]> git.proxmox.com Git - mirror_qemu.git/blob - exec.c
s390x/skeys: Fix instance and class size
[mirror_qemu.git] / exec.c
1 /*
2 * Virtual page mapping
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "config.h"
20 #ifndef _WIN32
21 #include <sys/types.h>
22 #include <sys/mman.h>
23 #endif
24
25 #include "qemu-common.h"
26 #include "cpu.h"
27 #include "tcg.h"
28 #include "hw/hw.h"
29 #if !defined(CONFIG_USER_ONLY)
30 #include "hw/boards.h"
31 #endif
32 #include "hw/qdev.h"
33 #include "qemu/osdep.h"
34 #include "sysemu/kvm.h"
35 #include "sysemu/sysemu.h"
36 #include "hw/xen/xen.h"
37 #include "qemu/timer.h"
38 #include "qemu/config-file.h"
39 #include "qemu/error-report.h"
40 #include "exec/memory.h"
41 #include "sysemu/dma.h"
42 #include "exec/address-spaces.h"
43 #if defined(CONFIG_USER_ONLY)
44 #include <qemu.h>
45 #else /* !CONFIG_USER_ONLY */
46 #include "sysemu/xen-mapcache.h"
47 #include "trace.h"
48 #endif
49 #include "exec/cpu-all.h"
50 #include "qemu/rcu_queue.h"
51 #include "qemu/main-loop.h"
52 #include "translate-all.h"
53 #include "sysemu/replay.h"
54
55 #include "exec/memory-internal.h"
56 #include "exec/ram_addr.h"
57
58 #include "qemu/range.h"
59 #ifndef _WIN32
60 #include "qemu/mmap-alloc.h"
61 #endif
62
63 //#define DEBUG_SUBPAGE
64
65 #if !defined(CONFIG_USER_ONLY)
66 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
67 * are protected by the ramlist lock.
68 */
69 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
70
71 static MemoryRegion *system_memory;
72 static MemoryRegion *system_io;
73
74 AddressSpace address_space_io;
75 AddressSpace address_space_memory;
76
77 MemoryRegion io_mem_rom, io_mem_notdirty;
78 static MemoryRegion io_mem_unassigned;
79
80 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
81 #define RAM_PREALLOC (1 << 0)
82
83 /* RAM is mmap-ed with MAP_SHARED */
84 #define RAM_SHARED (1 << 1)
85
86 /* Only a portion of RAM (used_length) is actually used, and migrated.
87 * This used_length size can change across reboots.
88 */
89 #define RAM_RESIZEABLE (1 << 2)
90
91 #endif
92
93 struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
94 /* current CPU in the current thread. It is only valid inside
95 cpu_exec() */
96 __thread CPUState *current_cpu;
97 /* 0 = Do not count executed instructions.
98 1 = Precise instruction counting.
99 2 = Adaptive rate instruction counting. */
100 int use_icount;
101
102 #if !defined(CONFIG_USER_ONLY)
103
104 typedef struct PhysPageEntry PhysPageEntry;
105
106 struct PhysPageEntry {
107 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
108 uint32_t skip : 6;
109 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
110 uint32_t ptr : 26;
111 };
112
113 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
114
115 /* Size of the L2 (and L3, etc) page tables. */
116 #define ADDR_SPACE_BITS 64
117
118 #define P_L2_BITS 9
119 #define P_L2_SIZE (1 << P_L2_BITS)
120
121 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
122
123 typedef PhysPageEntry Node[P_L2_SIZE];
124
125 typedef struct PhysPageMap {
126 struct rcu_head rcu;
127
128 unsigned sections_nb;
129 unsigned sections_nb_alloc;
130 unsigned nodes_nb;
131 unsigned nodes_nb_alloc;
132 Node *nodes;
133 MemoryRegionSection *sections;
134 } PhysPageMap;
135
136 struct AddressSpaceDispatch {
137 struct rcu_head rcu;
138
139 /* This is a multi-level map on the physical address space.
140 * The bottom level has pointers to MemoryRegionSections.
141 */
142 PhysPageEntry phys_map;
143 PhysPageMap map;
144 AddressSpace *as;
145 };
146
147 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
148 typedef struct subpage_t {
149 MemoryRegion iomem;
150 AddressSpace *as;
151 hwaddr base;
152 uint16_t sub_section[TARGET_PAGE_SIZE];
153 } subpage_t;
154
155 #define PHYS_SECTION_UNASSIGNED 0
156 #define PHYS_SECTION_NOTDIRTY 1
157 #define PHYS_SECTION_ROM 2
158 #define PHYS_SECTION_WATCH 3
159
160 static void io_mem_init(void);
161 static void memory_map_init(void);
162 static void tcg_commit(MemoryListener *listener);
163
164 static MemoryRegion io_mem_watch;
165
166 /**
167 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
168 * @cpu: the CPU whose AddressSpace this is
169 * @as: the AddressSpace itself
170 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
171 * @tcg_as_listener: listener for tracking changes to the AddressSpace
172 */
173 struct CPUAddressSpace {
174 CPUState *cpu;
175 AddressSpace *as;
176 struct AddressSpaceDispatch *memory_dispatch;
177 MemoryListener tcg_as_listener;
178 };
179
180 #endif
181
182 #if !defined(CONFIG_USER_ONLY)
183
184 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
185 {
186 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
187 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc * 2, 16);
188 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
189 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
190 }
191 }
192
193 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
194 {
195 unsigned i;
196 uint32_t ret;
197 PhysPageEntry e;
198 PhysPageEntry *p;
199
200 ret = map->nodes_nb++;
201 p = map->nodes[ret];
202 assert(ret != PHYS_MAP_NODE_NIL);
203 assert(ret != map->nodes_nb_alloc);
204
205 e.skip = leaf ? 0 : 1;
206 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
207 for (i = 0; i < P_L2_SIZE; ++i) {
208 memcpy(&p[i], &e, sizeof(e));
209 }
210 return ret;
211 }
212
213 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
214 hwaddr *index, hwaddr *nb, uint16_t leaf,
215 int level)
216 {
217 PhysPageEntry *p;
218 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
219
220 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
221 lp->ptr = phys_map_node_alloc(map, level == 0);
222 }
223 p = map->nodes[lp->ptr];
224 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
225
226 while (*nb && lp < &p[P_L2_SIZE]) {
227 if ((*index & (step - 1)) == 0 && *nb >= step) {
228 lp->skip = 0;
229 lp->ptr = leaf;
230 *index += step;
231 *nb -= step;
232 } else {
233 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
234 }
235 ++lp;
236 }
237 }
238
239 static void phys_page_set(AddressSpaceDispatch *d,
240 hwaddr index, hwaddr nb,
241 uint16_t leaf)
242 {
243 /* Wildly overreserve - it doesn't matter much. */
244 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
245
246 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
247 }
248
249 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
250 * and update our entry so we can skip it and go directly to the destination.
251 */
252 static void phys_page_compact(PhysPageEntry *lp, Node *nodes, unsigned long *compacted)
253 {
254 unsigned valid_ptr = P_L2_SIZE;
255 int valid = 0;
256 PhysPageEntry *p;
257 int i;
258
259 if (lp->ptr == PHYS_MAP_NODE_NIL) {
260 return;
261 }
262
263 p = nodes[lp->ptr];
264 for (i = 0; i < P_L2_SIZE; i++) {
265 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
266 continue;
267 }
268
269 valid_ptr = i;
270 valid++;
271 if (p[i].skip) {
272 phys_page_compact(&p[i], nodes, compacted);
273 }
274 }
275
276 /* We can only compress if there's only one child. */
277 if (valid != 1) {
278 return;
279 }
280
281 assert(valid_ptr < P_L2_SIZE);
282
283 /* Don't compress if it won't fit in the # of bits we have. */
284 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
285 return;
286 }
287
288 lp->ptr = p[valid_ptr].ptr;
289 if (!p[valid_ptr].skip) {
290 /* If our only child is a leaf, make this a leaf. */
291 /* By design, we should have made this node a leaf to begin with so we
292 * should never reach here.
293 * But since it's so simple to handle this, let's do it just in case we
294 * change this rule.
295 */
296 lp->skip = 0;
297 } else {
298 lp->skip += p[valid_ptr].skip;
299 }
300 }
301
302 static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb)
303 {
304 DECLARE_BITMAP(compacted, nodes_nb);
305
306 if (d->phys_map.skip) {
307 phys_page_compact(&d->phys_map, d->map.nodes, compacted);
308 }
309 }
310
311 static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr addr,
312 Node *nodes, MemoryRegionSection *sections)
313 {
314 PhysPageEntry *p;
315 hwaddr index = addr >> TARGET_PAGE_BITS;
316 int i;
317
318 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
319 if (lp.ptr == PHYS_MAP_NODE_NIL) {
320 return &sections[PHYS_SECTION_UNASSIGNED];
321 }
322 p = nodes[lp.ptr];
323 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
324 }
325
326 if (sections[lp.ptr].size.hi ||
327 range_covers_byte(sections[lp.ptr].offset_within_address_space,
328 sections[lp.ptr].size.lo, addr)) {
329 return &sections[lp.ptr];
330 } else {
331 return &sections[PHYS_SECTION_UNASSIGNED];
332 }
333 }
334
335 bool memory_region_is_unassigned(MemoryRegion *mr)
336 {
337 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
338 && mr != &io_mem_watch;
339 }
340
341 /* Called from RCU critical section */
342 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
343 hwaddr addr,
344 bool resolve_subpage)
345 {
346 MemoryRegionSection *section;
347 subpage_t *subpage;
348
349 section = phys_page_find(d->phys_map, addr, d->map.nodes, d->map.sections);
350 if (resolve_subpage && section->mr->subpage) {
351 subpage = container_of(section->mr, subpage_t, iomem);
352 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
353 }
354 return section;
355 }
356
357 /* Called from RCU critical section */
358 static MemoryRegionSection *
359 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
360 hwaddr *plen, bool resolve_subpage)
361 {
362 MemoryRegionSection *section;
363 MemoryRegion *mr;
364 Int128 diff;
365
366 section = address_space_lookup_region(d, addr, resolve_subpage);
367 /* Compute offset within MemoryRegionSection */
368 addr -= section->offset_within_address_space;
369
370 /* Compute offset within MemoryRegion */
371 *xlat = addr + section->offset_within_region;
372
373 mr = section->mr;
374
375 /* MMIO registers can be expected to perform full-width accesses based only
376 * on their address, without considering adjacent registers that could
377 * decode to completely different MemoryRegions. When such registers
378 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
379 * regions overlap wildly. For this reason we cannot clamp the accesses
380 * here.
381 *
382 * If the length is small (as is the case for address_space_ldl/stl),
383 * everything works fine. If the incoming length is large, however,
384 * the caller really has to do the clamping through memory_access_size.
