]> git.proxmox.com Git - mirror_qemu.git/blob - exec.c
MusicPal docs snippet (Jan Kiszka) and reshuffle ChangeLog.
[mirror_qemu.git] / exec.c
1 /*
2 * virtual page mapping and translated block handling
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20 #include "config.h"
21 #ifdef _WIN32
22 #define WIN32_LEAN_AND_MEAN
23 #include <windows.h>
24 #else
25 #include <sys/types.h>
26 #include <sys/mman.h>
27 #endif
28 #include <stdlib.h>
29 #include <stdio.h>
30 #include <stdarg.h>
31 #include <string.h>
32 #include <errno.h>
33 #include <unistd.h>
34 #include <inttypes.h>
35
36 #include "cpu.h"
37 #include "exec-all.h"
38 #include "qemu-common.h"
39 #if defined(CONFIG_USER_ONLY)
40 #include <qemu.h>
41 #endif
42
43 //#define DEBUG_TB_INVALIDATE
44 //#define DEBUG_FLUSH
45 //#define DEBUG_TLB
46 //#define DEBUG_UNASSIGNED
47
48 /* make various TB consistency checks */
49 //#define DEBUG_TB_CHECK
50 //#define DEBUG_TLB_CHECK
51
52 //#define DEBUG_IOPORT
53 //#define DEBUG_SUBPAGE
54
55 #if !defined(CONFIG_USER_ONLY)
56 /* TB consistency checks only implemented for usermode emulation. */
57 #undef DEBUG_TB_CHECK
58 #endif
59
60 /* threshold to flush the translated code buffer */
61 #define CODE_GEN_BUFFER_MAX_SIZE (CODE_GEN_BUFFER_SIZE - code_gen_max_block_size())
62
63 #define SMC_BITMAP_USE_THRESHOLD 10
64
65 #define MMAP_AREA_START 0x00000000
66 #define MMAP_AREA_END 0xa8000000
67
68 #if defined(TARGET_SPARC64)
69 #define TARGET_PHYS_ADDR_SPACE_BITS 41
70 #elif defined(TARGET_SPARC)
71 #define TARGET_PHYS_ADDR_SPACE_BITS 36
72 #elif defined(TARGET_ALPHA)
73 #define TARGET_PHYS_ADDR_SPACE_BITS 42
74 #define TARGET_VIRT_ADDR_SPACE_BITS 42
75 #elif defined(TARGET_PPC64)
76 #define TARGET_PHYS_ADDR_SPACE_BITS 42
77 #elif defined(TARGET_X86_64) && !defined(USE_KQEMU)
78 #define TARGET_PHYS_ADDR_SPACE_BITS 42
79 #elif defined(TARGET_I386) && !defined(USE_KQEMU)
80 #define TARGET_PHYS_ADDR_SPACE_BITS 36
81 #else
82 /* Note: for compatibility with kqemu, we use 32 bits for x86_64 */
83 #define TARGET_PHYS_ADDR_SPACE_BITS 32
84 #endif
85
86 TranslationBlock tbs[CODE_GEN_MAX_BLOCKS];
87 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
88 int nb_tbs;
89 /* any access to the tbs or the page table must use this lock */
90 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
91
92 uint8_t code_gen_buffer[CODE_GEN_BUFFER_SIZE] __attribute__((aligned (32)));
93 uint8_t *code_gen_ptr;
94
95 ram_addr_t phys_ram_size;
96 int phys_ram_fd;
97 uint8_t *phys_ram_base;
98 uint8_t *phys_ram_dirty;
99 static ram_addr_t phys_ram_alloc_offset = 0;
100
101 CPUState *first_cpu;
102 /* current CPU in the current thread. It is only valid inside
103 cpu_exec() */
104 CPUState *cpu_single_env;
105
106 typedef struct PageDesc {
107 /* list of TBs intersecting this ram page */
108 TranslationBlock *first_tb;
109 /* in order to optimize self modifying code, we count the number
110 of lookups we do to a given page to use a bitmap */
111 unsigned int code_write_count;
112 uint8_t *code_bitmap;
113 #if defined(CONFIG_USER_ONLY)
114 unsigned long flags;
115 #endif
116 } PageDesc;
117
118 typedef struct PhysPageDesc {
119 /* offset in host memory of the page + io_index in the low 12 bits */
120 ram_addr_t phys_offset;
121 } PhysPageDesc;
122
123 #define L2_BITS 10
124 #if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
125 /* XXX: this is a temporary hack for alpha target.
126 * In the future, this is to be replaced by a multi-level table
127 * to actually be able to handle the complete 64 bits address space.
128 */
129 #define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
130 #else
131 #define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
132 #endif
133
134 #define L1_SIZE (1 << L1_BITS)
135 #define L2_SIZE (1 << L2_BITS)
136
137 static void io_mem_init(void);
138
139 unsigned long qemu_real_host_page_size;
140 unsigned long qemu_host_page_bits;
141 unsigned long qemu_host_page_size;
142 unsigned long qemu_host_page_mask;
143
144 /* XXX: for system emulation, it could just be an array */
145 static PageDesc *l1_map[L1_SIZE];
146 PhysPageDesc **l1_phys_map;
147
148 /* io memory support */
149 CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
150 CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
151 void *io_mem_opaque[IO_MEM_NB_ENTRIES];
152 static int io_mem_nb;
153 #if defined(CONFIG_SOFTMMU)
154 static int io_mem_watch;
155 #endif
156
157 /* log support */
158 char *logfilename = "/tmp/qemu.log";
159 FILE *logfile;
160 int loglevel;
161 static int log_append = 0;
162
163 /* statistics */
164 static int tlb_flush_count;
165 static int tb_flush_count;
166 static int tb_phys_invalidate_count;
167
168 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
169 typedef struct subpage_t {
170 target_phys_addr_t base;
171 CPUReadMemoryFunc **mem_read[TARGET_PAGE_SIZE][4];
172 CPUWriteMemoryFunc **mem_write[TARGET_PAGE_SIZE][4];
173 void *opaque[TARGET_PAGE_SIZE][2][4];
174 } subpage_t;
175
176 static void page_init(void)
177 {
178 /* NOTE: we can always suppose that qemu_host_page_size >=
179 TARGET_PAGE_SIZE */
180 #ifdef _WIN32
181 {
182 SYSTEM_INFO system_info;
183 DWORD old_protect;
184
185 GetSystemInfo(&system_info);
186 qemu_real_host_page_size = system_info.dwPageSize;
187
188 VirtualProtect(code_gen_buffer, sizeof(code_gen_buffer),
189 PAGE_EXECUTE_READWRITE, &old_protect);
190 }
191 #else
192 qemu_real_host_page_size = getpagesize();
193 {
194 unsigned long start, end;
195
196 start = (unsigned long)code_gen_buffer;
197 start &= ~(qemu_real_host_page_size - 1);
198
199 end = (unsigned long)code_gen_buffer + sizeof(code_gen_buffer);
200 end += qemu_real_host_page_size - 1;
201 end &= ~(qemu_real_host_page_size - 1);
202
203 mprotect((void *)start, end - start,
204 PROT_READ | PROT_WRITE | PROT_EXEC);
205 }
206 #endif
207
208 if (qemu_host_page_size == 0)
209 qemu_host_page_size = qemu_real_host_page_size;
210 if (qemu_host_page_size < TARGET_PAGE_SIZE)
211 qemu_host_page_size = TARGET_PAGE_SIZE;
212 qemu_host_page_bits = 0;
213 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
214 qemu_host_page_bits++;
215 qemu_host_page_mask = ~(qemu_host_page_size - 1);
216 l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
217 memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
218
219 #if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
220 {
221 long long startaddr, endaddr;
222 FILE *f;
223 int n;
224
225 f = fopen("/proc/self/maps", "r");
226 if (f) {
227 do {
228 n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
229 if (n == 2) {
230 startaddr = MIN(startaddr,
231 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
232 endaddr = MIN(endaddr,
233 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
234 page_set_flags(TARGET_PAGE_ALIGN(startaddr),
235 TARGET_PAGE_ALIGN(endaddr),
236 PAGE_RESERVED);
237 }
238 } while (!feof(f));
239 fclose(f);
240 }
241 }
242 #endif
243 }
244
245 static inline PageDesc *page_find_alloc(target_ulong index)
246 {
247 PageDesc **lp, *p;
248
249 lp = &l1_map[index >> L2_BITS];
250 p = *lp;
251 if (!p) {
252 /* allocate if not found */
253 p = qemu_malloc(sizeof(PageDesc) * L2_SIZE);
254 memset(p, 0, sizeof(PageDesc) * L2_SIZE);
255 *lp = p;
256 }
257 return p + (index & (L2_SIZE - 1));
258 }
259
260 static inline PageDesc *page_find(target_ulong index)
261 {
262 PageDesc *p;
263
264 p = l1_map[index >> L2_BITS];
265 if (!p)
266 return 0;
267 return p + (index & (L2_SIZE - 1));
268 }
269
270 static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
271 {
272 void **lp, **p;
273 PhysPageDesc *pd;
274
275 p = (void **)l1_phys_map;
276 #if TARGET_PHYS_ADDR_SPACE_BITS > 32
277
278 #if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
279 #error unsupported TARGET_PHYS_ADDR_SPACE_BITS
280 #endif
281 lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
282 p = *lp;
283 if (!p) {
284 /* allocate if not found */
285 if (!alloc)
286 return NULL;
287 p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
288 memset(p, 0, sizeof(void *) * L1_SIZE);
289 *lp = p;
290 }
291 #endif
292 lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
293 pd = *lp;
294 if (!pd) {
295 int i;
296 /* allocate if not found */
297 if (!alloc)
298 return NULL;
299 pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
300 *lp = pd;
301 for (i = 0; i < L2_SIZE; i++)
302 pd[i].phys_offset = IO_MEM_UNASSIGNED;
303 }
304 return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
305 }
306
307 static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
308 {
309 return phys_page_find_alloc(index, 0);
310 }
311
312 #if !defined(CONFIG_USER_ONLY)
313 static void tlb_protect_code(ram_addr_t ram_addr);
314 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
315 target_ulong vaddr);
316 #endif
317
318 void cpu_exec_init(CPUState *env)
319 {
320 CPUState **penv;
321 int cpu_index;
322
323 if (!code_gen_ptr) {
324 cpu_gen_init();
325 code_gen_ptr = code_gen_buffer;
326 page_init();
327 io_mem_init();
328 }
329 env->next_cpu = NULL;
330 penv = &first_cpu;
331 cpu_index = 0;
332 while (*penv != NULL) {
333 penv = (CPUState **)&(*penv)->next_cpu;
334 cpu_index++;
335 }
336 env->cpu_index = cpu_index;
337 env->nb_watchpoints = 0;
338 *penv = env;
339 }
340
341 static inline void invalidate_page_bitmap(PageDesc *p)
342 {
343 if (p->code_bitmap) {
344 qemu_free(p->code_bitmap);
345 p->code_bitmap = NULL;
346 }
347 p->code_write_count = 0;
348 }
349
350 /* set to NULL all the 'first_tb' fields in all PageDescs */
351 static void page_flush_tb(void)
352 {
353 int i, j;
354 PageDesc *p;
355
356 for(i = 0; i < L1_SIZE; i++) {
357 p = l1_map[i];
358 if (p) {
359 for(j = 0; j < L2_SIZE; j++) {
360 p->first_tb = NULL;
361 invalidate_page_bitmap(p);
362 p++;
363 }
364 }
365 }
366 }
367
368 /* flush all the translation blocks */
369 /* XXX: tb_flush is currently not thread safe */
370 void tb_flush(CPUState *env1)
371 {
372 CPUState *env;
373 #if defined(DEBUG_FLUSH)
374 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
375 (unsigned long)(code_gen_ptr - code_gen_buffer),
376 nb_tbs, nb_tbs > 0 ?
