_sections_nb_alloc) {
805 phys_sections_nb_alloc = MAX(phys_sections_nb_alloc * 2, 16);
806 phys_sections = g_renew(MemoryRegionSection, phys_sections,
807 phys_sections_nb_alloc);
808 }
809 phys_sections[phys_sections_nb] = *section;
810 return phys_sections_nb++;
811 }
812
813 static void phys_sections_clear(void)
814 {
815 phys_sections_nb = 0;
816 }
817
818 static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
819 {
820 subpage_t *subpage;
821 hwaddr base = section->offset_within_address_space
822 & TARGET_PAGE_MASK;
823 MemoryRegionSection *existing = phys_page_find(d, base >> TARGET_PAGE_BITS);
824 MemoryRegionSection subsection = {
825 .offset_within_address_space = base,
826 .size = int128_make64(TARGET_PAGE_SIZE),
827 };
828 hwaddr start, end;
829
830 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
831
832 if (!(existing->mr->subpage)) {
833 subpage = subpage_init(d->as, base);
834 subsection.mr = &subpage->iomem;
835 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
836 phys_section_add(&subsection));
837 } else {
838 subpage = container_of(existing->mr, subpage_t, iomem);
839 }
840 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
841 end = start + int128_get64(section->size) - 1;
842 subpage_register(subpage, start, end, phys_section_add(section));
843 }
844
845
846 static void register_multipage(AddressSpaceDispatch *d,
847 MemoryRegionSection *section)
848 {
849 hwaddr start_addr = section->offset_within_address_space;
850 uint16_t section_index = phys_section_add(section);
851 uint64_t num_pages = int128_get64(int128_rshift(section->size,
852 TARGET_PAGE_BITS));
853
854 assert(num_pages);
855 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
856 }
857
858 static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
859 {
860 AddressSpaceDispatch *d = container_of(listener, AddressSpaceDispatch, listener);
861 MemoryRegionSection now = *section, remain = *section;
862 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
863
864 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
865 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
866 - now.offset_within_address_space;
867
868 now.size = int128_min(int128_make64(left), now.size);
869 register_subpage(d, &now);
870 } else {
871 now.size = int128_zero();
872 }
873 while (int128_ne(remain.size, now.size)) {
874 remain.size = int128_sub(remain.size, now.size);
875 remain.offset_within_address_space += int128_get64(now.size);
876 remain.offset_within_region += int128_get64(now.size);
877 now = remain;
878 if (int128_lt(remain.size, page_size)) {
879 register_subpage(d, &now);
880 } else if (remain.offset_within_region & ~TARGET_PAGE_MASK) {
881 now.size = page_size;
882 register_subpage(d, &now);
883 } else {
884 now.size = int128_and(now.size, int128_neg(page_size));
885 register_multipage(d, &now);
886 }
887 }
888 }
889
890 void qemu_flush_coalesced_mmio_buffer(void)
891 {
892 if (kvm_enabled())
893 kvm_flush_coalesced_mmio_buffer();
894 }
895
896 void qemu_mutex_lock_ramlist(void)
897 {
898 qemu_mutex_lock(&ram_list.mutex);
899 }
900
901 void qemu_mutex_unlock_ramlist(void)
902 {
903 qemu_mutex_unlock(&ram_list.mutex);
904 }
905
906 #if defined(__linux__) && !defined(TARGET_S390X)
907
908 #include <sys/vfs.h>
909
910 #define HUGETLBFS_MAGIC 0x958458f6
911
912 static long gethugepagesize(const char *path)
913 {
914 struct statfs fs;
915 int ret;
916
917 do {
918 ret = statfs(path, &fs);
919 } while (ret != 0 && errno == EINTR);
920
921 if (ret != 0) {
922 perror(path);
923 return 0;
924 }
925
926 if (fs.f_type != HUGETLBFS_MAGIC)
927 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
928
929 return fs.f_bsize;
930 }
931
932 static void *file_ram_alloc(RAMBlock *block,
933 ram_addr_t memory,
934 const char *path)
935 {
936 char *filename;
937 char *sanitized_name;
938 char *c;
939 void *area;
940 int fd;
941 #ifdef MAP_POPULATE
942 int flags;
943 #endif
944 unsigned long hpagesize;
945
946 hpagesize = gethugepagesize(path);
947 if (!hpagesize) {
948 return NULL;
949 }
950
951 if (memory < hpagesize) {
952 return NULL;
953 }
954
955 if (kvm_enabled() && !kvm_has_sync_mmu()) {
956 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
957 return NULL;
958 }
959
960 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
961 sanitized_name = g_strdup(block->mr->name);
962 for (c = sanitized_name; *c != '\0'; c++) {
963 if (*c == '/')
964 *c = '_';
965 }
966
967 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
968 sanitized_name);
969 g_free(sanitized_name);
970
971 fd = mkstemp(filename);
972 if (fd < 0) {
973 perror("unable to create backing store for hugepages");
974 g_free(filename);
975 return NULL;
976 }
977 unlink(filename);
978 g_free(filename);
979
980 memory = (memory+hpagesize-1) & ~(hpagesize-1);
981
982 /*
983 * ftruncate is not supported by hugetlbfs in older
984 * hosts, so don't bother bailing out on errors.
985 * If anything goes wrong with it under other filesystems,
986 * mmap will fail.
987 */
988 if (ftruncate(fd, memory))
989 perror("ftruncate");
990
991 #ifdef MAP_POPULATE
992 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
993 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
994 * to sidestep this quirk.
