]> git.proxmox.com Git - mirror_qemu.git/blob - exec.c
linux-user: fix page_unprotect when host page size > target page size
[mirror_qemu.git] / exec.c
1 /*
2 * virtual page mapping and translated block handling
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "config.h"
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
26 #include <stdlib.h>
27 #include <stdio.h>
28 #include <stdarg.h>
29 #include <string.h>
30 #include <errno.h>
31 #include <unistd.h>
32 #include <inttypes.h>
33
34 #include "cpu.h"
35 #include "exec-all.h"
36 #include "qemu-common.h"
37 #include "tcg.h"
38 #include "hw/hw.h"
39 #include "osdep.h"
40 #include "kvm.h"
41 #include "qemu-timer.h"
42 #if defined(CONFIG_USER_ONLY)
43 #include <qemu.h>
44 #include <signal.h>
45 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
46 #include <sys/param.h>
47 #if __FreeBSD_version >= 700104
48 #define HAVE_KINFO_GETVMMAP
49 #define sigqueue sigqueue_freebsd /* avoid redefinition */
50 #include <sys/time.h>
51 #include <sys/proc.h>
52 #include <machine/profile.h>
53 #define _KERNEL
54 #include <sys/user.h>
55 #undef _KERNEL
56 #undef sigqueue
57 #include <libutil.h>
58 #endif
59 #endif
60 #endif
61
62 //#define DEBUG_TB_INVALIDATE
63 //#define DEBUG_FLUSH
64 //#define DEBUG_TLB
65 //#define DEBUG_UNASSIGNED
66
67 /* make various TB consistency checks */
68 //#define DEBUG_TB_CHECK
69 //#define DEBUG_TLB_CHECK
70
71 //#define DEBUG_IOPORT
72 //#define DEBUG_SUBPAGE
73
74 #if !defined(CONFIG_USER_ONLY)
75 /* TB consistency checks only implemented for usermode emulation. */
76 #undef DEBUG_TB_CHECK
77 #endif
78
79 #define SMC_BITMAP_USE_THRESHOLD 10
80
81 static TranslationBlock *tbs;
82 int code_gen_max_blocks;
83 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
84 static int nb_tbs;
85 /* any access to the tbs or the page table must use this lock */
86 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
87
88 #if defined(__arm__) || defined(__sparc_v9__)
89 /* The prologue must be reachable with a direct jump. ARM and Sparc64
90 have limited branch ranges (possibly also PPC) so place it in a
91 section close to code segment. */
92 #define code_gen_section \
93 __attribute__((__section__(".gen_code"))) \
94 __attribute__((aligned (32)))
95 #elif defined(_WIN32)
96 /* Maximum alignment for Win32 is 16. */
97 #define code_gen_section \
98 __attribute__((aligned (16)))
99 #else
100 #define code_gen_section \
101 __attribute__((aligned (32)))
102 #endif
103
104 uint8_t code_gen_prologue[1024] code_gen_section;
105 static uint8_t *code_gen_buffer;
106 static unsigned long code_gen_buffer_size;
107 /* threshold to flush the translated code buffer */
108 static unsigned long code_gen_buffer_max_size;
109 uint8_t *code_gen_ptr;
110
111 #if !defined(CONFIG_USER_ONLY)
112 int phys_ram_fd;
113 uint8_t *phys_ram_dirty;
114 static int in_migration;
115
116 typedef struct RAMBlock {
117 uint8_t *host;
118 ram_addr_t offset;
119 ram_addr_t length;
120 struct RAMBlock *next;
121 } RAMBlock;
122
123 static RAMBlock *ram_blocks;
124 /* TODO: When we implement (and use) ram deallocation (e.g. for hotplug)
125 then we can no longer assume contiguous ram offsets, and external uses
126 of this variable will break. */
127 ram_addr_t last_ram_offset;
128 #endif
129
130 CPUState *first_cpu;
131 /* current CPU in the current thread. It is only valid inside
132 cpu_exec() */
133 CPUState *cpu_single_env;
134 /* 0 = Do not count executed instructions.
135 1 = Precise instruction counting.
136 2 = Adaptive rate instruction counting. */
137 int use_icount = 0;
138 /* Current instruction counter. While executing translated code this may
139 include some instructions that have not yet been executed. */
140 int64_t qemu_icount;
141
142 typedef struct PageDesc {
143 /* list of TBs intersecting this ram page */
144 TranslationBlock *first_tb;
145 /* in order to optimize self modifying code, we count the number
146 of lookups we do to a given page to use a bitmap */
147 unsigned int code_write_count;
148 uint8_t *code_bitmap;
149 #if defined(CONFIG_USER_ONLY)
150 unsigned long flags;
151 #endif
152 } PageDesc;
153
154 /* In system mode we want L1_MAP to be based on ram offsets,
155 while in user mode we want it to be based on virtual addresses. */
156 #if !defined(CONFIG_USER_ONLY)
157 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
158 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
159 #else
160 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
161 #endif
162 #else
163 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
164 #endif
165
166 /* Size of the L2 (and L3, etc) page tables. */
167 #define L2_BITS 10
168 #define L2_SIZE (1 << L2_BITS)
169
170 /* The bits remaining after N lower levels of page tables. */
171 #define P_L1_BITS_REM \
172 ((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
173 #define V_L1_BITS_REM \
174 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
175
176 /* Size of the L1 page table. Avoid silly small sizes. */
177 #if P_L1_BITS_REM < 4
178 #define P_L1_BITS (P_L1_BITS_REM + L2_BITS)
179 #else
180 #define P_L1_BITS P_L1_BITS_REM
181 #endif
182
183 #if V_L1_BITS_REM < 4
184 #define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
185 #else
186 #define V_L1_BITS V_L1_BITS_REM
187 #endif
188
189 #define P_L1_SIZE ((target_phys_addr_t)1 << P_L1_BITS)
190 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
191
192 #define P_L1_SHIFT (TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - P_L1_BITS)
193 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
194
195 unsigned long qemu_real_host_page_size;
196 unsigned long qemu_host_page_bits;
197 unsigned long qemu_host_page_size;
198 unsigned long qemu_host_page_mask;
199
200 /* This is a multi-level map on the virtual address space.
201 The bottom level has pointers to PageDesc. */
202 static void *l1_map[V_L1_SIZE];
203
204 #if !defined(CONFIG_USER_ONLY)
205 typedef struct PhysPageDesc {
206 /* offset in host memory of the page + io_index in the low bits */
207 ram_addr_t phys_offset;
208 ram_addr_t region_offset;
209 } PhysPageDesc;
210
211 /* This is a multi-level map on the physical address space.
212 The bottom level has pointers to PhysPageDesc. */
213 static void *l1_phys_map[P_L1_SIZE];
214
215 static void io_mem_init(void);
216
217 /* io memory support */
218 CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
219 CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
220 void *io_mem_opaque[IO_MEM_NB_ENTRIES];
221 static char io_mem_used[IO_MEM_NB_ENTRIES];
222 static int io_mem_watch;
223 #endif
224
225 /* log support */
226 #ifdef WIN32
227 static const char *logfilename = "qemu.log";
228 #else
229 static const char *logfilename = "/tmp/qemu.log";
230 #endif
231 FILE *logfile;
232 int loglevel;
233 static int log_append = 0;
234
235 /* statistics */
236 #if !defined(CONFIG_USER_ONLY)
237 static int tlb_flush_count;
238 #endif
239 static int tb_flush_count;
240 static int tb_phys_invalidate_count;
241
242 #ifdef _WIN32
243 static void map_exec(void *addr, long size)
244 {
245 DWORD old_protect;
246 VirtualProtect(addr, size,
247 PAGE_EXECUTE_READWRITE, &old_protect);
248
249 }
250 #else
251 static void map_exec(void *addr, long size)
252 {
253 unsigned long start, end, page_size;
254
255 page_size = getpagesize();
256 start = (unsigned long)addr;
257 start &= ~(page_size - 1);
258
259 end = (unsigned long)addr + size;
260 end += page_size - 1;
261 end &= ~(page_size - 1);
262
263 mprotect((void *)start, end - start,
264 PROT_READ | PROT_WRITE | PROT_EXEC);
265 }
266 #endif
267
268 static void page_init(void)
269 {
270 /* NOTE: we can always suppose that qemu_host_page_size >=
271 TARGET_PAGE_SIZE */
272 #ifdef _WIN32
273 {
274 SYSTEM_INFO system_info;
275
276 GetSystemInfo(&system_info);
277 qemu_real_host_page_size = system_info.dwPageSize;
278 }
279 #else
280 qemu_real_host_page_size = getpagesize();
281 #endif
282 if (qemu_host_page_size == 0)
283 qemu_host_page_size = qemu_real_host_page_size;
284 if (qemu_host_page_size < TARGET_PAGE_SIZE)
285 qemu_host_page_size = TARGET_PAGE_SIZE;
286 qemu_host_page_bits = 0;
287 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
288 qemu_host_page_bits++;
289 qemu_host_page_mask = ~(qemu_host_page_size - 1);
290
291 #if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
292 {
293 #ifdef HAVE_KINFO_GETVMMAP
294 struct kinfo_vmentry *freep;
295 int i, cnt;
296
297 freep = kinfo_getvmmap(getpid(), &cnt);
298 if (freep) {
299 mmap_lock();
300 for (i = 0; i < cnt; i++) {
301 unsigned long startaddr, endaddr;
302
303 startaddr = freep[i].kve_start;
304 endaddr = freep[i].kve_end;
305 if (h2g_valid(startaddr)) {
306 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
307
308 if (h2g_valid(endaddr)) {
309 endaddr = h2g(endaddr);
310 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
311 } else {
312 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
313 endaddr = ~0ul;
314 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
315 #endif
316 }
317 }
318 }
319 free(freep);
320 mmap_unlock();
321 }
322 #else
323 FILE *f;
324
325 last_brk = (unsigned long)sbrk(0);
326
327 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
328 f = fopen("/compat/linux/proc/self/maps", "r");
329 #else
330 f = fopen("/proc/self/maps", "r");
331 #endif
332 if (f) {
333 mmap_lock();
334
335 do {
336 unsigned long startaddr, endaddr;
337 int n;
338
339 n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
340
341 if (n == 2 && h2g_valid(startaddr)) {
342 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
343
344 if (h2g_valid(endaddr)) {
345 endaddr = h2g(endaddr);
346 } else {
347 endaddr = ~0ul;
348 }
349 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
350 }
351 } while (!feof(f));
352
353 fclose(f);
354 mmap_unlock();
355 }
356 #endif
357 }
358 #endif
359 }
360
361 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
362 {
363 PageDesc *pd;
364 void **lp;
365 int i;
366
367 #if defined(CONFIG_USER_ONLY)
368 /* We can't use qemu_malloc because it may recurse into a locked mutex.