385 */
386 if (memory_region_is_ram(mr)) {
387 diff = int128_sub(section->size, int128_make64(addr));
388 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
389 }
390 return section;
391 }
392
393 /* Called from RCU critical section */
394 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
395 hwaddr *xlat, hwaddr *plen,
396 bool is_write)
397 {
398 IOMMUTLBEntry iotlb;
399 MemoryRegionSection *section;
400 MemoryRegion *mr;
401
402 for (;;) {
403 AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch);
404 section = address_space_translate_internal(d, addr, &addr, plen, true);
405 mr = section->mr;
406
407 if (!mr->iommu_ops) {
408 break;
409 }
410
411 iotlb = mr->iommu_ops->translate(mr, addr, is_write);
412 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
413 | (addr & iotlb.addr_mask));
414 *plen = MIN(*plen, (addr | iotlb.addr_mask) - addr + 1);
415 if (!(iotlb.perm & (1 << is_write))) {
416 mr = &io_mem_unassigned;
417 break;
418 }
419
420 as = iotlb.target_as;
421 }
422
423 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
424 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
425 *plen = MIN(page, *plen);
426 }
427
428 *xlat = addr;
429 return mr;
430 }
431
432 /* Called from RCU critical section */
433 MemoryRegionSection *
434 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
435 hwaddr *xlat, hwaddr *plen)
436 {
437 MemoryRegionSection *section;
438 AddressSpaceDispatch *d = cpu->cpu_ases[asidx].memory_dispatch;
439
440 section = address_space_translate_internal(d, addr, xlat, plen, false);
441
442 assert(!section->mr->iommu_ops);
443 return section;
444 }
445 #endif
446
447 #if !defined(CONFIG_USER_ONLY)
448
449 static int cpu_common_post_load(void *opaque, int version_id)
450 {
451 CPUState *cpu = opaque;
452
453 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
454 version_id is increased. */
455 cpu->interrupt_request &= ~0x01;
456 tlb_flush(cpu, 1);
457
458 return 0;
459 }
460
461 static int cpu_common_pre_load(void *opaque)
462 {
463 CPUState *cpu = opaque;
464
465 cpu->exception_index = -1;
466
467 return 0;
468 }
469
470 static bool cpu_common_exception_index_needed(void *opaque)
471 {
472 CPUState *cpu = opaque;
473
474 return tcg_enabled() && cpu->exception_index != -1;
475 }
476
477 static const VMStateDescription vmstate_cpu_common_exception_index = {
478 .name = "cpu_common/exception_index",
479 .version_id = 1,
480 .minimum_version_id = 1,
481 .needed = cpu_common_exception_index_needed,
482 .fields = (VMStateField[]) {
483 VMSTATE_INT32(exception_index, CPUState),
484 VMSTATE_END_OF_LIST()
485 }
486 };
487
488 static bool cpu_common_crash_occurred_needed(void *opaque)
489 {
490 CPUState *cpu = opaque;
491
492 return cpu->crash_occurred;
493 }
494
495 static const VMStateDescription vmstate_cpu_common_crash_occurred = {
496 .name = "cpu_common/crash_occurred",
497 .version_id = 1,
498 .minimum_version_id = 1,
499 .needed = cpu_common_crash_occurred_needed,
500 .fields = (VMStateField[]) {
501 VMSTATE_BOOL(crash_occurred, CPUState),
502 VMSTATE_END_OF_LIST()
503 }
504 };
505
506 const VMStateDescription vmstate_cpu_common = {
507 .name = "cpu_common",
508 .version_id = 1,
509 .minimum_version_id = 1,
510 .pre_load = cpu_common_pre_load,
511 .post_load = cpu_common_post_load,
512 .fields = (VMStateField[]) {
513 VMSTATE_UINT32(halted, CPUState),
514 VMSTATE_UINT32(interrupt_request, CPUState),
515 VMSTATE_END_OF_LIST()
516 },
517 .subsections = (const VMStateDescription*[]) {
518 &vmstate_cpu_common_exception_index,
519 &vmstate_cpu_common_crash_occurred,
520 NULL
521 }
522 };
523
524 #endif
525
526 CPUState *qemu_get_cpu(int index)
527 {
528 CPUState *cpu;
529
530 CPU_FOREACH(cpu) {
531 if (cpu->cpu_index == index) {
532 return cpu;
533 }
534 }
535
536 return NULL;
537 }
538
539 #if !defined(CONFIG_USER_ONLY)
540 void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx)
541 {
542 CPUAddressSpace *newas;
543
544 /* Target code should have set num_ases before calling us */
545 assert(asidx < cpu->num_ases);
546
547 if (asidx == 0) {
548 /* address space 0 gets the convenience alias */
549 cpu->as = as;
550 }
551
552 /* KVM cannot currently support multiple address spaces. */
553 assert(asidx == 0 || !kvm_enabled());
554
555 if (!cpu->cpu_ases) {
556 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
557 }
558
559 newas = &cpu->cpu_ases[asidx];
560 newas->cpu = cpu;
561 newas->as = as;
562 if (tcg_enabled()) {
563 newas->tcg_as_listener.commit = tcg_commit;
564 memory_listener_register(&newas->tcg_as_listener, as);
565 }
566 }
567
568 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
569 {
570 /* Return the AddressSpace corresponding to the specified index */
571 return cpu->cpu_ases[asidx].as;
572 }
573 #endif
574
575 #ifndef CONFIG_USER_ONLY
576 static DECLARE_BITMAP(cpu_index_map, MAX_CPUMASK_BITS);
577
578 static int cpu_get_free_index(Error **errp)
579 {
580 int cpu = find_first_zero_bit(cpu_index_map, MAX_CPUMASK_BITS);
581
582 if (cpu >= MAX_CPUMASK_BITS) {
583 error_setg(errp, "Trying to use more CPUs than max of %d",
584 MAX_CPUMASK_BITS);
585 return -1;
586 }
587
588 bitmap_set(cpu_index_map, cpu, 1);
589 return cpu;
590 }
591
592 void cpu_exec_exit(CPUState *cpu)
593 {
594 if (cpu->cpu_index == -1) {
595 /* cpu_index was never allocated by this @cpu or was already freed. */
596 return;
597 }
598
599 bitmap_clear(cpu_index_map, cpu->cpu_index, 1);
600 cpu->cpu_index = -1;
601 }
602 #else
603
604 static int cpu_get_free_index(Error **errp)
605 {
606 CPUState *some_cpu;
607 int cpu_index = 0;
608
609 CPU_FOREACH(some_cpu) {
610 cpu_index++;
611 }
612 return cpu_index;
613 }
614
615 void cpu_exec_exit(CPUState *cpu)
616 {
617 }
618 #endif
619
620 void cpu_exec_init(CPUState *cpu, Error **errp)
621 {
622 CPUClass *cc = CPU_GET_CLASS(cpu);
623 int cpu_index;
624 Error *local_err = NULL;
625
626 cpu->as = NULL;
627 cpu->num_ases = 0;
628
629 #ifndef CONFIG_USER_ONLY
630 cpu->thread_id = qemu_get_thread_id();
631
632 /* This is a softmmu CPU object, so create a property for it
633 * so users can wire up its memory. (This can't go in qom/cpu.c
634 * because that file is compiled only once for both user-mode
635 * and system builds.) The default if no link is set up is to use
636 * the system address space.
637 */
638 object_property_add_link(OBJECT(cpu), "memory", TYPE_MEMORY_REGION,
639 (Object **)&cpu->memory,
640 qdev_prop_allow_set_link_before_realize,
641 OBJ_PROP_LINK_UNREF_ON_RELEASE,
642 &error_abort);
643 cpu->memory = system_memory;
644 object_ref(OBJECT(cpu->memory));
645 #endif
646
647 #if defined(CONFIG_USER_ONLY)
648 cpu_list_lock();
649 #endif
650 cpu_index = cpu->cpu_index = cpu_get_free_index(&local_err);
651 if (local_err) {
652 error_propagate(errp, local_err);
653 #if defined(CONFIG_USER_ONLY)
654 cpu_list_unlock();
655 #endif
656 return;
657 }
658 QTAILQ_INSERT_TAIL(&cpus, cpu, node);
659 #if defined(CONFIG_USER_ONLY)
660 cpu_list_unlock();
661 #endif
662 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
663 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu);
664 }
665 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
666 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
667 cpu_save, cpu_load, cpu->env_ptr);
668 assert(cc->vmsd == NULL);
669 assert(qdev_get_vmsd(DEVICE(cpu)) == NULL);
670 #endif
671 if (cc->vmsd != NULL) {
672 vmstate_register(NULL, cpu_index, cc->vmsd, cpu);
673 }
674 }
675
676 #if defined(CONFIG_USER_ONLY)
677 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
678 {
679 tb_invalidate_phys_page_range(pc, pc + 1, 0);
680 }
681 #else
682 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
683 {
684 MemTxAttrs attrs;
685 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
686 int asidx = cpu_asidx_from_attrs(cpu, attrs);
687 if (phys != -1) {
688 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
689 phys | (pc & ~TARGET_PAGE_MASK));
690 }
691 }
692 #endif
693
694 #if defined(CONFIG_USER_ONLY)
695 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
696
697 {
698 }
699
700 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
701 int flags)
702 {
703 return -ENOSYS;
704 }
705
706 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
707 {
708 }
709
710 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
711 int flags, CPUWatchpoint **watchpoint)
712 {
713 return -ENOSYS;
714 }
715 #else
716 /* Add a watchpoint. */
717 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
718 int flags, CPUWatchpoint **watchpoint)
719 {
720 CPUWatchpoint *wp;
721
722 /* forbid ranges which are empty or run off the end of the address space */
723 if (len == 0 || (addr + len - 1) < addr) {
724 error_report("tried to set invalid watchpoint at %"
725 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
726 return -EINVAL;
727 }
728 wp = g_malloc(sizeof(*wp));
729
730 wp->vaddr = addr;
731 wp->len = len;
732 wp->flags = flags;
733
734 /* keep all GDB-injected watchpoints in front */
735 if (flags & BP_GDB) {
736 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
737 } else {
738 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
739 }
740
741 tlb_flush_page(cpu, addr);
742
743 if (watchpoint)
744 *watchpoint = wp;
745 return 0;
746 }
747
748 /* Remove a specific watchpoint. */
749 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
750 int flags)
751 {
752 CPUWatchpoint *wp;
753
754 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
755 if (addr == wp->vaddr && len == wp->len
756 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
757 cpu_watchpoint_remove_by_ref(cpu, wp);
758 return 0;
759 }
760 }
761 return -ENOENT;
762 }
763
764 /* Remove a specific watchpoint by reference. */
765 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
766 {
767 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
768
769 tlb_flush_page(cpu, watchpoint->vaddr);
770
771 g_free(watchpoint);
772 }
773
774 /* Remove all matching watchpoints. */
775 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
776 {
777 CPUWatchpoint *wp, *next;
778
779 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
780 if (wp->flags & mask) {
781 cpu_watchpoint_remove_by_ref(cpu, wp);
782 }
783 }
784 }
785
786 /* Return true if this watchpoint address matches the specified
787 * access (ie the address range covered by the watchpoint overlaps
788 * partially or completely with the address range covered by the
789 * access).
790 */
791 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
792 vaddr addr,
793 vaddr len)
794 {
795 /* We know the lengths are non-zero, but a little caution is
796 * required to avoid errors in the case where the range ends
797 * exactly at the top of the address space and so addr + len
798 * wraps round to zero.
799 */
800 vaddr wpend = wp->vaddr + wp->len - 1;
801 vaddr addrend = addr + len - 1;
802
803 return !(addr > wpend || wp->vaddr > addrend);
804 }
805
806 #endif
807
808 /* Add a breakpoint. */
809 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
810 CPUBreakpoint **breakpoint)
811 {
812 CPUBreakpoint *bp;
813
814 bp = g_malloc(sizeof(*bp));
815
816 bp->pc = pc;
817 bp->flags = flags;
818
819 /* keep all GDB-injected breakpoints in front */
820 if (flags & BP_GDB) {
821 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
822 } else {
823 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
824 }
825
826 breakpoint_invalidate(cpu, pc);
827
828 if (breakpoint) {
829 *breakpoint = bp;
830 }
831 return 0;
832 }
833
834 /* Remove a specific breakpoint. */
835 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
836 {
837 CPUBreakpoint *bp;
838
839 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
840 if (bp->pc == pc && bp->flags == flags) {
841 cpu_breakpoint_remove_by_ref(cpu, bp);
842 return 0;
843 }
844 }
845 return -ENOENT;
846 }
847
848 /* Remove a specific breakpoint by reference. */
849 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
850 {
851 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
852
853 breakpoint_invalidate(cpu, breakpoint->pc);
854
855 g_free(breakpoint);
856 }
857
858 /* Remove all matching breakpoints. */
859 void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
860 {
861 CPUBreakpoint *bp, *next;
862
863 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
864 if (bp->flags & mask) {
865 cpu_breakpoint_remove_by_ref(cpu, bp);
866 }
867 }
868 }
869
870 /* enable or disable single step mode. EXCP_DEBUG is returned by the
871 CPU loop after each instruction */
872 void cpu_single_step(CPUState *cpu, int enabled)
873 {
874 if (cpu->singlestep_enabled != enabled) {
875 cpu->singlestep_enabled = enabled;
876 if (kvm_enabled()) {
877 kvm_update_guest_debug(cpu, 0);
878 } else {
879 /* must flush all the translated code to avoid inconsistencies */
880 /* XXX: only flush what is necessary */
881 tb_flush(cpu);
882 }
883 }
884 }
885
886 void cpu_abort(CPUState *cpu, const char *fmt, ...)
887 {
888 va_list ap;
889 va_list ap2;
890
891 va_start(ap, fmt);
892 va_copy(ap2, ap);
893 fprintf(stderr, "qemu: fatal: ");
894 vfprintf(stderr, fmt, ap);
895 fprintf(stderr, "\n");
896 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
897 if (qemu_log_separate()) {
898 qemu_log("qemu: fatal: ");
899 qemu_log_vprintf(fmt, ap2);
900 qemu_log("\n");
901 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
902 qemu_log_flush();
903 qemu_log_close();
904 }
905 va_end(ap2);
906 va_end(ap);
907 replay_finish();
908 #if defined(CONFIG_USER_ONLY)
909 {
910 struct sigaction act;
911 sigfillset(&act.sa_mask);
912 act.sa_handler = SIG_DFL;
913 sigaction(SIGABRT, &act, NULL);
914 }
915 #endif
916 abort();
917 }
918
919 #if !defined(CONFIG_USER_ONLY)
920 /* Called from RCU critical section */
921 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
922 {
923 RAMBlock *block;
924
925 block = atomic_rcu_read(&ram_list.mru_block);
926 if (block && addr - block->offset < block->max_length) {
927 return block;
928 }
929 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
930 if (addr - block->offset < block->max_length) {
931 goto found;
932 }
933 }
934
935 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
936 abort();
937
938 found:
939 /* It is safe to write mru_block outside the iothread lock. This
940 * is what happens:
941 *
942 * mru_block = xxx
943 * rcu_read_unlock()
944 * xxx removed from list
945 * rcu_read_lock()
946 * read mru_block
947 * mru_block = NULL;
948 * call_rcu(reclaim_ramblock, xxx);
949 * rcu_read_unlock()
950 *
951 * atomic_rcu_set is not needed here. The block was already published
952 * when it was placed into the list. Here we're just making an extra
953 * copy of the pointer.
