]> git.proxmox.com Git - qemu.git/blob - exec.c
8f5e7abfa70cedc771f6301ab038cb3d279f0758
[qemu.git] / exec.c
1 /*
2 * Virtual page mapping
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "config.h"
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
26
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "tcg.h"
30 #include "hw/hw.h"
31 #include "hw/qdev.h"
32 #include "qemu/osdep.h"
33 #include "sysemu/kvm.h"
34 #include "sysemu/sysemu.h"
35 #include "hw/xen/xen.h"
36 #include "qemu/timer.h"
37 #include "qemu/config-file.h"
38 #include "exec/memory.h"
39 #include "sysemu/dma.h"
40 #include "exec/address-spaces.h"
41 #if defined(CONFIG_USER_ONLY)
42 #include <qemu.h>
43 #else /* !CONFIG_USER_ONLY */
44 #include "sysemu/xen-mapcache.h"
45 #include "trace.h"
46 #endif
47 #include "exec/cpu-all.h"
48
49 #include "exec/cputlb.h"
50 #include "translate-all.h"
51
52 #include "exec/memory-internal.h"
53
54 //#define DEBUG_SUBPAGE
55
56 #if !defined(CONFIG_USER_ONLY)
57 static int in_migration;
58
59 RAMList ram_list = { .blocks = QTAILQ_HEAD_INITIALIZER(ram_list.blocks) };
60
61 static MemoryRegion *system_memory;
62 static MemoryRegion *system_io;
63
64 AddressSpace address_space_io;
65 AddressSpace address_space_memory;
66
67 MemoryRegion io_mem_rom, io_mem_notdirty;
68 static MemoryRegion io_mem_unassigned;
69
70 #endif
71
72 struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
73 /* current CPU in the current thread. It is only valid inside
74 cpu_exec() */
75 DEFINE_TLS(CPUState *, current_cpu);
76 /* 0 = Do not count executed instructions.
77 1 = Precise instruction counting.
78 2 = Adaptive rate instruction counting. */
79 int use_icount;
80
81 #if !defined(CONFIG_USER_ONLY)
82
83 typedef struct PhysPageEntry PhysPageEntry;
84
85 struct PhysPageEntry {
86 uint16_t is_leaf : 1;
87 /* index into phys_sections (is_leaf) or phys_map_nodes (!is_leaf) */
88 uint16_t ptr : 15;
89 };
90
91 typedef PhysPageEntry Node[L2_SIZE];
92
93 struct AddressSpaceDispatch {
94 /* This is a multi-level map on the physical address space.
95 * The bottom level has pointers to MemoryRegionSections.
96 */
97 PhysPageEntry phys_map;
98 Node *nodes;
99 MemoryRegionSection *sections;
100 AddressSpace *as;
101 };
102
103 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
104 typedef struct subpage_t {
105 MemoryRegion iomem;
106 AddressSpace *as;
107 hwaddr base;
108 uint16_t sub_section[TARGET_PAGE_SIZE];
109 } subpage_t;
110
111 #define PHYS_SECTION_UNASSIGNED 0
112 #define PHYS_SECTION_NOTDIRTY 1
113 #define PHYS_SECTION_ROM 2
114 #define PHYS_SECTION_WATCH 3
115
116 typedef struct PhysPageMap {
117 unsigned sections_nb;
118 unsigned sections_nb_alloc;
119 unsigned nodes_nb;
120 unsigned nodes_nb_alloc;
121 Node *nodes;
122 MemoryRegionSection *sections;
123 } PhysPageMap;
124
125 static PhysPageMap *prev_map;
126 static PhysPageMap next_map;
127
128 #define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1)
129
130 static void io_mem_init(void);
131 static void memory_map_init(void);
132 static void *qemu_safe_ram_ptr(ram_addr_t addr);
133
134 static MemoryRegion io_mem_watch;
135 #endif
136
137 #if !defined(CONFIG_USER_ONLY)
138
139 static void phys_map_node_reserve(unsigned nodes)
140 {
141 if (next_map.nodes_nb + nodes > next_map.nodes_nb_alloc) {
142 next_map.nodes_nb_alloc = MAX(next_map.nodes_nb_alloc * 2,
143 16);
144 next_map.nodes_nb_alloc = MAX(next_map.nodes_nb_alloc,
145 next_map.nodes_nb + nodes);
146 next_map.nodes = g_renew(Node, next_map.nodes,
147 next_map.nodes_nb_alloc);
148 }
149 }
150
151 static uint16_t phys_map_node_alloc(void)
152 {
153 unsigned i;
154 uint16_t ret;
155
156 ret = next_map.nodes_nb++;
157 assert(ret != PHYS_MAP_NODE_NIL);
158 assert(ret != next_map.nodes_nb_alloc);
159 for (i = 0; i < L2_SIZE; ++i) {
160 next_map.nodes[ret][i].is_leaf = 0;
161 next_map.nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
162 }
163 return ret;
164 }
165
166 static void phys_page_set_level(PhysPageEntry *lp, hwaddr *index,
167 hwaddr *nb, uint16_t leaf,
168 int level)
169 {
170 PhysPageEntry *p;
171 int i;
172 hwaddr step = (hwaddr)1 << (level * L2_BITS);
173
174 if (!lp->is_leaf && lp->ptr == PHYS_MAP_NODE_NIL) {
175 lp->ptr = phys_map_node_alloc();
176 p = next_map.nodes[lp->ptr];
177 if (level == 0) {
178 for (i = 0; i < L2_SIZE; i++) {
179 p[i].is_leaf = 1;
180 p[i].ptr = PHYS_SECTION_UNASSIGNED;
181 }
182 }
183 } else {
184 p = next_map.nodes[lp->ptr];
185 }
186 lp = &p[(*index >> (level * L2_BITS)) & (L2_SIZE - 1)];
187
188 while (*nb && lp < &p[L2_SIZE]) {
189 if ((*index & (step - 1)) == 0 && *nb >= step) {
190 lp->is_leaf = true;
191 lp->ptr = leaf;
192 *index += step;
193 *nb -= step;
194 } else {
195 phys_page_set_level(lp, index, nb, leaf, level - 1);
196 }
197 ++lp;
198 }
199 }
200
201 static void phys_page_set(AddressSpaceDispatch *d,
202 hwaddr index, hwaddr nb,
203 uint16_t leaf)
204 {
205 /* Wildly overreserve - it doesn't matter much. */
206 phys_map_node_reserve(3 * P_L2_LEVELS);
207
208 phys_page_set_level(&d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
209 }
210
211 static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr index,
212 Node *nodes, MemoryRegionSection *sections)
213 {
214 PhysPageEntry *p;
215 int i;
216
217 for (i = P_L2_LEVELS - 1; i >= 0 && !lp.is_leaf; i--) {
218 if (lp.ptr == PHYS_MAP_NODE_NIL) {
219 return &sections[PHYS_SECTION_UNASSIGNED];
220 }
221 p = nodes[lp.ptr];
222 lp = p[(index >> (i * L2_BITS)) & (L2_SIZE - 1)];
223 }
224 return &sections[lp.ptr];
225 }
226
227 bool memory_region_is_unassigned(MemoryRegion *mr)
228 {
229 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
230 && mr != &io_mem_watch;
231 }
232
233 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
234 hwaddr addr,
235 bool resolve_subpage)
236 {
237 MemoryRegionSection *section;
238 subpage_t *subpage;
239
240 section = phys_page_find(d->phys_map, addr >> TARGET_PAGE_BITS,
241 d->nodes, d->sections);
242 if (resolve_subpage && section->mr->subpage) {
243 subpage = container_of(section->mr, subpage_t, iomem);
244 section = &d->sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
245 }
246 return section;
247 }
248
249 static MemoryRegionSection *
250 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
251 hwaddr *plen, bool resolve_subpage)
252 {
253 MemoryRegionSection *section;
254 Int128 diff;
255
256 section = address_space_lookup_region(d, addr, resolve_subpage);
257 /* Compute offset within MemoryRegionSection */
258 addr -= section->offset_within_address_space;
259
260 /* Compute offset within MemoryRegion */
261 *xlat = addr + section->offset_within_region;
262
263 diff = int128_sub(section->mr->size, int128_make64(addr));
264 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
265 return section;
266 }
267
268 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
269 hwaddr *xlat, hwaddr *plen,
270 bool is_write)
271 {
272 IOMMUTLBEntry iotlb;
273 MemoryRegionSection *section;
274 MemoryRegion *mr;
275 hwaddr len = *plen;
276
277 for (;;) {
278 section = address_space_translate_internal(as->dispatch, addr, &addr, plen, true);
279 mr = section->mr;
280
281 if (!mr->iommu_ops) {
282 break;
283 }
284
285 iotlb = mr->iommu_ops->translate(mr, addr);
286 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
287 | (addr & iotlb.addr_mask));
288 len = MIN(len, (addr | iotlb.addr_mask) - addr + 1);
289 if (!(iotlb.perm & (1 << is_write))) {
290 mr = &io_mem_unassigned;
291 break;
292 }
293
294 as = iotlb.target_as;
295 }
296
297 *plen = len;
298 *xlat = addr;
299 return mr;
300 }
301
302 MemoryRegionSection *
303 address_space_translate_for_iotlb(AddressSpace *as, hwaddr addr, hwaddr *xlat,
304 hwaddr *plen)
305 {
306 MemoryRegionSection *section;
307 section = address_space_translate_internal(as->dispatch, addr, xlat, plen, false);
308
309 assert(!section->mr->iommu_ops);
310 return section;
311 }
312 #endif
313
314 void cpu_exec_init_all(void)
315 {
316 #if !defined(CONFIG_USER_ONLY)
317 qemu_mutex_init(&ram_list.mutex);
318 memory_map_init();
319 io_mem_init();
320 #endif
321 }
322