369 Neither can we record the new pages we reserve while allocating a
370 given page because that may recurse into an unallocated page table
371 entry. Stuff the allocations we do make into a queue and process
372 them after having completed one entire page table allocation. */
373
374 unsigned long reserve[2 * (V_L1_SHIFT / L2_BITS)];
375 int reserve_idx = 0;
376
377 # define ALLOC(P, SIZE) \
378 do { \
379 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
380 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
381 if (h2g_valid(P)) { \
382 reserve[reserve_idx] = h2g(P); \
383 reserve[reserve_idx + 1] = SIZE; \
384 reserve_idx += 2; \
385 } \
386 } while (0)
387 #else
388 # define ALLOC(P, SIZE) \
389 do { P = qemu_mallocz(SIZE); } while (0)
390 #endif
391
392 /* Level 1. Always allocated. */
393 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
394
395 /* Level 2..N-1. */
396 for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
397 void **p = *lp;
398
399 if (p == NULL) {
400 if (!alloc) {
401 return NULL;
402 }
403 ALLOC(p, sizeof(void *) * L2_SIZE);
404 *lp = p;
405 }
406
407 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
408 }
409
410 pd = *lp;
411 if (pd == NULL) {
412 if (!alloc) {
413 return NULL;
414 }
415 ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
416 *lp = pd;
417 }
418
419 #undef ALLOC
420 #if defined(CONFIG_USER_ONLY)
421 for (i = 0; i < reserve_idx; i += 2) {
422 unsigned long addr = reserve[i];
423 unsigned long len = reserve[i + 1];
424
425 page_set_flags(addr & TARGET_PAGE_MASK,
426 TARGET_PAGE_ALIGN(addr + len),
427 PAGE_RESERVED);
428 }
429 #endif
430
431 return pd + (index & (L2_SIZE - 1));
432 }
433
434 static inline PageDesc *page_find(tb_page_addr_t index)
435 {
436 return page_find_alloc(index, 0);
437 }
438
439 #if !defined(CONFIG_USER_ONLY)
440 static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
441 {
442 PhysPageDesc *pd;
443 void **lp;
444 int i;
445
446 /* Level 1. Always allocated. */
447 lp = l1_phys_map + ((index >> P_L1_SHIFT) & (P_L1_SIZE - 1));
448
449 /* Level 2..N-1. */
450 for (i = P_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
451 void **p = *lp;
452 if (p == NULL) {
453 if (!alloc) {
454 return NULL;
455 }
456 *lp = p = qemu_mallocz(sizeof(void *) * L2_SIZE);
457 }
458 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
459 }
460
461 pd = *lp;
462 if (pd == NULL) {
463 int i;
464
465 if (!alloc) {
466 return NULL;
467 }
468
469 *lp = pd = qemu_malloc(sizeof(PhysPageDesc) * L2_SIZE);
470
471 for (i = 0; i < L2_SIZE; i++) {
472 pd[i].phys_offset = IO_MEM_UNASSIGNED;
473 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
474 }
475 }
476
477 return pd + (index & (L2_SIZE - 1));
478 }
479
480 static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
481 {
482 return phys_page_find_alloc(index, 0);
483 }
484
485 static void tlb_protect_code(ram_addr_t ram_addr);
486 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
487 target_ulong vaddr);
488 #define mmap_lock() do { } while(0)
489 #define mmap_unlock() do { } while(0)
490 #endif
491
492 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
493
494 #if defined(CONFIG_USER_ONLY)
495 /* Currently it is not recommended to allocate big chunks of data in
496 user mode. It will change when a dedicated libc will be used */
497 #define USE_STATIC_CODE_GEN_BUFFER
498 #endif
499
500 #ifdef USE_STATIC_CODE_GEN_BUFFER
501 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
502 #endif
503
504 static void code_gen_alloc(unsigned long tb_size)
505 {
506 #ifdef USE_STATIC_CODE_GEN_BUFFER
507 code_gen_buffer = static_code_gen_buffer;
508 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
509 map_exec(code_gen_buffer, code_gen_buffer_size);
510 #else
511 code_gen_buffer_size = tb_size;
512 if (code_gen_buffer_size == 0) {
513 #if defined(CONFIG_USER_ONLY)
514 /* in user mode, phys_ram_size is not meaningful */
515 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
516 #else
517 /* XXX: needs adjustments */
518 code_gen_buffer_size = (unsigned long)(ram_size / 4);
519 #endif
520 }
521 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
522 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
523 /* The code gen buffer location may have constraints depending on
524 the host cpu and OS */
525 #if defined(__linux__)
526 {
527 int flags;
528 void *start = NULL;
529
530 flags = MAP_PRIVATE | MAP_ANONYMOUS;
531 #if defined(__x86_64__)
532 flags |= MAP_32BIT;
533 /* Cannot map more than that */
534 if (code_gen_buffer_size > (800 * 1024 * 1024))
535 code_gen_buffer_size = (800 * 1024 * 1024);
536 #elif defined(__sparc_v9__)
537 // Map the buffer below 2G, so we can use direct calls and branches
538 flags |= MAP_FIXED;
539 start = (void *) 0x60000000UL;
540 if (code_gen_buffer_size > (512 * 1024 * 1024))
541 code_gen_buffer_size = (512 * 1024 * 1024);
542 #elif defined(__arm__)
543 /* Map the buffer below 32M, so we can use direct calls and branches */
544 flags |= MAP_FIXED;
545 start = (void *) 0x01000000UL;
546 if (code_gen_buffer_size > 16 * 1024 * 1024)
547 code_gen_buffer_size = 16 * 1024 * 1024;
548 #endif
549 code_gen_buffer = mmap(start, code_gen_buffer_size,
550 PROT_WRITE | PROT_READ | PROT_EXEC,
551 flags, -1, 0);
552 if (code_gen_buffer == MAP_FAILED) {
553 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
554 exit(1);
555 }
556 }
557 #elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
558 {
559 int flags;
560 void *addr = NULL;
561 flags = MAP_PRIVATE | MAP_ANONYMOUS;
562 #if defined(__x86_64__)
563 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
564 * 0x40000000 is free */
565 flags |= MAP_FIXED;
566 addr = (void *)0x40000000;
567 /* Cannot map more than that */
568 if (code_gen_buffer_size > (800 * 1024 * 1024))
569 code_gen_buffer_size = (800 * 1024 * 1024);
570 #endif
571 code_gen_buffer = mmap(addr, code_gen_buffer_size,
572 PROT_WRITE | PROT_READ | PROT_EXEC,
573 flags, -1, 0);
574 if (code_gen_buffer == MAP_FAILED) {
575 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
576 exit(1);
577 }
578 }
579 #else
580 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
581 map_exec(code_gen_buffer, code_gen_buffer_size);
582 #endif
583 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
584 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
585 code_gen_buffer_max_size = code_gen_buffer_size -
586 code_gen_max_block_size();
587 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
588 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
589 }
590
591 /* Must be called before using the QEMU cpus. 'tb_size' is the size
592 (in bytes) allocated to the translation buffer. Zero means default
593 size. */
594 void cpu_exec_init_all(unsigned long tb_size)
595 {
596 cpu_gen_init();
597 code_gen_alloc(tb_size);
598 code_gen_ptr = code_gen_buffer;
599 page_init();
600 #if !defined(CONFIG_USER_ONLY)
601 io_mem_init();
602 #endif
603 }
604
605 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
606
607 static int cpu_common_post_load(void *opaque, int version_id)
608 {
609 CPUState *env = opaque;
610
611 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
612 version_id is increased. */
613 env->interrupt_request &= ~0x01;
614 tlb_flush(env, 1);
615
616 return 0;
617 }
618
619 static const VMStateDescription vmstate_cpu_common = {
620 .name = "cpu_common",
621 .version_id = 1,
622 .minimum_version_id = 1,
623 .minimum_version_id_old = 1,
624 .post_load = cpu_common_post_load,
625 .fields = (VMStateField []) {
626 VMSTATE_UINT32(halted, CPUState),
627 VMSTATE_UINT32(interrupt_request, CPUState),
628 VMSTATE_END_OF_LIST()
629 }
630 };
631 #endif
632
633 CPUState *qemu_get_cpu(int cpu)
634 {
635 CPUState *env = first_cpu;
636
637 while (env) {
638 if (env->cpu_index == cpu)
639 break;
640 env = env->next_cpu;
641 }
642
643 return env;
644 }
645
646 void cpu_exec_init(CPUState *env)
647 {
648 CPUState **penv;
649 int cpu_index;
650
651 #if defined(CONFIG_USER_ONLY)
652 cpu_list_lock();
653 #endif
654 env->next_cpu = NULL;
655 penv = &first_cpu;
656 cpu_index = 0;
657 while (*penv != NULL) {
658 penv = &(*penv)->next_cpu;
659 cpu_index++;
660 }
661 env->cpu_index = cpu_index;
662 env->numa_node = 0;
663 QTAILQ_INIT(&env->breakpoints);
664 QTAILQ_INIT(&env->watchpoints);
665 *penv = env;
666 #if defined(CONFIG_USER_ONLY)
667 cpu_list_unlock();
668 #endif
669 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
670 vmstate_register(cpu_index, &vmstate_cpu_common, env);
671 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
672 cpu_save, cpu_load, env);
673 #endif
674 }
675
676 static inline void invalidate_page_bitmap(PageDesc *p)
677 {
678 if (p->code_bitmap) {
679 qemu_free(p->code_bitmap);
680 p->code_bitmap = NULL;
681 }
682 p->code_write_count = 0;
683 }
684
685 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
686
687 static void page_flush_tb_1 (int level, void **lp)
688 {
689 int i;
690
691 if (*lp == NULL) {
692 return;
693 }
694 if (level == 0) {
695 PageDesc *pd = *lp;
696 for (i = 0; i < L2_SIZE; ++i) {
697 pd[i].first_tb = NULL;
698 invalidate_page_bitmap(pd + i);
699 }
700 } else {
701 void **pp = *lp;
702 for (i = 0; i < L2_SIZE; ++i) {
703 page_flush_tb_1 (level - 1, pp + i);
704 }
705 }
706 }
707
708 static void page_flush_tb(void)
709 {
710 int i;
711 for (i = 0; i < V_L1_SIZE; i++) {
712 page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
713 }
714 }
715
716 /* flush all the translation blocks */
717 /* XXX: tb_flush is currently not thread safe */
718 void tb_flush(CPUState *env1)
719 {
720 CPUState *env;
721 #if defined(DEBUG_FLUSH)
722 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
723 (unsigned long)(code_gen_ptr - code_gen_buffer),
724 nb_tbs, nb_tbs > 0 ?
725 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
726 #endif
727 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
728 cpu_abort(env1, "Internal error: code buffer overflow\n");
729
730 nb_tbs = 0;
731
732 for(env = first_cpu; env != NULL; env = env->next_cpu) {
733 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
734 }
735
736 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
737 page_flush_tb();
738
739 code_gen_ptr = code_gen_buffer;
740 /* XXX: flush processor icache at this point if cache flush is
741 expensive */
742 tb_flush_count++;
743 }
744
745 #ifdef DEBUG_TB_CHECK
746
747 static void tb_invalidate_check(target_ulong address)
748 {
749 TranslationBlock *tb;
750 int i;
751 address &= TARGET_PAGE_MASK;
752 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
753 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
754 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
755 address >= tb->pc + tb->size)) {
756 printf("ERROR invalidate: address=" TARGET_FMT_lx
757 " PC=%08lx size=%04x\n",
758 address, (long)tb->pc, tb->size);
759 }
760 }
761 }
762 }
763
764 /* verify that all the pages have correct rights for code */
765 static void tb_page_check(void)
766 {
767 TranslationBlock *tb;
768 int i, flags1, flags2;
769
770 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
771 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
772 flags1 = page_get_flags(tb->pc);
773 flags2 = page_get_flags(tb->pc + tb->size - 1);
774 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
775 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
776 (long)tb->pc, tb->size, flags1, flags2);
777 }
778 }
779 }
780 }
781
782 #endif
783
784 /* invalidate one TB */
785 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
786 int next_offset)
787 {
788 TranslationBlock *tb1;
789 for(;;) {
790 tb1 = *ptb;
791 if (tb1 == tb) {
792 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
793 break;
794 }
795 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
796 }
797 }
798
799 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
800 {
801 TranslationBlock *tb1;
802 unsigned int n1;
803
804 for(;;) {
805 tb1 = *ptb;
806 n1 = (long)tb1 & 3;
807 tb1 = (TranslationBlock *)((long)tb1 & ~3);
808 if (tb1 == tb) {
809 *ptb = tb1->page_next[n1];
810 break;
811 }
812 ptb = &tb1->page_next[n1];
813 }
814 }
815
816 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
817 {
818 TranslationBlock *tb1, **ptb;
819 unsigned int n1;
820
821 ptb = &tb->jmp_next[n];
822 tb1 = *ptb;
823 if (tb1) {
824 /* find tb(n) in circular list */
825 for(;;) {
826 tb1 = *ptb;
827 n1 = (long)tb1 & 3;
828 tb1 = (TranslationBlock *)((long)tb1 & ~3);
829 if (n1 == n && tb1 == tb)
830 break;
831 if (n1 == 2) {
832 ptb = &tb1->jmp_first;
833 } else {
834 ptb = &tb1->jmp_next[n1];
835 }
836 }
837 /* now we can suppress tb(n) from the list */
838 *ptb = tb->jmp_next[n];
839
840 tb->jmp_next[n] = NULL;
841 }
842 }
843
844 /* reset the jump entry 'n' of a TB so that it is not chained to
845 another TB */
846 static inline void tb_reset_jump(TranslationBlock *tb, int n)
847 {
848 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
849 }
850
851 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
852 {
853 CPUState *env;
854 PageDesc *p;
855 unsigned int h, n1;
856 tb_page_addr_t phys_pc;
857 TranslationBlock *tb1, *tb2;
858
859 /* remove the TB from the hash list */
860 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
861 h = tb_phys_hash_func(phys_pc);
862 tb_remove(&tb_phys_hash[h], tb,
863 offsetof(TranslationBlock, phys_hash_next));
864
865 /* remove the TB from the page list */
866 if (tb->page_addr[0] != page_addr) {
867 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
868 tb_page_remove(&p->first_tb, tb);
869 invalidate_page_bitmap(p);
870 }
871 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
872 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
873 tb_page_remove(&p->first_tb, tb);
874 invalidate_page_bitmap(p);
875 }
876
877 tb_invalidated_flag = 1;
878
879 /* remove the TB from the hash list */
880 h = tb_jmp_cache_hash_func(tb->pc);
881 for(env = first_cpu; env != NULL; env = env->next_cpu) {
882 if (env->tb_jmp_cache[h] == tb)
883 env->tb_jmp_cache[h] = NULL;
884 }
885
886 /* suppress this TB from the two jump lists */
887 tb_jmp_remove(tb, 0);
888 tb_jmp_remove(tb, 1);
889
