]> git.proxmox.com Git - mirror_qemu.git/blob - exec.c
tpm-tis: move TPMState to TIS header
[mirror_qemu.git] / exec.c
1 /*
2 * Virtual page mapping
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "qemu/osdep.h"
20 #include "qapi/error.h"
21 #ifndef _WIN32
22 #endif
23
24 #include "qemu/cutils.h"
25 #include "cpu.h"
26 #include "exec/exec-all.h"
27 #include "exec/target_page.h"
28 #include "tcg.h"
29 #include "hw/qdev-core.h"
30 #include "hw/qdev-properties.h"
31 #if !defined(CONFIG_USER_ONLY)
32 #include "hw/boards.h"
33 #include "hw/xen/xen.h"
34 #endif
35 #include "sysemu/kvm.h"
36 #include "sysemu/sysemu.h"
37 #include "qemu/timer.h"
38 #include "qemu/config-file.h"
39 #include "qemu/error-report.h"
40 #if defined(CONFIG_USER_ONLY)
41 #include "qemu.h"
42 #else /* !CONFIG_USER_ONLY */
43 #include "hw/hw.h"
44 #include "exec/memory.h"
45 #include "exec/ioport.h"
46 #include "sysemu/dma.h"
47 #include "sysemu/numa.h"
48 #include "sysemu/hw_accel.h"
49 #include "exec/address-spaces.h"
50 #include "sysemu/xen-mapcache.h"
51 #include "trace-root.h"
52
53 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
54 #include <fcntl.h>
55 #include <linux/falloc.h>
56 #endif
57
58 #endif
59 #include "qemu/rcu_queue.h"
60 #include "qemu/main-loop.h"
61 #include "translate-all.h"
62 #include "sysemu/replay.h"
63
64 #include "exec/memory-internal.h"
65 #include "exec/ram_addr.h"
66 #include "exec/log.h"
67
68 #include "migration/vmstate.h"
69
70 #include "qemu/range.h"
71 #ifndef _WIN32
72 #include "qemu/mmap-alloc.h"
73 #endif
74
75 #include "monitor/monitor.h"
76
77 //#define DEBUG_SUBPAGE
78
79 #if !defined(CONFIG_USER_ONLY)
80 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
81 * are protected by the ramlist lock.
82 */
83 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
84
85 static MemoryRegion *system_memory;
86 static MemoryRegion *system_io;
87
88 AddressSpace address_space_io;
89 AddressSpace address_space_memory;
90
91 MemoryRegion io_mem_rom, io_mem_notdirty;
92 static MemoryRegion io_mem_unassigned;
93
94 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
95 #define RAM_PREALLOC (1 << 0)
96
97 /* RAM is mmap-ed with MAP_SHARED */
98 #define RAM_SHARED (1 << 1)
99
100 /* Only a portion of RAM (used_length) is actually used, and migrated.
101 * This used_length size can change across reboots.
102 */
103 #define RAM_RESIZEABLE (1 << 2)
104
105 #endif
106
107 #ifdef TARGET_PAGE_BITS_VARY
108 int target_page_bits;
109 bool target_page_bits_decided;
110 #endif
111
112 struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
113 /* current CPU in the current thread. It is only valid inside
114 cpu_exec() */
115 __thread CPUState *current_cpu;
116 /* 0 = Do not count executed instructions.
117 1 = Precise instruction counting.
118 2 = Adaptive rate instruction counting. */
119 int use_icount;
120
121 uintptr_t qemu_host_page_size;
122 intptr_t qemu_host_page_mask;
123
124 bool set_preferred_target_page_bits(int bits)
125 {
126 /* The target page size is the lowest common denominator for all
127 * the CPUs in the system, so we can only make it smaller, never
128 * larger. And we can't make it smaller once we've committed to
129 * a particular size.
130 */
131 #ifdef TARGET_PAGE_BITS_VARY
132 assert(bits >= TARGET_PAGE_BITS_MIN);
133 if (target_page_bits == 0 || target_page_bits > bits) {
134 if (target_page_bits_decided) {
135 return false;
136 }
137 target_page_bits = bits;
138 }
139 #endif
140 return true;
141 }
142
143 #if !defined(CONFIG_USER_ONLY)
144
145 static void finalize_target_page_bits(void)
146 {
147 #ifdef TARGET_PAGE_BITS_VARY
148 if (target_page_bits == 0) {
149 target_page_bits = TARGET_PAGE_BITS_MIN;
150 }
151 target_page_bits_decided = true;
152 #endif
153 }
154
155 typedef struct PhysPageEntry PhysPageEntry;
156
157 struct PhysPageEntry {
158 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
159 uint32_t skip : 6;
160 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
161 uint32_t ptr : 26;
162 };
163
164 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
165
166 /* Size of the L2 (and L3, etc) page tables. */
167 #define ADDR_SPACE_BITS 64
168
169 #define P_L2_BITS 9
170 #define P_L2_SIZE (1 << P_L2_BITS)
171
172 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
173
174 typedef PhysPageEntry Node[P_L2_SIZE];
175
176 typedef struct PhysPageMap {
177 struct rcu_head rcu;
178
179 unsigned sections_nb;
180 unsigned sections_nb_alloc;
181 unsigned nodes_nb;
182 unsigned nodes_nb_alloc;
183 Node *nodes;
184 MemoryRegionSection *sections;
185 } PhysPageMap;
186
187 struct AddressSpaceDispatch {
188 MemoryRegionSection *mru_section;
189 /* This is a multi-level map on the physical address space.
190 * The bottom level has pointers to MemoryRegionSections.
191 */
192 PhysPageEntry phys_map;
193 PhysPageMap map;
194 };
195
196 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
197 typedef struct subpage_t {
198 MemoryRegion iomem;
199 FlatView *fv;
200 hwaddr base;
201 uint16_t sub_section[];
202 } subpage_t;
203
204 #define PHYS_SECTION_UNASSIGNED 0
205 #define PHYS_SECTION_NOTDIRTY 1
206 #define PHYS_SECTION_ROM 2
207 #define PHYS_SECTION_WATCH 3
208
209 static void io_mem_init(void);
210 static void memory_map_init(void);
211 static void tcg_commit(MemoryListener *listener);
212
213 static MemoryRegion io_mem_watch;
214
215 /**
216 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
217 * @cpu: the CPU whose AddressSpace this is
218 * @as: the AddressSpace itself
219 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
220 * @tcg_as_listener: listener for tracking changes to the AddressSpace
221 */
222 struct CPUAddressSpace {
223 CPUState *cpu;
224 AddressSpace *as;
225 struct AddressSpaceDispatch *memory_dispatch;
226 MemoryListener tcg_as_listener;
227 };
228
229 struct DirtyBitmapSnapshot {
230 ram_addr_t start;
231 ram_addr_t end;
232 unsigned long dirty[];
233 };
234
235 #endif
236
237 #if !defined(CONFIG_USER_ONLY)
238
239 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
240 {
241 static unsigned alloc_hint = 16;
242 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
243 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
244 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
245 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
246 alloc_hint = map->nodes_nb_alloc;
247 }
248 }
249
250 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
251 {
252 unsigned i;
253 uint32_t ret;
254 PhysPageEntry e;
255 PhysPageEntry *p;
256
257 ret = map->nodes_nb++;
258 p = map->nodes[ret];
259 assert(ret != PHYS_MAP_NODE_NIL);
260 assert(ret != map->nodes_nb_alloc);
261
262 e.skip = leaf ? 0 : 1;
263 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
264 for (i = 0; i < P_L2_SIZE; ++i) {
265 memcpy(&p[i], &e, sizeof(e));
266 }
267 return ret;
268 }
269
270 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
271 hwaddr *index, hwaddr *nb, uint16_t leaf,
272 int level)
273 {
274 PhysPageEntry *p;
275 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
276
277 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
278 lp->ptr = phys_map_node_alloc(map, level == 0);
279 }
280 p = map->nodes[lp->ptr];
281 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
282
283 while (*nb && lp < &p[P_L2_SIZE]) {
284 if ((*index & (step - 1)) == 0 && *nb >= step) {
285 lp->skip = 0;
286 lp->ptr = leaf;
287 *index += step;
288 *nb -= step;
289 } else {
290 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
291 }
292 ++lp;
293 }
294 }
295
296 static void phys_page_set(AddressSpaceDispatch *d,
297 hwaddr index, hwaddr nb,
298 uint16_t leaf)
299 {
300 /* Wildly overreserve - it doesn't matter much. */
301 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
302
303 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
304 }
305
306 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
307 * and update our entry so we can skip it and go directly to the destination.
308 */
309 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
310 {
311 unsigned valid_ptr = P_L2_SIZE;
312 int valid = 0;
313 PhysPageEntry *p;
314 int i;
315
316 if (lp->ptr == PHYS_MAP_NODE_NIL) {
317 return;
318 }
319
320 p = nodes[lp->ptr];
321 for (i = 0; i < P_L2_SIZE; i++) {
322 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
323 continue;
324 }
325
326 valid_ptr = i;
327 valid++;
328 if (p[i].skip) {
329 phys_page_compact(&p[i], nodes);
330 }
331 }
332
333 /* We can only compress if there's only one child. */
334 if (valid != 1) {
335 return;
336 }
337
338 assert(valid_ptr < P_L2_SIZE);
339
340 /* Don't compress if it won't fit in the # of bits we have. */
341 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
342 return;
343 }
344
345 lp->ptr = p[valid_ptr].ptr;
346 if (!p[valid_ptr].skip) {
347 /* If our only child is a leaf, make this a leaf. */
348 /* By design, we should have made this node a leaf to begin with so we
349 * should never reach here.
350 * But since it's so simple to handle this, let's do it just in case we
351 * change this rule.
352 */
353 lp->skip = 0;
354 } else {
355 lp->skip += p[valid_ptr].skip;
356 }
357 }
358
359 void address_space_dispatch_compact(AddressSpaceDispatch *d)
360 {
361 if (d->phys_map.skip) {
362 phys_page_compact(&d->phys_map, d->map.nodes);
363 }
364 }
365
366 static inline bool section_covers_addr(const MemoryRegionSection *section,
367 hwaddr addr)
368 {
369 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
370 * the section must cover the entire address space.
371 */
372 return int128_gethi(section->size) ||
373 range_covers_byte(section->offset_within_address_space,
374 int128_getlo(section->size), addr);
375 }
376
377 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
378 {
379 PhysPageEntry lp = d->phys_map, *p;
380 Node *nodes = d->map.nodes;
381 MemoryRegionSection *sections = d->map.sections;
382 hwaddr index = addr >> TARGET_PAGE_BITS;
383 int i;
384
385 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
386 if (lp.ptr == PHYS_MAP_NODE_NIL) {
387 return &sections[PHYS_SECTION_UNASSIGNED];
388 }
389 p = nodes[lp.ptr];
390 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
391 }
392
393 if (section_covers_addr(&sections[lp.ptr], addr)) {
394 return &sections[lp.ptr];
395 } else {
396 return &sections[PHYS_SECTION_UNASSIGNED];
397 }
398 }
399
400 bool memory_region_is_unassigned(MemoryRegion *mr)
401 {
402 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
403 && mr != &io_mem_watch;
404 }
405
406 /* Called from RCU critical section */
407 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
408 hwaddr addr,
409 bool resolve_subpage)
410 {
411 MemoryRegionSection *section = atomic_read(&d->mru_section);
412 subpage_t *subpage;
413 bool update;
414
415 if (section && section != &d->map.sections[PHYS_SECTION_UNASSIGNED] &&
416 section_covers_addr(section, addr)) {
417 update = false;
418 } else {
419 section = phys_page_find(d, addr);
420 update = true;
421 }
422 if (resolve_subpage && section->mr->subpage) {
423 subpage = container_of(section->mr, subpage_t, iomem);
424 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
425 }
426 if (update) {
427 atomic_set(&d->mru_section, section);
428 }
429 return section;
430 }
431
432 /* Called from RCU critical section */
433 static MemoryRegionSection *
434 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
435 hwaddr *plen, bool resolve_subpage)
436 {
437 MemoryRegionSection *section;
438 MemoryRegion *mr;
439 Int128 diff;
440
441 section = address_space_lookup_region(d, addr, resolve_subpage);
442 /* Compute offset within MemoryRegionSection */
443 addr -= section->offset_within_address_space;
444
445 /* Compute offset within MemoryRegion */
446 *xlat = addr + section->offset_within_region;
447
448 mr = section->mr;
449
450 /* MMIO registers can be expected to perform full-width accesses based only
451 * on their address, without considering adjacent registers that could
452 * decode to completely different MemoryRegions. When such registers
453 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
454 * regions overlap wildly. For this reason we cannot clamp the accesses
455 * here.
456 *
457 * If the length is small (as is the case for address_space_ldl/stl),
458 * everything works fine. If the incoming length is large, however,
459 * the caller really has to do the clamping through memory_access_size.
