]> git.proxmox.com Git - mirror_qemu.git/blob - exec.c
memory: Drop MemoryRegion.ram_addr
[mirror_qemu.git] / exec.c
1 /*
2 * Virtual page mapping
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "qemu/osdep.h"
20 #ifndef _WIN32
21 #include <sys/mman.h>
22 #endif
23
24 #include "qemu-common.h"
25 #include "cpu.h"
26 #include "tcg.h"
27 #include "hw/hw.h"
28 #if !defined(CONFIG_USER_ONLY)
29 #include "hw/boards.h"
30 #endif
31 #include "hw/qdev.h"
32 #include "sysemu/kvm.h"
33 #include "sysemu/sysemu.h"
34 #include "hw/xen/xen.h"
35 #include "qemu/timer.h"
36 #include "qemu/config-file.h"
37 #include "qemu/error-report.h"
38 #include "exec/memory.h"
39 #include "sysemu/dma.h"
40 #include "exec/address-spaces.h"
41 #if defined(CONFIG_USER_ONLY)
42 #include <qemu.h>
43 #else /* !CONFIG_USER_ONLY */
44 #include "sysemu/xen-mapcache.h"
45 #include "trace.h"
46 #endif
47 #include "exec/cpu-all.h"
48 #include "qemu/rcu_queue.h"
49 #include "qemu/main-loop.h"
50 #include "translate-all.h"
51 #include "sysemu/replay.h"
52
53 #include "exec/memory-internal.h"
54 #include "exec/ram_addr.h"
55 #include "exec/log.h"
56
57 #include "qemu/range.h"
58 #ifndef _WIN32
59 #include "qemu/mmap-alloc.h"
60 #endif
61
62 //#define DEBUG_SUBPAGE
63
64 #if !defined(CONFIG_USER_ONLY)
65 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
66 * are protected by the ramlist lock.
67 */
68 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
69
70 static MemoryRegion *system_memory;
71 static MemoryRegion *system_io;
72
73 AddressSpace address_space_io;
74 AddressSpace address_space_memory;
75
76 MemoryRegion io_mem_rom, io_mem_notdirty;
77 static MemoryRegion io_mem_unassigned;
78
79 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
80 #define RAM_PREALLOC (1 << 0)
81
82 /* RAM is mmap-ed with MAP_SHARED */
83 #define RAM_SHARED (1 << 1)
84
85 /* Only a portion of RAM (used_length) is actually used, and migrated.
86 * This used_length size can change across reboots.
87 */
88 #define RAM_RESIZEABLE (1 << 2)
89
90 #endif
91
92 struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
93 /* current CPU in the current thread. It is only valid inside
94 cpu_exec() */
95 __thread CPUState *current_cpu;
96 /* 0 = Do not count executed instructions.
97 1 = Precise instruction counting.
98 2 = Adaptive rate instruction counting. */
99 int use_icount;
100
101 #if !defined(CONFIG_USER_ONLY)
102
103 typedef struct PhysPageEntry PhysPageEntry;
104
105 struct PhysPageEntry {
106 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
107 uint32_t skip : 6;
108 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
109 uint32_t ptr : 26;
110 };
111
112 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
113
114 /* Size of the L2 (and L3, etc) page tables. */
115 #define ADDR_SPACE_BITS 64
116
117 #define P_L2_BITS 9
118 #define P_L2_SIZE (1 << P_L2_BITS)
119
120 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
121
122 typedef PhysPageEntry Node[P_L2_SIZE];
123
124 typedef struct PhysPageMap {
125 struct rcu_head rcu;
126
127 unsigned sections_nb;
128 unsigned sections_nb_alloc;
129 unsigned nodes_nb;
130 unsigned nodes_nb_alloc;
131 Node *nodes;
132 MemoryRegionSection *sections;
133 } PhysPageMap;
134
135 struct AddressSpaceDispatch {
136 struct rcu_head rcu;
137
138 /* This is a multi-level map on the physical address space.
139 * The bottom level has pointers to MemoryRegionSections.
140 */
141 PhysPageEntry phys_map;
142 PhysPageMap map;
143 AddressSpace *as;
144 };
145
146 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
147 typedef struct subpage_t {
148 MemoryRegion iomem;
149 AddressSpace *as;
150 hwaddr base;
151 uint16_t sub_section[TARGET_PAGE_SIZE];
152 } subpage_t;
153
154 #define PHYS_SECTION_UNASSIGNED 0
155 #define PHYS_SECTION_NOTDIRTY 1
156 #define PHYS_SECTION_ROM 2
157 #define PHYS_SECTION_WATCH 3
158
159 static void io_mem_init(void);
160 static void memory_map_init(void);
161 static void tcg_commit(MemoryListener *listener);
162
163 static MemoryRegion io_mem_watch;
164
165 /**
166 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
167 * @cpu: the CPU whose AddressSpace this is
168 * @as: the AddressSpace itself
169 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
170 * @tcg_as_listener: listener for tracking changes to the AddressSpace
171 */
172 struct CPUAddressSpace {
173 CPUState *cpu;
174 AddressSpace *as;
175 struct AddressSpaceDispatch *memory_dispatch;
176 MemoryListener tcg_as_listener;
177 };
178
179 #endif
180
181 #if !defined(CONFIG_USER_ONLY)
182
183 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
184 {
185 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
186 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc * 2, 16);
187 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
188 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
189 }
190 }
191
192 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
193 {
194 unsigned i;
195 uint32_t ret;
196 PhysPageEntry e;
197 PhysPageEntry *p;
198
199 ret = map->nodes_nb++;
200 p = map->nodes[ret];
201 assert(ret != PHYS_MAP_NODE_NIL);
202 assert(ret != map->nodes_nb_alloc);
203
204 e.skip = leaf ? 0 : 1;
205 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
206 for (i = 0; i < P_L2_SIZE; ++i) {
207 memcpy(&p[i], &e, sizeof(e));
208 }
209 return ret;
210 }
211
212 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
213 hwaddr *index, hwaddr *nb, uint16_t leaf,
214 int level)
215 {
216 PhysPageEntry *p;
217 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
218
219 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
220 lp->ptr = phys_map_node_alloc(map, level == 0);
221 }
222 p = map->nodes[lp->ptr];
223 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
224
225 while (*nb && lp < &p[P_L2_SIZE]) {
226 if ((*index & (step - 1)) == 0 && *nb >= step) {
227 lp->skip = 0;
228 lp->ptr = leaf;
229 *index += step;
230 *nb -= step;
231 } else {
232 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
233 }
234 ++lp;
235 }
236 }
237
238 static void phys_page_set(AddressSpaceDispatch *d,
239 hwaddr index, hwaddr nb,
240 uint16_t leaf)
241 {
242 /* Wildly overreserve - it doesn't matter much. */
243 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
244
245 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
246 }
247
248 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
249 * and update our entry so we can skip it and go directly to the destination.
250 */
251 static void phys_page_compact(PhysPageEntry *lp, Node *nodes, unsigned long *compacted)
252 {
253 unsigned valid_ptr = P_L2_SIZE;
254 int valid = 0;
255 PhysPageEntry *p;
256 int i;
257
258 if (lp->ptr == PHYS_MAP_NODE_NIL) {
259 return;
260 }
261
262 p = nodes[lp->ptr];
263 for (i = 0; i < P_L2_SIZE; i++) {
264 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
265 continue;
266 }
267
268 valid_ptr = i;
269 valid++;
270 if (p[i].skip) {
271 phys_page_compact(&p[i], nodes, compacted);
272 }
273 }
274
275 /* We can only compress if there's only one child. */
276 if (valid != 1) {
277 return;
278 }
279
280 assert(valid_ptr < P_L2_SIZE);
281
282 /* Don't compress if it won't fit in the # of bits we have. */
283 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
284 return;
285 }
286
287 lp->ptr = p[valid_ptr].ptr;
288 if (!p[valid_ptr].skip) {
289 /* If our only child is a leaf, make this a leaf. */
290 /* By design, we should have made this node a leaf to begin with so we
291 * should never reach here.
292 * But since it's so simple to handle this, let's do it just in case we
293 * change this rule.
294 */
295 lp->skip = 0;
296 } else {
297 lp->skip += p[valid_ptr].skip;
298 }
299 }
300
301 static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb)
302 {
303 DECLARE_BITMAP(compacted, nodes_nb);
304
305 if (d->phys_map.skip) {
306 phys_page_compact(&d->phys_map, d->map.nodes, compacted);
307 }
308 }
309
310 static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr addr,
311 Node *nodes, MemoryRegionSection *sections)
312 {
313 PhysPageEntry *p;
314 hwaddr index = addr >> TARGET_PAGE_BITS;
315 int i;
316
317 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
318 if (lp.ptr == PHYS_MAP_NODE_NIL) {
319 return &sections[PHYS_SECTION_UNASSIGNED];
320 }
321 p = nodes[lp.ptr];
322 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
323 }
324
325 if (sections[lp.ptr].size.hi ||
326 range_covers_byte(sections[lp.ptr].offset_within_address_space,
327 sections[lp.ptr].size.lo, addr)) {
328 return &sections[lp.ptr];
329 } else {
330 return &sections[PHYS_SECTION_UNASSIGNED];
331 }
332 }
333
334 bool memory_region_is_unassigned(MemoryRegion *mr)
335 {
336 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
337 && mr != &io_mem_watch;
338 }
339
340 /* Called from RCU critical section */
341 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
342 hwaddr addr,
343 bool resolve_subpage)
344 {
345 MemoryRegionSection *section;
346 subpage_t *subpage;
347
348 section = phys_page_find(d->phys_map, addr, d->map.nodes, d->map.sections);
349 if (resolve_subpage && section->mr->subpage) {
350 subpage = container_of(section->mr, subpage_t, iomem);
351 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
352 }
353 return section;
354 }
355
356 /* Called from RCU critical section */
357 static MemoryRegionSection *
358 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
359 hwaddr *plen, bool resolve_subpage)
360 {
361 MemoryRegionSection *section;
362 MemoryRegion *mr;
363 Int128 diff;
364
365 section = address_space_lookup_region(d, addr, resolve_subpage);
366 /* Compute offset within MemoryRegionSection */
367 addr -= section->offset_within_address_space;
368
369 /* Compute offset within MemoryRegion */
370 *xlat = addr + section->offset_within_region;
371
372 mr = section->mr;
373
374 /* MMIO registers can be expected to perform full-width accesses based only
375 * on their address, without considering adjacent registers that could
376 * decode to completely different MemoryRegions. When such registers
377 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
378 * regions overlap wildly. For this reason we cannot clamp the accesses
379 * here.
380 *
381 * If the length is small (as is the case for address_space_ldl/stl),
382 * everything works fine. If the incoming length is large, however,
383 * the caller really has to do the clamping through memory_access_size.
