]> git.proxmox.com Git - mirror_qemu.git/blob - exec.c
Split I^2C controller out of hw/omap.c.
[mirror_qemu.git] / exec.c
1 /*
2 * virtual page mapping and translated block handling
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20 #include "config.h"
21 #ifdef _WIN32
22 #include <windows.h>
23 #else
24 #include <sys/types.h>
25 #include <sys/mman.h>
26 #endif
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <stdarg.h>
30 #include <string.h>
31 #include <errno.h>
32 #include <unistd.h>
33 #include <inttypes.h>
34
35 #include "cpu.h"
36 #include "exec-all.h"
37 #if defined(CONFIG_USER_ONLY)
38 #include <qemu.h>
39 #endif
40
41 //#define DEBUG_TB_INVALIDATE
42 //#define DEBUG_FLUSH
43 //#define DEBUG_TLB
44 //#define DEBUG_UNASSIGNED
45
46 /* make various TB consistency checks */
47 //#define DEBUG_TB_CHECK
48 //#define DEBUG_TLB_CHECK
49
50 //#define DEBUG_IOPORT
51 //#define DEBUG_SUBPAGE
52
53 #if !defined(CONFIG_USER_ONLY)
54 /* TB consistency checks only implemented for usermode emulation. */
55 #undef DEBUG_TB_CHECK
56 #endif
57
58 /* threshold to flush the translated code buffer */
59 #define CODE_GEN_BUFFER_MAX_SIZE (CODE_GEN_BUFFER_SIZE - CODE_GEN_MAX_SIZE)
60
61 #define SMC_BITMAP_USE_THRESHOLD 10
62
63 #define MMAP_AREA_START 0x00000000
64 #define MMAP_AREA_END 0xa8000000
65
66 #if defined(TARGET_SPARC64)
67 #define TARGET_PHYS_ADDR_SPACE_BITS 41
68 #elif defined(TARGET_SPARC)
69 #define TARGET_PHYS_ADDR_SPACE_BITS 36
70 #elif defined(TARGET_ALPHA)
71 #define TARGET_PHYS_ADDR_SPACE_BITS 42
72 #define TARGET_VIRT_ADDR_SPACE_BITS 42
73 #elif defined(TARGET_PPC64)
74 #define TARGET_PHYS_ADDR_SPACE_BITS 42
75 #else
76 /* Note: for compatibility with kqemu, we use 32 bits for x86_64 */
77 #define TARGET_PHYS_ADDR_SPACE_BITS 32
78 #endif
79
80 TranslationBlock tbs[CODE_GEN_MAX_BLOCKS];
81 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
82 int nb_tbs;
83 /* any access to the tbs or the page table must use this lock */
84 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
85
86 uint8_t code_gen_buffer[CODE_GEN_BUFFER_SIZE] __attribute__((aligned (32)));
87 uint8_t *code_gen_ptr;
88
89 int phys_ram_size;
90 int phys_ram_fd;
91 uint8_t *phys_ram_base;
92 uint8_t *phys_ram_dirty;
93 static ram_addr_t phys_ram_alloc_offset = 0;
94
95 CPUState *first_cpu;
96 /* current CPU in the current thread. It is only valid inside
97 cpu_exec() */
98 CPUState *cpu_single_env;
99
100 typedef struct PageDesc {
101 /* list of TBs intersecting this ram page */
102 TranslationBlock *first_tb;
103 /* in order to optimize self modifying code, we count the number
104 of lookups we do to a given page to use a bitmap */
105 unsigned int code_write_count;
106 uint8_t *code_bitmap;
107 #if defined(CONFIG_USER_ONLY)
108 unsigned long flags;
109 #endif
110 } PageDesc;
111
112 typedef struct PhysPageDesc {
113 /* offset in host memory of the page + io_index in the low 12 bits */
114 uint32_t phys_offset;
115 } PhysPageDesc;
116
117 #define L2_BITS 10
118 #if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
119 /* XXX: this is a temporary hack for alpha target.
120 * In the future, this is to be replaced by a multi-level table
121 * to actually be able to handle the complete 64 bits address space.
122 */
123 #define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
124 #else
125 #define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
126 #endif
127
128 #define L1_SIZE (1 << L1_BITS)
129 #define L2_SIZE (1 << L2_BITS)
130
131 static void io_mem_init(void);
132
133 unsigned long qemu_real_host_page_size;
134 unsigned long qemu_host_page_bits;
135 unsigned long qemu_host_page_size;
136 unsigned long qemu_host_page_mask;
137
138 /* XXX: for system emulation, it could just be an array */
139 static PageDesc *l1_map[L1_SIZE];
140 PhysPageDesc **l1_phys_map;
141
142 /* io memory support */
143 CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
144 CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
145 void *io_mem_opaque[IO_MEM_NB_ENTRIES];
146 static int io_mem_nb;
147 #if defined(CONFIG_SOFTMMU)
148 static int io_mem_watch;
149 #endif
150
151 /* log support */
152 char *logfilename = "/tmp/qemu.log";
153 FILE *logfile;
154 int loglevel;
155 static int log_append = 0;
156
157 /* statistics */
158 static int tlb_flush_count;
159 static int tb_flush_count;
160 static int tb_phys_invalidate_count;
161
162 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
163 typedef struct subpage_t {
164 target_phys_addr_t base;
165 CPUReadMemoryFunc **mem_read[TARGET_PAGE_SIZE];
166 CPUWriteMemoryFunc **mem_write[TARGET_PAGE_SIZE];
167 void *opaque[TARGET_PAGE_SIZE];
168 } subpage_t;
169
170 static void page_init(void)
171 {
172 /* NOTE: we can always suppose that qemu_host_page_size >=
173 TARGET_PAGE_SIZE */
174 #ifdef _WIN32
175 {
176 SYSTEM_INFO system_info;
177 DWORD old_protect;
178
179 GetSystemInfo(&system_info);
180 qemu_real_host_page_size = system_info.dwPageSize;
181
182 VirtualProtect(code_gen_buffer, sizeof(code_gen_buffer),
183 PAGE_EXECUTE_READWRITE, &old_protect);
184 }
185 #else
186 qemu_real_host_page_size = getpagesize();
187 {
188 unsigned long start, end;
189
190 start = (unsigned long)code_gen_buffer;
191 start &= ~(qemu_real_host_page_size - 1);
192
193 end = (unsigned long)code_gen_buffer + sizeof(code_gen_buffer);
194 end += qemu_real_host_page_size - 1;
195 end &= ~(qemu_real_host_page_size - 1);
196
197 mprotect((void *)start, end - start,
198 PROT_READ | PROT_WRITE | PROT_EXEC);
199 }
200 #endif
201
202 if (qemu_host_page_size == 0)
203 qemu_host_page_size = qemu_real_host_page_size;
204 if (qemu_host_page_size < TARGET_PAGE_SIZE)
205 qemu_host_page_size = TARGET_PAGE_SIZE;
206 qemu_host_page_bits = 0;
207 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
208 qemu_host_page_bits++;
209 qemu_host_page_mask = ~(qemu_host_page_size - 1);
210 l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
211 memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
212 }
213
214 static inline PageDesc *page_find_alloc(unsigned int index)
215 {
216 PageDesc **lp, *p;
217
218 lp = &l1_map[index >> L2_BITS];
219 p = *lp;
220 if (!p) {
221 /* allocate if not found */
222 p = qemu_malloc(sizeof(PageDesc) * L2_SIZE);
223 memset(p, 0, sizeof(PageDesc) * L2_SIZE);
224 *lp = p;
225 }
226 return p + (index & (L2_SIZE - 1));
227 }
228
229 static inline PageDesc *page_find(unsigned int index)
230 {
231 PageDesc *p;
232
233 p = l1_map[index >> L2_BITS];
234 if (!p)
235 return 0;
236 return p + (index & (L2_SIZE - 1));
237 }
238
239 static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
240 {
241 void **lp, **p;
242 PhysPageDesc *pd;
243
244 p = (void **)l1_phys_map;
245 #if TARGET_PHYS_ADDR_SPACE_BITS > 32
246
247 #if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
248 #error unsupported TARGET_PHYS_ADDR_SPACE_BITS
249 #endif
250 lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
251 p = *lp;
252 if (!p) {
253 /* allocate if not found */
254 if (!alloc)
255 return NULL;
256 p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
257 memset(p, 0, sizeof(void *) * L1_SIZE);
258 *lp = p;
259 }
260 #endif
261 lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
262 pd = *lp;
263 if (!pd) {
264 int i;
265 /* allocate if not found */
266 if (!alloc)
267 return NULL;
268 pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
269 *lp = pd;
270 for (i = 0; i < L2_SIZE; i++)
271 pd[i].phys_offset = IO_MEM_UNASSIGNED;
272 }
273 return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
274 }
275
276 static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
277 {
278 return phys_page_find_alloc(index, 0);
279 }
280
281 #if !defined(CONFIG_USER_ONLY)
282 static void tlb_protect_code(ram_addr_t ram_addr);
283 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
284 target_ulong vaddr);
285 #endif
286
287 void cpu_exec_init(CPUState *env)
288 {
289 CPUState **penv;
290 int cpu_index;
291
292 if (!code_gen_ptr) {
293 code_gen_ptr = code_gen_buffer;
294 page_init();
295 io_mem_init();
296 }
297 env->next_cpu = NULL;
298 penv = &first_cpu;
299 cpu_index = 0;
300 while (*penv != NULL) {
301 penv = (CPUState **)&(*penv)->next_cpu;
302 cpu_index++;
303 }
304 env->cpu_index = cpu_index;
305 env->nb_watchpoints = 0;
306 *penv = env;
307 }
308
309 static inline void invalidate_page_bitmap(PageDesc *p)
310 {
311 if (p->code_bitmap) {
312 qemu_free(p->code_bitmap);
313 p->code_bitmap = NULL;
314 }
315 p->code_write_count = 0;
316 }
317
318 /* set to NULL all the 'first_tb' fields in all PageDescs */
319 static void page_flush_tb(void)
320 {
321 int i, j;
322 PageDesc *p;
323
324 for(i = 0; i < L1_SIZE; i++) {
325 p = l1_map[i];
326 if (p) {
327 for(j = 0; j < L2_SIZE; j++) {
328 p->first_tb = NULL;
329 invalidate_page_bitmap(p);
330 p++;
331 }
332 }
333 }
334 }
335
336 /* flush all the translation blocks */
337 /* XXX: tb_flush is currently not thread safe */
338 void tb_flush(CPUState *env1)
339 {
340 CPUState *env;
341 #if defined(DEBUG_FLUSH)
342 printf("qemu: flush code_size=%d nb_tbs=%d avg_tb_size=%d\n",
343 code_gen_ptr - code_gen_buffer,
344 nb_tbs,
345 nb_tbs > 0 ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0);
346 #endif
347 nb_tbs = 0;
348
349 for(env = first_cpu; env != NULL; env = env->next_cpu) {
350 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
351 }
352
353 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
354 page_flush_tb();
355
356 code_gen_ptr = code_gen_buffer;
357 /* XXX: flush processor icache at this point if cache flush is
358 expensive */
359 tb_flush_count++;
360 }
361
362 #ifdef DEBUG_TB_CHECK
363
364 static void tb_invalidate_check(target_ulong address)
365 {
366 TranslationBlock *tb;
367 int i;
368 address &= TARGET_PAGE_MASK;
369 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
370 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
371 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
372 address >= tb->pc + tb->size)) {
373 printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n",
374 address, (long)tb->pc, tb->size);
375 }
376 }
377 }
378 }
379
380 /* verify that all the pages have correct rights for code */
381 static void tb_page_check(void)
382 {
383 TranslationBlock *tb;
384 int i, flags1, flags2;
385
386 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
387 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
388 flags1 = page_get_flags(tb->pc);
389 flags2 = page_get_flags(tb->pc + tb->size - 1);
390 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
391 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
392 (long)tb->pc, tb->size, flags1, flags2);
393 }
394 }
395 }
396 }
397