995 */
996 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
997 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
998 #else
999 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
1000 #endif
1001 if (area == MAP_FAILED) {
1002 perror("file_ram_alloc: can't mmap RAM pages");
1003 close(fd);
1004 return (NULL);
1005 }
1006 block->fd = fd;
1007 return area;
1008 }
1009 #endif
1010
1011 static ram_addr_t find_ram_offset(ram_addr_t size)
1012 {
1013 RAMBlock *block, *next_block;
1014 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1015
1016 assert(size != 0); /* it would hand out same offset multiple times */
1017
1018 if (QTAILQ_EMPTY(&ram_list.blocks))
1019 return 0;
1020
1021 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1022 ram_addr_t end, next = RAM_ADDR_MAX;
1023
1024 end = block->offset + block->length;
1025
1026 QTAILQ_FOREACH(next_block, &ram_list.blocks, next) {
1027 if (next_block->offset >= end) {
1028 next = MIN(next, next_block->offset);
1029 }
1030 }
1031 if (next - end >= size && next - end < mingap) {
1032 offset = end;
1033 mingap = next - end;
1034 }
1035 }
1036
1037 if (offset == RAM_ADDR_MAX) {
1038 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1039 (uint64_t)size);
1040 abort();
1041 }
1042
1043 return offset;
1044 }
1045
1046 ram_addr_t last_ram_offset(void)
1047 {
1048 RAMBlock *block;
1049 ram_addr_t last = 0;
1050
1051 QTAILQ_FOREACH(block, &ram_list.blocks, next)
1052 last = MAX(last, block->offset + block->length);
1053
1054 return last;
1055 }
1056
1057 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1058 {
1059 int ret;
1060 QemuOpts *machine_opts;
1061
1062 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1063 machine_opts = qemu_opts_find(qemu_find_opts("machine"), 0);
1064 if (machine_opts &&
1065 !qemu_opt_get_bool(machine_opts, "dump-guest-core", true)) {
1066 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1067 if (ret) {
1068 perror("qemu_madvise");
1069 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1070 "but dump_guest_core=off specified\n");
1071 }
1072 }
1073 }
1074
1075 void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
1076 {
1077 RAMBlock *new_block, *block;
1078
1079 new_block = NULL;
1080 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1081 if (block->offset == addr) {
1082 new_block = block;
1083 break;
1084 }
1085 }
1086 assert(new_block);
1087 assert(!new_block->idstr[0]);
1088
1089 if (dev) {
1090 char *id = qdev_get_dev_path(dev);
1091 if (id) {
1092 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1093 g_free(id);
1094 }
1095 }
1096 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1097
1098 /* This assumes the iothread lock is taken here too. */
1099 qemu_mutex_lock_ramlist();
1100 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1101 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
1102 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1103 new_block->idstr);
1104 abort();
1105 }
1106 }
1107 qemu_mutex_unlock_ramlist();
1108 }
1109
1110 static int memory_try_enable_merging(void *addr, size_t len)
1111 {
1112 QemuOpts *opts;
1113
1114 opts = qemu_opts_find(qemu_find_opts("machine"), 0);
1115 if (opts && !qemu_opt_get_bool(opts, "mem-merge", true)) {
1116 /* disabled by the user */
1117 return 0;
1118 }
1119
1120 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1121 }
1122
1123 ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
1124 MemoryRegion *mr)
1125 {
1126 RAMBlock *block, *new_block;
1127
1128 size = TARGET_PAGE_ALIGN(size);
1129 new_block = g_malloc0(sizeof(*new_block));
1130
1131 /* This assumes the iothread lock is taken here too. */
1132 qemu_mutex_lock_ramlist();
1133 new_block->mr = mr;
1134 new_block->offset = find_ram_offset(size);
1135 if (host) {
1136 new_block->host = host;
1137 new_block->flags |= RAM_PREALLOC_MASK;
1138 } else {
1139 if (mem_path) {
1140 #if defined (__linux__) && !defined(TARGET_S390X)
1141 new_block->host = file_ram_alloc(new_block, size, mem_path);
1142 if (!new_block->host) {
1143 new_block->host = qemu_anon_ram_alloc(size);
1144 memory_try_enable_merging(new_block->host, size);
1145 }
1146 #else
1147 fprintf(stderr, "-mem-path option unsupported\n");
1148 exit(1);
1149 #endif
1150 } else {
1151 if (xen_enabled()) {
1152 xen_ram_alloc(new_block->offset, size, mr);
1153 } else if (kvm_enabled()) {
1154 /* some s390/kvm configurations have special constraints */
1155 new_block->host = kvm_ram_alloc(size);
1156 } else {
1157 new_block->host = qemu_anon_ram_alloc(size);
1158 }
1159 memory_try_enable_merging(new_block->host, size);
1160 }
1161 }
1162 new_block->length = size;
1163
1164 /* Keep the list sorted from biggest to smallest block. */
1165 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1166 if (block->length < new_block->length) {
1167 break;
1168 }
1169 }
1170 if (block) {
1171 QTAILQ_INSERT_BEFORE(block, new_block, next);
1172 } else {
1173 QTAILQ_INSERT_TAIL(&ram_list.blocks, new_block, next);
1174 }
1175 ram_list.mru_block = NULL;
1176
1177 ram_list.version++;
1178 qemu_mutex_unlock_ramlist();
1179
1180 ram_list.phys_dirty = g_realloc(ram_list.phys_dirty,
1181 last_ram_offset() >> TARGET_PAGE_BITS);
1182 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
1183 0, size >> TARGET_PAGE_BITS);
1184 cpu_physical_memory_set_dirty_range(new_block->offset, size, 0xff);
1185
1186 qemu_ram_setup_dump(new_block->host, size);
1187 qemu_madvise(new_block->host, size, QEMU_MADV_HUGEPAGE);
1188
1189 if (kvm_enabled())
1190 kvm_setup_guest_memory(new_block->host, size);
1191
1192 return new_block->offset;
1193 }
1194
1195 ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr)
1196 {
1197 return qemu_ram_alloc_from_ptr(size, NULL, mr);
1198 }
1199
1200 void qemu_ram_free_from_ptr(ram_addr_t addr)
1201 {
1202 RAMBlock *block;
1203
1204 /* This assumes the iothread lock is taken here too. */
1205 qemu_mutex_lock_ramlist();
1206 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1207 if (addr == block->offset) {
1208 QTAILQ_REMOVE(&ram_list.blocks, block, next);
1209 ram_list.mru_block = NULL;
1210 ram_list.version++;
1211 g_free(block);
1212 break;
1213 }
1214 }
1215 qemu_mutex_unlock_ramlist();
1216 }
1217
1218 void qemu_ram_free(ram_addr_t addr)
1219 {
1220 RAMBlock *block;
1221
1222 /* This assumes the iothread lock is taken here too. */
1223 qemu_mutex_lock_ramlist();
1224 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1225 if (addr == block->offset) {
1226 QTAILQ_REMOVE(&ram_list.blocks, block, next);
1227 ram_list.mru_block = NULL;
1228 ram_list.version++;
1229 if (block->flags & RAM_PREALLOC_MASK) {
1230 ;
1231 } else if (mem_path) {
1232 #if defined (__linux__) && !defined(TARGET_S390X)
1233 if (block->fd) {
1234 munmap(block->host, block->length);
1235 close(block->fd);
1236 } else {
1237 qemu_anon_ram_free(block->host, block->length);
1238 }
1239 #else
1240 abort();
1241 #endif
1242 } else {
1243 if (xen_enabled()) {
1244 xen_invalidate_map_cache_entry(block->host);
1245 } else {
1246 qemu_anon_ram_free(block->host, block->length);
1247 }
1248 }
1249 g_free(block);
1250 break;
1251 }
1252 }
1253 qemu_mutex_unlock_ramlist();
1254
1255 }
1256
1257 #ifndef _WIN32
1258 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
1259 {
1260 RAMBlock *block;
1261 ram_addr_t offset;
1262 int flags;
1263 void *area, *vaddr;
1264
1265 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1266 offset = addr - block->offset;
1267 if (offset < block->length) {
1268 vaddr = block->host + offset;
1269 if (block->flags & RAM_PREALLOC_MASK) {
1270 ;
1271 } else {
1272 flags = MAP_FIXED;
1273 munmap(vaddr, length);
1274 if (mem_path) {
1275 #if defined(__linux__) && !defined(TARGET_S390X)
1276 if (block->fd) {
1277 #ifdef MAP_POPULATE
1278 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
1279 MAP_PRIVATE;
1280 #else
1281 flags |= MAP_PRIVATE;
1282 #endif
1283 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1284 flags, block->fd, offset);
1285 } else {
1286 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1287 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1288 flags, -1, 0);
1289 }
1290 #else
1291 abort();
1292 #endif
1293 } else {
1294 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
1295 flags |= MAP_SHARED | MAP_ANONYMOUS;
1296 area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
1297 flags, -1, 0);
1298 #else
1299 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1300 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1301 flags, -1, 0);
1302 #endif
1303 }
1304 if (area != vaddr) {
1305 fprintf(stderr, "Could not remap addr: "
1306 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
1307 length, addr);
1308 exit(1);
1309 }
1310 memory_try_enable_merging(vaddr, length);
1311 qemu_ram_setup_dump(vaddr, length);
1312 }
1313 return;
1314 }
1315 }
1316 }
1317 #endif /* !_WIN32 */
1318
1319 /* Return a host pointer to ram allocated with qemu_ram_alloc.