323 #if !defined(CONFIG_USER_ONLY)
324
325 static int cpu_common_post_load(void *opaque, int version_id)
326 {
327 CPUState *cpu = opaque;
328
329 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
330 version_id is increased. */
331 cpu->interrupt_request &= ~0x01;
332 tlb_flush(cpu->env_ptr, 1);
333
334 return 0;
335 }
336
337 const VMStateDescription vmstate_cpu_common = {
338 .name = "cpu_common",
339 .version_id = 1,
340 .minimum_version_id = 1,
341 .minimum_version_id_old = 1,
342 .post_load = cpu_common_post_load,
343 .fields = (VMStateField []) {
344 VMSTATE_UINT32(halted, CPUState),
345 VMSTATE_UINT32(interrupt_request, CPUState),
346 VMSTATE_END_OF_LIST()
347 }
348 };
349
350 #endif
351
352 CPUState *qemu_get_cpu(int index)
353 {
354 CPUState *cpu;
355
356 CPU_FOREACH(cpu) {
357 if (cpu->cpu_index == index) {
358 return cpu;
359 }
360 }
361
362 return NULL;
363 }
364
365 void cpu_exec_init(CPUArchState *env)
366 {
367 CPUState *cpu = ENV_GET_CPU(env);
368 CPUClass *cc = CPU_GET_CLASS(cpu);
369 CPUState *some_cpu;
370 int cpu_index;
371
372 #if defined(CONFIG_USER_ONLY)
373 cpu_list_lock();
374 #endif
375 cpu_index = 0;
376 CPU_FOREACH(some_cpu) {
377 cpu_index++;
378 }
379 cpu->cpu_index = cpu_index;
380 cpu->numa_node = 0;
381 QTAILQ_INIT(&env->breakpoints);
382 QTAILQ_INIT(&env->watchpoints);
383 #ifndef CONFIG_USER_ONLY
384 cpu->thread_id = qemu_get_thread_id();
385 #endif
386 QTAILQ_INSERT_TAIL(&cpus, cpu, node);
387 #if defined(CONFIG_USER_ONLY)
388 cpu_list_unlock();
389 #endif
390 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
391 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu);
392 }
393 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
394 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
395 cpu_save, cpu_load, env);
396 assert(cc->vmsd == NULL);
397 assert(qdev_get_vmsd(DEVICE(cpu)) == NULL);
398 #endif
399 if (cc->vmsd != NULL) {
400 vmstate_register(NULL, cpu_index, cc->vmsd, cpu);
401 }
402 }
403
404 #if defined(TARGET_HAS_ICE)
405 #if defined(CONFIG_USER_ONLY)
406 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
407 {
408 tb_invalidate_phys_page_range(pc, pc + 1, 0);
409 }
410 #else
411 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
412 {
413 tb_invalidate_phys_addr(cpu_get_phys_page_debug(cpu, pc) |
414 (pc & ~TARGET_PAGE_MASK));
415 }
416 #endif
417 #endif /* TARGET_HAS_ICE */
418
419 #if defined(CONFIG_USER_ONLY)
420 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
421
422 {
423 }
424
425 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
426 int flags, CPUWatchpoint **watchpoint)
427 {
428 return -ENOSYS;
429 }
430 #else
431 /* Add a watchpoint. */
432 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
433 int flags, CPUWatchpoint **watchpoint)
434 {
435 target_ulong len_mask = ~(len - 1);
436 CPUWatchpoint *wp;
437
438 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
439 if ((len & (len - 1)) || (addr & ~len_mask) ||
440 len == 0 || len > TARGET_PAGE_SIZE) {
441 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
442 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
443 return -EINVAL;
444 }
445 wp = g_malloc(sizeof(*wp));
446
447 wp->vaddr = addr;
448 wp->len_mask = len_mask;
449 wp->flags = flags;
450
451 /* keep all GDB-injected watchpoints in front */
452 if (flags & BP_GDB)
453 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
454 else
455 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
456
457 tlb_flush_page(env, addr);
458
459 if (watchpoint)
460 *watchpoint = wp;
461 return 0;
462 }
463
464 /* Remove a specific watchpoint. */
465 int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr, target_ulong len,
466 int flags)
467 {
468 target_ulong len_mask = ~(len - 1);
469 CPUWatchpoint *wp;
470
471 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
472 if (addr == wp->vaddr && len_mask == wp->len_mask
473 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
474 cpu_watchpoint_remove_by_ref(env, wp);
475 return 0;
476 }
477 }
478 return -ENOENT;
479 }
480
481 /* Remove a specific watchpoint by reference. */
482 void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint)
483 {
484 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
485
486 tlb_flush_page(env, watchpoint->vaddr);
487
488 g_free(watchpoint);
489 }
490
491 /* Remove all matching watchpoints. */
492 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
493 {
494 CPUWatchpoint *wp, *next;
495
496 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
497 if (wp->flags & mask)
498 cpu_watchpoint_remove_by_ref(env, wp);
499 }
500 }
501 #endif
502
503 /* Add a breakpoint. */
504 int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
505 CPUBreakpoint **breakpoint)
506 {
507 #if defined(TARGET_HAS_ICE)
508 CPUBreakpoint *bp;
509
510 bp = g_malloc(sizeof(*bp));
511
512 bp->pc = pc;
513 bp->flags = flags;
514
515 /* keep all GDB-injected breakpoints in front */
516 if (flags & BP_GDB) {
517 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
518 } else {
519 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
520 }
521
522 breakpoint_invalidate(ENV_GET_CPU(env), pc);
523
524 if (breakpoint) {
525 *breakpoint = bp;
526 }
527 return 0;
528 #else
529 return -ENOSYS;
530 #endif
531 }
532
533 /* Remove a specific breakpoint. */
534 int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags)
535 {
536 #if defined(TARGET_HAS_ICE)
537 CPUBreakpoint *bp;
538
539 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
540 if (bp->pc == pc && bp->flags == flags) {
541 cpu_breakpoint_remove_by_ref(env, bp);
542 return 0;
543 }
544 }
545 return -ENOENT;
546 #else
547 return -ENOSYS;
548 #endif
549 }
550
551 /* Remove a specific breakpoint by reference. */
552 void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint)
553 {
554 #if defined(TARGET_HAS_ICE)
555 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
556
557 breakpoint_invalidate(ENV_GET_CPU(env), breakpoint->pc);
558
559 g_free(breakpoint);
560 #endif
561 }
562
563 /* Remove all matching breakpoints. */
564 void cpu_breakpoint_remove_all(CPUArchState *env, int mask)
565 {
566 #if defined(TARGET_HAS_ICE)
567 CPUBreakpoint *bp, *next;
568
569 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
570 if (bp->flags & mask)
571 cpu_breakpoint_remove_by_ref(env, bp);
572 }
573 #endif
574 }
575
576 /* enable or disable single step mode. EXCP_DEBUG is returned by the
577 CPU loop after each instruction */
578 void cpu_single_step(CPUState *cpu, int enabled)
579 {
580 #if defined(TARGET_HAS_ICE)
581 if (cpu->singlestep_enabled != enabled) {
582 cpu->singlestep_enabled = enabled;
583 if (kvm_enabled()) {
584 kvm_update_guest_debug(cpu, 0);
585 } else {
586 /* must flush all the translated code to avoid inconsistencies */
587 /* XXX: only flush what is necessary */
588 CPUArchState *env = cpu->env_ptr;
589 tb_flush(env);
590 }
591 }
592 #endif
593 }
594
595 void cpu_abort(CPUArchState *env, const char *fmt, ...)
596 {
597 CPUState *cpu = ENV_GET_CPU(env);
598 va_list ap;
599 va_list ap2;
600
601 va_start(ap, fmt);
602 va_copy(ap2, ap);
603 fprintf(stderr, "qemu: fatal: ");
604 vfprintf(stderr, fmt, ap);
605 fprintf(stderr, "\n");
606 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
607 if (qemu_log_enabled()) {
608 qemu_log("qemu: fatal: ");
609 qemu_log_vprintf(fmt, ap2);
610 qemu_log("\n");
611 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
612 qemu_log_flush();
613 qemu_log_close();
614 }
615 va_end(ap2);
616 va_end(ap);
617 #if defined(CONFIG_USER_ONLY)
618 {
619 struct sigaction act;
620 sigfillset(&act.sa_mask);
621 act.sa_handler = SIG_DFL;
622 sigaction(SIGABRT, &act, NULL);
623 }
624 #endif
625 abort();
626 }
627
628 CPUArchState *cpu_copy(CPUArchState *env)
629 {
630 CPUArchState *new_env = cpu_init(env->cpu_model_str);
631 #if defined(TARGET_HAS_ICE)
632 CPUBreakpoint *bp;
633 CPUWatchpoint *wp;
634 #endif
635
636 /* Reset non arch specific state */
637 cpu_reset(ENV_GET_CPU(new_env));
638
639 /* Copy arch specific state into the new CPU */
640 memcpy(new_env, env, sizeof(CPUArchState));
641
642 /* Clone all break/watchpoints.