398 void tb_jmp_check(TranslationBlock *tb)
399 {
400 TranslationBlock *tb1;
401 unsigned int n1;
402
403 /* suppress any remaining jumps to this TB */
404 tb1 = tb->jmp_first;
405 for(;;) {
406 n1 = (long)tb1 & 3;
407 tb1 = (TranslationBlock *)((long)tb1 & ~3);
408 if (n1 == 2)
409 break;
410 tb1 = tb1->jmp_next[n1];
411 }
412 /* check end of list */
413 if (tb1 != tb) {
414 printf("ERROR: jmp_list from 0x%08lx\n", (long)tb);
415 }
416 }
417
418 #endif
419
420 /* invalidate one TB */
421 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
422 int next_offset)
423 {
424 TranslationBlock *tb1;
425 for(;;) {
426 tb1 = *ptb;
427 if (tb1 == tb) {
428 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
429 break;
430 }
431 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
432 }
433 }
434
435 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
436 {
437 TranslationBlock *tb1;
438 unsigned int n1;
439
440 for(;;) {
441 tb1 = *ptb;
442 n1 = (long)tb1 & 3;
443 tb1 = (TranslationBlock *)((long)tb1 & ~3);
444 if (tb1 == tb) {
445 *ptb = tb1->page_next[n1];
446 break;
447 }
448 ptb = &tb1->page_next[n1];
449 }
450 }
451
452 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
453 {
454 TranslationBlock *tb1, **ptb;
455 unsigned int n1;
456
457 ptb = &tb->jmp_next[n];
458 tb1 = *ptb;
459 if (tb1) {
460 /* find tb(n) in circular list */
461 for(;;) {
462 tb1 = *ptb;
463 n1 = (long)tb1 & 3;
464 tb1 = (TranslationBlock *)((long)tb1 & ~3);
465 if (n1 == n && tb1 == tb)
466 break;
467 if (n1 == 2) {
468 ptb = &tb1->jmp_first;
469 } else {
470 ptb = &tb1->jmp_next[n1];
471 }
472 }
473 /* now we can suppress tb(n) from the list */
474 *ptb = tb->jmp_next[n];
475
476 tb->jmp_next[n] = NULL;
477 }
478 }
479
480 /* reset the jump entry 'n' of a TB so that it is not chained to
481 another TB */
482 static inline void tb_reset_jump(TranslationBlock *tb, int n)
483 {
484 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
485 }
486
487 static inline void tb_phys_invalidate(TranslationBlock *tb, unsigned int page_addr)
488 {
489 CPUState *env;
490 PageDesc *p;
491 unsigned int h, n1;
492 target_ulong phys_pc;
493 TranslationBlock *tb1, *tb2;
494
495 /* remove the TB from the hash list */
496 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
497 h = tb_phys_hash_func(phys_pc);
498 tb_remove(&tb_phys_hash[h], tb,
499 offsetof(TranslationBlock, phys_hash_next));
500
501 /* remove the TB from the page list */
502 if (tb->page_addr[0] != page_addr) {
503 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
504 tb_page_remove(&p->first_tb, tb);
505 invalidate_page_bitmap(p);
506 }
507 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
508 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
509 tb_page_remove(&p->first_tb, tb);
510 invalidate_page_bitmap(p);
511 }
512
513 tb_invalidated_flag = 1;
514
515 /* remove the TB from the hash list */
516 h = tb_jmp_cache_hash_func(tb->pc);
517 for(env = first_cpu; env != NULL; env = env->next_cpu) {
518 if (env->tb_jmp_cache[h] == tb)
519 env->tb_jmp_cache[h] = NULL;
520 }
521
522 /* suppress this TB from the two jump lists */
523 tb_jmp_remove(tb, 0);
524 tb_jmp_remove(tb, 1);
525
526 /* suppress any remaining jumps to this TB */
527 tb1 = tb->jmp_first;
528 for(;;) {
529 n1 = (long)tb1 & 3;
530 if (n1 == 2)
531 break;
532 tb1 = (TranslationBlock *)((long)tb1 & ~3);
533 tb2 = tb1->jmp_next[n1];
534 tb_reset_jump(tb1, n1);
535 tb1->jmp_next[n1] = NULL;
536 tb1 = tb2;
537 }
538 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
539
540 tb_phys_invalidate_count++;
541 }
542
543 static inline void set_bits(uint8_t *tab, int start, int len)
544 {
545 int end, mask, end1;
546
547 end = start + len;
548 tab += start >> 3;
549 mask = 0xff << (start & 7);
550 if ((start & ~7) == (end & ~7)) {
551 if (start < end) {
552 mask &= ~(0xff << (end & 7));
553 *tab |= mask;
554 }
555 } else {
556 *tab++ |= mask;
557 start = (start + 8) & ~7;
558 end1 = end & ~7;
559 while (start < end1) {
560 *tab++ = 0xff;
561 start += 8;
562 }
563 if (start < end) {
564 mask = ~(0xff << (end & 7));
565 *tab |= mask;
566 }
567 }
568 }
569
570 static void build_page_bitmap(PageDesc *p)
571 {
572 int n, tb_start, tb_end;
573 TranslationBlock *tb;
574
575 p->code_bitmap = qemu_malloc(TARGET_PAGE_SIZE / 8);
576 if (!p->code_bitmap)
577 return;
578 memset(p->code_bitmap, 0, TARGET_PAGE_SIZE / 8);
579
580 tb = p->first_tb;
581 while (tb != NULL) {
582 n = (long)tb & 3;
583 tb = (TranslationBlock *)((long)tb & ~3);
584 /* NOTE: this is subtle as a TB may span two physical pages */
585 if (n == 0) {
586 /* NOTE: tb_end may be after the end of the page, but
587 it is not a problem */
588 tb_start = tb->pc & ~TARGET_PAGE_MASK;
589 tb_end = tb_start + tb->size;
590 if (tb_end > TARGET_PAGE_SIZE)
591 tb_end = TARGET_PAGE_SIZE;
592 } else {
593 tb_start = 0;
594 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
595 }
596 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
597 tb = tb->page_next[n];
598 }
599 }
600
601 #ifdef TARGET_HAS_PRECISE_SMC
602
603 static void tb_gen_code(CPUState *env,
604 target_ulong pc, target_ulong cs_base, int flags,
605 int cflags)
606 {
607 TranslationBlock *tb;
608 uint8_t *tc_ptr;
609 target_ulong phys_pc, phys_page2, virt_page2;
610 int code_gen_size;
611
612 phys_pc = get_phys_addr_code(env, pc);
613 tb = tb_alloc(pc);
614 if (!tb) {
615 /* flush must be done */
616 tb_flush(env);
617 /* cannot fail at this point */
618 tb = tb_alloc(pc);
619 }
620 tc_ptr = code_gen_ptr;
621 tb->tc_ptr = tc_ptr;
622 tb->cs_base = cs_base;
623 tb->flags = flags;
624 tb->cflags = cflags;
625 cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
626 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
627
628 /* check next page if needed */
629 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
630 phys_page2 = -1;
631 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
632 phys_page2 = get_phys_addr_code(env, virt_page2);
633 }
634 tb_link_phys(tb, phys_pc, phys_page2);
635 }
636 #endif
637
638 /* invalidate all TBs which intersect with the target physical page
639 starting in range [start;end[. NOTE: start and end must refer to
640 the same physical page. 'is_cpu_write_access' should be true if called
641 from a real cpu write access: the virtual CPU will exit the current
642 TB if code is modified inside this TB. */
643 void tb_invalidate_phys_page_range(target_ulong start, target_ulong end,
644 int is_cpu_write_access)
645 {
646 int n, current_tb_modified, current_tb_not_found, current_flags;
647 CPUState *env = cpu_single_env;
648 PageDesc *p;
649 TranslationBlock *tb, *tb_next, *current_tb, *saved_tb;
650 target_ulong tb_start, tb_end;
651 target_ulong current_pc, current_cs_base;
652
653 p = page_find(start >> TARGET_PAGE_BITS);
654 if (!p)
655 return;
656 if (!p->code_bitmap &&
657 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
658 is_cpu_write_access) {
659 /* build code bitmap */
660 build_page_bitmap(p);
661 }
662
663 /* we remove all the TBs in the range [start, end[ */
664 /* XXX: see if in some cases it could be faster to invalidate all the code */
665 current_tb_not_found = is_cpu_write_access;
666 current_tb_modified = 0;
667 current_tb = NULL; /* avoid warning */
668 current_pc = 0; /* avoid warning */
669 current_cs_base = 0; /* avoid warning */
670 current_flags = 0; /* avoid warning */
671 tb = p->first_tb;
672 while (tb != NULL) {
673 n = (long)tb & 3;
674 tb = (TranslationBlock *)((long)tb & ~3);
675 tb_next = tb->page_next[n];
676 /* NOTE: this is subtle as a TB may span two physical pages */
677 if (n == 0) {
678 /* NOTE: tb_end may be after the end of the page, but
679 it is not a problem */
680 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
681 tb_end = tb_start + tb->size;
682 } else {
683 tb_start = tb->page_addr[1];
684 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
685 }
686 if (!(tb_end <= start || tb_start >= end)) {
687 #ifdef TARGET_HAS_PRECISE_SMC
688 if (current_tb_not_found) {
689 current_tb_not_found = 0;
690 current_tb = NULL;
691 if (env->mem_write_pc) {
692 /* now we have a real cpu fault */
693 current_tb = tb_find_pc(env->mem_write_pc);
694 }
695 }
696 if (current_tb == tb &&
697 !(current_tb->cflags & CF_SINGLE_INSN)) {
698 /* If we are modifying the current TB, we must stop
699 its execution. We could be more precise by checking
700 that the modification is after the current PC, but it
701 would require a specialized function to partially
702 restore the CPU state */
703
704 current_tb_modified = 1;
705 cpu_restore_state(current_tb, env,
706 env->mem_write_pc, NULL);
707 #if defined(TARGET_I386)
708 current_flags = env->hflags;
709 current_flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
710 current_cs_base = (target_ulong)env->segs[R_CS].base;
711 current_pc = current_cs_base + env->eip;
712 #else
713 #error unsupported CPU
714 #endif
715 }
716 #endif /* TARGET_HAS_PRECISE_SMC */
717 /* we need to do that to handle the case where a signal
718 occurs while doing tb_phys_invalidate() */
719 saved_tb = NULL;
720 if (env) {
721 saved_tb = env->current_tb;
722 env->current_tb = NULL;
723 }
724 tb_phys_invalidate(tb, -1);
725 if (env) {
726 env->current_tb = saved_tb;
727 if (env->interrupt_request && env->current_tb)
728 cpu_interrupt(env, env->interrupt_request);
729 }
730 }
731 tb = tb_next;
732 }
733 #if !defined(CONFIG_USER_ONLY)
734 /* if no code remaining, no need to continue to use slow writes */
735 if (!p->first_tb) {
736 invalidate_page_bitmap(p);
737 if (is_cpu_write_access) {
738 tlb_unprotect_code_phys(env, start, env->mem_write_vaddr);
739 }
740 }
741 #endif
742 #ifdef TARGET_HAS_PRECISE_SMC
743 if (current_tb_modified) {
744 /* we generate a block containing just the instruction
745 modifying the memory. It will ensure that it cannot modify
746 itself */
747 env->current_tb = NULL;
748 tb_gen_code(env, current_pc, current_cs_base, current_flags,
749 CF_SINGLE_INSN);
750 cpu_resume_from_signal(env, NULL);
751 }
752 #endif
753 }
754
755 /* len must be <= 8 and start must be a multiple of len */
756 static inline void tb_invalidate_phys_page_fast(target_ulong start, int len)
757 {
758 PageDesc *p;
759 int offset, b;
760 #if 0
761 if (1) {
762 if (loglevel) {
763 fprintf(logfile, "modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
764 cpu_single_env->mem_write_vaddr, len,
765 cpu_single_env->eip,
766 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
767 }
768 }
769 #endif
770 p = page_find(start >> TARGET_PAGE_BITS);
771 if (!p)
772 return;
773 if (p->code_bitmap) {
774 offset = start & ~TARGET_PAGE_MASK;
775 b = p->code_bitmap[offset >> 3] >> (offset & 7);