890 /* suppress any remaining jumps to this TB */
891 tb1 = tb->jmp_first;
892 for(;;) {
893 n1 = (long)tb1 & 3;
894 if (n1 == 2)
895 break;
896 tb1 = (TranslationBlock *)((long)tb1 & ~3);
897 tb2 = tb1->jmp_next[n1];
898 tb_reset_jump(tb1, n1);
899 tb1->jmp_next[n1] = NULL;
900 tb1 = tb2;
901 }
902 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
903
904 tb_phys_invalidate_count++;
905 }
906
907 static inline void set_bits(uint8_t *tab, int start, int len)
908 {
909 int end, mask, end1;
910
911 end = start + len;
912 tab += start >> 3;
913 mask = 0xff << (start & 7);
914 if ((start & ~7) == (end & ~7)) {
915 if (start < end) {
916 mask &= ~(0xff << (end & 7));
917 *tab |= mask;
918 }
919 } else {
920 *tab++ |= mask;
921 start = (start + 8) & ~7;
922 end1 = end & ~7;
923 while (start < end1) {
924 *tab++ = 0xff;
925 start += 8;
926 }
927 if (start < end) {
928 mask = ~(0xff << (end & 7));
929 *tab |= mask;
930 }
931 }
932 }
933
934 static void build_page_bitmap(PageDesc *p)
935 {
936 int n, tb_start, tb_end;
937 TranslationBlock *tb;
938
939 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
940
941 tb = p->first_tb;
942 while (tb != NULL) {
943 n = (long)tb & 3;
944 tb = (TranslationBlock *)((long)tb & ~3);
945 /* NOTE: this is subtle as a TB may span two physical pages */
946 if (n == 0) {
947 /* NOTE: tb_end may be after the end of the page, but
948 it is not a problem */
949 tb_start = tb->pc & ~TARGET_PAGE_MASK;
950 tb_end = tb_start + tb->size;
951 if (tb_end > TARGET_PAGE_SIZE)
952 tb_end = TARGET_PAGE_SIZE;
953 } else {
954 tb_start = 0;
955 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
956 }
957 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
958 tb = tb->page_next[n];
959 }
960 }
961
962 TranslationBlock *tb_gen_code(CPUState *env,
963 target_ulong pc, target_ulong cs_base,
964 int flags, int cflags)
965 {
966 TranslationBlock *tb;
967 uint8_t *tc_ptr;
968 tb_page_addr_t phys_pc, phys_page2;
969 target_ulong virt_page2;
970 int code_gen_size;
971
972 phys_pc = get_page_addr_code(env, pc);
973 tb = tb_alloc(pc);
974 if (!tb) {
975 /* flush must be done */
976 tb_flush(env);
977 /* cannot fail at this point */
978 tb = tb_alloc(pc);
979 /* Don't forget to invalidate previous TB info. */
980 tb_invalidated_flag = 1;
981 }
982 tc_ptr = code_gen_ptr;
983 tb->tc_ptr = tc_ptr;
984 tb->cs_base = cs_base;
985 tb->flags = flags;
986 tb->cflags = cflags;
987 cpu_gen_code(env, tb, &code_gen_size);
988 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
989
990 /* check next page if needed */
991 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
992 phys_page2 = -1;
993 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
994 phys_page2 = get_page_addr_code(env, virt_page2);
995 }
996 tb_link_page(tb, phys_pc, phys_page2);
997 return tb;
998 }
999
1000 /* invalidate all TBs which intersect with the target physical page
1001 starting in range [start;end[. NOTE: start and end must refer to
1002 the same physical page. 'is_cpu_write_access' should be true if called
1003 from a real cpu write access: the virtual CPU will exit the current
1004 TB if code is modified inside this TB. */
1005 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1006 int is_cpu_write_access)
1007 {
1008 TranslationBlock *tb, *tb_next, *saved_tb;
1009 CPUState *env = cpu_single_env;
1010 tb_page_addr_t tb_start, tb_end;
1011 PageDesc *p;
1012 int n;
1013 #ifdef TARGET_HAS_PRECISE_SMC
1014 int current_tb_not_found = is_cpu_write_access;
1015 TranslationBlock *current_tb = NULL;
1016 int current_tb_modified = 0;
1017 target_ulong current_pc = 0;
1018 target_ulong current_cs_base = 0;
1019 int current_flags = 0;
1020 #endif /* TARGET_HAS_PRECISE_SMC */
1021
1022 p = page_find(start >> TARGET_PAGE_BITS);
1023 if (!p)
1024 return;
1025 if (!p->code_bitmap &&
1026 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
1027 is_cpu_write_access) {
1028 /* build code bitmap */
1029 build_page_bitmap(p);
1030 }
1031
1032 /* we remove all the TBs in the range [start, end[ */
1033 /* XXX: see if in some cases it could be faster to invalidate all the code */
1034 tb = p->first_tb;
1035 while (tb != NULL) {
1036 n = (long)tb & 3;
1037 tb = (TranslationBlock *)((long)tb & ~3);
1038 tb_next = tb->page_next[n];
1039 /* NOTE: this is subtle as a TB may span two physical pages */
1040 if (n == 0) {
1041 /* NOTE: tb_end may be after the end of the page, but
1042 it is not a problem */
1043 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1044 tb_end = tb_start + tb->size;
1045 } else {
1046 tb_start = tb->page_addr[1];
1047 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1048 }
1049 if (!(tb_end <= start || tb_start >= end)) {
1050 #ifdef TARGET_HAS_PRECISE_SMC
1051 if (current_tb_not_found) {
1052 current_tb_not_found = 0;
1053 current_tb = NULL;
1054 if (env->mem_io_pc) {
1055 /* now we have a real cpu fault */
1056 current_tb = tb_find_pc(env->mem_io_pc);
1057 }
1058 }
1059 if (current_tb == tb &&
1060 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1061 /* If we are modifying the current TB, we must stop
1062 its execution. We could be more precise by checking
1063 that the modification is after the current PC, but it
1064 would require a specialized function to partially
1065 restore the CPU state */
1066
1067 current_tb_modified = 1;
1068 cpu_restore_state(current_tb, env,
1069 env->mem_io_pc, NULL);
1070 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1071 &current_flags);
1072 }
1073 #endif /* TARGET_HAS_PRECISE_SMC */
1074 /* we need to do that to handle the case where a signal
1075 occurs while doing tb_phys_invalidate() */
1076 saved_tb = NULL;
1077 if (env) {
1078 saved_tb = env->current_tb;
1079 env->current_tb = NULL;
1080 }
1081 tb_phys_invalidate(tb, -1);
1082 if (env) {
1083 env->current_tb = saved_tb;
1084 if (env->interrupt_request && env->current_tb)
1085 cpu_interrupt(env, env->interrupt_request);
1086 }
1087 }
1088 tb = tb_next;
1089 }
1090 #if !defined(CONFIG_USER_ONLY)
1091 /* if no code remaining, no need to continue to use slow writes */
1092 if (!p->first_tb) {
1093 invalidate_page_bitmap(p);
1094 if (is_cpu_write_access) {
1095 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
1096 }
1097 }
1098 #endif
1099 #ifdef TARGET_HAS_PRECISE_SMC
1100 if (current_tb_modified) {
1101 /* we generate a block containing just the instruction
1102 modifying the memory. It will ensure that it cannot modify
1103 itself */
1104 env->current_tb = NULL;
1105 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1106 cpu_resume_from_signal(env, NULL);
1107 }
1108 #endif
1109 }
1110
1111 /* len must be <= 8 and start must be a multiple of len */
1112 static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1113 {
1114 PageDesc *p;
1115 int offset, b;
1116 #if 0
1117 if (1) {
1118 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1119 cpu_single_env->mem_io_vaddr, len,
1120 cpu_single_env->eip,
1121 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
1122 }
1123 #endif
1124 p = page_find(start >> TARGET_PAGE_BITS);
1125 if (!p)
1126 return;
1127 if (p->code_bitmap) {
1128 offset = start & ~TARGET_PAGE_MASK;
1129 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1130 if (b & ((1 << len) - 1))
1131 goto do_invalidate;
1132 } else {
1133 do_invalidate:
1134 tb_invalidate_phys_page_range(start, start + len, 1);
1135 }
1136 }
1137
1138 #if !defined(CONFIG_SOFTMMU)
1139 static void tb_invalidate_phys_page(tb_page_addr_t addr,
1140 unsigned long pc, void *puc)
1141 {
1142 TranslationBlock *tb;
1143 PageDesc *p;
1144 int n;
1145 #ifdef TARGET_HAS_PRECISE_SMC
1146 TranslationBlock *current_tb = NULL;
1147 CPUState *env = cpu_single_env;
1148 int current_tb_modified = 0;
1149 target_ulong current_pc = 0;
1150 target_ulong current_cs_base = 0;
1151 int current_flags = 0;
1152 #endif
1153
1154 addr &= TARGET_PAGE_MASK;
1155 p = page_find(addr >> TARGET_PAGE_BITS);
1156 if (!p)
1157 return;
1158 tb = p->first_tb;
1159 #ifdef TARGET_HAS_PRECISE_SMC
1160 if (tb && pc != 0) {
1161 current_tb = tb_find_pc(pc);
1162 }
1163 #endif
1164 while (tb != NULL) {
1165 n = (long)tb & 3;
1166 tb = (TranslationBlock *)((long)tb & ~3);
1167 #ifdef TARGET_HAS_PRECISE_SMC
1168 if (current_tb == tb &&
1169 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1170 /* If we are modifying the current TB, we must stop
1171 its execution. We could be more precise by checking
1172 that the modification is after the current PC, but it
1173 would require a specialized function to partially
1174 restore the CPU state */
1175
1176 current_tb_modified = 1;
1177 cpu_restore_state(current_tb, env, pc, puc);
1178 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1179 &current_flags);
1180 }
1181 #endif /* TARGET_HAS_PRECISE_SMC */
1182 tb_phys_invalidate(tb, addr);
1183 tb = tb->page_next[n];
1184 }
1185 p->first_tb = NULL;
1186 #ifdef TARGET_HAS_PRECISE_SMC
1187 if (current_tb_modified) {
1188 /* we generate a block containing just the instruction
1189 modifying the memory. It will ensure that it cannot modify
1190 itself */
1191 env->current_tb = NULL;
1192 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1193 cpu_resume_from_signal(env, puc);
1194 }
1195 #endif
1196 }
1197 #endif
1198
1199 /* add the tb in the target page and protect it if necessary */
1200 static inline void tb_alloc_page(TranslationBlock *tb,
1201 unsigned int n, tb_page_addr_t page_addr)
1202 {
1203 PageDesc *p;
1204 TranslationBlock *last_first_tb;
1205
1206 tb->page_addr[n] = page_addr;
1207 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1208 tb->page_next[n] = p->first_tb;
1209 last_first_tb = p->first_tb;
1210 p->first_tb = (TranslationBlock *)((long)tb | n);
1211 invalidate_page_bitmap(p);
1212
1213 #if defined(TARGET_HAS_SMC) || 1
1214
1215 #if defined(CONFIG_USER_ONLY)
1216 if (p->flags & PAGE_WRITE) {
1217 target_ulong addr;
1218 PageDesc *p2;
1219 int prot;
1220
1221 /* force the host page as non writable (writes will have a
1222 page fault + mprotect overhead) */
1223 page_addr &= qemu_host_page_mask;
1224 prot = 0;
1225 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1226 addr += TARGET_PAGE_SIZE) {
1227
1228 p2 = page_find (addr >> TARGET_PAGE_BITS);
1229 if (!p2)
1230 continue;
1231 prot |= p2->flags;
1232 p2->flags &= ~PAGE_WRITE;
1233 }
1234 mprotect(g2h(page_addr), qemu_host_page_size,
1235 (prot & PAGE_BITS) & ~PAGE_WRITE);
1236 #ifdef DEBUG_TB_INVALIDATE
1237 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1238 page_addr);
1239 #endif
1240 }
1241 #else
1242 /* if some code is already present, then the pages are already
1243 protected. So we handle the case where only the first TB is
1244 allocated in a physical page */
1245 if (!last_first_tb) {
1246 tlb_protect_code(page_addr);
1247 }
1248 #endif
1249
1250 #endif /* TARGET_HAS_SMC */
1251 }
1252
1253 /* Allocate a new translation block. Flush the translation buffer if
1254 too many translation blocks or too much generated code. */
1255 TranslationBlock *tb_alloc(target_ulong pc)
1256 {
1257 TranslationBlock *tb;
1258
1259 if (nb_tbs >= code_gen_max_blocks ||
1260 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
1261 return NULL;
1262 tb = &tbs[nb_tbs++];
1263 tb->pc = pc;
1264 tb->cflags = 0;
1265 return tb;
1266 }
1267
1268 void tb_free(TranslationBlock *tb)
1269 {
1270 /* In practice this is mostly used for single use temporary TB
1271 Ignore the hard cases and just back up if this TB happens to
1272 be the last one generated. */
1273 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1274 code_gen_ptr = tb->tc_ptr;
1275 nb_tbs--;
1276 }
1277 }
1278
1279 /* add a new TB and link it to the physical page tables. phys_page2 is
1280 (-1) to indicate that only one page contains the TB. */
1281 void tb_link_page(TranslationBlock *tb,
1282 tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
1283 {
1284 unsigned int h;
1285 TranslationBlock **ptb;
1286
1287 /* Grab the mmap lock to stop another thread invalidating this TB
1288 before we are done. */
1289 mmap_lock();
1290 /* add in the physical hash table */
1291 h = tb_phys_hash_func(phys_pc);
1292 ptb = &tb_phys_hash[h];
1293 tb->phys_hash_next = *ptb;
1294 *ptb = tb;
1295
1296 /* add in the page list */
1297 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1298 if (phys_page2 != -1)
1299 tb_alloc_page(tb, 1, phys_page2);
1300 else
1301 tb->page_addr[1] = -1;
1302
1303 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1304 tb->jmp_next[0] = NULL;
1305 tb->jmp_next[1] = NULL;
1306
1307 /* init original jump addresses */
1308 if (tb->tb_next_offset[0] != 0xffff)
1309 tb_reset_jump(tb, 0);
1310 if (tb->tb_next_offset[1] != 0xffff)
1311 tb_reset_jump(tb, 1);
1312
1313 #ifdef DEBUG_TB_CHECK
1314 tb_page_check();
1315 #endif
1316 mmap_unlock();
1317 }
1318
1319 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1320 tb[1].tc_ptr. Return NULL if not found */
1321 TranslationBlock *tb_find_pc(unsigned long tc_ptr)
1322 {
1323 int m_min, m_max, m;
1324 unsigned long v;
1325 TranslationBlock *tb;
1326
1327 if (nb_tbs <= 0)
1328 return NULL;
1329 if (tc_ptr < (unsigned long)code_gen_buffer ||
1330 tc_ptr >= (unsigned long)code_gen_ptr)
1331 return NULL;
1332 /* binary search (cf Knuth) */
1333 m_min = 0;
1334 m_max = nb_tbs - 1;
1335 while (m_min <= m_max) {
1336 m = (m_min + m_max) >> 1;
1337 tb = &tbs[m];
1338 v = (unsigned long)tb->tc_ptr;
1339 if (v == tc_ptr)
1340 return tb;
1341 else if (tc_ptr < v) {
1342 m_max = m - 1;
1343 } else {
1344 m_min = m + 1;
1345 }
1346 }
1347 return &tbs[m_max];
1348 }
1349
1350 static void tb_reset_jump_recursive(TranslationBlock *tb);
1351
1352 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1353 {
1354 TranslationBlock *tb1, *tb_next, **ptb;
1355 unsigned int n1;
1356
1357 tb1 = tb->jmp_next[n];
1358 if (tb1 != NULL) {
1359 /* find head of list */
1360 for(;;) {
1361 n1 = (long)tb1 & 3;
1362 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1363 if (n1 == 2)
1364 break;
1365 tb1 = tb1->jmp_next[n1];
1366 }
1367 /* we are now sure now that tb jumps to tb1 */
1368 tb_next = tb1;
1369
1370 /* remove tb from the jmp_first list */