460 */
461 if (memory_region_is_ram(mr)) {
462 diff = int128_sub(section->size, int128_make64(addr));
463 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
464 }
465 return section;
466 }
467
468 /* Called from RCU critical section */
469 static MemoryRegionSection flatview_do_translate(FlatView *fv,
470 hwaddr addr,
471 hwaddr *xlat,
472 hwaddr *plen,
473 bool is_write,
474 bool is_mmio,
475 AddressSpace **target_as)
476 {
477 IOMMUTLBEntry iotlb;
478 MemoryRegionSection *section;
479 IOMMUMemoryRegion *iommu_mr;
480 IOMMUMemoryRegionClass *imrc;
481
482 for (;;) {
483 section = address_space_translate_internal(
484 flatview_to_dispatch(fv), addr, &addr,
485 plen, is_mmio);
486
487 iommu_mr = memory_region_get_iommu(section->mr);
488 if (!iommu_mr) {
489 break;
490 }
491 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
492
493 iotlb = imrc->translate(iommu_mr, addr, is_write ?
494 IOMMU_WO : IOMMU_RO);
495 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
496 | (addr & iotlb.addr_mask));
497 *plen = MIN(*plen, (addr | iotlb.addr_mask) - addr + 1);
498 if (!(iotlb.perm & (1 << is_write))) {
499 goto translate_fail;
500 }
501
502 fv = address_space_to_flatview(iotlb.target_as);
503 *target_as = iotlb.target_as;
504 }
505
506 *xlat = addr;
507
508 return *section;
509
510 translate_fail:
511 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
512 }
513
514 /* Called from RCU critical section */
515 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
516 bool is_write)
517 {
518 MemoryRegionSection section;
519 hwaddr xlat, plen;
520
521 /* Try to get maximum page mask during translation. */
522 plen = (hwaddr)-1;
523
524 /* This can never be MMIO. */
525 section = flatview_do_translate(address_space_to_flatview(as), addr,
526 &xlat, &plen, is_write, false, &as);
527
528 /* Illegal translation */
529 if (section.mr == &io_mem_unassigned) {
530 goto iotlb_fail;
531 }
532
533 /* Convert memory region offset into address space offset */
534 xlat += section.offset_within_address_space -
535 section.offset_within_region;
536
537 if (plen == (hwaddr)-1) {
538 /*
539 * We use default page size here. Logically it only happens
540 * for identity mappings.
541 */
542 plen = TARGET_PAGE_SIZE;
543 }
544
545 /* Convert to address mask */
546 plen -= 1;
547
548 return (IOMMUTLBEntry) {
549 .target_as = as,
550 .iova = addr & ~plen,
551 .translated_addr = xlat & ~plen,
552 .addr_mask = plen,
553 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
554 .perm = IOMMU_RW,
555 };
556
557 iotlb_fail:
558 return (IOMMUTLBEntry) {0};
559 }
560
561 /* Called from RCU critical section */
562 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
563 hwaddr *plen, bool is_write)
564 {
565 MemoryRegion *mr;
566 MemoryRegionSection section;
567 AddressSpace *as = NULL;
568
569 /* This can be MMIO, so setup MMIO bit. */
570 section = flatview_do_translate(fv, addr, xlat, plen, is_write, true, &as);
571 mr = section.mr;
572
573 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
574 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
575 *plen = MIN(page, *plen);
576 }
577
578 return mr;
579 }
580
581 /* Called from RCU critical section */
582 MemoryRegionSection *
583 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
584 hwaddr *xlat, hwaddr *plen)
585 {
586 MemoryRegionSection *section;
587 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
588
589 section = address_space_translate_internal(d, addr, xlat, plen, false);
590
591 assert(!memory_region_is_iommu(section->mr));
592 return section;
593 }
594 #endif
595
596 #if !defined(CONFIG_USER_ONLY)
597
598 static int cpu_common_post_load(void *opaque, int version_id)
599 {
600 CPUState *cpu = opaque;
601
602 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
603 version_id is increased. */
604 cpu->interrupt_request &= ~0x01;
605 tlb_flush(cpu);
606
607 return 0;
608 }
609
610 static int cpu_common_pre_load(void *opaque)
611 {
612 CPUState *cpu = opaque;
613
614 cpu->exception_index = -1;
615
616 return 0;
617 }
618
619 static bool cpu_common_exception_index_needed(void *opaque)
620 {
621 CPUState *cpu = opaque;
622
623 return tcg_enabled() && cpu->exception_index != -1;
624 }
625
626 static const VMStateDescription vmstate_cpu_common_exception_index = {
627 .name = "cpu_common/exception_index",
628 .version_id = 1,
629 .minimum_version_id = 1,
630 .needed = cpu_common_exception_index_needed,
631 .fields = (VMStateField[]) {
632 VMSTATE_INT32(exception_index, CPUState),
633 VMSTATE_END_OF_LIST()
634 }
635 };
636
637 static bool cpu_common_crash_occurred_needed(void *opaque)
638 {
639 CPUState *cpu = opaque;
640
641 return cpu->crash_occurred;
642 }
643
644 static const VMStateDescription vmstate_cpu_common_crash_occurred = {
645 .name = "cpu_common/crash_occurred",
646 .version_id = 1,
647 .minimum_version_id = 1,
648 .needed = cpu_common_crash_occurred_needed,
649 .fields = (VMStateField[]) {
650 VMSTATE_BOOL(crash_occurred, CPUState),
651 VMSTATE_END_OF_LIST()
652 }
653 };
654
655 const VMStateDescription vmstate_cpu_common = {
656 .name = "cpu_common",
657 .version_id = 1,
658 .minimum_version_id = 1,
659 .pre_load = cpu_common_pre_load,
660 .post_load = cpu_common_post_load,
661 .fields = (VMStateField[]) {
662 VMSTATE_UINT32(halted, CPUState),
663 VMSTATE_UINT32(interrupt_request, CPUState),
664 VMSTATE_END_OF_LIST()
665 },
666 .subsections = (const VMStateDescription*[]) {
667 &vmstate_cpu_common_exception_index,
668 &vmstate_cpu_common_crash_occurred,
669 NULL
670 }
671 };
672
673 #endif
674
675 CPUState *qemu_get_cpu(int index)
676 {
677 CPUState *cpu;
678
679 CPU_FOREACH(cpu) {
680 if (cpu->cpu_index == index) {
681 return cpu;
682 }
683 }
684
685 return NULL;
686 }
687
688 #if !defined(CONFIG_USER_ONLY)
689 void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx)
690 {
691 CPUAddressSpace *newas;
692
693 /* Target code should have set num_ases before calling us */
694 assert(asidx < cpu->num_ases);
695
696 if (asidx == 0) {
697 /* address space 0 gets the convenience alias */
698 cpu->as = as;
699 }
700
701 /* KVM cannot currently support multiple address spaces. */
702 assert(asidx == 0 || !kvm_enabled());
703
704 if (!cpu->cpu_ases) {
705 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
706 }
707
708 newas = &cpu->cpu_ases[asidx];
709 newas->cpu = cpu;
710 newas->as = as;
711 if (tcg_enabled()) {
712 newas->tcg_as_listener.commit = tcg_commit;
713 memory_listener_register(&newas->tcg_as_listener, as);
714 }
715 }
716
717 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
718 {
719 /* Return the AddressSpace corresponding to the specified index */
720 return cpu->cpu_ases[asidx].as;
721 }
722 #endif
723
724 void cpu_exec_unrealizefn(CPUState *cpu)
725 {
726 CPUClass *cc = CPU_GET_CLASS(cpu);
727
728 cpu_list_remove(cpu);
729
730 if (cc->vmsd != NULL) {
731 vmstate_unregister(NULL, cc->vmsd, cpu);
732 }
733 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
734 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
735 }
736 }
737
738 Property cpu_common_props[] = {
739 #ifndef CONFIG_USER_ONLY
740 /* Create a memory property for softmmu CPU object,
741 * so users can wire up its memory. (This can't go in qom/cpu.c
742 * because that file is compiled only once for both user-mode
743 * and system builds.) The default if no link is set up is to use
744 * the system address space.
745 */
746 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
747 MemoryRegion *),
748 #endif
749 DEFINE_PROP_END_OF_LIST(),
750 };
751
752 void cpu_exec_initfn(CPUState *cpu)
753 {
754 cpu->as = NULL;
755 cpu->num_ases = 0;
756
757 #ifndef CONFIG_USER_ONLY
758 cpu->thread_id = qemu_get_thread_id();
759 cpu->memory = system_memory;
760 object_ref(OBJECT(cpu->memory));
761 #endif
762 }
763
764 void cpu_exec_realizefn(CPUState *cpu, Error **errp)
765 {
766 CPUClass *cc ATTRIBUTE_UNUSED = CPU_GET_CLASS(cpu);
767
768 cpu_list_add(cpu);
769
770 #ifndef CONFIG_USER_ONLY
771 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
772 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
773 }
774 if (cc->vmsd != NULL) {
775 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
776 }
777 #endif
778 }
779
780 #if defined(CONFIG_USER_ONLY)
781 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
782 {
783 mmap_lock();
784 tb_lock();
785 tb_invalidate_phys_page_range(pc, pc + 1, 0);
786 tb_unlock();
787 mmap_unlock();
788 }
789 #else
790 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
791 {
792 MemTxAttrs attrs;
793 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
794 int asidx = cpu_asidx_from_attrs(cpu, attrs);
795 if (phys != -1) {
796 /* Locks grabbed by tb_invalidate_phys_addr */
797 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
798 phys | (pc & ~TARGET_PAGE_MASK));
799 }
800 }
801 #endif
802
803 #if defined(CONFIG_USER_ONLY)
804 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
805
806 {
807 }
808
809 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
810 int flags)
811 {
812 return -ENOSYS;
813 }
814
815 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
816 {
817 }
818
819 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
820 int flags, CPUWatchpoint **watchpoint)
821 {
822 return -ENOSYS;
823 }
824 #else
825 /* Add a watchpoint. */
826 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
827 int flags, CPUWatchpoint **watchpoint)
828 {
829 CPUWatchpoint *wp;
830
831 /* forbid ranges which are empty or run off the end of the address space */
832 if (len == 0 || (addr + len - 1) < addr) {
833 error_report("tried to set invalid watchpoint at %"
834 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
835 return -EINVAL;
836 }
837 wp = g_malloc(sizeof(*wp));
838
839 wp->vaddr = addr;
840 wp->len = len;
841 wp->flags = flags;
842
843 /* keep all GDB-injected watchpoints in front */
844 if (flags & BP_GDB) {
845 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
846 } else {
847 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
848 }
849
850 tlb_flush_page(cpu, addr);
851
852 if (watchpoint)
853 *watchpoint = wp;
854 return 0;
855 }
856
857 /* Remove a specific watchpoint. */
858 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
859 int flags)
860 {
861 CPUWatchpoint *wp;
862
863 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
864 if (addr == wp->vaddr && len == wp->len
865 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
866 cpu_watchpoint_remove_by_ref(cpu, wp);
867 return 0;
868 }
869 }
870 return -ENOENT;
871 }
872
873 /* Remove a specific watchpoint by reference. */
874 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
875 {
876 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
877
878 tlb_flush_page(cpu, watchpoint->vaddr);
879
880 g_free(watchpoint);
881 }
882
883 /* Remove all matching watchpoints. */
884 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
885 {
886 CPUWatchpoint *wp, *next;
887
888 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
889 if (wp->flags & mask) {
890 cpu_watchpoint_remove_by_ref(cpu, wp);
891 }
892 }
893 }
894
895 /* Return true if this watchpoint address matches the specified
896 * access (ie the address range covered by the watchpoint overlaps
897 * partially or completely with the address range covered by the
898 * access).
899 */
900 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
901 vaddr addr,
902 vaddr len)
903 {
904 /* We know the lengths are non-zero, but a little caution is
905 * required to avoid errors in the case where the range ends
906 * exactly at the top of the address space and so addr + len
907 * wraps round to zero.
908 */
909 vaddr wpend = wp->vaddr + wp->len - 1;
910 vaddr addrend = addr + len - 1;
911
912 return !(addr > wpend || wp->vaddr > addrend);
913 }
914
915 #endif
916
917 /* Add a breakpoint. */
918 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
919 CPUBreakpoint **breakpoint)
920 {
921 CPUBreakpoint *bp;
922
923 bp = g_malloc(sizeof(*bp));
924
925 bp->pc = pc;
926 bp->flags = flags;
927
928 /* keep all GDB-injected breakpoints in front */
929 if (flags & BP_GDB) {
930 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
931 } else {
932 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
933 }
934
935 breakpoint_invalidate(cpu, pc);
936
937 if (breakpoint) {
938 *breakpoint = bp;
939 }
940 return 0;
941 }
942
943 /* Remove a specific breakpoint. */
944 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
945 {
946 CPUBreakpoint *bp;
947
948 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
949 if (bp->pc == pc && bp->flags == flags) {
950 cpu_breakpoint_remove_by_ref(cpu, bp);
951 return 0;
952 }
953 }
954 return -ENOENT;
955 }
956
957 /* Remove a specific breakpoint by reference. */
958 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
959 {
960 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
961
962 breakpoint_invalidate(cpu, breakpoint->pc);
963
964 g_free(breakpoint);
965 }
966
967 /* Remove all matching breakpoints. */
968 void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
969 {
970 CPUBreakpoint *bp, *next;
971
972 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
973 if (bp->flags & mask) {
974 cpu_breakpoint_remove_by_ref(cpu, bp);
975 }
976 }
977 }
978
979 /* enable or disable single step mode. EXCP_DEBUG is returned by the
980 CPU loop after each instruction */
981 void cpu_single_step(CPUState *cpu, int enabled)
982 {
983 if (cpu->singlestep_enabled != enabled) {
984 cpu->singlestep_enabled = enabled;
985 if (kvm_enabled()) {
986 kvm_update_guest_debug(cpu, 0);
987 } else {
988 /* must flush all the translated code to avoid inconsistencies */
989 /* XXX: only flush what is necessary */
990 tb_flush(cpu);
991 }
992 }
993 }
994
995 void cpu_abort(CPUState *cpu, const char *fmt, ...)