954 */
955 ram_list.mru_block = block;
956 return block;
957 }
958
959 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
960 {
961 CPUState *cpu;
962 ram_addr_t start1;
963 RAMBlock *block;
964 ram_addr_t end;
965
966 end = TARGET_PAGE_ALIGN(start + length);
967 start &= TARGET_PAGE_MASK;
968
969 rcu_read_lock();
970 block = qemu_get_ram_block(start);
971 assert(block == qemu_get_ram_block(end - 1));
972 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
973 CPU_FOREACH(cpu) {
974 tlb_reset_dirty(cpu, start1, length);
975 }
976 rcu_read_unlock();
977 }
978
979 /* Note: start and end must be within the same ram block. */
980 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
981 ram_addr_t length,
982 unsigned client)
983 {
984 unsigned long end, page;
985 bool dirty;
986
987 if (length == 0) {
988 return false;
989 }
990
991 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
992 page = start >> TARGET_PAGE_BITS;
993 dirty = bitmap_test_and_clear_atomic(ram_list.dirty_memory[client],
994 page, end - page);
995
996 if (dirty && tcg_enabled()) {
997 tlb_reset_dirty_range_all(start, length);
998 }
999
1000 return dirty;
1001 }
1002
1003 /* Called from RCU critical section */
1004 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1005 MemoryRegionSection *section,
1006 target_ulong vaddr,
1007 hwaddr paddr, hwaddr xlat,
1008 int prot,
1009 target_ulong *address)
1010 {
1011 hwaddr iotlb;
1012 CPUWatchpoint *wp;
1013
1014 if (memory_region_is_ram(section->mr)) {
1015 /* Normal RAM. */
1016 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
1017 + xlat;
1018 if (!section->readonly) {
1019 iotlb |= PHYS_SECTION_NOTDIRTY;
1020 } else {
1021 iotlb |= PHYS_SECTION_ROM;
1022 }
1023 } else {
1024 AddressSpaceDispatch *d;
1025
1026 d = atomic_rcu_read(&section->address_space->dispatch);
1027 iotlb = section - d->map.sections;
1028 iotlb += xlat;
1029 }
1030
1031 /* Make accesses to pages with watchpoints go via the
1032 watchpoint trap routines. */
1033 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1034 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
1035 /* Avoid trapping reads of pages with a write breakpoint. */
1036 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
1037 iotlb = PHYS_SECTION_WATCH + paddr;
1038 *address |= TLB_MMIO;
1039 break;
1040 }
1041 }
1042 }
1043
1044 return iotlb;
1045 }
1046 #endif /* defined(CONFIG_USER_ONLY) */
1047
1048 #if !defined(CONFIG_USER_ONLY)
1049
1050 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1051 uint16_t section);
1052 static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
1053
1054 static void *(*phys_mem_alloc)(size_t size, uint64_t *align) =
1055 qemu_anon_ram_alloc;
1056
1057 /*
1058 * Set a custom physical guest memory alloator.
1059 * Accelerators with unusual needs may need this. Hopefully, we can
1060 * get rid of it eventually.
1061 */
1062 void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align))
1063 {
1064 phys_mem_alloc = alloc;
1065 }
1066
1067 static uint16_t phys_section_add(PhysPageMap *map,
1068 MemoryRegionSection *section)
1069 {
1070 /* The physical section number is ORed with a page-aligned
1071 * pointer to produce the iotlb entries. Thus it should
1072 * never overflow into the page-aligned value.
1073 */
1074 assert(map->sections_nb < TARGET_PAGE_SIZE);
1075
1076 if (map->sections_nb == map->sections_nb_alloc) {
1077 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1078 map->sections = g_renew(MemoryRegionSection, map->sections,
1079 map->sections_nb_alloc);
1080 }
1081 map->sections[map->sections_nb] = *section;
1082 memory_region_ref(section->mr);
1083 return map->sections_nb++;
1084 }
1085
1086 static void phys_section_destroy(MemoryRegion *mr)
1087 {
1088 bool have_sub_page = mr->subpage;
1089
1090 memory_region_unref(mr);
1091
1092 if (have_sub_page) {
1093 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1094 object_unref(OBJECT(&subpage->iomem));
1095 g_free(subpage);
1096 }
1097 }
1098
1099 static void phys_sections_free(PhysPageMap *map)
1100 {
1101 while (map->sections_nb > 0) {
1102 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1103 phys_section_destroy(section->mr);
1104 }
1105 g_free(map->sections);
1106 g_free(map->nodes);
1107 }
1108
1109 static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
1110 {
1111 subpage_t *subpage;
1112 hwaddr base = section->offset_within_address_space
1113 & TARGET_PAGE_MASK;
1114 MemoryRegionSection *existing = phys_page_find(d->phys_map, base,
1115 d->map.nodes, d->map.sections);
1116 MemoryRegionSection subsection = {
1117 .offset_within_address_space = base,
1118 .size = int128_make64(TARGET_PAGE_SIZE),
1119 };
1120 hwaddr start, end;
1121
1122 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1123
1124 if (!(existing->mr->subpage)) {
1125 subpage = subpage_init(d->as, base);
1126 subsection.address_space = d->as;
1127 subsection.mr = &subpage->iomem;
1128 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1129 phys_section_add(&d->map, &subsection));
1130 } else {
1131 subpage = container_of(existing->mr, subpage_t, iomem);
1132 }
1133 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1134 end = start + int128_get64(section->size) - 1;
1135 subpage_register(subpage, start, end,
1136 phys_section_add(&d->map, section));
1137 }
1138
1139
1140 static void register_multipage(AddressSpaceDispatch *d,
1141 MemoryRegionSection *section)
1142 {
1143 hwaddr start_addr = section->offset_within_address_space;
1144 uint16_t section_index = phys_section_add(&d->map, section);
1145 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1146 TARGET_PAGE_BITS));
1147
1148 assert(num_pages);
1149 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1150 }
1151
1152 static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
1153 {
1154 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
1155 AddressSpaceDispatch *d = as->next_dispatch;
1156 MemoryRegionSection now = *section, remain = *section;
1157 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1158
1159 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1160 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1161 - now.offset_within_address_space;
1162
1163 now.size = int128_min(int128_make64(left), now.size);
1164 register_subpage(d, &now);
1165 } else {
1166 now.size = int128_zero();
1167 }
1168 while (int128_ne(remain.size, now.size)) {
1169 remain.size = int128_sub(remain.size, now.size);
1170 remain.offset_within_address_space += int128_get64(now.size);
1171 remain.offset_within_region += int128_get64(now.size);
1172 now = remain;
1173 if (int128_lt(remain.size, page_size)) {
1174 register_subpage(d, &now);
1175 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1176 now.size = page_size;
1177 register_subpage(d, &now);
1178 } else {
1179 now.size = int128_and(now.size, int128_neg(page_size));
1180 register_multipage(d, &now);
1181 }
1182 }
1183 }
1184
1185 void qemu_flush_coalesced_mmio_buffer(void)
1186 {
1187 if (kvm_enabled())
1188 kvm_flush_coalesced_mmio_buffer();
1189 }
1190
1191 void qemu_mutex_lock_ramlist(void)
1192 {
1193 qemu_mutex_lock(&ram_list.mutex);
1194 }
1195
1196 void qemu_mutex_unlock_ramlist(void)
1197 {
1198 qemu_mutex_unlock(&ram_list.mutex);
1199 }
1200
1201 #ifdef __linux__
1202
1203 #include <sys/vfs.h>
1204
1205 #define HUGETLBFS_MAGIC 0x958458f6
1206
1207 static long gethugepagesize(const char *path, Error **errp)
1208 {
1209 struct statfs fs;
1210 int ret;
1211
1212 do {
1213 ret = statfs(path, &fs);
1214 } while (ret != 0 && errno == EINTR);
1215
1216 if (ret != 0) {
1217 error_setg_errno(errp, errno, "failed to get page size of file %s",
1218 path);
1219 return 0;
1220 }
1221
1222 return fs.f_bsize;
1223 }
1224
1225 static void *file_ram_alloc(RAMBlock *block,
1226 ram_addr_t memory,
1227 const char *path,
1228 Error **errp)
1229 {
1230 struct stat st;
1231 char *filename;
1232 char *sanitized_name;
1233 char *c;
1234 void *area;
1235 int fd;
1236 uint64_t hpagesize;
1237 Error *local_err = NULL;
1238
1239 hpagesize = gethugepagesize(path, &local_err);
1240 if (local_err) {
1241 error_propagate(errp, local_err);
1242 goto error;
1243 }
1244 block->mr->align = hpagesize;
1245
1246 if (memory < hpagesize) {
1247 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1248 "or larger than huge page size 0x%" PRIx64,
1249 memory, hpagesize);
1250 goto error;
1251 }
1252
1253 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1254 error_setg(errp,
1255 "host lacks kvm mmu notifiers, -mem-path unsupported");
1256 goto error;
1257 }
1258
1259 if (!stat(path, &st) && S_ISDIR(st.st_mode)) {
1260 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1261 sanitized_name = g_strdup(memory_region_name(block->mr));
1262 for (c = sanitized_name; *c != '\0'; c++) {
1263 if (*c == '/') {
1264 *c = '_';
1265 }
1266 }
1267
1268 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1269 sanitized_name);
1270 g_free(sanitized_name);
1271
1272 fd = mkstemp(filename);
1273 if (fd >= 0) {
1274 unlink(filename);
1275 }
1276 g_free(filename);
1277 } else {
1278 fd = open(path, O_RDWR | O_CREAT, 0644);
1279 }
1280
1281 if (fd < 0) {
1282 error_setg_errno(errp, errno,
1283 "unable to create backing store for hugepages");
1284 goto error;
1285 }
1286
1287 memory = ROUND_UP(memory, hpagesize);
1288
1289 /*
1290 * ftruncate is not supported by hugetlbfs in older
1291 * hosts, so don't bother bailing out on errors.
1292 * If anything goes wrong with it under other filesystems,
1293 * mmap will fail.
1294 */
1295 if (ftruncate(fd, memory)) {
1296 perror("ftruncate");
1297 }
1298
1299 area = qemu_ram_mmap(fd, memory, hpagesize, block->flags & RAM_SHARED);
1300 if (area == MAP_FAILED) {
1301 error_setg_errno(errp, errno,
1302 "unable to map backing store for hugepages");
1303 close(fd);
1304 goto error;
1305 }
1306
1307 if (mem_prealloc) {
1308 os_mem_prealloc(fd, area, memory);
1309 }
1310
1311 block->fd = fd;
1312 return area;
1313
1314 error:
1315 return NULL;
1316 }
1317 #endif
1318
1319 /* Called with the ramlist lock held. */
1320 static ram_addr_t find_ram_offset(ram_addr_t size)
1321 {
1322 RAMBlock *block, *next_block;
1323 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1324
1325 assert(size != 0); /* it would hand out same offset multiple times */
1326
1327 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1328 return 0;
1329 }
1330
1331 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1332 ram_addr_t end, next = RAM_ADDR_MAX;
1333
1334 end = block->offset + block->max_length;
1335
1336 QLIST_FOREACH_RCU(next_block, &ram_list.blocks, next) {
1337 if (next_block->offset >= end) {
1338 next = MIN(next, next_block->offset);
1339 }
1340 }
1341 if (next - end >= size && next - end < mingap) {
1342 offset = end;
1343 mingap = next - end;
1344 }
1345 }
1346
1347 if (offset == RAM_ADDR_MAX) {
1348 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1349 (uint64_t)size);
1350 abort();
1351 }
1352
1353 return offset;
1354 }
1355
1356 ram_addr_t last_ram_offset(void)
1357 {
1358 RAMBlock *block;
1359 ram_addr_t last = 0;
1360
1361 rcu_read_lock();
1362 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1363 last = MAX(last, block->offset + block->max_length);
1364 }
1365 rcu_read_unlock();
1366 return last;
1367 }
1368
1369 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1370 {
1371 int ret;
1372
1373 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1374 if (!machine_dump_guest_core(current_machine)) {
1375 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1376 if (ret) {
1377 perror("qemu_madvise");
1378 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1379 "but dump_guest_core=off specified\n");
1380 }
1381 }
1382 }
1383
1384 /* Called within an RCU critical section, or while the ramlist lock
1385 * is held.
1386 */
1387 static RAMBlock *find_ram_block(ram_addr_t addr)
1388 {
1389 RAMBlock *block;
1390
1391 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1392 if (block->offset == addr) {
1393 return block;
1394 }
1395 }
1396
1397 return NULL;
1398 }
1399
1400 const char *qemu_ram_get_idstr(RAMBlock *rb)
1401 {
1402 return rb->idstr;
1403 }
1404
1405 /* Called with iothread lock held. */
1406 void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
1407 {
1408 RAMBlock *new_block, *block;
1409
1410 rcu_read_lock();
1411 new_block = find_ram_block(addr);
1412 assert(new_block);
1413 assert(!new_block->idstr[0]);
1414
1415 if (dev) {
1416 char *id = qdev_get_dev_path(dev);
1417 if (id) {
1418 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1419 g_free(id);
1420 }
1421 }
1422 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1423
1424 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1425 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
1426 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1427 new_block->idstr);
1428 abort();
1429 }
1430 }
1431 rcu_read_unlock();
1432 }
1433
1434 /* Called with iothread lock held. */
1435 void qemu_ram_unset_idstr(ram_addr_t addr)
1436 {
1437 RAMBlock *block;
1438
1439 /* FIXME: arch_init.c assumes that this is not called throughout
1440 * migration. Ignore the problem since hot-unplug during migration
1441 * does not work anyway.
1442 */
1443
1444 rcu_read_lock();
1445 block = find_ram_block(addr);
1446 if (block) {
1447 memset(block->idstr, 0, sizeof(block->idstr));
1448 }
1449 rcu_read_unlock();
1450 }
1451
1452 static int memory_try_enable_merging(void *addr, size_t len)
1453 {
1454 if (!machine_mem_merge(current_machine)) {
1455 /* disabled by the user */
1456 return 0;
1457 }
1458
1459 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1460 }
1461
1462 /* Only legal before guest might have detected the memory size: e.g. on
1463 * incoming migration, or right after reset.
1464 *
1465 * As memory core doesn't know how is memory accessed, it is up to
1466 * resize callback to update device state and/or add assertions to detect
1467 * misuse, if necessary.