1371 ptb = &tb_next->jmp_first;
1372 for(;;) {
1373 tb1 = *ptb;
1374 n1 = (long)tb1 & 3;
1375 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1376 if (n1 == n && tb1 == tb)
1377 break;
1378 ptb = &tb1->jmp_next[n1];
1379 }
1380 *ptb = tb->jmp_next[n];
1381 tb->jmp_next[n] = NULL;
1382
1383 /* suppress the jump to next tb in generated code */
1384 tb_reset_jump(tb, n);
1385
1386 /* suppress jumps in the tb on which we could have jumped */
1387 tb_reset_jump_recursive(tb_next);
1388 }
1389 }
1390
1391 static void tb_reset_jump_recursive(TranslationBlock *tb)
1392 {
1393 tb_reset_jump_recursive2(tb, 0);
1394 tb_reset_jump_recursive2(tb, 1);
1395 }
1396
1397 #if defined(TARGET_HAS_ICE)
1398 #if defined(CONFIG_USER_ONLY)
1399 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1400 {
1401 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1402 }
1403 #else
1404 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1405 {
1406 target_phys_addr_t addr;
1407 target_ulong pd;
1408 ram_addr_t ram_addr;
1409 PhysPageDesc *p;
1410
1411 addr = cpu_get_phys_page_debug(env, pc);
1412 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1413 if (!p) {
1414 pd = IO_MEM_UNASSIGNED;
1415 } else {
1416 pd = p->phys_offset;
1417 }
1418 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
1419 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1420 }
1421 #endif
1422 #endif /* TARGET_HAS_ICE */
1423
1424 #if defined(CONFIG_USER_ONLY)
1425 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1426
1427 {
1428 }
1429
1430 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1431 int flags, CPUWatchpoint **watchpoint)
1432 {
1433 return -ENOSYS;
1434 }
1435 #else
1436 /* Add a watchpoint. */
1437 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1438 int flags, CPUWatchpoint **watchpoint)
1439 {
1440 target_ulong len_mask = ~(len - 1);
1441 CPUWatchpoint *wp;
1442
1443 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1444 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1445 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1446 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1447 return -EINVAL;
1448 }
1449 wp = qemu_malloc(sizeof(*wp));
1450
1451 wp->vaddr = addr;
1452 wp->len_mask = len_mask;
1453 wp->flags = flags;
1454
1455 /* keep all GDB-injected watchpoints in front */
1456 if (flags & BP_GDB)
1457 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1458 else
1459 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
1460
1461 tlb_flush_page(env, addr);
1462
1463 if (watchpoint)
1464 *watchpoint = wp;
1465 return 0;
1466 }
1467
1468 /* Remove a specific watchpoint. */
1469 int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1470 int flags)
1471 {
1472 target_ulong len_mask = ~(len - 1);
1473 CPUWatchpoint *wp;
1474
1475 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1476 if (addr == wp->vaddr && len_mask == wp->len_mask
1477 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1478 cpu_watchpoint_remove_by_ref(env, wp);
1479 return 0;
1480 }
1481 }
1482 return -ENOENT;
1483 }
1484
1485 /* Remove a specific watchpoint by reference. */
1486 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1487 {
1488 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
1489
1490 tlb_flush_page(env, watchpoint->vaddr);
1491
1492 qemu_free(watchpoint);
1493 }
1494
1495 /* Remove all matching watchpoints. */
1496 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1497 {
1498 CPUWatchpoint *wp, *next;
1499
1500 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
1501 if (wp->flags & mask)
1502 cpu_watchpoint_remove_by_ref(env, wp);
1503 }
1504 }
1505 #endif
1506
1507 /* Add a breakpoint. */
1508 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1509 CPUBreakpoint **breakpoint)
1510 {
1511 #if defined(TARGET_HAS_ICE)
1512 CPUBreakpoint *bp;
1513
1514 bp = qemu_malloc(sizeof(*bp));
1515
1516 bp->pc = pc;
1517 bp->flags = flags;
1518
1519 /* keep all GDB-injected breakpoints in front */
1520 if (flags & BP_GDB)
1521 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1522 else
1523 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
1524
1525 breakpoint_invalidate(env, pc);
1526
1527 if (breakpoint)
1528 *breakpoint = bp;
1529 return 0;
1530 #else
1531 return -ENOSYS;
1532 #endif
1533 }
1534
1535 /* Remove a specific breakpoint. */
1536 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1537 {
1538 #if defined(TARGET_HAS_ICE)
1539 CPUBreakpoint *bp;
1540
1541 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1542 if (bp->pc == pc && bp->flags == flags) {
1543 cpu_breakpoint_remove_by_ref(env, bp);
1544 return 0;
1545 }
1546 }
1547 return -ENOENT;
1548 #else
1549 return -ENOSYS;
1550 #endif
1551 }
1552
1553 /* Remove a specific breakpoint by reference. */
1554 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
1555 {
1556 #if defined(TARGET_HAS_ICE)
1557 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
1558
1559 breakpoint_invalidate(env, breakpoint->pc);
1560
1561 qemu_free(breakpoint);
1562 #endif
1563 }
1564
1565 /* Remove all matching breakpoints. */
1566 void cpu_breakpoint_remove_all(CPUState *env, int mask)
1567 {
1568 #if defined(TARGET_HAS_ICE)
1569 CPUBreakpoint *bp, *next;
1570
1571 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
1572 if (bp->flags & mask)
1573 cpu_breakpoint_remove_by_ref(env, bp);
1574 }
1575 #endif
1576 }
1577
1578 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1579 CPU loop after each instruction */
1580 void cpu_single_step(CPUState *env, int enabled)
1581 {
1582 #if defined(TARGET_HAS_ICE)
1583 if (env->singlestep_enabled != enabled) {
1584 env->singlestep_enabled = enabled;
1585 if (kvm_enabled())
1586 kvm_update_guest_debug(env, 0);
1587 else {
1588 /* must flush all the translated code to avoid inconsistencies */
1589 /* XXX: only flush what is necessary */
1590 tb_flush(env);
1591 }
1592 }
1593 #endif
1594 }
1595
1596 /* enable or disable low levels log */
1597 void cpu_set_log(int log_flags)
1598 {
1599 loglevel = log_flags;
1600 if (loglevel && !logfile) {
1601 logfile = fopen(logfilename, log_append ? "a" : "w");
1602 if (!logfile) {
1603 perror(logfilename);
1604 _exit(1);
1605 }
1606 #if !defined(CONFIG_SOFTMMU)
1607 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1608 {
1609 static char logfile_buf[4096];
1610 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1611 }
1612 #elif !defined(_WIN32)
1613 /* Win32 doesn't support line-buffering and requires size >= 2 */
1614 setvbuf(logfile, NULL, _IOLBF, 0);
1615 #endif
1616 log_append = 1;
1617 }
1618 if (!loglevel && logfile) {
1619 fclose(logfile);
1620 logfile = NULL;
1621 }
1622 }
1623
1624 void cpu_set_log_filename(const char *filename)
1625 {
1626 logfilename = strdup(filename);
1627 if (logfile) {
1628 fclose(logfile);
1629 logfile = NULL;
1630 }
1631 cpu_set_log(loglevel);
1632 }
1633
1634 static void cpu_unlink_tb(CPUState *env)
1635 {
1636 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1637 problem and hope the cpu will stop of its own accord. For userspace
1638 emulation this often isn't actually as bad as it sounds. Often
1639 signals are used primarily to interrupt blocking syscalls. */
1640 TranslationBlock *tb;
1641 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1642
1643 spin_lock(&interrupt_lock);
1644 tb = env->current_tb;
1645 /* if the cpu is currently executing code, we must unlink it and
1646 all the potentially executing TB */
1647 if (tb) {
1648 env->current_tb = NULL;
1649 tb_reset_jump_recursive(tb);
1650 }
1651 spin_unlock(&interrupt_lock);
1652 }
1653
1654 /* mask must never be zero, except for A20 change call */
1655 void cpu_interrupt(CPUState *env, int mask)
1656 {
1657 int old_mask;
1658
1659 old_mask = env->interrupt_request;
1660 env->interrupt_request |= mask;
1661
1662 #ifndef CONFIG_USER_ONLY
1663 /*
1664 * If called from iothread context, wake the target cpu in
1665 * case its halted.
1666 */
1667 if (!qemu_cpu_self(env)) {
1668 qemu_cpu_kick(env);
1669 return;
1670 }
1671 #endif
1672
1673 if (use_icount) {
1674 env->icount_decr.u16.high = 0xffff;
1675 #ifndef CONFIG_USER_ONLY
1676 if (!can_do_io(env)
1677 && (mask & ~old_mask) != 0) {
1678 cpu_abort(env, "Raised interrupt while not in I/O function");
1679 }
1680 #endif
1681 } else {
1682 cpu_unlink_tb(env);
1683 }
1684 }
1685
1686 void cpu_reset_interrupt(CPUState *env, int mask)
1687 {
1688 env->interrupt_request &= ~mask;
1689 }
1690
1691 void cpu_exit(CPUState *env)
1692 {
1693 env->exit_request = 1;
1694 cpu_unlink_tb(env);
1695 }
1696
1697 const CPULogItem cpu_log_items[] = {
1698 { CPU_LOG_TB_OUT_ASM, "out_asm",
1699 "show generated host assembly code for each compiled TB" },
1700 { CPU_LOG_TB_IN_ASM, "in_asm",
1701 "show target assembly code for each compiled TB" },
1702 { CPU_LOG_TB_OP, "op",
1703 "show micro ops for each compiled TB" },
1704 { CPU_LOG_TB_OP_OPT, "op_opt",
1705 "show micro ops "
1706 #ifdef TARGET_I386
1707 "before eflags optimization and "
1708 #endif
1709 "after liveness analysis" },
1710 { CPU_LOG_INT, "int",
1711 "show interrupts/exceptions in short format" },
1712 { CPU_LOG_EXEC, "exec",
1713 "show trace before each executed TB (lots of logs)" },
1714 { CPU_LOG_TB_CPU, "cpu",
1715 "show CPU state before block translation" },
1716 #ifdef TARGET_I386
1717 { CPU_LOG_PCALL, "pcall",
1718 "show protected mode far calls/returns/exceptions" },
1719 { CPU_LOG_RESET, "cpu_reset",
1720 "show CPU state before CPU resets" },
1721 #endif
1722 #ifdef DEBUG_IOPORT
1723 { CPU_LOG_IOPORT, "ioport",
1724 "show all i/o ports accesses" },
1725 #endif
1726 { 0, NULL, NULL },
1727 };
1728
1729 #ifndef CONFIG_USER_ONLY
1730 static QLIST_HEAD(memory_client_list, CPUPhysMemoryClient) memory_client_list
1731 = QLIST_HEAD_INITIALIZER(memory_client_list);
1732
1733 static void cpu_notify_set_memory(target_phys_addr_t start_addr,
1734 ram_addr_t size,
1735 ram_addr_t phys_offset)
1736 {
1737 CPUPhysMemoryClient *client;
1738 QLIST_FOREACH(client, &memory_client_list, list) {
1739 client->set_memory(client, start_addr, size, phys_offset);
1740 }
1741 }
1742
1743 static int cpu_notify_sync_dirty_bitmap(target_phys_addr_t start,
1744 target_phys_addr_t end)
1745 {
1746 CPUPhysMemoryClient *client;
1747 QLIST_FOREACH(client, &memory_client_list, list) {
1748 int r = client->sync_dirty_bitmap(client, start, end);
1749 if (r < 0)
1750 return r;
1751 }
1752 return 0;
1753 }
1754
1755 static int cpu_notify_migration_log(int enable)
1756 {
1757 CPUPhysMemoryClient *client;
1758 QLIST_FOREACH(client, &memory_client_list, list) {
1759 int r = client->migration_log(client, enable);
1760 if (r < 0)
1761 return r;
1762 }
1763 return 0;
1764 }
1765
1766 static void phys_page_for_each_1(CPUPhysMemoryClient *client,
1767 int level, void **lp)
1768 {
1769 int i;
1770
1771 if (*lp == NULL) {
1772 return;
1773 }
1774 if (level == 0) {
1775 PhysPageDesc *pd = *lp;
1776 for (i = 0; i < L2_SIZE; ++i) {
1777 if (pd[i].phys_offset != IO_MEM_UNASSIGNED) {
1778 client->set_memory(client, pd[i].region_offset,
1779 TARGET_PAGE_SIZE, pd[i].phys_offset);
1780 }
1781 }
1782 } else {
1783 void **pp = *lp;
1784 for (i = 0; i < L2_SIZE; ++i) {
1785 phys_page_for_each_1(client, level - 1, pp + i);
1786 }
1787 }
1788 }
1789
1790 static void phys_page_for_each(CPUPhysMemoryClient *client)
1791 {
1792 int i;
1793 for (i = 0; i < P_L1_SIZE; ++i) {
1794 phys_page_for_each_1(client, P_L1_SHIFT / L2_BITS - 1,
1795 l1_phys_map + 1);
1796 }
1797 }
1798
1799 void cpu_register_phys_memory_client(CPUPhysMemoryClient *client)
1800 {
1801 QLIST_INSERT_HEAD(&memory_client_list, client, list);
1802 phys_page_for_each(client);
1803 }
1804
1805 void cpu_unregister_phys_memory_client(CPUPhysMemoryClient *client)
1806 {
1807 QLIST_REMOVE(client, list);
1808 }
1809 #endif
1810
1811 static int cmp1(const char *s1, int n, const char *s2)
1812 {
1813 if (strlen(s2) != n)
1814 return 0;
1815 return memcmp(s1, s2, n) == 0;
1816 }
1817
1818 /* takes a comma separated list of log masks. Return 0 if error. */
1819 int cpu_str_to_log_mask(const char *str)
1820 {
1821 const CPULogItem *item;
1822 int mask;
1823 const char *p, *p1;
1824
1825 p = str;
1826 mask = 0;
1827 for(;;) {
1828 p1 = strchr(p, ',');
1829 if (!p1)
1830 p1 = p + strlen(p);
1831 if(cmp1(p,p1-p,"all")) {
1832 for(item = cpu_log_items; item->mask != 0; item++) {
1833 mask |= item->mask;
1834 }
1835 } else {
1836 for(item = cpu_log_items; item->mask != 0; item++) {
1837 if (cmp1(p, p1 - p, item->name))
1838 goto found;
1839 }
1840 return 0;
1841 }
1842 found:
1843 mask |= item->mask;
1844 if (*p1 != ',')
1845 break;
1846 p = p1 + 1;
1847 }
1848 return mask;
1849 }
1850
1851 void cpu_abort(CPUState *env, const char *fmt, ...)
1852 {
1853 va_list ap;
1854 va_list ap2;
1855
1856 va_start(ap, fmt);
1857 va_copy(ap2, ap);
1858 fprintf(stderr, "qemu: fatal: ");
1859 vfprintf(stderr, fmt, ap);
1860 fprintf(stderr, "\n");
1861 #ifdef TARGET_I386
1862 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1863 #else
1864 cpu_dump_state(env, stderr, fprintf, 0);
1865 #endif
1866 if (qemu_log_enabled()) {
1867 qemu_log("qemu: fatal: ");
1868 qemu_log_vprintf(fmt, ap2);
1869 qemu_log("\n");
1870 #ifdef TARGET_I386
1871 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
1872 #else
1873 log_cpu_state(env, 0);
1874 #endif
1875 qemu_log_flush();
1876 qemu_log_close();
1877 }
1878 va_end(ap2);
1879 va_end(ap);
1880 #if defined(CONFIG_USER_ONLY)
1881 {
1882 struct sigaction act;
1883 sigfillset(&act.sa_mask);
1884 act.sa_handler = SIG_DFL;
1885 sigaction(SIGABRT, &act, NULL);
1886 }
1887 #endif
1888 abort();
1889 }
1890
1891 CPUState *cpu_copy(CPUState *env)
1892 {
1893 CPUState *new_env = cpu_init(env->cpu_model_str);
1894 CPUState *next_cpu = new_env->next_cpu;
1895 int cpu_index = new_env->cpu_index;
1896 #if defined(TARGET_HAS_ICE)
1897 CPUBreakpoint *bp;
1898 CPUWatchpoint *wp;
1899 #endif
1900
1901 memcpy(new_env, env, sizeof(CPUState));
1902
1903 /* Preserve chaining and index. */
1904 new_env->next_cpu = next_cpu;
1905 new_env->cpu_index = cpu_index;
1906
1907 /* Clone all break/watchpoints.