384 */
385 if (memory_region_is_ram(mr)) {
386 diff = int128_sub(section->size, int128_make64(addr));
387 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
388 }
389 return section;
390 }
391
392 /* Called from RCU critical section */
393 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
394 hwaddr *xlat, hwaddr *plen,
395 bool is_write)
396 {
397 IOMMUTLBEntry iotlb;
398 MemoryRegionSection *section;
399 MemoryRegion *mr;
400
401 for (;;) {
402 AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch);
403 section = address_space_translate_internal(d, addr, &addr, plen, true);
404 mr = section->mr;
405
406 if (!mr->iommu_ops) {
407 break;
408 }
409
410 iotlb = mr->iommu_ops->translate(mr, addr, is_write);
411 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
412 | (addr & iotlb.addr_mask));
413 *plen = MIN(*plen, (addr | iotlb.addr_mask) - addr + 1);
414 if (!(iotlb.perm & (1 << is_write))) {
415 mr = &io_mem_unassigned;
416 break;
417 }
418
419 as = iotlb.target_as;
420 }
421
422 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
423 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
424 *plen = MIN(page, *plen);
425 }
426
427 *xlat = addr;
428 return mr;
429 }
430
431 /* Called from RCU critical section */
432 MemoryRegionSection *
433 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
434 hwaddr *xlat, hwaddr *plen)
435 {
436 MemoryRegionSection *section;
437 AddressSpaceDispatch *d = cpu->cpu_ases[asidx].memory_dispatch;
438
439 section = address_space_translate_internal(d, addr, xlat, plen, false);
440
441 assert(!section->mr->iommu_ops);
442 return section;
443 }
444 #endif
445
446 #if !defined(CONFIG_USER_ONLY)
447
448 static int cpu_common_post_load(void *opaque, int version_id)
449 {
450 CPUState *cpu = opaque;
451
452 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
453 version_id is increased. */
454 cpu->interrupt_request &= ~0x01;
455 tlb_flush(cpu, 1);
456
457 return 0;
458 }
459
460 static int cpu_common_pre_load(void *opaque)
461 {
462 CPUState *cpu = opaque;
463
464 cpu->exception_index = -1;
465
466 return 0;
467 }
468
469 static bool cpu_common_exception_index_needed(void *opaque)
470 {
471 CPUState *cpu = opaque;
472
473 return tcg_enabled() && cpu->exception_index != -1;
474 }
475
476 static const VMStateDescription vmstate_cpu_common_exception_index = {
477 .name = "cpu_common/exception_index",
478 .version_id = 1,
479 .minimum_version_id = 1,
480 .needed = cpu_common_exception_index_needed,
481 .fields = (VMStateField[]) {
482 VMSTATE_INT32(exception_index, CPUState),
483 VMSTATE_END_OF_LIST()
484 }
485 };
486
487 static bool cpu_common_crash_occurred_needed(void *opaque)
488 {
489 CPUState *cpu = opaque;
490
491 return cpu->crash_occurred;
492 }
493
494 static const VMStateDescription vmstate_cpu_common_crash_occurred = {
495 .name = "cpu_common/crash_occurred",
496 .version_id = 1,
497 .minimum_version_id = 1,
498 .needed = cpu_common_crash_occurred_needed,
499 .fields = (VMStateField[]) {
500 VMSTATE_BOOL(crash_occurred, CPUState),
501 VMSTATE_END_OF_LIST()
502 }
503 };
504
505 const VMStateDescription vmstate_cpu_common = {
506 .name = "cpu_common",
507 .version_id = 1,
508 .minimum_version_id = 1,
509 .pre_load = cpu_common_pre_load,
510 .post_load = cpu_common_post_load,
511 .fields = (VMStateField[]) {
512 VMSTATE_UINT32(halted, CPUState),
513 VMSTATE_UINT32(interrupt_request, CPUState),
514 VMSTATE_END_OF_LIST()
515 },
516 .subsections = (const VMStateDescription*[]) {
517 &vmstate_cpu_common_exception_index,
518 &vmstate_cpu_common_crash_occurred,
519 NULL
520 }
521 };
522
523 #endif
524
525 CPUState *qemu_get_cpu(int index)
526 {
527 CPUState *cpu;
528
529 CPU_FOREACH(cpu) {
530 if (cpu->cpu_index == index) {
531 return cpu;
532 }
533 }
534
535 return NULL;
536 }
537
538 #if !defined(CONFIG_USER_ONLY)
539 void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx)
540 {
541 CPUAddressSpace *newas;
542
543 /* Target code should have set num_ases before calling us */
544 assert(asidx < cpu->num_ases);
545
546 if (asidx == 0) {
547 /* address space 0 gets the convenience alias */
548 cpu->as = as;
549 }
550
551 /* KVM cannot currently support multiple address spaces. */
552 assert(asidx == 0 || !kvm_enabled());
553
554 if (!cpu->cpu_ases) {
555 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
556 }
557
558 newas = &cpu->cpu_ases[asidx];
559 newas->cpu = cpu;
560 newas->as = as;
561 if (tcg_enabled()) {
562 newas->tcg_as_listener.commit = tcg_commit;
563 memory_listener_register(&newas->tcg_as_listener, as);
564 }
565 }
566
567 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
568 {
569 /* Return the AddressSpace corresponding to the specified index */
570 return cpu->cpu_ases[asidx].as;
571 }
572 #endif
573
574 #ifndef CONFIG_USER_ONLY
575 static DECLARE_BITMAP(cpu_index_map, MAX_CPUMASK_BITS);
576
577 static int cpu_get_free_index(Error **errp)
578 {
579 int cpu = find_first_zero_bit(cpu_index_map, MAX_CPUMASK_BITS);
580
581 if (cpu >= MAX_CPUMASK_BITS) {
582 error_setg(errp, "Trying to use more CPUs than max of %d",
583 MAX_CPUMASK_BITS);
584 return -1;
585 }
586
587 bitmap_set(cpu_index_map, cpu, 1);
588 return cpu;
589 }
590
591 void cpu_exec_exit(CPUState *cpu)
592 {
593 if (cpu->cpu_index == -1) {
594 /* cpu_index was never allocated by this @cpu or was already freed. */
595 return;
596 }
597
598 bitmap_clear(cpu_index_map, cpu->cpu_index, 1);
599 cpu->cpu_index = -1;
600 }
601 #else
602
603 static int cpu_get_free_index(Error **errp)
604 {
605 CPUState *some_cpu;
606 int cpu_index = 0;
607
608 CPU_FOREACH(some_cpu) {
609 cpu_index++;
610 }
611 return cpu_index;
612 }
613
614 void cpu_exec_exit(CPUState *cpu)
615 {
616 }
617 #endif
618
619 void cpu_exec_init(CPUState *cpu, Error **errp)
620 {
621 CPUClass *cc = CPU_GET_CLASS(cpu);
622 int cpu_index;
623 Error *local_err = NULL;
624
625 cpu->as = NULL;
626 cpu->num_ases = 0;
627
628 #ifndef CONFIG_USER_ONLY
629 cpu->thread_id = qemu_get_thread_id();
630
631 /* This is a softmmu CPU object, so create a property for it
632 * so users can wire up its memory. (This can't go in qom/cpu.c
633 * because that file is compiled only once for both user-mode
634 * and system builds.) The default if no link is set up is to use
635 * the system address space.
636 */
637 object_property_add_link(OBJECT(cpu), "memory", TYPE_MEMORY_REGION,
638 (Object **)&cpu->memory,
639 qdev_prop_allow_set_link_before_realize,
640 OBJ_PROP_LINK_UNREF_ON_RELEASE,
641 &error_abort);
642 cpu->memory = system_memory;
643 object_ref(OBJECT(cpu->memory));
644 #endif
645
646 #if defined(CONFIG_USER_ONLY)
647 cpu_list_lock();
648 #endif
649 cpu_index = cpu->cpu_index = cpu_get_free_index(&local_err);
650 if (local_err) {
651 error_propagate(errp, local_err);
652 #if defined(CONFIG_USER_ONLY)
653 cpu_list_unlock();
654 #endif
655 return;
656 }
657 QTAILQ_INSERT_TAIL(&cpus, cpu, node);
658 #if defined(CONFIG_USER_ONLY)
659 cpu_list_unlock();
660 #endif
661 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
662 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu);
663 }
664 if (cc->vmsd != NULL) {
665 vmstate_register(NULL, cpu_index, cc->vmsd, cpu);
666 }
667 }
668
669 #if defined(CONFIG_USER_ONLY)
670 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
671 {
672 tb_invalidate_phys_page_range(pc, pc + 1, 0);
673 }
674 #else
675 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
676 {
677 MemTxAttrs attrs;
678 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
679 int asidx = cpu_asidx_from_attrs(cpu, attrs);
680 if (phys != -1) {
681 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
682 phys | (pc & ~TARGET_PAGE_MASK));
683 }
684 }
685 #endif
686
687 #if defined(CONFIG_USER_ONLY)
688 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
689
690 {
691 }
692
693 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
694 int flags)
695 {
696 return -ENOSYS;
697 }
698
699 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
700 {
701 }
702
703 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
704 int flags, CPUWatchpoint **watchpoint)
705 {
706 return -ENOSYS;
707 }
708 #else
709 /* Add a watchpoint. */
710 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
711 int flags, CPUWatchpoint **watchpoint)
712 {
713 CPUWatchpoint *wp;
714
715 /* forbid ranges which are empty or run off the end of the address space */
716 if (len == 0 || (addr + len - 1) < addr) {
717 error_report("tried to set invalid watchpoint at %"
718 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
719 return -EINVAL;
720 }
721 wp = g_malloc(sizeof(*wp));
722
723 wp->vaddr = addr;
724 wp->len = len;
725 wp->flags = flags;
726
727 /* keep all GDB-injected watchpoints in front */
728 if (flags & BP_GDB) {
729 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
730 } else {
731 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
732 }
733
734 tlb_flush_page(cpu, addr);
735
736 if (watchpoint)
737 *watchpoint = wp;
738 return 0;
739 }
740
741 /* Remove a specific watchpoint. */
742 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
743 int flags)
744 {
745 CPUWatchpoint *wp;
746
747 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
748 if (addr == wp->vaddr && len == wp->len
749 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
750 cpu_watchpoint_remove_by_ref(cpu, wp);
751 return 0;
752 }
753 }
754 return -ENOENT;
755 }
756
757 /* Remove a specific watchpoint by reference. */
758 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
759 {
760 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
761
762 tlb_flush_page(cpu, watchpoint->vaddr);
763
764 g_free(watchpoint);
765 }
766
767 /* Remove all matching watchpoints. */
768 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
769 {
770 CPUWatchpoint *wp, *next;
771
772 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
773 if (wp->flags & mask) {
774 cpu_watchpoint_remove_by_ref(cpu, wp);
775 }
776 }
777 }
778
779 /* Return true if this watchpoint address matches the specified
780 * access (ie the address range covered by the watchpoint overlaps
781 * partially or completely with the address range covered by the
782 * access).
783 */
784 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
785 vaddr addr,
786 vaddr len)
787 {
788 /* We know the lengths are non-zero, but a little caution is
789 * required to avoid errors in the case where the range ends
790 * exactly at the top of the address space and so addr + len
791 * wraps round to zero.
792 */
793 vaddr wpend = wp->vaddr + wp->len - 1;
794 vaddr addrend = addr + len - 1;
795
796 return !(addr > wpend || wp->vaddr > addrend);
797 }
798
799 #endif
800
801 /* Add a breakpoint. */
802 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
803 CPUBreakpoint **breakpoint)
804 {
805 CPUBreakpoint *bp;
806
807 bp = g_malloc(sizeof(*bp));
808
809 bp->pc = pc;
810 bp->flags = flags;
811
812 /* keep all GDB-injected breakpoints in front */
813 if (flags & BP_GDB) {
814 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
815 } else {
816 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
817 }
818
819 breakpoint_invalidate(cpu, pc);
820
821 if (breakpoint) {
822 *breakpoint = bp;
823 }
824 return 0;
825 }
826
827 /* Remove a specific breakpoint. */
828 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
829 {
830 CPUBreakpoint *bp;
831
832 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
833 if (bp->pc == pc && bp->flags == flags) {
834 cpu_breakpoint_remove_by_ref(cpu, bp);
835 return 0;
836 }
837 }
838 return -ENOENT;
839 }
840
841 /* Remove a specific breakpoint by reference. */
842 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
843 {
844 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
845
846 breakpoint_invalidate(cpu, breakpoint->pc);
847
848 g_free(breakpoint);
849 }
850
851 /* Remove all matching breakpoints. */
852 void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
853 {
854 CPUBreakpoint *bp, *next;
855
856 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
857 if (bp->flags & mask) {
858 cpu_breakpoint_remove_by_ref(cpu, bp);
859 }
860 }
861 }
862
863 /* enable or disable single step mode. EXCP_DEBUG is returned by the
864 CPU loop after each instruction */
865 void cpu_single_step(CPUState *cpu, int enabled)
866 {
867 if (cpu->singlestep_enabled != enabled) {
868 cpu->singlestep_enabled = enabled;
869 if (kvm_enabled()) {
870 kvm_update_guest_debug(cpu, 0);
871 } else {
872 /* must flush all the translated code to avoid inconsistencies */
873 /* XXX: only flush what is necessary */
874 tb_flush(cpu);
875 }
876 }
877 }
878
879 void cpu_abort(CPUState *cpu, const char *fmt, ...)
880 {
881 va_list ap;
882 va_list ap2;
883
884 va_start(ap, fmt);
885 va_copy(ap2, ap);
886 fprintf(stderr, "qemu: fatal: ");
887 vfprintf(stderr, fmt, ap);
888 fprintf(stderr, "\n");
889 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
890 if (qemu_log_separate()) {
891 qemu_log("qemu: fatal: ");
892 qemu_log_vprintf(fmt, ap2);
893 qemu_log("\n");
894 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
895 qemu_log_flush();
896 qemu_log_close();
897 }
898 va_end(ap2);
899 va_end(ap);
900 replay_finish();
901 #if defined(CONFIG_USER_ONLY)
902 {
903 struct sigaction act;
904 sigfillset(&act.sa_mask);
905 act.sa_handler = SIG_DFL;
906 sigaction(SIGABRT, &act, NULL);
907 }
908 #endif
909 abort();
910 }
911
912 #if !defined(CONFIG_USER_ONLY)
913 /* Called from RCU critical section */
914 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
915 {
916 RAMBlock *block;
917
918 block = atomic_rcu_read(&ram_list.mru_block);
919 if (block && addr - block->offset < block->max_length) {
920 return block;
921 }
922 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
923 if (addr - block->offset < block->max_length) {
924 goto found;
925 }
926 }
927
928 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
929 abort();
930
931 found:
932 /* It is safe to write mru_block outside the iothread lock. This
933 * is what happens:
934 *
935 * mru_block = xxx
936 * rcu_read_unlock()
937 * xxx removed from list
938 * rcu_read_lock()
939 * read mru_block
940 * mru_block = NULL;
941 * call_rcu(reclaim_ramblock, xxx);
942 * rcu_read_unlock()
943 *
944 * atomic_rcu_set is not needed here. The block was already published
945 * when it was placed into the list. Here we're just making an extra
946 * copy of the pointer.