776 if (b & ((1 << len) - 1))
777 goto do_invalidate;
778 } else {
779 do_invalidate:
780 tb_invalidate_phys_page_range(start, start + len, 1);
781 }
782 }
783
784 #if !defined(CONFIG_SOFTMMU)
785 static void tb_invalidate_phys_page(target_ulong addr,
786 unsigned long pc, void *puc)
787 {
788 int n, current_flags, current_tb_modified;
789 target_ulong current_pc, current_cs_base;
790 PageDesc *p;
791 TranslationBlock *tb, *current_tb;
792 #ifdef TARGET_HAS_PRECISE_SMC
793 CPUState *env = cpu_single_env;
794 #endif
795
796 addr &= TARGET_PAGE_MASK;
797 p = page_find(addr >> TARGET_PAGE_BITS);
798 if (!p)
799 return;
800 tb = p->first_tb;
801 current_tb_modified = 0;
802 current_tb = NULL;
803 current_pc = 0; /* avoid warning */
804 current_cs_base = 0; /* avoid warning */
805 current_flags = 0; /* avoid warning */
806 #ifdef TARGET_HAS_PRECISE_SMC
807 if (tb && pc != 0) {
808 current_tb = tb_find_pc(pc);
809 }
810 #endif
811 while (tb != NULL) {
812 n = (long)tb & 3;
813 tb = (TranslationBlock *)((long)tb & ~3);
814 #ifdef TARGET_HAS_PRECISE_SMC
815 if (current_tb == tb &&
816 !(current_tb->cflags & CF_SINGLE_INSN)) {
817 /* If we are modifying the current TB, we must stop
818 its execution. We could be more precise by checking
819 that the modification is after the current PC, but it
820 would require a specialized function to partially
821 restore the CPU state */
822
823 current_tb_modified = 1;
824 cpu_restore_state(current_tb, env, pc, puc);
825 #if defined(TARGET_I386)
826 current_flags = env->hflags;
827 current_flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
828 current_cs_base = (target_ulong)env->segs[R_CS].base;
829 current_pc = current_cs_base + env->eip;
830 #else
831 #error unsupported CPU
832 #endif
833 }
834 #endif /* TARGET_HAS_PRECISE_SMC */
835 tb_phys_invalidate(tb, addr);
836 tb = tb->page_next[n];
837 }
838 p->first_tb = NULL;
839 #ifdef TARGET_HAS_PRECISE_SMC
840 if (current_tb_modified) {
841 /* we generate a block containing just the instruction
842 modifying the memory. It will ensure that it cannot modify
843 itself */
844 env->current_tb = NULL;
845 tb_gen_code(env, current_pc, current_cs_base, current_flags,
846 CF_SINGLE_INSN);
847 cpu_resume_from_signal(env, puc);
848 }
849 #endif
850 }
851 #endif
852
853 /* add the tb in the target page and protect it if necessary */
854 static inline void tb_alloc_page(TranslationBlock *tb,
855 unsigned int n, target_ulong page_addr)
856 {
857 PageDesc *p;
858 TranslationBlock *last_first_tb;
859
860 tb->page_addr[n] = page_addr;
861 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
862 tb->page_next[n] = p->first_tb;
863 last_first_tb = p->first_tb;
864 p->first_tb = (TranslationBlock *)((long)tb | n);
865 invalidate_page_bitmap(p);
866
867 #if defined(TARGET_HAS_SMC) || 1
868
869 #if defined(CONFIG_USER_ONLY)
870 if (p->flags & PAGE_WRITE) {
871 target_ulong addr;
872 PageDesc *p2;
873 int prot;
874
875 /* force the host page as non writable (writes will have a
876 page fault + mprotect overhead) */
877 page_addr &= qemu_host_page_mask;
878 prot = 0;
879 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
880 addr += TARGET_PAGE_SIZE) {
881
882 p2 = page_find (addr >> TARGET_PAGE_BITS);
883 if (!p2)
884 continue;
885 prot |= p2->flags;
886 p2->flags &= ~PAGE_WRITE;
887 page_get_flags(addr);
888 }
889 mprotect(g2h(page_addr), qemu_host_page_size,
890 (prot & PAGE_BITS) & ~PAGE_WRITE);
891 #ifdef DEBUG_TB_INVALIDATE
892 printf("protecting code page: 0x%08lx\n",
893 page_addr);
894 #endif
895 }
896 #else
897 /* if some code is already present, then the pages are already
898 protected. So we handle the case where only the first TB is
899 allocated in a physical page */
900 if (!last_first_tb) {
901 tlb_protect_code(page_addr);
902 }
903 #endif
904
905 #endif /* TARGET_HAS_SMC */
906 }
907
908 /* Allocate a new translation block. Flush the translation buffer if
909 too many translation blocks or too much generated code. */
910 TranslationBlock *tb_alloc(target_ulong pc)
911 {
912 TranslationBlock *tb;
913
914 if (nb_tbs >= CODE_GEN_MAX_BLOCKS ||
915 (code_gen_ptr - code_gen_buffer) >= CODE_GEN_BUFFER_MAX_SIZE)
916 return NULL;
917 tb = &tbs[nb_tbs++];
918 tb->pc = pc;
919 tb->cflags = 0;
920 return tb;
921 }
922
923 /* add a new TB and link it to the physical page tables. phys_page2 is
924 (-1) to indicate that only one page contains the TB. */
925 void tb_link_phys(TranslationBlock *tb,
926 target_ulong phys_pc, target_ulong phys_page2)
927 {
928 unsigned int h;
929 TranslationBlock **ptb;
930
931 /* add in the physical hash table */
932 h = tb_phys_hash_func(phys_pc);
933 ptb = &tb_phys_hash[h];
934 tb->phys_hash_next = *ptb;
935 *ptb = tb;
936
937 /* add in the page list */
938 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
939 if (phys_page2 != -1)
940 tb_alloc_page(tb, 1, phys_page2);
941 else
942 tb->page_addr[1] = -1;
943
944 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
945 tb->jmp_next[0] = NULL;
946 tb->jmp_next[1] = NULL;
947 #ifdef USE_CODE_COPY
948 tb->cflags &= ~CF_FP_USED;
949 if (tb->cflags & CF_TB_FP_USED)
950 tb->cflags |= CF_FP_USED;
951 #endif
952
953 /* init original jump addresses */
954 if (tb->tb_next_offset[0] != 0xffff)
955 tb_reset_jump(tb, 0);
956 if (tb->tb_next_offset[1] != 0xffff)
957 tb_reset_jump(tb, 1);
958
959 #ifdef DEBUG_TB_CHECK
960 tb_page_check();
961 #endif
962 }
963
964 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
965 tb[1].tc_ptr. Return NULL if not found */
966 TranslationBlock *tb_find_pc(unsigned long tc_ptr)
967 {
968 int m_min, m_max, m;
969 unsigned long v;
970 TranslationBlock *tb;
971
972 if (nb_tbs <= 0)
973 return NULL;
974 if (tc_ptr < (unsigned long)code_gen_buffer ||
975 tc_ptr >= (unsigned long)code_gen_ptr)
976 return NULL;
977 /* binary search (cf Knuth) */
978 m_min = 0;
979 m_max = nb_tbs - 1;
980 while (m_min <= m_max) {
981 m = (m_min + m_max) >> 1;
982 tb = &tbs[m];
983 v = (unsigned long)tb->tc_ptr;
984 if (v == tc_ptr)
985 return tb;
986 else if (tc_ptr < v) {
987 m_max = m - 1;
988 } else {
989 m_min = m + 1;
990 }
991 }
992 return &tbs[m_max];
993 }
994
995 static void tb_reset_jump_recursive(TranslationBlock *tb);
996
997 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
998 {
999 TranslationBlock *tb1, *tb_next, **ptb;
1000 unsigned int n1;
1001
1002 tb1 = tb->jmp_next[n];
1003 if (tb1 != NULL) {
1004 /* find head of list */
1005 for(;;) {
1006 n1 = (long)tb1 & 3;
1007 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1008 if (n1 == 2)
1009 break;
1010 tb1 = tb1->jmp_next[n1];
1011 }
1012 /* we are now sure now that tb jumps to tb1 */
1013 tb_next = tb1;
1014
1015 /* remove tb from the jmp_first list */
1016 ptb = &tb_next->jmp_first;
1017 for(;;) {
1018 tb1 = *ptb;
1019 n1 = (long)tb1 & 3;
1020 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1021 if (n1 == n && tb1 == tb)
1022 break;
1023 ptb = &tb1->jmp_next[n1];
1024 }
1025 *ptb = tb->jmp_next[n];
1026 tb->jmp_next[n] = NULL;
1027
1028 /* suppress the jump to next tb in generated code */
1029 tb_reset_jump(tb, n);
1030
1031 /* suppress jumps in the tb on which we could have jumped */
1032 tb_reset_jump_recursive(tb_next);
1033 }
1034 }
1035
1036 static void tb_reset_jump_recursive(TranslationBlock *tb)
1037 {
1038 tb_reset_jump_recursive2(tb, 0);
1039 tb_reset_jump_recursive2(tb, 1);
1040 }
1041
1042 #if defined(TARGET_HAS_ICE)
1043 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1044 {
1045 target_phys_addr_t addr;
1046 target_ulong pd;
1047 ram_addr_t ram_addr;
1048 PhysPageDesc *p;
1049
1050 addr = cpu_get_phys_page_debug(env, pc);
1051 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1052 if (!p) {
1053 pd = IO_MEM_UNASSIGNED;
1054 } else {
1055 pd = p->phys_offset;
1056 }
1057 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
1058 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1059 }
1060 #endif
1061
1062 /* Add a watchpoint. */
1063 int cpu_watchpoint_insert(CPUState *env, target_ulong addr)
1064 {
1065 int i;
1066
1067 for (i = 0; i < env->nb_watchpoints; i++) {
1068 if (addr == env->watchpoint[i].vaddr)
1069 return 0;
1070 }
1071 if (env->nb_watchpoints >= MAX_WATCHPOINTS)
1072 return -1;
1073
1074 i = env->nb_watchpoints++;
1075 env->watchpoint[i].vaddr = addr;
1076 tlb_flush_page(env, addr);
1077 /* FIXME: This flush is needed because of the hack to make memory ops
1078 terminate the TB. It can be removed once the proper IO trap and
1079 re-execute bits are in. */
1080 tb_flush(env);
1081 return i;
1082 }
1083
1084 /* Remove a watchpoint. */
1085 int cpu_watchpoint_remove(CPUState *env, target_ulong addr)
1086 {
1087 int i;
1088
1089 for (i = 0; i < env->nb_watchpoints; i++) {
1090 if (addr == env->watchpoint[i].vaddr) {
1091 env->nb_watchpoints--;
1092 env->watchpoint[i] = env->watchpoint[env->nb_watchpoints];
1093 tlb_flush_page(env, addr);
1094 return 0;
1095 }
1096 }
1097 return -1;
1098 }
1099
1100 /* add a breakpoint. EXCP_DEBUG is returned by the CPU loop if a
1101 breakpoint is reached */
1102 int cpu_breakpoint_insert(CPUState *env, target_ulong pc)
1103 {
1104 #if defined(TARGET_HAS_ICE)
1105 int i;
1106
1107 for(i = 0; i < env->nb_breakpoints; i++) {
1108 if (env->breakpoints[i] == pc)
1109 return 0;
1110 }
1111
1112 if (env->nb_breakpoints >= MAX_BREAKPOINTS)
1113 return -1;
1114 env->breakpoints[env->nb_breakpoints++] = pc;
1115
1116 breakpoint_invalidate(env, pc);
1117 return 0;
1118 #else
1119 return -1;
1120 #endif
1121 }
1122
1123 /* remove a breakpoint */
1124 int cpu_breakpoint_remove(CPUState *env, target_ulong pc)
1125 {
1126 #if defined(TARGET_HAS_ICE)
1127 int i;
1128 for(i = 0; i < env->nb_breakpoints; i++) {
1129 if (env->breakpoints[i] == pc)
1130 goto found;
1131 }
1132 return -1;
1133 found:
1134 env->nb_breakpoints--;
1135 if (i < env->nb_breakpoints)
1136 env->breakpoints[i] = env->breakpoints[env->nb_breakpoints];
1137
1138 breakpoint_invalidate(env, pc);
1139 return 0;
1140 #else
1141 return -1;
1142 #endif
1143 }
1144
1145 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1146 CPU loop after each instruction */
1147 void cpu_single_step(CPUState *env, int enabled)
1148 {
1149 #if defined(TARGET_HAS_ICE)
1150 if (env->singlestep_enabled != enabled) {
1151 env->singlestep_enabled = enabled;
1152 /* must flush all the translated code to avoid inconsistancies */
1153 /* XXX: only flush what is necessary */
1154 tb_flush(env);
1155 }
1156 #endif
1157 }
1158
1159 /* enable or disable low levels log */
1160 void cpu_set_log(int log_flags)
1161 {
1162 loglevel = log_flags;
1163 if (loglevel && !logfile) {
1164 logfile = fopen(logfilename, log_append ? "a" : "w");