377 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
378 #endif
379 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > CODE_GEN_BUFFER_SIZE)
380 cpu_abort(env1, "Internal error: code buffer overflow\n");
381
382 nb_tbs = 0;
383
384 for(env = first_cpu; env != NULL; env = env->next_cpu) {
385 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
386 }
387
388 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
389 page_flush_tb();
390
391 code_gen_ptr = code_gen_buffer;
392 /* XXX: flush processor icache at this point if cache flush is
393 expensive */
394 tb_flush_count++;
395 }
396
397 #ifdef DEBUG_TB_CHECK
398
399 static void tb_invalidate_check(target_ulong address)
400 {
401 TranslationBlock *tb;
402 int i;
403 address &= TARGET_PAGE_MASK;
404 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
405 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
406 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
407 address >= tb->pc + tb->size)) {
408 printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n",
409 address, (long)tb->pc, tb->size);
410 }
411 }
412 }
413 }
414
415 /* verify that all the pages have correct rights for code */
416 static void tb_page_check(void)
417 {
418 TranslationBlock *tb;
419 int i, flags1, flags2;
420
421 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
422 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
423 flags1 = page_get_flags(tb->pc);
424 flags2 = page_get_flags(tb->pc + tb->size - 1);
425 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
426 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
427 (long)tb->pc, tb->size, flags1, flags2);
428 }
429 }
430 }
431 }
432
433 void tb_jmp_check(TranslationBlock *tb)
434 {
435 TranslationBlock *tb1;
436 unsigned int n1;
437
438 /* suppress any remaining jumps to this TB */
439 tb1 = tb->jmp_first;
440 for(;;) {
441 n1 = (long)tb1 & 3;
442 tb1 = (TranslationBlock *)((long)tb1 & ~3);
443 if (n1 == 2)
444 break;
445 tb1 = tb1->jmp_next[n1];
446 }
447 /* check end of list */
448 if (tb1 != tb) {
449 printf("ERROR: jmp_list from 0x%08lx\n", (long)tb);
450 }
451 }
452
453 #endif
454
455 /* invalidate one TB */
456 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
457 int next_offset)
458 {
459 TranslationBlock *tb1;
460 for(;;) {
461 tb1 = *ptb;
462 if (tb1 == tb) {
463 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
464 break;
465 }
466 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
467 }
468 }
469
470 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
471 {
472 TranslationBlock *tb1;
473 unsigned int n1;
474
475 for(;;) {
476 tb1 = *ptb;
477 n1 = (long)tb1 & 3;
478 tb1 = (TranslationBlock *)((long)tb1 & ~3);
479 if (tb1 == tb) {
480 *ptb = tb1->page_next[n1];
481 break;
482 }
483 ptb = &tb1->page_next[n1];
484 }
485 }
486
487 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
488 {
489 TranslationBlock *tb1, **ptb;
490 unsigned int n1;
491
492 ptb = &tb->jmp_next[n];
493 tb1 = *ptb;
494 if (tb1) {
495 /* find tb(n) in circular list */
496 for(;;) {
497 tb1 = *ptb;
498 n1 = (long)tb1 & 3;
499 tb1 = (TranslationBlock *)((long)tb1 & ~3);
500 if (n1 == n && tb1 == tb)
501 break;
502 if (n1 == 2) {
503 ptb = &tb1->jmp_first;
504 } else {
505 ptb = &tb1->jmp_next[n1];
506 }
507 }
508 /* now we can suppress tb(n) from the list */
509 *ptb = tb->jmp_next[n];
510
511 tb->jmp_next[n] = NULL;
512 }
513 }
514
515 /* reset the jump entry 'n' of a TB so that it is not chained to
516 another TB */
517 static inline void tb_reset_jump(TranslationBlock *tb, int n)
518 {
519 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
520 }
521
522 static inline void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
523 {
524 CPUState *env;
525 PageDesc *p;
526 unsigned int h, n1;
527 target_phys_addr_t phys_pc;
528 TranslationBlock *tb1, *tb2;
529
530 /* remove the TB from the hash list */
531 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
532 h = tb_phys_hash_func(phys_pc);
533 tb_remove(&tb_phys_hash[h], tb,
534 offsetof(TranslationBlock, phys_hash_next));
535
536 /* remove the TB from the page list */
537 if (tb->page_addr[0] != page_addr) {
538 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
539 tb_page_remove(&p->first_tb, tb);
540 invalidate_page_bitmap(p);
541 }
542 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
543 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
544 tb_page_remove(&p->first_tb, tb);
545 invalidate_page_bitmap(p);
546 }
547
548 tb_invalidated_flag = 1;
549
550 /* remove the TB from the hash list */
551 h = tb_jmp_cache_hash_func(tb->pc);
552 for(env = first_cpu; env != NULL; env = env->next_cpu) {
553 if (env->tb_jmp_cache[h] == tb)
554 env->tb_jmp_cache[h] = NULL;
555 }
556
557 /* suppress this TB from the two jump lists */
558 tb_jmp_remove(tb, 0);
559 tb_jmp_remove(tb, 1);
560
561 /* suppress any remaining jumps to this TB */
562 tb1 = tb->jmp_first;
563 for(;;) {
564 n1 = (long)tb1 & 3;
565 if (n1 == 2)
566 break;
567 tb1 = (TranslationBlock *)((long)tb1 & ~3);
568 tb2 = tb1->jmp_next[n1];
569 tb_reset_jump(tb1, n1);
570 tb1->jmp_next[n1] = NULL;
571 tb1 = tb2;
572 }
573 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
574
575 tb_phys_invalidate_count++;
576 }
577
578 static inline void set_bits(uint8_t *tab, int start, int len)
579 {
580 int end, mask, end1;
581
582 end = start + len;
583 tab += start >> 3;
584 mask = 0xff << (start & 7);
585 if ((start & ~7) == (end & ~7)) {
586 if (start < end) {
587 mask &= ~(0xff << (end & 7));
588 *tab |= mask;
589 }
590 } else {
591 *tab++ |= mask;
592 start = (start + 8) & ~7;
593 end1 = end & ~7;
594 while (start < end1) {
595 *tab++ = 0xff;
596 start += 8;
597 }
598 if (start < end) {
599 mask = ~(0xff << (end & 7));
600 *tab |= mask;
601 }
602 }
603 }
604
605 static void build_page_bitmap(PageDesc *p)
606 {
607 int n, tb_start, tb_end;
608 TranslationBlock *tb;
609
610 p->code_bitmap = qemu_malloc(TARGET_PAGE_SIZE / 8);
611 if (!p->code_bitmap)
612 return;
613 memset(p->code_bitmap, 0, TARGET_PAGE_SIZE / 8);
614
615 tb = p->first_tb;
616 while (tb != NULL) {
617 n = (long)tb & 3;
618 tb = (TranslationBlock *)((long)tb & ~3);
619 /* NOTE: this is subtle as a TB may span two physical pages */
620 if (n == 0) {
621 /* NOTE: tb_end may be after the end of the page, but
622 it is not a problem */
623 tb_start = tb->pc & ~TARGET_PAGE_MASK;
624 tb_end = tb_start + tb->size;
625 if (tb_end > TARGET_PAGE_SIZE)
626 tb_end = TARGET_PAGE_SIZE;
627 } else {
628 tb_start = 0;
629 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
630 }
631 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
632 tb = tb->page_next[n];
633 }
634 }
635
636 #ifdef TARGET_HAS_PRECISE_SMC
637
638 static void tb_gen_code(CPUState *env,
639 target_ulong pc, target_ulong cs_base, int flags,
640 int cflags)
641 {
642 TranslationBlock *tb;
643 uint8_t *tc_ptr;
644 target_ulong phys_pc, phys_page2, virt_page2;
645 int code_gen_size;
646
647 phys_pc = get_phys_addr_code(env, pc);
648 tb = tb_alloc(pc);
649 if (!tb) {
650 /* flush must be done */
651 tb_flush(env);
652 /* cannot fail at this point */
653 tb = tb_alloc(pc);
654 }
655 tc_ptr = code_gen_ptr;
656 tb->tc_ptr = tc_ptr;
657 tb->cs_base = cs_base;
658 tb->flags = flags;
659 tb->cflags = cflags;
660 cpu_gen_code(env, tb, &code_gen_size);
661 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
662
663 /* check next page if needed */
664 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
665 phys_page2 = -1;
666 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
667 phys_page2 = get_phys_addr_code(env, virt_page2);
668 }
669 tb_link_phys(tb, phys_pc, phys_page2);
670 }
671 #endif
672
673 /* invalidate all TBs which intersect with the target physical page
674 starting in range [start;end[. NOTE: start and end must refer to
675 the same physical page. 'is_cpu_write_access' should be true if called
676 from a real cpu write access: the virtual CPU will exit the current
677 TB if code is modified inside this TB. */
678 void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
679 int is_cpu_write_access)
680 {
681 int n, current_tb_modified, current_tb_not_found, current_flags;
682 CPUState *env = cpu_single_env;
683 PageDesc *p;
684 TranslationBlock *tb, *tb_next, *current_tb, *saved_tb;
685 target_ulong tb_start, tb_end;
686 target_ulong current_pc, current_cs_base;
687
688 p = page_find(start >> TARGET_PAGE_BITS);
689 if (!p)
690 return;
691 if (!p->code_bitmap &&
692 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
693 is_cpu_write_access) {
694 /* build code bitmap */
695 build_page_bitmap(p);
696 }
697
698 /* we remove all the TBs in the range [start, end[ */
699 /* XXX: see if in some cases it could be faster to invalidate all the code */
700 current_tb_not_found = is_cpu_write_access;
701 current_tb_modified = 0;
702 current_tb = NULL; /* avoid warning */
703 current_pc = 0; /* avoid warning */
704 current_cs_base = 0; /* avoid warning */
705 current_flags = 0; /* avoid warning */
706 tb = p->first_tb;
707 while (tb != NULL) {
708 n = (long)tb & 3;
709 tb = (TranslationBlock *)((long)tb & ~3);
710 tb_next = tb->page_next[n];
711 /* NOTE: this is subtle as a TB may span two physical pages */
712 if (n == 0) {
713 /* NOTE: tb_end may be after the end of the page, but
714 it is not a problem */
715 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
716 tb_end = tb_start + tb->size;
717 } else {
718 tb_start = tb->page_addr[1];
719 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
720 }
721 if (!(tb_end <= start || tb_start >= end)) {
722 #ifdef TARGET_HAS_PRECISE_SMC
723 if (current_tb_not_found) {
724 current_tb_not_found = 0;
725 current_tb = NULL;
726 if (env->mem_write_pc) {
727 /* now we have a real cpu fault */
728 current_tb = tb_find_pc(env->mem_write_pc);
729 }
730 }
731 if (current_tb == tb &&
732 !(current_tb->cflags & CF_SINGLE_INSN)) {
733 /* If we are modifying the current TB, we must stop
734 its execution. We could be more precise by checking
735 that the modification is after the current PC, but it
736 would require a specialized function to partially
737 restore the CPU state */
738
739 current_tb_modified = 1;
740 cpu_restore_state(current_tb, env,
741 env->mem_write_pc, NULL);
742 #if defined(TARGET_I386)
743 current_flags = env->hflags;
744 current_flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
745 current_cs_base = (target_ulong)env->segs[R_CS].base;
746 current_pc = current_cs_base + env->eip;
747 #else
748 #error unsupported CPU
749 #endif
750 }
751 #endif /* TARGET_HAS_PRECISE_SMC */
752 /* we need to do that to handle the case where a signal
753 occurs while doing tb_phys_invalidate() */
754 saved_tb = NULL;
755 if (env) {
756 saved_tb = env->current_tb;
757 env->current_tb = NULL;
758 }
759 tb_phys_invalidate(tb, -1);
760 if (env) {
761 env->current_tb = saved_tb;
762 if (env->interrupt_request && env->current_tb)
763 cpu_interrupt(env, env->interrupt_request);
764 }
765 }
766 tb = tb_next;
