]> git.proxmox.com Git - mirror_qemu.git/blob - exec.c
s390x/pci: let pci devices start in configured mode
[mirror_qemu.git] / exec.c
1 /*
2 * Virtual page mapping
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "qemu/osdep.h"
20 #include "qapi/error.h"
21 #ifndef _WIN32
22 #endif
23
24 #include "qemu/cutils.h"
25 #include "cpu.h"
26 #include "exec/exec-all.h"
27 #include "exec/target_page.h"
28 #include "tcg.h"
29 #include "hw/qdev-core.h"
30 #include "hw/qdev-properties.h"
31 #if !defined(CONFIG_USER_ONLY)
32 #include "hw/boards.h"
33 #include "hw/xen/xen.h"
34 #endif
35 #include "sysemu/kvm.h"
36 #include "sysemu/sysemu.h"
37 #include "qemu/timer.h"
38 #include "qemu/config-file.h"
39 #include "qemu/error-report.h"
40 #if defined(CONFIG_USER_ONLY)
41 #include "qemu.h"
42 #else /* !CONFIG_USER_ONLY */
43 #include "hw/hw.h"
44 #include "exec/memory.h"
45 #include "exec/ioport.h"
46 #include "sysemu/dma.h"
47 #include "sysemu/numa.h"
48 #include "sysemu/hw_accel.h"
49 #include "exec/address-spaces.h"
50 #include "sysemu/xen-mapcache.h"
51 #include "trace-root.h"
52
53 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
54 #include <fcntl.h>
55 #include <linux/falloc.h>
56 #endif
57
58 #endif
59 #include "qemu/rcu_queue.h"
60 #include "qemu/main-loop.h"
61 #include "translate-all.h"
62 #include "sysemu/replay.h"
63
64 #include "exec/memory-internal.h"
65 #include "exec/ram_addr.h"
66 #include "exec/log.h"
67
68 #include "migration/vmstate.h"
69
70 #include "qemu/range.h"
71 #ifndef _WIN32
72 #include "qemu/mmap-alloc.h"
73 #endif
74
75 #include "monitor/monitor.h"
76
77 //#define DEBUG_SUBPAGE
78
79 #if !defined(CONFIG_USER_ONLY)
80 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
81 * are protected by the ramlist lock.
82 */
83 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
84
85 static MemoryRegion *system_memory;
86 static MemoryRegion *system_io;
87
88 AddressSpace address_space_io;
89 AddressSpace address_space_memory;
90
91 MemoryRegion io_mem_rom, io_mem_notdirty;
92 static MemoryRegion io_mem_unassigned;
93
94 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
95 #define RAM_PREALLOC (1 << 0)
96
97 /* RAM is mmap-ed with MAP_SHARED */
98 #define RAM_SHARED (1 << 1)
99
100 /* Only a portion of RAM (used_length) is actually used, and migrated.
101 * This used_length size can change across reboots.
102 */
103 #define RAM_RESIZEABLE (1 << 2)
104
105 #endif
106
107 #ifdef TARGET_PAGE_BITS_VARY
108 int target_page_bits;
109 bool target_page_bits_decided;
110 #endif
111
112 struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
113 /* current CPU in the current thread. It is only valid inside
114 cpu_exec() */
115 __thread CPUState *current_cpu;
116 /* 0 = Do not count executed instructions.
117 1 = Precise instruction counting.
118 2 = Adaptive rate instruction counting. */
119 int use_icount;
120
121 uintptr_t qemu_host_page_size;
122 intptr_t qemu_host_page_mask;
123
124 bool set_preferred_target_page_bits(int bits)
125 {
126 /* The target page size is the lowest common denominator for all
127 * the CPUs in the system, so we can only make it smaller, never
128 * larger. And we can't make it smaller once we've committed to
129 * a particular size.