1165 if (!logfile) {
1166 perror(logfilename);
1167 _exit(1);
1168 }
1169 #if !defined(CONFIG_SOFTMMU)
1170 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1171 {
1172 static uint8_t logfile_buf[4096];
1173 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1174 }
1175 #else
1176 setvbuf(logfile, NULL, _IOLBF, 0);
1177 #endif
1178 log_append = 1;
1179 }
1180 if (!loglevel && logfile) {
1181 fclose(logfile);
1182 logfile = NULL;
1183 }
1184 }
1185
1186 void cpu_set_log_filename(const char *filename)
1187 {
1188 logfilename = strdup(filename);
1189 if (logfile) {
1190 fclose(logfile);
1191 logfile = NULL;
1192 }
1193 cpu_set_log(loglevel);
1194 }
1195
1196 /* mask must never be zero, except for A20 change call */
1197 void cpu_interrupt(CPUState *env, int mask)
1198 {
1199 TranslationBlock *tb;
1200 static int interrupt_lock;
1201
1202 env->interrupt_request |= mask;
1203 /* if the cpu is currently executing code, we must unlink it and
1204 all the potentially executing TB */
1205 tb = env->current_tb;
1206 if (tb && !testandset(&interrupt_lock)) {
1207 env->current_tb = NULL;
1208 tb_reset_jump_recursive(tb);
1209 interrupt_lock = 0;
1210 }
1211 }
1212
1213 void cpu_reset_interrupt(CPUState *env, int mask)
1214 {
1215 env->interrupt_request &= ~mask;
1216 }
1217
1218 CPULogItem cpu_log_items[] = {
1219 { CPU_LOG_TB_OUT_ASM, "out_asm",
1220 "show generated host assembly code for each compiled TB" },
1221 { CPU_LOG_TB_IN_ASM, "in_asm",
1222 "show target assembly code for each compiled TB" },
1223 { CPU_LOG_TB_OP, "op",
1224 "show micro ops for each compiled TB (only usable if 'in_asm' used)" },
1225 #ifdef TARGET_I386
1226 { CPU_LOG_TB_OP_OPT, "op_opt",
1227 "show micro ops after optimization for each compiled TB" },
1228 #endif
1229 { CPU_LOG_INT, "int",
1230 "show interrupts/exceptions in short format" },
1231 { CPU_LOG_EXEC, "exec",
1232 "show trace before each executed TB (lots of logs)" },
1233 { CPU_LOG_TB_CPU, "cpu",
1234 "show CPU state before block translation" },
1235 #ifdef TARGET_I386
1236 { CPU_LOG_PCALL, "pcall",
1237 "show protected mode far calls/returns/exceptions" },
1238 #endif
1239 #ifdef DEBUG_IOPORT
1240 { CPU_LOG_IOPORT, "ioport",
1241 "show all i/o ports accesses" },
1242 #endif
1243 { 0, NULL, NULL },
1244 };
1245
1246 static int cmp1(const char *s1, int n, const char *s2)
1247 {
1248 if (strlen(s2) != n)
1249 return 0;
1250 return memcmp(s1, s2, n) == 0;
1251 }
1252
1253 /* takes a comma separated list of log masks. Return 0 if error. */
1254 int cpu_str_to_log_mask(const char *str)
1255 {
1256 CPULogItem *item;
1257 int mask;
1258 const char *p, *p1;
1259
1260 p = str;
1261 mask = 0;
1262 for(;;) {
1263 p1 = strchr(p, ',');
1264 if (!p1)
1265 p1 = p + strlen(p);
1266 if(cmp1(p,p1-p,"all")) {
1267 for(item = cpu_log_items; item->mask != 0; item++) {
1268 mask |= item->mask;
1269 }
1270 } else {
1271 for(item = cpu_log_items; item->mask != 0; item++) {
1272 if (cmp1(p, p1 - p, item->name))
1273 goto found;
1274 }
1275 return 0;
1276 }
1277 found:
1278 mask |= item->mask;
1279 if (*p1 != ',')
1280 break;
1281 p = p1 + 1;
1282 }
1283 return mask;
1284 }
1285
1286 void cpu_abort(CPUState *env, const char *fmt, ...)
1287 {
1288 va_list ap;
1289
1290 va_start(ap, fmt);
1291 fprintf(stderr, "qemu: fatal: ");
1292 vfprintf(stderr, fmt, ap);
1293 fprintf(stderr, "\n");
1294 #ifdef TARGET_I386
1295 if(env->intercept & INTERCEPT_SVM_MASK) {
1296 /* most probably the virtual machine should not
1297 be shut down but rather caught by the VMM */
1298 vmexit(SVM_EXIT_SHUTDOWN, 0);
1299 }
1300 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1301 #else
1302 cpu_dump_state(env, stderr, fprintf, 0);
1303 #endif
1304 if (logfile) {
1305 fprintf(logfile, "qemu: fatal: ");
1306 vfprintf(logfile, fmt, ap);
1307 fprintf(logfile, "\n");
1308 #ifdef TARGET_I386
1309 cpu_dump_state(env, logfile, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1310 #else
1311 cpu_dump_state(env, logfile, fprintf, 0);
1312 #endif
1313 fflush(logfile);
1314 fclose(logfile);
1315 }
1316 va_end(ap);
1317 abort();
1318 }
1319
1320 CPUState *cpu_copy(CPUState *env)
1321 {
1322 CPUState *new_env = cpu_init();
1323 /* preserve chaining and index */
1324 CPUState *next_cpu = new_env->next_cpu;
1325 int cpu_index = new_env->cpu_index;
1326 memcpy(new_env, env, sizeof(CPUState));
1327 new_env->next_cpu = next_cpu;
1328 new_env->cpu_index = cpu_index;
1329 return new_env;
1330 }
1331
1332 #if !defined(CONFIG_USER_ONLY)
1333
1334 /* NOTE: if flush_global is true, also flush global entries (not
1335 implemented yet) */
1336 void tlb_flush(CPUState *env, int flush_global)
1337 {
1338 int i;
1339
1340 #if defined(DEBUG_TLB)
1341 printf("tlb_flush:\n");
1342 #endif
1343 /* must reset current TB so that interrupts cannot modify the
1344 links while we are modifying them */
1345 env->current_tb = NULL;
1346
1347 for(i = 0; i < CPU_TLB_SIZE; i++) {
1348 env->tlb_table[0][i].addr_read = -1;
1349 env->tlb_table[0][i].addr_write = -1;
1350 env->tlb_table[0][i].addr_code = -1;
1351 env->tlb_table[1][i].addr_read = -1;
1352 env->tlb_table[1][i].addr_write = -1;
1353 env->tlb_table[1][i].addr_code = -1;
1354 #if (NB_MMU_MODES >= 3)
1355 env->tlb_table[2][i].addr_read = -1;
1356 env->tlb_table[2][i].addr_write = -1;
1357 env->tlb_table[2][i].addr_code = -1;
1358 #if (NB_MMU_MODES == 4)
1359 env->tlb_table[3][i].addr_read = -1;
1360 env->tlb_table[3][i].addr_write = -1;
1361 env->tlb_table[3][i].addr_code = -1;
1362 #endif
1363 #endif
1364 }
1365
1366 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
1367
1368 #if !defined(CONFIG_SOFTMMU)
1369 munmap((void *)MMAP_AREA_START, MMAP_AREA_END - MMAP_AREA_START);
1370 #endif
1371 #ifdef USE_KQEMU
1372 if (env->kqemu_enabled) {
1373 kqemu_flush(env, flush_global);
1374 }
1375 #endif
1376 tlb_flush_count++;
1377 }
1378
1379 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
1380 {
1381 if (addr == (tlb_entry->addr_read &
1382 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1383 addr == (tlb_entry->addr_write &
1384 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1385 addr == (tlb_entry->addr_code &
1386 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1387 tlb_entry->addr_read = -1;
1388 tlb_entry->addr_write = -1;
1389 tlb_entry->addr_code = -1;
1390 }
1391 }
1392
1393 void tlb_flush_page(CPUState *env, target_ulong addr)
1394 {
1395 int i;
1396 TranslationBlock *tb;
1397
1398 #if defined(DEBUG_TLB)
1399 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
1400 #endif
1401 /* must reset current TB so that interrupts cannot modify the
1402 links while we are modifying them */
1403 env->current_tb = NULL;
1404
1405 addr &= TARGET_PAGE_MASK;
1406 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1407 tlb_flush_entry(&env->tlb_table[0][i], addr);
1408 tlb_flush_entry(&env->tlb_table[1][i], addr);
1409 #if (NB_MMU_MODES >= 3)
1410 tlb_flush_entry(&env->tlb_table[2][i], addr);
1411 #if (NB_MMU_MODES == 4)
1412 tlb_flush_entry(&env->tlb_table[3][i], addr);
1413 #endif
1414 #endif
1415
1416 /* Discard jump cache entries for any tb which might potentially
1417 overlap the flushed page. */
1418 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1419 memset (&env->tb_jmp_cache[i], 0, TB_JMP_PAGE_SIZE * sizeof(tb));
1420
1421 i = tb_jmp_cache_hash_page(addr);
1422 memset (&env->tb_jmp_cache[i], 0, TB_JMP_PAGE_SIZE * sizeof(tb));
1423
1424 #if !defined(CONFIG_SOFTMMU)
1425 if (addr < MMAP_AREA_END)
1426 munmap((void *)addr, TARGET_PAGE_SIZE);
1427 #endif
1428 #ifdef USE_KQEMU
1429 if (env->kqemu_enabled) {
1430 kqemu_flush_page(env, addr);
1431 }
1432 #endif
1433 }
1434
1435 /* update the TLBs so that writes to code in the virtual page 'addr'
1436 can be detected */
1437 static void tlb_protect_code(ram_addr_t ram_addr)
1438 {
1439 cpu_physical_memory_reset_dirty(ram_addr,
1440 ram_addr + TARGET_PAGE_SIZE,
1441 CODE_DIRTY_FLAG);
1442 }
1443
1444 /* update the TLB so that writes in physical page 'phys_addr' are no longer
1445 tested for self modifying code */
1446 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
1447 target_ulong vaddr)
1448 {
1449 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1450 }
1451
1452 static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1453 unsigned long start, unsigned long length)
1454 {
1455 unsigned long addr;
1456 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1457 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1458 if ((addr - start) < length) {
1459 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | IO_MEM_NOTDIRTY;
1460 }
1461 }
1462 }
1463
1464 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
1465 int dirty_flags)
1466 {
1467 CPUState *env;
1468 unsigned long length, start1;
1469 int i, mask, len;
1470 uint8_t *p;
1471
1472 start &= TARGET_PAGE_MASK;
1473 end = TARGET_PAGE_ALIGN(end);
1474
1475 length = end - start;
1476 if (length == 0)
1477 return;
1478 len = length >> TARGET_PAGE_BITS;
1479 #ifdef USE_KQEMU
1480 /* XXX: should not depend on cpu context */
1481 env = first_cpu;
1482 if (env->kqemu_enabled) {
1483 ram_addr_t addr;
1484 addr = start;
1485 for(i = 0; i < len; i++) {
1486 kqemu_set_notdirty(env, addr);
1487 addr += TARGET_PAGE_SIZE;
1488 }
1489 }
1490 #endif
1491 mask = ~dirty_flags;
1492 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1493 for(i = 0; i < len; i++)
1494 p[i] &= mask;
1495
1496 /* we modify the TLB cache so that the dirty bit will be set again
1497 when accessing the range */
1498 start1 = start + (unsigned long)phys_ram_base;
1499 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1500 for(i = 0; i < CPU_TLB_SIZE; i++)
1501 tlb_reset_dirty_range(&env->tlb_table[0][i], start1, length);
1502 for(i = 0; i < CPU_TLB_SIZE; i++)
1503 tlb_reset_dirty_range(&env->tlb_table[1][i], start1, length);
1504 #if (NB_MMU_MODES >= 3)
1505 for(i = 0; i < CPU_TLB_SIZE; i++)
1506 tlb_reset_dirty_range(&env->tlb_table[2][i], start1, length);
1507 #if (NB_MMU_MODES == 4)
1508 for(i = 0; i < CPU_TLB_SIZE; i++)
1509 tlb_reset_dirty_range(&env->tlb_table[3][i], start1, length);
1510 #endif
1511 #endif
1512 }
1513
1514 #if !defined(CONFIG_SOFTMMU)
1515 /* XXX: this is expensive */
1516 {
1517 VirtPageDesc *p;
1518 int j;
1519 target_ulong addr;
1520
1521 for(i = 0; i < L1_SIZE; i++) {
1522 p = l1_virt_map[i];
1523 if (p) {
1524 addr = i << (TARGET_PAGE_BITS + L2_BITS);
1525 for(j = 0; j < L2_SIZE; j++) {
1526 if (p->valid_tag == virt_valid_tag &&
1527 p->phys_addr >= start && p->phys_addr < end &&
1528 (p->prot & PROT_WRITE)) {
1529 if (addr < MMAP_AREA_END) {
1530 mprotect((void *)addr, TARGET_PAGE_SIZE,