767 }
768 #if !defined(CONFIG_USER_ONLY)
769 /* if no code remaining, no need to continue to use slow writes */
770 if (!p->first_tb) {
771 invalidate_page_bitmap(p);
772 if (is_cpu_write_access) {
773 tlb_unprotect_code_phys(env, start, env->mem_write_vaddr);
774 }
775 }
776 #endif
777 #ifdef TARGET_HAS_PRECISE_SMC
778 if (current_tb_modified) {
779 /* we generate a block containing just the instruction
780 modifying the memory. It will ensure that it cannot modify
781 itself */
782 env->current_tb = NULL;
783 tb_gen_code(env, current_pc, current_cs_base, current_flags,
784 CF_SINGLE_INSN);
785 cpu_resume_from_signal(env, NULL);
786 }
787 #endif
788 }
789
790 /* len must be <= 8 and start must be a multiple of len */
791 static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
792 {
793 PageDesc *p;
794 int offset, b;
795 #if 0
796 if (1) {
797 if (loglevel) {
798 fprintf(logfile, "modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
799 cpu_single_env->mem_write_vaddr, len,
800 cpu_single_env->eip,
801 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
802 }
803 }
804 #endif
805 p = page_find(start >> TARGET_PAGE_BITS);
806 if (!p)
807 return;
808 if (p->code_bitmap) {
809 offset = start & ~TARGET_PAGE_MASK;
810 b = p->code_bitmap[offset >> 3] >> (offset & 7);
811 if (b & ((1 << len) - 1))
812 goto do_invalidate;
813 } else {
814 do_invalidate:
815 tb_invalidate_phys_page_range(start, start + len, 1);
816 }
817 }
818
819 #if !defined(CONFIG_SOFTMMU)
820 static void tb_invalidate_phys_page(target_phys_addr_t addr,
821 unsigned long pc, void *puc)
822 {
823 int n, current_flags, current_tb_modified;
824 target_ulong current_pc, current_cs_base;
825 PageDesc *p;
826 TranslationBlock *tb, *current_tb;
827 #ifdef TARGET_HAS_PRECISE_SMC
828 CPUState *env = cpu_single_env;
829 #endif
830
831 addr &= TARGET_PAGE_MASK;
832 p = page_find(addr >> TARGET_PAGE_BITS);
833 if (!p)
834 return;
835 tb = p->first_tb;
836 current_tb_modified = 0;
837 current_tb = NULL;
838 current_pc = 0; /* avoid warning */
839 current_cs_base = 0; /* avoid warning */
840 current_flags = 0; /* avoid warning */
841 #ifdef TARGET_HAS_PRECISE_SMC
842 if (tb && pc != 0) {
843 current_tb = tb_find_pc(pc);
844 }
845 #endif
846 while (tb != NULL) {
847 n = (long)tb & 3;
848 tb = (TranslationBlock *)((long)tb & ~3);
849 #ifdef TARGET_HAS_PRECISE_SMC
850 if (current_tb == tb &&
851 !(current_tb->cflags & CF_SINGLE_INSN)) {
852 /* If we are modifying the current TB, we must stop
853 its execution. We could be more precise by checking
854 that the modification is after the current PC, but it
855 would require a specialized function to partially
856 restore the CPU state */
857
858 current_tb_modified = 1;
859 cpu_restore_state(current_tb, env, pc, puc);
860 #if defined(TARGET_I386)
861 current_flags = env->hflags;
862 current_flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
863 current_cs_base = (target_ulong)env->segs[R_CS].base;
864 current_pc = current_cs_base + env->eip;
865 #else
866 #error unsupported CPU
867 #endif
868 }
869 #endif /* TARGET_HAS_PRECISE_SMC */
870 tb_phys_invalidate(tb, addr);
871 tb = tb->page_next[n];
872 }
873 p->first_tb = NULL;
874 #ifdef TARGET_HAS_PRECISE_SMC
875 if (current_tb_modified) {
876 /* we generate a block containing just the instruction
877 modifying the memory. It will ensure that it cannot modify
878 itself */
879 env->current_tb = NULL;
880 tb_gen_code(env, current_pc, current_cs_base, current_flags,
881 CF_SINGLE_INSN);
882 cpu_resume_from_signal(env, puc);
883 }
884 #endif
885 }
886 #endif
887
888 /* add the tb in the target page and protect it if necessary */
889 static inline void tb_alloc_page(TranslationBlock *tb,
890 unsigned int n, target_ulong page_addr)
891 {
892 PageDesc *p;
893 TranslationBlock *last_first_tb;
894
895 tb->page_addr[n] = page_addr;
896 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
897 tb->page_next[n] = p->first_tb;
898 last_first_tb = p->first_tb;
899 p->first_tb = (TranslationBlock *)((long)tb | n);
900 invalidate_page_bitmap(p);
901
902 #if defined(TARGET_HAS_SMC) || 1
903
904 #if defined(CONFIG_USER_ONLY)
905 if (p->flags & PAGE_WRITE) {
906 target_ulong addr;
907 PageDesc *p2;
908 int prot;
909
910 /* force the host page as non writable (writes will have a
911 page fault + mprotect overhead) */
912 page_addr &= qemu_host_page_mask;
913 prot = 0;
914 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
915 addr += TARGET_PAGE_SIZE) {
916
917 p2 = page_find (addr >> TARGET_PAGE_BITS);
918 if (!p2)
919 continue;
920 prot |= p2->flags;
921 p2->flags &= ~PAGE_WRITE;
922 page_get_flags(addr);
923 }
924 mprotect(g2h(page_addr), qemu_host_page_size,
925 (prot & PAGE_BITS) & ~PAGE_WRITE);
926 #ifdef DEBUG_TB_INVALIDATE
927 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
928 page_addr);
929 #endif
930 }
931 #else
932 /* if some code is already present, then the pages are already
933 protected. So we handle the case where only the first TB is
934 allocated in a physical page */
935 if (!last_first_tb) {
936 tlb_protect_code(page_addr);
937 }
938 #endif
939
940 #endif /* TARGET_HAS_SMC */
941 }
942
943 /* Allocate a new translation block. Flush the translation buffer if
944 too many translation blocks or too much generated code. */
945 TranslationBlock *tb_alloc(target_ulong pc)
946 {
947 TranslationBlock *tb;
948
949 if (nb_tbs >= CODE_GEN_MAX_BLOCKS ||
950 (code_gen_ptr - code_gen_buffer) >= CODE_GEN_BUFFER_MAX_SIZE)
951 return NULL;
952 tb = &tbs[nb_tbs++];
953 tb->pc = pc;
954 tb->cflags = 0;
955 return tb;
956 }
957
958 /* add a new TB and link it to the physical page tables. phys_page2 is
959 (-1) to indicate that only one page contains the TB. */
960 void tb_link_phys(TranslationBlock *tb,
961 target_ulong phys_pc, target_ulong phys_page2)
962 {
963 unsigned int h;
964 TranslationBlock **ptb;
965
966 /* add in the physical hash table */
967 h = tb_phys_hash_func(phys_pc);
968 ptb = &tb_phys_hash[h];
969 tb->phys_hash_next = *ptb;
970 *ptb = tb;
971
972 /* add in the page list */
973 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
974 if (phys_page2 != -1)
975 tb_alloc_page(tb, 1, phys_page2);
976 else
977 tb->page_addr[1] = -1;
978
979 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
980 tb->jmp_next[0] = NULL;
981 tb->jmp_next[1] = NULL;
982
983 /* init original jump addresses */
984 if (tb->tb_next_offset[0] != 0xffff)
985 tb_reset_jump(tb, 0);
986 if (tb->tb_next_offset[1] != 0xffff)
987 tb_reset_jump(tb, 1);
988
989 #ifdef DEBUG_TB_CHECK
990 tb_page_check();
991 #endif
992 }
993
994 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
995 tb[1].tc_ptr. Return NULL if not found */
996 TranslationBlock *tb_find_pc(unsigned long tc_ptr)
997 {
998 int m_min, m_max, m;
999 unsigned long v;
1000 TranslationBlock *tb;
1001
1002 if (nb_tbs <= 0)
1003 return NULL;
1004 if (tc_ptr < (unsigned long)code_gen_buffer ||
1005 tc_ptr >= (unsigned long)code_gen_ptr)
1006 return NULL;
1007 /* binary search (cf Knuth) */
1008 m_min = 0;
1009 m_max = nb_tbs - 1;
1010 while (m_min <= m_max) {
1011 m = (m_min + m_max) >> 1;
1012 tb = &tbs[m];
1013 v = (unsigned long)tb->tc_ptr;
1014 if (v == tc_ptr)
1015 return tb;
1016 else if (tc_ptr < v) {
1017 m_max = m - 1;
1018 } else {
1019 m_min = m + 1;
1020 }
1021 }
1022 return &tbs[m_max];
1023 }
1024
1025 static void tb_reset_jump_recursive(TranslationBlock *tb);
1026
1027 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1028 {
1029 TranslationBlock *tb1, *tb_next, **ptb;
1030 unsigned int n1;
1031
1032 tb1 = tb->jmp_next[n];
1033 if (tb1 != NULL) {
1034 /* find head of list */
1035 for(;;) {
1036 n1 = (long)tb1 & 3;
1037 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1038 if (n1 == 2)
1039 break;
1040 tb1 = tb1->jmp_next[n1];
1041 }
1042 /* we are now sure now that tb jumps to tb1 */
1043 tb_next = tb1;
1044
1045 /* remove tb from the jmp_first list */
1046 ptb = &tb_next->jmp_first;
1047 for(;;) {
1048 tb1 = *ptb;
1049 n1 = (long)tb1 & 3;
1050 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1051 if (n1 == n && tb1 == tb)
1052 break;
1053 ptb = &tb1->jmp_next[n1];
1054 }
1055 *ptb = tb->jmp_next[n];
1056 tb->jmp_next[n] = NULL;
1057
1058 /* suppress the jump to next tb in generated code */
1059 tb_reset_jump(tb, n);
1060
1061 /* suppress jumps in the tb on which we could have jumped */
1062 tb_reset_jump_recursive(tb_next);
1063 }
1064 }
1065
1066 static void tb_reset_jump_recursive(TranslationBlock *tb)
1067 {
1068 tb_reset_jump_recursive2(tb, 0);
1069 tb_reset_jump_recursive2(tb, 1);
1070 }
1071
1072 #if defined(TARGET_HAS_ICE)
1073 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1074 {
1075 target_phys_addr_t addr;
1076 target_ulong pd;
1077 ram_addr_t ram_addr;
1078 PhysPageDesc *p;
1079
1080 addr = cpu_get_phys_page_debug(env, pc);
1081 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1082 if (!p) {
1083 pd = IO_MEM_UNASSIGNED;
1084 } else {
1085 pd = p->phys_offset;
1086 }
1087 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
1088 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1089 }
1090 #endif
1091
1092 /* Add a watchpoint. */
1093 int cpu_watchpoint_insert(CPUState *env, target_ulong addr)
1094 {
1095 int i;
1096
1097 for (i = 0; i < env->nb_watchpoints; i++) {
1098 if (addr == env->watchpoint[i].vaddr)
1099 return 0;
1100 }
1101 if (env->nb_watchpoints >= MAX_WATCHPOINTS)
1102 return -1;
1103
1104 i = env->nb_watchpoints++;
1105 env->watchpoint[i].vaddr = addr;
1106 tlb_flush_page(env, addr);
1107 /* FIXME: This flush is needed because of the hack to make memory ops
1108 terminate the TB. It can be removed once the proper IO trap and
1109 re-execute bits are in. */
1110 tb_flush(env);
1111 return i;
1112 }
1113
1114 /* Remove a watchpoint. */
1115 int cpu_watchpoint_remove(CPUState *env, target_ulong addr)
1116 {
1117 int i;
1118
1119 for (i = 0; i < env->nb_watchpoints; i++) {
1120 if (addr == env->watchpoint[i].vaddr) {
1121 env->nb_watchpoints--;
1122 env->watchpoint[i] = env->watchpoint[env->nb_watchpoints];
1123 tlb_flush_page(env, addr);
1124 return 0;
1125 }
1126 }
1127 return -1;
1128 }
1129
1130 /* add a breakpoint. EXCP_DEBUG is returned by the CPU loop if a
1131 breakpoint is reached */
1132 int cpu_breakpoint_insert(CPUState *env, target_ulong pc)
1133 {
1134 #if defined(TARGET_HAS_ICE)
1135 int i;
1136
1137 for(i = 0; i < env->nb_breakpoints; i++) {
1138 if (env->breakpoints[i] == pc)
1139 return 0;
1140 }
1141
1142 if (env->nb_breakpoints >= MAX_BREAKPOINTS)
1143 return -1;
1144 env->breakpoints[env->nb_breakpoints++] = pc;
1145
1146 breakpoint_invalidate(env, pc);
1147 return 0;
1148 #else
1149 return -1;
1150 #endif
1151 }
1152
1153 /* remove a breakpoint */
1154 int cpu_breakpoint_remove(CPUState *env, target_ulong pc)
1155 {
1156 #if defined(TARGET_HAS_ICE)
1157 int i;
1158 for(i = 0; i < env->nb_breakpoints; i++) {
1159 if (env->breakpoints[i] == pc)
1160 goto found;
1161 }
1162 return -1;
1163 found:
1164 env->nb_breakpoints--;
1165 if (i < env->nb_breakpoints)
1166 env->breakpoints[i] = env->breakpoints[env->nb_breakpoints];
1167
1168 breakpoint_invalidate(env, pc);
1169 return 0;
1170 #else
1171 return -1;
1172 #endif
1173 }
1174
1175 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1176 CPU loop after each instruction */
1177 void cpu_single_step(CPUState *env, int enabled)
1178 {
1179 #if defined(TARGET_HAS_ICE)
1180 if (env->singlestep_enabled != enabled) {
1181 env->singlestep_enabled = enabled;
1182 /* must flush all the translated code to avoid inconsistancies */
1183 /* XXX: only flush what is necessary */
1184 tb_flush(env);
1185 }
1186 #endif
1187 }
1188
1189 /* enable or disable low levels log */
1190 void cpu_set_log(int log_flags)
1191 {
1192 loglevel = log_flags;
1193 if (loglevel && !logfile) {
1194 logfile = fopen(logfilename, log_append ? "a" : "w");
1195 if (!logfile) {
1196 perror(logfilename);
1197 _exit(1);
1198 }
1199 #if !defined(CONFIG_SOFTMMU)
1200 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1201 {
1202 static uint8_t logfile_buf[4096];
1203 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1204 }
1205 #else
1206 setvbuf(logfile, NULL, _IOLBF, 0);
1207 #endif
1208 log_append = 1;
1209 }
1210 if (!loglevel && logfile) {
1211 fclose(logfile);
1212 logfile = NULL;
1213 }
1214 }
1215
1216 void cpu_set_log_filename(const char *filename)
1217 {
1218 logfilename = strdup(filename);
1219 if (logfile) {
1220 fclose(logfile);
1221 logfile = NULL;
1222 }
1223 cpu_set_log(loglevel);
1224 }
1225
1226 /* mask must never be zero, except for A20 change call */
1227 void cpu_interrupt(CPUState *env, int mask)
1228 {
1229 TranslationBlock *tb;
1230 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1231
1232 env->interrupt_request |= mask;
1233 /* if the cpu is currently executing code, we must unlink it and
1234 all the potentially executing TB */
1235 tb = env->current_tb;
1236 if (tb && !testandset(&interrupt_lock)) {
1237 env->current_tb = NULL;
1238 tb_reset_jump_recursive(tb);
1239 resetlock(&interrupt_lock);
1240 }
1241 }
1242
1243 void cpu_reset_interrupt(CPUState *env, int mask)
1244 {
1245 env->interrupt_request &= ~mask;
1246 }
1247
1248 CPULogItem cpu_log_items[] = {
1249 { CPU_LOG_TB_OUT_ASM, "out_asm",
1250 "show generated host assembly code for each compiled TB" },
1251 { CPU_LOG_TB_IN_ASM, "in_asm",
1252 "show target assembly code for each compiled TB" },
1253 { CPU_LOG_TB_OP, "op",
1254 "show micro ops for each compiled TB" },
1255 { CPU_LOG_TB_OP_OPT, "op_opt",
1256 "show micro ops "
1257 #ifdef TARGET_I386
1258 "before eflags optimization and "
1259 #endif
1260 "after liveness analysis" },
1261 { CPU_LOG_INT, "int",
1262 "show interrupts/exceptions in short format" },
1263 { CPU_LOG_EXEC, "exec",
1264 "show trace before each executed TB (lots of logs)" },
1265 { CPU_LOG_TB_CPU, "cpu",
1266 "show CPU state before block translation" },
1267 #ifdef TARGET_I386
1268 { CPU_LOG_PCALL, "pcall",
1269 "show protected mode far calls/returns/exceptions" },
1270 #endif
1271 #ifdef DEBUG_IOPORT
1272 { CPU_LOG_IOPORT, "ioport",
1273 "show all i/o ports accesses" },
1274 #endif
1275 { 0, NULL, NULL },
1276 };
1277
1278 static int cmp1(const char *s1, int n, const char *s2)
1279 {
1280 if (strlen(s2) != n)
1281 return 0;
1282 return memcmp(s1, s2, n) == 0;
1283 }
1284
1285 /* takes a comma separated list of log masks. Return 0 if error. */
1286 int cpu_str_to_log_mask(const char *str)
1287 {
1288 CPULogItem *item;
1289 int mask;
1290 const char *p, *p1;
1291
1292 p = str;
1293 mask = 0;
1294 for(;;) {
1295 p1 = strchr(p, ',');
1296 if (!p1)
1297 p1 = p + strlen(p);
1298 if(cmp1(p,p1-p,"all")) {
1299 for(item = cpu_log_items; item->mask != 0; item++) {
1300 mask |= item->mask;
1301 }
1302 } else {
1303 for(item = cpu_log_items; item->mask != 0; item++) {
1304 if (cmp1(p, p1 - p, item->name))
1305 goto found;
1306 }
1307 return 0;
1308 }
1309 found:
1310 mask |= item->mask;
1311 if (*p1 != ',')
1312 break;
1313 p = p1 + 1;
1314 }
1315 return mask;
1316 }
1317
1318 void cpu_abort(CPUState *env, const char *fmt, ...)
1319 {
1320 va_list ap;
1321 va_list ap2;
1322
1323 va_start(ap, fmt);
1324 va_copy(ap2, ap);
1325 fprintf(stderr, "qemu: fatal: ");
1326 vfprintf(stderr, fmt, ap);
1327 fprintf(stderr, "\n");
1328 #ifdef TARGET_I386
1329 if(env->intercept & INTERCEPT_SVM_MASK) {
1330 /* most probably the virtual machine should not
1331 be shut down but rather caught by the VMM */
1332 vmexit(SVM_EXIT_SHUTDOWN, 0);
1333 }
1334 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1335 #else
1336 cpu_dump_state(env, stderr, fprintf, 0);
1337 #endif
1338 if (logfile) {
1339 fprintf(logfile, "qemu: fatal: ");
1340 vfprintf(logfile, fmt, ap2);
1341 fprintf(logfile, "\n");
1342 #ifdef TARGET_I386
1343 cpu_dump_state(env, logfile, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1344 #else
1345 cpu_dump_state(env, logfile, fprintf, 0);
1346 #endif
1347 fflush(logfile);
1348 fclose(logfile);
1349 }
1350 va_end(ap2);
1351 va_end(ap);
1352 abort();
1353 }
1354
1355 CPUState *cpu_copy(CPUState *env)
1356 {
1357 CPUState *new_env = cpu_init(env->cpu_model_str);
1358 /* preserve chaining and index */
1359 CPUState *next_cpu = new_env->next_cpu;
1360 int cpu_index = new_env->cpu_index;
1361 memcpy(new_env, env, sizeof(CPUState));
1362 new_env->next_cpu = next_cpu;
1363 new_env->cpu_index = cpu_index;
1364 return new_env;
1365 }
1366
1367 #if !defined(CONFIG_USER_ONLY)
1368
1369 static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1370 {
1371 unsigned int i;
1372
1373 /* Discard jump cache entries for any tb which might potentially
1374 overlap the flushed page. */
1375 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1376 memset (&env->tb_jmp_cache[i], 0,
1377 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1378
1379 i = tb_jmp_cache_hash_page(addr);
1380 memset (&env->tb_jmp_cache[i], 0,
1381 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1382 }
1383
1384 /* NOTE: if flush_global is true, also flush global entries (not
1385 implemented yet) */
1386 void tlb_flush(CPUState *env, int flush_global)
1387 {
1388 int i;
1389
1390 #if defined(DEBUG_TLB)
1391 printf("tlb_flush:\n");
1392 #endif
1393 /* must reset current TB so that interrupts cannot modify the
1394 links while we are modifying them */
1395 env->current_tb = NULL;
1396
1397 for(i = 0; i < CPU_TLB_SIZE; i++) {
1398 env->tlb_table[0][i].addr_read = -1;
1399 env->tlb_table[0][i].addr_write = -1;
1400 env->tlb_table[0][i].addr_code = -1;
1401 env->tlb_table[1][i].addr_read = -1;
1402 env->tlb_table[1][i].addr_write = -1;
1403 env->tlb_table[1][i].addr_code = -1;
1404 #if (NB_MMU_MODES >= 3)
1405 env->tlb_table[2][i].addr_read = -1;
1406 env->tlb_table[2][i].addr_write = -1;
1407 env->tlb_table[2][i].addr_code = -1;
1408 #if (NB_MMU_MODES == 4)
1409 env->tlb_table[3][i].addr_read = -1;
1410 env->tlb_table[3][i].addr_write = -1;
1411 env->tlb_table[3][i].addr_code = -1;
1412 #endif
1413 #endif
1414 }
1415
1416 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
1417
1418 #if !defined(CONFIG_SOFTMMU)
1419 munmap((void *)MMAP_AREA_START, MMAP_AREA_END - MMAP_AREA_START);
1420 #endif
1421 #ifdef USE_KQEMU
1422 if (env->kqemu_enabled) {
1423 kqemu_flush(env, flush_global);
1424 }
1425 #endif
1426 tlb_flush_count++;
1427 }
1428
1429 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
1430 {
1431 if (addr == (tlb_entry->addr_read &
1432 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1433 addr == (tlb_entry->addr_write &
1434 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1435 addr == (tlb_entry->addr_code &
1436 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1437 tlb_entry->addr_read = -1;
1438 tlb_entry->addr_write = -1;
1439 tlb_entry->addr_code = -1;
1440 }
1441 }
1442
1443 void tlb_flush_page(CPUState *env, target_ulong addr)
1444 {
1445 int i;
1446
1447 #if defined(DEBUG_TLB)
1448 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
1449 #endif
1450 /* must reset current TB so that interrupts cannot modify the
1451 links while we are modifying them */
1452 env->current_tb = NULL;
1453
1454 addr &= TARGET_PAGE_MASK;
1455 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1456 tlb_flush_entry(&env->tlb_table[0][i], addr);
1457 tlb_flush_entry(&env->tlb_table[1][i], addr);
1458 #if (NB_MMU_MODES >= 3)
1459 tlb_flush_entry(&env->tlb_table[2][i], addr);
1460 #if (NB_MMU_MODES == 4)
1461 tlb_flush_entry(&env->tlb_table[3][i], addr);
1462 #endif
1463 #endif
1464
1465 tlb_flush_jmp_cache(env, addr);
1466
1467 #if !defined(CONFIG_SOFTMMU)
1468 if (addr < MMAP_AREA_END)
1469 munmap((void *)addr, TARGET_PAGE_SIZE);
1470 #endif
1471 #ifdef USE_KQEMU
1472 if (env->kqemu_enabled) {
1473 kqemu_flush_page(env, addr);
1474 }
1475 #endif
1476 }
1477
1478 /* update the TLBs so that writes to code in the virtual page 'addr'
1479 can be detected */
1480 static void tlb_protect_code(ram_addr_t ram_addr)
1481 {
1482 cpu_physical_memory_reset_dirty(ram_addr,
1483 ram_addr + TARGET_PAGE_SIZE,
1484 CODE_DIRTY_FLAG);
1485 }
1486
1487 /* update the TLB so that writes in physical page 'phys_addr' are no longer
1488 tested for self modifying code */
1489 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
1490 target_ulong vaddr)
1491 {
1492 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1493 }
1494
1495 static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1496 unsigned long start, unsigned long length)
1497 {
1498 unsigned long addr;
1499 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1500 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1501 if ((addr - start) < length) {
1502 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | IO_MEM_NOTDIRTY;
1503 }
1504 }
1505 }
1506
1507 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
1508 int dirty_flags)
1509 {
1510 CPUState *env;
1511 unsigned long length, start1;
1512 int i, mask, len;
1513 uint8_t *p;
1514
1515 start &= TARGET_PAGE_MASK;
1516 end = TARGET_PAGE_ALIGN(end);
1517
1518 length = end - start;
1519 if (length == 0)
1520 return;
1521 len = length >> TARGET_PAGE_BITS;
1522 #ifdef USE_KQEMU
1523 /* XXX: should not depend on cpu context */
1524 env = first_cpu;
1525 if (env->kqemu_enabled) {
1526 ram_addr_t addr;
1527 addr = start;
1528 for(i = 0; i < len; i++) {
1529 kqemu_set_notdirty(env, addr);
1530 addr += TARGET_PAGE_SIZE;
1531 }
1532 }
1533 #endif
1534 mask = ~dirty_flags;
1535 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1536 for(i = 0; i < len; i++)
1537 p[i] &= mask;
1538
1539 /* we modify the TLB cache so that the dirty bit will be set again
1540 when accessing the range */
1541 start1 = start + (unsigned long)phys_ram_base;
1542 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1543 for(i = 0; i < CPU_TLB_SIZE; i++)
1544 tlb_reset_dirty_range(&env->tlb_table[0][i], start1, length);
1545 for(i = 0; i < CPU_TLB_SIZE; i++)
1546 tlb_reset_dirty_range(&env->tlb_table[1][i], start1, length);