1320 With the exception of the softmmu code in this file, this should
1321 only be used for local memory (e.g. video ram) that the device owns,
1322 and knows it isn't going to access beyond the end of the block.
1323
1324 It should not be used for general purpose DMA.
1325 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
1326 */
1327 void *qemu_get_ram_ptr(ram_addr_t addr)
1328 {
1329 RAMBlock *block;
1330
1331 /* The list is protected by the iothread lock here. */
1332 block = ram_list.mru_block;
1333 if (block && addr - block->offset < block->length) {
1334 goto found;
1335 }
1336 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1337 if (addr - block->offset < block->length) {
1338 goto found;
1339 }
1340 }
1341
1342 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1343 abort();
1344
1345 found:
1346 ram_list.mru_block = block;
1347 if (xen_enabled()) {
1348 /* We need to check if the requested address is in the RAM
1349 * because we don't want to map the entire memory in QEMU.
1350 * In that case just map until the end of the page.
1351 */
1352 if (block->offset == 0) {
1353 return xen_map_cache(addr, 0, 0);
1354 } else if (block->host == NULL) {
1355 block->host =
1356 xen_map_cache(block->offset, block->length, 1);
1357 }
1358 }
1359 return block->host + (addr - block->offset);
1360 }
1361
1362 /* Return a host pointer to ram allocated with qemu_ram_alloc. Same as
1363 * qemu_get_ram_ptr but do not touch ram_list.mru_block.
1364 *
1365 * ??? Is this still necessary?
1366 */
1367 static void *qemu_safe_ram_ptr(ram_addr_t addr)
1368 {
1369 RAMBlock *block;
1370
1371 /* The list is protected by the iothread lock here. */
1372 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1373 if (addr - block->offset < block->length) {
1374 if (xen_enabled()) {
1375 /* We need to check if the requested address is in the RAM
1376 * because we don't want to map the entire memory in QEMU.
1377 * In that case just map until the end of the page.
1378 */
1379 if (block->offset == 0) {
1380 return xen_map_cache(addr, 0, 0);
1381 } else if (block->host == NULL) {
1382 block->host =
1383 xen_map_cache(block->offset, block->length, 1);
1384 }
1385 }
1386 return block->host + (addr - block->offset);
1387 }
1388 }
1389
1390 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1391 abort();
1392
1393 return NULL;
1394 }
1395
1396 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
1397 * but takes a size argument */
1398 static void *qemu_ram_ptr_length(ram_addr_t addr, ram_addr_t *size)
1399 {
1400 if (*size == 0) {
1401 return NULL;
1402 }
1403 if (xen_enabled()) {
1404 return xen_map_cache(addr, *size, 1);
1405 } else {
1406 RAMBlock *block;
1407
1408 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1409 if (addr - block->offset < block->length) {
1410 if (addr - block->offset + *size > block->length)
1411 *size = block->length - addr + block->offset;
1412 return block->host + (addr - block->offset);
1413 }
1414 }
1415
1416 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1417 abort();
1418 }
1419 }
1420
1421 int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
1422 {
1423 RAMBlock *block;
1424 uint8_t *host = ptr;
1425
1426 if (xen_enabled()) {
1427 *ram_addr = xen_ram_addr_from_mapcache(ptr);
1428 return 0;
1429 }
1430
1431 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1432 /* This case append when the block is not mapped. */
1433 if (block->host == NULL) {
1434 continue;
1435 }
1436 if (host - block->host < block->length) {
1437 *ram_addr = block->offset + (host - block->host);
1438 return 0;
1439 }
1440 }
1441
1442 return -1;
1443 }
1444
1445 /* Some of the softmmu routines need to translate from a host pointer
1446 (typically a TLB entry) back to a ram offset. */
1447 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
1448 {
1449 ram_addr_t ram_addr;
1450
1451 if (qemu_ram_addr_from_host(ptr, &ram_addr)) {
1452 fprintf(stderr, "Bad ram pointer %p\n", ptr);
1453 abort();
1454 }
1455 return ram_addr;
1456 }
1457
1458 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
1459 uint64_t val, unsigned size)
1460 {
1461 int dirty_flags;
1462 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
1463 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
1464 tb_invalidate_phys_page_fast(ram_addr, size);
1465 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
1466 }
1467 switch (size) {
1468 case 1:
1469 stb_p(qemu_get_ram_ptr(ram_addr), val);
1470 break;
1471 case 2:
1472 stw_p(qemu_get_ram_ptr(ram_addr), val);
1473 break;
1474 case 4:
1475 stl_p(qemu_get_ram_ptr(ram_addr), val);
1476 break;
1477 default:
1478 abort();
1479 }
1480 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
1481 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
1482 /* we remove the notdirty callback only if the code has been
1483 flushed */
1484 if (dirty_flags == 0xff)
1485 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
1486 }
1487
1488 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
1489 unsigned size, bool is_write)
1490 {
1491 return is_write;
1492 }
1493
1494 static const MemoryRegionOps notdirty_mem_ops = {
1495 .write = notdirty_mem_write,
1496 .valid.accepts = notdirty_mem_accepts,
1497 .endianness = DEVICE_NATIVE_ENDIAN,
1498 };
1499
1500 /* Generate a debug exception if a watchpoint has been hit. */
1501 static void check_watchpoint(int offset, int len_mask, int flags)
1502 {
1503 CPUArchState *env = cpu_single_env;
1504 target_ulong pc, cs_base;
1505 target_ulong vaddr;
1506 CPUWatchpoint *wp;
1507 int cpu_flags;
1508
1509 if (env->watchpoint_hit) {
1510 /* We re-entered the check after replacing the TB. Now raise