947 */
948 ram_list.mru_block = block;
949 return block;
950 }
951
952 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
953 {
954 CPUState *cpu;
955 ram_addr_t start1;
956 RAMBlock *block;
957 ram_addr_t end;
958
959 end = TARGET_PAGE_ALIGN(start + length);
960 start &= TARGET_PAGE_MASK;
961
962 rcu_read_lock();
963 block = qemu_get_ram_block(start);
964 assert(block == qemu_get_ram_block(end - 1));
965 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
966 CPU_FOREACH(cpu) {
967 tlb_reset_dirty(cpu, start1, length);
968 }
969 rcu_read_unlock();
970 }
971
972 /* Note: start and end must be within the same ram block. */
973 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
974 ram_addr_t length,
975 unsigned client)
976 {
977 DirtyMemoryBlocks *blocks;
978 unsigned long end, page;
979 bool dirty = false;
980
981 if (length == 0) {
982 return false;
983 }
984
985 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
986 page = start >> TARGET_PAGE_BITS;
987
988 rcu_read_lock();
989
990 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
991
992 while (page < end) {
993 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
994 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
995 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
996
997 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
998 offset, num);
999 page += num;
1000 }
1001
1002 rcu_read_unlock();
1003
1004 if (dirty && tcg_enabled()) {
1005 tlb_reset_dirty_range_all(start, length);
1006 }
1007
1008 return dirty;
1009 }
1010
1011 /* Called from RCU critical section */
1012 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1013 MemoryRegionSection *section,
1014 target_ulong vaddr,
1015 hwaddr paddr, hwaddr xlat,
1016 int prot,
1017 target_ulong *address)
1018 {
1019 hwaddr iotlb;
1020 CPUWatchpoint *wp;
1021
1022 if (memory_region_is_ram(section->mr)) {
1023 /* Normal RAM. */
1024 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
1025 + xlat;
1026 if (!section->readonly) {
1027 iotlb |= PHYS_SECTION_NOTDIRTY;
1028 } else {
1029 iotlb |= PHYS_SECTION_ROM;
1030 }
1031 } else {
1032 AddressSpaceDispatch *d;
1033
1034 d = atomic_rcu_read(&section->address_space->dispatch);
1035 iotlb = section - d->map.sections;
1036 iotlb += xlat;
1037 }
1038
1039 /* Make accesses to pages with watchpoints go via the
1040 watchpoint trap routines. */
1041 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1042 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
1043 /* Avoid trapping reads of pages with a write breakpoint. */
1044 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
1045 iotlb = PHYS_SECTION_WATCH + paddr;
1046 *address |= TLB_MMIO;
1047 break;
1048 }
1049 }
1050 }
1051
1052 return iotlb;
1053 }
1054 #endif /* defined(CONFIG_USER_ONLY) */
1055
1056 #if !defined(CONFIG_USER_ONLY)
1057
1058 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1059 uint16_t section);
1060 static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
1061
1062 static void *(*phys_mem_alloc)(size_t size, uint64_t *align) =
1063 qemu_anon_ram_alloc;
1064
1065 /*
1066 * Set a custom physical guest memory alloator.
1067 * Accelerators with unusual needs may need this. Hopefully, we can
1068 * get rid of it eventually.
1069 */
1070 void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align))
1071 {
1072 phys_mem_alloc = alloc;
1073 }
1074
1075 static uint16_t phys_section_add(PhysPageMap *map,
1076 MemoryRegionSection *section)
1077 {
1078 /* The physical section number is ORed with a page-aligned
1079 * pointer to produce the iotlb entries. Thus it should
1080 * never overflow into the page-aligned value.
1081 */
1082 assert(map->sections_nb < TARGET_PAGE_SIZE);
1083
1084 if (map->sections_nb == map->sections_nb_alloc) {
1085 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1086 map->sections = g_renew(MemoryRegionSection, map->sections,
1087 map->sections_nb_alloc);
1088 }
1089 map->sections[map->sections_nb] = *section;
1090 memory_region_ref(section->mr);
1091 return map->sections_nb++;
1092 }
1093
1094 static void phys_section_destroy(MemoryRegion *mr)
1095 {
1096 bool have_sub_page = mr->subpage;
1097
1098 memory_region_unref(mr);
1099
1100 if (have_sub_page) {
1101 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1102 object_unref(OBJECT(&subpage->iomem));
1103 g_free(subpage);
1104 }
1105 }
1106
1107 static void phys_sections_free(PhysPageMap *map)
1108 {
1109 while (map->sections_nb > 0) {
1110 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1111 phys_section_destroy(section->mr);
1112 }
1113 g_free(map->sections);
1114 g_free(map->nodes);
1115 }
1116
1117 static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
1118 {
1119 subpage_t *subpage;
1120 hwaddr base = section->offset_within_address_space
1121 & TARGET_PAGE_MASK;
1122 MemoryRegionSection *existing = phys_page_find(d->phys_map, base,
1123 d->map.nodes, d->map.sections);
1124 MemoryRegionSection subsection = {
1125 .offset_within_address_space = base,
1126 .size = int128_make64(TARGET_PAGE_SIZE),
1127 };
1128 hwaddr start, end;
1129
1130 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1131
1132 if (!(existing->mr->subpage)) {
1133 subpage = subpage_init(d->as, base);
1134 subsection.address_space = d->as;
1135 subsection.mr = &subpage->iomem;
1136 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1137 phys_section_add(&d->map, &subsection));
1138 } else {
1139 subpage = container_of(existing->mr, subpage_t, iomem);
1140 }
1141 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1142 end = start + int128_get64(section->size) - 1;
1143 subpage_register(subpage, start, end,
1144 phys_section_add(&d->map, section));
1145 }
1146
1147
1148 static void register_multipage(AddressSpaceDispatch *d,
1149 MemoryRegionSection *section)
1150 {
1151 hwaddr start_addr = section->offset_within_address_space;
1152 uint16_t section_index = phys_section_add(&d->map, section);
1153 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1154 TARGET_PAGE_BITS));
1155
1156 assert(num_pages);
1157 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1158 }
1159
1160 static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
1161 {
1162 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
1163 AddressSpaceDispatch *d = as->next_dispatch;
1164 MemoryRegionSection now = *section, remain = *section;
1165 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1166
1167 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1168 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1169 - now.offset_within_address_space;
1170
1171 now.size = int128_min(int128_make64(left), now.size);
1172 register_subpage(d, &now);
1173 } else {
1174 now.size = int128_zero();
1175 }
1176 while (int128_ne(remain.size, now.size)) {
1177 remain.size = int128_sub(remain.size, now.size);
1178 remain.offset_within_address_space += int128_get64(now.size);
1179 remain.offset_within_region += int128_get64(now.size);
1180 now = remain;
1181 if (int128_lt(remain.size, page_size)) {
1182 register_subpage(d, &now);
1183 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1184 now.size = page_size;
1185 register_subpage(d, &now);
1186 } else {
1187 now.size = int128_and(now.size, int128_neg(page_size));
1188 register_multipage(d, &now);
1189 }
1190 }
1191 }
1192
1193 void qemu_flush_coalesced_mmio_buffer(void)
1194 {
1195 if (kvm_enabled())
1196 kvm_flush_coalesced_mmio_buffer();
1197 }
1198
1199 void qemu_mutex_lock_ramlist(void)
1200 {
1201 qemu_mutex_lock(&ram_list.mutex);
1202 }
1203
1204 void qemu_mutex_unlock_ramlist(void)
1205 {
1206 qemu_mutex_unlock(&ram_list.mutex);
1207 }
1208
1209 #ifdef __linux__
1210
1211 #include <sys/vfs.h>
1212
1213 #define HUGETLBFS_MAGIC 0x958458f6
1214
1215 static long gethugepagesize(const char *path, Error **errp)
1216 {
1217 struct statfs fs;
1218 int ret;
1219
1220 do {
1221 ret = statfs(path, &fs);
1222 } while (ret != 0 && errno == EINTR);
1223
1224 if (ret != 0) {
1225 error_setg_errno(errp, errno, "failed to get page size of file %s",
1226 path);
1227 return 0;
1228 }
1229
1230 return fs.f_bsize;
1231 }
1232
1233 static void *file_ram_alloc(RAMBlock *block,
1234 ram_addr_t memory,
1235 const char *path,
1236 Error **errp)
1237 {
1238 struct stat st;
1239 char *filename;
1240 char *sanitized_name;
1241 char *c;
1242 void *area;
1243 int fd;
1244 uint64_t hpagesize;
1245 Error *local_err = NULL;
1246
1247 hpagesize = gethugepagesize(path, &local_err);
1248 if (local_err) {
1249 error_propagate(errp, local_err);
1250 goto error;
1251 }
1252 block->mr->align = hpagesize;
1253
1254 if (memory < hpagesize) {
1255 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1256 "or larger than huge page size 0x%" PRIx64,
1257 memory, hpagesize);
1258 goto error;
1259 }
1260
1261 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1262 error_setg(errp,
1263 "host lacks kvm mmu notifiers, -mem-path unsupported");
1264 goto error;
1265 }
1266
1267 if (!stat(path, &st) && S_ISDIR(st.st_mode)) {
1268 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1269 sanitized_name = g_strdup(memory_region_name(block->mr));
1270 for (c = sanitized_name; *c != '\0'; c++) {
1271 if (*c == '/') {
1272 *c = '_';
1273 }
1274 }
1275
1276 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1277 sanitized_name);
1278 g_free(sanitized_name);
1279
1280 fd = mkstemp(filename);
1281 if (fd >= 0) {
1282 unlink(filename);
1283 }
1284 g_free(filename);
1285 } else {
1286 fd = open(path, O_RDWR | O_CREAT, 0644);
1287 }
1288
1289 if (fd < 0) {
1290 error_setg_errno(errp, errno,
1291 "unable to create backing store for hugepages");
1292 goto error;
1293 }
1294
1295 memory = ROUND_UP(memory, hpagesize);
1296
1297 /*
1298 * ftruncate is not supported by hugetlbfs in older
1299 * hosts, so don't bother bailing out on errors.
1300 * If anything goes wrong with it under other filesystems,
1301 * mmap will fail.
1302 */
1303 if (ftruncate(fd, memory)) {
1304 perror("ftruncate");
1305 }
1306
1307 area = qemu_ram_mmap(fd, memory, hpagesize, block->flags & RAM_SHARED);
1308 if (area == MAP_FAILED) {
1309 error_setg_errno(errp, errno,
1310 "unable to map backing store for hugepages");
1311 close(fd);
1312 goto error;
1313 }
1314
1315 if (mem_prealloc) {
1316 os_mem_prealloc(fd, area, memory);
1317 }
1318
1319 block->fd = fd;
1320 return area;
1321
1322 error:
1323 return NULL;
1324 }
1325 #endif
1326
1327 /* Called with the ramlist lock held. */
1328 static ram_addr_t find_ram_offset(ram_addr_t size)
1329 {
1330 RAMBlock *block, *next_block;
1331 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1332
1333 assert(size != 0); /* it would hand out same offset multiple times */
1334
1335 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1336 return 0;
1337 }
1338
1339 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1340 ram_addr_t end, next = RAM_ADDR_MAX;
1341
1342 end = block->offset + block->max_length;
1343
1344 QLIST_FOREACH_RCU(next_block, &ram_list.blocks, next) {
1345 if (next_block->offset >= end) {
1346 next = MIN(next, next_block->offset);
1347 }
1348 }
1349 if (next - end >= size && next - end < mingap) {
1350 offset = end;
1351 mingap = next - end;
1352 }
1353 }
1354
1355 if (offset == RAM_ADDR_MAX) {
1356 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1357 (uint64_t)size);
1358 abort();
1359 }
1360
1361 return offset;
1362 }
1363
1364 ram_addr_t last_ram_offset(void)
1365 {
1366 RAMBlock *block;
1367 ram_addr_t last = 0;
1368
1369 rcu_read_lock();
1370 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1371 last = MAX(last, block->offset + block->max_length);
1372 }
1373 rcu_read_unlock();
1374 return last;
1375 }
1376
1377 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1378 {
1379 int ret;
1380
1381 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1382 if (!machine_dump_guest_core(current_machine)) {
1383 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1384 if (ret) {
1385 perror("qemu_madvise");
1386 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1387 "but dump_guest_core=off specified\n");
1388 }
1389 }
1390 }
1391
1392 /* Called within an RCU critical section, or while the ramlist lock
1393 * is held.
1394 */
1395 static RAMBlock *find_ram_block(ram_addr_t addr)
1396 {
1397 RAMBlock *block;
1398
1399 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1400 if (block->offset == addr) {
1401 return block;
1402 }
1403 }
1404
1405 return NULL;
1406 }
1407
1408 const char *qemu_ram_get_idstr(RAMBlock *rb)
1409 {
1410 return rb->idstr;
1411 }
1412
1413 /* Called with iothread lock held. */
1414 void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
1415 {
1416 RAMBlock *new_block, *block;
1417
1418 rcu_read_lock();
1419 new_block = find_ram_block(addr);
1420 assert(new_block);
1421 assert(!new_block->idstr[0]);
1422
1423 if (dev) {
1424 char *id = qdev_get_dev_path(dev);
1425 if (id) {
1426 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1427 g_free(id);
1428 }
1429 }
1430 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1431
1432 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1433 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
1434 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1435 new_block->idstr);
1436 abort();
1437 }
1438 }
1439 rcu_read_unlock();
1440 }
1441
1442 /* Called with iothread lock held. */
1443 void qemu_ram_unset_idstr(ram_addr_t addr)
1444 {
1445 RAMBlock *block;
1446
1447 /* FIXME: arch_init.c assumes that this is not called throughout
1448 * migration. Ignore the problem since hot-unplug during migration
1449 * does not work anyway.
1450 */
1451
1452 rcu_read_lock();
1453 block = find_ram_block(addr);
1454 if (block) {
1455 memset(block->idstr, 0, sizeof(block->idstr));
1456 }
1457 rcu_read_unlock();
1458 }
1459
1460 static int memory_try_enable_merging(void *addr, size_t len)
1461 {
1462 if (!machine_mem_merge(current_machine)) {
1463 /* disabled by the user */
1464 return 0;
1465 }
1466
1467 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1468 }
1469
1470 /* Only legal before guest might have detected the memory size: e.g. on
1471 * incoming migration, or right after reset.
1472 *
1473 * As memory core doesn't know how is memory accessed, it is up to
1474 * resize callback to update device state and/or add assertions to detect
1475 * misuse, if necessary.