1908 Note: Once we support ptrace with hw-debug register access, make sure
1909 BP_CPU break/watchpoints are handled correctly on clone. */
1910 QTAILQ_INIT(&env->breakpoints);
1911 QTAILQ_INIT(&env->watchpoints);
1912 #if defined(TARGET_HAS_ICE)
1913 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1914 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1915 }
1916 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1917 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1918 wp->flags, NULL);
1919 }
1920 #endif
1921
1922 return new_env;
1923 }
1924
1925 #if !defined(CONFIG_USER_ONLY)
1926
1927 static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1928 {
1929 unsigned int i;
1930
1931 /* Discard jump cache entries for any tb which might potentially
1932 overlap the flushed page. */
1933 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1934 memset (&env->tb_jmp_cache[i], 0,
1935 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1936
1937 i = tb_jmp_cache_hash_page(addr);
1938 memset (&env->tb_jmp_cache[i], 0,
1939 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1940 }
1941
1942 static CPUTLBEntry s_cputlb_empty_entry = {
1943 .addr_read = -1,
1944 .addr_write = -1,
1945 .addr_code = -1,
1946 .addend = -1,
1947 };
1948
1949 /* NOTE: if flush_global is true, also flush global entries (not
1950 implemented yet) */
1951 void tlb_flush(CPUState *env, int flush_global)
1952 {
1953 int i;
1954
1955 #if defined(DEBUG_TLB)
1956 printf("tlb_flush:\n");
1957 #endif
1958 /* must reset current TB so that interrupts cannot modify the
1959 links while we are modifying them */
1960 env->current_tb = NULL;
1961
1962 for(i = 0; i < CPU_TLB_SIZE; i++) {
1963 int mmu_idx;
1964 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1965 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
1966 }
1967 }
1968
1969 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
1970
1971 env->tlb_flush_addr = -1;
1972 env->tlb_flush_mask = 0;
1973 tlb_flush_count++;
1974 }
1975
1976 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
1977 {
1978 if (addr == (tlb_entry->addr_read &
1979 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1980 addr == (tlb_entry->addr_write &
1981 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1982 addr == (tlb_entry->addr_code &
1983 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1984 *tlb_entry = s_cputlb_empty_entry;
1985 }
1986 }
1987
1988 void tlb_flush_page(CPUState *env, target_ulong addr)
1989 {
1990 int i;
1991 int mmu_idx;
1992
1993 #if defined(DEBUG_TLB)
1994 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
1995 #endif
1996 /* Check if we need to flush due to large pages. */
1997 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
1998 #if defined(DEBUG_TLB)
1999 printf("tlb_flush_page: forced full flush ("
2000 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
2001 env->tlb_flush_addr, env->tlb_flush_mask);
2002 #endif
2003 tlb_flush(env, 1);
2004 return;
2005 }
2006 /* must reset current TB so that interrupts cannot modify the
2007 links while we are modifying them */
2008 env->current_tb = NULL;
2009
2010 addr &= TARGET_PAGE_MASK;
2011 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2012 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2013 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
2014
2015 tlb_flush_jmp_cache(env, addr);
2016 }
2017
2018 /* update the TLBs so that writes to code in the virtual page 'addr'
2019 can be detected */
2020 static void tlb_protect_code(ram_addr_t ram_addr)
2021 {
2022 cpu_physical_memory_reset_dirty(ram_addr,
2023 ram_addr + TARGET_PAGE_SIZE,
2024 CODE_DIRTY_FLAG);
2025 }
2026
2027 /* update the TLB so that writes in physical page 'phys_addr' are no longer
2028 tested for self modifying code */
2029 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
2030 target_ulong vaddr)
2031 {
2032 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
2033 }
2034
2035 static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
2036 unsigned long start, unsigned long length)
2037 {
2038 unsigned long addr;
2039 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2040 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
2041 if ((addr - start) < length) {
2042 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
2043 }
2044 }
2045 }
2046
2047 /* Note: start and end must be within the same ram block. */
2048 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
2049 int dirty_flags)
2050 {
2051 CPUState *env;
2052 unsigned long length, start1;
2053 int i, mask, len;
2054 uint8_t *p;
2055
2056 start &= TARGET_PAGE_MASK;
2057 end = TARGET_PAGE_ALIGN(end);
2058
2059 length = end - start;
2060 if (length == 0)
2061 return;
2062 len = length >> TARGET_PAGE_BITS;
2063 mask = ~dirty_flags;
2064 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
2065 for(i = 0; i < len; i++)
2066 p[i] &= mask;
2067
2068 /* we modify the TLB cache so that the dirty bit will be set again
2069 when accessing the range */
2070 start1 = (unsigned long)qemu_get_ram_ptr(start);
2071 /* Chek that we don't span multiple blocks - this breaks the
2072 address comparisons below. */
2073 if ((unsigned long)qemu_get_ram_ptr(end - 1) - start1
2074 != (end - 1) - start) {
2075 abort();
2076 }
2077
2078 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2079 int mmu_idx;
2080 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2081 for(i = 0; i < CPU_TLB_SIZE; i++)
2082 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
2083 start1, length);
2084 }
2085 }
2086 }
2087
2088 int cpu_physical_memory_set_dirty_tracking(int enable)
2089 {
2090 int ret = 0;
2091 in_migration = enable;
2092 ret = cpu_notify_migration_log(!!enable);
2093 return ret;
2094 }
2095
2096 int cpu_physical_memory_get_dirty_tracking(void)
2097 {
2098 return in_migration;
2099 }
2100
2101 int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
2102 target_phys_addr_t end_addr)
2103 {
2104 int ret;
2105
2106 ret = cpu_notify_sync_dirty_bitmap(start_addr, end_addr);
2107 return ret;
2108 }
2109
2110 static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
2111 {
2112 ram_addr_t ram_addr;
2113 void *p;
2114
2115 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2116 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
2117 + tlb_entry->addend);
2118 ram_addr = qemu_ram_addr_from_host(p);
2119 if (!cpu_physical_memory_is_dirty(ram_addr)) {
2120 tlb_entry->addr_write |= TLB_NOTDIRTY;
2121 }
2122 }
2123 }
2124
2125 /* update the TLB according to the current state of the dirty bits */
2126 void cpu_tlb_update_dirty(CPUState *env)
2127 {
2128 int i;
2129 int mmu_idx;
2130 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2131 for(i = 0; i < CPU_TLB_SIZE; i++)
2132 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
2133 }
2134 }
2135
2136 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
2137 {
2138 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
2139 tlb_entry->addr_write = vaddr;
2140 }
2141
2142 /* update the TLB corresponding to virtual page vaddr
2143 so that it is no longer dirty */
2144 static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
2145 {
2146 int i;
2147 int mmu_idx;
2148
2149 vaddr &= TARGET_PAGE_MASK;
2150 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2151 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2152 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
2153 }
2154
2155 /* Our TLB does not support large pages, so remember the area covered by
2156 large pages and trigger a full TLB flush if these are invalidated. */
2157 static void tlb_add_large_page(CPUState *env, target_ulong vaddr,
2158 target_ulong size)
2159 {
2160 target_ulong mask = ~(size - 1);
2161
2162 if (env->tlb_flush_addr == (target_ulong)-1) {
2163 env->tlb_flush_addr = vaddr & mask;
2164 env->tlb_flush_mask = mask;
2165 return;
2166 }
2167 /* Extend the existing region to include the new page.
2168 This is a compromise between unnecessary flushes and the cost
2169 of maintaining a full variable size TLB. */
2170 mask &= env->tlb_flush_mask;
2171 while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
2172 mask <<= 1;
2173 }
2174 env->tlb_flush_addr &= mask;
2175 env->tlb_flush_mask = mask;
2176 }
2177
2178 /* Add a new TLB entry. At most one entry for a given virtual address
2179 is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
2180 supplied size is only used by tlb_flush_page. */
2181 void tlb_set_page(CPUState *env, target_ulong vaddr,
2182 target_phys_addr_t paddr, int prot,
2183 int mmu_idx, target_ulong size)
2184 {
2185 PhysPageDesc *p;
2186 unsigned long pd;
2187 unsigned int index;
2188 target_ulong address;
2189 target_ulong code_address;
2190 target_phys_addr_t addend;
2191 CPUTLBEntry *te;
2192 CPUWatchpoint *wp;
2193 target_phys_addr_t iotlb;
2194
2195 assert(size >= TARGET_PAGE_SIZE);
2196 if (size != TARGET_PAGE_SIZE) {
2197 tlb_add_large_page(env, vaddr, size);
2198 }
2199 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
2200 if (!p) {
2201 pd = IO_MEM_UNASSIGNED;
2202 } else {
2203 pd = p->phys_offset;
2204 }
2205 #if defined(DEBUG_TLB)
2206 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
2207 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
2208 #endif
2209
2210 address = vaddr;
2211 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2212 /* IO memory case (romd handled later) */
2213 address |= TLB_MMIO;
2214 }
2215 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
2216 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2217 /* Normal RAM. */
2218 iotlb = pd & TARGET_PAGE_MASK;
2219 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2220 iotlb |= IO_MEM_NOTDIRTY;
2221 else
2222 iotlb |= IO_MEM_ROM;
2223 } else {
2224 /* IO handlers are currently passed a physical address.
2225 It would be nice to pass an offset from the base address
2226 of that region. This would avoid having to special case RAM,
2227 and avoid full address decoding in every device.
2228 We can't use the high bits of pd for this because
2229 IO_MEM_ROMD uses these as a ram address. */
2230 iotlb = (pd & ~TARGET_PAGE_MASK);
2231 if (p) {
2232 iotlb += p->region_offset;
2233 } else {
2234 iotlb += paddr;
2235 }
2236 }
2237
2238 code_address = address;
2239 /* Make accesses to pages with watchpoints go via the
2240 watchpoint trap routines. */
2241 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
2242 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
2243 iotlb = io_mem_watch + paddr;
2244 /* TODO: The memory case can be optimized by not trapping
2245 reads of pages with a write breakpoint. */
2246 address |= TLB_MMIO;
2247 }
2248 }
2249
2250 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2251 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2252 te = &env->tlb_table[mmu_idx][index];
2253 te->addend = addend - vaddr;
2254 if (prot & PAGE_READ) {
2255 te->addr_read = address;
2256 } else {
2257 te->addr_read = -1;
2258 }
2259
2260 if (prot & PAGE_EXEC) {
2261 te->addr_code = code_address;
2262 } else {
2263 te->addr_code = -1;
2264 }
2265 if (prot & PAGE_WRITE) {
2266 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2267 (pd & IO_MEM_ROMD)) {
2268 /* Write access calls the I/O callback. */
2269 te->addr_write = address | TLB_MMIO;
2270 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2271 !cpu_physical_memory_is_dirty(pd)) {
2272 te->addr_write = address | TLB_NOTDIRTY;
2273 } else {
2274 te->addr_write = address;
2275 }
2276 } else {
2277 te->addr_write = -1;
2278 }
2279 }
2280
2281 #else
2282
2283 void tlb_flush(CPUState *env, int flush_global)
2284 {
2285 }
2286
2287 void tlb_flush_page(CPUState *env, target_ulong addr)
2288 {
2289 }
2290
2291 /*
2292 * Walks guest process memory "regions" one by one
2293 * and calls callback function 'fn' for each region.
2294 */
2295
2296 struct walk_memory_regions_data
2297 {
2298 walk_memory_regions_fn fn;
2299 void *priv;
2300 unsigned long start;
2301 int prot;
2302 };
2303
2304 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
2305 abi_ulong end, int new_prot)
2306 {
2307 if (data->start != -1ul) {
2308 int rc = data->fn(data->priv, data->start, end, data->prot);
2309 if (rc != 0) {
2310 return rc;
2311 }
2312 }
2313
2314 data->start = (new_prot ? end : -1ul);
2315 data->prot = new_prot;
2316
2317 return 0;
2318 }
2319
2320 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
2321 abi_ulong base, int level, void **lp)
2322 {
2323 abi_ulong pa;
2324 int i, rc;
2325
2326 if (*lp == NULL) {
2327 return walk_memory_regions_end(data, base, 0);
2328 }
2329
2330 if (level == 0) {
2331 PageDesc *pd = *lp;
2332 for (i = 0; i < L2_SIZE; ++i) {
2333 int prot = pd[i].flags;
2334
2335 pa = base | (i << TARGET_PAGE_BITS);
2336 if (prot != data->prot) {
2337 rc = walk_memory_regions_end(data, pa, prot);
2338 if (rc != 0) {
2339 return rc;
2340 }
2341 }
2342 }
2343 } else {
2344 void **pp = *lp;
2345 for (i = 0; i < L2_SIZE; ++i) {
2346 pa = base | ((abi_ulong)i <<
2347 (TARGET_PAGE_BITS + L2_BITS * level));
2348 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2349 if (rc != 0) {
2350 return rc;
2351 }
2352 }
2353 }
2354
2355 return 0;
2356 }
2357
2358 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2359 {
2360 struct walk_memory_regions_data data;
2361 unsigned long i;
2362
2363 data.fn = fn;
2364 data.priv = priv;
2365 data.start = -1ul;
2366 data.prot = 0;
2367
2368 for (i = 0; i < V_L1_SIZE; i++) {
2369 int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
2370 V_L1_SHIFT / L2_BITS - 1, l1_map + i);
2371 if (rc != 0) {
2372 return rc;
2373 }
2374 }
2375
2376 return walk_memory_regions_end(&data, 0, 0);
2377 }
2378
2379 static int dump_region(void *priv, abi_ulong start,
2380 abi_ulong end, unsigned long prot)
2381 {
2382 FILE *f = (FILE *)priv;
2383
2384 (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
2385 " "TARGET_ABI_FMT_lx" %c%c%c\n",
2386 start, end, end - start,
2387 ((prot & PAGE_READ) ? 'r' : '-'),
2388 ((prot & PAGE_WRITE) ? 'w' : '-'),
2389 ((prot & PAGE_EXEC) ? 'x' : '-'));
2390
2391 return (0);
2392 }
2393
2394 /* dump memory mappings */
2395 void page_dump(FILE *f)
2396 {
2397 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2398 "start", "end", "size", "prot");
2399 walk_memory_regions(f, dump_region);
2400 }
2401
2402 int page_get_flags(target_ulong address)
2403 {
2404 PageDesc *p;
2405
2406 p = page_find(address >> TARGET_PAGE_BITS);
2407 if (!p)
2408 return 0;
2409 return p->flags;
2410 }
2411
2412 /* Modify the flags of a page and invalidate the code if necessary.