130 */
131 #ifdef TARGET_PAGE_BITS_VARY
132 assert(bits >= TARGET_PAGE_BITS_MIN);
133 if (target_page_bits == 0 || target_page_bits > bits) {
134 if (target_page_bits_decided) {
135 return false;
136 }
137 target_page_bits = bits;
138 }
139 #endif
140 return true;
141 }
142
143 #if !defined(CONFIG_USER_ONLY)
144
145 static void finalize_target_page_bits(void)
146 {
147 #ifdef TARGET_PAGE_BITS_VARY
148 if (target_page_bits == 0) {
149 target_page_bits = TARGET_PAGE_BITS_MIN;
150 }
151 target_page_bits_decided = true;
152 #endif
153 }
154
155 typedef struct PhysPageEntry PhysPageEntry;
156
157 struct PhysPageEntry {
158 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
159 uint32_t skip : 6;
160 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
161 uint32_t ptr : 26;
162 };
163
164 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
165
166 /* Size of the L2 (and L3, etc) page tables. */
167 #define ADDR_SPACE_BITS 64
168
169 #define P_L2_BITS 9
170 #define P_L2_SIZE (1 << P_L2_BITS)
171
172 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
173
174 typedef PhysPageEntry Node[P_L2_SIZE];
175
176 typedef struct PhysPageMap {
177 struct rcu_head rcu;
178
179 unsigned sections_nb;
180 unsigned sections_nb_alloc;
181 unsigned nodes_nb;
182 unsigned nodes_nb_alloc;
183 Node *nodes;
184 MemoryRegionSection *sections;
185 } PhysPageMap;
186
187 struct AddressSpaceDispatch {
188 MemoryRegionSection *mru_section;
189 /* This is a multi-level map on the physical address space.
190 * The bottom level has pointers to MemoryRegionSections.
191 */
192 PhysPageEntry phys_map;
193 PhysPageMap map;
194 };
195
196 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
197 typedef struct subpage_t {
198 MemoryRegion iomem;
199 FlatView *fv;
200 hwaddr base;
201 uint16_t sub_section[];
202 } subpage_t;
203
204 #define PHYS_SECTION_UNASSIGNED 0
205 #define PHYS_SECTION_NOTDIRTY 1
206 #define PHYS_SECTION_ROM 2
207 #define PHYS_SECTION_WATCH 3
208
209 static void io_mem_init(void);
210 static void memory_map_init(void);
211 static void tcg_commit(MemoryListener *listener);
212
213 static MemoryRegion io_mem_watch;
214
215 /**
216 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
217 * @cpu: the CPU whose AddressSpace this is
218 * @as: the AddressSpace itself
219 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
220 * @tcg_as_listener: listener for tracking changes to the AddressSpace
221 */
222 struct CPUAddressSpace {
223 CPUState *cpu;
224 AddressSpace *as;
225 struct AddressSpaceDispatch *memory_dispatch;
226 MemoryListener tcg_as_listener;
227 };
228
229 struct DirtyBitmapSnapshot {
230 ram_addr_t start;
231 ram_addr_t end;
232 unsigned long dirty[];
233 };
234
235 #endif
236
237 #if !defined(CONFIG_USER_ONLY)
238
239 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
240 {
241 static unsigned alloc_hint = 16;
242 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
243 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
244 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
245 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
246 alloc_hint = map->nodes_nb_alloc;
247 }
248 }
249
250 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
251 {
252 unsigned i;
253 uint32_t ret;
254 PhysPageEntry e;
255 PhysPageEntry *p;
256
257 ret = map->nodes_nb++;
258 p = map->nodes[ret];
259 assert(ret != PHYS_MAP_NODE_NIL);
260 assert(ret != map->nodes_nb_alloc);
261
262 e.skip = leaf ? 0 : 1;
263 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
264 for (i = 0; i < P_L2_SIZE; ++i) {
265 memcpy(&p[i], &e, sizeof(e));
266 }
267 return ret;
268 }
269
270 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
271 hwaddr *index, hwaddr *nb, uint16_t leaf,
272 int level)
273 {
274 PhysPageEntry *p;
275 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
276
277 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
278 lp->ptr = phys_map_node_alloc(map, level == 0);
279 }
280 p = map->nodes[lp->ptr];
281 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
282
283 while (*nb && lp < &p[P_L2_SIZE]) {
284 if ((*index & (step - 1)) == 0 && *nb >= step) {
285 lp->skip = 0;
286 lp->ptr = leaf;
287 *index += step;
288 *nb -= step;
289 } else {
290 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
291 }
292 ++lp;
293 }
294 }
295
296 static void phys_page_set(AddressSpaceDispatch *d,
297 hwaddr index, hwaddr nb,
298 uint16_t leaf)
299 {
300 /* Wildly overreserve - it doesn't matter much. */
301 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
302
303 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
304 }
305
306 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
307 * and update our entry so we can skip it and go directly to the destination.