1511 * the debug interrupt so that is will trigger after the
1512 * current instruction. */
1513 cpu_interrupt(ENV_GET_CPU(env), CPU_INTERRUPT_DEBUG);
1514 return;
1515 }
1516 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
1517 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1518 if ((vaddr == (wp->vaddr & len_mask) ||
1519 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
1520 wp->flags |= BP_WATCHPOINT_HIT;
1521 if (!env->watchpoint_hit) {
1522 env->watchpoint_hit = wp;
1523 tb_check_watchpoint(env);
1524 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
1525 env->exception_index = EXCP_DEBUG;
1526 cpu_loop_exit(env);
1527 } else {
1528 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
1529 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
1530 cpu_resume_from_signal(env, NULL);
1531 }
1532 }
1533 } else {
1534 wp->flags &= ~BP_WATCHPOINT_HIT;
1535 }
1536 }
1537 }
1538
1539 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
1540 so these check for a hit then pass through to the normal out-of-line
1541 phys routines. */
1542 static uint64_t watch_mem_read(void *opaque, hwaddr addr,
1543 unsigned size)
1544 {
1545 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ);
1546 switch (size) {
1547 case 1: return ldub_phys(addr);
1548 case 2: return lduw_phys(addr);
1549 case 4: return ldl_phys(addr);
1550 default: abort();
1551 }
1552 }
1553
1554 static void watch_mem_write(void *opaque, hwaddr addr,
1555 uint64_t val, unsigned size)
1556 {
1557 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE);
1558 switch (size) {
1559 case 1:
1560 stb_phys(addr, val);
1561 break;
1562 case 2:
1563 stw_phys(addr, val);
1564 break;
1565 case 4:
1566 stl_phys(addr, val);
1567 break;
1568 default: abort();
1569 }
1570 }
1571
1572 static const MemoryRegionOps watch_mem_ops = {
1573 .read = watch_mem_read,
1574 .write = watch_mem_write,
1575 .endianness = DEVICE_NATIVE_ENDIAN,
1576 };
1577
1578 static uint64_t subpage_read(void *opaque, hwaddr addr,
1579 unsigned len)
1580 {
1581 subpage_t *subpage = opaque;
1582 uint8_t buf[4];
1583
1584 #if defined(DEBUG_SUBPAGE)
1585 printf("%s: subpage %p len %d addr " TARGET_FMT_plx "\n", __func__,
1586 subpage, len, addr);
1587 #endif
1588 address_space_read(subpage->as, addr + subpage->base, buf, len);
1589 switch (len) {
1590 case 1:
1591 return ldub_p(buf);
1592 case 2:
1593 return lduw_p(buf);
1594 case 4:
1595 return ldl_p(buf);
1596 default:
1597 abort();
1598 }
1599 }
1600
1601 static void subpage_write(void *opaque, hwaddr addr,
1602 uint64_t value, unsigned len)
1603 {
1604 subpage_t *subpage = opaque;
1605 uint8_t buf[4];
1606
1607 #if defined(DEBUG_SUBPAGE)
1608 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
1609 " value %"PRIx64"\n",
1610 __func__, subpage, len, addr, value);
1611 #endif
1612 switch (len) {
1613 case 1:
1614 stb_p(buf, value);
1615 break;
1616 case 2:
1617 stw_p(buf, value);
1618 break;
1619 case 4:
1620 stl_p(buf, value);
1621 break;
1622 default:
1623 abort();
1624 }
1625 address_space_write(subpage->as, addr + subpage->base, buf, len);
1626 }
1627
1628 static bool subpage_accepts(void *opaque, hwaddr addr,
1629 unsigned size, bool is_write)
1630 {
1631 subpage_t *subpage = opaque;
1632 #if defined(DEBUG_SUBPAGE)
1633 printf("%s: subpage %p %c len %d addr " TARGET_FMT_plx "\n",
1634 __func__, subpage, is_write ? 'w' : 'r', len, addr);
1635 #endif
1636
1637 return address_space_access_valid(subpage->as, addr + subpage->base,
1638 size, is_write);
1639 }
1640
1641 static const MemoryRegionOps subpage_ops = {
1642 .read = subpage_read,
1643 .write = subpage_write,
1644 .valid.accepts = subpage_accepts,
1645 .endianness = DEVICE_NATIVE_ENDIAN,
1646 };
1647
1648 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1649 uint16_t section)
1650 {
1651 int idx, eidx;
1652
1653 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
1654 return -1;
1655 idx = SUBPAGE_IDX(start);
1656 eidx = SUBPAGE_IDX(end);
1657 #if defined(DEBUG_SUBPAGE)
1658 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
1659 mmio, start, end, idx, eidx, memory);
1660 #endif
1661 for (; idx <= eidx; idx++) {
1662 mmio->sub_section[idx] = section;
1663 }
1664
1665 return 0;
1666 }
1667
1668 static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
1669 {
1670 subpage_t *mmio;
1671
1672 mmio = g_malloc0(sizeof(subpage_t));
1673
1674 mmio->as = as;
1675 mmio->base = base;
1676 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
1677 "subpage", TARGET_PAGE_SIZE);
1678 mmio->iomem.subpage = true;
1679 #if defined(DEBUG_SUBPAGE)
1680 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
1681 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
1682 #endif
1683 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, phys_section_unassigned);
1684
1685 return mmio;
1686 }
1687
1688 static uint16_t dummy_section(MemoryRegion *mr)
1689 {
1690 MemoryRegionSection section = {
1691 .mr = mr,
1692 .offset_within_address_space = 0,
1693 .offset_within_region = 0,
1694 .size = int128_2_64(),
1695 };
1696
1697 return phys_section_add(&section);
1698 }
1699
1700 MemoryRegion *iotlb_to_region(hwaddr index)
1701 {
1702 return phys_sections[index & ~TARGET_PAGE_MASK].mr;
1703 }
1704
1705 static void io_mem_init(void)
1706 {
1707 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, "rom", UINT64_MAX);
1708 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1709 "unassigned", UINT64_MAX);
1710 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
1711 "notdirty", UINT64_MAX);
1712 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1713 "watch", UINT64_MAX);
1714 }
1715
1716 static void mem_begin(MemoryListener *listener)