2413 The flag PAGE_WRITE_ORG is positioned automatically depending
2414 on PAGE_WRITE. The mmap_lock should already be held. */
2415 void page_set_flags(target_ulong start, target_ulong end, int flags)
2416 {
2417 target_ulong addr, len;
2418
2419 /* This function should never be called with addresses outside the
2420 guest address space. If this assert fires, it probably indicates
2421 a missing call to h2g_valid. */
2422 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2423 assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2424 #endif
2425 assert(start < end);
2426
2427 start = start & TARGET_PAGE_MASK;
2428 end = TARGET_PAGE_ALIGN(end);
2429
2430 if (flags & PAGE_WRITE) {
2431 flags |= PAGE_WRITE_ORG;
2432 }
2433
2434 for (addr = start, len = end - start;
2435 len != 0;
2436 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2437 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2438
2439 /* If the write protection bit is set, then we invalidate
2440 the code inside. */
2441 if (!(p->flags & PAGE_WRITE) &&
2442 (flags & PAGE_WRITE) &&
2443 p->first_tb) {
2444 tb_invalidate_phys_page(addr, 0, NULL);
2445 }
2446 p->flags = flags;
2447 }
2448 }
2449
2450 int page_check_range(target_ulong start, target_ulong len, int flags)
2451 {
2452 PageDesc *p;
2453 target_ulong end;
2454 target_ulong addr;
2455
2456 /* This function should never be called with addresses outside the
2457 guest address space. If this assert fires, it probably indicates
2458 a missing call to h2g_valid. */
2459 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2460 assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2461 #endif
2462
2463 if (start + len - 1 < start) {
2464 /* We've wrapped around. */
2465 return -1;
2466 }
2467
2468 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2469 start = start & TARGET_PAGE_MASK;
2470
2471 for (addr = start, len = end - start;
2472 len != 0;
2473 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2474 p = page_find(addr >> TARGET_PAGE_BITS);
2475 if( !p )
2476 return -1;
2477 if( !(p->flags & PAGE_VALID) )
2478 return -1;
2479
2480 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
2481 return -1;
2482 if (flags & PAGE_WRITE) {
2483 if (!(p->flags & PAGE_WRITE_ORG))
2484 return -1;
2485 /* unprotect the page if it was put read-only because it
2486 contains translated code */
2487 if (!(p->flags & PAGE_WRITE)) {
2488 if (!page_unprotect(addr, 0, NULL))
2489 return -1;
2490 }
2491 return 0;
2492 }
2493 }
2494 return 0;
2495 }
2496
2497 /* called from signal handler: invalidate the code and unprotect the
2498 page. Return TRUE if the fault was successfully handled. */
2499 int page_unprotect(target_ulong address, unsigned long pc, void *puc)
2500 {
2501 unsigned int prot;
2502 PageDesc *p;
2503 target_ulong host_start, host_end, addr;
2504
2505 /* Technically this isn't safe inside a signal handler. However we
2506 know this only ever happens in a synchronous SEGV handler, so in
2507 practice it seems to be ok. */
2508 mmap_lock();
2509
2510 p = page_find(address >> TARGET_PAGE_BITS);
2511 if (!p) {
2512 mmap_unlock();
2513 return 0;
2514 }
2515
2516 /* if the page was really writable, then we change its
2517 protection back to writable */
2518 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2519 host_start = address & qemu_host_page_mask;
2520 host_end = host_start + qemu_host_page_size;
2521
2522 prot = 0;
2523 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2524 p = page_find(addr >> TARGET_PAGE_BITS);
2525 p->flags |= PAGE_WRITE;
2526 prot |= p->flags;
2527
2528 /* and since the content will be modified, we must invalidate
2529 the corresponding translated code. */
2530 tb_invalidate_phys_page(addr, pc, puc);
2531 #ifdef DEBUG_TB_CHECK
2532 tb_invalidate_check(addr);
2533 #endif
2534 }
2535 mprotect((void *)g2h(host_start), qemu_host_page_size,
2536 prot & PAGE_BITS);
2537
2538 mmap_unlock();
2539 return 1;
2540 }
2541 mmap_unlock();
2542 return 0;
2543 }
2544
2545 static inline void tlb_set_dirty(CPUState *env,
2546 unsigned long addr, target_ulong vaddr)
2547 {
2548 }
2549 #endif /* defined(CONFIG_USER_ONLY) */
2550
2551 #if !defined(CONFIG_USER_ONLY)
2552
2553 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2554 typedef struct subpage_t {
2555 target_phys_addr_t base;
2556 CPUReadMemoryFunc * const *mem_read[TARGET_PAGE_SIZE][4];
2557 CPUWriteMemoryFunc * const *mem_write[TARGET_PAGE_SIZE][4];
2558 void *opaque[TARGET_PAGE_SIZE][2][4];
2559 ram_addr_t region_offset[TARGET_PAGE_SIZE][2][4];
2560 } subpage_t;
2561
2562 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2563 ram_addr_t memory, ram_addr_t region_offset);
2564 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2565 ram_addr_t orig_memory, ram_addr_t region_offset);
2566 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2567 need_subpage) \
2568 do { \
2569 if (addr > start_addr) \
2570 start_addr2 = 0; \
2571 else { \
2572 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2573 if (start_addr2 > 0) \
2574 need_subpage = 1; \
2575 } \
2576 \
2577 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2578 end_addr2 = TARGET_PAGE_SIZE - 1; \
2579 else { \
2580 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2581 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2582 need_subpage = 1; \
2583 } \
2584 } while (0)
2585
2586 /* register physical memory.
2587 For RAM, 'size' must be a multiple of the target page size.
2588 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2589 io memory page. The address used when calling the IO function is
2590 the offset from the start of the region, plus region_offset. Both
2591 start_addr and region_offset are rounded down to a page boundary
2592 before calculating this offset. This should not be a problem unless
2593 the low bits of start_addr and region_offset differ. */
2594 void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2595 ram_addr_t size,
2596 ram_addr_t phys_offset,
2597 ram_addr_t region_offset)
2598 {
2599 target_phys_addr_t addr, end_addr;
2600 PhysPageDesc *p;
2601 CPUState *env;
2602 ram_addr_t orig_size = size;
2603 void *subpage;
2604
2605 cpu_notify_set_memory(start_addr, size, phys_offset);
2606
2607 if (phys_offset == IO_MEM_UNASSIGNED) {
2608 region_offset = start_addr;
2609 }
2610 region_offset &= TARGET_PAGE_MASK;
2611 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
2612 end_addr = start_addr + (target_phys_addr_t)size;
2613 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
2614 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2615 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
2616 ram_addr_t orig_memory = p->phys_offset;
2617 target_phys_addr_t start_addr2, end_addr2;
2618 int need_subpage = 0;
2619
2620 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2621 need_subpage);
2622 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2623 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2624 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2625 &p->phys_offset, orig_memory,
2626 p->region_offset);
2627 } else {
2628 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2629 >> IO_MEM_SHIFT];
2630 }
2631 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2632 region_offset);
2633 p->region_offset = 0;
2634 } else {
2635 p->phys_offset = phys_offset;
2636 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2637 (phys_offset & IO_MEM_ROMD))
2638 phys_offset += TARGET_PAGE_SIZE;
2639 }
2640 } else {
2641 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2642 p->phys_offset = phys_offset;
2643 p->region_offset = region_offset;
2644 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2645 (phys_offset & IO_MEM_ROMD)) {
2646 phys_offset += TARGET_PAGE_SIZE;
2647 } else {
2648 target_phys_addr_t start_addr2, end_addr2;
2649 int need_subpage = 0;
2650
2651 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2652 end_addr2, need_subpage);
2653
2654 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2655 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2656 &p->phys_offset, IO_MEM_UNASSIGNED,
2657 addr & TARGET_PAGE_MASK);
2658 subpage_register(subpage, start_addr2, end_addr2,
2659 phys_offset, region_offset);
2660 p->region_offset = 0;
2661 }
2662 }
2663 }
2664 region_offset += TARGET_PAGE_SIZE;
2665 }
2666
2667 /* since each CPU stores ram addresses in its TLB cache, we must
2668 reset the modified entries */
2669 /* XXX: slow ! */
2670 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2671 tlb_flush(env, 1);
2672 }
2673 }
2674
2675 /* XXX: temporary until new memory mapping API */
2676 ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
2677 {
2678 PhysPageDesc *p;
2679
2680 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2681 if (!p)
2682 return IO_MEM_UNASSIGNED;
2683 return p->phys_offset;
2684 }
2685
2686 void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2687 {
2688 if (kvm_enabled())
2689 kvm_coalesce_mmio_region(addr, size);
2690 }
2691
2692 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2693 {
2694 if (kvm_enabled())
2695 kvm_uncoalesce_mmio_region(addr, size);
2696 }
2697
2698 void qemu_flush_coalesced_mmio_buffer(void)
2699 {
2700 if (kvm_enabled())
2701 kvm_flush_coalesced_mmio_buffer();
2702 }
2703
2704 #if defined(__linux__) && !defined(TARGET_S390X)
2705
2706 #include <sys/vfs.h>
2707
2708 #define HUGETLBFS_MAGIC 0x958458f6
2709
2710 static long gethugepagesize(const char *path)
2711 {
2712 struct statfs fs;
2713 int ret;
2714
2715 do {
2716 ret = statfs(path, &fs);
2717 } while (ret != 0 && errno == EINTR);
2718
2719 if (ret != 0) {
2720 perror(path);
2721 return 0;
2722 }
2723
2724 if (fs.f_type != HUGETLBFS_MAGIC)
2725 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
2726
2727 return fs.f_bsize;
2728 }
2729
2730 static void *file_ram_alloc(ram_addr_t memory, const char *path)
2731 {
2732 char *filename;
2733 void *area;
2734 int fd;
2735 #ifdef MAP_POPULATE
2736 int flags;
2737 #endif
2738 unsigned long hpagesize;
2739
2740 hpagesize = gethugepagesize(path);
2741 if (!hpagesize) {
2742 return NULL;
2743 }
2744
2745 if (memory < hpagesize) {
2746 return NULL;
2747 }
2748
2749 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2750 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2751 return NULL;
2752 }
2753
2754 if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
2755 return NULL;
2756 }
2757
2758 fd = mkstemp(filename);
2759 if (fd < 0) {
2760 perror("unable to create backing store for hugepages");
2761 free(filename);
2762 return NULL;
2763 }
2764 unlink(filename);
2765 free(filename);
2766
2767 memory = (memory+hpagesize-1) & ~(hpagesize-1);
2768
2769 /*
2770 * ftruncate is not supported by hugetlbfs in older
2771 * hosts, so don't bother bailing out on errors.
2772 * If anything goes wrong with it under other filesystems,
2773 * mmap will fail.
2774 */
2775 if (ftruncate(fd, memory))
2776 perror("ftruncate");
2777
2778 #ifdef MAP_POPULATE
2779 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2780 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2781 * to sidestep this quirk.
2782 */
2783 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
2784 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
2785 #else
2786 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
2787 #endif
2788 if (area == MAP_FAILED) {
2789 perror("file_ram_alloc: can't mmap RAM pages");
2790 close(fd);
2791 return (NULL);
2792 }
2793 return area;
2794 }
2795 #endif
2796
2797 ram_addr_t qemu_ram_alloc(ram_addr_t size)
2798 {
2799 RAMBlock *new_block;
2800
2801 size = TARGET_PAGE_ALIGN(size);
2802 new_block = qemu_malloc(sizeof(*new_block));
2803
2804 if (mem_path) {
2805 #if defined (__linux__) && !defined(TARGET_S390X)
2806 new_block->host = file_ram_alloc(size, mem_path);
2807 if (!new_block->host)
2808 exit(1);
2809 #else
2810 fprintf(stderr, "-mem-path option unsupported\n");
2811 exit(1);
2812 #endif
2813 } else {
2814 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2815 /* XXX S390 KVM requires the topmost vma of the RAM to be < 256GB */
2816 new_block->host = mmap((void*)0x1000000, size,
2817 PROT_EXEC|PROT_READ|PROT_WRITE,
2818 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
2819 #else
2820 new_block->host = qemu_vmalloc(size);
2821 #endif
2822 #ifdef MADV_MERGEABLE
2823 madvise(new_block->host, size, MADV_MERGEABLE);
2824 #endif
2825 }
2826 new_block->offset = last_ram_offset;
2827 new_block->length = size;
2828
2829 new_block->next = ram_blocks;
2830 ram_blocks = new_block;
2831
2832 phys_ram_dirty = qemu_realloc(phys_ram_dirty,
2833 (last_ram_offset + size) >> TARGET_PAGE_BITS);
2834 memset(phys_ram_dirty + (last_ram_offset >> TARGET_PAGE_BITS),
2835 0xff, size >> TARGET_PAGE_BITS);
2836
2837 last_ram_offset += size;
2838
2839 if (kvm_enabled())
2840 kvm_setup_guest_memory(new_block->host, size);
2841
2842 return new_block->offset;
2843 }
2844
2845 void qemu_ram_free(ram_addr_t addr)
2846 {
2847 /* TODO: implement this. */
2848 }
2849
2850 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2851 With the exception of the softmmu code in this file, this should
2852 only be used for local memory (e.g. video ram) that the device owns,
2853 and knows it isn't going to access beyond the end of the block.