1476 */
1477 int qemu_ram_resize(ram_addr_t base, ram_addr_t newsize, Error **errp)
1478 {
1479 RAMBlock *block = find_ram_block(base);
1480
1481 assert(block);
1482
1483 newsize = HOST_PAGE_ALIGN(newsize);
1484
1485 if (block->used_length == newsize) {
1486 return 0;
1487 }
1488
1489 if (!(block->flags & RAM_RESIZEABLE)) {
1490 error_setg_errno(errp, EINVAL,
1491 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1492 " in != 0x" RAM_ADDR_FMT, block->idstr,
1493 newsize, block->used_length);
1494 return -EINVAL;
1495 }
1496
1497 if (block->max_length < newsize) {
1498 error_setg_errno(errp, EINVAL,
1499 "Length too large: %s: 0x" RAM_ADDR_FMT
1500 " > 0x" RAM_ADDR_FMT, block->idstr,
1501 newsize, block->max_length);
1502 return -EINVAL;
1503 }
1504
1505 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1506 block->used_length = newsize;
1507 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1508 DIRTY_CLIENTS_ALL);
1509 memory_region_set_size(block->mr, newsize);
1510 if (block->resized) {
1511 block->resized(block->idstr, newsize, block->host);
1512 }
1513 return 0;
1514 }
1515
1516 /* Called with ram_list.mutex held */
1517 static void dirty_memory_extend(ram_addr_t old_ram_size,
1518 ram_addr_t new_ram_size)
1519 {
1520 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1521 DIRTY_MEMORY_BLOCK_SIZE);
1522 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1523 DIRTY_MEMORY_BLOCK_SIZE);
1524 int i;
1525
1526 /* Only need to extend if block count increased */
1527 if (new_num_blocks <= old_num_blocks) {
1528 return;
1529 }
1530
1531 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1532 DirtyMemoryBlocks *old_blocks;
1533 DirtyMemoryBlocks *new_blocks;
1534 int j;
1535
1536 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
1537 new_blocks = g_malloc(sizeof(*new_blocks) +
1538 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1539
1540 if (old_num_blocks) {
1541 memcpy(new_blocks->blocks, old_blocks->blocks,
1542 old_num_blocks * sizeof(old_blocks->blocks[0]));
1543 }
1544
1545 for (j = old_num_blocks; j < new_num_blocks; j++) {
1546 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1547 }
1548
1549 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1550
1551 if (old_blocks) {
1552 g_free_rcu(old_blocks, rcu);
1553 }
1554 }
1555 }
1556
1557 static void ram_block_add(RAMBlock *new_block, Error **errp)
1558 {
1559 RAMBlock *block;
1560 RAMBlock *last_block = NULL;
1561 ram_addr_t old_ram_size, new_ram_size;
1562 Error *err = NULL;
1563
1564 old_ram_size = last_ram_offset() >> TARGET_PAGE_BITS;
1565
1566 qemu_mutex_lock_ramlist();
1567 new_block->offset = find_ram_offset(new_block->max_length);
1568
1569 if (!new_block->host) {
1570 if (xen_enabled()) {
1571 xen_ram_alloc(new_block->offset, new_block->max_length,
1572 new_block->mr, &err);
1573 if (err) {
1574 error_propagate(errp, err);
1575 qemu_mutex_unlock_ramlist();
1576 }
1577 } else {
1578 new_block->host = phys_mem_alloc(new_block->max_length,
1579 &new_block->mr->align);
1580 if (!new_block->host) {
1581 error_setg_errno(errp, errno,
1582 "cannot set up guest memory '%s'",
1583 memory_region_name(new_block->mr));
1584 qemu_mutex_unlock_ramlist();
1585 }
1586 memory_try_enable_merging(new_block->host, new_block->max_length);
1587 }
1588 }
1589
1590 new_ram_size = MAX(old_ram_size,
1591 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1592 if (new_ram_size > old_ram_size) {
1593 migration_bitmap_extend(old_ram_size, new_ram_size);
1594 dirty_memory_extend(old_ram_size, new_ram_size);
1595 }
1596 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1597 * QLIST (which has an RCU-friendly variant) does not have insertion at
1598 * tail, so save the last element in last_block.
1599 */
1600 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1601 last_block = block;
1602 if (block->max_length < new_block->max_length) {
1603 break;
1604 }
1605 }
1606 if (block) {
1607 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
1608 } else if (last_block) {
1609 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
1610 } else { /* list is empty */
1611 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
1612 }
1613 ram_list.mru_block = NULL;
1614
1615 /* Write list before version */
1616 smp_wmb();
1617 ram_list.version++;
1618 qemu_mutex_unlock_ramlist();
1619
1620 cpu_physical_memory_set_dirty_range(new_block->offset,
1621 new_block->used_length,
1622 DIRTY_CLIENTS_ALL);
1623
1624 if (new_block->host) {
1625 qemu_ram_setup_dump(new_block->host, new_block->max_length);
1626 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
1627 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
1628 if (kvm_enabled()) {
1629 kvm_setup_guest_memory(new_block->host, new_block->max_length);
1630 }
1631 }
1632 }
1633
1634 #ifdef __linux__
1635 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
1636 bool share, const char *mem_path,
1637 Error **errp)
1638 {
1639 RAMBlock *new_block;
1640 Error *local_err = NULL;
1641
1642 if (xen_enabled()) {
1643 error_setg(errp, "-mem-path not supported with Xen");
1644 return NULL;
1645 }
1646
1647 if (phys_mem_alloc != qemu_anon_ram_alloc) {
1648 /*
1649 * file_ram_alloc() needs to allocate just like
1650 * phys_mem_alloc, but we haven't bothered to provide
1651 * a hook there.
1652 */
1653 error_setg(errp,
1654 "-mem-path not supported with this accelerator");
1655 return NULL;
1656 }
1657
1658 size = HOST_PAGE_ALIGN(size);
1659 new_block = g_malloc0(sizeof(*new_block));
1660 new_block->mr = mr;
1661 new_block->used_length = size;
1662 new_block->max_length = size;
1663 new_block->flags = share ? RAM_SHARED : 0;
1664 new_block->host = file_ram_alloc(new_block, size,
1665 mem_path, errp);
1666 if (!new_block->host) {
1667 g_free(new_block);
1668 return NULL;
1669 }
1670
1671 ram_block_add(new_block, &local_err);
1672 if (local_err) {
1673 g_free(new_block);
1674 error_propagate(errp, local_err);
1675 return NULL;
1676 }
1677 return new_block;
1678 }
1679 #endif
1680
1681 static
1682 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
1683 void (*resized)(const char*,
1684 uint64_t length,
1685 void *host),
1686 void *host, bool resizeable,
1687 MemoryRegion *mr, Error **errp)
1688 {
1689 RAMBlock *new_block;
1690 Error *local_err = NULL;
1691
1692 size = HOST_PAGE_ALIGN(size);
1693 max_size = HOST_PAGE_ALIGN(max_size);
1694 new_block = g_malloc0(sizeof(*new_block));
1695 new_block->mr = mr;
1696 new_block->resized = resized;
1697 new_block->used_length = size;
1698 new_block->max_length = max_size;
1699 assert(max_size >= size);
1700 new_block->fd = -1;
1701 new_block->host = host;
1702 if (host) {
1703 new_block->flags |= RAM_PREALLOC;
1704 }
1705 if (resizeable) {
1706 new_block->flags |= RAM_RESIZEABLE;
1707 }
1708 ram_block_add(new_block, &local_err);
1709 if (local_err) {
1710 g_free(new_block);
1711 error_propagate(errp, local_err);
1712 return NULL;
1713 }
1714 return new_block;
1715 }
1716
1717 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
1718 MemoryRegion *mr, Error **errp)
1719 {
1720 return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp);
1721 }
1722
1723 RAMBlock *qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp)
1724 {
1725 return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp);
1726 }
1727
1728 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
1729 void (*resized)(const char*,
1730 uint64_t length,
1731 void *host),
1732 MemoryRegion *mr, Error **errp)
1733 {
1734 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp);
1735 }
1736
1737 static void reclaim_ramblock(RAMBlock *block)
1738 {
1739 if (block->flags & RAM_PREALLOC) {
1740 ;
1741 } else if (xen_enabled()) {
1742 xen_invalidate_map_cache_entry(block->host);
1743 #ifndef _WIN32
1744 } else if (block->fd >= 0) {
1745 qemu_ram_munmap(block->host, block->max_length);
1746 close(block->fd);
1747 #endif
1748 } else {
1749 qemu_anon_ram_free(block->host, block->max_length);
1750 }
1751 g_free(block);
1752 }
1753
1754 void qemu_ram_free(ram_addr_t addr)
1755 {
1756 RAMBlock *block;
1757
1758 qemu_mutex_lock_ramlist();
1759 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1760 if (addr == block->offset) {
1761 QLIST_REMOVE_RCU(block, next);
1762 ram_list.mru_block = NULL;
1763 /* Write list before version */
1764 smp_wmb();
1765 ram_list.version++;
1766 call_rcu(block, reclaim_ramblock, rcu);
1767 break;
1768 }
1769 }
1770 qemu_mutex_unlock_ramlist();
1771 }
1772
1773 #ifndef _WIN32
1774 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
1775 {
1776 RAMBlock *block;
1777 ram_addr_t offset;
1778 int flags;
1779 void *area, *vaddr;
1780
1781 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1782 offset = addr - block->offset;
1783 if (offset < block->max_length) {
1784 vaddr = ramblock_ptr(block, offset);
1785 if (block->flags & RAM_PREALLOC) {
1786 ;
1787 } else if (xen_enabled()) {
1788 abort();
1789 } else {
1790 flags = MAP_FIXED;
1791 if (block->fd >= 0) {
1792 flags |= (block->flags & RAM_SHARED ?
1793 MAP_SHARED : MAP_PRIVATE);
1794 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1795 flags, block->fd, offset);
1796 } else {
1797 /*
1798 * Remap needs to match alloc. Accelerators that
1799 * set phys_mem_alloc never remap. If they did,
1800 * we'd need a remap hook here.
1801 */
1802 assert(phys_mem_alloc == qemu_anon_ram_alloc);
1803
1804 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1805 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1806 flags, -1, 0);
1807 }
1808 if (area != vaddr) {
1809 fprintf(stderr, "Could not remap addr: "
1810 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
1811 length, addr);
1812 exit(1);
1813 }
1814 memory_try_enable_merging(vaddr, length);
1815 qemu_ram_setup_dump(vaddr, length);
1816 }
1817 }
1818 }
1819 }
1820 #endif /* !_WIN32 */
1821
1822 int qemu_get_ram_fd(ram_addr_t addr)
1823 {
1824 RAMBlock *block;
1825 int fd;
1826
1827 rcu_read_lock();
1828 block = qemu_get_ram_block(addr);
1829 fd = block->fd;
1830 rcu_read_unlock();
1831 return fd;
1832 }
1833
1834 void qemu_set_ram_fd(ram_addr_t addr, int fd)
1835 {
1836 RAMBlock *block;
1837
1838 rcu_read_lock();
1839 block = qemu_get_ram_block(addr);
1840 block->fd = fd;
1841 rcu_read_unlock();
1842 }
1843
1844 void *qemu_get_ram_block_host_ptr(ram_addr_t addr)
1845 {
1846 RAMBlock *block;
1847 void *ptr;
1848
1849 rcu_read_lock();
1850 block = qemu_get_ram_block(addr);
1851 ptr = ramblock_ptr(block, 0);
1852 rcu_read_unlock();
1853 return ptr;
1854 }
1855
1856 /* Return a host pointer to ram allocated with qemu_ram_alloc.
1857 * This should not be used for general purpose DMA. Use address_space_map
1858 * or address_space_rw instead. For local memory (e.g. video ram) that the
1859 * device owns, use memory_region_get_ram_ptr.
1860 *
1861 * Called within RCU critical section.
1862 */
1863 void *qemu_get_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
1864 {
1865 RAMBlock *block = ram_block;
1866
1867 if (block == NULL) {
1868 block = qemu_get_ram_block(addr);
1869 }
1870
1871 if (xen_enabled() && block->host == NULL) {
1872 /* We need to check if the requested address is in the RAM
1873 * because we don't want to map the entire memory in QEMU.
1874 * In that case just map until the end of the page.
1875 */
1876 if (block->offset == 0) {
1877 return xen_map_cache(addr, 0, 0);
1878 }
1879
1880 block->host = xen_map_cache(block->offset, block->max_length, 1);
1881 }
1882 return ramblock_ptr(block, addr - block->offset);
1883 }
1884
1885 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
1886 * but takes a size argument.
1887 *
1888 * Called within RCU critical section.
1889 */
1890 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
1891 hwaddr *size)
1892 {
1893 RAMBlock *block = ram_block;
1894 ram_addr_t offset_inside_block;
1895 if (*size == 0) {
1896 return NULL;
1897 }
1898
1899 if (block == NULL) {
1900 block = qemu_get_ram_block(addr);
1901 }
1902 offset_inside_block = addr - block->offset;
1903 *size = MIN(*size, block->max_length - offset_inside_block);
1904
1905 if (xen_enabled() && block->host == NULL) {
1906 /* We need to check if the requested address is in the RAM
1907 * because we don't want to map the entire memory in QEMU.
1908 * In that case just map the requested area.
1909 */
1910 if (block->offset == 0) {
1911 return xen_map_cache(addr, *size, 1);
1912 }
1913
1914 block->host = xen_map_cache(block->offset, block->max_length, 1);
1915 }
1916
1917 return ramblock_ptr(block, offset_inside_block);
1918 }
1919
1920 /*
1921 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
1922 * in that RAMBlock.
1923 *
1924 * ptr: Host pointer to look up
1925 * round_offset: If true round the result offset down to a page boundary
1926 * *ram_addr: set to result ram_addr
1927 * *offset: set to result offset within the RAMBlock
1928 *
1929 * Returns: RAMBlock (or NULL if not found)
1930 *
1931 * By the time this function returns, the returned pointer is not protected
1932 * by RCU anymore. If the caller is not within an RCU critical section and
1933 * does not hold the iothread lock, it must have other means of protecting the
1934 * pointer, such as a reference to the region that includes the incoming
1935 * ram_addr_t.