1468 */
1469 int qemu_ram_resize(ram_addr_t base, ram_addr_t newsize, Error **errp)
1470 {
1471 RAMBlock *block = find_ram_block(base);
1472
1473 assert(block);
1474
1475 newsize = HOST_PAGE_ALIGN(newsize);
1476
1477 if (block->used_length == newsize) {
1478 return 0;
1479 }
1480
1481 if (!(block->flags & RAM_RESIZEABLE)) {
1482 error_setg_errno(errp, EINVAL,
1483 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1484 " in != 0x" RAM_ADDR_FMT, block->idstr,
1485 newsize, block->used_length);
1486 return -EINVAL;
1487 }
1488
1489 if (block->max_length < newsize) {
1490 error_setg_errno(errp, EINVAL,
1491 "Length too large: %s: 0x" RAM_ADDR_FMT
1492 " > 0x" RAM_ADDR_FMT, block->idstr,
1493 newsize, block->max_length);
1494 return -EINVAL;
1495 }
1496
1497 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1498 block->used_length = newsize;
1499 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1500 DIRTY_CLIENTS_ALL);
1501 memory_region_set_size(block->mr, newsize);
1502 if (block->resized) {
1503 block->resized(block->idstr, newsize, block->host);
1504 }
1505 return 0;
1506 }
1507
1508 static ram_addr_t ram_block_add(RAMBlock *new_block, Error **errp)
1509 {
1510 RAMBlock *block;
1511 RAMBlock *last_block = NULL;
1512 ram_addr_t old_ram_size, new_ram_size;
1513 Error *err = NULL;
1514
1515 old_ram_size = last_ram_offset() >> TARGET_PAGE_BITS;
1516
1517 qemu_mutex_lock_ramlist();
1518 new_block->offset = find_ram_offset(new_block->max_length);
1519
1520 if (!new_block->host) {
1521 if (xen_enabled()) {
1522 xen_ram_alloc(new_block->offset, new_block->max_length,
1523 new_block->mr, &err);
1524 if (err) {
1525 error_propagate(errp, err);
1526 qemu_mutex_unlock_ramlist();
1527 return -1;
1528 }
1529 } else {
1530 new_block->host = phys_mem_alloc(new_block->max_length,
1531 &new_block->mr->align);
1532 if (!new_block->host) {
1533 error_setg_errno(errp, errno,
1534 "cannot set up guest memory '%s'",
1535 memory_region_name(new_block->mr));
1536 qemu_mutex_unlock_ramlist();
1537 return -1;
1538 }
1539 memory_try_enable_merging(new_block->host, new_block->max_length);
1540 }
1541 }
1542
1543 new_ram_size = MAX(old_ram_size,
1544 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1545 if (new_ram_size > old_ram_size) {
1546 migration_bitmap_extend(old_ram_size, new_ram_size);
1547 }
1548 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1549 * QLIST (which has an RCU-friendly variant) does not have insertion at
1550 * tail, so save the last element in last_block.
1551 */
1552 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1553 last_block = block;
1554 if (block->max_length < new_block->max_length) {
1555 break;
1556 }
1557 }
1558 if (block) {
1559 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
1560 } else if (last_block) {
1561 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
1562 } else { /* list is empty */
1563 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
1564 }
1565 ram_list.mru_block = NULL;
1566
1567 /* Write list before version */
1568 smp_wmb();
1569 ram_list.version++;
1570 qemu_mutex_unlock_ramlist();
1571
1572 new_ram_size = last_ram_offset() >> TARGET_PAGE_BITS;
1573
1574 if (new_ram_size > old_ram_size) {
1575 int i;
1576
1577 /* ram_list.dirty_memory[] is protected by the iothread lock. */
1578 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1579 ram_list.dirty_memory[i] =
1580 bitmap_zero_extend(ram_list.dirty_memory[i],
1581 old_ram_size, new_ram_size);
1582 }
1583 }
1584 cpu_physical_memory_set_dirty_range(new_block->offset,
1585 new_block->used_length,
1586 DIRTY_CLIENTS_ALL);
1587
1588 if (new_block->host) {
1589 qemu_ram_setup_dump(new_block->host, new_block->max_length);
1590 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
1591 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
1592 if (kvm_enabled()) {
1593 kvm_setup_guest_memory(new_block->host, new_block->max_length);
1594 }
1595 }
1596
1597 return new_block->offset;
1598 }
1599
1600 #ifdef __linux__
1601 ram_addr_t qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
1602 bool share, const char *mem_path,
1603 Error **errp)
1604 {
1605 RAMBlock *new_block;
1606 ram_addr_t addr;
1607 Error *local_err = NULL;
1608
1609 if (xen_enabled()) {
1610 error_setg(errp, "-mem-path not supported with Xen");
1611 return -1;
1612 }
1613
1614 if (phys_mem_alloc != qemu_anon_ram_alloc) {
1615 /*
1616 * file_ram_alloc() needs to allocate just like
1617 * phys_mem_alloc, but we haven't bothered to provide
1618 * a hook there.
1619 */
1620 error_setg(errp,
1621 "-mem-path not supported with this accelerator");
1622 return -1;
1623 }
1624
1625 size = HOST_PAGE_ALIGN(size);
1626 new_block = g_malloc0(sizeof(*new_block));
1627 new_block->mr = mr;
1628 new_block->used_length = size;
1629 new_block->max_length = size;
1630 new_block->flags = share ? RAM_SHARED : 0;
1631 new_block->host = file_ram_alloc(new_block, size,
1632 mem_path, errp);
1633 if (!new_block->host) {
1634 g_free(new_block);
1635 return -1;
1636 }
1637
1638 addr = ram_block_add(new_block, &local_err);
1639 if (local_err) {
1640 g_free(new_block);
1641 error_propagate(errp, local_err);
1642 return -1;
1643 }
1644 return addr;
1645 }
1646 #endif
1647
1648 static
1649 ram_addr_t qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
1650 void (*resized)(const char*,
1651 uint64_t length,
1652 void *host),
1653 void *host, bool resizeable,
1654 MemoryRegion *mr, Error **errp)
1655 {
1656 RAMBlock *new_block;
1657 ram_addr_t addr;
1658 Error *local_err = NULL;
1659
1660 size = HOST_PAGE_ALIGN(size);
1661 max_size = HOST_PAGE_ALIGN(max_size);
1662 new_block = g_malloc0(sizeof(*new_block));
1663 new_block->mr = mr;
1664 new_block->resized = resized;
1665 new_block->used_length = size;
1666 new_block->max_length = max_size;
1667 assert(max_size >= size);
1668 new_block->fd = -1;
1669 new_block->host = host;
1670 if (host) {
1671 new_block->flags |= RAM_PREALLOC;
1672 }
1673 if (resizeable) {
1674 new_block->flags |= RAM_RESIZEABLE;
1675 }
1676 addr = ram_block_add(new_block, &local_err);
1677 if (local_err) {
1678 g_free(new_block);
1679 error_propagate(errp, local_err);
1680 return -1;
1681 }
1682 return addr;
1683 }
1684
1685 ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
1686 MemoryRegion *mr, Error **errp)
1687 {
1688 return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp);
1689 }
1690
1691 ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp)
1692 {
1693 return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp);
1694 }
1695
1696 ram_addr_t qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
1697 void (*resized)(const char*,
1698 uint64_t length,
1699 void *host),
1700 MemoryRegion *mr, Error **errp)
1701 {
1702 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp);
1703 }
1704
1705 static void reclaim_ramblock(RAMBlock *block)
1706 {
1707 if (block->flags & RAM_PREALLOC) {
1708 ;
1709 } else if (xen_enabled()) {
1710 xen_invalidate_map_cache_entry(block->host);
1711 #ifndef _WIN32
1712 } else if (block->fd >= 0) {
1713 qemu_ram_munmap(block->host, block->max_length);
1714 close(block->fd);
1715 #endif
1716 } else {
1717 qemu_anon_ram_free(block->host, block->max_length);
1718 }
1719 g_free(block);
1720 }
1721
1722 void qemu_ram_free(ram_addr_t addr)
1723 {
1724 RAMBlock *block;
1725
1726 qemu_mutex_lock_ramlist();
1727 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1728 if (addr == block->offset) {
1729 QLIST_REMOVE_RCU(block, next);
1730 ram_list.mru_block = NULL;
1731 /* Write list before version */
1732 smp_wmb();
1733 ram_list.version++;
1734 call_rcu(block, reclaim_ramblock, rcu);
1735 break;
1736 }
1737 }
1738 qemu_mutex_unlock_ramlist();
1739 }
1740
1741 #ifndef _WIN32
1742 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
1743 {
1744 RAMBlock *block;
1745 ram_addr_t offset;
1746 int flags;
1747 void *area, *vaddr;
1748
1749 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1750 offset = addr - block->offset;
1751 if (offset < block->max_length) {
1752 vaddr = ramblock_ptr(block, offset);
1753 if (block->flags & RAM_PREALLOC) {
1754 ;
1755 } else if (xen_enabled()) {
1756 abort();
1757 } else {
1758 flags = MAP_FIXED;
1759 if (block->fd >= 0) {
1760 flags |= (block->flags & RAM_SHARED ?
1761 MAP_SHARED : MAP_PRIVATE);
1762 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1763 flags, block->fd, offset);
1764 } else {
1765 /*
1766 * Remap needs to match alloc. Accelerators that
1767 * set phys_mem_alloc never remap. If they did,
1768 * we'd need a remap hook here.
1769 */
1770 assert(phys_mem_alloc == qemu_anon_ram_alloc);
1771
1772 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1773 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1774 flags, -1, 0);
1775 }
1776 if (area != vaddr) {
1777 fprintf(stderr, "Could not remap addr: "
1778 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
1779 length, addr);
1780 exit(1);
1781 }
1782 memory_try_enable_merging(vaddr, length);
1783 qemu_ram_setup_dump(vaddr, length);
1784 }
1785 }
1786 }
1787 }
1788 #endif /* !_WIN32 */
1789
1790 int qemu_get_ram_fd(ram_addr_t addr)
1791 {
1792 RAMBlock *block;
1793 int fd;
1794
1795 rcu_read_lock();
1796 block = qemu_get_ram_block(addr);
1797 fd = block->fd;
1798 rcu_read_unlock();
1799 return fd;
1800 }
1801
1802 void qemu_set_ram_fd(ram_addr_t addr, int fd)
1803 {
1804 RAMBlock *block;
1805
1806 rcu_read_lock();
1807 block = qemu_get_ram_block(addr);
1808 block->fd = fd;
1809 rcu_read_unlock();
1810 }
1811
1812 void *qemu_get_ram_block_host_ptr(ram_addr_t addr)
1813 {
1814 RAMBlock *block;
1815 void *ptr;
1816
1817 rcu_read_lock();
1818 block = qemu_get_ram_block(addr);
1819 ptr = ramblock_ptr(block, 0);
1820 rcu_read_unlock();
1821 return ptr;
1822 }
1823
1824 /* Return a host pointer to ram allocated with qemu_ram_alloc.
1825 * This should not be used for general purpose DMA. Use address_space_map
1826 * or address_space_rw instead. For local memory (e.g. video ram) that the
1827 * device owns, use memory_region_get_ram_ptr.
1828 *
1829 * Called within RCU critical section.
1830 */
1831 void *qemu_get_ram_ptr(ram_addr_t addr)
1832 {
1833 RAMBlock *block = qemu_get_ram_block(addr);
1834
1835 if (xen_enabled() && block->host == NULL) {
1836 /* We need to check if the requested address is in the RAM
1837 * because we don't want to map the entire memory in QEMU.
1838 * In that case just map until the end of the page.
1839 */
1840 if (block->offset == 0) {
1841 return xen_map_cache(addr, 0, 0);
1842 }
1843
1844 block->host = xen_map_cache(block->offset, block->max_length, 1);
1845 }
1846 return ramblock_ptr(block, addr - block->offset);
1847 }
1848
1849 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
1850 * but takes a size argument.
1851 *
1852 * Called within RCU critical section.
1853 */
1854 static void *qemu_ram_ptr_length(ram_addr_t addr, hwaddr *size)
1855 {
1856 RAMBlock *block;
1857 ram_addr_t offset_inside_block;
1858 if (*size == 0) {
1859 return NULL;
1860 }
1861
1862 block = qemu_get_ram_block(addr);
1863 offset_inside_block = addr - block->offset;
1864 *size = MIN(*size, block->max_length - offset_inside_block);
1865
1866 if (xen_enabled() && block->host == NULL) {
1867 /* We need to check if the requested address is in the RAM
1868 * because we don't want to map the entire memory in QEMU.
1869 * In that case just map the requested area.
1870 */
1871 if (block->offset == 0) {
1872 return xen_map_cache(addr, *size, 1);
1873 }
1874
1875 block->host = xen_map_cache(block->offset, block->max_length, 1);
1876 }
1877
1878 return ramblock_ptr(block, offset_inside_block);
1879 }
1880
1881 /*
1882 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
1883 * in that RAMBlock.
1884 *
1885 * ptr: Host pointer to look up
1886 * round_offset: If true round the result offset down to a page boundary
1887 * *ram_addr: set to result ram_addr
1888 * *offset: set to result offset within the RAMBlock
1889 *
1890 * Returns: RAMBlock (or NULL if not found)
1891 *
1892 * By the time this function returns, the returned pointer is not protected
1893 * by RCU anymore. If the caller is not within an RCU critical section and
1894 * does not hold the iothread lock, it must have other means of protecting the
1895 * pointer, such as a reference to the region that includes the incoming
1896 * ram_addr_t.