643 Note: Once we support ptrace with hw-debug register access, make sure
644 BP_CPU break/watchpoints are handled correctly on clone. */
645 QTAILQ_INIT(&env->breakpoints);
646 QTAILQ_INIT(&env->watchpoints);
647 #if defined(TARGET_HAS_ICE)
648 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
649 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
650 }
651 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
652 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
653 wp->flags, NULL);
654 }
655 #endif
656
657 return new_env;
658 }
659
660 #if !defined(CONFIG_USER_ONLY)
661 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t end,
662 uintptr_t length)
663 {
664 uintptr_t start1;
665
666 /* we modify the TLB cache so that the dirty bit will be set again
667 when accessing the range */
668 start1 = (uintptr_t)qemu_safe_ram_ptr(start);
669 /* Check that we don't span multiple blocks - this breaks the
670 address comparisons below. */
671 if ((uintptr_t)qemu_safe_ram_ptr(end - 1) - start1
672 != (end - 1) - start) {
673 abort();
674 }
675 cpu_tlb_reset_dirty_all(start1, length);
676
677 }
678
679 /* Note: start and end must be within the same ram block. */
680 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
681 int dirty_flags)
682 {
683 uintptr_t length;
684
685 start &= TARGET_PAGE_MASK;
686 end = TARGET_PAGE_ALIGN(end);
687
688 length = end - start;
689 if (length == 0)
690 return;
691 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
692
693 if (tcg_enabled()) {
694 tlb_reset_dirty_range_all(start, end, length);
695 }
696 }
697
698 static int cpu_physical_memory_set_dirty_tracking(int enable)
699 {
700 int ret = 0;
701 in_migration = enable;
702 return ret;
703 }
704
705 hwaddr memory_region_section_get_iotlb(CPUArchState *env,
706 MemoryRegionSection *section,
707 target_ulong vaddr,
708 hwaddr paddr, hwaddr xlat,
709 int prot,
710 target_ulong *address)
711 {
712 hwaddr iotlb;
713 CPUWatchpoint *wp;
714
715 if (memory_region_is_ram(section->mr)) {
716 /* Normal RAM. */
717 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
718 + xlat;
719 if (!section->readonly) {
720 iotlb |= PHYS_SECTION_NOTDIRTY;
721 } else {
722 iotlb |= PHYS_SECTION_ROM;
723 }
724 } else {
725 iotlb = section - address_space_memory.dispatch->sections;
726 iotlb += xlat;
727 }
728
729 /* Make accesses to pages with watchpoints go via the
730 watchpoint trap routines. */
731 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
732 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
733 /* Avoid trapping reads of pages with a write breakpoint. */
734 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
735 iotlb = PHYS_SECTION_WATCH + paddr;
736 *address |= TLB_MMIO;
737 break;
738 }
739 }
740 }
741
742 return iotlb;
743 }
744 #endif /* defined(CONFIG_USER_ONLY) */
745
746 #if !defined(CONFIG_USER_ONLY)
747
748 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
749 uint16_t section);
750 static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
751
752 static void *(*phys_mem_alloc)(ram_addr_t size) = qemu_anon_ram_alloc;
753
754 /*
755 * Set a custom physical guest memory alloator.
756 * Accelerators with unusual needs may need this. Hopefully, we can
757 * get rid of it eventually.
758 */
759 void phys_mem_set_alloc(void *(*alloc)(ram_addr_t))
760 {
761 phys_mem_alloc = alloc;
762 }
763
764 static uint16_t phys_section_add(MemoryRegionSection *section)
765 {
766 /* The physical section number is ORed with a page-aligned
767 * pointer to produce the iotlb entries. Thus it should
768 * never overflow into the page-aligned value.
769 */
770 assert(next_map.sections_nb < TARGET_PAGE_SIZE);
771
772 if (next_map.sections_nb == next_map.sections_nb_alloc) {
773 next_map.sections_nb_alloc = MAX(next_map.sections_nb_alloc * 2,
774 16);
775 next_map.sections = g_renew(MemoryRegionSection, next_map.sections,
776 next_map.sections_nb_alloc);
777 }
778 next_map.sections[next_map.sections_nb] = *section;
779 memory_region_ref(section->mr);
780 return next_map.sections_nb++;
781 }
782
783 static void phys_section_destroy(MemoryRegion *mr)
784 {
785 memory_region_unref(mr);
786
787 if (mr->subpage) {
788 subpage_t *subpage = container_of(mr, subpage_t, iomem);
789 memory_region_destroy(&subpage->iomem);
790 g_free(subpage);
791 }
792 }
793
794 static void phys_sections_free(PhysPageMap *map)
795 {
796 while (map->sections_nb > 0) {
797 MemoryRegionSection *section = &map->sections[--map->sections_nb];
798 phys_section_destroy(section->mr);
799 }
800 g_free(map->sections);
801 g_free(map->nodes);
802 g_free(map);
803 }
804
805 static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
806 {
807 subpage_t *subpage;
808 hwaddr base = section->offset_within_address_space
809 & TARGET_PAGE_MASK;
810 MemoryRegionSection *existing = phys_page_find(d->phys_map, base >> TARGET_PAGE_BITS,
811 next_map.nodes, next_map.sections);
812 MemoryRegionSection subsection = {
813 .offset_within_address_space = base,
814 .size = int128_make64(TARGET_PAGE_SIZE),
815 };
816 hwaddr start, end;
817
818 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
819
820 if (!(existing->mr->subpage)) {
821 subpage = subpage_init(d->as, base);
822 subsection.mr = &subpage->iomem;
823 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
824 phys_section_add(&subsection));
825 } else {
826 subpage = container_of(existing->mr, subpage_t, iomem);
827 }
828 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
829 end = start + int128_get64(section->size) - 1;
830 subpage_register(subpage, start, end, phys_section_add(section));
831 }
832
833
834 static void register_multipage(AddressSpaceDispatch *d,
835 MemoryRegionSection *section)
836 {
837 hwaddr start_addr = section->offset_within_address_space;
838 uint16_t section_index = phys_section_add(section);
839 uint64_t num_pages = int128_get64(int128_rshift(section->size,
840 TARGET_PAGE_BITS));
841
842 assert(num_pages);
843 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
844 }
845
846 static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
847 {
848 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
849 AddressSpaceDispatch *d = as->next_dispatch;
850 MemoryRegionSection now = *section, remain = *section;
851 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
852
853 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
854 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
855 - now.offset_within_address_space;
856
857 now.size = int128_min(int128_make64(left), now.size);
858 register_subpage(d, &now);
859 } else {
860 now.size = int128_zero();
861 }
862 while (int128_ne(remain.size, now.size)) {
863 remain.size = int128_sub(remain.size, now.size);
864 remain.offset_within_address_space += int128_get64(now.size);
865 remain.offset_within_region += int128_get64(now.size);
866 now = remain;
867 if (int128_lt(remain.size, page_size)) {
868 register_subpage(d, &now);
869 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
870 now.size = page_size;
871 register_subpage(d, &now);
872 } else {
873 now.size = int128_and(now.size, int128_neg(page_size));
874 register_multipage(d, &now);
875 }
876 }
877 }
878
879 void qemu_flush_coalesced_mmio_buffer(void)
880 {
881 if (kvm_enabled())
882 kvm_flush_coalesced_mmio_buffer();
883 }
884
885 void qemu_mutex_lock_ramlist(void)
886 {
887 qemu_mutex_lock(&ram_list.mutex);
888 }
889
890 void qemu_mutex_unlock_ramlist(void)
891 {
892 qemu_mutex_unlock(&ram_list.mutex);
893 }
894
895 #ifdef __linux__
896
897 #include <sys/vfs.h>
898
899 #define HUGETLBFS_MAGIC 0x958458f6
900
901 static long gethugepagesize(const char *path)
902 {
903 struct statfs fs;
904 int ret;
905
906 do {
907 ret = statfs(path, &fs);
908 } while (ret != 0 && errno == EINTR);
909
910 if (ret != 0) {
911 perror(path);
912 return 0;
913 }
914
915 if (fs.f_type != HUGETLBFS_MAGIC)
916 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
917
918 return fs.f_bsize;
919 }
920
921 static void *file_ram_alloc(RAMBlock *block,
922 ram_addr_t memory,
923 const char *path)
924 {
925 char *filename;
926 char *sanitized_name;
927 char *c;
928 void *area;
929 int fd;
930 #ifdef MAP_POPULATE
931 int flags;
932 #endif
933 unsigned long hpagesize;
934
935 hpagesize = gethugepagesize(path);
936 if (!hpagesize) {
937 return NULL;
938 }
939
940 if (memory < hpagesize) {
941 return NULL;
942 }
943
944 if (kvm_enabled() && !kvm_has_sync_mmu()) {
945 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
946 return NULL;
947 }
948
949 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
950 sanitized_name = g_strdup(block->mr->name);
951 for (c = sanitized_name; *c != '\0'; c++) {
952 if (*c == '/')
953 *c = '_';
954 }
955
956 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
957 sanitized_name);
958 g_free(sanitized_name);
959
960 fd = mkstemp(filename);
961 if (fd < 0) {
962 perror("unable to create backing store for hugepages");
963 g_free(filename);
964 return NULL;
965 }
966 unlink(filename);
967 g_free(filename);
968
969 memory = (memory+hpagesize-1) & ~(hpagesize-1);
970
971 /*
972 * ftruncate is not supported by hugetlbfs in older
973 * hosts, so don't bother bailing out on errors.
974 * If anything goes wrong with it under other filesystems,
975 * mmap will fail.
976 */
977 if (ftruncate(fd, memory))
978 perror("ftruncate");
979
980 #ifdef MAP_POPULATE
981 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
982 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
983 * to sidestep this quirk.