1547 #if (NB_MMU_MODES >= 3)
1548 for(i = 0; i < CPU_TLB_SIZE; i++)
1549 tlb_reset_dirty_range(&env->tlb_table[2][i], start1, length);
1550 #if (NB_MMU_MODES == 4)
1551 for(i = 0; i < CPU_TLB_SIZE; i++)
1552 tlb_reset_dirty_range(&env->tlb_table[3][i], start1, length);
1553 #endif
1554 #endif
1555 }
1556
1557 #if !defined(CONFIG_SOFTMMU)
1558 /* XXX: this is expensive */
1559 {
1560 VirtPageDesc *p;
1561 int j;
1562 target_ulong addr;
1563
1564 for(i = 0; i < L1_SIZE; i++) {
1565 p = l1_virt_map[i];
1566 if (p) {
1567 addr = i << (TARGET_PAGE_BITS + L2_BITS);
1568 for(j = 0; j < L2_SIZE; j++) {
1569 if (p->valid_tag == virt_valid_tag &&
1570 p->phys_addr >= start && p->phys_addr < end &&
1571 (p->prot & PROT_WRITE)) {
1572 if (addr < MMAP_AREA_END) {
1573 mprotect((void *)addr, TARGET_PAGE_SIZE,
1574 p->prot & ~PROT_WRITE);
1575 }
1576 }
1577 addr += TARGET_PAGE_SIZE;
1578 p++;
1579 }
1580 }
1581 }
1582 }
1583 #endif
1584 }
1585
1586 static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
1587 {
1588 ram_addr_t ram_addr;
1589
1590 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1591 ram_addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) +
1592 tlb_entry->addend - (unsigned long)phys_ram_base;
1593 if (!cpu_physical_memory_is_dirty(ram_addr)) {
1594 tlb_entry->addr_write |= IO_MEM_NOTDIRTY;
1595 }
1596 }
1597 }
1598
1599 /* update the TLB according to the current state of the dirty bits */
1600 void cpu_tlb_update_dirty(CPUState *env)
1601 {
1602 int i;
1603 for(i = 0; i < CPU_TLB_SIZE; i++)
1604 tlb_update_dirty(&env->tlb_table[0][i]);
1605 for(i = 0; i < CPU_TLB_SIZE; i++)
1606 tlb_update_dirty(&env->tlb_table[1][i]);
1607 #if (NB_MMU_MODES >= 3)
1608 for(i = 0; i < CPU_TLB_SIZE; i++)
1609 tlb_update_dirty(&env->tlb_table[2][i]);
1610 #if (NB_MMU_MODES == 4)
1611 for(i = 0; i < CPU_TLB_SIZE; i++)
1612 tlb_update_dirty(&env->tlb_table[3][i]);
1613 #endif
1614 #endif
1615 }
1616
1617 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry,
1618 unsigned long start)
1619 {
1620 unsigned long addr;
1621 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_NOTDIRTY) {
1622 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1623 if (addr == start) {
1624 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | IO_MEM_RAM;
1625 }
1626 }
1627 }
1628
1629 /* update the TLB corresponding to virtual page vaddr and phys addr
1630 addr so that it is no longer dirty */
1631 static inline void tlb_set_dirty(CPUState *env,
1632 unsigned long addr, target_ulong vaddr)
1633 {
1634 int i;
1635
1636 addr &= TARGET_PAGE_MASK;
1637 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1638 tlb_set_dirty1(&env->tlb_table[0][i], addr);
1639 tlb_set_dirty1(&env->tlb_table[1][i], addr);
1640 #if (NB_MMU_MODES >= 3)
1641 tlb_set_dirty1(&env->tlb_table[2][i], addr);
1642 #if (NB_MMU_MODES == 4)
1643 tlb_set_dirty1(&env->tlb_table[3][i], addr);
1644 #endif
1645 #endif
1646 }
1647
1648 /* add a new TLB entry. At most one entry for a given virtual address
1649 is permitted. Return 0 if OK or 2 if the page could not be mapped
1650 (can only happen in non SOFTMMU mode for I/O pages or pages
1651 conflicting with the host address space). */
1652 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
1653 target_phys_addr_t paddr, int prot,
1654 int mmu_idx, int is_softmmu)
1655 {
1656 PhysPageDesc *p;
1657 unsigned long pd;
1658 unsigned int index;
1659 target_ulong address;
1660 target_phys_addr_t addend;
1661 int ret;
1662 CPUTLBEntry *te;
1663 int i;
1664
1665 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
1666 if (!p) {
1667 pd = IO_MEM_UNASSIGNED;
1668 } else {
1669 pd = p->phys_offset;
1670 }
1671 #if defined(DEBUG_TLB)
1672 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
1673 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
1674 #endif
1675
1676 ret = 0;
1677 #if !defined(CONFIG_SOFTMMU)
1678 if (is_softmmu)
1679 #endif
1680 {
1681 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
1682 /* IO memory case */
1683 address = vaddr | pd;
1684 addend = paddr;
1685 } else {
1686 /* standard memory */
1687 address = vaddr;
1688 addend = (unsigned long)phys_ram_base + (pd & TARGET_PAGE_MASK);
1689 }
1690
1691 /* Make accesses to pages with watchpoints go via the
1692 watchpoint trap routines. */
1693 for (i = 0; i < env->nb_watchpoints; i++) {
1694 if (vaddr == (env->watchpoint[i].vaddr & TARGET_PAGE_MASK)) {
1695 if (address & ~TARGET_PAGE_MASK) {
1696 env->watchpoint[i].addend = 0;
1697 address = vaddr | io_mem_watch;
1698 } else {
1699 env->watchpoint[i].addend = pd - paddr +
1700 (unsigned long) phys_ram_base;
1701 /* TODO: Figure out how to make read watchpoints coexist
1702 with code. */
1703 pd = (pd & TARGET_PAGE_MASK) | io_mem_watch | IO_MEM_ROMD;
1704 }
1705 }
1706 }
1707
1708 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1709 addend -= vaddr;
1710 te = &env->tlb_table[mmu_idx][index];
1711 te->addend = addend;
1712 if (prot & PAGE_READ) {
1713 te->addr_read = address;
1714 } else {
1715 te->addr_read = -1;
1716 }
1717
1718 if (te->addr_code != -1) {
1719 tlb_flush_jmp_cache(env, te->addr_code);
1720 }
1721 if (prot & PAGE_EXEC) {
1722 te->addr_code = address;
1723 } else {
1724 te->addr_code = -1;
1725 }
1726 if (prot & PAGE_WRITE) {
1727 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
1728 (pd & IO_MEM_ROMD)) {
1729 /* write access calls the I/O callback */
1730 te->addr_write = vaddr |
1731 (pd & ~(TARGET_PAGE_MASK | IO_MEM_ROMD));
1732 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
1733 !cpu_physical_memory_is_dirty(pd)) {
1734 te->addr_write = vaddr | IO_MEM_NOTDIRTY;
1735 } else {
1736 te->addr_write = address;
1737 }
1738 } else {
1739 te->addr_write = -1;
1740 }
1741 }
1742 #if !defined(CONFIG_SOFTMMU)
1743 else {
1744 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM) {
1745 /* IO access: no mapping is done as it will be handled by the
1746 soft MMU */
1747 if (!(env->hflags & HF_SOFTMMU_MASK))
1748 ret = 2;
1749 } else {
1750 void *map_addr;
1751
1752 if (vaddr >= MMAP_AREA_END) {
1753 ret = 2;
1754 } else {
1755 if (prot & PROT_WRITE) {
1756 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
1757 #if defined(TARGET_HAS_SMC) || 1
1758 first_tb ||
1759 #endif
1760 ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
1761 !cpu_physical_memory_is_dirty(pd))) {
1762 /* ROM: we do as if code was inside */
1763 /* if code is present, we only map as read only and save the
1764 original mapping */
1765 VirtPageDesc *vp;
1766
1767 vp = virt_page_find_alloc(vaddr >> TARGET_PAGE_BITS, 1);
1768 vp->phys_addr = pd;
1769 vp->prot = prot;
1770 vp->valid_tag = virt_valid_tag;
1771 prot &= ~PAGE_WRITE;
1772 }
1773 }
1774 map_addr = mmap((void *)vaddr, TARGET_PAGE_SIZE, prot,
1775 MAP_SHARED | MAP_FIXED, phys_ram_fd, (pd & TARGET_PAGE_MASK));
1776 if (map_addr == MAP_FAILED) {
1777 cpu_abort(env, "mmap failed when mapped physical address 0x%08x to virtual address 0x%08x\n",
1778 paddr, vaddr);
1779 }
1780 }
1781 }
1782 }
1783 #endif
1784 return ret;
1785 }
1786
1787 /* called from signal handler: invalidate the code and unprotect the
1788 page. Return TRUE if the fault was succesfully handled. */
1789 int page_unprotect(target_ulong addr, unsigned long pc, void *puc)
1790 {
1791 #if !defined(CONFIG_SOFTMMU)
1792 VirtPageDesc *vp;
1793
1794 #if defined(DEBUG_TLB)
1795 printf("page_unprotect: addr=0x%08x\n", addr);
1796 #endif
1797 addr &= TARGET_PAGE_MASK;
1798
1799 /* if it is not mapped, no need to worry here */
1800 if (addr >= MMAP_AREA_END)
1801 return 0;
1802 vp = virt_page_find(addr >> TARGET_PAGE_BITS);
1803 if (!vp)
1804 return 0;
1805 /* NOTE: in this case, validate_tag is _not_ tested as it
1806 validates only the code TLB */
1807 if (vp->valid_tag != virt_valid_tag)
1808 return 0;
1809 if (!(vp->prot & PAGE_WRITE))
1810 return 0;
1811 #if defined(DEBUG_TLB)
1812 printf("page_unprotect: addr=0x%08x phys_addr=0x%08x prot=%x\n",
1813 addr, vp->phys_addr, vp->prot);
1814 #endif
1815 if (mprotect((void *)addr, TARGET_PAGE_SIZE, vp->prot) < 0)
1816 cpu_abort(cpu_single_env, "error mprotect addr=0x%lx prot=%d\n",
1817 (unsigned long)addr, vp->prot);
1818 /* set the dirty bit */
1819 phys_ram_dirty[vp->phys_addr >> TARGET_PAGE_BITS] = 0xff;
1820 /* flush the code inside */
1821 tb_invalidate_phys_page(vp->phys_addr, pc, puc);
1822 return 1;
1823 #else
1824 return 0;
1825 #endif
1826 }
1827
1828 #else
1829
1830 void tlb_flush(CPUState *env, int flush_global)
1831 {
1832 }
1833
1834 void tlb_flush_page(CPUState *env, target_ulong addr)
1835 {
1836 }
1837
1838 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
1839 target_phys_addr_t paddr, int prot,
1840 int mmu_idx, int is_softmmu)
1841 {
1842 return 0;
1843 }
1844
1845 /* dump memory mappings */
1846 void page_dump(FILE *f)
1847 {
1848 unsigned long start, end;
1849 int i, j, prot, prot1;
1850 PageDesc *p;
1851
1852 fprintf(f, "%-8s %-8s %-8s %s\n",
1853 "start", "end", "size", "prot");
1854 start = -1;
1855 end = -1;
1856 prot = 0;
1857 for(i = 0; i <= L1_SIZE; i++) {
1858 if (i < L1_SIZE)
1859 p = l1_map[i];
1860 else
1861 p = NULL;
1862 for(j = 0;j < L2_SIZE; j++) {
1863 if (!p)
1864 prot1 = 0;
1865 else
1866 prot1 = p[j].flags;
1867 if (prot1 != prot) {
1868 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
1869 if (start != -1) {
1870 fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
1871 start, end, end - start,
1872 prot & PAGE_READ ? 'r' : '-',
1873 prot & PAGE_WRITE ? 'w' : '-',
1874 prot & PAGE_EXEC ? 'x' : '-');
1875 }
1876 if (prot1 != 0)
1877 start = end;
1878 else
1879 start = -1;
1880 prot = prot1;
1881 }
1882 if (!p)
1883 break;
1884 }
1885 }
1886 }
1887
1888 int page_get_flags(target_ulong address)
1889 {
1890 PageDesc *p;
1891
1892 p = page_find(address >> TARGET_PAGE_BITS);
1893 if (!p)
1894 return 0;
1895 return p->flags;
1896 }
1897
1898 /* modify the flags of a page and invalidate the code if
1899 necessary. The flag PAGE_WRITE_ORG is positionned automatically
1900 depending on PAGE_WRITE */
1901 void page_set_flags(target_ulong start, target_ulong end, int flags)
1902 {
1903 PageDesc *p;
1904 target_ulong addr;
1905
1906 start = start & TARGET_PAGE_MASK;
1907 end = TARGET_PAGE_ALIGN(end);
1908 if (flags & PAGE_WRITE)
1909 flags |= PAGE_WRITE_ORG;
1910 spin_lock(&tb_lock);
1911 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
1912 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
1913 /* if the write protection is set, then we invalidate the code
1914 inside */
1915 if (!(p->flags & PAGE_WRITE) &&
1916 (flags & PAGE_WRITE) &&
1917 p->first_tb) {
1918 tb_invalidate_phys_page(addr, 0, NULL);
1919 }
1920 p->flags = flags;
1921 }
1922 spin_unlock(&tb_lock);
1923 }
1924
1925 int page_check_range(target_ulong start, target_ulong len, int flags)
1926 {
1927 PageDesc *p;
1928 target_ulong end;
1929 target_ulong addr;
1930
1931 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
1932 start = start & TARGET_PAGE_MASK;
1933
1934 if( end < start )