1936 */
1937 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
1938 ram_addr_t *ram_addr,
1939 ram_addr_t *offset)
1940 {
1941 RAMBlock *block;
1942 uint8_t *host = ptr;
1943
1944 if (xen_enabled()) {
1945 rcu_read_lock();
1946 *ram_addr = xen_ram_addr_from_mapcache(ptr);
1947 block = qemu_get_ram_block(*ram_addr);
1948 if (block) {
1949 *offset = (host - block->host);
1950 }
1951 rcu_read_unlock();
1952 return block;
1953 }
1954
1955 rcu_read_lock();
1956 block = atomic_rcu_read(&ram_list.mru_block);
1957 if (block && block->host && host - block->host < block->max_length) {
1958 goto found;
1959 }
1960
1961 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1962 /* This case append when the block is not mapped. */
1963 if (block->host == NULL) {
1964 continue;
1965 }
1966 if (host - block->host < block->max_length) {
1967 goto found;
1968 }
1969 }
1970
1971 rcu_read_unlock();
1972 return NULL;
1973
1974 found:
1975 *offset = (host - block->host);
1976 if (round_offset) {
1977 *offset &= TARGET_PAGE_MASK;
1978 }
1979 *ram_addr = block->offset + *offset;
1980 rcu_read_unlock();
1981 return block;
1982 }
1983
1984 /*
1985 * Finds the named RAMBlock
1986 *
1987 * name: The name of RAMBlock to find
1988 *
1989 * Returns: RAMBlock (or NULL if not found)
1990 */
1991 RAMBlock *qemu_ram_block_by_name(const char *name)
1992 {
1993 RAMBlock *block;
1994
1995 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1996 if (!strcmp(name, block->idstr)) {
1997 return block;
1998 }
1999 }
2000
2001 return NULL;
2002 }
2003
2004 /* Some of the softmmu routines need to translate from a host pointer
2005 (typically a TLB entry) back to a ram offset. */
2006 MemoryRegion *qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
2007 {
2008 RAMBlock *block;
2009 ram_addr_t offset; /* Not used */
2010
2011 block = qemu_ram_block_from_host(ptr, false, ram_addr, &offset);
2012
2013 if (!block) {
2014 return NULL;
2015 }
2016
2017 return block->mr;
2018 }
2019
2020 /* Called within RCU critical section. */
2021 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
2022 uint64_t val, unsigned size)
2023 {
2024 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
2025 tb_invalidate_phys_page_fast(ram_addr, size);
2026 }
2027 switch (size) {
2028 case 1:
2029 stb_p(qemu_get_ram_ptr(NULL, ram_addr), val);
2030 break;
2031 case 2:
2032 stw_p(qemu_get_ram_ptr(NULL, ram_addr), val);
2033 break;
2034 case 4:
2035 stl_p(qemu_get_ram_ptr(NULL, ram_addr), val);
2036 break;
2037 default:
2038 abort();
2039 }
2040 /* Set both VGA and migration bits for simplicity and to remove
2041 * the notdirty callback faster.
2042 */
2043 cpu_physical_memory_set_dirty_range(ram_addr, size,
2044 DIRTY_CLIENTS_NOCODE);
2045 /* we remove the notdirty callback only if the code has been
2046 flushed */
2047 if (!cpu_physical_memory_is_clean(ram_addr)) {
2048 tlb_set_dirty(current_cpu, current_cpu->mem_io_vaddr);
2049 }
2050 }
2051
2052 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2053 unsigned size, bool is_write)
2054 {
2055 return is_write;
2056 }
2057
2058 static const MemoryRegionOps notdirty_mem_ops = {
2059 .write = notdirty_mem_write,
2060 .valid.accepts = notdirty_mem_accepts,
2061 .endianness = DEVICE_NATIVE_ENDIAN,
2062 };
2063
2064 /* Generate a debug exception if a watchpoint has been hit. */
2065 static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
2066 {
2067 CPUState *cpu = current_cpu;
2068 CPUClass *cc = CPU_GET_CLASS(cpu);
2069 CPUArchState *env = cpu->env_ptr;
2070 target_ulong pc, cs_base;
2071 target_ulong vaddr;
2072 CPUWatchpoint *wp;
2073 int cpu_flags;
2074
2075 if (cpu->watchpoint_hit) {
2076 /* We re-entered the check after replacing the TB. Now raise
2077 * the debug interrupt so that is will trigger after the
2078 * current instruction. */
2079 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2080 return;
2081 }
2082 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2083 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2084 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2085 && (wp->flags & flags)) {
2086 if (flags == BP_MEM_READ) {
2087 wp->flags |= BP_WATCHPOINT_HIT_READ;
2088 } else {
2089 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2090 }
2091 wp->hitaddr = vaddr;
2092 wp->hitattrs = attrs;
2093 if (!cpu->watchpoint_hit) {
2094 if (wp->flags & BP_CPU &&
2095 !cc->debug_check_watchpoint(cpu, wp)) {
2096 wp->flags &= ~BP_WATCHPOINT_HIT;
2097 continue;
2098 }
2099 cpu->watchpoint_hit = wp;
2100 tb_check_watchpoint(cpu);
2101 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2102 cpu->exception_index = EXCP_DEBUG;
2103 cpu_loop_exit(cpu);
2104 } else {
2105 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2106 tb_gen_code(cpu, pc, cs_base, cpu_flags, 1);
2107 cpu_resume_from_signal(cpu, NULL);
2108 }
2109 }
2110 } else {
2111 wp->flags &= ~BP_WATCHPOINT_HIT;
2112 }
2113 }
2114 }
2115
2116 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2117 so these check for a hit then pass through to the normal out-of-line
2118 phys routines. */
2119 static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2120 unsigned size, MemTxAttrs attrs)
2121 {
2122 MemTxResult res;
2123 uint64_t data;
2124 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2125 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2126
2127 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
2128 switch (size) {
2129 case 1:
2130 data = address_space_ldub(as, addr, attrs, &res);
2131 break;
2132 case 2:
2133 data = address_space_lduw(as, addr, attrs, &res);
2134 break;
2135 case 4:
2136 data = address_space_ldl(as, addr, attrs, &res);
2137 break;
2138 default: abort();
2139 }
2140 *pdata = data;
2141 return res;
2142 }
2143
2144 static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2145 uint64_t val, unsigned size,
2146 MemTxAttrs attrs)
2147 {
2148 MemTxResult res;
2149 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2150 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2151
2152 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
2153 switch (size) {
2154 case 1:
2155 address_space_stb(as, addr, val, attrs, &res);
2156 break;
2157 case 2:
2158 address_space_stw(as, addr, val, attrs, &res);
2159 break;
2160 case 4:
2161 address_space_stl(as, addr, val, attrs, &res);
2162 break;
2163 default: abort();
2164 }
2165 return res;
2166 }
2167
2168 static const MemoryRegionOps watch_mem_ops = {
2169 .read_with_attrs = watch_mem_read,
2170 .write_with_attrs = watch_mem_write,
2171 .endianness = DEVICE_NATIVE_ENDIAN,
2172 };
2173
2174 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2175 unsigned len, MemTxAttrs attrs)
2176 {
2177 subpage_t *subpage = opaque;
2178 uint8_t buf[8];
2179 MemTxResult res;
2180
2181 #if defined(DEBUG_SUBPAGE)
2182 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2183 subpage, len, addr);
2184 #endif
2185 res = address_space_read(subpage->as, addr + subpage->base,
2186 attrs, buf, len);
2187 if (res) {
2188 return res;
2189 }
2190 switch (len) {
2191 case 1:
2192 *data = ldub_p(buf);
2193 return MEMTX_OK;
2194 case 2:
2195 *data = lduw_p(buf);
2196 return MEMTX_OK;
2197 case 4:
2198 *data = ldl_p(buf);
2199 return MEMTX_OK;
2200 case 8:
2201 *data = ldq_p(buf);
2202 return MEMTX_OK;
2203 default:
2204 abort();
2205 }
2206 }
2207
2208 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2209 uint64_t value, unsigned len, MemTxAttrs attrs)
2210 {
2211 subpage_t *subpage = opaque;
2212 uint8_t buf[8];
2213
2214 #if defined(DEBUG_SUBPAGE)
2215 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2216 " value %"PRIx64"\n",
2217 __func__, subpage, len, addr, value);
2218 #endif
2219 switch (len) {
2220 case 1:
2221 stb_p(buf, value);
2222 break;
2223 case 2:
2224 stw_p(buf, value);
2225 break;
2226 case 4:
2227 stl_p(buf, value);
2228 break;
2229 case 8:
2230 stq_p(buf, value);
2231 break;
2232 default:
2233 abort();
2234 }
2235 return address_space_write(subpage->as, addr + subpage->base,
2236 attrs, buf, len);
2237 }
2238
2239 static bool subpage_accepts(void *opaque, hwaddr addr,
2240 unsigned len, bool is_write)
2241 {
2242 subpage_t *subpage = opaque;
2243 #if defined(DEBUG_SUBPAGE)
2244 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2245 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2246 #endif
2247
2248 return address_space_access_valid(subpage->as, addr + subpage->base,
2249 len, is_write);
2250 }
2251
2252 static const MemoryRegionOps subpage_ops = {
2253 .read_with_attrs = subpage_read,
2254 .write_with_attrs = subpage_write,
2255 .impl.min_access_size = 1,
2256 .impl.max_access_size = 8,
2257 .valid.min_access_size = 1,
2258 .valid.max_access_size = 8,
2259 .valid.accepts = subpage_accepts,
2260 .endianness = DEVICE_NATIVE_ENDIAN,
2261 };
2262
2263 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2264 uint16_t section)
2265 {
2266 int idx, eidx;
2267
2268 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2269 return -1;
2270 idx = SUBPAGE_IDX(start);
2271 eidx = SUBPAGE_IDX(end);
2272 #if defined(DEBUG_SUBPAGE)
2273 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2274 __func__, mmio, start, end, idx, eidx, section);
2275 #endif
2276 for (; idx <= eidx; idx++) {
2277 mmio->sub_section[idx] = section;
2278 }
2279
2280 return 0;
2281 }
2282
2283 static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
2284 {
2285 subpage_t *mmio;
2286
2287 mmio = g_malloc0(sizeof(subpage_t));
2288
2289 mmio->as = as;
2290 mmio->base = base;
2291 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2292 NULL, TARGET_PAGE_SIZE);
2293 mmio->iomem.subpage = true;
2294 #if defined(DEBUG_SUBPAGE)
2295 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2296 mmio, base, TARGET_PAGE_SIZE);
2297 #endif
2298 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
2299
2300 return mmio;
2301 }
2302
2303 static uint16_t dummy_section(PhysPageMap *map, AddressSpace *as,
2304 MemoryRegion *mr)
2305 {
2306 assert(as);
2307 MemoryRegionSection section = {
2308 .address_space = as,
2309 .mr = mr,
2310 .offset_within_address_space = 0,
2311 .offset_within_region = 0,
2312 .size = int128_2_64(),
2313 };
2314
2315 return phys_section_add(map, &section);
2316 }
2317
2318 MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs)
2319 {
2320 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2321 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2322 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
2323 MemoryRegionSection *sections = d->map.sections;
2324
2325 return sections[index & ~TARGET_PAGE_MASK].mr;
2326 }
2327
2328 static void io_mem_init(void)
2329 {
2330 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX);
2331 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2332 NULL, UINT64_MAX);
2333 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
2334 NULL, UINT64_MAX);
2335 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
2336 NULL, UINT64_MAX);
2337 }
2338
2339 static void mem_begin(MemoryListener *listener)
2340 {
2341 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
2342 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2343 uint16_t n;
2344
2345 n = dummy_section(&d->map, as, &io_mem_unassigned);
2346 assert(n == PHYS_SECTION_UNASSIGNED);
2347 n = dummy_section(&d->map, as, &io_mem_notdirty);
2348 assert(n == PHYS_SECTION_NOTDIRTY);
2349 n = dummy_section(&d->map, as, &io_mem_rom);
2350 assert(n == PHYS_SECTION_ROM);
2351 n = dummy_section(&d->map, as, &io_mem_watch);
2352 assert(n == PHYS_SECTION_WATCH);
2353
2354 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2355 d->as = as;
2356 as->next_dispatch = d;
2357 }
2358
2359 static void address_space_dispatch_free(AddressSpaceDispatch *d)
2360 {
2361 phys_sections_free(&d->map);
2362 g_free(d);
2363 }
2364
2365 static void mem_commit(MemoryListener *listener)
2366 {
2367 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
2368 AddressSpaceDispatch *cur = as->dispatch;
2369 AddressSpaceDispatch *next = as->next_dispatch;
2370
2371 phys_page_compact_all(next, next->map.nodes_nb);
2372
2373 atomic_rcu_set(&as->dispatch, next);
2374 if (cur) {
2375 call_rcu(cur, address_space_dispatch_free, rcu);
2376 }
2377 }
2378
2379 static void tcg_commit(MemoryListener *listener)
2380 {
2381 CPUAddressSpace *cpuas;
2382 AddressSpaceDispatch *d;
2383
2384 /* since each CPU stores ram addresses in its TLB cache, we must
2385 reset the modified entries */
2386 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2387 cpu_reloading_memory_map();
2388 /* The CPU and TLB are protected by the iothread lock.
2389 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2390 * may have split the RCU critical section.