984 */
985 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
986 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
987 #else
988 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
989 #endif
990 if (area == MAP_FAILED) {
991 perror("file_ram_alloc: can't mmap RAM pages");
992 close(fd);
993 return (NULL);
994 }
995 block->fd = fd;
996 return area;
997 }
998 #else
999 static void *file_ram_alloc(RAMBlock *block,
1000 ram_addr_t memory,
1001 const char *path)
1002 {
1003 fprintf(stderr, "-mem-path not supported on this host\n");
1004 exit(1);
1005 }
1006 #endif
1007
1008 static ram_addr_t find_ram_offset(ram_addr_t size)
1009 {
1010 RAMBlock *block, *next_block;
1011 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1012
1013 assert(size != 0); /* it would hand out same offset multiple times */
1014
1015 if (QTAILQ_EMPTY(&ram_list.blocks))
1016 return 0;
1017
1018 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1019 ram_addr_t end, next = RAM_ADDR_MAX;
1020
1021 end = block->offset + block->length;
1022
1023 QTAILQ_FOREACH(next_block, &ram_list.blocks, next) {
1024 if (next_block->offset >= end) {
1025 next = MIN(next, next_block->offset);
1026 }
1027 }
1028 if (next - end >= size && next - end < mingap) {
1029 offset = end;
1030 mingap = next - end;
1031 }
1032 }
1033
1034 if (offset == RAM_ADDR_MAX) {
1035 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1036 (uint64_t)size);
1037 abort();
1038 }
1039
1040 return offset;
1041 }
1042
1043 ram_addr_t last_ram_offset(void)
1044 {
1045 RAMBlock *block;
1046 ram_addr_t last = 0;
1047
1048 QTAILQ_FOREACH(block, &ram_list.blocks, next)
1049 last = MAX(last, block->offset + block->length);
1050
1051 return last;
1052 }
1053
1054 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1055 {
1056 int ret;
1057
1058 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1059 if (!qemu_opt_get_bool(qemu_get_machine_opts(),
1060 "dump-guest-core", true)) {
1061 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1062 if (ret) {
1063 perror("qemu_madvise");
1064 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1065 "but dump_guest_core=off specified\n");
1066 }
1067 }
1068 }
1069
1070 void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
1071 {
1072 RAMBlock *new_block, *block;
1073
1074 new_block = NULL;
1075 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1076 if (block->offset == addr) {
1077 new_block = block;
1078 break;
1079 }
1080 }
1081 assert(new_block);
1082 assert(!new_block->idstr[0]);
1083
1084 if (dev) {
1085 char *id = qdev_get_dev_path(dev);
1086 if (id) {
1087 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1088 g_free(id);
1089 }
1090 }
1091 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1092
1093 /* This assumes the iothread lock is taken here too. */
1094 qemu_mutex_lock_ramlist();
1095 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1096 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
1097 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1098 new_block->idstr);
1099 abort();
1100 }
1101 }
1102 qemu_mutex_unlock_ramlist();
1103 }
1104
1105 static int memory_try_enable_merging(void *addr, size_t len)
1106 {
1107 if (!qemu_opt_get_bool(qemu_get_machine_opts(), "mem-merge", true)) {
1108 /* disabled by the user */
1109 return 0;
1110 }
1111
1112 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1113 }
1114
1115 ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
1116 MemoryRegion *mr)
1117 {
1118 RAMBlock *block, *new_block;
1119
1120 size = TARGET_PAGE_ALIGN(size);
1121 new_block = g_malloc0(sizeof(*new_block));
1122 new_block->fd = -1;
1123
1124 /* This assumes the iothread lock is taken here too. */
1125 qemu_mutex_lock_ramlist();
1126 new_block->mr = mr;
1127 new_block->offset = find_ram_offset(size);
1128 if (host) {
1129 new_block->host = host;
1130 new_block->flags |= RAM_PREALLOC_MASK;
1131 } else if (xen_enabled()) {
1132 if (mem_path) {
1133 fprintf(stderr, "-mem-path not supported with Xen\n");
1134 exit(1);
1135 }
1136 xen_ram_alloc(new_block->offset, size, mr);
1137 } else {
1138 if (mem_path) {
1139 if (phys_mem_alloc != qemu_anon_ram_alloc) {
1140 /*
1141 * file_ram_alloc() needs to allocate just like
1142 * phys_mem_alloc, but we haven't bothered to provide
1143 * a hook there.
1144 */
1145 fprintf(stderr,
1146 "-mem-path not supported with this accelerator\n");
1147 exit(1);
1148 }
1149 new_block->host = file_ram_alloc(new_block, size, mem_path);
1150 }
1151 if (!new_block->host) {
1152 new_block->host = phys_mem_alloc(size);
1153 if (!new_block->host) {
1154 fprintf(stderr, "Cannot set up guest memory '%s': %s\n",
1155 new_block->mr->name, strerror(errno));
1156 exit(1);
1157 }
1158 memory_try_enable_merging(new_block->host, size);
1159 }
1160 }
1161 new_block->length = size;
1162
1163 /* Keep the list sorted from biggest to smallest block. */
1164 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1165 if (block->length < new_block->length) {
1166 break;
1167 }
1168 }
1169 if (block) {
1170 QTAILQ_INSERT_BEFORE(block, new_block, next);
1171 } else {
1172 QTAILQ_INSERT_TAIL(&ram_list.blocks, new_block, next);
1173 }
1174 ram_list.mru_block = NULL;
1175
1176 ram_list.version++;
1177 qemu_mutex_unlock_ramlist();
1178
1179 ram_list.phys_dirty = g_realloc(ram_list.phys_dirty,
1180 last_ram_offset() >> TARGET_PAGE_BITS);
1181 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
1182 0, size >> TARGET_PAGE_BITS);
1183 cpu_physical_memory_set_dirty_range(new_block->offset, size, 0xff);
1184
1185 qemu_ram_setup_dump(new_block->host, size);
1186 qemu_madvise(new_block->host, size, QEMU_MADV_HUGEPAGE);
1187 qemu_madvise(new_block->host, size, QEMU_MADV_DONTFORK);
1188
1189 if (kvm_enabled())
1190 kvm_setup_guest_memory(new_block->host, size);
1191
1192 return new_block->offset;
1193 }
1194
1195 ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr)
1196 {
1197 return qemu_ram_alloc_from_ptr(size, NULL, mr);
1198 }
1199
1200 void qemu_ram_free_from_ptr(ram_addr_t addr)
1201 {
1202 RAMBlock *block;
1203
1204 /* This assumes the iothread lock is taken here too. */
1205 qemu_mutex_lock_ramlist();
1206 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1207 if (addr == block->offset) {
1208 QTAILQ_REMOVE(&ram_list.blocks, block, next);
1209 ram_list.mru_block = NULL;
1210 ram_list.version++;
1211 g_free(block);
1212 break;
1213 }
1214 }
1215 qemu_mutex_unlock_ramlist();
1216 }
1217
1218 void qemu_ram_free(ram_addr_t addr)
1219 {
1220 RAMBlock *block;
1221
1222 /* This assumes the iothread lock is taken here too. */
1223 qemu_mutex_lock_ramlist();
1224 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1225 if (addr == block->offset) {
1226 QTAILQ_REMOVE(&ram_list.blocks, block, next);
1227 ram_list.mru_block = NULL;
1228 ram_list.version++;
1229 if (block->flags & RAM_PREALLOC_MASK) {
1230 ;
1231 } else if (xen_enabled()) {
1232 xen_invalidate_map_cache_entry(block->host);
1233 } else if (block->fd >= 0) {
1234 munmap(block->host, block->length);
1235 close(block->fd);
1236 } else {
1237 qemu_anon_ram_free(block->host, block->length);
1238 }
1239 g_free(block);
1240 break;
1241 }
1242 }
1243 qemu_mutex_unlock_ramlist();
1244
1245 }
1246
1247 #ifndef _WIN32
1248 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
1249 {
1250 RAMBlock *block;
1251 ram_addr_t offset;
1252 int flags;
1253 void *area, *vaddr;
1254
1255 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1256 offset = addr - block->offset;
1257 if (offset < block->length) {
1258 vaddr = block->host + offset;
1259 if (block->flags & RAM_PREALLOC_MASK) {
1260 ;
1261 } else if (xen_enabled()) {
1262 abort();
1263 } else {
1264 flags = MAP_FIXED;
1265 munmap(vaddr, length);
1266 if (block->fd >= 0) {
1267 #ifdef MAP_POPULATE
1268 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
1269 MAP_PRIVATE;
1270 #else
1271 flags |= MAP_PRIVATE;
1272 #endif
1273 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1274 flags, block->fd, offset);
1275 } else {
1276 /*
1277 * Remap needs to match alloc. Accelerators that
1278 * set phys_mem_alloc never remap. If they did,
1279 * we'd need a remap hook here.
1280 */
1281 assert(phys_mem_alloc == qemu_anon_ram_alloc);
1282
1283 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1284 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1285 flags, -1, 0);
1286 }
1287 if (area != vaddr) {
1288 fprintf(stderr, "Could not remap addr: "
1289 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
1290 length, addr);
1291 exit(1);
1292 }
1293 memory_try_enable_merging(vaddr, length);
1294 qemu_ram_setup_dump(vaddr, length);
1295 }
1296 return;
1297 }
1298 }
1299 }
1300 #endif /* !_WIN32 */
1301
1302 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1303 {
1304 RAMBlock *block;
1305
1306 /* The list is protected by the iothread lock here. */
1307 block = ram_list.mru_block;
1308 if (block && addr - block->offset < block->length) {
1309 goto found;
1310 }
1311 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1312 if (addr - block->offset < block->length) {
1313 goto found;
1314 }
1315 }
1316
1317 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1318 abort();
1319
1320 found:
1321 ram_list.mru_block = block;
1322 return block;
1323 }
1324
1325 /* Return a host pointer to ram allocated with qemu_ram_alloc.
1326 With the exception of the softmmu code in this file, this should
1327 only be used for local memory (e.g. video ram) that the device owns,
1328 and knows it isn't going to access beyond the end of the block.
1329
1330 It should not be used for general purpose DMA.
1331 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
1332 */
1333 void *qemu_get_ram_ptr(ram_addr_t addr)
1334 {
1335 RAMBlock *block = qemu_get_ram_block(addr);
1336
1337 if (xen_enabled()) {
1338 /* We need to check if the requested address is in the RAM
1339 * because we don't want to map the entire memory in QEMU.
1340 * In that case just map until the end of the page.
1341 */
1342 if (block->offset == 0) {
1343 return xen_map_cache(addr, 0, 0);
1344 } else if (block->host == NULL) {
1345 block->host =
1346 xen_map_cache(block->offset, block->length, 1);
1347 }
1348 }
1349 return block->host + (addr - block->offset);
1350 }
1351
1352 /* Return a host pointer to ram allocated with qemu_ram_alloc. Same as
1353 * qemu_get_ram_ptr but do not touch ram_list.mru_block.
1354 *
1355 * ??? Is this still necessary?
1356 */
1357 static void *qemu_safe_ram_ptr(ram_addr_t addr)
1358 {
1359 RAMBlock *block;
1360
1361 /* The list is protected by the iothread lock here. */
1362 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1363 if (addr - block->offset < block->length) {
1364 if (xen_enabled()) {
1365 /* We need to check if the requested address is in the RAM
1366 * because we don't want to map the entire memory in QEMU.