308 */
309 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
310 {
311 unsigned valid_ptr = P_L2_SIZE;
312 int valid = 0;
313 PhysPageEntry *p;
314 int i;
315
316 if (lp->ptr == PHYS_MAP_NODE_NIL) {
317 return;
318 }
319
320 p = nodes[lp->ptr];
321 for (i = 0; i < P_L2_SIZE; i++) {
322 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
323 continue;
324 }
325
326 valid_ptr = i;
327 valid++;
328 if (p[i].skip) {
329 phys_page_compact(&p[i], nodes);
330 }
331 }
332
333 /* We can only compress if there's only one child. */
334 if (valid != 1) {
335 return;
336 }
337
338 assert(valid_ptr < P_L2_SIZE);
339
340 /* Don't compress if it won't fit in the # of bits we have. */
341 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
342 return;
343 }
344
345 lp->ptr = p[valid_ptr].ptr;
346 if (!p[valid_ptr].skip) {
347 /* If our only child is a leaf, make this a leaf. */
348 /* By design, we should have made this node a leaf to begin with so we
349 * should never reach here.
350 * But since it's so simple to handle this, let's do it just in case we
351 * change this rule.
352 */
353 lp->skip = 0;
354 } else {
355 lp->skip += p[valid_ptr].skip;
356 }
357 }
358
359 void address_space_dispatch_compact(AddressSpaceDispatch *d)
360 {
361 if (d->phys_map.skip) {
362 phys_page_compact(&d->phys_map, d->map.nodes);
363 }
364 }
365
366 static inline bool section_covers_addr(const MemoryRegionSection *section,
367 hwaddr addr)
368 {
369 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
370 * the section must cover the entire address space.
371 */
372 return int128_gethi(section->size) ||
373 range_covers_byte(section->offset_within_address_space,
374 int128_getlo(section->size), addr);
375 }
376
377 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
378 {
379 PhysPageEntry lp = d->phys_map, *p;
380 Node *nodes = d->map.nodes;
381 MemoryRegionSection *sections = d->map.sections;
382 hwaddr index = addr >> TARGET_PAGE_BITS;
383 int i;
384
385 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
386 if (lp.ptr == PHYS_MAP_NODE_NIL) {
387 return &sections[PHYS_SECTION_UNASSIGNED];
388 }
389 p = nodes[lp.ptr];
390 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
391 }
392
393 if (section_covers_addr(&sections[lp.ptr], addr)) {
394 return &sections[lp.ptr];
395 } else {
396 return &sections[PHYS_SECTION_UNASSIGNED];
397 }
398 }
399
400 bool memory_region_is_unassigned(MemoryRegion *mr)
401 {
402 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
403 && mr != &io_mem_watch;
404 }
405
406 /* Called from RCU critical section */
407 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
408 hwaddr addr,
409 bool resolve_subpage)
410 {
411 MemoryRegionSection *section = atomic_read(&d->mru_section);
412 subpage_t *subpage;
413 bool update;
414
415 if (section && section != &d->map.sections[PHYS_SECTION_UNASSIGNED] &&
416 section_covers_addr(section, addr)) {
417 update = false;
418 } else {
419 section = phys_page_find(d, addr);
420 update = true;
421 }
422 if (resolve_subpage && section->mr->subpage) {
423 subpage = container_of(section->mr, subpage_t, iomem);
424 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
425 }
426 if (update) {
427 atomic_set(&d->mru_section, section);
428 }
429 return section;
430 }
431
432 /* Called from RCU critical section */
433 static MemoryRegionSection *
434 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
435 hwaddr *plen, bool resolve_subpage)
436 {
437 MemoryRegionSection *section;
438 MemoryRegion *mr;
439 Int128 diff;
440
441 section = address_space_lookup_region(d, addr, resolve_subpage);
442 /* Compute offset within MemoryRegionSection */
443 addr -= section->offset_within_address_space;
444
445 /* Compute offset within MemoryRegion */
446 *xlat = addr + section->offset_within_region;
447
448 mr = section->mr;
449
450 /* MMIO registers can be expected to perform full-width accesses based only
451 * on their address, without considering adjacent registers that could
452 * decode to completely different MemoryRegions. When such registers
453 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
454 * regions overlap wildly. For this reason we cannot clamp the accesses
455 * here.