996 {
997 va_list ap;
998 va_list ap2;
999
1000 va_start(ap, fmt);
1001 va_copy(ap2, ap);
1002 fprintf(stderr, "qemu: fatal: ");
1003 vfprintf(stderr, fmt, ap);
1004 fprintf(stderr, "\n");
1005 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1006 if (qemu_log_separate()) {
1007 qemu_log_lock();
1008 qemu_log("qemu: fatal: ");
1009 qemu_log_vprintf(fmt, ap2);
1010 qemu_log("\n");
1011 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1012 qemu_log_flush();
1013 qemu_log_unlock();
1014 qemu_log_close();
1015 }
1016 va_end(ap2);
1017 va_end(ap);
1018 replay_finish();
1019 #if defined(CONFIG_USER_ONLY)
1020 {
1021 struct sigaction act;
1022 sigfillset(&act.sa_mask);
1023 act.sa_handler = SIG_DFL;
1024 sigaction(SIGABRT, &act, NULL);
1025 }
1026 #endif
1027 abort();
1028 }
1029
1030 #if !defined(CONFIG_USER_ONLY)
1031 /* Called from RCU critical section */
1032 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1033 {
1034 RAMBlock *block;
1035
1036 block = atomic_rcu_read(&ram_list.mru_block);
1037 if (block && addr - block->offset < block->max_length) {
1038 return block;
1039 }
1040 RAMBLOCK_FOREACH(block) {
1041 if (addr - block->offset < block->max_length) {
1042 goto found;
1043 }
1044 }
1045
1046 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1047 abort();
1048
1049 found:
1050 /* It is safe to write mru_block outside the iothread lock. This
1051 * is what happens:
1052 *
1053 * mru_block = xxx
1054 * rcu_read_unlock()
1055 * xxx removed from list
1056 * rcu_read_lock()
1057 * read mru_block
1058 * mru_block = NULL;
1059 * call_rcu(reclaim_ramblock, xxx);
1060 * rcu_read_unlock()
1061 *
1062 * atomic_rcu_set is not needed here. The block was already published
1063 * when it was placed into the list. Here we're just making an extra
1064 * copy of the pointer.
1065 */
1066 ram_list.mru_block = block;
1067 return block;
1068 }
1069
1070 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
1071 {
1072 CPUState *cpu;
1073 ram_addr_t start1;
1074 RAMBlock *block;
1075 ram_addr_t end;
1076
1077 end = TARGET_PAGE_ALIGN(start + length);
1078 start &= TARGET_PAGE_MASK;
1079
1080 rcu_read_lock();
1081 block = qemu_get_ram_block(start);
1082 assert(block == qemu_get_ram_block(end - 1));
1083 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1084 CPU_FOREACH(cpu) {
1085 tlb_reset_dirty(cpu, start1, length);
1086 }
1087 rcu_read_unlock();
1088 }
1089
1090 /* Note: start and end must be within the same ram block. */
1091 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1092 ram_addr_t length,
1093 unsigned client)
1094 {
1095 DirtyMemoryBlocks *blocks;
1096 unsigned long end, page;
1097 bool dirty = false;
1098
1099 if (length == 0) {
1100 return false;
1101 }
1102
1103 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1104 page = start >> TARGET_PAGE_BITS;
1105
1106 rcu_read_lock();
1107
1108 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1109
1110 while (page < end) {
1111 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1112 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1113 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1114
1115 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1116 offset, num);
1117 page += num;
1118 }
1119
1120 rcu_read_unlock();
1121
1122 if (dirty && tcg_enabled()) {
1123 tlb_reset_dirty_range_all(start, length);
1124 }
1125
1126 return dirty;
1127 }
1128
1129 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1130 (ram_addr_t start, ram_addr_t length, unsigned client)
1131 {
1132 DirtyMemoryBlocks *blocks;
1133 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1134 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1135 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1136 DirtyBitmapSnapshot *snap;
1137 unsigned long page, end, dest;
1138
1139 snap = g_malloc0(sizeof(*snap) +
1140 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1141 snap->start = first;
1142 snap->end = last;
1143
1144 page = first >> TARGET_PAGE_BITS;
1145 end = last >> TARGET_PAGE_BITS;
1146 dest = 0;
1147
1148 rcu_read_lock();
1149
1150 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1151
1152 while (page < end) {
1153 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1154 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1155 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1156
1157 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1158 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1159 offset >>= BITS_PER_LEVEL;
1160
1161 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1162 blocks->blocks[idx] + offset,
1163 num);
1164 page += num;
1165 dest += num >> BITS_PER_LEVEL;
1166 }
1167
1168 rcu_read_unlock();
1169
1170 if (tcg_enabled()) {
1171 tlb_reset_dirty_range_all(start, length);
1172 }
1173
1174 return snap;
1175 }
1176
1177 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1178 ram_addr_t start,
1179 ram_addr_t length)
1180 {
1181 unsigned long page, end;
1182
1183 assert(start >= snap->start);
1184 assert(start + length <= snap->end);
1185
1186 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1187 page = (start - snap->start) >> TARGET_PAGE_BITS;
1188
1189 while (page < end) {
1190 if (test_bit(page, snap->dirty)) {
1191 return true;
1192 }
1193 page++;
1194 }
1195 return false;
1196 }
1197
1198 /* Called from RCU critical section */
1199 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1200 MemoryRegionSection *section,
1201 target_ulong vaddr,
1202 hwaddr paddr, hwaddr xlat,
1203 int prot,
1204 target_ulong *address)
1205 {
1206 hwaddr iotlb;
1207 CPUWatchpoint *wp;
1208
1209 if (memory_region_is_ram(section->mr)) {
1210 /* Normal RAM. */
1211 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1212 if (!section->readonly) {
1213 iotlb |= PHYS_SECTION_NOTDIRTY;
1214 } else {
1215 iotlb |= PHYS_SECTION_ROM;
1216 }
1217 } else {
1218 AddressSpaceDispatch *d;
1219
1220 d = flatview_to_dispatch(section->fv);
1221 iotlb = section - d->map.sections;
1222 iotlb += xlat;
1223 }
1224
1225 /* Make accesses to pages with watchpoints go via the
1226 watchpoint trap routines. */
1227 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1228 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
1229 /* Avoid trapping reads of pages with a write breakpoint. */
1230 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
1231 iotlb = PHYS_SECTION_WATCH + paddr;
1232 *address |= TLB_MMIO;
1233 break;
1234 }
1235 }
1236 }
1237
1238 return iotlb;
1239 }
1240 #endif /* defined(CONFIG_USER_ONLY) */
1241
1242 #if !defined(CONFIG_USER_ONLY)
1243
1244 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1245 uint16_t section);
1246 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1247
1248 static void *(*phys_mem_alloc)(size_t size, uint64_t *align) =
1249 qemu_anon_ram_alloc;
1250
1251 /*
1252 * Set a custom physical guest memory alloator.
1253 * Accelerators with unusual needs may need this. Hopefully, we can
1254 * get rid of it eventually.
1255 */
1256 void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align))
1257 {
1258 phys_mem_alloc = alloc;
1259 }
1260
1261 static uint16_t phys_section_add(PhysPageMap *map,
1262 MemoryRegionSection *section)
1263 {
1264 /* The physical section number is ORed with a page-aligned
1265 * pointer to produce the iotlb entries. Thus it should
1266 * never overflow into the page-aligned value.
1267 */
1268 assert(map->sections_nb < TARGET_PAGE_SIZE);
1269
1270 if (map->sections_nb == map->sections_nb_alloc) {
1271 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1272 map->sections = g_renew(MemoryRegionSection, map->sections,
1273 map->sections_nb_alloc);
1274 }
1275 map->sections[map->sections_nb] = *section;
1276 memory_region_ref(section->mr);
1277 return map->sections_nb++;
1278 }
1279
1280 static void phys_section_destroy(MemoryRegion *mr)
1281 {
1282 bool have_sub_page = mr->subpage;
1283
1284 memory_region_unref(mr);
1285
1286 if (have_sub_page) {
1287 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1288 object_unref(OBJECT(&subpage->iomem));
1289 g_free(subpage);
1290 }
1291 }
1292
1293 static void phys_sections_free(PhysPageMap *map)
1294 {
1295 while (map->sections_nb > 0) {
1296 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1297 phys_section_destroy(section->mr);
1298 }
1299 g_free(map->sections);
1300 g_free(map->nodes);
1301 }
1302
1303 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1304 {
1305 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1306 subpage_t *subpage;
1307 hwaddr base = section->offset_within_address_space
1308 & TARGET_PAGE_MASK;
1309 MemoryRegionSection *existing = phys_page_find(d, base);
1310 MemoryRegionSection subsection = {
1311 .offset_within_address_space = base,
1312 .size = int128_make64(TARGET_PAGE_SIZE),
1313 };
1314 hwaddr start, end;
1315
1316 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1317
1318 if (!(existing->mr->subpage)) {
1319 subpage = subpage_init(fv, base);
1320 subsection.fv = fv;
1321 subsection.mr = &subpage->iomem;
1322 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1323 phys_section_add(&d->map, &subsection));
1324 } else {
1325 subpage = container_of(existing->mr, subpage_t, iomem);
1326 }
1327 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1328 end = start + int128_get64(section->size) - 1;
1329 subpage_register(subpage, start, end,
1330 phys_section_add(&d->map, section));
1331 }
1332
1333
1334 static void register_multipage(FlatView *fv,
1335 MemoryRegionSection *section)
1336 {
1337 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1338 hwaddr start_addr = section->offset_within_address_space;
1339 uint16_t section_index = phys_section_add(&d->map, section);
1340 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1341 TARGET_PAGE_BITS));
1342
1343 assert(num_pages);
1344 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1345 }
1346
1347 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1348 {
1349 MemoryRegionSection now = *section, remain = *section;
1350 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1351
1352 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1353 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1354 - now.offset_within_address_space;
1355
1356 now.size = int128_min(int128_make64(left), now.size);
1357 register_subpage(fv, &now);
1358 } else {
1359 now.size = int128_zero();
1360 }
1361 while (int128_ne(remain.size, now.size)) {
1362 remain.size = int128_sub(remain.size, now.size);
1363 remain.offset_within_address_space += int128_get64(now.size);
1364 remain.offset_within_region += int128_get64(now.size);
1365 now = remain;
1366 if (int128_lt(remain.size, page_size)) {
1367 register_subpage(fv, &now);
1368 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1369 now.size = page_size;
1370 register_subpage(fv, &now);
1371 } else {
1372 now.size = int128_and(now.size, int128_neg(page_size));
1373 register_multipage(fv, &now);
1374 }
1375 }
1376 }
1377
1378 void qemu_flush_coalesced_mmio_buffer(void)
1379 {
1380 if (kvm_enabled())
1381 kvm_flush_coalesced_mmio_buffer();
1382 }
1383
1384 void qemu_mutex_lock_ramlist(void)
1385 {
1386 qemu_mutex_lock(&ram_list.mutex);
1387 }
1388
1389 void qemu_mutex_unlock_ramlist(void)
1390 {
1391 qemu_mutex_unlock(&ram_list.mutex);
1392 }
1393
1394 void ram_block_dump(Monitor *mon)
1395 {
1396 RAMBlock *block;
1397 char *psize;
1398
1399 rcu_read_lock();
1400 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1401 "Block Name", "PSize", "Offset", "Used", "Total");
1402 RAMBLOCK_FOREACH(block) {
1403 psize = size_to_str(block->page_size);
1404 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1405 " 0x%016" PRIx64 "\n", block->idstr, psize,
1406 (uint64_t)block->offset,
1407 (uint64_t)block->used_length,
1408 (uint64_t)block->max_length);
1409 g_free(psize);
1410 }
1411 rcu_read_unlock();
1412 }
1413
1414 #ifdef __linux__
1415 /*
1416 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1417 * may or may not name the same files / on the same filesystem now as
1418 * when we actually open and map them. Iterate over the file
1419 * descriptors instead, and use qemu_fd_getpagesize().