2854
2855 It should not be used for general purpose DMA.
2856 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2857 */
2858 void *qemu_get_ram_ptr(ram_addr_t addr)
2859 {
2860 RAMBlock *prev;
2861 RAMBlock **prevp;
2862 RAMBlock *block;
2863
2864 prev = NULL;
2865 prevp = &ram_blocks;
2866 block = ram_blocks;
2867 while (block && (block->offset > addr
2868 || block->offset + block->length <= addr)) {
2869 if (prev)
2870 prevp = &prev->next;
2871 prev = block;
2872 block = block->next;
2873 }
2874 if (!block) {
2875 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2876 abort();
2877 }
2878 /* Move this entry to to start of the list. */
2879 if (prev) {
2880 prev->next = block->next;
2881 block->next = *prevp;
2882 *prevp = block;
2883 }
2884 return block->host + (addr - block->offset);
2885 }
2886
2887 /* Some of the softmmu routines need to translate from a host pointer
2888 (typically a TLB entry) back to a ram offset. */
2889 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2890 {
2891 RAMBlock *prev;
2892 RAMBlock *block;
2893 uint8_t *host = ptr;
2894
2895 prev = NULL;
2896 block = ram_blocks;
2897 while (block && (block->host > host
2898 || block->host + block->length <= host)) {
2899 prev = block;
2900 block = block->next;
2901 }
2902 if (!block) {
2903 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2904 abort();
2905 }
2906 return block->offset + (host - block->host);
2907 }
2908
2909 static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
2910 {
2911 #ifdef DEBUG_UNASSIGNED
2912 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2913 #endif
2914 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2915 do_unassigned_access(addr, 0, 0, 0, 1);
2916 #endif
2917 return 0;
2918 }
2919
2920 static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
2921 {
2922 #ifdef DEBUG_UNASSIGNED
2923 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2924 #endif
2925 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2926 do_unassigned_access(addr, 0, 0, 0, 2);
2927 #endif
2928 return 0;
2929 }
2930
2931 static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
2932 {
2933 #ifdef DEBUG_UNASSIGNED
2934 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2935 #endif
2936 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2937 do_unassigned_access(addr, 0, 0, 0, 4);
2938 #endif
2939 return 0;
2940 }
2941
2942 static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
2943 {
2944 #ifdef DEBUG_UNASSIGNED
2945 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2946 #endif
2947 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2948 do_unassigned_access(addr, 1, 0, 0, 1);
2949 #endif
2950 }
2951
2952 static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
2953 {
2954 #ifdef DEBUG_UNASSIGNED
2955 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2956 #endif
2957 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2958 do_unassigned_access(addr, 1, 0, 0, 2);
2959 #endif
2960 }
2961
2962 static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
2963 {
2964 #ifdef DEBUG_UNASSIGNED
2965 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2966 #endif
2967 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2968 do_unassigned_access(addr, 1, 0, 0, 4);
2969 #endif
2970 }
2971
2972 static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
2973 unassigned_mem_readb,
2974 unassigned_mem_readw,
2975 unassigned_mem_readl,
2976 };
2977
2978 static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
2979 unassigned_mem_writeb,
2980 unassigned_mem_writew,
2981 unassigned_mem_writel,
2982 };
2983
2984 static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
2985 uint32_t val)
2986 {
2987 int dirty_flags;
2988 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2989 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2990 #if !defined(CONFIG_USER_ONLY)
2991 tb_invalidate_phys_page_fast(ram_addr, 1);
2992 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2993 #endif
2994 }
2995 stb_p(qemu_get_ram_ptr(ram_addr), val);
2996 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2997 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2998 /* we remove the notdirty callback only if the code has been
2999 flushed */
3000 if (dirty_flags == 0xff)
3001 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
3002 }
3003
3004 static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
3005 uint32_t val)
3006 {
3007 int dirty_flags;
3008 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
3009 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
3010 #if !defined(CONFIG_USER_ONLY)
3011 tb_invalidate_phys_page_fast(ram_addr, 2);
3012 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
3013 #endif
3014 }
3015 stw_p(qemu_get_ram_ptr(ram_addr), val);
3016 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
3017 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
3018 /* we remove the notdirty callback only if the code has been
3019 flushed */
3020 if (dirty_flags == 0xff)
3021 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
3022 }
3023
3024 static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
3025 uint32_t val)
3026 {
3027 int dirty_flags;
3028 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
3029 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
3030 #if !defined(CONFIG_USER_ONLY)
3031 tb_invalidate_phys_page_fast(ram_addr, 4);
3032 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
3033 #endif
3034 }
3035 stl_p(qemu_get_ram_ptr(ram_addr), val);
3036 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
3037 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
3038 /* we remove the notdirty callback only if the code has been
3039 flushed */
3040 if (dirty_flags == 0xff)
3041 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
3042 }
3043
3044 static CPUReadMemoryFunc * const error_mem_read[3] = {
3045 NULL, /* never used */
3046 NULL, /* never used */
3047 NULL, /* never used */
3048 };
3049
3050 static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
3051 notdirty_mem_writeb,
3052 notdirty_mem_writew,
3053 notdirty_mem_writel,
3054 };
3055
3056 /* Generate a debug exception if a watchpoint has been hit. */
3057 static void check_watchpoint(int offset, int len_mask, int flags)
3058 {
3059 CPUState *env = cpu_single_env;
3060 target_ulong pc, cs_base;
3061 TranslationBlock *tb;
3062 target_ulong vaddr;
3063 CPUWatchpoint *wp;
3064 int cpu_flags;
3065
3066 if (env->watchpoint_hit) {
3067 /* We re-entered the check after replacing the TB. Now raise
3068 * the debug interrupt so that is will trigger after the
3069 * current instruction. */
3070 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
3071 return;
3072 }
3073 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
3074 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
3075 if ((vaddr == (wp->vaddr & len_mask) ||
3076 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
3077 wp->flags |= BP_WATCHPOINT_HIT;
3078 if (!env->watchpoint_hit) {
3079 env->watchpoint_hit = wp;
3080 tb = tb_find_pc(env->mem_io_pc);
3081 if (!tb) {
3082 cpu_abort(env, "check_watchpoint: could not find TB for "
3083 "pc=%p", (void *)env->mem_io_pc);
3084 }
3085 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
3086 tb_phys_invalidate(tb, -1);
3087 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
3088 env->exception_index = EXCP_DEBUG;
3089 } else {
3090 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
3091 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
3092 }
3093 cpu_resume_from_signal(env, NULL);
3094 }
3095 } else {
3096 wp->flags &= ~BP_WATCHPOINT_HIT;
3097 }
3098 }
3099 }
3100
3101 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
3102 so these check for a hit then pass through to the normal out-of-line
3103 phys routines. */
3104 static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
3105 {
3106 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
3107 return ldub_phys(addr);
3108 }
3109
3110 static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
3111 {
3112 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
3113 return lduw_phys(addr);
3114 }
3115
3116 static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
3117 {
3118 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
3119 return ldl_phys(addr);
3120 }
3121
3122 static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
3123 uint32_t val)
3124 {
3125 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
3126 stb_phys(addr, val);
3127 }
3128
3129 static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
3130 uint32_t val)
3131 {
3132 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
3133 stw_phys(addr, val);
3134 }
3135
3136 static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
3137 uint32_t val)
3138 {
3139 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
3140 stl_phys(addr, val);
3141 }
3142
3143 static CPUReadMemoryFunc * const watch_mem_read[3] = {
3144 watch_mem_readb,
3145 watch_mem_readw,
3146 watch_mem_readl,
3147 };
3148
3149 static CPUWriteMemoryFunc * const watch_mem_write[3] = {
3150 watch_mem_writeb,
3151 watch_mem_writew,
3152 watch_mem_writel,
3153 };
3154
3155 static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
3156 unsigned int len)
3157 {
3158 uint32_t ret;
3159 unsigned int idx;
3160
3161 idx = SUBPAGE_IDX(addr);
3162 #if defined(DEBUG_SUBPAGE)
3163 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
3164 mmio, len, addr, idx);
3165 #endif
3166 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len],
3167 addr + mmio->region_offset[idx][0][len]);
3168
3169 return ret;
3170 }
3171
3172 static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
3173 uint32_t value, unsigned int len)
3174 {
3175 unsigned int idx;
3176
3177 idx = SUBPAGE_IDX(addr);
3178 #if defined(DEBUG_SUBPAGE)
3179 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
3180 mmio, len, addr, idx, value);
3181 #endif
3182 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len],
3183 addr + mmio->region_offset[idx][1][len],
3184 value);
3185 }
3186
3187 static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
3188 {
3189 #if defined(DEBUG_SUBPAGE)
3190 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
3191 #endif
3192
3193 return subpage_readlen(opaque, addr, 0);
3194 }
3195
3196 static void subpage_writeb (void *opaque, target_phys_addr_t addr,
3197 uint32_t value)
3198 {
3199 #if defined(DEBUG_SUBPAGE)
3200 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
3201 #endif
3202 subpage_writelen(opaque, addr, value, 0);
3203 }
3204
3205 static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
3206 {
3207 #if defined(DEBUG_SUBPAGE)
3208 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
3209 #endif
3210
3211 return subpage_readlen(opaque, addr, 1);
3212 }
3213
3214 static void subpage_writew (void *opaque, target_phys_addr_t addr,
3215 uint32_t value)
3216 {
3217 #if defined(DEBUG_SUBPAGE)
3218 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
3219 #endif
3220 subpage_writelen(opaque, addr, value, 1);
3221 }
3222
3223 static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
3224 {
3225 #if defined(DEBUG_SUBPAGE)
3226 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
3227 #endif
3228
3229 return subpage_readlen(opaque, addr, 2);
3230 }
3231
3232 static void subpage_writel (void *opaque,
3233 target_phys_addr_t addr, uint32_t value)
3234 {
3235 #if defined(DEBUG_SUBPAGE)
3236 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
3237 #endif
3238 subpage_writelen(opaque, addr, value, 2);
3239 }
3240
3241 static CPUReadMemoryFunc * const subpage_read[] = {
3242 &subpage_readb,
3243 &subpage_readw,
3244 &subpage_readl,
3245 };
3246
3247 static CPUWriteMemoryFunc * const subpage_write[] = {
3248 &subpage_writeb,
3249 &subpage_writew,
3250 &subpage_writel,
3251 };
3252
3253 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
3254 ram_addr_t memory, ram_addr_t region_offset)
3255 {
3256 int idx, eidx;
3257 unsigned int i;
3258
3259 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3260 return -1;
3261 idx = SUBPAGE_IDX(start);
3262 eidx = SUBPAGE_IDX(end);
3263 #if defined(DEBUG_SUBPAGE)
3264 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
3265 mmio, start, end, idx, eidx, memory);
3266 #endif
3267 memory >>= IO_MEM_SHIFT;
3268 for (; idx <= eidx; idx++) {
3269 for (i = 0; i < 4; i++) {
3270 if (io_mem_read[memory][i]) {
3271 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
3272 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
3273 mmio->region_offset[idx][0][i] = region_offset;
3274 }
3275 if (io_mem_write[memory][i]) {
3276 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
3277 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
3278 mmio->region_offset[idx][1][i] = region_offset;
3279 }
3280 }
3281 }
3282
3283 return 0;
3284 }
3285
3286 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
3287 ram_addr_t orig_memory, ram_addr_t region_offset)
3288 {
3289 subpage_t *mmio;
3290 int subpage_memory;
3291
3292 mmio = qemu_mallocz(sizeof(subpage_t));
3293
3294 mmio->base = base;
3295 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio);
3296 #if defined(DEBUG_SUBPAGE)
3297 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3298 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
3299 #endif
3300 *phys = subpage_memory | IO_MEM_SUBPAGE;
3301 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory,
3302 region_offset);
3303
3304 return mmio;
3305 }
3306
3307 static int get_free_io_mem_idx(void)
3308 {
3309 int i;
3310
3311 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
3312 if (!io_mem_used[i]) {
3313 io_mem_used[i] = 1;
3314 return i;
3315 }
3316 fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
3317 return -1;
3318 }
3319
3320 /* mem_read and mem_write are arrays of functions containing the
3321 function to access byte (index 0), word (index 1) and dword (index
3322 2). Functions can be omitted with a NULL function pointer.
3323 If io_index is non zero, the corresponding io zone is
3324 modified. If it is zero, a new io zone is allocated. The return
3325 value can be used with cpu_register_physical_memory(). (-1) is
3326 returned if error. */
3327 static int cpu_register_io_memory_fixed(int io_index,
3328 CPUReadMemoryFunc * const *mem_read,
3329 CPUWriteMemoryFunc * const *mem_write,
3330 void *opaque)
3331 {
3332 int i, subwidth = 0;
3333
3334 if (io_index <= 0) {
3335 io_index = get_free_io_mem_idx();
3336 if (io_index == -1)
3337 return io_index;
3338 } else {
3339 io_index >>= IO_MEM_SHIFT;
3340 if (io_index >= IO_MEM_NB_ENTRIES)
3341 return -1;
3342 }
3343
3344 for(i = 0;i < 3; i++) {
3345 if (!mem_read[i] || !mem_write[i])
3346 subwidth = IO_MEM_SUBWIDTH;
3347 io_mem_read[io_index][i] = mem_read[i];
3348 io_mem_write[io_index][i] = mem_write[i];
3349 }
3350 io_mem_opaque[io_index] = opaque;
3351 return (io_index << IO_MEM_SHIFT) | subwidth;
3352 }
3353
3354 int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
3355 CPUWriteMemoryFunc * const *mem_write,
3356 void *opaque)
3357 {
3358 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque);
3359 }
3360
3361 void cpu_unregister_io_memory(int io_table_address)
3362 {
3363 int i;
3364 int io_index = io_table_address >> IO_MEM_SHIFT;
3365
3366 for (i=0;i < 3; i++) {
3367 io_mem_read[io_index][i] = unassigned_mem_read[i];
3368 io_mem_write[io_index][i] = unassigned_mem_write[i];
3369 }
3370 io_mem_opaque[io_index] = NULL;
3371 io_mem_used[io_index] = 0;
3372 }
3373
3374 static void io_mem_init(void)
3375 {
3376 int i;
3377
3378 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read, unassigned_mem_write, NULL);
3379 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read, unassigned_mem_write, NULL);
3380 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read, notdirty_mem_write, NULL);
3381 for (i=0; i<5; i++)
3382 io_mem_used[i] = 1;
3383
3384 io_mem_watch = cpu_register_io_memory(watch_mem_read,
3385 watch_mem_write, NULL);
3386 }
3387
3388 #endif /* !defined(CONFIG_USER_ONLY) */
3389
3390 /* physical memory access (slow version, mainly for debug) */
3391 #if defined(CONFIG_USER_ONLY)
3392 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3393 uint8_t *buf, int len, int is_write)
3394 {
3395 int l, flags;
3396 target_ulong page;
3397 void * p;
3398
3399 while (len > 0) {
3400 page = addr & TARGET_PAGE_MASK;
3401 l = (page + TARGET_PAGE_SIZE) - addr;
3402 if (l > len)
3403 l = len;
3404 flags = page_get_flags(page);
3405 if (!(flags & PAGE_VALID))
3406 return -1;
3407 if (is_write) {
3408 if (!(flags & PAGE_WRITE))
3409 return -1;
3410 /* XXX: this code should not depend on lock_user */
3411 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3412 return -1;
3413 memcpy(p, buf, l);
3414 unlock_user(p, addr, l);
3415 } else {
3416 if (!(flags & PAGE_READ))
3417 return -1;
3418 /* XXX: this code should not depend on lock_user */
3419 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3420 return -1;
3421 memcpy(buf, p, l);
3422 unlock_user(p, addr, 0);
3423 }
3424 len -= l;
3425 buf += l;
3426 addr += l;
3427 }
3428 return 0;
3429 }
3430
3431 #else
3432 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
3433 int len, int is_write)
3434 {
3435 int l, io_index;
3436 uint8_t *ptr;
3437 uint32_t val;
3438 target_phys_addr_t page;
3439 unsigned long pd;
3440 PhysPageDesc *p;
3441
3442 while (len > 0) {
3443 page = addr & TARGET_PAGE_MASK;
3444 l = (page + TARGET_PAGE_SIZE) - addr;
3445 if (l > len)
3446 l = len;
3447 p = phys_page_find(page >> TARGET_PAGE_BITS);
3448 if (!p) {
3449 pd = IO_MEM_UNASSIGNED;
3450 } else {
3451 pd = p->phys_offset;
3452 }
3453
3454 if (is_write) {
3455 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3456 target_phys_addr_t addr1 = addr;
3457 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3458 if (p)
3459 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3460 /* XXX: could force cpu_single_env to NULL to avoid
3461 potential bugs */
3462 if (l >= 4 && ((addr1 & 3) == 0)) {
3463 /* 32 bit write access */
3464 val = ldl_p(buf);
3465 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
3466 l = 4;
3467 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3468 /* 16 bit write access */
3469 val = lduw_p(buf);
3470 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
3471 l = 2;
3472 } else {
3473 /* 8 bit write access */
3474 val = ldub_p(buf);
3475 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
3476 l = 1;
3477 }
3478 } else {
3479 unsigned long addr1;
3480 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3481 /* RAM case */
3482 ptr = qemu_get_ram_ptr(addr1);
3483 memcpy(ptr, buf, l);
3484 if (!cpu_physical_memory_is_dirty(addr1)) {
3485 /* invalidate code */
3486 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3487 /* set dirty bit */
3488 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3489 (0xff & ~CODE_DIRTY_FLAG);
3490 }
3491 }
3492 } else {
3493 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3494 !(pd & IO_MEM_ROMD)) {
3495 target_phys_addr_t addr1 = addr;
3496 /* I/O case */
3497 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3498 if (p)
3499 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3500 if (l >= 4 && ((addr1 & 3) == 0)) {
3501 /* 32 bit read access */
3502 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
3503 stl_p(buf, val);
3504 l = 4;
3505 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3506 /* 16 bit read access */
3507 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
3508 stw_p(buf, val);
3509 l = 2;
3510 } else {
3511 /* 8 bit read access */
3512 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
3513 stb_p(buf, val);
3514 l = 1;
3515 }
3516 } else {
3517 /* RAM case */
3518 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3519 (addr & ~TARGET_PAGE_MASK);
3520 memcpy(buf, ptr, l);
3521 }
3522 }
3523 len -= l;
3524 buf += l;
3525 addr += l;
3526 }
3527 }
3528
3529 /* used for ROM loading : can write in RAM and ROM */
3530 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
3531 const uint8_t *buf, int len)
3532 {
3533 int l;
3534 uint8_t *ptr;
3535 target_phys_addr_t page;
3536 unsigned long pd;
3537 PhysPageDesc *p;
3538
3539 while (len > 0) {
3540 page = addr & TARGET_PAGE_MASK;
3541 l = (page + TARGET_PAGE_SIZE) - addr;
3542 if (l > len)
3543 l = len;
3544 p = phys_page_find(page >> TARGET_PAGE_BITS);
3545 if (!p) {
3546 pd = IO_MEM_UNASSIGNED;
3547 } else {
3548 pd = p->phys_offset;
3549 }
3550
3551 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
3552 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3553 !(pd & IO_MEM_ROMD)) {
3554 /* do nothing */
3555 } else {
3556 unsigned long addr1;
3557 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3558 /* ROM/RAM case */
3559 ptr = qemu_get_ram_ptr(addr1);
3560 memcpy(ptr, buf, l);
3561 }
3562 len -= l;
3563 buf += l;
3564 addr += l;
3565 }
3566 }
3567
3568 typedef struct {
3569 void *buffer;
3570 target_phys_addr_t addr;
3571 target_phys_addr_t len;
3572 } BounceBuffer;
3573
3574 static BounceBuffer bounce;
3575
3576 typedef struct MapClient {
3577 void *opaque;
3578 void (*callback)(void *opaque);
3579 QLIST_ENTRY(MapClient) link;
3580 } MapClient;
3581
3582 static QLIST_HEAD(map_client_list, MapClient) map_client_list
3583 = QLIST_HEAD_INITIALIZER(map_client_list);
3584
3585 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3586 {
3587 MapClient *client = qemu_malloc(sizeof(*client));
3588
3589 client->opaque = opaque;
3590 client->callback = callback;
3591 QLIST_INSERT_HEAD(&map_client_list, client, link);
3592 return client;
3593 }
3594
3595 void cpu_unregister_map_client(void *_client)
3596 {
3597 MapClient *client = (MapClient *)_client;
3598
3599 QLIST_REMOVE(client, link);
3600 qemu_free(client);
3601 }
3602
3603 static void cpu_notify_map_clients(void)
3604 {
3605 MapClient *client;
3606
3607 while (!QLIST_EMPTY(&map_client_list)) {
3608 client = QLIST_FIRST(&map_client_list);
3609 client->callback(client->opaque);
3610 cpu_unregister_map_client(client);
3611 }
3612 }
3613
3614 /* Map a physical memory region into a host virtual address.