1531 p->prot & ~PROT_WRITE);
1532 }
1533 }
1534 addr += TARGET_PAGE_SIZE;
1535 p++;
1536 }
1537 }
1538 }
1539 }
1540 #endif
1541 }
1542
1543 static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
1544 {
1545 ram_addr_t ram_addr;
1546
1547 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1548 ram_addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) +
1549 tlb_entry->addend - (unsigned long)phys_ram_base;
1550 if (!cpu_physical_memory_is_dirty(ram_addr)) {
1551 tlb_entry->addr_write |= IO_MEM_NOTDIRTY;
1552 }
1553 }
1554 }
1555
1556 /* update the TLB according to the current state of the dirty bits */
1557 void cpu_tlb_update_dirty(CPUState *env)
1558 {
1559 int i;
1560 for(i = 0; i < CPU_TLB_SIZE; i++)
1561 tlb_update_dirty(&env->tlb_table[0][i]);
1562 for(i = 0; i < CPU_TLB_SIZE; i++)
1563 tlb_update_dirty(&env->tlb_table[1][i]);
1564 #if (NB_MMU_MODES >= 3)
1565 for(i = 0; i < CPU_TLB_SIZE; i++)
1566 tlb_update_dirty(&env->tlb_table[2][i]);
1567 #if (NB_MMU_MODES == 4)
1568 for(i = 0; i < CPU_TLB_SIZE; i++)
1569 tlb_update_dirty(&env->tlb_table[3][i]);
1570 #endif
1571 #endif
1572 }
1573
1574 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry,
1575 unsigned long start)
1576 {
1577 unsigned long addr;
1578 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_NOTDIRTY) {
1579 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1580 if (addr == start) {
1581 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | IO_MEM_RAM;
1582 }
1583 }
1584 }
1585
1586 /* update the TLB corresponding to virtual page vaddr and phys addr
1587 addr so that it is no longer dirty */
1588 static inline void tlb_set_dirty(CPUState *env,
1589 unsigned long addr, target_ulong vaddr)
1590 {
1591 int i;
1592
1593 addr &= TARGET_PAGE_MASK;
1594 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1595 tlb_set_dirty1(&env->tlb_table[0][i], addr);
1596 tlb_set_dirty1(&env->tlb_table[1][i], addr);
1597 #if (NB_MMU_MODES >= 3)
1598 tlb_set_dirty1(&env->tlb_table[2][i], addr);
1599 #if (NB_MMU_MODES == 4)
1600 tlb_set_dirty1(&env->tlb_table[3][i], addr);
1601 #endif
1602 #endif
1603 }
1604
1605 /* add a new TLB entry. At most one entry for a given virtual address
1606 is permitted. Return 0 if OK or 2 if the page could not be mapped
1607 (can only happen in non SOFTMMU mode for I/O pages or pages
1608 conflicting with the host address space). */
1609 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
1610 target_phys_addr_t paddr, int prot,
1611 int mmu_idx, int is_softmmu)
1612 {
1613 PhysPageDesc *p;
1614 unsigned long pd;
1615 unsigned int index;
1616 target_ulong address;
1617 target_phys_addr_t addend;
1618 int ret;
1619 CPUTLBEntry *te;
1620 int i;
1621
1622 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
1623 if (!p) {
1624 pd = IO_MEM_UNASSIGNED;
1625 } else {
1626 pd = p->phys_offset;
1627 }
1628 #if defined(DEBUG_TLB)
1629 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
1630 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
1631 #endif
1632
1633 ret = 0;
1634 #if !defined(CONFIG_SOFTMMU)
1635 if (is_softmmu)
1636 #endif
1637 {
1638 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
1639 /* IO memory case */
1640 address = vaddr | pd;
1641 addend = paddr;
1642 } else {
1643 /* standard memory */
1644 address = vaddr;
1645 addend = (unsigned long)phys_ram_base + (pd & TARGET_PAGE_MASK);
1646 }
1647
1648 /* Make accesses to pages with watchpoints go via the
1649 watchpoint trap routines. */
1650 for (i = 0; i < env->nb_watchpoints; i++) {
1651 if (vaddr == (env->watchpoint[i].vaddr & TARGET_PAGE_MASK)) {
1652 if (address & ~TARGET_PAGE_MASK) {
1653 env->watchpoint[i].addend = 0;
1654 address = vaddr | io_mem_watch;
1655 } else {
1656 env->watchpoint[i].addend = pd - paddr +
1657 (unsigned long) phys_ram_base;
1658 /* TODO: Figure out how to make read watchpoints coexist
1659 with code. */
1660 pd = (pd & TARGET_PAGE_MASK) | io_mem_watch | IO_MEM_ROMD;
1661 }
1662 }
1663 }
1664
1665 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1666 addend -= vaddr;
1667 te = &env->tlb_table[mmu_idx][index];
1668 te->addend = addend;
1669 if (prot & PAGE_READ) {
1670 te->addr_read = address;
1671 } else {
1672 te->addr_read = -1;
1673 }
1674 if (prot & PAGE_EXEC) {
1675 te->addr_code = address;
1676 } else {
1677 te->addr_code = -1;
1678 }
1679 if (prot & PAGE_WRITE) {
1680 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
1681 (pd & IO_MEM_ROMD)) {
1682 /* write access calls the I/O callback */
1683 te->addr_write = vaddr |
1684 (pd & ~(TARGET_PAGE_MASK | IO_MEM_ROMD));
1685 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
1686 !cpu_physical_memory_is_dirty(pd)) {
1687 te->addr_write = vaddr | IO_MEM_NOTDIRTY;
1688 } else {
1689 te->addr_write = address;
1690 }
1691 } else {
1692 te->addr_write = -1;
1693 }
1694 }
1695 #if !defined(CONFIG_SOFTMMU)
1696 else {
1697 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM) {
1698 /* IO access: no mapping is done as it will be handled by the
1699 soft MMU */
1700 if (!(env->hflags & HF_SOFTMMU_MASK))
1701 ret = 2;
1702 } else {
1703 void *map_addr;
1704
1705 if (vaddr >= MMAP_AREA_END) {
1706 ret = 2;
1707 } else {
1708 if (prot & PROT_WRITE) {
1709 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
1710 #if defined(TARGET_HAS_SMC) || 1
1711 first_tb ||
1712 #endif
1713 ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
1714 !cpu_physical_memory_is_dirty(pd))) {
1715 /* ROM: we do as if code was inside */
1716 /* if code is present, we only map as read only and save the
1717 original mapping */
1718 VirtPageDesc *vp;
1719
1720 vp = virt_page_find_alloc(vaddr >> TARGET_PAGE_BITS, 1);
1721 vp->phys_addr = pd;
1722 vp->prot = prot;
1723 vp->valid_tag = virt_valid_tag;
1724 prot &= ~PAGE_WRITE;
1725 }
1726 }
1727 map_addr = mmap((void *)vaddr, TARGET_PAGE_SIZE, prot,
1728 MAP_SHARED | MAP_FIXED, phys_ram_fd, (pd & TARGET_PAGE_MASK));
1729 if (map_addr == MAP_FAILED) {
1730 cpu_abort(env, "mmap failed when mapped physical address 0x%08x to virtual address 0x%08x\n",
1731 paddr, vaddr);
1732 }
1733 }
1734 }
1735 }
1736 #endif
1737 return ret;
1738 }
1739
1740 /* called from signal handler: invalidate the code and unprotect the
1741 page. Return TRUE if the fault was succesfully handled. */
1742 int page_unprotect(target_ulong addr, unsigned long pc, void *puc)
1743 {
1744 #if !defined(CONFIG_SOFTMMU)
1745 VirtPageDesc *vp;
1746
1747 #if defined(DEBUG_TLB)
1748 printf("page_unprotect: addr=0x%08x\n", addr);
1749 #endif
1750 addr &= TARGET_PAGE_MASK;
1751
1752 /* if it is not mapped, no need to worry here */
1753 if (addr >= MMAP_AREA_END)
1754 return 0;
1755 vp = virt_page_find(addr >> TARGET_PAGE_BITS);
1756 if (!vp)
1757 return 0;
1758 /* NOTE: in this case, validate_tag is _not_ tested as it
1759 validates only the code TLB */
1760 if (vp->valid_tag != virt_valid_tag)
1761 return 0;
1762 if (!(vp->prot & PAGE_WRITE))
1763 return 0;
1764 #if defined(DEBUG_TLB)
1765 printf("page_unprotect: addr=0x%08x phys_addr=0x%08x prot=%x\n",
1766 addr, vp->phys_addr, vp->prot);
1767 #endif
1768 if (mprotect((void *)addr, TARGET_PAGE_SIZE, vp->prot) < 0)
1769 cpu_abort(cpu_single_env, "error mprotect addr=0x%lx prot=%d\n",
1770 (unsigned long)addr, vp->prot);
1771 /* set the dirty bit */
1772 phys_ram_dirty[vp->phys_addr >> TARGET_PAGE_BITS] = 0xff;
1773 /* flush the code inside */
1774 tb_invalidate_phys_page(vp->phys_addr, pc, puc);
1775 return 1;
1776 #else
1777 return 0;
1778 #endif
1779 }
1780
1781 #else
1782
1783 void tlb_flush(CPUState *env, int flush_global)
1784 {
1785 }
1786
1787 void tlb_flush_page(CPUState *env, target_ulong addr)
1788 {
1789 }
1790
1791 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
1792 target_phys_addr_t paddr, int prot,
1793 int mmu_idx, int is_softmmu)
1794 {
1795 return 0;
1796 }
1797
1798 /* dump memory mappings */
1799 void page_dump(FILE *f)
1800 {
1801 unsigned long start, end;
1802 int i, j, prot, prot1;
1803 PageDesc *p;
1804
1805 fprintf(f, "%-8s %-8s %-8s %s\n",
1806 "start", "end", "size", "prot");
1807 start = -1;
1808 end = -1;
1809 prot = 0;
1810 for(i = 0; i <= L1_SIZE; i++) {
1811 if (i < L1_SIZE)
1812 p = l1_map[i];
1813 else
1814 p = NULL;
1815 for(j = 0;j < L2_SIZE; j++) {
1816 if (!p)
1817 prot1 = 0;
1818 else
1819 prot1 = p[j].flags;
1820 if (prot1 != prot) {
1821 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
1822 if (start != -1) {
1823 fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
1824 start, end, end - start,
1825 prot & PAGE_READ ? 'r' : '-',
1826 prot & PAGE_WRITE ? 'w' : '-',
1827 prot & PAGE_EXEC ? 'x' : '-');
1828 }
1829 if (prot1 != 0)
1830 start = end;
1831 else
1832 start = -1;
1833 prot = prot1;
1834 }
1835 if (!p)
1836 break;
1837 }
1838 }
1839 }
1840
1841 int page_get_flags(target_ulong address)
1842 {
1843 PageDesc *p;
1844
1845 p = page_find(address >> TARGET_PAGE_BITS);
1846 if (!p)
1847 return 0;
1848 return p->flags;
1849 }
1850
1851 /* modify the flags of a page and invalidate the code if
1852 necessary. The flag PAGE_WRITE_ORG is positionned automatically
1853 depending on PAGE_WRITE */
1854 void page_set_flags(target_ulong start, target_ulong end, int flags)
1855 {
1856 PageDesc *p;
1857 target_ulong addr;
1858
1859 start = start & TARGET_PAGE_MASK;
1860 end = TARGET_PAGE_ALIGN(end);
1861 if (flags & PAGE_WRITE)
1862 flags |= PAGE_WRITE_ORG;
1863 spin_lock(&tb_lock);
1864 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
1865 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
1866 /* if the write protection is set, then we invalidate the code
1867 inside */
1868 if (!(p->flags & PAGE_WRITE) &&
1869 (flags & PAGE_WRITE) &&
1870 p->first_tb) {
1871 tb_invalidate_phys_page(addr, 0, NULL);
1872 }
1873 p->flags = flags;
1874 }
1875 spin_unlock(&tb_lock);
1876 }
1877
1878 int page_check_range(target_ulong start, target_ulong len, int flags)
1879 {
1880 PageDesc *p;
1881 target_ulong end;
1882 target_ulong addr;
1883
1884 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
1885 start = start & TARGET_PAGE_MASK;
1886
1887 if( end < start )
1888 /* we've wrapped around */
1889 return -1;
1890 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
1891 p = page_find(addr >> TARGET_PAGE_BITS);
1892 if( !p )
1893 return -1;
1894 if( !(p->flags & PAGE_VALID) )
1895 return -1;
1896
1897 if (!(p->flags & PAGE_READ) && (flags & PAGE_READ) )
1898 return -1;
1899 if (!(p->flags & PAGE_WRITE) && (flags & PAGE_WRITE) )
1900 return -1;
1901 }
1902 return 0;
1903 }
1904
1905 /* called from signal handler: invalidate the code and unprotect the
1906 page. Return TRUE if the fault was succesfully handled. */