1935 /* we've wrapped around */
1936 return -1;
1937 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
1938 p = page_find(addr >> TARGET_PAGE_BITS);
1939 if( !p )
1940 return -1;
1941 if( !(p->flags & PAGE_VALID) )
1942 return -1;
1943
1944 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
1945 return -1;
1946 if (flags & PAGE_WRITE) {
1947 if (!(p->flags & PAGE_WRITE_ORG))
1948 return -1;
1949 /* unprotect the page if it was put read-only because it
1950 contains translated code */
1951 if (!(p->flags & PAGE_WRITE)) {
1952 if (!page_unprotect(addr, 0, NULL))
1953 return -1;
1954 }
1955 return 0;
1956 }
1957 }
1958 return 0;
1959 }
1960
1961 /* called from signal handler: invalidate the code and unprotect the
1962 page. Return TRUE if the fault was succesfully handled. */
1963 int page_unprotect(target_ulong address, unsigned long pc, void *puc)
1964 {
1965 unsigned int page_index, prot, pindex;
1966 PageDesc *p, *p1;
1967 target_ulong host_start, host_end, addr;
1968
1969 host_start = address & qemu_host_page_mask;
1970 page_index = host_start >> TARGET_PAGE_BITS;
1971 p1 = page_find(page_index);
1972 if (!p1)
1973 return 0;
1974 host_end = host_start + qemu_host_page_size;
1975 p = p1;
1976 prot = 0;
1977 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
1978 prot |= p->flags;
1979 p++;
1980 }
1981 /* if the page was really writable, then we change its
1982 protection back to writable */
1983 if (prot & PAGE_WRITE_ORG) {
1984 pindex = (address - host_start) >> TARGET_PAGE_BITS;
1985 if (!(p1[pindex].flags & PAGE_WRITE)) {
1986 mprotect((void *)g2h(host_start), qemu_host_page_size,
1987 (prot & PAGE_BITS) | PAGE_WRITE);
1988 p1[pindex].flags |= PAGE_WRITE;
1989 /* and since the content will be modified, we must invalidate
1990 the corresponding translated code. */
1991 tb_invalidate_phys_page(address, pc, puc);
1992 #ifdef DEBUG_TB_CHECK
1993 tb_invalidate_check(address);
1994 #endif
1995 return 1;
1996 }
1997 }
1998 return 0;
1999 }
2000
2001 static inline void tlb_set_dirty(CPUState *env,
2002 unsigned long addr, target_ulong vaddr)
2003 {
2004 }
2005 #endif /* defined(CONFIG_USER_ONLY) */
2006
2007 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2008 ram_addr_t memory);
2009 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2010 ram_addr_t orig_memory);
2011 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2012 need_subpage) \
2013 do { \
2014 if (addr > start_addr) \
2015 start_addr2 = 0; \
2016 else { \
2017 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2018 if (start_addr2 > 0) \
2019 need_subpage = 1; \
2020 } \
2021 \
2022 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2023 end_addr2 = TARGET_PAGE_SIZE - 1; \
2024 else { \
2025 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2026 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2027 need_subpage = 1; \
2028 } \
2029 } while (0)
2030
2031 /* register physical memory. 'size' must be a multiple of the target
2032 page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2033 io memory page */
2034 void cpu_register_physical_memory(target_phys_addr_t start_addr,
2035 ram_addr_t size,
2036 ram_addr_t phys_offset)
2037 {
2038 target_phys_addr_t addr, end_addr;
2039 PhysPageDesc *p;
2040 CPUState *env;
2041 ram_addr_t orig_size = size;
2042 void *subpage;
2043
2044 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
2045 end_addr = start_addr + (target_phys_addr_t)size;
2046 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
2047 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2048 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
2049 ram_addr_t orig_memory = p->phys_offset;
2050 target_phys_addr_t start_addr2, end_addr2;
2051 int need_subpage = 0;
2052
2053 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2054 need_subpage);
2055 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2056 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2057 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2058 &p->phys_offset, orig_memory);
2059 } else {
2060 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2061 >> IO_MEM_SHIFT];
2062 }
2063 subpage_register(subpage, start_addr2, end_addr2, phys_offset);
2064 } else {
2065 p->phys_offset = phys_offset;
2066 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2067 (phys_offset & IO_MEM_ROMD))
2068 phys_offset += TARGET_PAGE_SIZE;
2069 }
2070 } else {
2071 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2072 p->phys_offset = phys_offset;
2073 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2074 (phys_offset & IO_MEM_ROMD))
2075 phys_offset += TARGET_PAGE_SIZE;
2076 else {
2077 target_phys_addr_t start_addr2, end_addr2;
2078 int need_subpage = 0;
2079
2080 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2081 end_addr2, need_subpage);
2082
2083 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2084 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2085 &p->phys_offset, IO_MEM_UNASSIGNED);
2086 subpage_register(subpage, start_addr2, end_addr2,
2087 phys_offset);
2088 }
2089 }
2090 }
2091 }
2092
2093 /* since each CPU stores ram addresses in its TLB cache, we must
2094 reset the modified entries */
2095 /* XXX: slow ! */
2096 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2097 tlb_flush(env, 1);
2098 }
2099 }
2100
2101 /* XXX: temporary until new memory mapping API */
2102 ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
2103 {
2104 PhysPageDesc *p;
2105
2106 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2107 if (!p)
2108 return IO_MEM_UNASSIGNED;
2109 return p->phys_offset;
2110 }
2111
2112 /* XXX: better than nothing */
2113 ram_addr_t qemu_ram_alloc(ram_addr_t size)
2114 {
2115 ram_addr_t addr;
2116 if ((phys_ram_alloc_offset + size) > phys_ram_size) {
2117 fprintf(stderr, "Not enough memory (requested_size = %lu, max memory = %ld)\n",
2118 size, phys_ram_size);
2119 abort();
2120 }
2121 addr = phys_ram_alloc_offset;
2122 phys_ram_alloc_offset = TARGET_PAGE_ALIGN(phys_ram_alloc_offset + size);
2123 return addr;
2124 }
2125
2126 void qemu_ram_free(ram_addr_t addr)
2127 {
2128 }
2129
2130 static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
2131 {
2132 #ifdef DEBUG_UNASSIGNED
2133 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2134 #endif
2135 #ifdef TARGET_SPARC
2136 do_unassigned_access(addr, 0, 0, 0);
2137 #elif TARGET_CRIS
2138 do_unassigned_access(addr, 0, 0, 0);
2139 #endif
2140 return 0;
2141 }
2142
2143 static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
2144 {
2145 #ifdef DEBUG_UNASSIGNED
2146 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2147 #endif
2148 #ifdef TARGET_SPARC
2149 do_unassigned_access(addr, 1, 0, 0);
2150 #elif TARGET_CRIS
2151 do_unassigned_access(addr, 1, 0, 0);
2152 #endif
2153 }
2154
2155 static CPUReadMemoryFunc *unassigned_mem_read[3] = {
2156 unassigned_mem_readb,
2157 unassigned_mem_readb,
2158 unassigned_mem_readb,
2159 };
2160
2161 static CPUWriteMemoryFunc *unassigned_mem_write[3] = {
2162 unassigned_mem_writeb,
2163 unassigned_mem_writeb,
2164 unassigned_mem_writeb,
2165 };
2166
2167 static void notdirty_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
2168 {
2169 unsigned long ram_addr;
2170 int dirty_flags;
2171 ram_addr = addr - (unsigned long)phys_ram_base;
2172 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2173 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2174 #if !defined(CONFIG_USER_ONLY)
2175 tb_invalidate_phys_page_fast(ram_addr, 1);
2176 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2177 #endif
2178 }
2179 stb_p((uint8_t *)(long)addr, val);
2180 #ifdef USE_KQEMU
2181 if (cpu_single_env->kqemu_enabled &&
2182 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2183 kqemu_modify_page(cpu_single_env, ram_addr);
2184 #endif
2185 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2186 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2187 /* we remove the notdirty callback only if the code has been
2188 flushed */
2189 if (dirty_flags == 0xff)
2190 tlb_set_dirty(cpu_single_env, addr, cpu_single_env->mem_write_vaddr);
2191 }
2192
2193 static void notdirty_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
2194 {
2195 unsigned long ram_addr;
2196 int dirty_flags;
2197 ram_addr = addr - (unsigned long)phys_ram_base;
2198 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2199 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2200 #if !defined(CONFIG_USER_ONLY)
2201 tb_invalidate_phys_page_fast(ram_addr, 2);
2202 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2203 #endif
2204 }
2205 stw_p((uint8_t *)(long)addr, val);
2206 #ifdef USE_KQEMU
2207 if (cpu_single_env->kqemu_enabled &&
2208 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2209 kqemu_modify_page(cpu_single_env, ram_addr);
2210 #endif
2211 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2212 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2213 /* we remove the notdirty callback only if the code has been
2214 flushed */
2215 if (dirty_flags == 0xff)
2216 tlb_set_dirty(cpu_single_env, addr, cpu_single_env->mem_write_vaddr);
2217 }
2218
2219 static void notdirty_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
2220 {
2221 unsigned long ram_addr;
2222 int dirty_flags;
2223 ram_addr = addr - (unsigned long)phys_ram_base;
2224 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2225 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2226 #if !defined(CONFIG_USER_ONLY)
2227 tb_invalidate_phys_page_fast(ram_addr, 4);
2228 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2229 #endif
2230 }
2231 stl_p((uint8_t *)(long)addr, val);
2232 #ifdef USE_KQEMU
2233 if (cpu_single_env->kqemu_enabled &&
2234 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2235 kqemu_modify_page(cpu_single_env, ram_addr);
2236 #endif
2237 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2238 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2239 /* we remove the notdirty callback only if the code has been
2240 flushed */
2241 if (dirty_flags == 0xff)
2242 tlb_set_dirty(cpu_single_env, addr, cpu_single_env->mem_write_vaddr);
2243 }
2244
2245 static CPUReadMemoryFunc *error_mem_read[3] = {
2246 NULL, /* never used */
2247 NULL, /* never used */
2248 NULL, /* never used */
2249 };
2250
2251 static CPUWriteMemoryFunc *notdirty_mem_write[3] = {
2252 notdirty_mem_writeb,
2253 notdirty_mem_writew,
2254 notdirty_mem_writel,
2255 };
2256
2257 #if defined(CONFIG_SOFTMMU)
2258 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2259 so these check for a hit then pass through to the normal out-of-line
2260 phys routines. */
2261 static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
2262 {
2263 return ldub_phys(addr);
2264 }
2265
2266 static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
2267 {
2268 return lduw_phys(addr);
2269 }
2270
2271 static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
2272 {
2273 return ldl_phys(addr);
2274 }
2275
2276 /* Generate a debug exception if a watchpoint has been hit.