1420 */
1421 static int find_max_supported_pagesize(Object *obj, void *opaque)
1422 {
1423 char *mem_path;
1424 long *hpsize_min = opaque;
1425
1426 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1427 mem_path = object_property_get_str(obj, "mem-path", NULL);
1428 if (mem_path) {
1429 long hpsize = qemu_mempath_getpagesize(mem_path);
1430 if (hpsize < *hpsize_min) {
1431 *hpsize_min = hpsize;
1432 }
1433 } else {
1434 *hpsize_min = getpagesize();
1435 }
1436 }
1437
1438 return 0;
1439 }
1440
1441 long qemu_getrampagesize(void)
1442 {
1443 long hpsize = LONG_MAX;
1444 long mainrampagesize;
1445 Object *memdev_root;
1446
1447 if (mem_path) {
1448 mainrampagesize = qemu_mempath_getpagesize(mem_path);
1449 } else {
1450 mainrampagesize = getpagesize();
1451 }
1452
1453 /* it's possible we have memory-backend objects with
1454 * hugepage-backed RAM. these may get mapped into system
1455 * address space via -numa parameters or memory hotplug
1456 * hooks. we want to take these into account, but we
1457 * also want to make sure these supported hugepage
1458 * sizes are applicable across the entire range of memory
1459 * we may boot from, so we take the min across all
1460 * backends, and assume normal pages in cases where a
1461 * backend isn't backed by hugepages.
1462 */
1463 memdev_root = object_resolve_path("/objects", NULL);
1464 if (memdev_root) {
1465 object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize);
1466 }
1467 if (hpsize == LONG_MAX) {
1468 /* No additional memory regions found ==> Report main RAM page size */
1469 return mainrampagesize;
1470 }
1471
1472 /* If NUMA is disabled or the NUMA nodes are not backed with a
1473 * memory-backend, then there is at least one node using "normal" RAM,
1474 * so if its page size is smaller we have got to report that size instead.
1475 */
1476 if (hpsize > mainrampagesize &&
1477 (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
1478 static bool warned;
1479 if (!warned) {
1480 error_report("Huge page support disabled (n/a for main memory).");
1481 warned = true;
1482 }
1483 return mainrampagesize;
1484 }
1485
1486 return hpsize;
1487 }
1488 #else
1489 long qemu_getrampagesize(void)
1490 {
1491 return getpagesize();
1492 }
1493 #endif
1494
1495 #ifdef __linux__
1496 static int64_t get_file_size(int fd)
1497 {
1498 int64_t size = lseek(fd, 0, SEEK_END);
1499 if (size < 0) {
1500 return -errno;
1501 }
1502 return size;
1503 }
1504
1505 static int file_ram_open(const char *path,
1506 const char *region_name,
1507 bool *created,
1508 Error **errp)
1509 {
1510 char *filename;
1511 char *sanitized_name;
1512 char *c;
1513 int fd = -1;
1514
1515 *created = false;
1516 for (;;) {
1517 fd = open(path, O_RDWR);
1518 if (fd >= 0) {
1519 /* @path names an existing file, use it */
1520 break;
1521 }
1522 if (errno == ENOENT) {
1523 /* @path names a file that doesn't exist, create it */
1524 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1525 if (fd >= 0) {
1526 *created = true;
1527 break;
1528 }
1529 } else if (errno == EISDIR) {
1530 /* @path names a directory, create a file there */
1531 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1532 sanitized_name = g_strdup(region_name);
1533 for (c = sanitized_name; *c != '\0'; c++) {
1534 if (*c == '/') {
1535 *c = '_';
1536 }
1537 }
1538
1539 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1540 sanitized_name);
1541 g_free(sanitized_name);
1542
1543 fd = mkstemp(filename);
1544 if (fd >= 0) {
1545 unlink(filename);
1546 g_free(filename);
1547 break;
1548 }
1549 g_free(filename);
1550 }
1551 if (errno != EEXIST && errno != EINTR) {
1552 error_setg_errno(errp, errno,
1553 "can't open backing store %s for guest RAM",
1554 path);
1555 return -1;
1556 }
1557 /*
1558 * Try again on EINTR and EEXIST. The latter happens when
1559 * something else creates the file between our two open().
1560 */
1561 }
1562
1563 return fd;
1564 }
1565
1566 static void *file_ram_alloc(RAMBlock *block,
1567 ram_addr_t memory,
1568 int fd,
1569 bool truncate,
1570 Error **errp)
1571 {
1572 void *area;
1573
1574 block->page_size = qemu_fd_getpagesize(fd);
1575 block->mr->align = block->page_size;
1576 #if defined(__s390x__)
1577 if (kvm_enabled()) {
1578 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1579 }
1580 #endif
1581
1582 if (memory < block->page_size) {
1583 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1584 "or larger than page size 0x%zx",
1585 memory, block->page_size);
1586 return NULL;
1587 }
1588
1589 memory = ROUND_UP(memory, block->page_size);
1590
1591 /*
1592 * ftruncate is not supported by hugetlbfs in older
1593 * hosts, so don't bother bailing out on errors.
1594 * If anything goes wrong with it under other filesystems,
1595 * mmap will fail.
1596 *
1597 * Do not truncate the non-empty backend file to avoid corrupting
1598 * the existing data in the file. Disabling shrinking is not
1599 * enough. For example, the current vNVDIMM implementation stores
1600 * the guest NVDIMM labels at the end of the backend file. If the
1601 * backend file is later extended, QEMU will not be able to find
1602 * those labels. Therefore, extending the non-empty backend file
1603 * is disabled as well.
1604 */
1605 if (truncate && ftruncate(fd, memory)) {
1606 perror("ftruncate");
1607 }
1608
1609 area = qemu_ram_mmap(fd, memory, block->mr->align,
1610 block->flags & RAM_SHARED);
1611 if (area == MAP_FAILED) {
1612 error_setg_errno(errp, errno,
1613 "unable to map backing store for guest RAM");
1614 return NULL;
1615 }
1616
1617 if (mem_prealloc) {
1618 os_mem_prealloc(fd, area, memory, smp_cpus, errp);
1619 if (errp && *errp) {
1620 qemu_ram_munmap(area, memory);
1621 return NULL;
1622 }
1623 }
1624
1625 block->fd = fd;
1626 return area;
1627 }
1628 #endif
1629
1630 /* Called with the ramlist lock held. */
1631 static ram_addr_t find_ram_offset(ram_addr_t size)
1632 {
1633 RAMBlock *block, *next_block;
1634 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1635
1636 assert(size != 0); /* it would hand out same offset multiple times */
1637
1638 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1639 return 0;
1640 }
1641
1642 RAMBLOCK_FOREACH(block) {
1643 ram_addr_t end, next = RAM_ADDR_MAX;
1644
1645 end = block->offset + block->max_length;
1646
1647 RAMBLOCK_FOREACH(next_block) {
1648 if (next_block->offset >= end) {
1649 next = MIN(next, next_block->offset);
1650 }
1651 }
1652 if (next - end >= size && next - end < mingap) {
1653 offset = end;
1654 mingap = next - end;
1655 }
1656 }
1657
1658 if (offset == RAM_ADDR_MAX) {
1659 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1660 (uint64_t)size);
1661 abort();
1662 }
1663
1664 return offset;
1665 }
1666
1667 unsigned long last_ram_page(void)
1668 {
1669 RAMBlock *block;
1670 ram_addr_t last = 0;
1671
1672 rcu_read_lock();
1673 RAMBLOCK_FOREACH(block) {
1674 last = MAX(last, block->offset + block->max_length);
1675 }
1676 rcu_read_unlock();
1677 return last >> TARGET_PAGE_BITS;
1678 }
1679
1680 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1681 {
1682 int ret;
1683
1684 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1685 if (!machine_dump_guest_core(current_machine)) {
1686 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1687 if (ret) {
1688 perror("qemu_madvise");
1689 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1690 "but dump_guest_core=off specified\n");
1691 }
1692 }
1693 }
1694
1695 const char *qemu_ram_get_idstr(RAMBlock *rb)
1696 {
1697 return rb->idstr;
1698 }
1699
1700 bool qemu_ram_is_shared(RAMBlock *rb)
1701 {
1702 return rb->flags & RAM_SHARED;
1703 }
1704
1705 /* Called with iothread lock held. */
1706 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
1707 {
1708 RAMBlock *block;
1709
1710 assert(new_block);
1711 assert(!new_block->idstr[0]);
1712
1713 if (dev) {
1714 char *id = qdev_get_dev_path(dev);
1715 if (id) {
1716 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1717 g_free(id);
1718 }
1719 }
1720 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1721
1722 rcu_read_lock();
1723 RAMBLOCK_FOREACH(block) {
1724 if (block != new_block &&
1725 !strcmp(block->idstr, new_block->idstr)) {
1726 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1727 new_block->idstr);
1728 abort();
1729 }
1730 }
1731 rcu_read_unlock();
1732 }
1733
1734 /* Called with iothread lock held. */
1735 void qemu_ram_unset_idstr(RAMBlock *block)
1736 {
1737 /* FIXME: arch_init.c assumes that this is not called throughout
1738 * migration. Ignore the problem since hot-unplug during migration
1739 * does not work anyway.
1740 */
1741 if (block) {
1742 memset(block->idstr, 0, sizeof(block->idstr));
1743 }
1744 }
1745
1746 size_t qemu_ram_pagesize(RAMBlock *rb)
1747 {
1748 return rb->page_size;
1749 }
1750
1751 /* Returns the largest size of page in use */
1752 size_t qemu_ram_pagesize_largest(void)
1753 {
1754 RAMBlock *block;
1755 size_t largest = 0;
1756
1757 RAMBLOCK_FOREACH(block) {
1758 largest = MAX(largest, qemu_ram_pagesize(block));
1759 }
1760
1761 return largest;
1762 }
1763
1764 static int memory_try_enable_merging(void *addr, size_t len)
1765 {
1766 if (!machine_mem_merge(current_machine)) {
1767 /* disabled by the user */
1768 return 0;
1769 }
1770
1771 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1772 }
1773
1774 /* Only legal before guest might have detected the memory size: e.g. on
1775 * incoming migration, or right after reset.
1776 *
1777 * As memory core doesn't know how is memory accessed, it is up to
1778 * resize callback to update device state and/or add assertions to detect
1779 * misuse, if necessary.
1780 */
1781 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
1782 {
1783 assert(block);
1784
1785 newsize = HOST_PAGE_ALIGN(newsize);
1786
1787 if (block->used_length == newsize) {
1788 return 0;
1789 }
1790
1791 if (!(block->flags & RAM_RESIZEABLE)) {
1792 error_setg_errno(errp, EINVAL,
1793 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1794 " in != 0x" RAM_ADDR_FMT, block->idstr,
1795 newsize, block->used_length);
1796 return -EINVAL;
1797 }
1798
1799 if (block->max_length < newsize) {
1800 error_setg_errno(errp, EINVAL,
1801 "Length too large: %s: 0x" RAM_ADDR_FMT
1802 " > 0x" RAM_ADDR_FMT, block->idstr,
1803 newsize, block->max_length);
1804 return -EINVAL;
1805 }
1806
1807 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1808 block->used_length = newsize;
1809 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1810 DIRTY_CLIENTS_ALL);
1811 memory_region_set_size(block->mr, newsize);
1812 if (block->resized) {
1813 block->resized(block->idstr, newsize, block->host);
1814 }
1815 return 0;
1816 }
1817
1818 /* Called with ram_list.mutex held */
1819 static void dirty_memory_extend(ram_addr_t old_ram_size,
1820 ram_addr_t new_ram_size)
1821 {
1822 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1823 DIRTY_MEMORY_BLOCK_SIZE);
1824 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1825 DIRTY_MEMORY_BLOCK_SIZE);
1826 int i;
1827
1828 /* Only need to extend if block count increased */
1829 if (new_num_blocks <= old_num_blocks) {
1830 return;
1831 }
1832
1833 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1834 DirtyMemoryBlocks *old_blocks;
1835 DirtyMemoryBlocks *new_blocks;
1836 int j;
1837
1838 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
1839 new_blocks = g_malloc(sizeof(*new_blocks) +
1840 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1841
1842 if (old_num_blocks) {
1843 memcpy(new_blocks->blocks, old_blocks->blocks,
1844 old_num_blocks * sizeof(old_blocks->blocks[0]));
1845 }
1846
1847 for (j = old_num_blocks; j < new_num_blocks; j++) {
1848 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1849 }
1850
1851 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1852
1853 if (old_blocks) {
1854 g_free_rcu(old_blocks, rcu);
1855 }
1856 }
1857 }
1858
1859 static void ram_block_add(RAMBlock *new_block, Error **errp)
1860 {
1861 RAMBlock *block;
1862 RAMBlock *last_block = NULL;
1863 ram_addr_t old_ram_size, new_ram_size;
1864 Error *err = NULL;
1865
1866 old_ram_size = last_ram_page();
1867
1868 qemu_mutex_lock_ramlist();
1869 new_block->offset = find_ram_offset(new_block->max_length);
1870
1871 if (!new_block->host) {
1872 if (xen_enabled()) {
1873 xen_ram_alloc(new_block->offset, new_block->max_length,
1874 new_block->mr, &err);
1875 if (err) {
1876 error_propagate(errp, err);
1877 qemu_mutex_unlock_ramlist();
1878 return;
1879 }
1880 } else {
1881 new_block->host = phys_mem_alloc(new_block->max_length,
1882 &new_block->mr->align);
1883 if (!new_block->host) {
1884 error_setg_errno(errp, errno,
1885 "cannot set up guest memory '%s'",
1886 memory_region_name(new_block->mr));
1887 qemu_mutex_unlock_ramlist();
1888 return;
1889 }
1890 memory_try_enable_merging(new_block->host, new_block->max_length);
1891 }
1892 }
1893
1894 new_ram_size = MAX(old_ram_size,
1895 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1896 if (new_ram_size > old_ram_size) {
1897 dirty_memory_extend(old_ram_size, new_ram_size);
1898 }
1899 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1900 * QLIST (which has an RCU-friendly variant) does not have insertion at
1901 * tail, so save the last element in last_block.