1907 int page_unprotect(target_ulong address, unsigned long pc, void *puc)
1908 {
1909 unsigned int page_index, prot, pindex;
1910 PageDesc *p, *p1;
1911 target_ulong host_start, host_end, addr;
1912
1913 host_start = address & qemu_host_page_mask;
1914 page_index = host_start >> TARGET_PAGE_BITS;
1915 p1 = page_find(page_index);
1916 if (!p1)
1917 return 0;
1918 host_end = host_start + qemu_host_page_size;
1919 p = p1;
1920 prot = 0;
1921 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
1922 prot |= p->flags;
1923 p++;
1924 }
1925 /* if the page was really writable, then we change its
1926 protection back to writable */
1927 if (prot & PAGE_WRITE_ORG) {
1928 pindex = (address - host_start) >> TARGET_PAGE_BITS;
1929 if (!(p1[pindex].flags & PAGE_WRITE)) {
1930 mprotect((void *)g2h(host_start), qemu_host_page_size,
1931 (prot & PAGE_BITS) | PAGE_WRITE);
1932 p1[pindex].flags |= PAGE_WRITE;
1933 /* and since the content will be modified, we must invalidate
1934 the corresponding translated code. */
1935 tb_invalidate_phys_page(address, pc, puc);
1936 #ifdef DEBUG_TB_CHECK
1937 tb_invalidate_check(address);
1938 #endif
1939 return 1;
1940 }
1941 }
1942 return 0;
1943 }
1944
1945 /* call this function when system calls directly modify a memory area */
1946 /* ??? This should be redundant now we have lock_user. */
1947 void page_unprotect_range(target_ulong data, target_ulong data_size)
1948 {
1949 target_ulong start, end, addr;
1950
1951 start = data;
1952 end = start + data_size;
1953 start &= TARGET_PAGE_MASK;
1954 end = TARGET_PAGE_ALIGN(end);
1955 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
1956 page_unprotect(addr, 0, NULL);
1957 }
1958 }
1959
1960 static inline void tlb_set_dirty(CPUState *env,
1961 unsigned long addr, target_ulong vaddr)
1962 {
1963 }
1964 #endif /* defined(CONFIG_USER_ONLY) */
1965
1966 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1967 int memory);
1968 static void *subpage_init (target_phys_addr_t base, uint32_t *phys,
1969 int orig_memory);
1970 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
1971 need_subpage) \
1972 do { \
1973 if (addr > start_addr) \
1974 start_addr2 = 0; \
1975 else { \
1976 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
1977 if (start_addr2 > 0) \
1978 need_subpage = 1; \
1979 } \
1980 \
1981 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
1982 end_addr2 = TARGET_PAGE_SIZE - 1; \
1983 else { \
1984 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
1985 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
1986 need_subpage = 1; \
1987 } \
1988 } while (0)
1989
1990 /* register physical memory. 'size' must be a multiple of the target
1991 page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
1992 io memory page */
1993 void cpu_register_physical_memory(target_phys_addr_t start_addr,
1994 unsigned long size,
1995 unsigned long phys_offset)
1996 {
1997 target_phys_addr_t addr, end_addr;
1998 PhysPageDesc *p;
1999 CPUState *env;
2000 unsigned long orig_size = size;
2001 void *subpage;
2002
2003 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
2004 end_addr = start_addr + (target_phys_addr_t)size;
2005 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
2006 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2007 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
2008 unsigned long orig_memory = p->phys_offset;
2009 target_phys_addr_t start_addr2, end_addr2;
2010 int need_subpage = 0;
2011
2012 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2013 need_subpage);
2014 if (need_subpage) {
2015 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2016 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2017 &p->phys_offset, orig_memory);
2018 } else {
2019 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2020 >> IO_MEM_SHIFT];
2021 }
2022 subpage_register(subpage, start_addr2, end_addr2, phys_offset);
2023 } else {
2024 p->phys_offset = phys_offset;
2025 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2026 (phys_offset & IO_MEM_ROMD))
2027 phys_offset += TARGET_PAGE_SIZE;
2028 }
2029 } else {
2030 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2031 p->phys_offset = phys_offset;
2032 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2033 (phys_offset & IO_MEM_ROMD))
2034 phys_offset += TARGET_PAGE_SIZE;
2035 else {
2036 target_phys_addr_t start_addr2, end_addr2;
2037 int need_subpage = 0;
2038
2039 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2040 end_addr2, need_subpage);
2041
2042 if (need_subpage) {
2043 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2044 &p->phys_offset, IO_MEM_UNASSIGNED);
2045 subpage_register(subpage, start_addr2, end_addr2,
2046 phys_offset);
2047 }
2048 }
2049 }
2050 }
2051
2052 /* since each CPU stores ram addresses in its TLB cache, we must
2053 reset the modified entries */
2054 /* XXX: slow ! */
2055 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2056 tlb_flush(env, 1);
2057 }
2058 }
2059
2060 /* XXX: temporary until new memory mapping API */
2061 uint32_t cpu_get_physical_page_desc(target_phys_addr_t addr)
2062 {
2063 PhysPageDesc *p;
2064
2065 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2066 if (!p)
2067 return IO_MEM_UNASSIGNED;
2068 return p->phys_offset;
2069 }
2070
2071 /* XXX: better than nothing */
2072 ram_addr_t qemu_ram_alloc(unsigned int size)
2073 {
2074 ram_addr_t addr;
2075 if ((phys_ram_alloc_offset + size) >= phys_ram_size) {
2076 fprintf(stderr, "Not enough memory (requested_size = %u, max memory = %d)\n",
2077 size, phys_ram_size);
2078 abort();
2079 }
2080 addr = phys_ram_alloc_offset;
2081 phys_ram_alloc_offset = TARGET_PAGE_ALIGN(phys_ram_alloc_offset + size);
2082 return addr;
2083 }
2084
2085 void qemu_ram_free(ram_addr_t addr)
2086 {
2087 }
2088
2089 static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
2090 {
2091 #ifdef DEBUG_UNASSIGNED
2092 printf("Unassigned mem read " TARGET_FMT_lx "\n", addr);
2093 #endif
2094 #ifdef TARGET_SPARC
2095 do_unassigned_access(addr, 0, 0, 0);
2096 #elif TARGET_CRIS
2097 do_unassigned_access(addr, 0, 0, 0);
2098 #endif
2099 return 0;
2100 }
2101
2102 static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
2103 {
2104 #ifdef DEBUG_UNASSIGNED
2105 printf("Unassigned mem write " TARGET_FMT_lx " = 0x%x\n", addr, val);
2106 #endif
2107 #ifdef TARGET_SPARC
2108 do_unassigned_access(addr, 1, 0, 0);
2109 #elif TARGET_CRIS
2110 do_unassigned_access(addr, 1, 0, 0);
2111 #endif
2112 }
2113
2114 static CPUReadMemoryFunc *unassigned_mem_read[3] = {
2115 unassigned_mem_readb,
2116 unassigned_mem_readb,
2117 unassigned_mem_readb,
2118 };
2119
2120 static CPUWriteMemoryFunc *unassigned_mem_write[3] = {
2121 unassigned_mem_writeb,
2122 unassigned_mem_writeb,
2123 unassigned_mem_writeb,
2124 };
2125
2126 static void notdirty_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
2127 {
2128 unsigned long ram_addr;
2129 int dirty_flags;
2130 ram_addr = addr - (unsigned long)phys_ram_base;
2131 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2132 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2133 #if !defined(CONFIG_USER_ONLY)
2134 tb_invalidate_phys_page_fast(ram_addr, 1);
2135 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2136 #endif
2137 }
2138 stb_p((uint8_t *)(long)addr, val);
2139 #ifdef USE_KQEMU
2140 if (cpu_single_env->kqemu_enabled &&
2141 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2142 kqemu_modify_page(cpu_single_env, ram_addr);
2143 #endif
2144 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2145 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2146 /* we remove the notdirty callback only if the code has been
2147 flushed */
2148 if (dirty_flags == 0xff)
2149 tlb_set_dirty(cpu_single_env, addr, cpu_single_env->mem_write_vaddr);
2150 }
2151
2152 static void notdirty_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
2153 {
2154 unsigned long ram_addr;
2155 int dirty_flags;
2156 ram_addr = addr - (unsigned long)phys_ram_base;
2157 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2158 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2159 #if !defined(CONFIG_USER_ONLY)
2160 tb_invalidate_phys_page_fast(ram_addr, 2);
2161 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2162 #endif
2163 }
2164 stw_p((uint8_t *)(long)addr, val);
2165 #ifdef USE_KQEMU
2166 if (cpu_single_env->kqemu_enabled &&
2167 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2168 kqemu_modify_page(cpu_single_env, ram_addr);
2169 #endif
2170 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2171 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2172 /* we remove the notdirty callback only if the code has been
2173 flushed */
2174 if (dirty_flags == 0xff)
2175 tlb_set_dirty(cpu_single_env, addr, cpu_single_env->mem_write_vaddr);
2176 }
2177
2178 static void notdirty_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
2179 {
2180 unsigned long ram_addr;
2181 int dirty_flags;
2182 ram_addr = addr - (unsigned long)phys_ram_base;
2183 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2184 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2185 #if !defined(CONFIG_USER_ONLY)
2186 tb_invalidate_phys_page_fast(ram_addr, 4);
2187 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2188 #endif
2189 }
2190 stl_p((uint8_t *)(long)addr, val);
2191 #ifdef USE_KQEMU
2192 if (cpu_single_env->kqemu_enabled &&
2193 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2194 kqemu_modify_page(cpu_single_env, ram_addr);
2195 #endif
2196 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2197 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2198 /* we remove the notdirty callback only if the code has been
2199 flushed */
2200 if (dirty_flags == 0xff)
2201 tlb_set_dirty(cpu_single_env, addr, cpu_single_env->mem_write_vaddr);
2202 }
2203
2204 static CPUReadMemoryFunc *error_mem_read[3] = {
2205 NULL, /* never used */
2206 NULL, /* never used */
2207 NULL, /* never used */
2208 };
2209
2210 static CPUWriteMemoryFunc *notdirty_mem_write[3] = {
2211 notdirty_mem_writeb,
2212 notdirty_mem_writew,
2213 notdirty_mem_writel,
2214 };
2215
2216 #if defined(CONFIG_SOFTMMU)
2217 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2218 so these check for a hit then pass through to the normal out-of-line
2219 phys routines. */
2220 static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
2221 {
2222 return ldub_phys(addr);
2223 }
2224
2225 static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
2226 {
2227 return lduw_phys(addr);
2228 }
2229
2230 static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
2231 {
2232 return ldl_phys(addr);
2233 }
2234
2235 /* Generate a debug exception if a watchpoint has been hit.