1717 {
1718 AddressSpaceDispatch *d = container_of(listener, AddressSpaceDispatch, listener);
1719
1720 destroy_all_mappings(d);
1721 d->phys_map.ptr = PHYS_MAP_NODE_NIL;
1722 }
1723
1724 static void core_begin(MemoryListener *listener)
1725 {
1726 phys_sections_clear();
1727 phys_section_unassigned = dummy_section(&io_mem_unassigned);
1728 phys_section_notdirty = dummy_section(&io_mem_notdirty);
1729 phys_section_rom = dummy_section(&io_mem_rom);
1730 phys_section_watch = dummy_section(&io_mem_watch);
1731 }
1732
1733 static void tcg_commit(MemoryListener *listener)
1734 {
1735 CPUArchState *env;
1736
1737 /* since each CPU stores ram addresses in its TLB cache, we must
1738 reset the modified entries */
1739 /* XXX: slow ! */
1740 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1741 tlb_flush(env, 1);
1742 }
1743 }
1744
1745 static void core_log_global_start(MemoryListener *listener)
1746 {
1747 cpu_physical_memory_set_dirty_tracking(1);
1748 }
1749
1750 static void core_log_global_stop(MemoryListener *listener)
1751 {
1752 cpu_physical_memory_set_dirty_tracking(0);
1753 }
1754
1755 static MemoryListener core_memory_listener = {
1756 .begin = core_begin,
1757 .log_global_start = core_log_global_start,
1758 .log_global_stop = core_log_global_stop,
1759 .priority = 1,
1760 };
1761
1762 static MemoryListener tcg_memory_listener = {
1763 .commit = tcg_commit,
1764 };
1765
1766 void address_space_init_dispatch(AddressSpace *as)
1767 {
1768 AddressSpaceDispatch *d = g_new(AddressSpaceDispatch, 1);
1769
1770 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .is_leaf = 0 };
1771 d->listener = (MemoryListener) {
1772 .begin = mem_begin,
1773 .region_add = mem_add,
1774 .region_nop = mem_add,
1775 .priority = 0,
1776 };
1777 d->as = as;
1778 as->dispatch = d;
1779 memory_listener_register(&d->listener, as);
1780 }
1781
1782 void address_space_destroy_dispatch(AddressSpace *as)
1783 {
1784 AddressSpaceDispatch *d = as->dispatch;
1785
1786 memory_listener_unregister(&d->listener);
1787 destroy_l2_mapping(&d->phys_map, P_L2_LEVELS - 1);
1788 g_free(d);
1789 as->dispatch = NULL;
1790 }
1791
1792 static void memory_map_init(void)
1793 {
1794 system_memory = g_malloc(sizeof(*system_memory));
1795 memory_region_init(system_memory, NULL, "system", INT64_MAX);
1796 address_space_init(&address_space_memory, system_memory, "memory");
1797
1798 system_io = g_malloc(sizeof(*system_io));
1799 memory_region_init(system_io, NULL, "io", 65536);
1800 address_space_init(&address_space_io, system_io, "I/O");
1801
1802 memory_listener_register(&core_memory_listener, &address_space_memory);
1803 memory_listener_register(&tcg_memory_listener, &address_space_memory);
1804 }
1805
1806 MemoryRegion *get_system_memory(void)
1807 {
1808 return system_memory;
1809 }
1810
1811 MemoryRegion *get_system_io(void)
1812 {
1813 return system_io;
1814 }
1815
1816 #endif /* !defined(CONFIG_USER_ONLY) */
1817
1818 /* physical memory access (slow version, mainly for debug) */
1819 #if defined(CONFIG_USER_ONLY)
1820 int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
1821 uint8_t *buf, int len, int is_write)
1822 {
1823 int l, flags;
1824 target_ulong page;
1825 void * p;
1826
1827 while (len > 0) {
1828 page = addr & TARGET_PAGE_MASK;
1829 l = (page + TARGET_PAGE_SIZE) - addr;
1830 if (l > len)
1831 l = len;
1832 flags = page_get_flags(page);
1833 if (!(flags & PAGE_VALID))
1834 return -1;
1835 if (is_write) {
1836 if (!(flags & PAGE_WRITE))
1837 return -1;
1838 /* XXX: this code should not depend on lock_user */
1839 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
1840 return -1;
1841 memcpy(p, buf, l);
1842 unlock_user(p, addr, l);
1843 } else {
1844 if (!(flags & PAGE_READ))
1845 return -1;
1846 /* XXX: this code should not depend on lock_user */
1847 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
1848 return -1;
1849 memcpy(buf, p, l);
1850 unlock_user(p, addr, 0);
1851 }
1852 len -= l;
1853 buf += l;
1854 addr += l;
1855 }
1856 return 0;
1857 }
1858
1859 #else
1860
1861 static void invalidate_and_set_dirty(hwaddr addr,
1862 hwaddr length)
1863 {
1864 if (!cpu_physical_memory_is_dirty(addr)) {
1865 /* invalidate code */
1866 tb_invalidate_phys_page_range(addr, addr + length, 0);
1867 /* set dirty bit */
1868 cpu_physical_memory_set_dirty_flags(addr, (0xff & ~CODE_DIRTY_FLAG));
1869 }
1870 xen_modified_memory(addr, length);
1871 }
1872
1873 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
1874 {
1875 if (memory_region_is_ram(mr)) {
1876 return !(is_write && mr->readonly);
1877 }
1878 if (memory_region_is_romd(mr)) {
1879 return !is_write;
1880 }
1881
1882 return false;
1883 }
1884
1885 static inline int memory_access_size(MemoryRegion *mr, int l, hwaddr addr)
1886 {
1887 if (l >= 4 && (((addr & 3) == 0 || mr->ops->impl.unaligned))) {
1888 return 4;
1889 }
1890 if (l >= 2 && (((addr & 1) == 0) || mr->ops->impl.unaligned)) {
1891 return 2;
1892 }
1893 return 1;
1894 }
1895
1896 bool address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf,
1897 int len, bool is_write)
1898 {
1899 hwaddr l;
1900 uint8_t *ptr;
1901 uint64_t val;
1902 hwaddr addr1;
1903 MemoryRegion *mr;
1904 bool error = false;
1905
1906 while (len > 0) {
1907 l = len;
1908 mr = address_space_translate(as, addr, &addr1, &l, is_write);
1909
1910 if (is_write) {
1911 if (!memory_access_is_direct(mr, is_write)) {
1912 l = memory_access_size(mr, l, addr1);
1913 /* XXX: could force cpu_single_env to NULL to avoid
1914 potential bugs */
1915 if (l == 4) {
1916 /* 32 bit write access */
1917 val = ldl_p(buf);
1918 error |= io_mem_write(mr, addr1, val, 4);
1919 } else if (l == 2) {
1920 /* 16 bit write access */