3615 * May map a subset of the requested range, given by and returned in *plen.
3616 * May return NULL if resources needed to perform the mapping are exhausted.
3617 * Use only for reads OR writes - not for read-modify-write operations.
3618 * Use cpu_register_map_client() to know when retrying the map operation is
3619 * likely to succeed.
3620 */
3621 void *cpu_physical_memory_map(target_phys_addr_t addr,
3622 target_phys_addr_t *plen,
3623 int is_write)
3624 {
3625 target_phys_addr_t len = *plen;
3626 target_phys_addr_t done = 0;
3627 int l;
3628 uint8_t *ret = NULL;
3629 uint8_t *ptr;
3630 target_phys_addr_t page;
3631 unsigned long pd;
3632 PhysPageDesc *p;
3633 unsigned long addr1;
3634
3635 while (len > 0) {
3636 page = addr & TARGET_PAGE_MASK;
3637 l = (page + TARGET_PAGE_SIZE) - addr;
3638 if (l > len)
3639 l = len;
3640 p = phys_page_find(page >> TARGET_PAGE_BITS);
3641 if (!p) {
3642 pd = IO_MEM_UNASSIGNED;
3643 } else {
3644 pd = p->phys_offset;
3645 }
3646
3647 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3648 if (done || bounce.buffer) {
3649 break;
3650 }
3651 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3652 bounce.addr = addr;
3653 bounce.len = l;
3654 if (!is_write) {
3655 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3656 }
3657 ptr = bounce.buffer;
3658 } else {
3659 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3660 ptr = qemu_get_ram_ptr(addr1);
3661 }
3662 if (!done) {
3663 ret = ptr;
3664 } else if (ret + done != ptr) {
3665 break;
3666 }
3667
3668 len -= l;
3669 addr += l;
3670 done += l;
3671 }
3672 *plen = done;
3673 return ret;
3674 }
3675
3676 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3677 * Will also mark the memory as dirty if is_write == 1. access_len gives
3678 * the amount of memory that was actually read or written by the caller.
3679 */
3680 void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3681 int is_write, target_phys_addr_t access_len)
3682 {
3683 if (buffer != bounce.buffer) {
3684 if (is_write) {
3685 ram_addr_t addr1 = qemu_ram_addr_from_host(buffer);
3686 while (access_len) {
3687 unsigned l;
3688 l = TARGET_PAGE_SIZE;
3689 if (l > access_len)
3690 l = access_len;
3691 if (!cpu_physical_memory_is_dirty(addr1)) {
3692 /* invalidate code */
3693 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3694 /* set dirty bit */
3695 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3696 (0xff & ~CODE_DIRTY_FLAG);
3697 }
3698 addr1 += l;
3699 access_len -= l;
3700 }
3701 }
3702 return;
3703 }
3704 if (is_write) {
3705 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3706 }
3707 qemu_vfree(bounce.buffer);
3708 bounce.buffer = NULL;
3709 cpu_notify_map_clients();
3710 }
3711
3712 /* warning: addr must be aligned */
3713 uint32_t ldl_phys(target_phys_addr_t addr)
3714 {
3715 int io_index;
3716 uint8_t *ptr;
3717 uint32_t val;
3718 unsigned long pd;
3719 PhysPageDesc *p;
3720
3721 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3722 if (!p) {
3723 pd = IO_MEM_UNASSIGNED;
3724 } else {
3725 pd = p->phys_offset;
3726 }
3727
3728 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3729 !(pd & IO_MEM_ROMD)) {
3730 /* I/O case */
3731 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3732 if (p)
3733 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3734 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3735 } else {
3736 /* RAM case */
3737 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3738 (addr & ~TARGET_PAGE_MASK);
3739 val = ldl_p(ptr);
3740 }
3741 return val;
3742 }
3743
3744 /* warning: addr must be aligned */
3745 uint64_t ldq_phys(target_phys_addr_t addr)
3746 {
3747 int io_index;
3748 uint8_t *ptr;
3749 uint64_t val;
3750 unsigned long pd;
3751 PhysPageDesc *p;
3752
3753 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3754 if (!p) {
3755 pd = IO_MEM_UNASSIGNED;
3756 } else {
3757 pd = p->phys_offset;
3758 }
3759
3760 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3761 !(pd & IO_MEM_ROMD)) {
3762 /* I/O case */
3763 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3764 if (p)
3765 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3766 #ifdef TARGET_WORDS_BIGENDIAN
3767 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3768 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3769 #else
3770 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3771 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3772 #endif
3773 } else {
3774 /* RAM case */
3775 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3776 (addr & ~TARGET_PAGE_MASK);
3777 val = ldq_p(ptr);
3778 }
3779 return val;
3780 }
3781
3782 /* XXX: optimize */
3783 uint32_t ldub_phys(target_phys_addr_t addr)
3784 {
3785 uint8_t val;
3786 cpu_physical_memory_read(addr, &val, 1);
3787 return val;
3788 }
3789
3790 /* XXX: optimize */
3791 uint32_t lduw_phys(target_phys_addr_t addr)
3792 {
3793 uint16_t val;
3794 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
3795 return tswap16(val);
3796 }
3797
3798 /* warning: addr must be aligned. The ram page is not masked as dirty
3799 and the code inside is not invalidated. It is useful if the dirty
3800 bits are used to track modified PTEs */
3801 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
3802 {
3803 int io_index;
3804 uint8_t *ptr;
3805 unsigned long pd;
3806 PhysPageDesc *p;
3807
3808 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3809 if (!p) {
3810 pd = IO_MEM_UNASSIGNED;
3811 } else {
3812 pd = p->phys_offset;
3813 }
3814
3815 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3816 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3817 if (p)
3818 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3819 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3820 } else {
3821 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3822 ptr = qemu_get_ram_ptr(addr1);
3823 stl_p(ptr, val);
3824
3825 if (unlikely(in_migration)) {
3826 if (!cpu_physical_memory_is_dirty(addr1)) {
3827 /* invalidate code */
3828 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3829 /* set dirty bit */
3830 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3831 (0xff & ~CODE_DIRTY_FLAG);
3832 }
3833 }
3834 }
3835 }
3836
3837 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
3838 {
3839 int io_index;
3840 uint8_t *ptr;
3841 unsigned long pd;
3842 PhysPageDesc *p;
3843
3844 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3845 if (!p) {
3846 pd = IO_MEM_UNASSIGNED;
3847 } else {
3848 pd = p->phys_offset;
3849 }
3850
3851 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3852 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3853 if (p)
3854 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3855 #ifdef TARGET_WORDS_BIGENDIAN
3856 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3857 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3858 #else
3859 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3860 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3861 #endif
3862 } else {
3863 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3864 (addr & ~TARGET_PAGE_MASK);
3865 stq_p(ptr, val);
3866 }
3867 }
3868
3869 /* warning: addr must be aligned */
3870 void stl_phys(target_phys_addr_t addr, uint32_t val)
3871 {
3872 int io_index;
3873 uint8_t *ptr;
3874 unsigned long pd;
3875 PhysPageDesc *p;
3876
3877 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3878 if (!p) {
3879 pd = IO_MEM_UNASSIGNED;
3880 } else {
3881 pd = p->phys_offset;
3882 }
3883
3884 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3885 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3886 if (p)
3887 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3888 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3889 } else {
3890 unsigned long addr1;
3891 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3892 /* RAM case */
3893 ptr = qemu_get_ram_ptr(addr1);
3894 stl_p(ptr, val);
3895 if (!cpu_physical_memory_is_dirty(addr1)) {
3896 /* invalidate code */
3897 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3898 /* set dirty bit */
3899 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3900 (0xff & ~CODE_DIRTY_FLAG);
3901 }
3902 }
3903 }
3904
3905 /* XXX: optimize */
3906 void stb_phys(target_phys_addr_t addr, uint32_t val)
3907 {
3908 uint8_t v = val;
3909 cpu_physical_memory_write(addr, &v, 1);
3910 }
3911
3912 /* XXX: optimize */
3913 void stw_phys(target_phys_addr_t addr, uint32_t val)
3914 {
3915 uint16_t v = tswap16(val);
3916 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3917 }
3918
3919 /* XXX: optimize */
3920 void stq_phys(target_phys_addr_t addr, uint64_t val)
3921 {
3922 val = tswap64(val);
3923 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3924 }
3925
3926 /* virtual memory access for debug (includes writing to ROM) */
3927 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3928 uint8_t *buf, int len, int is_write)
3929 {
3930 int l;
3931 target_phys_addr_t phys_addr;
3932 target_ulong page;
3933
3934 while (len > 0) {
3935 page = addr & TARGET_PAGE_MASK;
3936 phys_addr = cpu_get_phys_page_debug(env, page);
3937 /* if no physical page mapped, return an error */
3938 if (phys_addr == -1)
3939 return -1;
3940 l = (page + TARGET_PAGE_SIZE) - addr;
3941 if (l > len)
3942 l = len;
3943 phys_addr += (addr & ~TARGET_PAGE_MASK);
3944 if (is_write)
3945 cpu_physical_memory_write_rom(phys_addr, buf, l);
3946 else
3947 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
3948 len -= l;
3949 buf += l;
3950 addr += l;
3951 }
3952 return 0;
3953 }
3954 #endif
3955
3956 /* in deterministic execution mode, instructions doing device I/Os
3957 must be at the end of the TB */
3958 void cpu_io_recompile(CPUState *env, void *retaddr)
3959 {
3960 TranslationBlock *tb;
3961 uint32_t n, cflags;
3962 target_ulong pc, cs_base;
3963 uint64_t flags;
3964
3965 tb = tb_find_pc((unsigned long)retaddr);
3966 if (!tb) {
3967 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3968 retaddr);
3969 }
3970 n = env->icount_decr.u16.low + tb->icount;
3971 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3972 /* Calculate how many instructions had been executed before the fault
3973 occurred. */
3974 n = n - env->icount_decr.u16.low;
3975 /* Generate a new TB ending on the I/O insn. */
3976 n++;
3977 /* On MIPS and SH, delay slot instructions can only be restarted if
3978 they were already the first instruction in the TB. If this is not
3979 the first instruction in a TB then re-execute the preceding
3980 branch. */
3981 #if defined(TARGET_MIPS)
3982 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3983 env->active_tc.PC -= 4;
3984 env->icount_decr.u16.low++;
3985 env->hflags &= ~MIPS_HFLAG_BMASK;
3986 }
3987 #elif defined(TARGET_SH4)
3988 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3989 && n > 1) {
3990 env->pc -= 2;
3991 env->icount_decr.u16.low++;
3992 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3993 }
3994 #endif
3995 /* This should never happen. */
3996 if (n > CF_COUNT_MASK)
3997 cpu_abort(env, "TB too big during recompile");
3998
3999 cflags = n | CF_LAST_IO;
4000 pc = tb->pc;
4001 cs_base = tb->cs_base;
4002 flags = tb->flags;
4003 tb_phys_invalidate(tb, -1);
4004 /* FIXME: In theory this could raise an exception. In practice
4005 we have already translated the block once so it's probably ok. */
4006 tb_gen_code(env, pc, cs_base, flags, cflags);
4007 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
4008 the first in the TB) then we end up generating a whole new TB and
4009 repeating the fault, which is horribly inefficient.
4010 Better would be to execute just this insn uncached, or generate a
4011 second new TB. */
4012 cpu_resume_from_signal(env, NULL);
4013 }
4014
4015 #if !defined(CONFIG_USER_ONLY)
4016
4017 void dump_exec_info(FILE *f,
4018 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
4019 {
4020 int i, target_code_size, max_target_code_size;
4021 int direct_jmp_count, direct_jmp2_count, cross_page;
4022 TranslationBlock *tb;
4023
4024 target_code_size = 0;
4025 max_target_code_size = 0;
4026 cross_page = 0;
4027 direct_jmp_count = 0;
4028 direct_jmp2_count = 0;
4029 for(i = 0; i < nb_tbs; i++) {
4030 tb = &tbs[i];
4031 target_code_size += tb->size;
4032 if (tb->size > max_target_code_size)
4033 max_target_code_size = tb->size;
4034 if (tb->page_addr[1] != -1)
4035 cross_page++;
4036 if (tb->tb_next_offset[0] != 0xffff) {
4037 direct_jmp_count++;
4038 if (tb->tb_next_offset[1] != 0xffff) {
4039 direct_jmp2_count++;
4040 }
4041 }
4042 }
4043 /* XXX: avoid using doubles ? */
4044 cpu_fprintf(f, "Translation buffer state:\n");
4045 cpu_fprintf(f, "gen code size %ld/%ld\n",
4046 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
4047 cpu_fprintf(f, "TB count %d/%d\n",
4048 nb_tbs, code_gen_max_blocks);
4049 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
4050 nb_tbs ? target_code_size / nb_tbs : 0,
4051 max_target_code_size);
4052 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
4053 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
4054 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
4055 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
4056 cross_page,
4057 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
4058 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
4059 direct_jmp_count,
4060 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
4061 direct_jmp2_count,
4062 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
4063 cpu_fprintf(f, "\nStatistics:\n");
4064 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
4065 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
4066 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
4067 tcg_dump_info(f, cpu_fprintf);
4068 }
4069
4070 #define MMUSUFFIX _cmmu
4071 #define GETPC() NULL
4072 #define env cpu_single_env
4073 #define SOFTMMU_CODE_ACCESS
4074
4075 #define SHIFT 0
4076 #include "softmmu_template.h"
4077
4078 #define SHIFT 1
4079 #include "softmmu_template.h"
4080
4081 #define SHIFT 2
4082 #include "softmmu_template.h"
4083
4084 #define SHIFT 3
4085 #include "softmmu_template.h"
4086
4087 #undef env
4088
4089 #endif