2236 Returns the real physical address of the access. addr will be a host
2237 address in case of a RAM location. */
2238 static target_ulong check_watchpoint(target_phys_addr_t addr)
2239 {
2240 CPUState *env = cpu_single_env;
2241 target_ulong watch;
2242 target_ulong retaddr;
2243 int i;
2244
2245 retaddr = addr;
2246 for (i = 0; i < env->nb_watchpoints; i++) {
2247 watch = env->watchpoint[i].vaddr;
2248 if (((env->mem_write_vaddr ^ watch) & TARGET_PAGE_MASK) == 0) {
2249 retaddr = addr - env->watchpoint[i].addend;
2250 if (((addr ^ watch) & ~TARGET_PAGE_MASK) == 0) {
2251 cpu_single_env->watchpoint_hit = i + 1;
2252 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_DEBUG);
2253 break;
2254 }
2255 }
2256 }
2257 return retaddr;
2258 }
2259
2260 static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
2261 uint32_t val)
2262 {
2263 addr = check_watchpoint(addr);
2264 stb_phys(addr, val);
2265 }
2266
2267 static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
2268 uint32_t val)
2269 {
2270 addr = check_watchpoint(addr);
2271 stw_phys(addr, val);
2272 }
2273
2274 static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
2275 uint32_t val)
2276 {
2277 addr = check_watchpoint(addr);
2278 stl_phys(addr, val);
2279 }
2280
2281 static CPUReadMemoryFunc *watch_mem_read[3] = {
2282 watch_mem_readb,
2283 watch_mem_readw,
2284 watch_mem_readl,
2285 };
2286
2287 static CPUWriteMemoryFunc *watch_mem_write[3] = {
2288 watch_mem_writeb,
2289 watch_mem_writew,
2290 watch_mem_writel,
2291 };
2292 #endif
2293
2294 static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
2295 unsigned int len)
2296 {
2297 CPUReadMemoryFunc **mem_read;
2298 uint32_t ret;
2299 unsigned int idx;
2300
2301 idx = SUBPAGE_IDX(addr - mmio->base);
2302 #if defined(DEBUG_SUBPAGE)
2303 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
2304 mmio, len, addr, idx);
2305 #endif
2306 mem_read = mmio->mem_read[idx];
2307 ret = (*mem_read[len])(mmio->opaque[idx], addr);
2308
2309 return ret;
2310 }
2311
2312 static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
2313 uint32_t value, unsigned int len)
2314 {
2315 CPUWriteMemoryFunc **mem_write;
2316 unsigned int idx;
2317
2318 idx = SUBPAGE_IDX(addr - mmio->base);
2319 #if defined(DEBUG_SUBPAGE)
2320 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
2321 mmio, len, addr, idx, value);
2322 #endif
2323 mem_write = mmio->mem_write[idx];
2324 (*mem_write[len])(mmio->opaque[idx], addr, value);
2325 }
2326
2327 static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
2328 {
2329 #if defined(DEBUG_SUBPAGE)
2330 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2331 #endif
2332
2333 return subpage_readlen(opaque, addr, 0);
2334 }
2335
2336 static void subpage_writeb (void *opaque, target_phys_addr_t addr,
2337 uint32_t value)
2338 {
2339 #if defined(DEBUG_SUBPAGE)
2340 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2341 #endif
2342 subpage_writelen(opaque, addr, value, 0);
2343 }
2344
2345 static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
2346 {
2347 #if defined(DEBUG_SUBPAGE)
2348 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2349 #endif
2350
2351 return subpage_readlen(opaque, addr, 1);
2352 }
2353
2354 static void subpage_writew (void *opaque, target_phys_addr_t addr,
2355 uint32_t value)
2356 {
2357 #if defined(DEBUG_SUBPAGE)
2358 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2359 #endif
2360 subpage_writelen(opaque, addr, value, 1);
2361 }
2362
2363 static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
2364 {
2365 #if defined(DEBUG_SUBPAGE)
2366 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2367 #endif
2368
2369 return subpage_readlen(opaque, addr, 2);
2370 }
2371
2372 static void subpage_writel (void *opaque,
2373 target_phys_addr_t addr, uint32_t value)
2374 {
2375 #if defined(DEBUG_SUBPAGE)
2376 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2377 #endif
2378 subpage_writelen(opaque, addr, value, 2);
2379 }
2380
2381 static CPUReadMemoryFunc *subpage_read[] = {
2382 &subpage_readb,
2383 &subpage_readw,
2384 &subpage_readl,
2385 };
2386
2387 static CPUWriteMemoryFunc *subpage_write[] = {
2388 &subpage_writeb,
2389 &subpage_writew,
2390 &subpage_writel,
2391 };
2392
2393 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2394 int memory)
2395 {
2396 int idx, eidx;
2397
2398 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2399 return -1;
2400 idx = SUBPAGE_IDX(start);
2401 eidx = SUBPAGE_IDX(end);
2402 #if defined(DEBUG_SUBPAGE)
2403 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %d\n", __func__,
2404 mmio, start, end, idx, eidx, memory);
2405 #endif
2406 memory >>= IO_MEM_SHIFT;
2407 for (; idx <= eidx; idx++) {
2408 mmio->mem_read[idx] = io_mem_read[memory];
2409 mmio->mem_write[idx] = io_mem_write[memory];
2410 mmio->opaque[idx] = io_mem_opaque[memory];
2411 }
2412
2413 return 0;
2414 }
2415
2416 static void *subpage_init (target_phys_addr_t base, uint32_t *phys,
2417 int orig_memory)
2418 {
2419 subpage_t *mmio;
2420 int subpage_memory;
2421
2422 mmio = qemu_mallocz(sizeof(subpage_t));
2423 if (mmio != NULL) {
2424 mmio->base = base;
2425 subpage_memory = cpu_register_io_memory(0, subpage_read, subpage_write, mmio);
2426 #if defined(DEBUG_SUBPAGE)
2427 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
2428 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
2429 #endif
2430 *phys = subpage_memory | IO_MEM_SUBPAGE;
2431 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory);
2432 }
2433
2434 return mmio;
2435 }
2436
2437 static void io_mem_init(void)
2438 {
2439 cpu_register_io_memory(IO_MEM_ROM >> IO_MEM_SHIFT, error_mem_read, unassigned_mem_write, NULL);
2440 cpu_register_io_memory(IO_MEM_UNASSIGNED >> IO_MEM_SHIFT, unassigned_mem_read, unassigned_mem_write, NULL);
2441 cpu_register_io_memory(IO_MEM_NOTDIRTY >> IO_MEM_SHIFT, error_mem_read, notdirty_mem_write, NULL);
2442 io_mem_nb = 5;
2443
2444 #if defined(CONFIG_SOFTMMU)
2445 io_mem_watch = cpu_register_io_memory(-1, watch_mem_read,
2446 watch_mem_write, NULL);
2447 #endif
2448 /* alloc dirty bits array */
2449 phys_ram_dirty = qemu_vmalloc(phys_ram_size >> TARGET_PAGE_BITS);
2450 memset(phys_ram_dirty, 0xff, phys_ram_size >> TARGET_PAGE_BITS);
2451 }
2452
2453 /* mem_read and mem_write are arrays of functions containing the
2454 function to access byte (index 0), word (index 1) and dword (index
2455 2). All functions must be supplied. If io_index is non zero, the
2456 corresponding io zone is modified. If it is zero, a new io zone is
2457 allocated. The return value can be used with
2458 cpu_register_physical_memory(). (-1) is returned if error. */
2459 int cpu_register_io_memory(int io_index,
2460 CPUReadMemoryFunc **mem_read,
2461 CPUWriteMemoryFunc **mem_write,
2462 void *opaque)
2463 {
2464 int i;
2465
2466 if (io_index <= 0) {
2467 if (io_mem_nb >= IO_MEM_NB_ENTRIES)
2468 return -1;
2469 io_index = io_mem_nb++;
2470 } else {
2471 if (io_index >= IO_MEM_NB_ENTRIES)
2472 return -1;
2473 }
2474
2475 for(i = 0;i < 3; i++) {
2476 io_mem_read[io_index][i] = mem_read[i];
2477 io_mem_write[io_index][i] = mem_write[i];
2478 }
2479 io_mem_opaque[io_index] = opaque;
2480 return io_index << IO_MEM_SHIFT;
2481 }
2482
2483 CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index)
2484 {
2485 return io_mem_write[io_index >> IO_MEM_SHIFT];
2486 }
2487
2488 CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index)
2489 {
2490 return io_mem_read[io_index >> IO_MEM_SHIFT];
2491 }
2492
2493 /* physical memory access (slow version, mainly for debug) */
2494 #if defined(CONFIG_USER_ONLY)
2495 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
2496 int len, int is_write)
2497 {
2498 int l, flags;
2499 target_ulong page;
2500 void * p;
2501
2502 while (len > 0) {
2503 page = addr & TARGET_PAGE_MASK;
2504 l = (page + TARGET_PAGE_SIZE) - addr;
2505 if (l > len)
2506 l = len;
2507 flags = page_get_flags(page);
2508 if (!(flags & PAGE_VALID))
2509 return;
2510 if (is_write) {
2511 if (!(flags & PAGE_WRITE))
2512 return;
2513 p = lock_user(addr, len, 0);
2514 memcpy(p, buf, len);
2515 unlock_user(p, addr, len);
2516 } else {
2517 if (!(flags & PAGE_READ))
2518 return;
2519 p = lock_user(addr, len, 1);
2520 memcpy(buf, p, len);
2521 unlock_user(p, addr, 0);
2522 }
2523 len -= l;
2524 buf += l;
2525 addr += l;
2526 }
2527 }
2528
2529 #else
2530 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
2531 int len, int is_write)
2532 {
2533 int l, io_index;
2534 uint8_t *ptr;
2535 uint32_t val;
2536 target_phys_addr_t page;
2537 unsigned long pd;
2538 PhysPageDesc *p;
2539
2540 while (len > 0) {
2541 page = addr & TARGET_PAGE_MASK;
2542 l = (page + TARGET_PAGE_SIZE) - addr;
2543 if (l > len)
2544 l = len;
2545 p = phys_page_find(page >> TARGET_PAGE_BITS);
2546 if (!p) {
2547 pd = IO_MEM_UNASSIGNED;
2548 } else {
2549 pd = p->phys_offset;
2550 }
2551
2552 if (is_write) {
2553 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
2554 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2555 /* XXX: could force cpu_single_env to NULL to avoid
2556 potential bugs */
2557 if (l >= 4 && ((addr & 3) == 0)) {
2558 /* 32 bit write access */
2559 val = ldl_p(buf);
2560 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
2561 l = 4;
2562 } else if (l >= 2 && ((addr & 1) == 0)) {
2563 /* 16 bit write access */
2564 val = lduw_p(buf);
2565 io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
2566 l = 2;
2567 } else {
2568 /* 8 bit write access */
2569 val = ldub_p(buf);
2570 io_mem_write[io_index][0](io_mem_opaque[io_index], addr, val);
2571 l = 1;
2572 }
2573 } else {
2574 unsigned long addr1;
2575 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
2576 /* RAM case */
2577 ptr = phys_ram_base + addr1;
2578 memcpy(ptr, buf, l);
2579 if (!cpu_physical_memory_is_dirty(addr1)) {
2580 /* invalidate code */
2581 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
2582 /* set dirty bit */
2583 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
2584 (0xff & ~CODE_DIRTY_FLAG);
2585 }
2586 }
2587 } else {