1921 val = lduw_p(buf);
1922 error |= io_mem_write(mr, addr1, val, 2);
1923 } else {
1924 /* 8 bit write access */
1925 val = ldub_p(buf);
1926 error |= io_mem_write(mr, addr1, val, 1);
1927 }
1928 } else {
1929 addr1 += memory_region_get_ram_addr(mr);
1930 /* RAM case */
1931 ptr = qemu_get_ram_ptr(addr1);
1932 memcpy(ptr, buf, l);
1933 invalidate_and_set_dirty(addr1, l);
1934 }
1935 } else {
1936 if (!memory_access_is_direct(mr, is_write)) {
1937 /* I/O case */
1938 l = memory_access_size(mr, l, addr1);
1939 if (l == 4) {
1940 /* 32 bit read access */
1941 error |= io_mem_read(mr, addr1, &val, 4);
1942 stl_p(buf, val);
1943 } else if (l == 2) {
1944 /* 16 bit read access */
1945 error |= io_mem_read(mr, addr1, &val, 2);
1946 stw_p(buf, val);
1947 } else {
1948 /* 8 bit read access */
1949 error |= io_mem_read(mr, addr1, &val, 1);
1950 stb_p(buf, val);
1951 }
1952 } else {
1953 /* RAM case */
1954 ptr = qemu_get_ram_ptr(mr->ram_addr + addr1);
1955 memcpy(buf, ptr, l);
1956 }
1957 }
1958 len -= l;
1959 buf += l;
1960 addr += l;
1961 }
1962
1963 return error;
1964 }
1965
1966 bool address_space_write(AddressSpace *as, hwaddr addr,
1967 const uint8_t *buf, int len)
1968 {
1969 return address_space_rw(as, addr, (uint8_t *)buf, len, true);
1970 }
1971
1972 bool address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len)
1973 {
1974 return address_space_rw(as, addr, buf, len, false);
1975 }
1976
1977
1978 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
1979 int len, int is_write)
1980 {
1981 address_space_rw(&address_space_memory, addr, buf, len, is_write);
1982 }
1983
1984 /* used for ROM loading : can write in RAM and ROM */
1985 void cpu_physical_memory_write_rom(hwaddr addr,
1986 const uint8_t *buf, int len)
1987 {
1988 hwaddr l;
1989 uint8_t *ptr;
1990 hwaddr addr1;
1991 MemoryRegion *mr;
1992
1993 while (len > 0) {
1994 l = len;
1995 mr = address_space_translate(&address_space_memory,
1996 addr, &addr1, &l, true);
1997
1998 if (!(memory_region_is_ram(mr) ||
1999 memory_region_is_romd(mr))) {
2000 /* do nothing */
2001 } else {
2002 addr1 += memory_region_get_ram_addr(mr);
2003 /* ROM/RAM case */
2004 ptr = qemu_get_ram_ptr(addr1);
2005 memcpy(ptr, buf, l);
2006 invalidate_and_set_dirty(addr1, l);
2007 }
2008 len -= l;
2009 buf += l;
2010 addr += l;
2011 }
2012 }
2013
2014 typedef struct {
2015 void *buffer;
2016 hwaddr addr;
2017 hwaddr len;
2018 } BounceBuffer;
2019
2020 static BounceBuffer bounce;
2021
2022 typedef struct MapClient {
2023 void *opaque;
2024 void (*callback)(void *opaque);
2025 QLIST_ENTRY(MapClient) link;
2026 } MapClient;
2027
2028 static QLIST_HEAD(map_client_list, MapClient) map_client_list
2029 = QLIST_HEAD_INITIALIZER(map_client_list);
2030
2031 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
2032 {
2033 MapClient *client = g_malloc(sizeof(*client));
2034
2035 client->opaque = opaque;
2036 client->callback = callback;
2037 QLIST_INSERT_HEAD(&map_client_list, client, link);
2038 return client;
2039 }
2040
2041 static void cpu_unregister_map_client(void *_client)
2042 {
2043 MapClient *client = (MapClient *)_client;
2044
2045 QLIST_REMOVE(client, link);
2046 g_free(client);
2047 }
2048
2049 static void cpu_notify_map_clients(void)
2050 {
2051 MapClient *client;
2052
2053 while (!QLIST_EMPTY(&map_client_list)) {
2054 client = QLIST_FIRST(&map_client_list);
2055 client->callback(client->opaque);
2056 cpu_unregister_map_client(client);
2057 }
2058 }
2059
2060 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
2061 {
2062 MemoryRegion *mr;
2063 hwaddr l, xlat;
2064
2065 while (len > 0) {
2066 l = len;
2067 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2068 if (!memory_access_is_direct(mr, is_write)) {
2069 l = memory_access_size(mr, l, addr);
2070 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
2071 return false;
2072 }
2073 }
2074
2075 len -= l;
2076 addr += l;
2077 }
2078 return true;
2079 }
2080
2081 /* Map a physical memory region into a host virtual address.
2082 * May map a subset of the requested range, given by and returned in *plen.
2083 * May return NULL if resources needed to perform the mapping are exhausted.
2084 * Use only for reads OR writes - not for read-modify-write operations.
2085 * Use cpu_register_map_client() to know when retrying the map operation is
2086 * likely to succeed.
2087 */
2088 void *address_space_map(AddressSpace *as,
2089 hwaddr addr,
2090 hwaddr *plen,
2091 bool is_write)
2092 {
2093 hwaddr len = *plen;
2094 hwaddr todo = 0;
2095 hwaddr l, xlat;
2096 MemoryRegion *mr;
2097 ram_addr_t raddr = RAM_ADDR_MAX;
2098 ram_addr_t rlen;
2099 void *ret;
2100
2101 while (len > 0) {
2102 l = len;
2103 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2104
2105 if (!memory_access_is_direct(mr, is_write)) {
2106 if (todo || bounce.buffer) {
2107 break;
2108 }
2109 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
2110 bounce.addr = addr;
2111 bounce.len = l;
2112 if (!is_write) {
2113 address_space_read(as, addr, bounce.buffer, l);
2114 }
2115
2116 *plen = l;
2117 return bounce.buffer;
2118 }
2119 if (!todo) {
2120 raddr = memory_region_get_ram_addr(mr) + xlat;
2121 } else {
2122 if (memory_region_get_ram_addr(mr) + xlat != raddr + todo) {
2123 break;
2124 }
2125 }
2126
2127 len -= l;
2128 addr += l;
2129 todo += l;
2130 }
2131 rlen = todo;
2132 ret = qemu_ram_ptr_length(raddr, &rlen);
2133 *plen = rlen;
2134 return ret;
2135 }
2136
2137 /* Unmaps a memory region previously mapped by address_space_map().
2138 * Will also mark the memory as dirty if is_write == 1. access_len gives
2139 * the amount of memory that was actually read or written by the caller.