2391 */
2392 d = atomic_rcu_read(&cpuas->as->dispatch);
2393 cpuas->memory_dispatch = d;
2394 tlb_flush(cpuas->cpu, 1);
2395 }
2396
2397 void address_space_init_dispatch(AddressSpace *as)
2398 {
2399 as->dispatch = NULL;
2400 as->dispatch_listener = (MemoryListener) {
2401 .begin = mem_begin,
2402 .commit = mem_commit,
2403 .region_add = mem_add,
2404 .region_nop = mem_add,
2405 .priority = 0,
2406 };
2407 memory_listener_register(&as->dispatch_listener, as);
2408 }
2409
2410 void address_space_unregister(AddressSpace *as)
2411 {
2412 memory_listener_unregister(&as->dispatch_listener);
2413 }
2414
2415 void address_space_destroy_dispatch(AddressSpace *as)
2416 {
2417 AddressSpaceDispatch *d = as->dispatch;
2418
2419 atomic_rcu_set(&as->dispatch, NULL);
2420 if (d) {
2421 call_rcu(d, address_space_dispatch_free, rcu);
2422 }
2423 }
2424
2425 static void memory_map_init(void)
2426 {
2427 system_memory = g_malloc(sizeof(*system_memory));
2428
2429 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2430 address_space_init(&address_space_memory, system_memory, "memory");
2431
2432 system_io = g_malloc(sizeof(*system_io));
2433 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2434 65536);
2435 address_space_init(&address_space_io, system_io, "I/O");
2436 }
2437
2438 MemoryRegion *get_system_memory(void)
2439 {
2440 return system_memory;
2441 }
2442
2443 MemoryRegion *get_system_io(void)
2444 {
2445 return system_io;
2446 }
2447
2448 #endif /* !defined(CONFIG_USER_ONLY) */
2449
2450 /* physical memory access (slow version, mainly for debug) */
2451 #if defined(CONFIG_USER_ONLY)
2452 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
2453 uint8_t *buf, int len, int is_write)
2454 {
2455 int l, flags;
2456 target_ulong page;
2457 void * p;
2458
2459 while (len > 0) {
2460 page = addr & TARGET_PAGE_MASK;
2461 l = (page + TARGET_PAGE_SIZE) - addr;
2462 if (l > len)
2463 l = len;
2464 flags = page_get_flags(page);
2465 if (!(flags & PAGE_VALID))
2466 return -1;
2467 if (is_write) {
2468 if (!(flags & PAGE_WRITE))
2469 return -1;
2470 /* XXX: this code should not depend on lock_user */
2471 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
2472 return -1;
2473 memcpy(p, buf, l);
2474 unlock_user(p, addr, l);
2475 } else {
2476 if (!(flags & PAGE_READ))
2477 return -1;
2478 /* XXX: this code should not depend on lock_user */
2479 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
2480 return -1;
2481 memcpy(buf, p, l);
2482 unlock_user(p, addr, 0);
2483 }
2484 len -= l;
2485 buf += l;
2486 addr += l;
2487 }
2488 return 0;
2489 }
2490
2491 #else
2492
2493 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
2494 hwaddr length)
2495 {
2496 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2497 /* No early return if dirty_log_mask is or becomes 0, because
2498 * cpu_physical_memory_set_dirty_range will still call
2499 * xen_modified_memory.
2500 */
2501 if (dirty_log_mask) {
2502 dirty_log_mask =
2503 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2504 }
2505 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2506 tb_invalidate_phys_range(addr, addr + length);
2507 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
2508 }
2509 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
2510 }
2511
2512 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
2513 {
2514 unsigned access_size_max = mr->ops->valid.max_access_size;
2515
2516 /* Regions are assumed to support 1-4 byte accesses unless
2517 otherwise specified. */
2518 if (access_size_max == 0) {
2519 access_size_max = 4;
2520 }
2521
2522 /* Bound the maximum access by the alignment of the address. */
2523 if (!mr->ops->impl.unaligned) {
2524 unsigned align_size_max = addr & -addr;
2525 if (align_size_max != 0 && align_size_max < access_size_max) {
2526 access_size_max = align_size_max;
2527 }
2528 }
2529
2530 /* Don't attempt accesses larger than the maximum. */
2531 if (l > access_size_max) {
2532 l = access_size_max;
2533 }
2534 l = pow2floor(l);
2535
2536 return l;
2537 }
2538
2539 static bool prepare_mmio_access(MemoryRegion *mr)
2540 {
2541 bool unlocked = !qemu_mutex_iothread_locked();
2542 bool release_lock = false;
2543
2544 if (unlocked && mr->global_locking) {
2545 qemu_mutex_lock_iothread();
2546 unlocked = false;
2547 release_lock = true;
2548 }
2549 if (mr->flush_coalesced_mmio) {
2550 if (unlocked) {
2551 qemu_mutex_lock_iothread();
2552 }
2553 qemu_flush_coalesced_mmio_buffer();
2554 if (unlocked) {
2555 qemu_mutex_unlock_iothread();
2556 }
2557 }
2558
2559 return release_lock;
2560 }
2561
2562 /* Called within RCU critical section. */
2563 static MemTxResult address_space_write_continue(AddressSpace *as, hwaddr addr,
2564 MemTxAttrs attrs,
2565 const uint8_t *buf,
2566 int len, hwaddr addr1,
2567 hwaddr l, MemoryRegion *mr)
2568 {
2569 uint8_t *ptr;
2570 uint64_t val;
2571 MemTxResult result = MEMTX_OK;
2572 bool release_lock = false;
2573
2574 for (;;) {
2575 if (!memory_access_is_direct(mr, true)) {
2576 release_lock |= prepare_mmio_access(mr);
2577 l = memory_access_size(mr, l, addr1);
2578 /* XXX: could force current_cpu to NULL to avoid
2579 potential bugs */
2580 switch (l) {
2581 case 8:
2582 /* 64 bit write access */
2583 val = ldq_p(buf);
2584 result |= memory_region_dispatch_write(mr, addr1, val, 8,
2585 attrs);
2586 break;
2587 case 4:
2588 /* 32 bit write access */
2589 val = ldl_p(buf);
2590 result |= memory_region_dispatch_write(mr, addr1, val, 4,
2591 attrs);
2592 break;
2593 case 2:
2594 /* 16 bit write access */
2595 val = lduw_p(buf);
2596 result |= memory_region_dispatch_write(mr, addr1, val, 2,
2597 attrs);
2598 break;
2599 case 1:
2600 /* 8 bit write access */
2601 val = ldub_p(buf);
2602 result |= memory_region_dispatch_write(mr, addr1, val, 1,
2603 attrs);
2604 break;
2605 default:
2606 abort();
2607 }
2608 } else {
2609 addr1 += memory_region_get_ram_addr(mr);
2610 /* RAM case */
2611 ptr = qemu_get_ram_ptr(mr->ram_block, addr1);
2612 memcpy(ptr, buf, l);
2613 invalidate_and_set_dirty(mr, addr1, l);
2614 }
2615
2616 if (release_lock) {
2617 qemu_mutex_unlock_iothread();
2618 release_lock = false;
2619 }
2620
2621 len -= l;
2622 buf += l;
2623 addr += l;
2624
2625 if (!len) {
2626 break;
2627 }
2628
2629 l = len;
2630 mr = address_space_translate(as, addr, &addr1, &l, true);
2631 }
2632
2633 return result;
2634 }
2635
2636 MemTxResult address_space_write(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2637 const uint8_t *buf, int len)
2638 {
2639 hwaddr l;
2640 hwaddr addr1;
2641 MemoryRegion *mr;
2642 MemTxResult result = MEMTX_OK;
2643
2644 if (len > 0) {
2645 rcu_read_lock();
2646 l = len;
2647 mr = address_space_translate(as, addr, &addr1, &l, true);
2648 result = address_space_write_continue(as, addr, attrs, buf, len,
2649 addr1, l, mr);
2650 rcu_read_unlock();
2651 }
2652
2653 return result;
2654 }
2655
2656 /* Called within RCU critical section. */
2657 MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr,
2658 MemTxAttrs attrs, uint8_t *buf,
2659 int len, hwaddr addr1, hwaddr l,
2660 MemoryRegion *mr)
2661 {
2662 uint8_t *ptr;
2663 uint64_t val;
2664 MemTxResult result = MEMTX_OK;
2665 bool release_lock = false;
2666
2667 for (;;) {
2668 if (!memory_access_is_direct(mr, false)) {
2669 /* I/O case */
2670 release_lock |= prepare_mmio_access(mr);
2671 l = memory_access_size(mr, l, addr1);
2672 switch (l) {
2673 case 8:
2674 /* 64 bit read access */
2675 result |= memory_region_dispatch_read(mr, addr1, &val, 8,
2676 attrs);
2677 stq_p(buf, val);
2678 break;
2679 case 4:
2680 /* 32 bit read access */
2681 result |= memory_region_dispatch_read(mr, addr1, &val, 4,
2682 attrs);
2683 stl_p(buf, val);
2684 break;
2685 case 2:
2686 /* 16 bit read access */
2687 result |= memory_region_dispatch_read(mr, addr1, &val, 2,
2688 attrs);
2689 stw_p(buf, val);
2690 break;
2691 case 1:
2692 /* 8 bit read access */
2693 result |= memory_region_dispatch_read(mr, addr1, &val, 1,
2694 attrs);
2695 stb_p(buf, val);
2696 break;
2697 default:
2698 abort();
2699 }
2700 } else {
2701 /* RAM case */
2702 ptr = qemu_get_ram_ptr(mr->ram_block,
2703 memory_region_get_ram_addr(mr) + addr1);
2704 memcpy(buf, ptr, l);
2705 }
2706
2707 if (release_lock) {
2708 qemu_mutex_unlock_iothread();
2709 release_lock = false;
2710 }
2711
2712 len -= l;
2713 buf += l;
2714 addr += l;
2715
2716 if (!len) {
2717 break;
2718 }
2719
2720 l = len;
2721 mr = address_space_translate(as, addr, &addr1, &l, false);
2722 }
2723
2724 return result;
2725 }
2726
2727 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2728 MemTxAttrs attrs, uint8_t *buf, int len)
2729 {
2730 hwaddr l;
2731 hwaddr addr1;
2732 MemoryRegion *mr;
2733 MemTxResult result = MEMTX_OK;
2734
2735 if (len > 0) {
2736 rcu_read_lock();
2737 l = len;
2738 mr = address_space_translate(as, addr, &addr1, &l, false);
2739 result = address_space_read_continue(as, addr, attrs, buf, len,
2740 addr1, l, mr);
2741 rcu_read_unlock();
2742 }
2743
2744 return result;
2745 }
2746
2747 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2748 uint8_t *buf, int len, bool is_write)
2749 {
2750 if (is_write) {
2751 return address_space_write(as, addr, attrs, (uint8_t *)buf, len);
2752 } else {
2753 return address_space_read(as, addr, attrs, (uint8_t *)buf, len);
2754 }
2755 }
2756
2757 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
2758 int len, int is_write)
2759 {
2760 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
2761 buf, len, is_write);
2762 }
2763
2764 enum write_rom_type {
2765 WRITE_DATA,
2766 FLUSH_CACHE,
2767 };
2768
2769 static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
2770 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
2771 {
2772 hwaddr l;
2773 uint8_t *ptr;
2774 hwaddr addr1;
2775 MemoryRegion *mr;
2776
2777 rcu_read_lock();
2778 while (len > 0) {
2779 l = len;
2780 mr = address_space_translate(as, addr, &addr1, &l, true);
2781
2782 if (!(memory_region_is_ram(mr) ||
2783 memory_region_is_romd(mr))) {
2784 l = memory_access_size(mr, l, addr1);
2785 } else {
2786 addr1 += memory_region_get_ram_addr(mr);
2787 /* ROM/RAM case */
2788 ptr = qemu_get_ram_ptr(mr->ram_block, addr1);
2789 switch (type) {
2790 case WRITE_DATA:
2791 memcpy(ptr, buf, l);
2792 invalidate_and_set_dirty(mr, addr1, l);
2793 break;
2794 case FLUSH_CACHE:
2795 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
2796 break;
2797 }
2798 }
2799 len -= l;
2800 buf += l;
2801 addr += l;
2802 }
2803 rcu_read_unlock();
2804 }
2805
2806 /* used for ROM loading : can write in RAM and ROM */
2807 void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
2808 const uint8_t *buf, int len)
2809 {
2810 cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
2811 }
2812
2813 void cpu_flush_icache_range(hwaddr start, int len)
2814 {
2815 /*
2816 * This function should do the same thing as an icache flush that was
2817 * triggered from within the guest. For TCG we are always cache coherent,
2818 * so there is no need to flush anything. For KVM / Xen we need to flush
2819 * the host's instruction cache at least.