1367 * In that case just map until the end of the page.
1368 */
1369 if (block->offset == 0) {
1370 return xen_map_cache(addr, 0, 0);
1371 } else if (block->host == NULL) {
1372 block->host =
1373 xen_map_cache(block->offset, block->length, 1);
1374 }
1375 }
1376 return block->host + (addr - block->offset);
1377 }
1378 }
1379
1380 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1381 abort();
1382
1383 return NULL;
1384 }
1385
1386 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
1387 * but takes a size argument */
1388 static void *qemu_ram_ptr_length(ram_addr_t addr, hwaddr *size)
1389 {
1390 if (*size == 0) {
1391 return NULL;
1392 }
1393 if (xen_enabled()) {
1394 return xen_map_cache(addr, *size, 1);
1395 } else {
1396 RAMBlock *block;
1397
1398 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1399 if (addr - block->offset < block->length) {
1400 if (addr - block->offset + *size > block->length)
1401 *size = block->length - addr + block->offset;
1402 return block->host + (addr - block->offset);
1403 }
1404 }
1405
1406 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1407 abort();
1408 }
1409 }
1410
1411 /* Some of the softmmu routines need to translate from a host pointer
1412 (typically a TLB entry) back to a ram offset. */
1413 MemoryRegion *qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
1414 {
1415 RAMBlock *block;
1416 uint8_t *host = ptr;
1417
1418 if (xen_enabled()) {
1419 *ram_addr = xen_ram_addr_from_mapcache(ptr);
1420 return qemu_get_ram_block(*ram_addr)->mr;
1421 }
1422
1423 block = ram_list.mru_block;
1424 if (block && block->host && host - block->host < block->length) {
1425 goto found;
1426 }
1427
1428 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1429 /* This case append when the block is not mapped. */
1430 if (block->host == NULL) {
1431 continue;
1432 }
1433 if (host - block->host < block->length) {
1434 goto found;
1435 }
1436 }
1437
1438 return NULL;
1439
1440 found:
1441 *ram_addr = block->offset + (host - block->host);
1442 return block->mr;
1443 }
1444
1445 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
1446 uint64_t val, unsigned size)
1447 {
1448 int dirty_flags;
1449 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
1450 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
1451 tb_invalidate_phys_page_fast(ram_addr, size);
1452 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
1453 }
1454 switch (size) {
1455 case 1:
1456 stb_p(qemu_get_ram_ptr(ram_addr), val);
1457 break;
1458 case 2:
1459 stw_p(qemu_get_ram_ptr(ram_addr), val);
1460 break;
1461 case 4:
1462 stl_p(qemu_get_ram_ptr(ram_addr), val);
1463 break;
1464 default:
1465 abort();
1466 }
1467 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
1468 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
1469 /* we remove the notdirty callback only if the code has been
1470 flushed */
1471 if (dirty_flags == 0xff) {
1472 CPUArchState *env = current_cpu->env_ptr;
1473 tlb_set_dirty(env, env->mem_io_vaddr);
1474 }
1475 }
1476
1477 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
1478 unsigned size, bool is_write)
1479 {
1480 return is_write;
1481 }
1482
1483 static const MemoryRegionOps notdirty_mem_ops = {
1484 .write = notdirty_mem_write,
1485 .valid.accepts = notdirty_mem_accepts,
1486 .endianness = DEVICE_NATIVE_ENDIAN,
1487 };
1488
1489 /* Generate a debug exception if a watchpoint has been hit. */
1490 static void check_watchpoint(int offset, int len_mask, int flags)
1491 {
1492 CPUArchState *env = current_cpu->env_ptr;
1493 target_ulong pc, cs_base;
1494 target_ulong vaddr;
1495 CPUWatchpoint *wp;
1496 int cpu_flags;
1497
1498 if (env->watchpoint_hit) {
1499 /* We re-entered the check after replacing the TB. Now raise
1500 * the debug interrupt so that is will trigger after the
1501 * current instruction. */
1502 cpu_interrupt(ENV_GET_CPU(env), CPU_INTERRUPT_DEBUG);
1503 return;
1504 }
1505 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
1506 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1507 if ((vaddr == (wp->vaddr & len_mask) ||
1508 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
1509 wp->flags |= BP_WATCHPOINT_HIT;
1510 if (!env->watchpoint_hit) {
1511 env->watchpoint_hit = wp;
1512 tb_check_watchpoint(env);
1513 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
1514 env->exception_index = EXCP_DEBUG;
1515 cpu_loop_exit(env);
1516 } else {
1517 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
1518 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
1519 cpu_resume_from_signal(env, NULL);
1520 }
1521 }
1522 } else {
1523 wp->flags &= ~BP_WATCHPOINT_HIT;
1524 }
1525 }
1526 }
1527
1528 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
1529 so these check for a hit then pass through to the normal out-of-line
1530 phys routines. */
1531 static uint64_t watch_mem_read(void *opaque, hwaddr addr,
1532 unsigned size)
1533 {
1534 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ);
1535 switch (size) {
1536 case 1: return ldub_phys(addr);
1537 case 2: return lduw_phys(addr);
1538 case 4: return ldl_phys(addr);
1539 default: abort();
1540 }
1541 }
1542
1543 static void watch_mem_write(void *opaque, hwaddr addr,
1544 uint64_t val, unsigned size)
1545 {
1546 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE);
1547 switch (size) {
1548 case 1:
1549 stb_phys(addr, val);
1550 break;
1551 case 2:
1552 stw_phys(addr, val);
1553 break;
1554 case 4:
1555 stl_phys(addr, val);
1556 break;
1557 default: abort();
1558 }
1559 }
1560
1561 static const MemoryRegionOps watch_mem_ops = {
1562 .read = watch_mem_read,
1563 .write = watch_mem_write,
1564 .endianness = DEVICE_NATIVE_ENDIAN,
1565 };
1566
1567 static uint64_t subpage_read(void *opaque, hwaddr addr,
1568 unsigned len)
1569 {
1570 subpage_t *subpage = opaque;
1571 uint8_t buf[4];
1572
1573 #if defined(DEBUG_SUBPAGE)
1574 printf("%s: subpage %p len %d addr " TARGET_FMT_plx "\n", __func__,
1575 subpage, len, addr);
1576 #endif
1577 address_space_read(subpage->as, addr + subpage->base, buf, len);
1578 switch (len) {
1579 case 1:
1580 return ldub_p(buf);
1581 case 2:
1582 return lduw_p(buf);
1583 case 4:
1584 return ldl_p(buf);
1585 default:
1586 abort();
1587 }
1588 }
1589
1590 static void subpage_write(void *opaque, hwaddr addr,
1591 uint64_t value, unsigned len)
1592 {
1593 subpage_t *subpage = opaque;
1594 uint8_t buf[4];
1595
1596 #if defined(DEBUG_SUBPAGE)
1597 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
1598 " value %"PRIx64"\n",
1599 __func__, subpage, len, addr, value);
1600 #endif
1601 switch (len) {
1602 case 1:
1603 stb_p(buf, value);
1604 break;
1605 case 2:
1606 stw_p(buf, value);
1607 break;
1608 case 4:
1609 stl_p(buf, value);
1610 break;
1611 default:
1612 abort();
1613 }
1614 address_space_write(subpage->as, addr + subpage->base, buf, len);
1615 }
1616
1617 static bool subpage_accepts(void *opaque, hwaddr addr,
1618 unsigned size, bool is_write)
1619 {
1620 subpage_t *subpage = opaque;
1621 #if defined(DEBUG_SUBPAGE)
1622 printf("%s: subpage %p %c len %d addr " TARGET_FMT_plx "\n",
1623 __func__, subpage, is_write ? 'w' : 'r', len, addr);
1624 #endif
1625
1626 return address_space_access_valid(subpage->as, addr + subpage->base,
1627 size, is_write);
1628 }
1629
1630 static const MemoryRegionOps subpage_ops = {
1631 .read = subpage_read,
1632 .write = subpage_write,
1633 .valid.accepts = subpage_accepts,
1634 .endianness = DEVICE_NATIVE_ENDIAN,
1635 };
1636
1637 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1638 uint16_t section)
1639 {
1640 int idx, eidx;
1641
1642 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
1643 return -1;
1644 idx = SUBPAGE_IDX(start);
1645 eidx = SUBPAGE_IDX(end);
1646 #if defined(DEBUG_SUBPAGE)
1647 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
1648 mmio, start, end, idx, eidx, memory);
1649 #endif
1650 for (; idx <= eidx; idx++) {
1651 mmio->sub_section[idx] = section;
1652 }
1653
1654 return 0;
1655 }
1656
1657 static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
1658 {
1659 subpage_t *mmio;
1660
1661 mmio = g_malloc0(sizeof(subpage_t));
1662
1663 mmio->as = as;
1664 mmio->base = base;
1665 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
1666 "subpage", TARGET_PAGE_SIZE);
1667 mmio->iomem.subpage = true;
1668 #if defined(DEBUG_SUBPAGE)
1669 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
1670 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
1671 #endif
1672 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
1673
1674 return mmio;
1675 }
1676
1677 static uint16_t dummy_section(MemoryRegion *mr)
1678 {
1679 MemoryRegionSection section = {
1680 .mr = mr,
1681 .offset_within_address_space = 0,
1682 .offset_within_region = 0,
1683 .size = int128_2_64(),
1684 };
1685
1686 return phys_section_add(&section);
1687 }
1688
1689 MemoryRegion *iotlb_to_region(hwaddr index)
1690 {
1691 return address_space_memory.dispatch->sections[index & ~TARGET_PAGE_MASK].mr;
1692 }
1693
1694 static void io_mem_init(void)
1695 {
1696 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, "rom", UINT64_MAX);
1697 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1698 "unassigned", UINT64_MAX);
1699 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
1700 "notdirty", UINT64_MAX);
1701 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1702 "watch", UINT64_MAX);
1703 }
1704
1705 static void mem_begin(MemoryListener *listener)
1706 {
1707 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
1708 AddressSpaceDispatch *d = g_new(AddressSpaceDispatch, 1);
1709
1710 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .is_leaf = 0 };
1711 d->as = as;
1712 as->next_dispatch = d;
1713 }
1714
1715 static void mem_commit(MemoryListener *listener)
1716 {
1717 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
1718 AddressSpaceDispatch *cur = as->dispatch;
1719 AddressSpaceDispatch *next = as->next_dispatch;
1720
1721 next->nodes = next_map.nodes;
1722 next->sections = next_map.sections;
1723
1724 as->dispatch = next;
1725 g_free(cur);
1726 }
1727
1728 static void core_begin(MemoryListener *listener)
1729 {
1730 uint16_t n;
1731
1732 prev_map = g_new(PhysPageMap, 1);
1733 *prev_map = next_map;
1734
1735 memset(&next_map, 0, sizeof(next_map));
1736 n = dummy_section(&io_mem_unassigned);
1737 assert(n == PHYS_SECTION_UNASSIGNED);
1738 n = dummy_section(&io_mem_notdirty);
1739 assert(n == PHYS_SECTION_NOTDIRTY);
1740 n = dummy_section(&io_mem_rom);
1741 assert(n == PHYS_SECTION_ROM);
1742 n = dummy_section(&io_mem_watch);
1743 assert(n == PHYS_SECTION_WATCH);
1744 }
1745
1746 /* This listener's commit run after the other AddressSpaceDispatch listeners'.