2140 */
2141 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2142 int is_write, hwaddr access_len)
2143 {
2144 if (buffer != bounce.buffer) {
2145 if (is_write) {
2146 ram_addr_t addr1 = qemu_ram_addr_from_host_nofail(buffer);
2147 while (access_len) {
2148 unsigned l;
2149 l = TARGET_PAGE_SIZE;
2150 if (l > access_len)
2151 l = access_len;
2152 invalidate_and_set_dirty(addr1, l);
2153 addr1 += l;
2154 access_len -= l;
2155 }
2156 }
2157 if (xen_enabled()) {
2158 xen_invalidate_map_cache_entry(buffer);
2159 }
2160 return;
2161 }
2162 if (is_write) {
2163 address_space_write(as, bounce.addr, bounce.buffer, access_len);
2164 }
2165 qemu_vfree(bounce.buffer);
2166 bounce.buffer = NULL;
2167 cpu_notify_map_clients();
2168 }
2169
2170 void *cpu_physical_memory_map(hwaddr addr,
2171 hwaddr *plen,
2172 int is_write)
2173 {
2174 return address_space_map(&address_space_memory, addr, plen, is_write);
2175 }
2176
2177 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
2178 int is_write, hwaddr access_len)
2179 {
2180 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
2181 }
2182
2183 /* warning: addr must be aligned */
2184 static inline uint32_t ldl_phys_internal(hwaddr addr,
2185 enum device_endian endian)
2186 {
2187 uint8_t *ptr;
2188 uint64_t val;
2189 MemoryRegion *mr;
2190 hwaddr l = 4;
2191 hwaddr addr1;
2192
2193 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2194 false);
2195 if (l < 4 || !memory_access_is_direct(mr, false)) {
2196 /* I/O case */
2197 io_mem_read(mr, addr1, &val, 4);
2198 #if defined(TARGET_WORDS_BIGENDIAN)
2199 if (endian == DEVICE_LITTLE_ENDIAN) {
2200 val = bswap32(val);
2201 }
2202 #else
2203 if (endian == DEVICE_BIG_ENDIAN) {
2204 val = bswap32(val);
2205 }
2206 #endif
2207 } else {
2208 /* RAM case */
2209 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2210 & TARGET_PAGE_MASK)
2211 + addr1);
2212 switch (endian) {
2213 case DEVICE_LITTLE_ENDIAN:
2214 val = ldl_le_p(ptr);
2215 break;
2216 case DEVICE_BIG_ENDIAN:
2217 val = ldl_be_p(ptr);
2218 break;
2219 default:
2220 val = ldl_p(ptr);
2221 break;
2222 }
2223 }
2224 return val;
2225 }
2226
2227 uint32_t ldl_phys(hwaddr addr)
2228 {
2229 return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2230 }
2231
2232 uint32_t ldl_le_phys(hwaddr addr)
2233 {
2234 return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2235 }
2236
2237 uint32_t ldl_be_phys(hwaddr addr)
2238 {
2239 return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
2240 }
2241
2242 /* warning: addr must be aligned */
2243 static inline uint64_t ldq_phys_internal(hwaddr addr,
2244 enum device_endian endian)
2245 {
2246 uint8_t *ptr;
2247 uint64_t val;
2248 MemoryRegion *mr;
2249 hwaddr l = 8;
2250 hwaddr addr1;
2251
2252 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2253 false);
2254 if (l < 8 || !memory_access_is_direct(mr, false)) {
2255 /* I/O case */
2256 io_mem_read(mr, addr1, &val, 8);
2257 #if defined(TARGET_WORDS_BIGENDIAN)
2258 if (endian == DEVICE_LITTLE_ENDIAN) {
2259 val = bswap64(val);
2260 }
2261 #else
2262 if (endian == DEVICE_BIG_ENDIAN) {
2263 val = bswap64(val);
2264 }
2265 #endif
2266 } else {
2267 /* RAM case */
2268 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2269 & TARGET_PAGE_MASK)
2270 + addr1);
2271 switch (endian) {
2272 case DEVICE_LITTLE_ENDIAN:
2273 val = ldq_le_p(ptr);
2274 break;
2275 case DEVICE_BIG_ENDIAN:
2276 val = ldq_be_p(ptr);
2277 break;
2278 default:
2279 val = ldq_p(ptr);
2280 break;
2281 }
2282 }
2283 return val;
2284 }
2285
2286 uint64_t ldq_phys(hwaddr addr)
2287 {
2288 return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2289 }
2290
2291 uint64_t ldq_le_phys(hwaddr addr)
2292 {
2293 return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2294 }
2295
2296 uint64_t ldq_be_phys(hwaddr addr)
2297 {
2298 return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
2299 }
2300
2301 /* XXX: optimize */
2302 uint32_t ldub_phys(hwaddr addr)
2303 {
2304 uint8_t val;
2305 cpu_physical_memory_read(addr, &val, 1);
2306 return val;
2307 }
2308
2309 /* warning: addr must be aligned */
2310 static inline uint32_t lduw_phys_internal(hwaddr addr,
2311 enum device_endian endian)
2312 {
2313 uint8_t *ptr;
2314 uint64_t val;
2315 MemoryRegion *mr;
2316 hwaddr l = 2;
2317 hwaddr addr1;
2318
2319 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2320 false);
2321 if (l < 2 || !memory_access_is_direct(mr, false)) {
2322 /* I/O case */
2323 io_mem_read(mr, addr1, &val, 2);
2324 #if defined(TARGET_WORDS_BIGENDIAN)
2325 if (endian == DEVICE_LITTLE_ENDIAN) {
2326 val = bswap16(val);
2327 }
2328 #else
2329 if (endian == DEVICE_BIG_ENDIAN) {
2330 val = bswap16(val);
2331 }
2332 #endif
2333 } else {
2334 /* RAM case */
2335 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2336 & TARGET_PAGE_MASK)
2337 + addr1);
2338 switch (endian) {
2339 case DEVICE_LITTLE_ENDIAN:
2340 val = lduw_le_p(ptr);
2341 break;
2342 case DEVICE_BIG_ENDIAN:
2343 val = lduw_be_p(ptr);
2344 break;
2345 default:
2346 val = lduw_p(ptr);
2347 break;
2348 }
2349 }
2350 return val;
2351 }
2352
2353 uint32_t lduw_phys(hwaddr addr)
2354 {
2355 return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2356 }
2357
2358 uint32_t lduw_le_phys(hwaddr addr)
2359 {
2360 return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2361 }
2362
2363 uint32_t lduw_be_phys(hwaddr addr)
2364 {
2365 return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
2366 }
2367
2368 /* warning: addr must be aligned. The ram page is not masked as dirty
2369 and the code inside is not invalidated. It is useful if the dirty
2370 bits are used to track modified PTEs */
2371 void stl_phys_notdirty(hwaddr addr, uint32_t val)
2372 {
2373 uint8_t *ptr;
2374 MemoryRegion *mr;
2375 hwaddr l = 4;
2376 hwaddr addr1;
2377