1897 */
1898 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
1899 ram_addr_t *ram_addr,
1900 ram_addr_t *offset)
1901 {
1902 RAMBlock *block;
1903 uint8_t *host = ptr;
1904
1905 if (xen_enabled()) {
1906 rcu_read_lock();
1907 *ram_addr = xen_ram_addr_from_mapcache(ptr);
1908 block = qemu_get_ram_block(*ram_addr);
1909 if (block) {
1910 *offset = (host - block->host);
1911 }
1912 rcu_read_unlock();
1913 return block;
1914 }
1915
1916 rcu_read_lock();
1917 block = atomic_rcu_read(&ram_list.mru_block);
1918 if (block && block->host && host - block->host < block->max_length) {
1919 goto found;
1920 }
1921
1922 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1923 /* This case append when the block is not mapped. */
1924 if (block->host == NULL) {
1925 continue;
1926 }
1927 if (host - block->host < block->max_length) {
1928 goto found;
1929 }
1930 }
1931
1932 rcu_read_unlock();
1933 return NULL;
1934
1935 found:
1936 *offset = (host - block->host);
1937 if (round_offset) {
1938 *offset &= TARGET_PAGE_MASK;
1939 }
1940 *ram_addr = block->offset + *offset;
1941 rcu_read_unlock();
1942 return block;
1943 }
1944
1945 /*
1946 * Finds the named RAMBlock
1947 *
1948 * name: The name of RAMBlock to find
1949 *
1950 * Returns: RAMBlock (or NULL if not found)
1951 */
1952 RAMBlock *qemu_ram_block_by_name(const char *name)
1953 {
1954 RAMBlock *block;
1955
1956 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1957 if (!strcmp(name, block->idstr)) {
1958 return block;
1959 }
1960 }
1961
1962 return NULL;
1963 }
1964
1965 /* Some of the softmmu routines need to translate from a host pointer
1966 (typically a TLB entry) back to a ram offset. */
1967 MemoryRegion *qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
1968 {
1969 RAMBlock *block;
1970 ram_addr_t offset; /* Not used */
1971
1972 block = qemu_ram_block_from_host(ptr, false, ram_addr, &offset);
1973
1974 if (!block) {
1975 return NULL;
1976 }
1977
1978 return block->mr;
1979 }
1980
1981 /* Called within RCU critical section. */
1982 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
1983 uint64_t val, unsigned size)
1984 {
1985 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
1986 tb_invalidate_phys_page_fast(ram_addr, size);
1987 }
1988 switch (size) {
1989 case 1:
1990 stb_p(qemu_get_ram_ptr(ram_addr), val);
1991 break;
1992 case 2:
1993 stw_p(qemu_get_ram_ptr(ram_addr), val);
1994 break;
1995 case 4:
1996 stl_p(qemu_get_ram_ptr(ram_addr), val);
1997 break;
1998 default:
1999 abort();
2000 }
2001 /* Set both VGA and migration bits for simplicity and to remove
2002 * the notdirty callback faster.
2003 */
2004 cpu_physical_memory_set_dirty_range(ram_addr, size,
2005 DIRTY_CLIENTS_NOCODE);
2006 /* we remove the notdirty callback only if the code has been
2007 flushed */
2008 if (!cpu_physical_memory_is_clean(ram_addr)) {
2009 tlb_set_dirty(current_cpu, current_cpu->mem_io_vaddr);
2010 }
2011 }
2012
2013 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2014 unsigned size, bool is_write)
2015 {
2016 return is_write;
2017 }
2018
2019 static const MemoryRegionOps notdirty_mem_ops = {
2020 .write = notdirty_mem_write,
2021 .valid.accepts = notdirty_mem_accepts,
2022 .endianness = DEVICE_NATIVE_ENDIAN,
2023 };
2024
2025 /* Generate a debug exception if a watchpoint has been hit. */
2026 static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
2027 {
2028 CPUState *cpu = current_cpu;
2029 CPUArchState *env = cpu->env_ptr;
2030 target_ulong pc, cs_base;
2031 target_ulong vaddr;
2032 CPUWatchpoint *wp;
2033 int cpu_flags;
2034
2035 if (cpu->watchpoint_hit) {
2036 /* We re-entered the check after replacing the TB. Now raise
2037 * the debug interrupt so that is will trigger after the
2038 * current instruction. */
2039 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2040 return;
2041 }
2042 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2043 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2044 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2045 && (wp->flags & flags)) {
2046 if (flags == BP_MEM_READ) {
2047 wp->flags |= BP_WATCHPOINT_HIT_READ;
2048 } else {
2049 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2050 }
2051 wp->hitaddr = vaddr;
2052 wp->hitattrs = attrs;
2053 if (!cpu->watchpoint_hit) {
2054 cpu->watchpoint_hit = wp;
2055 tb_check_watchpoint(cpu);
2056 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2057 cpu->exception_index = EXCP_DEBUG;
2058 cpu_loop_exit(cpu);
2059 } else {
2060 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2061 tb_gen_code(cpu, pc, cs_base, cpu_flags, 1);
2062 cpu_resume_from_signal(cpu, NULL);
2063 }
2064 }
2065 } else {
2066 wp->flags &= ~BP_WATCHPOINT_HIT;
2067 }
2068 }
2069 }
2070
2071 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2072 so these check for a hit then pass through to the normal out-of-line
2073 phys routines. */
2074 static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2075 unsigned size, MemTxAttrs attrs)
2076 {
2077 MemTxResult res;
2078 uint64_t data;
2079 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2080 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2081
2082 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
2083 switch (size) {
2084 case 1:
2085 data = address_space_ldub(as, addr, attrs, &res);
2086 break;
2087 case 2:
2088 data = address_space_lduw(as, addr, attrs, &res);
2089 break;
2090 case 4:
2091 data = address_space_ldl(as, addr, attrs, &res);
2092 break;
2093 default: abort();
2094 }
2095 *pdata = data;
2096 return res;
2097 }
2098
2099 static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2100 uint64_t val, unsigned size,
2101 MemTxAttrs attrs)
2102 {
2103 MemTxResult res;
2104 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2105 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2106
2107 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
2108 switch (size) {
2109 case 1:
2110 address_space_stb(as, addr, val, attrs, &res);
2111 break;
2112 case 2:
2113 address_space_stw(as, addr, val, attrs, &res);
2114 break;
2115 case 4:
2116 address_space_stl(as, addr, val, attrs, &res);
2117 break;
2118 default: abort();
2119 }
2120 return res;
2121 }
2122
2123 static const MemoryRegionOps watch_mem_ops = {
2124 .read_with_attrs = watch_mem_read,
2125 .write_with_attrs = watch_mem_write,
2126 .endianness = DEVICE_NATIVE_ENDIAN,
2127 };
2128
2129 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2130 unsigned len, MemTxAttrs attrs)
2131 {
2132 subpage_t *subpage = opaque;
2133 uint8_t buf[8];
2134 MemTxResult res;
2135
2136 #if defined(DEBUG_SUBPAGE)
2137 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2138 subpage, len, addr);
2139 #endif
2140 res = address_space_read(subpage->as, addr + subpage->base,
2141 attrs, buf, len);
2142 if (res) {
2143 return res;
2144 }
2145 switch (len) {
2146 case 1:
2147 *data = ldub_p(buf);
2148 return MEMTX_OK;
2149 case 2:
2150 *data = lduw_p(buf);
2151 return MEMTX_OK;
2152 case 4:
2153 *data = ldl_p(buf);
2154 return MEMTX_OK;
2155 case 8:
2156 *data = ldq_p(buf);
2157 return MEMTX_OK;
2158 default:
2159 abort();
2160 }
2161 }
2162
2163 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2164 uint64_t value, unsigned len, MemTxAttrs attrs)
2165 {
2166 subpage_t *subpage = opaque;
2167 uint8_t buf[8];
2168
2169 #if defined(DEBUG_SUBPAGE)
2170 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2171 " value %"PRIx64"\n",
2172 __func__, subpage, len, addr, value);
2173 #endif
2174 switch (len) {
2175 case 1:
2176 stb_p(buf, value);
2177 break;
2178 case 2:
2179 stw_p(buf, value);
2180 break;
2181 case 4:
2182 stl_p(buf, value);
2183 break;
2184 case 8:
2185 stq_p(buf, value);
2186 break;
2187 default:
2188 abort();
2189 }
2190 return address_space_write(subpage->as, addr + subpage->base,
2191 attrs, buf, len);
2192 }
2193
2194 static bool subpage_accepts(void *opaque, hwaddr addr,
2195 unsigned len, bool is_write)
2196 {
2197 subpage_t *subpage = opaque;
2198 #if defined(DEBUG_SUBPAGE)
2199 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2200 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2201 #endif
2202
2203 return address_space_access_valid(subpage->as, addr + subpage->base,
2204 len, is_write);
2205 }
2206
2207 static const MemoryRegionOps subpage_ops = {
2208 .read_with_attrs = subpage_read,
2209 .write_with_attrs = subpage_write,
2210 .impl.min_access_size = 1,
2211 .impl.max_access_size = 8,
2212 .valid.min_access_size = 1,
2213 .valid.max_access_size = 8,
2214 .valid.accepts = subpage_accepts,
2215 .endianness = DEVICE_NATIVE_ENDIAN,
2216 };
2217
2218 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2219 uint16_t section)
2220 {
2221 int idx, eidx;
2222
2223 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2224 return -1;
2225 idx = SUBPAGE_IDX(start);
2226 eidx = SUBPAGE_IDX(end);
2227 #if defined(DEBUG_SUBPAGE)
2228 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2229 __func__, mmio, start, end, idx, eidx, section);
2230 #endif
2231 for (; idx <= eidx; idx++) {
2232 mmio->sub_section[idx] = section;
2233 }
2234
2235 return 0;
2236 }
2237
2238 static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
2239 {
2240 subpage_t *mmio;
2241
2242 mmio = g_malloc0(sizeof(subpage_t));
2243
2244 mmio->as = as;
2245 mmio->base = base;
2246 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2247 NULL, TARGET_PAGE_SIZE);
2248 mmio->iomem.subpage = true;
2249 #if defined(DEBUG_SUBPAGE)
2250 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2251 mmio, base, TARGET_PAGE_SIZE);
2252 #endif
2253 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
2254
2255 return mmio;
2256 }
2257
2258 static uint16_t dummy_section(PhysPageMap *map, AddressSpace *as,
2259 MemoryRegion *mr)
2260 {
2261 assert(as);
2262 MemoryRegionSection section = {
2263 .address_space = as,
2264 .mr = mr,
2265 .offset_within_address_space = 0,
2266 .offset_within_region = 0,
2267 .size = int128_2_64(),
2268 };
2269
2270 return phys_section_add(map, &section);
2271 }
2272
2273 MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs)
2274 {
2275 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2276 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2277 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
2278 MemoryRegionSection *sections = d->map.sections;
2279
2280 return sections[index & ~TARGET_PAGE_MASK].mr;
2281 }
2282
2283 static void io_mem_init(void)
2284 {
2285 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX);
2286 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2287 NULL, UINT64_MAX);
2288 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
2289 NULL, UINT64_MAX);
2290 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
2291 NULL, UINT64_MAX);
2292 }
2293
2294 static void mem_begin(MemoryListener *listener)
2295 {
2296 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
2297 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2298 uint16_t n;
2299
2300 n = dummy_section(&d->map, as, &io_mem_unassigned);
2301 assert(n == PHYS_SECTION_UNASSIGNED);
2302 n = dummy_section(&d->map, as, &io_mem_notdirty);
2303 assert(n == PHYS_SECTION_NOTDIRTY);
2304 n = dummy_section(&d->map, as, &io_mem_rom);
2305 assert(n == PHYS_SECTION_ROM);
2306 n = dummy_section(&d->map, as, &io_mem_watch);
2307 assert(n == PHYS_SECTION_WATCH);
2308
2309 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2310 d->as = as;
2311 as->next_dispatch = d;
2312 }
2313
2314 static void address_space_dispatch_free(AddressSpaceDispatch *d)
2315 {
2316 phys_sections_free(&d->map);
2317 g_free(d);
2318 }
2319
2320 static void mem_commit(MemoryListener *listener)
2321 {
2322 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
2323 AddressSpaceDispatch *cur = as->dispatch;
2324 AddressSpaceDispatch *next = as->next_dispatch;
2325
2326 phys_page_compact_all(next, next->map.nodes_nb);
2327
2328 atomic_rcu_set(&as->dispatch, next);
2329 if (cur) {
2330 call_rcu(cur, address_space_dispatch_free, rcu);
2331 }
2332 }
2333
2334 static void tcg_commit(MemoryListener *listener)
2335 {
2336 CPUAddressSpace *cpuas;
2337 AddressSpaceDispatch *d;
2338
2339 /* since each CPU stores ram addresses in its TLB cache, we must
2340 reset the modified entries */
2341 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2342 cpu_reloading_memory_map();
2343 /* The CPU and TLB are protected by the iothread lock.
2344 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2345 * may have split the RCU critical section.