1902 */
1903 RAMBLOCK_FOREACH(block) {
1904 last_block = block;
1905 if (block->max_length < new_block->max_length) {
1906 break;
1907 }
1908 }
1909 if (block) {
1910 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
1911 } else if (last_block) {
1912 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
1913 } else { /* list is empty */
1914 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
1915 }
1916 ram_list.mru_block = NULL;
1917
1918 /* Write list before version */
1919 smp_wmb();
1920 ram_list.version++;
1921 qemu_mutex_unlock_ramlist();
1922
1923 cpu_physical_memory_set_dirty_range(new_block->offset,
1924 new_block->used_length,
1925 DIRTY_CLIENTS_ALL);
1926
1927 if (new_block->host) {
1928 qemu_ram_setup_dump(new_block->host, new_block->max_length);
1929 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
1930 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
1931 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
1932 ram_block_notify_add(new_block->host, new_block->max_length);
1933 }
1934 }
1935
1936 #ifdef __linux__
1937 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
1938 bool share, int fd,
1939 Error **errp)
1940 {
1941 RAMBlock *new_block;
1942 Error *local_err = NULL;
1943 int64_t file_size;
1944
1945 if (xen_enabled()) {
1946 error_setg(errp, "-mem-path not supported with Xen");
1947 return NULL;
1948 }
1949
1950 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1951 error_setg(errp,
1952 "host lacks kvm mmu notifiers, -mem-path unsupported");
1953 return NULL;
1954 }
1955
1956 if (phys_mem_alloc != qemu_anon_ram_alloc) {
1957 /*
1958 * file_ram_alloc() needs to allocate just like
1959 * phys_mem_alloc, but we haven't bothered to provide
1960 * a hook there.
1961 */
1962 error_setg(errp,
1963 "-mem-path not supported with this accelerator");
1964 return NULL;
1965 }
1966
1967 size = HOST_PAGE_ALIGN(size);
1968 file_size = get_file_size(fd);
1969 if (file_size > 0 && file_size < size) {
1970 error_setg(errp, "backing store %s size 0x%" PRIx64
1971 " does not match 'size' option 0x" RAM_ADDR_FMT,
1972 mem_path, file_size, size);
1973 return NULL;
1974 }
1975
1976 new_block = g_malloc0(sizeof(*new_block));
1977 new_block->mr = mr;
1978 new_block->used_length = size;
1979 new_block->max_length = size;
1980 new_block->flags = share ? RAM_SHARED : 0;
1981 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
1982 if (!new_block->host) {
1983 g_free(new_block);
1984 return NULL;
1985 }
1986
1987 ram_block_add(new_block, &local_err);
1988 if (local_err) {
1989 g_free(new_block);
1990 error_propagate(errp, local_err);
1991 return NULL;
1992 }
1993 return new_block;
1994
1995 }
1996
1997
1998 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
1999 bool share, const char *mem_path,
2000 Error **errp)
2001 {
2002 int fd;
2003 bool created;
2004 RAMBlock *block;
2005
2006 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2007 if (fd < 0) {
2008 return NULL;
2009 }
2010
2011 block = qemu_ram_alloc_from_fd(size, mr, share, fd, errp);
2012 if (!block) {
2013 if (created) {
2014 unlink(mem_path);
2015 }
2016 close(fd);
2017 return NULL;
2018 }
2019
2020 return block;
2021 }
2022 #endif
2023
2024 static
2025 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2026 void (*resized)(const char*,
2027 uint64_t length,
2028 void *host),
2029 void *host, bool resizeable,
2030 MemoryRegion *mr, Error **errp)
2031 {
2032 RAMBlock *new_block;
2033 Error *local_err = NULL;
2034
2035 size = HOST_PAGE_ALIGN(size);
2036 max_size = HOST_PAGE_ALIGN(max_size);
2037 new_block = g_malloc0(sizeof(*new_block));
2038 new_block->mr = mr;
2039 new_block->resized = resized;
2040 new_block->used_length = size;
2041 new_block->max_length = max_size;
2042 assert(max_size >= size);
2043 new_block->fd = -1;
2044 new_block->page_size = getpagesize();
2045 new_block->host = host;
2046 if (host) {
2047 new_block->flags |= RAM_PREALLOC;
2048 }
2049 if (resizeable) {
2050 new_block->flags |= RAM_RESIZEABLE;
2051 }
2052 ram_block_add(new_block, &local_err);
2053 if (local_err) {
2054 g_free(new_block);
2055 error_propagate(errp, local_err);
2056 return NULL;
2057 }
2058 return new_block;
2059 }
2060
2061 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2062 MemoryRegion *mr, Error **errp)
2063 {
2064 return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp);
2065 }
2066
2067 RAMBlock *qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp)
2068 {
2069 return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp);
2070 }
2071
2072 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2073 void (*resized)(const char*,
2074 uint64_t length,
2075 void *host),
2076 MemoryRegion *mr, Error **errp)
2077 {
2078 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp);
2079 }
2080
2081 static void reclaim_ramblock(RAMBlock *block)
2082 {
2083 if (block->flags & RAM_PREALLOC) {
2084 ;
2085 } else if (xen_enabled()) {
2086 xen_invalidate_map_cache_entry(block->host);
2087 #ifndef _WIN32
2088 } else if (block->fd >= 0) {
2089 qemu_ram_munmap(block->host, block->max_length);
2090 close(block->fd);
2091 #endif
2092 } else {
2093 qemu_anon_ram_free(block->host, block->max_length);
2094 }
2095 g_free(block);
2096 }
2097
2098 void qemu_ram_free(RAMBlock *block)
2099 {
2100 if (!block) {
2101 return;
2102 }
2103
2104 if (block->host) {
2105 ram_block_notify_remove(block->host, block->max_length);
2106 }
2107
2108 qemu_mutex_lock_ramlist();
2109 QLIST_REMOVE_RCU(block, next);
2110 ram_list.mru_block = NULL;
2111 /* Write list before version */
2112 smp_wmb();
2113 ram_list.version++;
2114 call_rcu(block, reclaim_ramblock, rcu);
2115 qemu_mutex_unlock_ramlist();
2116 }
2117
2118 #ifndef _WIN32
2119 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2120 {
2121 RAMBlock *block;
2122 ram_addr_t offset;
2123 int flags;
2124 void *area, *vaddr;
2125
2126 RAMBLOCK_FOREACH(block) {
2127 offset = addr - block->offset;
2128 if (offset < block->max_length) {
2129 vaddr = ramblock_ptr(block, offset);
2130 if (block->flags & RAM_PREALLOC) {
2131 ;
2132 } else if (xen_enabled()) {
2133 abort();
2134 } else {
2135 flags = MAP_FIXED;
2136 if (block->fd >= 0) {
2137 flags |= (block->flags & RAM_SHARED ?
2138 MAP_SHARED : MAP_PRIVATE);
2139 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2140 flags, block->fd, offset);
2141 } else {
2142 /*
2143 * Remap needs to match alloc. Accelerators that
2144 * set phys_mem_alloc never remap. If they did,
2145 * we'd need a remap hook here.
2146 */
2147 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2148
2149 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2150 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2151 flags, -1, 0);
2152 }
2153 if (area != vaddr) {
2154 fprintf(stderr, "Could not remap addr: "
2155 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
2156 length, addr);
2157 exit(1);
2158 }
2159 memory_try_enable_merging(vaddr, length);
2160 qemu_ram_setup_dump(vaddr, length);
2161 }
2162 }
2163 }
2164 }
2165 #endif /* !_WIN32 */
2166
2167 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2168 * This should not be used for general purpose DMA. Use address_space_map
2169 * or address_space_rw instead. For local memory (e.g. video ram) that the
2170 * device owns, use memory_region_get_ram_ptr.
2171 *
2172 * Called within RCU critical section.
2173 */
2174 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2175 {
2176 RAMBlock *block = ram_block;
2177
2178 if (block == NULL) {
2179 block = qemu_get_ram_block(addr);
2180 addr -= block->offset;
2181 }
2182
2183 if (xen_enabled() && block->host == NULL) {
2184 /* We need to check if the requested address is in the RAM
2185 * because we don't want to map the entire memory in QEMU.
2186 * In that case just map until the end of the page.
2187 */
2188 if (block->offset == 0) {
2189 return xen_map_cache(addr, 0, 0, false);
2190 }
2191
2192 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2193 }
2194 return ramblock_ptr(block, addr);
2195 }
2196
2197 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2198 * but takes a size argument.
2199 *
2200 * Called within RCU critical section.
2201 */
2202 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2203 hwaddr *size, bool lock)
2204 {
2205 RAMBlock *block = ram_block;
2206 if (*size == 0) {
2207 return NULL;
2208 }
2209
2210 if (block == NULL) {
2211 block = qemu_get_ram_block(addr);
2212 addr -= block->offset;
2213 }
2214 *size = MIN(*size, block->max_length - addr);
2215
2216 if (xen_enabled() && block->host == NULL) {
2217 /* We need to check if the requested address is in the RAM
2218 * because we don't want to map the entire memory in QEMU.
2219 * In that case just map the requested area.
2220 */
2221 if (block->offset == 0) {
2222 return xen_map_cache(addr, *size, lock, lock);
2223 }
2224
2225 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2226 }
2227
2228 return ramblock_ptr(block, addr);
2229 }
2230
2231 /*
2232 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2233 * in that RAMBlock.
2234 *
2235 * ptr: Host pointer to look up
2236 * round_offset: If true round the result offset down to a page boundary
2237 * *ram_addr: set to result ram_addr
2238 * *offset: set to result offset within the RAMBlock
2239 *
2240 * Returns: RAMBlock (or NULL if not found)
2241 *
2242 * By the time this function returns, the returned pointer is not protected
2243 * by RCU anymore. If the caller is not within an RCU critical section and
2244 * does not hold the iothread lock, it must have other means of protecting the
2245 * pointer, such as a reference to the region that includes the incoming
2246 * ram_addr_t.
2247 */
2248 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2249 ram_addr_t *offset)
2250 {
2251 RAMBlock *block;
2252 uint8_t *host = ptr;
2253
2254 if (xen_enabled()) {
2255 ram_addr_t ram_addr;
2256 rcu_read_lock();
2257 ram_addr = xen_ram_addr_from_mapcache(ptr);
2258 block = qemu_get_ram_block(ram_addr);
2259 if (block) {
2260 *offset = ram_addr - block->offset;
2261 }
2262 rcu_read_unlock();
2263 return block;
2264 }
2265
2266 rcu_read_lock();
2267 block = atomic_rcu_read(&ram_list.mru_block);
2268 if (block && block->host && host - block->host < block->max_length) {
2269 goto found;
2270 }
2271
2272 RAMBLOCK_FOREACH(block) {
2273 /* This case append when the block is not mapped. */
2274 if (block->host == NULL) {
2275 continue;
2276 }
2277 if (host - block->host < block->max_length) {
2278 goto found;
2279 }
2280 }
2281
2282 rcu_read_unlock();
2283 return NULL;
2284
2285 found:
2286 *offset = (host - block->host);
2287 if (round_offset) {
2288 *offset &= TARGET_PAGE_MASK;
2289 }
2290 rcu_read_unlock();
2291 return block;
2292 }
2293
2294 /*
2295 * Finds the named RAMBlock
2296 *
2297 * name: The name of RAMBlock to find
2298 *
2299 * Returns: RAMBlock (or NULL if not found)
2300 */
2301 RAMBlock *qemu_ram_block_by_name(const char *name)
2302 {
2303 RAMBlock *block;
2304
2305 RAMBLOCK_FOREACH(block) {
2306 if (!strcmp(name, block->idstr)) {
2307 return block;
2308 }
2309 }
2310
2311 return NULL;
2312 }
2313
2314 /* Some of the softmmu routines need to translate from a host pointer
2315 (typically a TLB entry) back to a ram offset. */
2316 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2317 {
2318 RAMBlock *block;
2319 ram_addr_t offset;
2320
2321 block = qemu_ram_block_from_host(ptr, false, &offset);
2322 if (!block) {
2323 return RAM_ADDR_INVALID;
2324 }
2325
2326 return block->offset + offset;
2327 }
2328
2329 /* Called within RCU critical section. */
2330 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
2331 uint64_t val, unsigned size)
2332 {
2333 bool locked = false;
2334
2335 assert(tcg_enabled());
2336 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
2337 locked = true;
2338 tb_lock();
2339 tb_invalidate_phys_page_fast(ram_addr, size);
2340 }
2341 switch (size) {
2342 case 1:
2343 stb_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2344 break;
2345 case 2:
2346 stw_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2347 break;
2348 case 4:
2349 stl_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2350 break;
2351 default:
2352 abort();
2353 }
2354
2355 if (locked) {
2356 tb_unlock();
2357 }
2358
2359 /* Set both VGA and migration bits for simplicity and to remove
2360 * the notdirty callback faster.