2378 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2379 true);
2380 if (l < 4 || !memory_access_is_direct(mr, true)) {
2381 io_mem_write(mr, addr1, val, 4);
2382 } else {
2383 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2384 ptr = qemu_get_ram_ptr(addr1);
2385 stl_p(ptr, val);
2386
2387 if (unlikely(in_migration)) {
2388 if (!cpu_physical_memory_is_dirty(addr1)) {
2389 /* invalidate code */
2390 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
2391 /* set dirty bit */
2392 cpu_physical_memory_set_dirty_flags(
2393 addr1, (0xff & ~CODE_DIRTY_FLAG));
2394 }
2395 }
2396 }
2397 }
2398
2399 /* warning: addr must be aligned */
2400 static inline void stl_phys_internal(hwaddr addr, uint32_t val,
2401 enum device_endian endian)
2402 {
2403 uint8_t *ptr;
2404 MemoryRegion *mr;
2405 hwaddr l = 4;
2406 hwaddr addr1;
2407
2408 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2409 true);
2410 if (l < 4 || !memory_access_is_direct(mr, true)) {
2411 #if defined(TARGET_WORDS_BIGENDIAN)
2412 if (endian == DEVICE_LITTLE_ENDIAN) {
2413 val = bswap32(val);
2414 }
2415 #else
2416 if (endian == DEVICE_BIG_ENDIAN) {
2417 val = bswap32(val);
2418 }
2419 #endif
2420 io_mem_write(mr, addr1, val, 4);
2421 } else {
2422 /* RAM case */
2423 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2424 ptr = qemu_get_ram_ptr(addr1);
2425 switch (endian) {
2426 case DEVICE_LITTLE_ENDIAN:
2427 stl_le_p(ptr, val);
2428 break;
2429 case DEVICE_BIG_ENDIAN:
2430 stl_be_p(ptr, val);
2431 break;
2432 default:
2433 stl_p(ptr, val);
2434 break;
2435 }
2436 invalidate_and_set_dirty(addr1, 4);
2437 }
2438 }
2439
2440 void stl_phys(hwaddr addr, uint32_t val)
2441 {
2442 stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2443 }
2444
2445 void stl_le_phys(hwaddr addr, uint32_t val)
2446 {
2447 stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2448 }
2449
2450 void stl_be_phys(hwaddr addr, uint32_t val)
2451 {
2452 stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2453 }
2454
2455 /* XXX: optimize */
2456 void stb_phys(hwaddr addr, uint32_t val)
2457 {
2458 uint8_t v = val;
2459 cpu_physical_memory_write(addr, &v, 1);
2460 }
2461
2462 /* warning: addr must be aligned */
2463 static inline void stw_phys_internal(hwaddr addr, uint32_t val,
2464 enum device_endian endian)
2465 {
2466 uint8_t *ptr;
2467 MemoryRegion *mr;
2468 hwaddr l = 2;
2469 hwaddr addr1;
2470
2471 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2472 true);
2473 if (l < 2 || !memory_access_is_direct(mr, true)) {
2474 #if defined(TARGET_WORDS_BIGENDIAN)
2475 if (endian == DEVICE_LITTLE_ENDIAN) {
2476 val = bswap16(val);
2477 }
2478 #else
2479 if (endian == DEVICE_BIG_ENDIAN) {
2480 val = bswap16(val);
2481 }
2482 #endif
2483 io_mem_write(mr, addr1, val, 2);
2484 } else {
2485 /* RAM case */
2486 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2487 ptr = qemu_get_ram_ptr(addr1);
2488 switch (endian) {
2489 case DEVICE_LITTLE_ENDIAN:
2490 stw_le_p(ptr, val);
2491 break;
2492 case DEVICE_BIG_ENDIAN:
2493 stw_be_p(ptr, val);
2494 break;
2495 default:
2496 stw_p(ptr, val);
2497 break;
2498 }
2499 invalidate_and_set_dirty(addr1, 2);
2500 }
2501 }
2502
2503 void stw_phys(hwaddr addr, uint32_t val)
2504 {
2505 stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2506 }
2507
2508 void stw_le_phys(hwaddr addr, uint32_t val)
2509 {
2510 stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2511 }
2512
2513 void stw_be_phys(hwaddr addr, uint32_t val)
2514 {
2515 stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2516 }
2517
2518 /* XXX: optimize */
2519 void stq_phys(hwaddr addr, uint64_t val)
2520 {
2521 val = tswap64(val);
2522 cpu_physical_memory_write(addr, &val, 8);
2523 }
2524
2525 void stq_le_phys(hwaddr addr, uint64_t val)
2526 {
2527 val = cpu_to_le64(val);
2528 cpu_physical_memory_write(addr, &val, 8);
2529 }
2530
2531 void stq_be_phys(hwaddr addr, uint64_t val)
2532 {
2533 val = cpu_to_be64(val);
2534 cpu_physical_memory_write(addr, &val, 8);
2535 }
2536
2537 /* virtual memory access for debug (includes writing to ROM) */
2538 int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
2539 uint8_t *buf, int len, int is_write)
2540 {
2541 int l;
2542 hwaddr phys_addr;
2543 target_ulong page;
2544
2545 while (len > 0) {
2546 page = addr & TARGET_PAGE_MASK;
2547 phys_addr = cpu_get_phys_page_debug(env, page);
2548 /* if no physical page mapped, return an error */
2549 if (phys_addr == -1)
2550 return -1;
2551 l = (page + TARGET_PAGE_SIZE) - addr;
2552 if (l > len)
2553 l = len;
2554 phys_addr += (addr & ~TARGET_PAGE_MASK);
2555 if (is_write)
2556 cpu_physical_memory_write_rom(phys_addr, buf, l);
2557 else
2558 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
2559 len -= l;
2560 buf += l;
2561 addr += l;
2562 }
2563 return 0;
2564 }
2565 #endif
2566
2567 #if !defined(CONFIG_USER_ONLY)
2568
2569 /*
2570 * A helper function for the _utterly broken_ virtio device model to find out if
2571 * it's running on a big endian machine. Don't do this at home kids!
2572 */
2573 bool virtio_is_big_endian(void);
2574 bool virtio_is_big_endian(void)
2575 {
2576 #if defined(TARGET_WORDS_BIGENDIAN)
2577 return true;
2578 #else
2579 return false;
2580 #endif
2581 }
2582
2583 #endif
2584
2585 #ifndef CONFIG_USER_ONLY
2586 bool cpu_physical_memory_is_io(hwaddr phys_addr)
2587 {
2588 MemoryRegion*mr;
2589 hwaddr l = 1;
2590
2591 mr = address_space_translate(&address_space_memory,
2592 phys_addr, &phys_addr, &l, false);
2593
2594 return !(memory_region_is_ram(mr) ||
2595 memory_region_is_romd(mr));
2596 }
2597
2598 void qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
2599 {
2600 RAMBlock *block;
2601
2602 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
2603 func(block->host, block->offset, block->length, opaque);
2604 }
2605 }
2606 #endif