2820 */
2821 if (tcg_enabled()) {
2822 return;
2823 }
2824
2825 cpu_physical_memory_write_rom_internal(&address_space_memory,
2826 start, NULL, len, FLUSH_CACHE);
2827 }
2828
2829 typedef struct {
2830 MemoryRegion *mr;
2831 void *buffer;
2832 hwaddr addr;
2833 hwaddr len;
2834 bool in_use;
2835 } BounceBuffer;
2836
2837 static BounceBuffer bounce;
2838
2839 typedef struct MapClient {
2840 QEMUBH *bh;
2841 QLIST_ENTRY(MapClient) link;
2842 } MapClient;
2843
2844 QemuMutex map_client_list_lock;
2845 static QLIST_HEAD(map_client_list, MapClient) map_client_list
2846 = QLIST_HEAD_INITIALIZER(map_client_list);
2847
2848 static void cpu_unregister_map_client_do(MapClient *client)
2849 {
2850 QLIST_REMOVE(client, link);
2851 g_free(client);
2852 }
2853
2854 static void cpu_notify_map_clients_locked(void)
2855 {
2856 MapClient *client;
2857
2858 while (!QLIST_EMPTY(&map_client_list)) {
2859 client = QLIST_FIRST(&map_client_list);
2860 qemu_bh_schedule(client->bh);
2861 cpu_unregister_map_client_do(client);
2862 }
2863 }
2864
2865 void cpu_register_map_client(QEMUBH *bh)
2866 {
2867 MapClient *client = g_malloc(sizeof(*client));
2868
2869 qemu_mutex_lock(&map_client_list_lock);
2870 client->bh = bh;
2871 QLIST_INSERT_HEAD(&map_client_list, client, link);
2872 if (!atomic_read(&bounce.in_use)) {
2873 cpu_notify_map_clients_locked();
2874 }
2875 qemu_mutex_unlock(&map_client_list_lock);
2876 }
2877
2878 void cpu_exec_init_all(void)
2879 {
2880 qemu_mutex_init(&ram_list.mutex);
2881 io_mem_init();
2882 memory_map_init();
2883 qemu_mutex_init(&map_client_list_lock);
2884 }
2885
2886 void cpu_unregister_map_client(QEMUBH *bh)
2887 {
2888 MapClient *client;
2889
2890 qemu_mutex_lock(&map_client_list_lock);
2891 QLIST_FOREACH(client, &map_client_list, link) {
2892 if (client->bh == bh) {
2893 cpu_unregister_map_client_do(client);
2894 break;
2895 }
2896 }
2897 qemu_mutex_unlock(&map_client_list_lock);
2898 }
2899
2900 static void cpu_notify_map_clients(void)
2901 {
2902 qemu_mutex_lock(&map_client_list_lock);
2903 cpu_notify_map_clients_locked();
2904 qemu_mutex_unlock(&map_client_list_lock);
2905 }
2906
2907 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
2908 {
2909 MemoryRegion *mr;
2910 hwaddr l, xlat;
2911
2912 rcu_read_lock();
2913 while (len > 0) {
2914 l = len;
2915 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2916 if (!memory_access_is_direct(mr, is_write)) {
2917 l = memory_access_size(mr, l, addr);
2918 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
2919 return false;
2920 }
2921 }
2922
2923 len -= l;
2924 addr += l;
2925 }
2926 rcu_read_unlock();
2927 return true;
2928 }
2929
2930 /* Map a physical memory region into a host virtual address.
2931 * May map a subset of the requested range, given by and returned in *plen.
2932 * May return NULL if resources needed to perform the mapping are exhausted.
2933 * Use only for reads OR writes - not for read-modify-write operations.
2934 * Use cpu_register_map_client() to know when retrying the map operation is
2935 * likely to succeed.
2936 */
2937 void *address_space_map(AddressSpace *as,
2938 hwaddr addr,
2939 hwaddr *plen,
2940 bool is_write)
2941 {
2942 hwaddr len = *plen;
2943 hwaddr done = 0;
2944 hwaddr l, xlat, base;
2945 MemoryRegion *mr, *this_mr;
2946 ram_addr_t raddr;
2947 void *ptr;
2948
2949 if (len == 0) {
2950 return NULL;
2951 }
2952
2953 l = len;
2954 rcu_read_lock();
2955 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2956
2957 if (!memory_access_is_direct(mr, is_write)) {
2958 if (atomic_xchg(&bounce.in_use, true)) {
2959 rcu_read_unlock();
2960 return NULL;
2961 }
2962 /* Avoid unbounded allocations */
2963 l = MIN(l, TARGET_PAGE_SIZE);
2964 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
2965 bounce.addr = addr;
2966 bounce.len = l;
2967
2968 memory_region_ref(mr);
2969 bounce.mr = mr;
2970 if (!is_write) {
2971 address_space_read(as, addr, MEMTXATTRS_UNSPECIFIED,
2972 bounce.buffer, l);
2973 }
2974
2975 rcu_read_unlock();
2976 *plen = l;
2977 return bounce.buffer;
2978 }
2979
2980 base = xlat;
2981 raddr = memory_region_get_ram_addr(mr);
2982
2983 for (;;) {
2984 len -= l;
2985 addr += l;
2986 done += l;
2987 if (len == 0) {
2988 break;
2989 }
2990
2991 l = len;
2992 this_mr = address_space_translate(as, addr, &xlat, &l, is_write);
2993 if (this_mr != mr || xlat != base + done) {
2994 break;
2995 }
2996 }
2997
2998 memory_region_ref(mr);
2999 *plen = done;
3000 ptr = qemu_ram_ptr_length(mr->ram_block, raddr + base, plen);
3001 rcu_read_unlock();
3002
3003 return ptr;
3004 }
3005
3006 /* Unmaps a memory region previously mapped by address_space_map().
3007 * Will also mark the memory as dirty if is_write == 1. access_len gives
3008 * the amount of memory that was actually read or written by the caller.
3009 */
3010 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3011 int is_write, hwaddr access_len)
3012 {
3013 if (buffer != bounce.buffer) {
3014 MemoryRegion *mr;
3015 ram_addr_t addr1;
3016
3017 mr = qemu_ram_addr_from_host(buffer, &addr1);
3018 assert(mr != NULL);
3019 if (is_write) {
3020 invalidate_and_set_dirty(mr, addr1, access_len);
3021 }
3022 if (xen_enabled()) {
3023 xen_invalidate_map_cache_entry(buffer);
3024 }
3025 memory_region_unref(mr);
3026 return;
3027 }
3028 if (is_write) {
3029 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3030 bounce.buffer, access_len);
3031 }
3032 qemu_vfree(bounce.buffer);
3033 bounce.buffer = NULL;
3034 memory_region_unref(bounce.mr);
3035 atomic_mb_set(&bounce.in_use, false);
3036 cpu_notify_map_clients();
3037 }
3038
3039 void *cpu_physical_memory_map(hwaddr addr,
3040 hwaddr *plen,
3041 int is_write)
3042 {
3043 return address_space_map(&address_space_memory, addr, plen, is_write);
3044 }
3045
3046 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3047 int is_write, hwaddr access_len)
3048 {
3049 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3050 }
3051
3052 /* warning: addr must be aligned */
3053 static inline uint32_t address_space_ldl_internal(AddressSpace *as, hwaddr addr,
3054 MemTxAttrs attrs,
3055 MemTxResult *result,
3056 enum device_endian endian)
3057 {
3058 uint8_t *ptr;
3059 uint64_t val;
3060 MemoryRegion *mr;
3061 hwaddr l = 4;
3062 hwaddr addr1;
3063 MemTxResult r;
3064 bool release_lock = false;
3065
3066 rcu_read_lock();
3067 mr = address_space_translate(as, addr, &addr1, &l, false);
3068 if (l < 4 || !memory_access_is_direct(mr, false)) {
3069 release_lock |= prepare_mmio_access(mr);
3070
3071 /* I/O case */
3072 r = memory_region_dispatch_read(mr, addr1, &val, 4, attrs);
3073 #if defined(TARGET_WORDS_BIGENDIAN)
3074 if (endian == DEVICE_LITTLE_ENDIAN) {
3075 val = bswap32(val);
3076 }
3077 #else
3078 if (endian == DEVICE_BIG_ENDIAN) {
3079 val = bswap32(val);
3080 }
3081 #endif
3082 } else {
3083 /* RAM case */
3084 ptr = qemu_get_ram_ptr(mr->ram_block,
3085 (memory_region_get_ram_addr(mr)
3086 & TARGET_PAGE_MASK)
3087 + addr1);
3088 switch (endian) {
3089 case DEVICE_LITTLE_ENDIAN:
3090 val = ldl_le_p(ptr);
3091 break;
3092 case DEVICE_BIG_ENDIAN:
3093 val = ldl_be_p(ptr);
3094 break;
3095 default:
3096 val = ldl_p(ptr);
3097 break;
3098 }
3099 r = MEMTX_OK;
3100 }
3101 if (result) {
3102 *result = r;
3103 }
3104 if (release_lock) {
3105 qemu_mutex_unlock_iothread();
3106 }
3107 rcu_read_unlock();
3108 return val;
3109 }
3110
3111 uint32_t address_space_ldl(AddressSpace *as, hwaddr addr,
3112 MemTxAttrs attrs, MemTxResult *result)
3113 {
3114 return address_space_ldl_internal(as, addr, attrs, result,
3115 DEVICE_NATIVE_ENDIAN);
3116 }
3117
3118 uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr,
3119 MemTxAttrs attrs, MemTxResult *result)
3120 {
3121 return address_space_ldl_internal(as, addr, attrs, result,
3122 DEVICE_LITTLE_ENDIAN);
3123 }
3124
3125 uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr,
3126 MemTxAttrs attrs, MemTxResult *result)
3127 {
3128 return address_space_ldl_internal(as, addr, attrs, result,
3129 DEVICE_BIG_ENDIAN);
3130 }
3131
3132 uint32_t ldl_phys(AddressSpace *as, hwaddr addr)
3133 {
3134 return address_space_ldl(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
3135 }
3136
3137 uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr)
3138 {
3139 return address_space_ldl_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
3140 }
3141
3142 uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr)
3143 {
3144 return address_space_ldl_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
3145 }
3146
3147 /* warning: addr must be aligned */
3148 static inline uint64_t address_space_ldq_internal(AddressSpace *as, hwaddr addr,
3149 MemTxAttrs attrs,
3150 MemTxResult *result,
3151 enum device_endian endian)
3152 {
3153 uint8_t *ptr;
3154 uint64_t val;
3155 MemoryRegion *mr;
3156 hwaddr l = 8;
3157 hwaddr addr1;
3158 MemTxResult r;
3159 bool release_lock = false;
3160
3161 rcu_read_lock();
3162 mr = address_space_translate(as, addr, &addr1, &l,
3163 false);
3164 if (l < 8 || !memory_access_is_direct(mr, false)) {
3165 release_lock |= prepare_mmio_access(mr);
3166
3167 /* I/O case */
3168 r = memory_region_dispatch_read(mr, addr1, &val, 8, attrs);
3169 #if defined(TARGET_WORDS_BIGENDIAN)
3170 if (endian == DEVICE_LITTLE_ENDIAN) {
3171 val = bswap64(val);
3172 }
3173 #else
3174 if (endian == DEVICE_BIG_ENDIAN) {
3175 val = bswap64(val);
3176 }
3177 #endif
3178 } else {
3179 /* RAM case */
3180 ptr = qemu_get_ram_ptr(mr->ram_block,
3181 (memory_region_get_ram_addr(mr)
3182 & TARGET_PAGE_MASK)
3183 + addr1);
3184 switch (endian) {
3185 case DEVICE_LITTLE_ENDIAN:
3186 val = ldq_le_p(ptr);
3187 break;
3188 case DEVICE_BIG_ENDIAN:
3189 val = ldq_be_p(ptr);
3190 break;
3191 default:
3192 val = ldq_p(ptr);
3193 break;
3194 }
3195 r = MEMTX_OK;
3196 }
3197 if (result) {
3198 *result = r;
3199 }
3200 if (release_lock) {
3201 qemu_mutex_unlock_iothread();
3202 }
3203 rcu_read_unlock();
3204 return val;
3205 }
3206
3207 uint64_t address_space_ldq(AddressSpace *as, hwaddr addr,
3208 MemTxAttrs attrs, MemTxResult *result)
3209 {
3210 return address_space_ldq_internal(as, addr, attrs, result,
3211 DEVICE_NATIVE_ENDIAN);
3212 }
3213
3214 uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr,
3215 MemTxAttrs attrs, MemTxResult *result)
3216 {
3217 return address_space_ldq_internal(as, addr, attrs, result,
3218 DEVICE_LITTLE_ENDIAN);
3219 }
3220
3221 uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr,
3222 MemTxAttrs attrs, MemTxResult *result)
3223 {
3224 return address_space_ldq_internal(as, addr, attrs, result,
3225 DEVICE_BIG_ENDIAN);
3226 }
3227
3228 uint64_t ldq_phys(AddressSpace *as, hwaddr addr)
3229 {
3230 return address_space_ldq(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
3231 }
3232
3233 uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr)
3234 {
3235 return address_space_ldq_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
3236 }
3237
3238 uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr)
3239 {
3240 return address_space_ldq_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
3241 }
3242
3243 /* XXX: optimize */
3244 uint32_t address_space_ldub(AddressSpace *as, hwaddr addr,
3245 MemTxAttrs attrs, MemTxResult *result)
3246 {
3247 uint8_t val;
3248 MemTxResult r;
3249
3250 r = address_space_rw(as, addr, attrs, &val, 1, 0);
3251 if (result) {
3252 *result = r;
3253 }
3254 return val;
3255 }
3256
3257 uint32_t ldub_phys(AddressSpace *as, hwaddr addr)
3258 {
3259 return address_space_ldub(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
3260 }
3261
3262 /* warning: addr must be aligned */
3263 static inline uint32_t address_space_lduw_internal(AddressSpace *as,
3264 hwaddr addr,
3265 MemTxAttrs attrs,
3266 MemTxResult *result,
3267 enum device_endian endian)
3268 {
3269 uint8_t *ptr;
3270 uint64_t val;
3271 MemoryRegion *mr;
3272 hwaddr l = 2;
3273 hwaddr addr1;
3274 MemTxResult r;
3275 bool release_lock = false;
3276
3277 rcu_read_lock();
3278 mr = address_space_translate(as, addr, &addr1, &l,
3279 false);
3280 if (l < 2 || !memory_access_is_direct(mr, false)) {
3281 release_lock |= prepare_mmio_access(mr);
3282
3283 /* I/O case */
3284 r = memory_region_dispatch_read(mr, addr1, &val, 2, attrs);
3285 #if defined(TARGET_WORDS_BIGENDIAN)
3286 if (endian == DEVICE_LITTLE_ENDIAN) {
3287 val = bswap16(val);
3288 }
3289 #else
3290 if (endian == DEVICE_BIG_ENDIAN) {
3291 val = bswap16(val);
3292 }
3293 #endif
3294 } else {
3295 /* RAM case */