2361 */
2362 cpu_physical_memory_set_dirty_range(ram_addr, size,
2363 DIRTY_CLIENTS_NOCODE);
2364 /* we remove the notdirty callback only if the code has been
2365 flushed */
2366 if (!cpu_physical_memory_is_clean(ram_addr)) {
2367 tlb_set_dirty(current_cpu, current_cpu->mem_io_vaddr);
2368 }
2369 }
2370
2371 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2372 unsigned size, bool is_write)
2373 {
2374 return is_write;
2375 }
2376
2377 static const MemoryRegionOps notdirty_mem_ops = {
2378 .write = notdirty_mem_write,
2379 .valid.accepts = notdirty_mem_accepts,
2380 .endianness = DEVICE_NATIVE_ENDIAN,
2381 };
2382
2383 /* Generate a debug exception if a watchpoint has been hit. */
2384 static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
2385 {
2386 CPUState *cpu = current_cpu;
2387 CPUClass *cc = CPU_GET_CLASS(cpu);
2388 CPUArchState *env = cpu->env_ptr;
2389 target_ulong pc, cs_base;
2390 target_ulong vaddr;
2391 CPUWatchpoint *wp;
2392 uint32_t cpu_flags;
2393
2394 assert(tcg_enabled());
2395 if (cpu->watchpoint_hit) {
2396 /* We re-entered the check after replacing the TB. Now raise
2397 * the debug interrupt so that is will trigger after the
2398 * current instruction. */
2399 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2400 return;
2401 }
2402 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2403 vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
2404 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2405 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2406 && (wp->flags & flags)) {
2407 if (flags == BP_MEM_READ) {
2408 wp->flags |= BP_WATCHPOINT_HIT_READ;
2409 } else {
2410 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2411 }
2412 wp->hitaddr = vaddr;
2413 wp->hitattrs = attrs;
2414 if (!cpu->watchpoint_hit) {
2415 if (wp->flags & BP_CPU &&
2416 !cc->debug_check_watchpoint(cpu, wp)) {
2417 wp->flags &= ~BP_WATCHPOINT_HIT;
2418 continue;
2419 }
2420 cpu->watchpoint_hit = wp;
2421
2422 /* Both tb_lock and iothread_mutex will be reset when
2423 * cpu_loop_exit or cpu_loop_exit_noexc longjmp
2424 * back into the cpu_exec main loop.
2425 */
2426 tb_lock();
2427 tb_check_watchpoint(cpu);
2428 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2429 cpu->exception_index = EXCP_DEBUG;
2430 cpu_loop_exit(cpu);
2431 } else {
2432 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2433 tb_gen_code(cpu, pc, cs_base, cpu_flags, 1);
2434 cpu_loop_exit_noexc(cpu);
2435 }
2436 }
2437 } else {
2438 wp->flags &= ~BP_WATCHPOINT_HIT;
2439 }
2440 }
2441 }
2442
2443 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2444 so these check for a hit then pass through to the normal out-of-line
2445 phys routines. */
2446 static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2447 unsigned size, MemTxAttrs attrs)
2448 {
2449 MemTxResult res;
2450 uint64_t data;
2451 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2452 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2453
2454 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
2455 switch (size) {
2456 case 1:
2457 data = address_space_ldub(as, addr, attrs, &res);
2458 break;
2459 case 2:
2460 data = address_space_lduw(as, addr, attrs, &res);
2461 break;
2462 case 4:
2463 data = address_space_ldl(as, addr, attrs, &res);
2464 break;
2465 default: abort();
2466 }
2467 *pdata = data;
2468 return res;
2469 }
2470
2471 static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2472 uint64_t val, unsigned size,
2473 MemTxAttrs attrs)
2474 {
2475 MemTxResult res;
2476 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2477 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2478
2479 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
2480 switch (size) {
2481 case 1:
2482 address_space_stb(as, addr, val, attrs, &res);
2483 break;
2484 case 2:
2485 address_space_stw(as, addr, val, attrs, &res);
2486 break;
2487 case 4:
2488 address_space_stl(as, addr, val, attrs, &res);
2489 break;
2490 default: abort();
2491 }
2492 return res;
2493 }
2494
2495 static const MemoryRegionOps watch_mem_ops = {
2496 .read_with_attrs = watch_mem_read,
2497 .write_with_attrs = watch_mem_write,
2498 .endianness = DEVICE_NATIVE_ENDIAN,
2499 };
2500
2501 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2502 const uint8_t *buf, int len);
2503 static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
2504 bool is_write);
2505
2506 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2507 unsigned len, MemTxAttrs attrs)
2508 {
2509 subpage_t *subpage = opaque;
2510 uint8_t buf[8];
2511 MemTxResult res;
2512
2513 #if defined(DEBUG_SUBPAGE)
2514 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2515 subpage, len, addr);
2516 #endif
2517 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2518 if (res) {
2519 return res;
2520 }
2521 switch (len) {
2522 case 1:
2523 *data = ldub_p(buf);
2524 return MEMTX_OK;
2525 case 2:
2526 *data = lduw_p(buf);
2527 return MEMTX_OK;
2528 case 4:
2529 *data = ldl_p(buf);
2530 return MEMTX_OK;
2531 case 8:
2532 *data = ldq_p(buf);
2533 return MEMTX_OK;
2534 default:
2535 abort();
2536 }
2537 }
2538
2539 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2540 uint64_t value, unsigned len, MemTxAttrs attrs)
2541 {
2542 subpage_t *subpage = opaque;
2543 uint8_t buf[8];
2544
2545 #if defined(DEBUG_SUBPAGE)
2546 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2547 " value %"PRIx64"\n",
2548 __func__, subpage, len, addr, value);
2549 #endif
2550 switch (len) {
2551 case 1:
2552 stb_p(buf, value);
2553 break;
2554 case 2:
2555 stw_p(buf, value);
2556 break;
2557 case 4:
2558 stl_p(buf, value);
2559 break;
2560 case 8:
2561 stq_p(buf, value);
2562 break;
2563 default:
2564 abort();
2565 }
2566 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2567 }
2568
2569 static bool subpage_accepts(void *opaque, hwaddr addr,
2570 unsigned len, bool is_write)
2571 {
2572 subpage_t *subpage = opaque;
2573 #if defined(DEBUG_SUBPAGE)
2574 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2575 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2576 #endif
2577
2578 return flatview_access_valid(subpage->fv, addr + subpage->base,
2579 len, is_write);
2580 }
2581
2582 static const MemoryRegionOps subpage_ops = {
2583 .read_with_attrs = subpage_read,
2584 .write_with_attrs = subpage_write,
2585 .impl.min_access_size = 1,
2586 .impl.max_access_size = 8,
2587 .valid.min_access_size = 1,
2588 .valid.max_access_size = 8,
2589 .valid.accepts = subpage_accepts,
2590 .endianness = DEVICE_NATIVE_ENDIAN,
2591 };
2592
2593 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2594 uint16_t section)
2595 {
2596 int idx, eidx;
2597
2598 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2599 return -1;
2600 idx = SUBPAGE_IDX(start);
2601 eidx = SUBPAGE_IDX(end);
2602 #if defined(DEBUG_SUBPAGE)
2603 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2604 __func__, mmio, start, end, idx, eidx, section);
2605 #endif
2606 for (; idx <= eidx; idx++) {
2607 mmio->sub_section[idx] = section;
2608 }
2609
2610 return 0;
2611 }
2612
2613 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2614 {
2615 subpage_t *mmio;
2616
2617 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2618 mmio->fv = fv;
2619 mmio->base = base;
2620 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2621 NULL, TARGET_PAGE_SIZE);
2622 mmio->iomem.subpage = true;
2623 #if defined(DEBUG_SUBPAGE)
2624 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2625 mmio, base, TARGET_PAGE_SIZE);
2626 #endif
2627 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
2628
2629 return mmio;
2630 }
2631
2632 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2633 {
2634 assert(fv);
2635 MemoryRegionSection section = {
2636 .fv = fv,
2637 .mr = mr,
2638 .offset_within_address_space = 0,
2639 .offset_within_region = 0,
2640 .size = int128_2_64(),
2641 };
2642
2643 return phys_section_add(map, &section);
2644 }
2645
2646 MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs)
2647 {
2648 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2649 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2650 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
2651 MemoryRegionSection *sections = d->map.sections;
2652
2653 return sections[index & ~TARGET_PAGE_MASK].mr;
2654 }
2655
2656 static void io_mem_init(void)
2657 {
2658 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX);
2659 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2660 NULL, UINT64_MAX);
2661
2662 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
2663 * which can be called without the iothread mutex.
2664 */
2665 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
2666 NULL, UINT64_MAX);
2667 memory_region_clear_global_locking(&io_mem_notdirty);
2668
2669 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
2670 NULL, UINT64_MAX);
2671 }
2672
2673 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2674 {
2675 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2676 uint16_t n;
2677
2678 n = dummy_section(&d->map, fv, &io_mem_unassigned);
2679 assert(n == PHYS_SECTION_UNASSIGNED);
2680 n = dummy_section(&d->map, fv, &io_mem_notdirty);
2681 assert(n == PHYS_SECTION_NOTDIRTY);
2682 n = dummy_section(&d->map, fv, &io_mem_rom);
2683 assert(n == PHYS_SECTION_ROM);
2684 n = dummy_section(&d->map, fv, &io_mem_watch);
2685 assert(n == PHYS_SECTION_WATCH);
2686
2687 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2688
2689 return d;
2690 }
2691
2692 void address_space_dispatch_free(AddressSpaceDispatch *d)
2693 {
2694 phys_sections_free(&d->map);
2695 g_free(d);
2696 }
2697
2698 static void tcg_commit(MemoryListener *listener)
2699 {
2700 CPUAddressSpace *cpuas;
2701 AddressSpaceDispatch *d;
2702
2703 /* since each CPU stores ram addresses in its TLB cache, we must
2704 reset the modified entries */
2705 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2706 cpu_reloading_memory_map();
2707 /* The CPU and TLB are protected by the iothread lock.
2708 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2709 * may have split the RCU critical section.
2710 */
2711 d = address_space_to_dispatch(cpuas->as);
2712 atomic_rcu_set(&cpuas->memory_dispatch, d);
2713 tlb_flush(cpuas->cpu);
2714 }
2715
2716 static void memory_map_init(void)
2717 {
2718 system_memory = g_malloc(sizeof(*system_memory));
2719
2720 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2721 address_space_init(&address_space_memory, system_memory, "memory");
2722
2723 system_io = g_malloc(sizeof(*system_io));
2724 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2725 65536);
2726 address_space_init(&address_space_io, system_io, "I/O");
2727 }
2728
2729 MemoryRegion *get_system_memory(void)
2730 {
2731 return system_memory;
2732 }
2733
2734 MemoryRegion *get_system_io(void)
2735 {
2736 return system_io;
2737 }
2738
2739 #endif /* !defined(CONFIG_USER_ONLY) */
2740
2741 /* physical memory access (slow version, mainly for debug) */
2742 #if defined(CONFIG_USER_ONLY)
2743 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
2744 uint8_t *buf, int len, int is_write)
2745 {
2746 int l, flags;
2747 target_ulong page;
2748 void * p;
2749
2750 while (len > 0) {
2751 page = addr & TARGET_PAGE_MASK;
2752 l = (page + TARGET_PAGE_SIZE) - addr;
2753 if (l > len)
2754 l = len;
2755 flags = page_get_flags(page);
2756 if (!(flags & PAGE_VALID))
2757 return -1;
2758 if (is_write) {
2759 if (!(flags & PAGE_WRITE))
2760 return -1;
2761 /* XXX: this code should not depend on lock_user */
2762 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
2763 return -1;
2764 memcpy(p, buf, l);
2765 unlock_user(p, addr, l);
2766 } else {
2767 if (!(flags & PAGE_READ))
2768 return -1;
2769 /* XXX: this code should not depend on lock_user */
2770 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
2771 return -1;
2772 memcpy(buf, p, l);
2773 unlock_user(p, addr, 0);
2774 }
2775 len -= l;
2776 buf += l;
2777 addr += l;
2778 }
2779 return 0;
2780 }
2781
2782 #else
2783
2784 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
2785 hwaddr length)
2786 {
2787 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2788 addr += memory_region_get_ram_addr(mr);
2789
2790 /* No early return if dirty_log_mask is or becomes 0, because
2791 * cpu_physical_memory_set_dirty_range will still call
2792 * xen_modified_memory.