1747 * All AddressSpaceDispatch instances have switched to the next map.
1748 */
1749 static void core_commit(MemoryListener *listener)
1750 {
1751 phys_sections_free(prev_map);
1752 }
1753
1754 static void tcg_commit(MemoryListener *listener)
1755 {
1756 CPUState *cpu;
1757
1758 /* since each CPU stores ram addresses in its TLB cache, we must
1759 reset the modified entries */
1760 /* XXX: slow ! */
1761 CPU_FOREACH(cpu) {
1762 CPUArchState *env = cpu->env_ptr;
1763
1764 tlb_flush(env, 1);
1765 }
1766 }
1767
1768 static void core_log_global_start(MemoryListener *listener)
1769 {
1770 cpu_physical_memory_set_dirty_tracking(1);
1771 }
1772
1773 static void core_log_global_stop(MemoryListener *listener)
1774 {
1775 cpu_physical_memory_set_dirty_tracking(0);
1776 }
1777
1778 static MemoryListener core_memory_listener = {
1779 .begin = core_begin,
1780 .commit = core_commit,
1781 .log_global_start = core_log_global_start,
1782 .log_global_stop = core_log_global_stop,
1783 .priority = 1,
1784 };
1785
1786 static MemoryListener tcg_memory_listener = {
1787 .commit = tcg_commit,
1788 };
1789
1790 void address_space_init_dispatch(AddressSpace *as)
1791 {
1792 as->dispatch = NULL;
1793 as->dispatch_listener = (MemoryListener) {
1794 .begin = mem_begin,
1795 .commit = mem_commit,
1796 .region_add = mem_add,
1797 .region_nop = mem_add,
1798 .priority = 0,
1799 };
1800 memory_listener_register(&as->dispatch_listener, as);
1801 }
1802
1803 void address_space_destroy_dispatch(AddressSpace *as)
1804 {
1805 AddressSpaceDispatch *d = as->dispatch;
1806
1807 memory_listener_unregister(&as->dispatch_listener);
1808 g_free(d);
1809 as->dispatch = NULL;
1810 }
1811
1812 static void memory_map_init(void)
1813 {
1814 system_memory = g_malloc(sizeof(*system_memory));
1815 memory_region_init(system_memory, NULL, "system", INT64_MAX);
1816 address_space_init(&address_space_memory, system_memory, "memory");
1817
1818 system_io = g_malloc(sizeof(*system_io));
1819 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
1820 65536);
1821 address_space_init(&address_space_io, system_io, "I/O");
1822
1823 memory_listener_register(&core_memory_listener, &address_space_memory);
1824 if (tcg_enabled()) {
1825 memory_listener_register(&tcg_memory_listener, &address_space_memory);
1826 }
1827 }
1828
1829 MemoryRegion *get_system_memory(void)
1830 {
1831 return system_memory;
1832 }
1833
1834 MemoryRegion *get_system_io(void)
1835 {
1836 return system_io;
1837 }
1838
1839 #endif /* !defined(CONFIG_USER_ONLY) */
1840
1841 /* physical memory access (slow version, mainly for debug) */
1842 #if defined(CONFIG_USER_ONLY)
1843 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
1844 uint8_t *buf, int len, int is_write)
1845 {
1846 int l, flags;
1847 target_ulong page;
1848 void * p;
1849
1850 while (len > 0) {
1851 page = addr & TARGET_PAGE_MASK;
1852 l = (page + TARGET_PAGE_SIZE) - addr;
1853 if (l > len)
1854 l = len;
1855 flags = page_get_flags(page);
1856 if (!(flags & PAGE_VALID))
1857 return -1;
1858 if (is_write) {
1859 if (!(flags & PAGE_WRITE))
1860 return -1;
1861 /* XXX: this code should not depend on lock_user */
1862 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
1863 return -1;
1864 memcpy(p, buf, l);
1865 unlock_user(p, addr, l);
1866 } else {
1867 if (!(flags & PAGE_READ))
1868 return -1;
1869 /* XXX: this code should not depend on lock_user */
1870 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
1871 return -1;
1872 memcpy(buf, p, l);
1873 unlock_user(p, addr, 0);
1874 }
1875 len -= l;
1876 buf += l;
1877 addr += l;
1878 }
1879 return 0;
1880 }
1881
1882 #else
1883
1884 static void invalidate_and_set_dirty(hwaddr addr,
1885 hwaddr length)
1886 {
1887 if (!cpu_physical_memory_is_dirty(addr)) {
1888 /* invalidate code */
1889 tb_invalidate_phys_page_range(addr, addr + length, 0);
1890 /* set dirty bit */
1891 cpu_physical_memory_set_dirty_flags(addr, (0xff & ~CODE_DIRTY_FLAG));
1892 }
1893 xen_modified_memory(addr, length);
1894 }
1895
1896 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
1897 {
1898 if (memory_region_is_ram(mr)) {
1899 return !(is_write && mr->readonly);
1900 }
1901 if (memory_region_is_romd(mr)) {
1902 return !is_write;
1903 }
1904
1905 return false;
1906 }
1907
1908 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
1909 {
1910 unsigned access_size_max = mr->ops->valid.max_access_size;
1911
1912 /* Regions are assumed to support 1-4 byte accesses unless
1913 otherwise specified. */
1914 if (access_size_max == 0) {
1915 access_size_max = 4;
1916 }
1917
1918 /* Bound the maximum access by the alignment of the address. */
1919 if (!mr->ops->impl.unaligned) {
1920 unsigned align_size_max = addr & -addr;
1921 if (align_size_max != 0 && align_size_max < access_size_max) {
1922 access_size_max = align_size_max;
1923 }
1924 }
1925
1926 /* Don't attempt accesses larger than the maximum. */
1927 if (l > access_size_max) {
1928 l = access_size_max;
1929 }
1930 if (l & (l - 1)) {
1931 l = 1 << (qemu_fls(l) - 1);
1932 }
1933
1934 return l;
1935 }
1936
1937 bool address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf,
1938 int len, bool is_write)
1939 {
1940 hwaddr l;
1941 uint8_t *ptr;
1942 uint64_t val;
1943 hwaddr addr1;
1944 MemoryRegion *mr;
1945 bool error = false;
1946
1947 while (len > 0) {
1948 l = len;
1949 mr = address_space_translate(as, addr, &addr1, &l, is_write);
1950
1951 if (is_write) {
1952 if (!memory_access_is_direct(mr, is_write)) {
1953 l = memory_access_size(mr, l, addr1);
1954 /* XXX: could force current_cpu to NULL to avoid
1955 potential bugs */
1956 switch (l) {
1957 case 8:
1958 /* 64 bit write access */
1959 val = ldq_p(buf);
1960 error |= io_mem_write(mr, addr1, val, 8);
1961 break;
1962 case 4:
1963 /* 32 bit write access */
1964 val = ldl_p(buf);
1965 error |= io_mem_write(mr, addr1, val, 4);
1966 break;
1967 case 2:
1968 /* 16 bit write access */
1969 val = lduw_p(buf);
1970 error |= io_mem_write(mr, addr1, val, 2);
1971 break;
1972 case 1:
1973 /* 8 bit write access */
1974 val = ldub_p(buf);
1975 error |= io_mem_write(mr, addr1, val, 1);
1976 break;
1977 default:
1978 abort();
1979 }
1980 } else {
1981 addr1 += memory_region_get_ram_addr(mr);
1982 /* RAM case */
1983 ptr = qemu_get_ram_ptr(addr1);
1984 memcpy(ptr, buf, l);
1985 invalidate_and_set_dirty(addr1, l);
1986 }
1987 } else {
1988 if (!memory_access_is_direct(mr, is_write)) {
1989 /* I/O case */
1990 l = memory_access_size(mr, l, addr1);
1991 switch (l) {
1992 case 8:
1993 /* 64 bit read access */
1994 error |= io_mem_read(mr, addr1, &val, 8);
1995 stq_p(buf, val);
1996 break;
1997 case 4:
1998 /* 32 bit read access */
1999 error |= io_mem_read(mr, addr1, &val, 4);
2000 stl_p(buf, val);
2001 break;
2002 case 2:
2003 /* 16 bit read access */
2004 error |= io_mem_read(mr, addr1, &val, 2);
2005 stw_p(buf, val);
2006 break;
2007 case 1:
2008 /* 8 bit read access */
2009 error |= io_mem_read(mr, addr1, &val, 1);
2010 stb_p(buf, val);
2011 break;
2012 default:
2013 abort();
2014 }
2015 } else {
2016 /* RAM case */
2017 ptr = qemu_get_ram_ptr(mr->ram_addr + addr1);
2018 memcpy(buf, ptr, l);
2019 }
2020 }
2021 len -= l;
2022 buf += l;
2023 addr += l;
2024 }
2025
2026 return error;
2027 }
2028
2029 bool address_space_write(AddressSpace *as, hwaddr addr,
2030 const uint8_t *buf, int len)
2031 {
2032 return address_space_rw(as, addr, (uint8_t *)buf, len, true);
2033 }
2034
2035 bool address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len)
2036 {
2037 return address_space_rw(as, addr, buf, len, false);
2038 }
2039
2040
2041 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
2042 int len, int is_write)
2043 {
2044 address_space_rw(&address_space_memory, addr, buf, len, is_write);
2045 }
2046
2047 /* used for ROM loading : can write in RAM and ROM */
2048 void cpu_physical_memory_write_rom(hwaddr addr,
2049 const uint8_t *buf, int len)