2588 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2589 !(pd & IO_MEM_ROMD)) {
2590 /* I/O case */
2591 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2592 if (l >= 4 && ((addr & 3) == 0)) {
2593 /* 32 bit read access */
2594 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
2595 stl_p(buf, val);
2596 l = 4;
2597 } else if (l >= 2 && ((addr & 1) == 0)) {
2598 /* 16 bit read access */
2599 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
2600 stw_p(buf, val);
2601 l = 2;
2602 } else {
2603 /* 8 bit read access */
2604 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr);
2605 stb_p(buf, val);
2606 l = 1;
2607 }
2608 } else {
2609 /* RAM case */
2610 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
2611 (addr & ~TARGET_PAGE_MASK);
2612 memcpy(buf, ptr, l);
2613 }
2614 }
2615 len -= l;
2616 buf += l;
2617 addr += l;
2618 }
2619 }
2620
2621 /* used for ROM loading : can write in RAM and ROM */
2622 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
2623 const uint8_t *buf, int len)
2624 {
2625 int l;
2626 uint8_t *ptr;
2627 target_phys_addr_t page;
2628 unsigned long pd;
2629 PhysPageDesc *p;
2630
2631 while (len > 0) {
2632 page = addr & TARGET_PAGE_MASK;
2633 l = (page + TARGET_PAGE_SIZE) - addr;
2634 if (l > len)
2635 l = len;
2636 p = phys_page_find(page >> TARGET_PAGE_BITS);
2637 if (!p) {
2638 pd = IO_MEM_UNASSIGNED;
2639 } else {
2640 pd = p->phys_offset;
2641 }
2642
2643 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
2644 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
2645 !(pd & IO_MEM_ROMD)) {
2646 /* do nothing */
2647 } else {
2648 unsigned long addr1;
2649 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
2650 /* ROM/RAM case */
2651 ptr = phys_ram_base + addr1;
2652 memcpy(ptr, buf, l);
2653 }
2654 len -= l;
2655 buf += l;
2656 addr += l;
2657 }
2658 }
2659
2660
2661 /* warning: addr must be aligned */
2662 uint32_t ldl_phys(target_phys_addr_t addr)
2663 {
2664 int io_index;
2665 uint8_t *ptr;
2666 uint32_t val;
2667 unsigned long pd;
2668 PhysPageDesc *p;
2669
2670 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2671 if (!p) {
2672 pd = IO_MEM_UNASSIGNED;
2673 } else {
2674 pd = p->phys_offset;
2675 }
2676
2677 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2678 !(pd & IO_MEM_ROMD)) {
2679 /* I/O case */
2680 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2681 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
2682 } else {
2683 /* RAM case */
2684 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
2685 (addr & ~TARGET_PAGE_MASK);
2686 val = ldl_p(ptr);
2687 }
2688 return val;
2689 }
2690
2691 /* warning: addr must be aligned */
2692 uint64_t ldq_phys(target_phys_addr_t addr)
2693 {
2694 int io_index;
2695 uint8_t *ptr;
2696 uint64_t val;
2697 unsigned long pd;
2698 PhysPageDesc *p;
2699
2700 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2701 if (!p) {
2702 pd = IO_MEM_UNASSIGNED;
2703 } else {
2704 pd = p->phys_offset;
2705 }
2706
2707 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2708 !(pd & IO_MEM_ROMD)) {
2709 /* I/O case */
2710 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2711 #ifdef TARGET_WORDS_BIGENDIAN
2712 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
2713 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
2714 #else
2715 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
2716 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
2717 #endif
2718 } else {
2719 /* RAM case */
2720 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
2721 (addr & ~TARGET_PAGE_MASK);
2722 val = ldq_p(ptr);
2723 }
2724 return val;
2725 }
2726
2727 /* XXX: optimize */
2728 uint32_t ldub_phys(target_phys_addr_t addr)
2729 {
2730 uint8_t val;
2731 cpu_physical_memory_read(addr, &val, 1);
2732 return val;
2733 }
2734
2735 /* XXX: optimize */
2736 uint32_t lduw_phys(target_phys_addr_t addr)
2737 {
2738 uint16_t val;
2739 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
2740 return tswap16(val);
2741 }
2742
2743 /* warning: addr must be aligned. The ram page is not masked as dirty
2744 and the code inside is not invalidated. It is useful if the dirty
2745 bits are used to track modified PTEs */
2746 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
2747 {
2748 int io_index;
2749 uint8_t *ptr;
2750 unsigned long pd;
2751 PhysPageDesc *p;
2752
2753 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2754 if (!p) {
2755 pd = IO_MEM_UNASSIGNED;
2756 } else {
2757 pd = p->phys_offset;
2758 }
2759
2760 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
2761 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2762 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
2763 } else {
2764 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
2765 (addr & ~TARGET_PAGE_MASK);
2766 stl_p(ptr, val);
2767 }
2768 }
2769
2770 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
2771 {
2772 int io_index;
2773 uint8_t *ptr;
2774 unsigned long pd;
2775 PhysPageDesc *p;
2776
2777 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2778 if (!p) {
2779 pd = IO_MEM_UNASSIGNED;
2780 } else {
2781 pd = p->phys_offset;
2782 }
2783
2784 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
2785 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2786 #ifdef TARGET_WORDS_BIGENDIAN
2787 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
2788 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
2789 #else
2790 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
2791 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
2792 #endif
2793 } else {
2794 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
2795 (addr & ~TARGET_PAGE_MASK);
2796 stq_p(ptr, val);
2797 }
2798 }
2799
2800 /* warning: addr must be aligned */
2801 void stl_phys(target_phys_addr_t addr, uint32_t val)
2802 {
2803 int io_index;
2804 uint8_t *ptr;
2805 unsigned long pd;
2806 PhysPageDesc *p;
2807
2808 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2809 if (!p) {
2810 pd = IO_MEM_UNASSIGNED;
2811 } else {
2812 pd = p->phys_offset;
2813 }
2814
2815 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
2816 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2817 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
2818 } else {
2819 unsigned long addr1;
2820 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
2821 /* RAM case */
2822 ptr = phys_ram_base + addr1;
2823 stl_p(ptr, val);
2824 if (!cpu_physical_memory_is_dirty(addr1)) {
2825 /* invalidate code */
2826 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
2827 /* set dirty bit */
2828 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
2829 (0xff & ~CODE_DIRTY_FLAG);
2830 }
2831 }
2832 }
2833
2834 /* XXX: optimize */
2835 void stb_phys(target_phys_addr_t addr, uint32_t val)
2836 {
2837 uint8_t v = val;
2838 cpu_physical_memory_write(addr, &v, 1);
2839 }
2840
2841 /* XXX: optimize */
2842 void stw_phys(target_phys_addr_t addr, uint32_t val)
2843 {
2844 uint16_t v = tswap16(val);
2845 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
2846 }
2847
2848 /* XXX: optimize */
2849 void stq_phys(target_phys_addr_t addr, uint64_t val)
2850 {
2851 val = tswap64(val);
2852 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
2853 }
2854
2855 #endif
2856
2857 /* virtual memory access for debug */
2858 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
2859 uint8_t *buf, int len, int is_write)
2860 {
2861 int l;
2862 target_phys_addr_t phys_addr;
2863 target_ulong page;
2864
2865 while (len > 0) {
2866 page = addr & TARGET_PAGE_MASK;
2867 phys_addr = cpu_get_phys_page_debug(env, page);
2868 /* if no physical page mapped, return an error */
2869 if (phys_addr == -1)
2870 return -1;
2871 l = (page + TARGET_PAGE_SIZE) - addr;
2872 if (l > len)
2873 l = len;
2874 cpu_physical_memory_rw(phys_addr + (addr & ~TARGET_PAGE_MASK),
2875 buf, l, is_write);
2876 len -= l;
2877 buf += l;
2878 addr += l;
2879 }
2880 return 0;
2881 }
2882
2883 void dump_exec_info(FILE *f,
2884 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
2885 {
2886 int i, target_code_size, max_target_code_size;
2887 int direct_jmp_count, direct_jmp2_count, cross_page;
2888 TranslationBlock *tb;
2889
2890 target_code_size = 0;
2891 max_target_code_size = 0;
2892 cross_page = 0;
2893 direct_jmp_count = 0;
2894 direct_jmp2_count = 0;
2895 for(i = 0; i < nb_tbs; i++) {
2896 tb = &tbs[i];
2897 target_code_size += tb->size;
2898 if (tb->size > max_target_code_size)
2899 max_target_code_size = tb->size;
2900 if (tb->page_addr[1] != -1)
2901 cross_page++;
2902 if (tb->tb_next_offset[0] != 0xffff) {
2903 direct_jmp_count++;
2904 if (tb->tb_next_offset[1] != 0xffff) {
2905 direct_jmp2_count++;
2906 }
2907 }
2908 }
2909 /* XXX: avoid using doubles ? */
2910 cpu_fprintf(f, "TB count %d\n", nb_tbs);
2911 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
2912 nb_tbs ? target_code_size / nb_tbs : 0,
2913 max_target_code_size);
2914 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
2915 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
2916 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
2917 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
2918 cross_page,
2919 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
2920 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
2921 direct_jmp_count,
2922 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
2923 direct_jmp2_count,
2924 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
2925 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
2926 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
2927 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
2928 }
2929
2930 #if !defined(CONFIG_USER_ONLY)
2931
2932 #define MMUSUFFIX _cmmu
2933 #define GETPC() NULL
2934 #define env cpu_single_env
2935 #define SOFTMMU_CODE_ACCESS
2936
2937 #define SHIFT 0
2938 #include "softmmu_template.h"
2939
2940 #define SHIFT 1
2941 #include "softmmu_template.h"
2942
2943 #define SHIFT 2
2944 #include "softmmu_template.h"
2945
2946 #define SHIFT 3
2947 #include "softmmu_template.h"
2948
2949 #undef env
2950
2951 #endif