456 *
457 * If the length is small (as is the case for address_space_ldl/stl),
458 * everything works fine. If the incoming length is large, however,
459 * the caller really has to do the clamping through memory_access_size.
460 */
461 if (memory_region_is_ram(mr)) {
462 diff = int128_sub(section->size, int128_make64(addr));
463 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
464 }
465 return section;
466 }
467
468 /**
469 * flatview_do_translate - translate an address in FlatView
470 *
471 * @fv: the flat view that we want to translate on
472 * @addr: the address to be translated in above address space
473 * @xlat: the translated address offset within memory region. It
474 * cannot be @NULL.
475 * @plen_out: valid read/write length of the translated address. It
476 * can be @NULL when we don't care about it.
477 * @page_mask_out: page mask for the translated address. This
478 * should only be meaningful for IOMMU translated
479 * addresses, since there may be huge pages that this bit
480 * would tell. It can be @NULL if we don't care about it.
481 * @is_write: whether the translation operation is for write
482 * @is_mmio: whether this can be MMIO, set true if it can
483 *
484 * This function is called from RCU critical section
485 */
486 static MemoryRegionSection flatview_do_translate(FlatView *fv,
487 hwaddr addr,
488 hwaddr *xlat,
489 hwaddr *plen_out,
490 hwaddr *page_mask_out,
491 bool is_write,
492 bool is_mmio,
493 AddressSpace **target_as)
494 {
495 IOMMUTLBEntry iotlb;
496 MemoryRegionSection *section;
497 IOMMUMemoryRegion *iommu_mr;
498 IOMMUMemoryRegionClass *imrc;
499 hwaddr page_mask = (hwaddr)(-1);
500 hwaddr plen = (hwaddr)(-1);
501
502 if (plen_out) {
503 plen = *plen_out;
504 }
505
506 for (;;) {
507 section = address_space_translate_internal(
508 flatview_to_dispatch(fv), addr, &addr,
509 &plen, is_mmio);
510
511 iommu_mr = memory_region_get_iommu(section->mr);
512 if (!iommu_mr) {
513 break;
514 }
515 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
516
517 iotlb = imrc->translate(iommu_mr, addr, is_write ?
518 IOMMU_WO : IOMMU_RO);
519 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
520 | (addr & iotlb.addr_mask));
521 page_mask &= iotlb.addr_mask;
522 plen = MIN(plen, (addr | iotlb.addr_mask) - addr + 1);
523 if (!(iotlb.perm & (1 << is_write))) {
524 goto translate_fail;
525 }
526
527 fv = address_space_to_flatview(iotlb.target_as);
528 *target_as = iotlb.target_as;
529 }
530
531 *xlat = addr;
532
533 if (page_mask == (hwaddr)(-1)) {
534 /* Not behind an IOMMU, use default page size. */
535 page_mask = ~TARGET_PAGE_MASK;
536 }
537
538 if (page_mask_out) {
539 *page_mask_out = page_mask;
540 }
541
542 if (plen_out) {
543 *plen_out = plen;
544 }
545
546 return *section;
547
548 translate_fail:
549 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
550 }
551
552 /* Called from RCU critical section */
553 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
554 bool is_write)
555 {
556 MemoryRegionSection section;
557 hwaddr xlat, page_mask;
558
559 /*
560 * This can never be MMIO, and we don't really care about plen,
561 * but page mask.