2050 {
2051 hwaddr l;
2052 uint8_t *ptr;
2053 hwaddr addr1;
2054 MemoryRegion *mr;
2055
2056 while (len > 0) {
2057 l = len;
2058 mr = address_space_translate(&address_space_memory,
2059 addr, &addr1, &l, true);
2060
2061 if (!(memory_region_is_ram(mr) ||
2062 memory_region_is_romd(mr))) {
2063 /* do nothing */
2064 } else {
2065 addr1 += memory_region_get_ram_addr(mr);
2066 /* ROM/RAM case */
2067 ptr = qemu_get_ram_ptr(addr1);
2068 memcpy(ptr, buf, l);
2069 invalidate_and_set_dirty(addr1, l);
2070 }
2071 len -= l;
2072 buf += l;
2073 addr += l;
2074 }
2075 }
2076
2077 typedef struct {
2078 MemoryRegion *mr;
2079 void *buffer;
2080 hwaddr addr;
2081 hwaddr len;
2082 } BounceBuffer;
2083
2084 static BounceBuffer bounce;
2085
2086 typedef struct MapClient {
2087 void *opaque;
2088 void (*callback)(void *opaque);
2089 QLIST_ENTRY(MapClient) link;
2090 } MapClient;
2091
2092 static QLIST_HEAD(map_client_list, MapClient) map_client_list
2093 = QLIST_HEAD_INITIALIZER(map_client_list);
2094
2095 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
2096 {
2097 MapClient *client = g_malloc(sizeof(*client));
2098
2099 client->opaque = opaque;
2100 client->callback = callback;
2101 QLIST_INSERT_HEAD(&map_client_list, client, link);
2102 return client;
2103 }
2104
2105 static void cpu_unregister_map_client(void *_client)
2106 {
2107 MapClient *client = (MapClient *)_client;
2108
2109 QLIST_REMOVE(client, link);
2110 g_free(client);
2111 }
2112
2113 static void cpu_notify_map_clients(void)
2114 {
2115 MapClient *client;
2116
2117 while (!QLIST_EMPTY(&map_client_list)) {
2118 client = QLIST_FIRST(&map_client_list);
2119 client->callback(client->opaque);
2120 cpu_unregister_map_client(client);
2121 }
2122 }
2123
2124 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
2125 {
2126 MemoryRegion *mr;
2127 hwaddr l, xlat;
2128
2129 while (len > 0) {
2130 l = len;
2131 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2132 if (!memory_access_is_direct(mr, is_write)) {
2133 l = memory_access_size(mr, l, addr);
2134 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
2135 return false;
2136 }
2137 }
2138
2139 len -= l;
2140 addr += l;
2141 }
2142 return true;
2143 }
2144
2145 /* Map a physical memory region into a host virtual address.
2146 * May map a subset of the requested range, given by and returned in *plen.
2147 * May return NULL if resources needed to perform the mapping are exhausted.
2148 * Use only for reads OR writes - not for read-modify-write operations.
2149 * Use cpu_register_map_client() to know when retrying the map operation is
2150 * likely to succeed.
2151 */
2152 void *address_space_map(AddressSpace *as,
2153 hwaddr addr,
2154 hwaddr *plen,
2155 bool is_write)
2156 {
2157 hwaddr len = *plen;
2158 hwaddr done = 0;
2159 hwaddr l, xlat, base;
2160 MemoryRegion *mr, *this_mr;
2161 ram_addr_t raddr;
2162
2163 if (len == 0) {
2164 return NULL;
2165 }
2166
2167 l = len;
2168 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2169 if (!memory_access_is_direct(mr, is_write)) {
2170 if (bounce.buffer) {
2171 return NULL;
2172 }
2173 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
2174 bounce.addr = addr;
2175 bounce.len = l;
2176
2177 memory_region_ref(mr);
2178 bounce.mr = mr;
2179 if (!is_write) {
2180 address_space_read(as, addr, bounce.buffer, l);
2181 }
2182
2183 *plen = l;
2184 return bounce.buffer;
2185 }
2186
2187 base = xlat;
2188 raddr = memory_region_get_ram_addr(mr);
2189
2190 for (;;) {
2191 len -= l;
2192 addr += l;
2193 done += l;
2194 if (len == 0) {
2195 break;
2196 }
2197
2198 l = len;
2199 this_mr = address_space_translate(as, addr, &xlat, &l, is_write);
2200 if (this_mr != mr || xlat != base + done) {
2201 break;
2202 }
2203 }
2204
2205 memory_region_ref(mr);
2206 *plen = done;
2207 return qemu_ram_ptr_length(raddr + base, plen);
2208 }
2209
2210 /* Unmaps a memory region previously mapped by address_space_map().
2211 * Will also mark the memory as dirty if is_write == 1. access_len gives
2212 * the amount of memory that was actually read or written by the caller.
2213 */
2214 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2215 int is_write, hwaddr access_len)
2216 {
2217 if (buffer != bounce.buffer) {
2218 MemoryRegion *mr;
2219 ram_addr_t addr1;
2220
2221 mr = qemu_ram_addr_from_host(buffer, &addr1);
2222 assert(mr != NULL);
2223 if (is_write) {
2224 while (access_len) {
2225 unsigned l;
2226 l = TARGET_PAGE_SIZE;
2227 if (l > access_len)
2228 l = access_len;
2229 invalidate_and_set_dirty(addr1, l);
2230 addr1 += l;
2231 access_len -= l;
2232 }
2233 }
2234 if (xen_enabled()) {
2235 xen_invalidate_map_cache_entry(buffer);
2236 }
2237 memory_region_unref(mr);
2238 return;
2239 }
2240 if (is_write) {
2241 address_space_write(as, bounce.addr, bounce.buffer, access_len);
2242 }
2243 qemu_vfree(bounce.buffer);
2244 bounce.buffer = NULL;
2245 memory_region_unref(bounce.mr);
2246 cpu_notify_map_clients();
2247 }
2248
2249 void *cpu_physical_memory_map(hwaddr addr,
2250 hwaddr *plen,
2251 int is_write)
2252 {
2253 return address_space_map(&address_space_memory, addr, plen, is_write);
2254 }
2255
2256 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
2257 int is_write, hwaddr access_len)
2258 {
2259 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
2260 }
2261
2262 /* warning: addr must be aligned */
2263 static inline uint32_t ldl_phys_internal(hwaddr addr,
2264 enum device_endian endian)
2265 {
2266 uint8_t *ptr;
2267 uint64_t val;
2268 MemoryRegion *mr;
2269 hwaddr l = 4;
2270 hwaddr addr1;
2271
2272 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2273 false);
2274 if (l < 4 || !memory_access_is_direct(mr, false)) {
2275 /* I/O case */
2276 io_mem_read(mr, addr1, &val, 4);
2277 #if defined(TARGET_WORDS_BIGENDIAN)
2278 if (endian == DEVICE_LITTLE_ENDIAN) {
2279 val = bswap32(val);
2280 }
2281 #else
2282 if (endian == DEVICE_BIG_ENDIAN) {
2283 val = bswap32(val);
2284 }
2285 #endif
2286 } else {
2287 /* RAM case */
2288 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2289 & TARGET_PAGE_MASK)
2290 + addr1);
2291 switch (endian) {
2292 case DEVICE_LITTLE_ENDIAN:
2293 val = ldl_le_p(ptr);
2294 break;
2295 case DEVICE_BIG_ENDIAN:
2296 val = ldl_be_p(ptr);
2297 break;
2298 default:
2299 val = ldl_p(ptr);
2300 break;
2301 }
2302 }
2303 return val;
2304 }
2305
2306 uint32_t ldl_phys(hwaddr addr)
2307 {
2308 return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2309 }
2310
2311 uint32_t ldl_le_phys(hwaddr addr)
2312 {
2313 return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2314 }
2315
2316 uint32_t ldl_be_phys(hwaddr addr)
2317 {
2318 return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
2319 }
2320
2321 /* warning: addr must be aligned */
2322 static inline uint64_t ldq_phys_internal(hwaddr addr,
2323 enum device_endian endian)
2324 {
2325 uint8_t *ptr;
2326 uint64_t val;
2327 MemoryRegion *mr;
2328 hwaddr l = 8;
2329 hwaddr addr1;
2330
2331 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2332 false);
2333 if (l < 8 || !memory_access_is_direct(mr, false)) {
2334 /* I/O case */
2335 io_mem_read(mr, addr1, &val, 8);
2336 #if defined(TARGET_WORDS_BIGENDIAN)
2337 if (endian == DEVICE_LITTLE_ENDIAN) {
2338 val = bswap64(val);
2339 }
2340 #else
2341 if (endian == DEVICE_BIG_ENDIAN) {
2342 val = bswap64(val);
2343 }
2344 #endif
2345 } else {
2346 /* RAM case */
2347 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2348 & TARGET_PAGE_MASK)
2349 + addr1);
2350 switch (endian) {
2351 case DEVICE_LITTLE_ENDIAN:
2352 val = ldq_le_p(ptr);
2353 break;
2354 case DEVICE_BIG_ENDIAN:
2355 val = ldq_be_p(ptr);
2356 break;
2357 default:
2358 val = ldq_p(ptr);
2359 break;
2360 }
2361 }
2362 return val;
2363 }
2364
2365 uint64_t ldq_phys(hwaddr addr)
2366 {
2367 return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2368 }
2369
2370 uint64_t ldq_le_phys(hwaddr addr)
2371 {