2277 Returns the real physical address of the access. addr will be a host
2278 address in case of a RAM location. */
2279 static target_ulong check_watchpoint(target_phys_addr_t addr)
2280 {
2281 CPUState *env = cpu_single_env;
2282 target_ulong watch;
2283 target_ulong retaddr;
2284 int i;
2285
2286 retaddr = addr;
2287 for (i = 0; i < env->nb_watchpoints; i++) {
2288 watch = env->watchpoint[i].vaddr;
2289 if (((env->mem_write_vaddr ^ watch) & TARGET_PAGE_MASK) == 0) {
2290 retaddr = addr - env->watchpoint[i].addend;
2291 if (((addr ^ watch) & ~TARGET_PAGE_MASK) == 0) {
2292 cpu_single_env->watchpoint_hit = i + 1;
2293 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_DEBUG);
2294 break;
2295 }
2296 }
2297 }
2298 return retaddr;
2299 }
2300
2301 static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
2302 uint32_t val)
2303 {
2304 addr = check_watchpoint(addr);
2305 stb_phys(addr, val);
2306 }
2307
2308 static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
2309 uint32_t val)
2310 {
2311 addr = check_watchpoint(addr);
2312 stw_phys(addr, val);
2313 }
2314
2315 static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
2316 uint32_t val)
2317 {
2318 addr = check_watchpoint(addr);
2319 stl_phys(addr, val);
2320 }
2321
2322 static CPUReadMemoryFunc *watch_mem_read[3] = {
2323 watch_mem_readb,
2324 watch_mem_readw,
2325 watch_mem_readl,
2326 };
2327
2328 static CPUWriteMemoryFunc *watch_mem_write[3] = {
2329 watch_mem_writeb,
2330 watch_mem_writew,
2331 watch_mem_writel,
2332 };
2333 #endif
2334
2335 static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
2336 unsigned int len)
2337 {
2338 uint32_t ret;
2339 unsigned int idx;
2340
2341 idx = SUBPAGE_IDX(addr - mmio->base);
2342 #if defined(DEBUG_SUBPAGE)
2343 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
2344 mmio, len, addr, idx);
2345 #endif
2346 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len], addr);
2347
2348 return ret;
2349 }
2350
2351 static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
2352 uint32_t value, unsigned int len)
2353 {
2354 unsigned int idx;
2355
2356 idx = SUBPAGE_IDX(addr - mmio->base);
2357 #if defined(DEBUG_SUBPAGE)
2358 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
2359 mmio, len, addr, idx, value);
2360 #endif
2361 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len], addr, value);
2362 }
2363
2364 static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
2365 {
2366 #if defined(DEBUG_SUBPAGE)
2367 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2368 #endif
2369
2370 return subpage_readlen(opaque, addr, 0);
2371 }
2372
2373 static void subpage_writeb (void *opaque, target_phys_addr_t addr,
2374 uint32_t value)
2375 {
2376 #if defined(DEBUG_SUBPAGE)
2377 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2378 #endif
2379 subpage_writelen(opaque, addr, value, 0);
2380 }
2381
2382 static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
2383 {
2384 #if defined(DEBUG_SUBPAGE)
2385 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2386 #endif
2387
2388 return subpage_readlen(opaque, addr, 1);
2389 }
2390
2391 static void subpage_writew (void *opaque, target_phys_addr_t addr,
2392 uint32_t value)
2393 {
2394 #if defined(DEBUG_SUBPAGE)
2395 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2396 #endif
2397 subpage_writelen(opaque, addr, value, 1);
2398 }
2399
2400 static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
2401 {
2402 #if defined(DEBUG_SUBPAGE)
2403 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2404 #endif
2405
2406 return subpage_readlen(opaque, addr, 2);
2407 }
2408
2409 static void subpage_writel (void *opaque,
2410 target_phys_addr_t addr, uint32_t value)
2411 {
2412 #if defined(DEBUG_SUBPAGE)
2413 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2414 #endif
2415 subpage_writelen(opaque, addr, value, 2);
2416 }
2417
2418 static CPUReadMemoryFunc *subpage_read[] = {
2419 &subpage_readb,
2420 &subpage_readw,
2421 &subpage_readl,
2422 };
2423
2424 static CPUWriteMemoryFunc *subpage_write[] = {
2425 &subpage_writeb,
2426 &subpage_writew,
2427 &subpage_writel,
2428 };
2429
2430 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2431 ram_addr_t memory)
2432 {
2433 int idx, eidx;
2434 unsigned int i;
2435
2436 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2437 return -1;
2438 idx = SUBPAGE_IDX(start);
2439 eidx = SUBPAGE_IDX(end);
2440 #if defined(DEBUG_SUBPAGE)
2441 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %d\n", __func__,
2442 mmio, start, end, idx, eidx, memory);
2443 #endif
2444 memory >>= IO_MEM_SHIFT;
2445 for (; idx <= eidx; idx++) {
2446 for (i = 0; i < 4; i++) {
2447 if (io_mem_read[memory][i]) {
2448 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
2449 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
2450 }
2451 if (io_mem_write[memory][i]) {
2452 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
2453 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
2454 }
2455 }
2456 }
2457
2458 return 0;
2459 }
2460
2461 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2462 ram_addr_t orig_memory)
2463 {
2464 subpage_t *mmio;
2465 int subpage_memory;
2466
2467 mmio = qemu_mallocz(sizeof(subpage_t));
2468 if (mmio != NULL) {
2469 mmio->base = base;
2470 subpage_memory = cpu_register_io_memory(0, subpage_read, subpage_write, mmio);
2471 #if defined(DEBUG_SUBPAGE)
2472 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
2473 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
2474 #endif
2475 *phys = subpage_memory | IO_MEM_SUBPAGE;
2476 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory);
2477 }
2478
2479 return mmio;
2480 }
2481
2482 static void io_mem_init(void)
2483 {
2484 cpu_register_io_memory(IO_MEM_ROM >> IO_MEM_SHIFT, error_mem_read, unassigned_mem_write, NULL);
2485 cpu_register_io_memory(IO_MEM_UNASSIGNED >> IO_MEM_SHIFT, unassigned_mem_read, unassigned_mem_write, NULL);
2486 cpu_register_io_memory(IO_MEM_NOTDIRTY >> IO_MEM_SHIFT, error_mem_read, notdirty_mem_write, NULL);
2487 io_mem_nb = 5;
2488
2489 #if defined(CONFIG_SOFTMMU)
2490 io_mem_watch = cpu_register_io_memory(-1, watch_mem_read,
2491 watch_mem_write, NULL);
2492 #endif
2493 /* alloc dirty bits array */
2494 phys_ram_dirty = qemu_vmalloc(phys_ram_size >> TARGET_PAGE_BITS);
2495 memset(phys_ram_dirty, 0xff, phys_ram_size >> TARGET_PAGE_BITS);
2496 }
2497
2498 /* mem_read and mem_write are arrays of functions containing the
2499 function to access byte (index 0), word (index 1) and dword (index
2500 2). Functions can be omitted with a NULL function pointer. The
2501 registered functions may be modified dynamically later.
2502 If io_index is non zero, the corresponding io zone is
2503 modified. If it is zero, a new io zone is allocated. The return
2504 value can be used with cpu_register_physical_memory(). (-1) is
2505 returned if error. */
2506 int cpu_register_io_memory(int io_index,
2507 CPUReadMemoryFunc **mem_read,
2508 CPUWriteMemoryFunc **mem_write,
2509 void *opaque)
2510 {
2511 int i, subwidth = 0;
2512
2513 if (io_index <= 0) {
2514 if (io_mem_nb >= IO_MEM_NB_ENTRIES)
2515 return -1;
2516 io_index = io_mem_nb++;
2517 } else {
2518 if (io_index >= IO_MEM_NB_ENTRIES)
2519 return -1;
2520 }
2521
2522 for(i = 0;i < 3; i++) {
2523 if (!mem_read[i] || !mem_write[i])
2524 subwidth = IO_MEM_SUBWIDTH;
2525 io_mem_read[io_index][i] = mem_read[i];
2526 io_mem_write[io_index][i] = mem_write[i];
2527 }
2528 io_mem_opaque[io_index] = opaque;
2529 return (io_index << IO_MEM_SHIFT) | subwidth;
2530 }
2531
2532 CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index)
2533 {
2534 return io_mem_write[io_index >> IO_MEM_SHIFT];
2535 }
2536
2537 CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index)
2538 {
2539 return io_mem_read[io_index >> IO_MEM_SHIFT];
2540 }
2541
2542 /* physical memory access (slow version, mainly for debug) */
2543 #if defined(CONFIG_USER_ONLY)
2544 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
2545 int len, int is_write)
2546 {
2547 int l, flags;
2548 target_ulong page;
2549 void * p;
2550
2551 while (len > 0) {
2552 page = addr & TARGET_PAGE_MASK;
2553 l = (page + TARGET_PAGE_SIZE) - addr;
2554 if (l > len)
2555 l = len;
2556 flags = page_get_flags(page);
2557 if (!(flags & PAGE_VALID))
2558 return;
2559 if (is_write) {
2560 if (!(flags & PAGE_WRITE))
2561 return;
2562 /* XXX: this code should not depend on lock_user */
2563 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
2564 /* FIXME - should this return an error rather than just fail? */
2565 return;
2566 memcpy(p, buf, l);
2567 unlock_user(p, addr, l);
2568 } else {
2569 if (!(flags & PAGE_READ))
2570 return;
2571 /* XXX: this code should not depend on lock_user */
2572 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
2573 /* FIXME - should this return an error rather than just fail? */
2574 return;
2575 memcpy(buf, p, l);
2576 unlock_user(p, addr, 0);
2577 }
2578 len -= l;
2579 buf += l;
2580 addr += l;
2581 }
2582 }
2583
2584 #else
2585 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
2586 int len, int is_write)
2587 {
2588 int l, io_index;
2589 uint8_t *ptr;
2590 uint32_t val;
2591 target_phys_addr_t page;
2592 unsigned long pd;
2593 PhysPageDesc *p;
2594
2595 while (len > 0) {
2596 page = addr & TARGET_PAGE_MASK;
2597 l = (page + TARGET_PAGE_SIZE) - addr;
2598 if (l > len)
2599 l = len;
2600 p = phys_page_find(page >> TARGET_PAGE_BITS);
2601 if (!p) {
2602 pd = IO_MEM_UNASSIGNED;
2603 } else {
2604 pd = p->phys_offset;
2605 }
2606
2607 if (is_write) {
2608 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
2609 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2610 /* XXX: could force cpu_single_env to NULL to avoid
2611 potential bugs */
2612 if (l >= 4 && ((addr & 3) == 0)) {
2613 /* 32 bit write access */
2614 val = ldl_p(buf);
2615 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
2616 l = 4;
2617 } else if (l >= 2 && ((addr & 1) == 0)) {
2618 /* 16 bit write access */
2619 val = lduw_p(buf);
2620 io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
2621 l = 2;
2622 } else {
2623 /* 8 bit write access */
2624 val = ldub_p(buf);
2625 io_mem_write[io_index][0](io_mem_opaque[io_index], addr, val);
2626 l = 1;
2627 }
2628 } else {
2629 unsigned long addr1;
2630 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
2631 /* RAM case */
2632 ptr = phys_ram_base + addr1;
2633 memcpy(ptr, buf, l);
2634 if (!cpu_physical_memory_is_dirty(addr1)) {
2635 /* invalidate code */
2636 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
2637 /* set dirty bit */
2638 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
2639 (0xff & ~CODE_DIRTY_FLAG);
2640 }
2641 }
2642 } else {
2643 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2644 !(pd & IO_MEM_ROMD)) {
2645 /* I/O case */
2646 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2647 if (l >= 4 && ((addr & 3) == 0)) {
2648 /* 32 bit read access */
2649 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
2650 stl_p(buf, val);
2651 l = 4;
2652 } else if (l >= 2 && ((addr & 1) == 0)) {
2653 /* 16 bit read access */
2654 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
2655 stw_p(buf, val);
2656 l = 2;
2657 } else {
2658 /* 8 bit read access */
2659 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr);