2346 */
2347 d = atomic_rcu_read(&cpuas->as->dispatch);
2348 cpuas->memory_dispatch = d;
2349 tlb_flush(cpuas->cpu, 1);
2350 }
2351
2352 void address_space_init_dispatch(AddressSpace *as)
2353 {
2354 as->dispatch = NULL;
2355 as->dispatch_listener = (MemoryListener) {
2356 .begin = mem_begin,
2357 .commit = mem_commit,
2358 .region_add = mem_add,
2359 .region_nop = mem_add,
2360 .priority = 0,
2361 };
2362 memory_listener_register(&as->dispatch_listener, as);
2363 }
2364
2365 void address_space_unregister(AddressSpace *as)
2366 {
2367 memory_listener_unregister(&as->dispatch_listener);
2368 }
2369
2370 void address_space_destroy_dispatch(AddressSpace *as)
2371 {
2372 AddressSpaceDispatch *d = as->dispatch;
2373
2374 atomic_rcu_set(&as->dispatch, NULL);
2375 if (d) {
2376 call_rcu(d, address_space_dispatch_free, rcu);
2377 }
2378 }
2379
2380 static void memory_map_init(void)
2381 {
2382 system_memory = g_malloc(sizeof(*system_memory));
2383
2384 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2385 address_space_init(&address_space_memory, system_memory, "memory");
2386
2387 system_io = g_malloc(sizeof(*system_io));
2388 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2389 65536);
2390 address_space_init(&address_space_io, system_io, "I/O");
2391 }
2392
2393 MemoryRegion *get_system_memory(void)
2394 {
2395 return system_memory;
2396 }
2397
2398 MemoryRegion *get_system_io(void)
2399 {
2400 return system_io;
2401 }
2402
2403 #endif /* !defined(CONFIG_USER_ONLY) */
2404
2405 /* physical memory access (slow version, mainly for debug) */
2406 #if defined(CONFIG_USER_ONLY)
2407 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
2408 uint8_t *buf, int len, int is_write)
2409 {
2410 int l, flags;
2411 target_ulong page;
2412 void * p;
2413
2414 while (len > 0) {
2415 page = addr & TARGET_PAGE_MASK;
2416 l = (page + TARGET_PAGE_SIZE) - addr;
2417 if (l > len)
2418 l = len;
2419 flags = page_get_flags(page);
2420 if (!(flags & PAGE_VALID))
2421 return -1;
2422 if (is_write) {
2423 if (!(flags & PAGE_WRITE))
2424 return -1;
2425 /* XXX: this code should not depend on lock_user */
2426 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
2427 return -1;
2428 memcpy(p, buf, l);
2429 unlock_user(p, addr, l);
2430 } else {
2431 if (!(flags & PAGE_READ))
2432 return -1;
2433 /* XXX: this code should not depend on lock_user */
2434 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
2435 return -1;
2436 memcpy(buf, p, l);
2437 unlock_user(p, addr, 0);
2438 }
2439 len -= l;
2440 buf += l;
2441 addr += l;
2442 }
2443 return 0;
2444 }
2445
2446 #else
2447
2448 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
2449 hwaddr length)
2450 {
2451 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2452 /* No early return if dirty_log_mask is or becomes 0, because
2453 * cpu_physical_memory_set_dirty_range will still call
2454 * xen_modified_memory.
2455 */
2456 if (dirty_log_mask) {
2457 dirty_log_mask =
2458 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2459 }
2460 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2461 tb_invalidate_phys_range(addr, addr + length);
2462 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
2463 }
2464 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
2465 }
2466
2467 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
2468 {
2469 unsigned access_size_max = mr->ops->valid.max_access_size;
2470
2471 /* Regions are assumed to support 1-4 byte accesses unless
2472 otherwise specified. */
2473 if (access_size_max == 0) {
2474 access_size_max = 4;
2475 }
2476
2477 /* Bound the maximum access by the alignment of the address. */
2478 if (!mr->ops->impl.unaligned) {
2479 unsigned align_size_max = addr & -addr;
2480 if (align_size_max != 0 && align_size_max < access_size_max) {
2481 access_size_max = align_size_max;
2482 }
2483 }
2484
2485 /* Don't attempt accesses larger than the maximum. */
2486 if (l > access_size_max) {
2487 l = access_size_max;
2488 }
2489 l = pow2floor(l);
2490
2491 return l;
2492 }
2493
2494 static bool prepare_mmio_access(MemoryRegion *mr)
2495 {
2496 bool unlocked = !qemu_mutex_iothread_locked();
2497 bool release_lock = false;
2498
2499 if (unlocked && mr->global_locking) {
2500 qemu_mutex_lock_iothread();
2501 unlocked = false;
2502 release_lock = true;
2503 }
2504 if (mr->flush_coalesced_mmio) {
2505 if (unlocked) {
2506 qemu_mutex_lock_iothread();
2507 }
2508 qemu_flush_coalesced_mmio_buffer();
2509 if (unlocked) {
2510 qemu_mutex_unlock_iothread();
2511 }
2512 }
2513
2514 return release_lock;
2515 }
2516
2517 /* Called within RCU critical section. */
2518 static MemTxResult address_space_write_continue(AddressSpace *as, hwaddr addr,
2519 MemTxAttrs attrs,
2520 const uint8_t *buf,
2521 int len, hwaddr addr1,
2522 hwaddr l, MemoryRegion *mr)
2523 {
2524 uint8_t *ptr;
2525 uint64_t val;
2526 MemTxResult result = MEMTX_OK;
2527 bool release_lock = false;
2528
2529 for (;;) {
2530 if (!memory_access_is_direct(mr, true)) {
2531 release_lock |= prepare_mmio_access(mr);
2532 l = memory_access_size(mr, l, addr1);
2533 /* XXX: could force current_cpu to NULL to avoid
2534 potential bugs */
2535 switch (l) {
2536 case 8:
2537 /* 64 bit write access */
2538 val = ldq_p(buf);
2539 result |= memory_region_dispatch_write(mr, addr1, val, 8,
2540 attrs);
2541 break;
2542 case 4:
2543 /* 32 bit write access */
2544 val = ldl_p(buf);
2545 result |= memory_region_dispatch_write(mr, addr1, val, 4,
2546 attrs);
2547 break;
2548 case 2:
2549 /* 16 bit write access */
2550 val = lduw_p(buf);
2551 result |= memory_region_dispatch_write(mr, addr1, val, 2,
2552 attrs);
2553 break;
2554 case 1:
2555 /* 8 bit write access */
2556 val = ldub_p(buf);
2557 result |= memory_region_dispatch_write(mr, addr1, val, 1,
2558 attrs);
2559 break;
2560 default:
2561 abort();
2562 }
2563 } else {
2564 addr1 += memory_region_get_ram_addr(mr);
2565 /* RAM case */
2566 ptr = qemu_get_ram_ptr(addr1);
2567 memcpy(ptr, buf, l);
2568 invalidate_and_set_dirty(mr, addr1, l);
2569 }
2570
2571 if (release_lock) {
2572 qemu_mutex_unlock_iothread();
2573 release_lock = false;
2574 }
2575
2576 len -= l;
2577 buf += l;
2578 addr += l;
2579
2580 if (!len) {
2581 break;
2582 }
2583
2584 l = len;
2585 mr = address_space_translate(as, addr, &addr1, &l, true);
2586 }
2587
2588 return result;
2589 }
2590
2591 MemTxResult address_space_write(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2592 const uint8_t *buf, int len)
2593 {
2594 hwaddr l;
2595 hwaddr addr1;
2596 MemoryRegion *mr;
2597 MemTxResult result = MEMTX_OK;
2598
2599 if (len > 0) {
2600 rcu_read_lock();
2601 l = len;
2602 mr = address_space_translate(as, addr, &addr1, &l, true);
2603 result = address_space_write_continue(as, addr, attrs, buf, len,
2604 addr1, l, mr);
2605 rcu_read_unlock();
2606 }
2607
2608 return result;
2609 }
2610
2611 /* Called within RCU critical section. */
2612 MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr,
2613 MemTxAttrs attrs, uint8_t *buf,
2614 int len, hwaddr addr1, hwaddr l,
2615 MemoryRegion *mr)
2616 {
2617 uint8_t *ptr;
2618 uint64_t val;
2619 MemTxResult result = MEMTX_OK;
2620 bool release_lock = false;
2621
2622 for (;;) {
2623 if (!memory_access_is_direct(mr, false)) {
2624 /* I/O case */
2625 release_lock |= prepare_mmio_access(mr);
2626 l = memory_access_size(mr, l, addr1);
2627 switch (l) {
2628 case 8:
2629 /* 64 bit read access */
2630 result |= memory_region_dispatch_read(mr, addr1, &val, 8,
2631 attrs);
2632 stq_p(buf, val);
2633 break;
2634 case 4:
2635 /* 32 bit read access */
2636 result |= memory_region_dispatch_read(mr, addr1, &val, 4,
2637 attrs);
2638 stl_p(buf, val);
2639 break;
2640 case 2:
2641 /* 16 bit read access */
2642 result |= memory_region_dispatch_read(mr, addr1, &val, 2,
2643 attrs);
2644 stw_p(buf, val);
2645 break;
2646 case 1:
2647 /* 8 bit read access */
2648 result |= memory_region_dispatch_read(mr, addr1, &val, 1,
2649 attrs);
2650 stb_p(buf, val);
2651 break;
2652 default:
2653 abort();
2654 }
2655 } else {
2656 /* RAM case */
2657 ptr = qemu_get_ram_ptr(mr->ram_addr + addr1);
2658 memcpy(buf, ptr, l);
2659 }
2660
2661 if (release_lock) {
2662 qemu_mutex_unlock_iothread();
2663 release_lock = false;
2664 }
2665
2666 len -= l;
2667 buf += l;
2668 addr += l;
2669
2670 if (!len) {
2671 break;
2672 }
2673
2674 l = len;
2675 mr = address_space_translate(as, addr, &addr1, &l, false);
2676 }
2677
2678 return result;
2679 }
2680
2681 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2682 MemTxAttrs attrs, uint8_t *buf, int len)
2683 {
2684 hwaddr l;
2685 hwaddr addr1;
2686 MemoryRegion *mr;
2687 MemTxResult result = MEMTX_OK;
2688
2689 if (len > 0) {
2690 rcu_read_lock();
2691 l = len;
2692 mr = address_space_translate(as, addr, &addr1, &l, false);
2693 result = address_space_read_continue(as, addr, attrs, buf, len,
2694 addr1, l, mr);
2695 rcu_read_unlock();
2696 }
2697
2698 return result;
2699 }
2700
2701 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2702 uint8_t *buf, int len, bool is_write)
2703 {
2704 if (is_write) {
2705 return address_space_write(as, addr, attrs, (uint8_t *)buf, len);
2706 } else {
2707 return address_space_read(as, addr, attrs, (uint8_t *)buf, len);
2708 }
2709 }
2710
2711 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
2712 int len, int is_write)
2713 {
2714 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
2715 buf, len, is_write);
2716 }
2717
2718 enum write_rom_type {
2719 WRITE_DATA,
2720 FLUSH_CACHE,
2721 };
2722
2723 static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
2724 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
2725 {
2726 hwaddr l;
2727 uint8_t *ptr;
2728 hwaddr addr1;
2729 MemoryRegion *mr;
2730
2731 rcu_read_lock();
2732 while (len > 0) {
2733 l = len;
2734 mr = address_space_translate(as, addr, &addr1, &l, true);
2735
2736 if (!(memory_region_is_ram(mr) ||
2737 memory_region_is_romd(mr))) {
2738 l = memory_access_size(mr, l, addr1);
2739 } else {
2740 addr1 += memory_region_get_ram_addr(mr);
2741 /* ROM/RAM case */
2742 ptr = qemu_get_ram_ptr(addr1);
2743 switch (type) {
2744 case WRITE_DATA:
2745 memcpy(ptr, buf, l);
2746 invalidate_and_set_dirty(mr, addr1, l);
2747 break;
2748 case FLUSH_CACHE:
2749 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
2750 break;
2751 }
2752 }
2753 len -= l;
2754 buf += l;
2755 addr += l;
2756 }
2757 rcu_read_unlock();
2758 }
2759
2760 /* used for ROM loading : can write in RAM and ROM */
2761 void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
2762 const uint8_t *buf, int len)
2763 {
2764 cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
2765 }
2766
2767 void cpu_flush_icache_range(hwaddr start, int len)
2768 {
2769 /*
2770 * This function should do the same thing as an icache flush that was
2771 * triggered from within the guest. For TCG we are always cache coherent,
2772 * so there is no need to flush anything. For KVM / Xen we need to flush
2773 * the host's instruction cache at least.