2372 return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2373 }
2374
2375 uint64_t ldq_be_phys(hwaddr addr)
2376 {
2377 return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
2378 }
2379
2380 /* XXX: optimize */
2381 uint32_t ldub_phys(hwaddr addr)
2382 {
2383 uint8_t val;
2384 cpu_physical_memory_read(addr, &val, 1);
2385 return val;
2386 }
2387
2388 /* warning: addr must be aligned */
2389 static inline uint32_t lduw_phys_internal(hwaddr addr,
2390 enum device_endian endian)
2391 {
2392 uint8_t *ptr;
2393 uint64_t val;
2394 MemoryRegion *mr;
2395 hwaddr l = 2;
2396 hwaddr addr1;
2397
2398 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2399 false);
2400 if (l < 2 || !memory_access_is_direct(mr, false)) {
2401 /* I/O case */
2402 io_mem_read(mr, addr1, &val, 2);
2403 #if defined(TARGET_WORDS_BIGENDIAN)
2404 if (endian == DEVICE_LITTLE_ENDIAN) {
2405 val = bswap16(val);
2406 }
2407 #else
2408 if (endian == DEVICE_BIG_ENDIAN) {
2409 val = bswap16(val);
2410 }
2411 #endif
2412 } else {
2413 /* RAM case */
2414 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2415 & TARGET_PAGE_MASK)
2416 + addr1);
2417 switch (endian) {
2418 case DEVICE_LITTLE_ENDIAN:
2419 val = lduw_le_p(ptr);
2420 break;
2421 case DEVICE_BIG_ENDIAN:
2422 val = lduw_be_p(ptr);
2423 break;
2424 default:
2425 val = lduw_p(ptr);
2426 break;
2427 }
2428 }
2429 return val;
2430 }
2431
2432 uint32_t lduw_phys(hwaddr addr)
2433 {
2434 return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2435 }
2436
2437 uint32_t lduw_le_phys(hwaddr addr)
2438 {
2439 return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2440 }
2441
2442 uint32_t lduw_be_phys(hwaddr addr)
2443 {
2444 return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
2445 }
2446
2447 /* warning: addr must be aligned. The ram page is not masked as dirty
2448 and the code inside is not invalidated. It is useful if the dirty
2449 bits are used to track modified PTEs */
2450 void stl_phys_notdirty(hwaddr addr, uint32_t val)
2451 {
2452 uint8_t *ptr;
2453 MemoryRegion *mr;
2454 hwaddr l = 4;
2455 hwaddr addr1;
2456
2457 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2458 true);
2459 if (l < 4 || !memory_access_is_direct(mr, true)) {
2460 io_mem_write(mr, addr1, val, 4);
2461 } else {
2462 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2463 ptr = qemu_get_ram_ptr(addr1);
2464 stl_p(ptr, val);
2465
2466 if (unlikely(in_migration)) {
2467 if (!cpu_physical_memory_is_dirty(addr1)) {
2468 /* invalidate code */
2469 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
2470 /* set dirty bit */
2471 cpu_physical_memory_set_dirty_flags(
2472 addr1, (0xff & ~CODE_DIRTY_FLAG));
2473 }
2474 }
2475 }
2476 }
2477
2478 /* warning: addr must be aligned */
2479 static inline void stl_phys_internal(hwaddr addr, uint32_t val,
2480 enum device_endian endian)
2481 {
2482 uint8_t *ptr;
2483 MemoryRegion *mr;
2484 hwaddr l = 4;
2485 hwaddr addr1;
2486
2487 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2488 true);
2489 if (l < 4 || !memory_access_is_direct(mr, true)) {
2490 #if defined(TARGET_WORDS_BIGENDIAN)
2491 if (endian == DEVICE_LITTLE_ENDIAN) {
2492 val = bswap32(val);
2493 }
2494 #else
2495 if (endian == DEVICE_BIG_ENDIAN) {
2496 val = bswap32(val);
2497 }
2498 #endif
2499 io_mem_write(mr, addr1, val, 4);
2500 } else {
2501 /* RAM case */
2502 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2503 ptr = qemu_get_ram_ptr(addr1);
2504 switch (endian) {
2505 case DEVICE_LITTLE_ENDIAN:
2506 stl_le_p(ptr, val);
2507 break;
2508 case DEVICE_BIG_ENDIAN:
2509 stl_be_p(ptr, val);
2510 break;
2511 default:
2512 stl_p(ptr, val);
2513 break;
2514 }
2515 invalidate_and_set_dirty(addr1, 4);
2516 }
2517 }
2518
2519 void stl_phys(hwaddr addr, uint32_t val)
2520 {
2521 stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2522 }
2523
2524 void stl_le_phys(hwaddr addr, uint32_t val)
2525 {
2526 stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2527 }
2528
2529 void stl_be_phys(hwaddr addr, uint32_t val)
2530 {
2531 stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2532 }
2533
2534 /* XXX: optimize */
2535 void stb_phys(hwaddr addr, uint32_t val)
2536 {
2537 uint8_t v = val;
2538 cpu_physical_memory_write(addr, &v, 1);
2539 }
2540
2541 /* warning: addr must be aligned */
2542 static inline void stw_phys_internal(hwaddr addr, uint32_t val,
2543 enum device_endian endian)
2544 {
2545 uint8_t *ptr;
2546 MemoryRegion *mr;
2547 hwaddr l = 2;
2548 hwaddr addr1;
2549
2550 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2551 true);
2552 if (l < 2 || !memory_access_is_direct(mr, true)) {
2553 #if defined(TARGET_WORDS_BIGENDIAN)
2554 if (endian == DEVICE_LITTLE_ENDIAN) {
2555 val = bswap16(val);
2556 }
2557 #else
2558 if (endian == DEVICE_BIG_ENDIAN) {
2559 val = bswap16(val);
2560 }
2561 #endif
2562 io_mem_write(mr, addr1, val, 2);
2563 } else {
2564 /* RAM case */
2565 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2566 ptr = qemu_get_ram_ptr(addr1);
2567 switch (endian) {
2568 case DEVICE_LITTLE_ENDIAN:
2569 stw_le_p(ptr, val);
2570 break;
2571 case DEVICE_BIG_ENDIAN:
2572 stw_be_p(ptr, val);
2573 break;
2574 default:
2575 stw_p(ptr, val);
2576 break;
2577 }
2578 invalidate_and_set_dirty(addr1, 2);
2579 }
2580 }
2581
2582 void stw_phys(hwaddr addr, uint32_t val)
2583 {
2584 stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2585 }
2586
2587 void stw_le_phys(hwaddr addr, uint32_t val)
2588 {
2589 stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2590 }
2591
2592 void stw_be_phys(hwaddr addr, uint32_t val)
2593 {
2594 stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2595 }
2596
2597 /* XXX: optimize */
2598 void stq_phys(hwaddr addr, uint64_t val)
2599 {
2600 val = tswap64(val);
2601 cpu_physical_memory_write(addr, &val, 8);
2602 }
2603
2604 void stq_le_phys(hwaddr addr, uint64_t val)
2605 {
2606 val = cpu_to_le64(val);
2607 cpu_physical_memory_write(addr, &val, 8);
2608 }
2609
2610 void stq_be_phys(hwaddr addr, uint64_t val)
2611 {
2612 val = cpu_to_be64(val);
2613 cpu_physical_memory_write(addr, &val, 8);
2614 }
2615
2616 /* virtual memory access for debug (includes writing to ROM) */
2617 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
2618 uint8_t *buf, int len, int is_write)
2619 {
2620 int l;
2621 hwaddr phys_addr;
2622 target_ulong page;
2623
2624 while (len > 0) {
2625 page = addr & TARGET_PAGE_MASK;
2626 phys_addr = cpu_get_phys_page_debug(cpu, page);
2627 /* if no physical page mapped, return an error */
2628 if (phys_addr == -1)
2629 return -1;
2630 l = (page + TARGET_PAGE_SIZE) - addr;
2631 if (l > len)
2632 l = len;
2633 phys_addr += (addr & ~TARGET_PAGE_MASK);
2634 if (is_write)
2635 cpu_physical_memory_write_rom(phys_addr, buf, l);
2636 else
2637 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
2638 len -= l;
2639 buf += l;
2640 addr += l;
2641 }
2642 return 0;
2643 }
2644 #endif
2645
2646 #if !defined(CONFIG_USER_ONLY)
2647
2648 /*
2649 * A helper function for the _utterly broken_ virtio device model to find out if
2650 * it's running on a big endian machine. Don't do this at home kids!
2651 */
2652 bool virtio_is_big_endian(void);
2653 bool virtio_is_big_endian(void)
2654 {
2655 #if defined(TARGET_WORDS_BIGENDIAN)
2656 return true;
2657 #else
2658 return false;
2659 #endif
2660 }
2661
2662 #endif
2663
2664 #ifndef CONFIG_USER_ONLY
2665 bool cpu_physical_memory_is_io(hwaddr phys_addr)
2666 {
2667 MemoryRegion*mr;
2668 hwaddr l = 1;
2669
2670 mr = address_space_translate(&address_space_memory,
2671 phys_addr, &phys_addr, &l, false);
2672
2673 return !(memory_region_is_ram(mr) ||
2674 memory_region_is_romd(mr));
2675 }
2676
2677 void qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
2678 {
2679 RAMBlock *block;
2680
2681 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
2682 func(block->host, block->offset, block->length, opaque);
2683 }
2684 }
2685 #endif