2793 */
2794 if (dirty_log_mask) {
2795 dirty_log_mask =
2796 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2797 }
2798 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2799 assert(tcg_enabled());
2800 tb_lock();
2801 tb_invalidate_phys_range(addr, addr + length);
2802 tb_unlock();
2803 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
2804 }
2805 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
2806 }
2807
2808 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
2809 {
2810 unsigned access_size_max = mr->ops->valid.max_access_size;
2811
2812 /* Regions are assumed to support 1-4 byte accesses unless
2813 otherwise specified. */
2814 if (access_size_max == 0) {
2815 access_size_max = 4;
2816 }
2817
2818 /* Bound the maximum access by the alignment of the address. */
2819 if (!mr->ops->impl.unaligned) {
2820 unsigned align_size_max = addr & -addr;
2821 if (align_size_max != 0 && align_size_max < access_size_max) {
2822 access_size_max = align_size_max;
2823 }
2824 }
2825
2826 /* Don't attempt accesses larger than the maximum. */
2827 if (l > access_size_max) {
2828 l = access_size_max;
2829 }
2830 l = pow2floor(l);
2831
2832 return l;
2833 }
2834
2835 static bool prepare_mmio_access(MemoryRegion *mr)
2836 {
2837 bool unlocked = !qemu_mutex_iothread_locked();
2838 bool release_lock = false;
2839
2840 if (unlocked && mr->global_locking) {
2841 qemu_mutex_lock_iothread();
2842 unlocked = false;
2843 release_lock = true;
2844 }
2845 if (mr->flush_coalesced_mmio) {
2846 if (unlocked) {
2847 qemu_mutex_lock_iothread();
2848 }
2849 qemu_flush_coalesced_mmio_buffer();
2850 if (unlocked) {
2851 qemu_mutex_unlock_iothread();
2852 }
2853 }
2854
2855 return release_lock;
2856 }
2857
2858 /* Called within RCU critical section. */
2859 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
2860 MemTxAttrs attrs,
2861 const uint8_t *buf,
2862 int len, hwaddr addr1,
2863 hwaddr l, MemoryRegion *mr)
2864 {
2865 uint8_t *ptr;
2866 uint64_t val;
2867 MemTxResult result = MEMTX_OK;
2868 bool release_lock = false;
2869
2870 for (;;) {
2871 if (!memory_access_is_direct(mr, true)) {
2872 release_lock |= prepare_mmio_access(mr);
2873 l = memory_access_size(mr, l, addr1);
2874 /* XXX: could force current_cpu to NULL to avoid
2875 potential bugs */
2876 switch (l) {
2877 case 8:
2878 /* 64 bit write access */
2879 val = ldq_p(buf);
2880 result |= memory_region_dispatch_write(mr, addr1, val, 8,
2881 attrs);
2882 break;
2883 case 4:
2884 /* 32 bit write access */
2885 val = (uint32_t)ldl_p(buf);
2886 result |= memory_region_dispatch_write(mr, addr1, val, 4,
2887 attrs);
2888 break;
2889 case 2:
2890 /* 16 bit write access */
2891 val = lduw_p(buf);
2892 result |= memory_region_dispatch_write(mr, addr1, val, 2,
2893 attrs);
2894 break;
2895 case 1:
2896 /* 8 bit write access */
2897 val = ldub_p(buf);
2898 result |= memory_region_dispatch_write(mr, addr1, val, 1,
2899 attrs);
2900 break;
2901 default:
2902 abort();
2903 }
2904 } else {
2905 /* RAM case */
2906 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
2907 memcpy(ptr, buf, l);
2908 invalidate_and_set_dirty(mr, addr1, l);
2909 }
2910
2911 if (release_lock) {
2912 qemu_mutex_unlock_iothread();
2913 release_lock = false;
2914 }
2915
2916 len -= l;
2917 buf += l;
2918 addr += l;
2919
2920 if (!len) {
2921 break;
2922 }
2923
2924 l = len;
2925 mr = flatview_translate(fv, addr, &addr1, &l, true);
2926 }
2927
2928 return result;
2929 }
2930
2931 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2932 const uint8_t *buf, int len)
2933 {
2934 hwaddr l;
2935 hwaddr addr1;
2936 MemoryRegion *mr;
2937 MemTxResult result = MEMTX_OK;
2938
2939 if (len > 0) {
2940 rcu_read_lock();
2941 l = len;
2942 mr = flatview_translate(fv, addr, &addr1, &l, true);
2943 result = flatview_write_continue(fv, addr, attrs, buf, len,
2944 addr1, l, mr);
2945 rcu_read_unlock();
2946 }
2947
2948 return result;
2949 }
2950
2951 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2952 MemTxAttrs attrs,
2953 const uint8_t *buf, int len)
2954 {
2955 return flatview_write(address_space_to_flatview(as), addr, attrs, buf, len);
2956 }
2957
2958 /* Called within RCU critical section. */
2959 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2960 MemTxAttrs attrs, uint8_t *buf,
2961 int len, hwaddr addr1, hwaddr l,
2962 MemoryRegion *mr)
2963 {
2964 uint8_t *ptr;
2965 uint64_t val;
2966 MemTxResult result = MEMTX_OK;
2967 bool release_lock = false;
2968
2969 for (;;) {
2970 if (!memory_access_is_direct(mr, false)) {
2971 /* I/O case */
2972 release_lock |= prepare_mmio_access(mr);
2973 l = memory_access_size(mr, l, addr1);
2974 switch (l) {
2975 case 8:
2976 /* 64 bit read access */
2977 result |= memory_region_dispatch_read(mr, addr1, &val, 8,
2978 attrs);
2979 stq_p(buf, val);
2980 break;
2981 case 4:
2982 /* 32 bit read access */
2983 result |= memory_region_dispatch_read(mr, addr1, &val, 4,
2984 attrs);
2985 stl_p(buf, val);
2986 break;
2987 case 2:
2988 /* 16 bit read access */
2989 result |= memory_region_dispatch_read(mr, addr1, &val, 2,
2990 attrs);
2991 stw_p(buf, val);
2992 break;
2993 case 1:
2994 /* 8 bit read access */
2995 result |= memory_region_dispatch_read(mr, addr1, &val, 1,
2996 attrs);
2997 stb_p(buf, val);
2998 break;
2999 default:
3000 abort();
3001 }
3002 } else {
3003 /* RAM case */
3004 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3005 memcpy(buf, ptr, l);
3006 }
3007
3008 if (release_lock) {
3009 qemu_mutex_unlock_iothread();
3010 release_lock = false;
3011 }
3012
3013 len -= l;
3014 buf += l;
3015 addr += l;
3016
3017 if (!len) {
3018 break;
3019 }
3020
3021 l = len;
3022 mr = flatview_translate(fv, addr, &addr1, &l, false);
3023 }
3024
3025 return result;
3026 }
3027
3028 MemTxResult flatview_read_full(FlatView *fv, hwaddr addr,
3029 MemTxAttrs attrs, uint8_t *buf, int len)
3030 {
3031 hwaddr l;
3032 hwaddr addr1;
3033 MemoryRegion *mr;
3034 MemTxResult result = MEMTX_OK;
3035
3036 if (len > 0) {
3037 rcu_read_lock();
3038 l = len;
3039 mr = flatview_translate(fv, addr, &addr1, &l, false);
3040 result = flatview_read_continue(fv, addr, attrs, buf, len,
3041 addr1, l, mr);
3042 rcu_read_unlock();
3043 }
3044
3045 return result;
3046 }
3047
3048 static MemTxResult flatview_rw(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3049 uint8_t *buf, int len, bool is_write)
3050 {
3051 if (is_write) {
3052 return flatview_write(fv, addr, attrs, (uint8_t *)buf, len);
3053 } else {
3054 return flatview_read(fv, addr, attrs, (uint8_t *)buf, len);
3055 }
3056 }
3057
3058 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
3059 MemTxAttrs attrs, uint8_t *buf,
3060 int len, bool is_write)
3061 {
3062 return flatview_rw(address_space_to_flatview(as),
3063 addr, attrs, buf, len, is_write);
3064 }
3065
3066 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
3067 int len, int is_write)
3068 {
3069 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3070 buf, len, is_write);
3071 }
3072
3073 enum write_rom_type {
3074 WRITE_DATA,
3075 FLUSH_CACHE,
3076 };
3077
3078 static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
3079 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
3080 {
3081 hwaddr l;
3082 uint8_t *ptr;
3083 hwaddr addr1;
3084 MemoryRegion *mr;
3085
3086 rcu_read_lock();
3087 while (len > 0) {
3088 l = len;
3089 mr = address_space_translate(as, addr, &addr1, &l, true);
3090
3091 if (!(memory_region_is_ram(mr) ||
3092 memory_region_is_romd(mr))) {
3093 l = memory_access_size(mr, l, addr1);
3094 } else {
3095 /* ROM/RAM case */
3096 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3097 switch (type) {
3098 case WRITE_DATA:
3099 memcpy(ptr, buf, l);
3100 invalidate_and_set_dirty(mr, addr1, l);
3101 break;
3102 case FLUSH_CACHE:
3103 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3104 break;
3105 }
3106 }
3107 len -= l;
3108 buf += l;
3109 addr += l;
3110 }
3111 rcu_read_unlock();
3112 }
3113
3114 /* used for ROM loading : can write in RAM and ROM */
3115 void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
3116 const uint8_t *buf, int len)
3117 {
3118 cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
3119 }
3120
3121 void cpu_flush_icache_range(hwaddr start, int len)
3122 {
3123 /*
3124 * This function should do the same thing as an icache flush that was
3125 * triggered from within the guest. For TCG we are always cache coherent,
3126 * so there is no need to flush anything. For KVM / Xen we need to flush
3127 * the host's instruction cache at least.
3128 */
3129 if (tcg_enabled()) {
3130 return;
3131 }
3132
3133 cpu_physical_memory_write_rom_internal(&address_space_memory,
3134 start, NULL, len, FLUSH_CACHE);
3135 }
3136
3137 typedef struct {
3138 MemoryRegion *mr;
3139 void *buffer;
3140 hwaddr addr;
3141 hwaddr len;
3142 bool in_use;
3143 } BounceBuffer;
3144
3145 static BounceBuffer bounce;
3146
3147 typedef struct MapClient {
3148 QEMUBH *bh;
3149 QLIST_ENTRY(MapClient) link;
3150 } MapClient;
3151
3152 QemuMutex map_client_list_lock;
3153 static QLIST_HEAD(map_client_list, MapClient) map_client_list
3154 = QLIST_HEAD_INITIALIZER(map_client_list);
3155
3156 static void cpu_unregister_map_client_do(MapClient *client)
3157 {
3158 QLIST_REMOVE(client, link);
3159 g_free(client);
3160 }
3161
3162 static void cpu_notify_map_clients_locked(void)
3163 {
3164 MapClient *client;
3165
3166 while (!QLIST_EMPTY(&map_client_list)) {
3167 client = QLIST_FIRST(&map_client_list);
3168 qemu_bh_schedule(client->bh);
3169 cpu_unregister_map_client_do(client);
3170 }
3171 }
3172
3173 void cpu_register_map_client(QEMUBH *bh)
3174 {
3175 MapClient *client = g_malloc(sizeof(*client));
3176
3177 qemu_mutex_lock(&map_client_list_lock);
3178 client->bh = bh;
3179 QLIST_INSERT_HEAD(&map_client_list, client, link);
3180 if (!atomic_read(&bounce.in_use)) {
3181 cpu_notify_map_clients_locked();
3182 }
3183 qemu_mutex_unlock(&map_client_list_lock);
3184 }
3185
3186 void cpu_exec_init_all(void)
3187 {
3188 qemu_mutex_init(&ram_list.mutex);
3189 /* The data structures we set up here depend on knowing the page size,
3190 * so no more changes can be made after this point.
3191 * In an ideal world, nothing we did before we had finished the
3192 * machine setup would care about the target page size, and we could
3193 * do this much later, rather than requiring board models to state
3194 * up front what their requirements are.
3195 */
3196 finalize_target_page_bits();
3197 io_mem_init();
3198 memory_map_init();
3199 qemu_mutex_init(&map_client_list_lock);
3200 }
3201
3202 void cpu_unregister_map_client(QEMUBH *bh)
3203 {
3204 MapClient *client;
3205
3206 qemu_mutex_lock(&map_client_list_lock);
3207 QLIST_FOREACH(client, &map_client_list, link) {
3208 if (client->bh == bh) {
3209 cpu_unregister_map_client_do(client);
3210 break;
3211 }
3212 }
3213 qemu_mutex_unlock(&map_client_list_lock);
3214 }
3215
3216 static void cpu_notify_map_clients(void)
3217 {
3218 qemu_mutex_lock(&map_client_list_lock);
3219 cpu_notify_map_clients_locked();
3220 qemu_mutex_unlock(&map_client_list_lock);
3221 }
3222
3223 static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
3224 bool is_write)
3225 {
3226 MemoryRegion *mr;
3227 hwaddr l, xlat;
3228
3229 rcu_read_lock();
3230 while (len > 0) {
3231 l = len;
3232 mr = flatview_translate(fv, addr, &xlat, &l, is_write);
3233 if (!memory_access_is_direct(mr, is_write)) {
3234 l = memory_access_size(mr, l, addr);
3235 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
3236 rcu_read_unlock();
3237 return false;
3238 }
3239 }
3240
3241 len -= l;
3242 addr += l;
3243 }
3244 rcu_read_unlock();
3245 return true;
3246 }
3247
3248 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3249 int len, bool is_write)
3250 {
3251 return flatview_access_valid(address_space_to_flatview(as),
3252 addr, len, is_write);
3253 }
3254
3255 static hwaddr
3256 flatview_extend_translation(FlatView *fv, hwaddr addr,
3257 hwaddr target_len,
3258 MemoryRegion *mr, hwaddr base, hwaddr len,
3259 bool is_write)
3260 {
3261 hwaddr done = 0;
3262 hwaddr xlat;
3263 MemoryRegion *this_mr;
3264
3265 for (;;) {
3266 target_len -= len;
3267 addr += len;
3268 done += len;
3269 if (target_len == 0) {
3270 return done;
3271 }
3272
3273 len = target_len;
3274 this_mr = flatview_translate(fv, addr, &xlat,
3275 &len, is_write);
3276 if (this_mr != mr || xlat != base + done) {
3277 return done;
3278 }
3279 }
3280 }
3281
3282 /* Map a physical memory region into a host virtual address.