2774 */
2775 if (tcg_enabled()) {
2776 return;
2777 }
2778
2779 cpu_physical_memory_write_rom_internal(&address_space_memory,
2780 start, NULL, len, FLUSH_CACHE);
2781 }
2782
2783 typedef struct {
2784 MemoryRegion *mr;
2785 void *buffer;
2786 hwaddr addr;
2787 hwaddr len;
2788 bool in_use;
2789 } BounceBuffer;
2790
2791 static BounceBuffer bounce;
2792
2793 typedef struct MapClient {
2794 QEMUBH *bh;
2795 QLIST_ENTRY(MapClient) link;
2796 } MapClient;
2797
2798 QemuMutex map_client_list_lock;
2799 static QLIST_HEAD(map_client_list, MapClient) map_client_list
2800 = QLIST_HEAD_INITIALIZER(map_client_list);
2801
2802 static void cpu_unregister_map_client_do(MapClient *client)
2803 {
2804 QLIST_REMOVE(client, link);
2805 g_free(client);
2806 }
2807
2808 static void cpu_notify_map_clients_locked(void)
2809 {
2810 MapClient *client;
2811
2812 while (!QLIST_EMPTY(&map_client_list)) {
2813 client = QLIST_FIRST(&map_client_list);
2814 qemu_bh_schedule(client->bh);
2815 cpu_unregister_map_client_do(client);
2816 }
2817 }
2818
2819 void cpu_register_map_client(QEMUBH *bh)
2820 {
2821 MapClient *client = g_malloc(sizeof(*client));
2822
2823 qemu_mutex_lock(&map_client_list_lock);
2824 client->bh = bh;
2825 QLIST_INSERT_HEAD(&map_client_list, client, link);
2826 if (!atomic_read(&bounce.in_use)) {
2827 cpu_notify_map_clients_locked();
2828 }
2829 qemu_mutex_unlock(&map_client_list_lock);
2830 }
2831
2832 void cpu_exec_init_all(void)
2833 {
2834 qemu_mutex_init(&ram_list.mutex);
2835 io_mem_init();
2836 memory_map_init();
2837 qemu_mutex_init(&map_client_list_lock);
2838 }
2839
2840 void cpu_unregister_map_client(QEMUBH *bh)
2841 {
2842 MapClient *client;
2843
2844 qemu_mutex_lock(&map_client_list_lock);
2845 QLIST_FOREACH(client, &map_client_list, link) {
2846 if (client->bh == bh) {
2847 cpu_unregister_map_client_do(client);
2848 break;
2849 }
2850 }
2851 qemu_mutex_unlock(&map_client_list_lock);
2852 }
2853
2854 static void cpu_notify_map_clients(void)
2855 {
2856 qemu_mutex_lock(&map_client_list_lock);
2857 cpu_notify_map_clients_locked();
2858 qemu_mutex_unlock(&map_client_list_lock);
2859 }
2860
2861 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
2862 {
2863 MemoryRegion *mr;
2864 hwaddr l, xlat;
2865
2866 rcu_read_lock();
2867 while (len > 0) {
2868 l = len;
2869 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2870 if (!memory_access_is_direct(mr, is_write)) {
2871 l = memory_access_size(mr, l, addr);
2872 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
2873 return false;
2874 }
2875 }
2876
2877 len -= l;
2878 addr += l;
2879 }
2880 rcu_read_unlock();
2881 return true;
2882 }
2883
2884 /* Map a physical memory region into a host virtual address.
2885 * May map a subset of the requested range, given by and returned in *plen.
2886 * May return NULL if resources needed to perform the mapping are exhausted.
2887 * Use only for reads OR writes - not for read-modify-write operations.
2888 * Use cpu_register_map_client() to know when retrying the map operation is
2889 * likely to succeed.
2890 */
2891 void *address_space_map(AddressSpace *as,
2892 hwaddr addr,
2893 hwaddr *plen,
2894 bool is_write)
2895 {
2896 hwaddr len = *plen;
2897 hwaddr done = 0;
2898 hwaddr l, xlat, base;
2899 MemoryRegion *mr, *this_mr;
2900 ram_addr_t raddr;
2901 void *ptr;
2902
2903 if (len == 0) {
2904 return NULL;
2905 }
2906
2907 l = len;
2908 rcu_read_lock();
2909 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2910
2911 if (!memory_access_is_direct(mr, is_write)) {
2912 if (atomic_xchg(&bounce.in_use, true)) {
2913 rcu_read_unlock();
2914 return NULL;
2915 }
2916 /* Avoid unbounded allocations */
2917 l = MIN(l, TARGET_PAGE_SIZE);
2918 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
2919 bounce.addr = addr;
2920 bounce.len = l;
2921
2922 memory_region_ref(mr);
2923 bounce.mr = mr;
2924 if (!is_write) {
2925 address_space_read(as, addr, MEMTXATTRS_UNSPECIFIED,
2926 bounce.buffer, l);
2927 }
2928
2929 rcu_read_unlock();
2930 *plen = l;
2931 return bounce.buffer;
2932 }
2933
2934 base = xlat;
2935 raddr = memory_region_get_ram_addr(mr);
2936
2937 for (;;) {
2938 len -= l;
2939 addr += l;
2940 done += l;
2941 if (len == 0) {
2942 break;
2943 }
2944
2945 l = len;
2946 this_mr = address_space_translate(as, addr, &xlat, &l, is_write);
2947 if (this_mr != mr || xlat != base + done) {
2948 break;
2949 }
2950 }
2951
2952 memory_region_ref(mr);
2953 *plen = done;
2954 ptr = qemu_ram_ptr_length(raddr + base, plen);
2955 rcu_read_unlock();
2956
2957 return ptr;
2958 }
2959
2960 /* Unmaps a memory region previously mapped by address_space_map().
2961 * Will also mark the memory as dirty if is_write == 1. access_len gives
2962 * the amount of memory that was actually read or written by the caller.
2963 */
2964 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2965 int is_write, hwaddr access_len)
2966 {
2967 if (buffer != bounce.buffer) {
2968 MemoryRegion *mr;
2969 ram_addr_t addr1;
2970
2971 mr = qemu_ram_addr_from_host(buffer, &addr1);
2972 assert(mr != NULL);
2973 if (is_write) {
2974 invalidate_and_set_dirty(mr, addr1, access_len);
2975 }
2976 if (xen_enabled()) {
2977 xen_invalidate_map_cache_entry(buffer);
2978 }
2979 memory_region_unref(mr);
2980 return;
2981 }
2982 if (is_write) {
2983 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
2984 bounce.buffer, access_len);
2985 }
2986 qemu_vfree(bounce.buffer);
2987 bounce.buffer = NULL;
2988 memory_region_unref(bounce.mr);
2989 atomic_mb_set(&bounce.in_use, false);
2990 cpu_notify_map_clients();
2991 }
2992
2993 void *cpu_physical_memory_map(hwaddr addr,
2994 hwaddr *plen,
2995 int is_write)
2996 {
2997 return address_space_map(&address_space_memory, addr, plen, is_write);
2998 }
2999
3000 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3001 int is_write, hwaddr access_len)
3002 {
3003 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3004 }
3005
3006 /* warning: addr must be aligned */
3007 static inline uint32_t address_space_ldl_internal(AddressSpace *as, hwaddr addr,
3008 MemTxAttrs attrs,
3009 MemTxResult *result,
3010 enum device_endian endian)
3011 {
3012 uint8_t *ptr;
3013 uint64_t val;
3014 MemoryRegion *mr;
3015 hwaddr l = 4;
3016 hwaddr addr1;
3017 MemTxResult r;
3018 bool release_lock = false;
3019
3020 rcu_read_lock();
3021 mr = address_space_translate(as, addr, &addr1, &l, false);
3022 if (l < 4 || !memory_access_is_direct(mr, false)) {
3023 release_lock |= prepare_mmio_access(mr);
3024
3025 /* I/O case */
3026 r = memory_region_dispatch_read(mr, addr1, &val, 4, attrs);
3027 #if defined(TARGET_WORDS_BIGENDIAN)
3028 if (endian == DEVICE_LITTLE_ENDIAN) {
3029 val = bswap32(val);
3030 }
3031 #else
3032 if (endian == DEVICE_BIG_ENDIAN) {
3033 val = bswap32(val);
3034 }
3035 #endif
3036 } else {
3037 /* RAM case */
3038 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
3039 & TARGET_PAGE_MASK)
3040 + addr1);
3041 switch (endian) {
3042 case DEVICE_LITTLE_ENDIAN:
3043 val = ldl_le_p(ptr);
3044 break;
3045 case DEVICE_BIG_ENDIAN:
3046 val = ldl_be_p(ptr);
3047 break;
3048 default:
3049 val = ldl_p(ptr);
3050 break;
3051 }
3052 r = MEMTX_OK;
3053 }
3054 if (result) {
3055 *result = r;
3056 }
3057 if (release_lock) {
3058 qemu_mutex_unlock_iothread();
3059 }
3060 rcu_read_unlock();
3061 return val;
3062 }
3063
3064 uint32_t address_space_ldl(AddressSpace *as, hwaddr addr,
3065 MemTxAttrs attrs, MemTxResult *result)
3066 {
3067 return address_space_ldl_internal(as, addr, attrs, result,
3068 DEVICE_NATIVE_ENDIAN);
3069 }
3070
3071 uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr,
3072 MemTxAttrs attrs, MemTxResult *result)
3073 {
3074 return address_space_ldl_internal(as, addr, attrs, result,
3075 DEVICE_LITTLE_ENDIAN);
3076 }
3077
3078 uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr,
3079 MemTxAttrs attrs, MemTxResult *result)
3080 {
3081 return address_space_ldl_internal(as, addr, attrs, result,
3082 DEVICE_BIG_ENDIAN);
3083 }
3084
3085 uint32_t ldl_phys(AddressSpace *as, hwaddr addr)
3086 {
3087 return address_space_ldl(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
3088 }
3089
3090 uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr)
3091 {
3092 return address_space_ldl_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
3093 }
3094
3095 uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr)
3096 {
3097 return address_space_ldl_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
3098 }
3099
3100 /* warning: addr must be aligned */
3101 static inline uint64_t address_space_ldq_internal(AddressSpace *as, hwaddr addr,
3102 MemTxAttrs attrs,
3103 MemTxResult *result,
3104 enum device_endian endian)
3105 {
3106 uint8_t *ptr;
3107 uint64_t val;
3108 MemoryRegion *mr;
3109 hwaddr l = 8;
3110 hwaddr addr1;
3111 MemTxResult r;
3112 bool release_lock = false;
3113
3114 rcu_read_lock();
3115 mr = address_space_translate(as, addr, &addr1, &l,
3116 false);
3117 if (l < 8 || !memory_access_is_direct(mr, false)) {
3118 release_lock |= prepare_mmio_access(mr);
3119
3120 /* I/O case */
3121 r = memory_region_dispatch_read(mr, addr1, &val, 8, attrs);
3122 #if defined(TARGET_WORDS_BIGENDIAN)
3123 if (endian == DEVICE_LITTLE_ENDIAN) {
3124 val = bswap64(val);
3125 }
3126 #else
3127 if (endian == DEVICE_BIG_ENDIAN) {
3128 val = bswap64(val);
3129 }
3130 #endif
3131 } else {
3132 /* RAM case */
3133 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
3134 & TARGET_PAGE_MASK)
3135 + addr1);
3136 switch (endian) {
3137 case DEVICE_LITTLE_ENDIAN:
3138 val = ldq_le_p(ptr);
3139 break;
3140 case DEVICE_BIG_ENDIAN:
3141 val = ldq_be_p(ptr);
3142 break;
3143 default:
3144 val = ldq_p(ptr);
3145 break;
3146 }
3147 r = MEMTX_OK;
3148 }
3149 if (result) {
3150 *result = r;
3151 }
3152 if (release_lock) {
3153 qemu_mutex_unlock_iothread();
3154 }
3155 rcu_read_unlock();
3156 return val;
3157 }
3158
3159 uint64_t address_space_ldq(AddressSpace *as, hwaddr addr,
3160 MemTxAttrs attrs, MemTxResult *result)
3161 {
3162 return address_space_ldq_internal(as, addr, attrs, result,
3163 DEVICE_NATIVE_ENDIAN);
3164 }
3165
3166 uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr,
3167 MemTxAttrs attrs, MemTxResult *result)
3168 {
3169 return address_space_ldq_internal(as, addr, attrs, result,
3170 DEVICE_LITTLE_ENDIAN);
3171 }
3172
3173 uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr,
3174 MemTxAttrs attrs, MemTxResult *result)
3175 {
3176 return address_space_ldq_internal(as, addr, attrs, result,
3177 DEVICE_BIG_ENDIAN);
3178 }
3179
3180 uint64_t ldq_phys(AddressSpace *as, hwaddr addr)
3181 {
3182 return address_space_ldq(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
3183 }
3184
3185 uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr)
3186 {
3187 return address_space_ldq_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
3188 }
3189
3190 uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr)
3191 {
3192 return address_space_ldq_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
3193 }
3194
3195 /* XXX: optimize */
3196 uint32_t address_space_ldub(AddressSpace *as, hwaddr addr,
3197 MemTxAttrs attrs, MemTxResult *result)
3198 {
3199 uint8_t val;
3200 MemTxResult r;
3201
3202 r = address_space_rw(as, addr, attrs, &val, 1, 0);
3203 if (result) {
3204 *result = r;
3205 }
3206 return val;
3207 }
3208
3209 uint32_t ldub_phys(AddressSpace *as, hwaddr addr)
3210 {
3211 return address_space_ldub(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
3212 }
3213
3214 /* warning: addr must be aligned */
3215 static inline uint32_t address_space_lduw_internal(AddressSpace *as,
3216 hwaddr addr,
3217 MemTxAttrs attrs,
3218 MemTxResult *result,
3219 enum device_endian endian)
3220 {
3221 uint8_t *ptr;
3222 uint64_t val;
3223 MemoryRegion *mr;
3224 hwaddr l = 2;
3225 hwaddr addr1;
3226 MemTxResult r;
3227 bool release_lock = false;
3228
3229 rcu_read_lock();
3230 mr = address_space_translate(as, addr, &addr1, &l,
3231 false);
3232 if (l < 2 || !memory_access_is_direct(mr, false)) {
3233 release_lock |= prepare_mmio_access(mr);
3234
3235 /* I/O case */
3236 r = memory_region_dispatch_read(mr, addr1, &val, 2, attrs);
3237 #if defined(TARGET_WORDS_BIGENDIAN)
3238 if (endian == DEVICE_LITTLE_ENDIAN) {
3239 val = bswap16(val);
3240 }
3241 #else
3242 if (endian == DEVICE_BIG_ENDIAN) {
3243 val = bswap16(val);
3244 }
3245 #endif
3246 } else {
3247 /* RAM case */