2660 stb_p(buf, val);
2661 l = 1;
2662 }
2663 } else {
2664 /* RAM case */
2665 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
2666 (addr & ~TARGET_PAGE_MASK);
2667 memcpy(buf, ptr, l);
2668 }
2669 }
2670 len -= l;
2671 buf += l;
2672 addr += l;
2673 }
2674 }
2675
2676 /* used for ROM loading : can write in RAM and ROM */
2677 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
2678 const uint8_t *buf, int len)
2679 {
2680 int l;
2681 uint8_t *ptr;
2682 target_phys_addr_t page;
2683 unsigned long pd;
2684 PhysPageDesc *p;
2685
2686 while (len > 0) {
2687 page = addr & TARGET_PAGE_MASK;
2688 l = (page + TARGET_PAGE_SIZE) - addr;
2689 if (l > len)
2690 l = len;
2691 p = phys_page_find(page >> TARGET_PAGE_BITS);
2692 if (!p) {
2693 pd = IO_MEM_UNASSIGNED;
2694 } else {
2695 pd = p->phys_offset;
2696 }
2697
2698 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
2699 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
2700 !(pd & IO_MEM_ROMD)) {
2701 /* do nothing */
2702 } else {
2703 unsigned long addr1;
2704 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
2705 /* ROM/RAM case */
2706 ptr = phys_ram_base + addr1;
2707 memcpy(ptr, buf, l);
2708 }
2709 len -= l;
2710 buf += l;
2711 addr += l;
2712 }
2713 }
2714
2715
2716 /* warning: addr must be aligned */
2717 uint32_t ldl_phys(target_phys_addr_t addr)
2718 {
2719 int io_index;
2720 uint8_t *ptr;
2721 uint32_t val;
2722 unsigned long pd;
2723 PhysPageDesc *p;
2724
2725 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2726 if (!p) {
2727 pd = IO_MEM_UNASSIGNED;
2728 } else {
2729 pd = p->phys_offset;
2730 }
2731
2732 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2733 !(pd & IO_MEM_ROMD)) {
2734 /* I/O case */
2735 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2736 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
2737 } else {
2738 /* RAM case */
2739 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
2740 (addr & ~TARGET_PAGE_MASK);
2741 val = ldl_p(ptr);
2742 }
2743 return val;
2744 }
2745
2746 /* warning: addr must be aligned */
2747 uint64_t ldq_phys(target_phys_addr_t addr)
2748 {
2749 int io_index;
2750 uint8_t *ptr;
2751 uint64_t val;
2752 unsigned long pd;
2753 PhysPageDesc *p;
2754
2755 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2756 if (!p) {
2757 pd = IO_MEM_UNASSIGNED;
2758 } else {
2759 pd = p->phys_offset;
2760 }
2761
2762 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2763 !(pd & IO_MEM_ROMD)) {
2764 /* I/O case */
2765 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2766 #ifdef TARGET_WORDS_BIGENDIAN
2767 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
2768 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
2769 #else
2770 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
2771 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
2772 #endif
2773 } else {
2774 /* RAM case */
2775 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
2776 (addr & ~TARGET_PAGE_MASK);
2777 val = ldq_p(ptr);
2778 }
2779 return val;
2780 }
2781
2782 /* XXX: optimize */
2783 uint32_t ldub_phys(target_phys_addr_t addr)
2784 {
2785 uint8_t val;
2786 cpu_physical_memory_read(addr, &val, 1);
2787 return val;
2788 }
2789
2790 /* XXX: optimize */
2791 uint32_t lduw_phys(target_phys_addr_t addr)
2792 {
2793 uint16_t val;
2794 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
2795 return tswap16(val);
2796 }
2797
2798 /* warning: addr must be aligned. The ram page is not masked as dirty
2799 and the code inside is not invalidated. It is useful if the dirty
2800 bits are used to track modified PTEs */
2801 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
2802 {
2803 int io_index;
2804 uint8_t *ptr;
2805 unsigned long pd;
2806 PhysPageDesc *p;
2807
2808 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2809 if (!p) {
2810 pd = IO_MEM_UNASSIGNED;
2811 } else {
2812 pd = p->phys_offset;
2813 }
2814
2815 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
2816 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2817 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
2818 } else {
2819 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
2820 (addr & ~TARGET_PAGE_MASK);
2821 stl_p(ptr, val);
2822 }
2823 }
2824
2825 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
2826 {
2827 int io_index;
2828 uint8_t *ptr;
2829 unsigned long pd;
2830 PhysPageDesc *p;
2831
2832 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2833 if (!p) {
2834 pd = IO_MEM_UNASSIGNED;
2835 } else {
2836 pd = p->phys_offset;
2837 }
2838
2839 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
2840 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2841 #ifdef TARGET_WORDS_BIGENDIAN
2842 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
2843 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
2844 #else
2845 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
2846 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
2847 #endif
2848 } else {
2849 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
2850 (addr & ~TARGET_PAGE_MASK);
2851 stq_p(ptr, val);
2852 }
2853 }
2854
2855 /* warning: addr must be aligned */
2856 void stl_phys(target_phys_addr_t addr, uint32_t val)
2857 {
2858 int io_index;
2859 uint8_t *ptr;
2860 unsigned long pd;
2861 PhysPageDesc *p;
2862
2863 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2864 if (!p) {
2865 pd = IO_MEM_UNASSIGNED;
2866 } else {
2867 pd = p->phys_offset;
2868 }
2869
2870 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
2871 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2872 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
2873 } else {
2874 unsigned long addr1;
2875 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
2876 /* RAM case */
2877 ptr = phys_ram_base + addr1;
2878 stl_p(ptr, val);
2879 if (!cpu_physical_memory_is_dirty(addr1)) {
2880 /* invalidate code */
2881 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
2882 /* set dirty bit */
2883 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
2884 (0xff & ~CODE_DIRTY_FLAG);
2885 }
2886 }
2887 }
2888
2889 /* XXX: optimize */
2890 void stb_phys(target_phys_addr_t addr, uint32_t val)
2891 {
2892 uint8_t v = val;
2893 cpu_physical_memory_write(addr, &v, 1);
2894 }
2895
2896 /* XXX: optimize */
2897 void stw_phys(target_phys_addr_t addr, uint32_t val)
2898 {
2899 uint16_t v = tswap16(val);
2900 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
2901 }
2902
2903 /* XXX: optimize */
2904 void stq_phys(target_phys_addr_t addr, uint64_t val)
2905 {
2906 val = tswap64(val);
2907 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
2908 }
2909
2910 #endif
2911
2912 /* virtual memory access for debug */
2913 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
2914 uint8_t *buf, int len, int is_write)
2915 {
2916 int l;
2917 target_phys_addr_t phys_addr;
2918 target_ulong page;
2919
2920 while (len > 0) {
2921 page = addr & TARGET_PAGE_MASK;
2922 phys_addr = cpu_get_phys_page_debug(env, page);
2923 /* if no physical page mapped, return an error */
2924 if (phys_addr == -1)
2925 return -1;
2926 l = (page + TARGET_PAGE_SIZE) - addr;
2927 if (l > len)
2928 l = len;
2929 cpu_physical_memory_rw(phys_addr + (addr & ~TARGET_PAGE_MASK),
2930 buf, l, is_write);
2931 len -= l;
2932 buf += l;
2933 addr += l;
2934 }
2935 return 0;
2936 }
2937
2938 void dump_exec_info(FILE *f,
2939 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
2940 {
2941 int i, target_code_size, max_target_code_size;
2942 int direct_jmp_count, direct_jmp2_count, cross_page;
2943 TranslationBlock *tb;
2944
2945 target_code_size = 0;
2946 max_target_code_size = 0;
2947 cross_page = 0;
2948 direct_jmp_count = 0;
2949 direct_jmp2_count = 0;
2950 for(i = 0; i < nb_tbs; i++) {
2951 tb = &tbs[i];
2952 target_code_size += tb->size;
2953 if (tb->size > max_target_code_size)
2954 max_target_code_size = tb->size;
2955 if (tb->page_addr[1] != -1)
2956 cross_page++;
2957 if (tb->tb_next_offset[0] != 0xffff) {
2958 direct_jmp_count++;
2959 if (tb->tb_next_offset[1] != 0xffff) {
2960 direct_jmp2_count++;
2961 }
2962 }
2963 }
2964 /* XXX: avoid using doubles ? */
2965 cpu_fprintf(f, "Translation buffer state:\n");
2966 cpu_fprintf(f, "TB count %d\n", nb_tbs);
2967 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
2968 nb_tbs ? target_code_size / nb_tbs : 0,
2969 max_target_code_size);
2970 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
2971 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
2972 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
2973 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
2974 cross_page,
2975 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
2976 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
2977 direct_jmp_count,
2978 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
2979 direct_jmp2_count,
2980 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
2981 cpu_fprintf(f, "\nStatistics:\n");
2982 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
2983 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
2984 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
2985 #ifdef CONFIG_PROFILER
2986 {
2987 int64_t tot;
2988 tot = dyngen_interm_time + dyngen_code_time;
2989 cpu_fprintf(f, "JIT cycles %" PRId64 " (%0.3f s at 2.4 GHz)\n",
2990 tot, tot / 2.4e9);
2991 cpu_fprintf(f, "translated TBs %" PRId64 " (aborted=%" PRId64 " %0.1f%%)\n",
2992 dyngen_tb_count,
2993 dyngen_tb_count1 - dyngen_tb_count,
2994 dyngen_tb_count1 ? (double)(dyngen_tb_count1 - dyngen_tb_count) / dyngen_tb_count1 * 100.0 : 0);
2995 cpu_fprintf(f, "avg ops/TB %0.1f max=%d\n",
2996 dyngen_tb_count ? (double)dyngen_op_count / dyngen_tb_count : 0, dyngen_op_count_max);
2997 cpu_fprintf(f, "old ops/total ops %0.1f%%\n",
2998 dyngen_op_count ? (double)dyngen_old_op_count / dyngen_op_count * 100.0 : 0);
2999 cpu_fprintf(f, "deleted ops/TB %0.2f\n",
3000 dyngen_tb_count ?
3001 (double)dyngen_tcg_del_op_count / dyngen_tb_count : 0);
3002 cpu_fprintf(f, "cycles/op %0.1f\n",
3003 dyngen_op_count ? (double)tot / dyngen_op_count : 0);
3004 cpu_fprintf(f, "cycles/in byte %0.1f\n",
3005 dyngen_code_in_len ? (double)tot / dyngen_code_in_len : 0);
3006 cpu_fprintf(f, "cycles/out byte %0.1f\n",
3007 dyngen_code_out_len ? (double)tot / dyngen_code_out_len : 0);
3008 if (tot == 0)
3009 tot = 1;
3010 cpu_fprintf(f, " gen_interm time %0.1f%%\n",
3011 (double)dyngen_interm_time / tot * 100.0);
3012 cpu_fprintf(f, " gen_code time %0.1f%%\n",
3013 (double)dyngen_code_time / tot * 100.0);
3014 cpu_fprintf(f, "cpu_restore count %" PRId64 "\n",
3015 dyngen_restore_count);
3016 cpu_fprintf(f, " avg cycles %0.1f\n",
3017 dyngen_restore_count ? (double)dyngen_restore_time / dyngen_restore_count : 0);
3018 {
3019 extern void dump_op_count(void);
3020 dump_op_count();
3021 }
3022 }
3023 #endif
3024 }
3025
3026 #if !defined(CONFIG_USER_ONLY)
3027
3028 #define MMUSUFFIX _cmmu
3029 #define GETPC() NULL
3030 #define env cpu_single_env
3031 #define SOFTMMU_CODE_ACCESS
3032
3033 #define SHIFT 0
3034 #include "softmmu_template.h"
3035
3036 #define SHIFT 1
3037 #include "softmmu_template.h"
3038
3039 #define SHIFT 2
3040 #include "softmmu_template.h"
3041
3042 #define SHIFT 3
3043 #include "softmmu_template.h"
3044
3045 #undef env
3046
3047 #endif