3296 ptr = qemu_get_ram_ptr(mr->ram_block,
3297 (memory_region_get_ram_addr(mr)
3298 & TARGET_PAGE_MASK)
3299 + addr1);
3300 switch (endian) {
3301 case DEVICE_LITTLE_ENDIAN:
3302 val = lduw_le_p(ptr);
3303 break;
3304 case DEVICE_BIG_ENDIAN:
3305 val = lduw_be_p(ptr);
3306 break;
3307 default:
3308 val = lduw_p(ptr);
3309 break;
3310 }
3311 r = MEMTX_OK;
3312 }
3313 if (result) {
3314 *result = r;
3315 }
3316 if (release_lock) {
3317 qemu_mutex_unlock_iothread();
3318 }
3319 rcu_read_unlock();
3320 return val;
3321 }
3322
3323 uint32_t address_space_lduw(AddressSpace *as, hwaddr addr,
3324 MemTxAttrs attrs, MemTxResult *result)
3325 {
3326 return address_space_lduw_internal(as, addr, attrs, result,
3327 DEVICE_NATIVE_ENDIAN);
3328 }
3329
3330 uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr,
3331 MemTxAttrs attrs, MemTxResult *result)
3332 {
3333 return address_space_lduw_internal(as, addr, attrs, result,
3334 DEVICE_LITTLE_ENDIAN);
3335 }
3336
3337 uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr,
3338 MemTxAttrs attrs, MemTxResult *result)
3339 {
3340 return address_space_lduw_internal(as, addr, attrs, result,
3341 DEVICE_BIG_ENDIAN);
3342 }
3343
3344 uint32_t lduw_phys(AddressSpace *as, hwaddr addr)
3345 {
3346 return address_space_lduw(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
3347 }
3348
3349 uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr)
3350 {
3351 return address_space_lduw_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
3352 }
3353
3354 uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr)
3355 {
3356 return address_space_lduw_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
3357 }
3358
3359 /* warning: addr must be aligned. The ram page is not masked as dirty
3360 and the code inside is not invalidated. It is useful if the dirty
3361 bits are used to track modified PTEs */
3362 void address_space_stl_notdirty(AddressSpace *as, hwaddr addr, uint32_t val,
3363 MemTxAttrs attrs, MemTxResult *result)
3364 {
3365 uint8_t *ptr;
3366 MemoryRegion *mr;
3367 hwaddr l = 4;
3368 hwaddr addr1;
3369 MemTxResult r;
3370 uint8_t dirty_log_mask;
3371 bool release_lock = false;
3372
3373 rcu_read_lock();
3374 mr = address_space_translate(as, addr, &addr1, &l,
3375 true);
3376 if (l < 4 || !memory_access_is_direct(mr, true)) {
3377 release_lock |= prepare_mmio_access(mr);
3378
3379 r = memory_region_dispatch_write(mr, addr1, val, 4, attrs);
3380 } else {
3381 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
3382 ptr = qemu_get_ram_ptr(mr->ram_block, addr1);
3383 stl_p(ptr, val);
3384
3385 dirty_log_mask = memory_region_get_dirty_log_mask(mr);
3386 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
3387 cpu_physical_memory_set_dirty_range(addr1, 4, dirty_log_mask);
3388 r = MEMTX_OK;
3389 }
3390 if (result) {
3391 *result = r;
3392 }
3393 if (release_lock) {
3394 qemu_mutex_unlock_iothread();
3395 }
3396 rcu_read_unlock();
3397 }
3398
3399 void stl_phys_notdirty(AddressSpace *as, hwaddr addr, uint32_t val)
3400 {
3401 address_space_stl_notdirty(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3402 }
3403
3404 /* warning: addr must be aligned */
3405 static inline void address_space_stl_internal(AddressSpace *as,
3406 hwaddr addr, uint32_t val,
3407 MemTxAttrs attrs,
3408 MemTxResult *result,
3409 enum device_endian endian)
3410 {
3411 uint8_t *ptr;
3412 MemoryRegion *mr;
3413 hwaddr l = 4;
3414 hwaddr addr1;
3415 MemTxResult r;
3416 bool release_lock = false;
3417
3418 rcu_read_lock();
3419 mr = address_space_translate(as, addr, &addr1, &l,
3420 true);
3421 if (l < 4 || !memory_access_is_direct(mr, true)) {
3422 release_lock |= prepare_mmio_access(mr);
3423
3424 #if defined(TARGET_WORDS_BIGENDIAN)
3425 if (endian == DEVICE_LITTLE_ENDIAN) {
3426 val = bswap32(val);
3427 }
3428 #else
3429 if (endian == DEVICE_BIG_ENDIAN) {
3430 val = bswap32(val);
3431 }
3432 #endif
3433 r = memory_region_dispatch_write(mr, addr1, val, 4, attrs);
3434 } else {
3435 /* RAM case */
3436 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
3437 ptr = qemu_get_ram_ptr(mr->ram_block, addr1);
3438 switch (endian) {
3439 case DEVICE_LITTLE_ENDIAN:
3440 stl_le_p(ptr, val);
3441 break;
3442 case DEVICE_BIG_ENDIAN:
3443 stl_be_p(ptr, val);
3444 break;
3445 default:
3446 stl_p(ptr, val);
3447 break;
3448 }
3449 invalidate_and_set_dirty(mr, addr1, 4);
3450 r = MEMTX_OK;
3451 }
3452 if (result) {
3453 *result = r;
3454 }
3455 if (release_lock) {
3456 qemu_mutex_unlock_iothread();
3457 }
3458 rcu_read_unlock();
3459 }
3460
3461 void address_space_stl(AddressSpace *as, hwaddr addr, uint32_t val,
3462 MemTxAttrs attrs, MemTxResult *result)
3463 {
3464 address_space_stl_internal(as, addr, val, attrs, result,
3465 DEVICE_NATIVE_ENDIAN);
3466 }
3467
3468 void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val,
3469 MemTxAttrs attrs, MemTxResult *result)
3470 {
3471 address_space_stl_internal(as, addr, val, attrs, result,
3472 DEVICE_LITTLE_ENDIAN);
3473 }
3474
3475 void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val,
3476 MemTxAttrs attrs, MemTxResult *result)
3477 {
3478 address_space_stl_internal(as, addr, val, attrs, result,
3479 DEVICE_BIG_ENDIAN);
3480 }
3481
3482 void stl_phys(AddressSpace *as, hwaddr addr, uint32_t val)
3483 {
3484 address_space_stl(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3485 }
3486
3487 void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val)
3488 {
3489 address_space_stl_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3490 }
3491
3492 void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val)
3493 {
3494 address_space_stl_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3495 }
3496
3497 /* XXX: optimize */
3498 void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val,
3499 MemTxAttrs attrs, MemTxResult *result)
3500 {
3501 uint8_t v = val;
3502 MemTxResult r;
3503
3504 r = address_space_rw(as, addr, attrs, &v, 1, 1);
3505 if (result) {
3506 *result = r;
3507 }
3508 }
3509
3510 void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val)
3511 {
3512 address_space_stb(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3513 }
3514
3515 /* warning: addr must be aligned */
3516 static inline void address_space_stw_internal(AddressSpace *as,
3517 hwaddr addr, uint32_t val,
3518 MemTxAttrs attrs,
3519 MemTxResult *result,
3520 enum device_endian endian)
3521 {
3522 uint8_t *ptr;
3523 MemoryRegion *mr;
3524 hwaddr l = 2;
3525 hwaddr addr1;
3526 MemTxResult r;
3527 bool release_lock = false;
3528
3529 rcu_read_lock();
3530 mr = address_space_translate(as, addr, &addr1, &l, true);
3531 if (l < 2 || !memory_access_is_direct(mr, true)) {
3532 release_lock |= prepare_mmio_access(mr);
3533
3534 #if defined(TARGET_WORDS_BIGENDIAN)
3535 if (endian == DEVICE_LITTLE_ENDIAN) {
3536 val = bswap16(val);
3537 }
3538 #else
3539 if (endian == DEVICE_BIG_ENDIAN) {
3540 val = bswap16(val);
3541 }
3542 #endif
3543 r = memory_region_dispatch_write(mr, addr1, val, 2, attrs);
3544 } else {
3545 /* RAM case */
3546 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
3547 ptr = qemu_get_ram_ptr(mr->ram_block, addr1);
3548 switch (endian) {
3549 case DEVICE_LITTLE_ENDIAN:
3550 stw_le_p(ptr, val);
3551 break;
3552 case DEVICE_BIG_ENDIAN:
3553 stw_be_p(ptr, val);
3554 break;
3555 default:
3556 stw_p(ptr, val);
3557 break;
3558 }
3559 invalidate_and_set_dirty(mr, addr1, 2);
3560 r = MEMTX_OK;
3561 }
3562 if (result) {
3563 *result = r;
3564 }
3565 if (release_lock) {
3566 qemu_mutex_unlock_iothread();
3567 }
3568 rcu_read_unlock();
3569 }
3570
3571 void address_space_stw(AddressSpace *as, hwaddr addr, uint32_t val,
3572 MemTxAttrs attrs, MemTxResult *result)
3573 {
3574 address_space_stw_internal(as, addr, val, attrs, result,
3575 DEVICE_NATIVE_ENDIAN);
3576 }
3577
3578 void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val,
3579 MemTxAttrs attrs, MemTxResult *result)
3580 {
3581 address_space_stw_internal(as, addr, val, attrs, result,
3582 DEVICE_LITTLE_ENDIAN);
3583 }
3584
3585 void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val,
3586 MemTxAttrs attrs, MemTxResult *result)
3587 {
3588 address_space_stw_internal(as, addr, val, attrs, result,
3589 DEVICE_BIG_ENDIAN);
3590 }
3591
3592 void stw_phys(AddressSpace *as, hwaddr addr, uint32_t val)
3593 {
3594 address_space_stw(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3595 }
3596
3597 void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val)
3598 {
3599 address_space_stw_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3600 }
3601
3602 void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val)
3603 {
3604 address_space_stw_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3605 }
3606
3607 /* XXX: optimize */
3608 void address_space_stq(AddressSpace *as, hwaddr addr, uint64_t val,
3609 MemTxAttrs attrs, MemTxResult *result)
3610 {
3611 MemTxResult r;
3612 val = tswap64(val);
3613 r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1);
3614 if (result) {
3615 *result = r;
3616 }
3617 }
3618
3619 void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val,
3620 MemTxAttrs attrs, MemTxResult *result)
3621 {
3622 MemTxResult r;
3623 val = cpu_to_le64(val);
3624 r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1);
3625 if (result) {
3626 *result = r;
3627 }
3628 }
3629 void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val,
3630 MemTxAttrs attrs, MemTxResult *result)
3631 {
3632 MemTxResult r;
3633 val = cpu_to_be64(val);
3634 r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1);
3635 if (result) {
3636 *result = r;
3637 }
3638 }
3639
3640 void stq_phys(AddressSpace *as, hwaddr addr, uint64_t val)
3641 {
3642 address_space_stq(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3643 }
3644
3645 void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val)
3646 {
3647 address_space_stq_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3648 }
3649
3650 void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val)
3651 {
3652 address_space_stq_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3653 }
3654
3655 /* virtual memory access for debug (includes writing to ROM) */
3656 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3657 uint8_t *buf, int len, int is_write)
3658 {
3659 int l;
3660 hwaddr phys_addr;
3661 target_ulong page;
3662
3663 while (len > 0) {
3664 int asidx;
3665 MemTxAttrs attrs;
3666
3667 page = addr & TARGET_PAGE_MASK;
3668 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3669 asidx = cpu_asidx_from_attrs(cpu, attrs);
3670 /* if no physical page mapped, return an error */
3671 if (phys_addr == -1)
3672 return -1;
3673 l = (page + TARGET_PAGE_SIZE) - addr;
3674 if (l > len)
3675 l = len;
3676 phys_addr += (addr & ~TARGET_PAGE_MASK);
3677 if (is_write) {
3678 cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
3679 phys_addr, buf, l);
3680 } else {
3681 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3682 MEMTXATTRS_UNSPECIFIED,
3683 buf, l, 0);
3684 }
3685 len -= l;
3686 buf += l;
3687 addr += l;
3688 }
3689 return 0;
3690 }
3691
3692 /*
3693 * Allows code that needs to deal with migration bitmaps etc to still be built
3694 * target independent.
3695 */
3696 size_t qemu_target_page_bits(void)
3697 {
3698 return TARGET_PAGE_BITS;
3699 }
3700
3701 #endif
3702
3703 /*
3704 * A helper function for the _utterly broken_ virtio device model to find out if
3705 * it's running on a big endian machine. Don't do this at home kids!
3706 */
3707 bool target_words_bigendian(void);
3708 bool target_words_bigendian(void)
3709 {
3710 #if defined(TARGET_WORDS_BIGENDIAN)
3711 return true;
3712 #else
3713 return false;
3714 #endif
3715 }
3716
3717 #ifndef CONFIG_USER_ONLY
3718 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3719 {
3720 MemoryRegion*mr;
3721 hwaddr l = 1;
3722 bool res;
3723
3724 rcu_read_lock();
3725 mr = address_space_translate(&address_space_memory,
3726 phys_addr, &phys_addr, &l, false);
3727
3728 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3729 rcu_read_unlock();
3730 return res;
3731 }
3732
3733 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3734 {
3735 RAMBlock *block;
3736 int ret = 0;
3737
3738 rcu_read_lock();
3739 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
3740 ret = func(block->idstr, block->host, block->offset,
3741 block->used_length, opaque);
3742 if (ret) {
3743 break;
3744 }
3745 }
3746 rcu_read_unlock();
3747 return ret;
3748 }
3749 #endif