3248 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
3249 & TARGET_PAGE_MASK)
3250 + addr1);
3251 switch (endian) {
3252 case DEVICE_LITTLE_ENDIAN:
3253 val = lduw_le_p(ptr);
3254 break;
3255 case DEVICE_BIG_ENDIAN:
3256 val = lduw_be_p(ptr);
3257 break;
3258 default:
3259 val = lduw_p(ptr);
3260 break;
3261 }
3262 r = MEMTX_OK;
3263 }
3264 if (result) {
3265 *result = r;
3266 }
3267 if (release_lock) {
3268 qemu_mutex_unlock_iothread();
3269 }
3270 rcu_read_unlock();
3271 return val;
3272 }
3273
3274 uint32_t address_space_lduw(AddressSpace *as, hwaddr addr,
3275 MemTxAttrs attrs, MemTxResult *result)
3276 {
3277 return address_space_lduw_internal(as, addr, attrs, result,
3278 DEVICE_NATIVE_ENDIAN);
3279 }
3280
3281 uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr,
3282 MemTxAttrs attrs, MemTxResult *result)
3283 {
3284 return address_space_lduw_internal(as, addr, attrs, result,
3285 DEVICE_LITTLE_ENDIAN);
3286 }
3287
3288 uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr,
3289 MemTxAttrs attrs, MemTxResult *result)
3290 {
3291 return address_space_lduw_internal(as, addr, attrs, result,
3292 DEVICE_BIG_ENDIAN);
3293 }
3294
3295 uint32_t lduw_phys(AddressSpace *as, hwaddr addr)
3296 {
3297 return address_space_lduw(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
3298 }
3299
3300 uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr)
3301 {
3302 return address_space_lduw_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
3303 }
3304
3305 uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr)
3306 {
3307 return address_space_lduw_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
3308 }
3309
3310 /* warning: addr must be aligned. The ram page is not masked as dirty
3311 and the code inside is not invalidated. It is useful if the dirty
3312 bits are used to track modified PTEs */
3313 void address_space_stl_notdirty(AddressSpace *as, hwaddr addr, uint32_t val,
3314 MemTxAttrs attrs, MemTxResult *result)
3315 {
3316 uint8_t *ptr;
3317 MemoryRegion *mr;
3318 hwaddr l = 4;
3319 hwaddr addr1;
3320 MemTxResult r;
3321 uint8_t dirty_log_mask;
3322 bool release_lock = false;
3323
3324 rcu_read_lock();
3325 mr = address_space_translate(as, addr, &addr1, &l,
3326 true);
3327 if (l < 4 || !memory_access_is_direct(mr, true)) {
3328 release_lock |= prepare_mmio_access(mr);
3329
3330 r = memory_region_dispatch_write(mr, addr1, val, 4, attrs);
3331 } else {
3332 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
3333 ptr = qemu_get_ram_ptr(addr1);
3334 stl_p(ptr, val);
3335
3336 dirty_log_mask = memory_region_get_dirty_log_mask(mr);
3337 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
3338 cpu_physical_memory_set_dirty_range(addr1, 4, dirty_log_mask);
3339 r = MEMTX_OK;
3340 }
3341 if (result) {
3342 *result = r;
3343 }
3344 if (release_lock) {
3345 qemu_mutex_unlock_iothread();
3346 }
3347 rcu_read_unlock();
3348 }
3349
3350 void stl_phys_notdirty(AddressSpace *as, hwaddr addr, uint32_t val)
3351 {
3352 address_space_stl_notdirty(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3353 }
3354
3355 /* warning: addr must be aligned */
3356 static inline void address_space_stl_internal(AddressSpace *as,
3357 hwaddr addr, uint32_t val,
3358 MemTxAttrs attrs,
3359 MemTxResult *result,
3360 enum device_endian endian)
3361 {
3362 uint8_t *ptr;
3363 MemoryRegion *mr;
3364 hwaddr l = 4;
3365 hwaddr addr1;
3366 MemTxResult r;
3367 bool release_lock = false;
3368
3369 rcu_read_lock();
3370 mr = address_space_translate(as, addr, &addr1, &l,
3371 true);
3372 if (l < 4 || !memory_access_is_direct(mr, true)) {
3373 release_lock |= prepare_mmio_access(mr);
3374
3375 #if defined(TARGET_WORDS_BIGENDIAN)
3376 if (endian == DEVICE_LITTLE_ENDIAN) {
3377 val = bswap32(val);
3378 }
3379 #else
3380 if (endian == DEVICE_BIG_ENDIAN) {
3381 val = bswap32(val);
3382 }
3383 #endif
3384 r = memory_region_dispatch_write(mr, addr1, val, 4, attrs);
3385 } else {
3386 /* RAM case */
3387 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
3388 ptr = qemu_get_ram_ptr(addr1);
3389 switch (endian) {
3390 case DEVICE_LITTLE_ENDIAN:
3391 stl_le_p(ptr, val);
3392 break;
3393 case DEVICE_BIG_ENDIAN:
3394 stl_be_p(ptr, val);
3395 break;
3396 default:
3397 stl_p(ptr, val);
3398 break;
3399 }
3400 invalidate_and_set_dirty(mr, addr1, 4);
3401 r = MEMTX_OK;
3402 }
3403 if (result) {
3404 *result = r;
3405 }
3406 if (release_lock) {
3407 qemu_mutex_unlock_iothread();
3408 }
3409 rcu_read_unlock();
3410 }
3411
3412 void address_space_stl(AddressSpace *as, hwaddr addr, uint32_t val,
3413 MemTxAttrs attrs, MemTxResult *result)
3414 {
3415 address_space_stl_internal(as, addr, val, attrs, result,
3416 DEVICE_NATIVE_ENDIAN);
3417 }
3418
3419 void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val,
3420 MemTxAttrs attrs, MemTxResult *result)
3421 {
3422 address_space_stl_internal(as, addr, val, attrs, result,
3423 DEVICE_LITTLE_ENDIAN);
3424 }
3425
3426 void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val,
3427 MemTxAttrs attrs, MemTxResult *result)
3428 {
3429 address_space_stl_internal(as, addr, val, attrs, result,
3430 DEVICE_BIG_ENDIAN);
3431 }
3432
3433 void stl_phys(AddressSpace *as, hwaddr addr, uint32_t val)
3434 {
3435 address_space_stl(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3436 }
3437
3438 void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val)
3439 {
3440 address_space_stl_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3441 }
3442
3443 void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val)
3444 {
3445 address_space_stl_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3446 }
3447
3448 /* XXX: optimize */
3449 void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val,
3450 MemTxAttrs attrs, MemTxResult *result)
3451 {
3452 uint8_t v = val;
3453 MemTxResult r;
3454
3455 r = address_space_rw(as, addr, attrs, &v, 1, 1);
3456 if (result) {
3457 *result = r;
3458 }
3459 }
3460
3461 void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val)
3462 {
3463 address_space_stb(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3464 }
3465
3466 /* warning: addr must be aligned */
3467 static inline void address_space_stw_internal(AddressSpace *as,
3468 hwaddr addr, uint32_t val,
3469 MemTxAttrs attrs,
3470 MemTxResult *result,
3471 enum device_endian endian)
3472 {
3473 uint8_t *ptr;
3474 MemoryRegion *mr;
3475 hwaddr l = 2;
3476 hwaddr addr1;
3477 MemTxResult r;
3478 bool release_lock = false;
3479
3480 rcu_read_lock();
3481 mr = address_space_translate(as, addr, &addr1, &l, true);
3482 if (l < 2 || !memory_access_is_direct(mr, true)) {
3483 release_lock |= prepare_mmio_access(mr);
3484
3485 #if defined(TARGET_WORDS_BIGENDIAN)
3486 if (endian == DEVICE_LITTLE_ENDIAN) {
3487 val = bswap16(val);
3488 }
3489 #else
3490 if (endian == DEVICE_BIG_ENDIAN) {
3491 val = bswap16(val);
3492 }
3493 #endif
3494 r = memory_region_dispatch_write(mr, addr1, val, 2, attrs);
3495 } else {
3496 /* RAM case */
3497 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
3498 ptr = qemu_get_ram_ptr(addr1);
3499 switch (endian) {
3500 case DEVICE_LITTLE_ENDIAN:
3501 stw_le_p(ptr, val);
3502 break;
3503 case DEVICE_BIG_ENDIAN:
3504 stw_be_p(ptr, val);
3505 break;
3506 default:
3507 stw_p(ptr, val);
3508 break;
3509 }
3510 invalidate_and_set_dirty(mr, addr1, 2);
3511 r = MEMTX_OK;
3512 }
3513 if (result) {
3514 *result = r;
3515 }
3516 if (release_lock) {
3517 qemu_mutex_unlock_iothread();
3518 }
3519 rcu_read_unlock();
3520 }
3521
3522 void address_space_stw(AddressSpace *as, hwaddr addr, uint32_t val,
3523 MemTxAttrs attrs, MemTxResult *result)
3524 {
3525 address_space_stw_internal(as, addr, val, attrs, result,
3526 DEVICE_NATIVE_ENDIAN);
3527 }
3528
3529 void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val,
3530 MemTxAttrs attrs, MemTxResult *result)
3531 {
3532 address_space_stw_internal(as, addr, val, attrs, result,
3533 DEVICE_LITTLE_ENDIAN);
3534 }
3535
3536 void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val,
3537 MemTxAttrs attrs, MemTxResult *result)
3538 {
3539 address_space_stw_internal(as, addr, val, attrs, result,
3540 DEVICE_BIG_ENDIAN);
3541 }
3542
3543 void stw_phys(AddressSpace *as, hwaddr addr, uint32_t val)
3544 {
3545 address_space_stw(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3546 }
3547
3548 void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val)
3549 {
3550 address_space_stw_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3551 }
3552
3553 void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val)
3554 {
3555 address_space_stw_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3556 }
3557
3558 /* XXX: optimize */
3559 void address_space_stq(AddressSpace *as, hwaddr addr, uint64_t val,
3560 MemTxAttrs attrs, MemTxResult *result)
3561 {
3562 MemTxResult r;
3563 val = tswap64(val);
3564 r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1);
3565 if (result) {
3566 *result = r;
3567 }
3568 }
3569
3570 void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val,
3571 MemTxAttrs attrs, MemTxResult *result)
3572 {
3573 MemTxResult r;
3574 val = cpu_to_le64(val);
3575 r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1);
3576 if (result) {
3577 *result = r;
3578 }
3579 }
3580 void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val,
3581 MemTxAttrs attrs, MemTxResult *result)
3582 {
3583 MemTxResult r;
3584 val = cpu_to_be64(val);
3585 r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1);
3586 if (result) {
3587 *result = r;
3588 }
3589 }
3590
3591 void stq_phys(AddressSpace *as, hwaddr addr, uint64_t val)
3592 {
3593 address_space_stq(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3594 }
3595
3596 void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val)
3597 {
3598 address_space_stq_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3599 }
3600
3601 void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val)
3602 {
3603 address_space_stq_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3604 }
3605
3606 /* virtual memory access for debug (includes writing to ROM) */
3607 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3608 uint8_t *buf, int len, int is_write)
3609 {
3610 int l;
3611 hwaddr phys_addr;
3612 target_ulong page;
3613
3614 while (len > 0) {
3615 int asidx;
3616 MemTxAttrs attrs;
3617
3618 page = addr & TARGET_PAGE_MASK;
3619 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3620 asidx = cpu_asidx_from_attrs(cpu, attrs);
3621 /* if no physical page mapped, return an error */
3622 if (phys_addr == -1)
3623 return -1;
3624 l = (page + TARGET_PAGE_SIZE) - addr;
3625 if (l > len)
3626 l = len;
3627 phys_addr += (addr & ~TARGET_PAGE_MASK);
3628 if (is_write) {
3629 cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
3630 phys_addr, buf, l);
3631 } else {
3632 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3633 MEMTXATTRS_UNSPECIFIED,
3634 buf, l, 0);
3635 }
3636 len -= l;
3637 buf += l;
3638 addr += l;
3639 }
3640 return 0;
3641 }
3642
3643 /*
3644 * Allows code that needs to deal with migration bitmaps etc to still be built
3645 * target independent.
3646 */
3647 size_t qemu_target_page_bits(void)
3648 {
3649 return TARGET_PAGE_BITS;
3650 }
3651
3652 #endif
3653
3654 /*
3655 * A helper function for the _utterly broken_ virtio device model to find out if
3656 * it's running on a big endian machine. Don't do this at home kids!
3657 */
3658 bool target_words_bigendian(void);
3659 bool target_words_bigendian(void)
3660 {
3661 #if defined(TARGET_WORDS_BIGENDIAN)
3662 return true;
3663 #else
3664 return false;
3665 #endif
3666 }
3667
3668 #ifndef CONFIG_USER_ONLY
3669 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3670 {
3671 MemoryRegion*mr;
3672 hwaddr l = 1;
3673 bool res;
3674
3675 rcu_read_lock();
3676 mr = address_space_translate(&address_space_memory,
3677 phys_addr, &phys_addr, &l, false);
3678
3679 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3680 rcu_read_unlock();
3681 return res;
3682 }
3683
3684 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3685 {
3686 RAMBlock *block;
3687 int ret = 0;
3688
3689 rcu_read_lock();
3690 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
3691 ret = func(block->idstr, block->host, block->offset,
3692 block->used_length, opaque);
3693 if (ret) {
3694 break;
3695 }
3696 }
3697 rcu_read_unlock();
3698 return ret;
3699 }
3700 #endif