3283 * May map a subset of the requested range, given by and returned in *plen.
3284 * May return NULL if resources needed to perform the mapping are exhausted.
3285 * Use only for reads OR writes - not for read-modify-write operations.
3286 * Use cpu_register_map_client() to know when retrying the map operation is
3287 * likely to succeed.
3288 */
3289 void *address_space_map(AddressSpace *as,
3290 hwaddr addr,
3291 hwaddr *plen,
3292 bool is_write)
3293 {
3294 hwaddr len = *plen;
3295 hwaddr l, xlat;
3296 MemoryRegion *mr;
3297 void *ptr;
3298 FlatView *fv = address_space_to_flatview(as);
3299
3300 if (len == 0) {
3301 return NULL;
3302 }
3303
3304 l = len;
3305 rcu_read_lock();
3306 mr = flatview_translate(fv, addr, &xlat, &l, is_write);
3307
3308 if (!memory_access_is_direct(mr, is_write)) {
3309 if (atomic_xchg(&bounce.in_use, true)) {
3310 rcu_read_unlock();
3311 return NULL;
3312 }
3313 /* Avoid unbounded allocations */
3314 l = MIN(l, TARGET_PAGE_SIZE);
3315 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3316 bounce.addr = addr;
3317 bounce.len = l;
3318
3319 memory_region_ref(mr);
3320 bounce.mr = mr;
3321 if (!is_write) {
3322 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3323 bounce.buffer, l);
3324 }
3325
3326 rcu_read_unlock();
3327 *plen = l;
3328 return bounce.buffer;
3329 }
3330
3331
3332 memory_region_ref(mr);
3333 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3334 l, is_write);
3335 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3336 rcu_read_unlock();
3337
3338 return ptr;
3339 }
3340
3341 /* Unmaps a memory region previously mapped by address_space_map().
3342 * Will also mark the memory as dirty if is_write == 1. access_len gives
3343 * the amount of memory that was actually read or written by the caller.
3344 */
3345 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3346 int is_write, hwaddr access_len)
3347 {
3348 if (buffer != bounce.buffer) {
3349 MemoryRegion *mr;
3350 ram_addr_t addr1;
3351
3352 mr = memory_region_from_host(buffer, &addr1);
3353 assert(mr != NULL);
3354 if (is_write) {
3355 invalidate_and_set_dirty(mr, addr1, access_len);
3356 }
3357 if (xen_enabled()) {
3358 xen_invalidate_map_cache_entry(buffer);
3359 }
3360 memory_region_unref(mr);
3361 return;
3362 }
3363 if (is_write) {
3364 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3365 bounce.buffer, access_len);
3366 }
3367 qemu_vfree(bounce.buffer);
3368 bounce.buffer = NULL;
3369 memory_region_unref(bounce.mr);
3370 atomic_mb_set(&bounce.in_use, false);
3371 cpu_notify_map_clients();
3372 }
3373
3374 void *cpu_physical_memory_map(hwaddr addr,
3375 hwaddr *plen,
3376 int is_write)
3377 {
3378 return address_space_map(&address_space_memory, addr, plen, is_write);
3379 }
3380
3381 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3382 int is_write, hwaddr access_len)
3383 {
3384 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3385 }
3386
3387 #define ARG1_DECL AddressSpace *as
3388 #define ARG1 as
3389 #define SUFFIX
3390 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3391 #define IS_DIRECT(mr, is_write) memory_access_is_direct(mr, is_write)
3392 #define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3393 #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3394 #define RCU_READ_LOCK(...) rcu_read_lock()
3395 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3396 #include "memory_ldst.inc.c"
3397
3398 int64_t address_space_cache_init(MemoryRegionCache *cache,
3399 AddressSpace *as,
3400 hwaddr addr,
3401 hwaddr len,
3402 bool is_write)
3403 {
3404 cache->len = len;
3405 cache->as = as;
3406 cache->xlat = addr;
3407 return len;
3408 }
3409
3410 void address_space_cache_invalidate(MemoryRegionCache *cache,
3411 hwaddr addr,
3412 hwaddr access_len)
3413 {
3414 }
3415
3416 void address_space_cache_destroy(MemoryRegionCache *cache)
3417 {
3418 cache->as = NULL;
3419 }
3420
3421 #define ARG1_DECL MemoryRegionCache *cache
3422 #define ARG1 cache
3423 #define SUFFIX _cached
3424 #define TRANSLATE(addr, ...) \
3425 address_space_translate(cache->as, cache->xlat + (addr), __VA_ARGS__)
3426 #define IS_DIRECT(mr, is_write) true
3427 #define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3428 #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3429 #define RCU_READ_LOCK() rcu_read_lock()
3430 #define RCU_READ_UNLOCK() rcu_read_unlock()
3431 #include "memory_ldst.inc.c"
3432
3433 /* virtual memory access for debug (includes writing to ROM) */
3434 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3435 uint8_t *buf, int len, int is_write)
3436 {
3437 int l;
3438 hwaddr phys_addr;
3439 target_ulong page;
3440
3441 cpu_synchronize_state(cpu);
3442 while (len > 0) {
3443 int asidx;
3444 MemTxAttrs attrs;
3445
3446 page = addr & TARGET_PAGE_MASK;
3447 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3448 asidx = cpu_asidx_from_attrs(cpu, attrs);
3449 /* if no physical page mapped, return an error */
3450 if (phys_addr == -1)
3451 return -1;
3452 l = (page + TARGET_PAGE_SIZE) - addr;
3453 if (l > len)
3454 l = len;
3455 phys_addr += (addr & ~TARGET_PAGE_MASK);
3456 if (is_write) {
3457 cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
3458 phys_addr, buf, l);
3459 } else {
3460 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3461 MEMTXATTRS_UNSPECIFIED,
3462 buf, l, 0);
3463 }
3464 len -= l;
3465 buf += l;
3466 addr += l;
3467 }
3468 return 0;
3469 }
3470
3471 /*
3472 * Allows code that needs to deal with migration bitmaps etc to still be built
3473 * target independent.
3474 */
3475 size_t qemu_target_page_size(void)
3476 {
3477 return TARGET_PAGE_SIZE;
3478 }
3479
3480 int qemu_target_page_bits(void)
3481 {
3482 return TARGET_PAGE_BITS;
3483 }
3484
3485 int qemu_target_page_bits_min(void)
3486 {
3487 return TARGET_PAGE_BITS_MIN;
3488 }
3489 #endif
3490
3491 /*
3492 * A helper function for the _utterly broken_ virtio device model to find out if
3493 * it's running on a big endian machine. Don't do this at home kids!
3494 */
3495 bool target_words_bigendian(void);
3496 bool target_words_bigendian(void)
3497 {
3498 #if defined(TARGET_WORDS_BIGENDIAN)
3499 return true;
3500 #else
3501 return false;
3502 #endif
3503 }
3504
3505 #ifndef CONFIG_USER_ONLY
3506 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3507 {
3508 MemoryRegion*mr;
3509 hwaddr l = 1;
3510 bool res;
3511
3512 rcu_read_lock();
3513 mr = address_space_translate(&address_space_memory,
3514 phys_addr, &phys_addr, &l, false);
3515
3516 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3517 rcu_read_unlock();
3518 return res;
3519 }
3520
3521 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3522 {
3523 RAMBlock *block;
3524 int ret = 0;
3525
3526 rcu_read_lock();
3527 RAMBLOCK_FOREACH(block) {
3528 ret = func(block->idstr, block->host, block->offset,
3529 block->used_length, opaque);
3530 if (ret) {
3531 break;
3532 }
3533 }
3534 rcu_read_unlock();
3535 return ret;
3536 }
3537
3538 /*
3539 * Unmap pages of memory from start to start+length such that
3540 * they a) read as 0, b) Trigger whatever fault mechanism
3541 * the OS provides for postcopy.
3542 * The pages must be unmapped by the end of the function.
3543 * Returns: 0 on success, none-0 on failure
3544 *
3545 */
3546 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3547 {
3548 int ret = -1;
3549
3550 uint8_t *host_startaddr = rb->host + start;
3551
3552 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
3553 error_report("ram_block_discard_range: Unaligned start address: %p",
3554 host_startaddr);
3555 goto err;
3556 }
3557
3558 if ((start + length) <= rb->used_length) {
3559 uint8_t *host_endaddr = host_startaddr + length;
3560 if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
3561 error_report("ram_block_discard_range: Unaligned end address: %p",
3562 host_endaddr);
3563 goto err;
3564 }
3565
3566 errno = ENOTSUP; /* If we are missing MADVISE etc */
3567
3568 if (rb->page_size == qemu_host_page_size) {
3569 #if defined(CONFIG_MADVISE)
3570 /* Note: We need the madvise MADV_DONTNEED behaviour of definitely
3571 * freeing the page.
3572 */
3573 ret = madvise(host_startaddr, length, MADV_DONTNEED);
3574 #endif
3575 } else {
3576 /* Huge page case - unfortunately it can't do DONTNEED, but
3577 * it can do the equivalent by FALLOC_FL_PUNCH_HOLE in the
3578 * huge page file.
3579 */
3580 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3581 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3582 start, length);
3583 #endif
3584 }
3585 if (ret) {
3586 ret = -errno;
3587 error_report("ram_block_discard_range: Failed to discard range "
3588 "%s:%" PRIx64 " +%zx (%d)",
3589 rb->idstr, start, length, ret);
3590 }
3591 } else {
3592 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3593 "/%zx/" RAM_ADDR_FMT")",
3594 rb->idstr, start, length, rb->used_length);
3595 }
3596
3597 err:
3598 return ret;
3599 }
3600
3601 #endif
3602
3603 void page_size_init(void)
3604 {
3605 /* NOTE: we can always suppose that qemu_host_page_size >=
3606 TARGET_PAGE_SIZE */
3607 if (qemu_host_page_size == 0) {
3608 qemu_host_page_size = qemu_real_host_page_size;
3609 }
3610 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
3611 qemu_host_page_size = TARGET_PAGE_SIZE;
3612 }
3613 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
3614 }
3615
3616 #if !defined(CONFIG_USER_ONLY)
3617
3618 static void mtree_print_phys_entries(fprintf_function mon, void *f,
3619 int start, int end, int skip, int ptr)
3620 {
3621 if (start == end - 1) {
3622 mon(f, "\t%3d ", start);
3623 } else {
3624 mon(f, "\t%3d..%-3d ", start, end - 1);
3625 }
3626 mon(f, " skip=%d ", skip);
3627 if (ptr == PHYS_MAP_NODE_NIL) {
3628 mon(f, " ptr=NIL");
3629 } else if (!skip) {
3630 mon(f, " ptr=#%d", ptr);
3631 } else {
3632 mon(f, " ptr=[%d]", ptr);
3633 }
3634 mon(f, "\n");
3635 }
3636
3637 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3638 int128_sub((size), int128_one())) : 0)
3639
3640 void mtree_print_dispatch(fprintf_function mon, void *f,
3641 AddressSpaceDispatch *d, MemoryRegion *root)
3642 {
3643 int i;
3644
3645 mon(f, " Dispatch\n");
3646 mon(f, " Physical sections\n");
3647
3648 for (i = 0; i < d->map.sections_nb; ++i) {
3649 MemoryRegionSection *s = d->map.sections + i;
3650 const char *names[] = { " [unassigned]", " [not dirty]",
3651 " [ROM]", " [watch]" };
3652
3653 mon(f, " #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx " %s%s%s%s%s",
3654 i,
3655 s->offset_within_address_space,
3656 s->offset_within_address_space + MR_SIZE(s->mr->size),
3657 s->mr->name ? s->mr->name : "(noname)",
3658 i < ARRAY_SIZE(names) ? names[i] : "",
3659 s->mr == root ? " [ROOT]" : "",
3660 s == d->mru_section ? " [MRU]" : "",
3661 s->mr->is_iommu ? " [iommu]" : "");
3662
3663 if (s->mr->alias) {
3664 mon(f, " alias=%s", s->mr->alias->name ?
3665 s->mr->alias->name : "noname");
3666 }
3667 mon(f, "\n");
3668 }
3669
3670 mon(f, " Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
3671 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
3672 for (i = 0; i < d->map.nodes_nb; ++i) {
3673 int j, jprev;
3674 PhysPageEntry prev;
3675 Node *n = d->map.nodes + i;
3676
3677 mon(f, " [%d]\n", i);
3678
3679 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
3680 PhysPageEntry *pe = *n + j;
3681
3682 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
3683 continue;
3684 }
3685
3686 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
3687
3688 jprev = j;
3689 prev = *pe;
3690 }
3691
3692 if (jprev != ARRAY_SIZE(*n)) {
3693 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
3694 }
3695 }
3696 }
3697
3698 #endif