562 */
563 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
564 NULL, &page_mask, is_write, false, &as);
565
566 /* Illegal translation */
567 if (section.mr == &io_mem_unassigned) {
568 goto iotlb_fail;
569 }
570
571 /* Convert memory region offset into address space offset */
572 xlat += section.offset_within_address_space -
573 section.offset_within_region;
574
575 return (IOMMUTLBEntry) {
576 .target_as = as,
577 .iova = addr & ~page_mask,
578 .translated_addr = xlat & ~page_mask,
579 .addr_mask = page_mask,
580 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
581 .perm = IOMMU_RW,
582 };
583
584 iotlb_fail:
585 return (IOMMUTLBEntry) {0};
586 }
587
588 /* Called from RCU critical section */
589 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
590 hwaddr *plen, bool is_write)
591 {
592 MemoryRegion *mr;
593 MemoryRegionSection section;
594 AddressSpace *as = NULL;
595
596 /* This can be MMIO, so setup MMIO bit. */
597 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
598 is_write, true, &as);
599 mr = section.mr;
600
601 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
602 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
603 *plen = MIN(page, *plen);
604 }
605
606 return mr;
607 }
608
609 /* Called from RCU critical section */
610 MemoryRegionSection *
611 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
612 hwaddr *xlat, hwaddr *plen)
613 {
614 MemoryRegionSection *section;
615 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
616
617 section = address_space_translate_internal(d, addr, xlat, plen, false);
618
619 assert(!memory_region_is_iommu(section->mr));
620 return section;
621 }
622 #endif
623
624 #if !defined(CONFIG_USER_ONLY)
625
626 static int cpu_common_post_load(void *opaque, int version_id)
627 {
628 CPUState *cpu = opaque;
629
630 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
631 version_id is increased. */
632 cpu->interrupt_request &= ~0x01;
633 tlb_flush(cpu);
634
635 return 0;
636 }
637
638 static int cpu_common_pre_load(void *opaque)
639 {
640 CPUState *cpu = opaque;
641
642 cpu->exception_index = -1;
643
644 return 0;
645 }
646
647 static bool cpu_common_exception_index_needed(void *opaque)
648 {
649 CPUState *cpu = opaque;
650
651 return tcg_enabled() && cpu->exception_index != -1;
652 }
653
654 static const VMStateDescription vmstate_cpu_common_exception_index = {
655 .name = "cpu_common/exception_index",
656 .version_id = 1,
657 .minimum_version_id = 1,
658 .needed = cpu_common_exception_index_needed,
659 .fields = (VMStateField[]) {
660 VMSTATE_INT32(exception_index, CPUState),
661 VMSTATE_END_OF_LIST()
662 }
663 };
664
665 static bool cpu_common_crash_occurred_needed(void *opaque)
666 {
667 CPUState *cpu = opaque;
668
669 return cpu->crash_occurred;
670 }
671
672 static const VMStateDescription vmstate_cpu_common_crash_occurred = {
673 .name = "cpu_common/crash_occurred",
674 .version_id = 1,
675 .minimum_version_id = 1,
676 .needed = cpu_common_crash_occurred_needed,
677 .fields = (VMStateField[]) {
678 VMSTATE_BOOL(crash_occurred, CPUState),
679 VMSTATE_END_OF_LIST()
680 }
681 };
682
683 const VMStateDescription vmstate_cpu_common = {
684 .name = "cpu_common",
685 .version_id = 1,
686 .minimum_version_id = 1,
687 .pre_load = cpu_common_pre_load,
688 .post_load = cpu_common_post_load,
689 .fields = (VMStateField[]) {
690 VMSTATE_UINT32(halted, CPUState),
691 VMSTATE_UINT32(interrupt_request, CPUState),
692 VMSTATE_END_OF_LIST()
693 },
694 .subsections = (const VMStateDescription*[]) {
695 &vmstate_cpu_common_exception_index,
696 &vmstate_cpu_common_crash_occurred,
697 NULL
698 }
699 };
700
701 #endif
702
703 CPUState *qemu_get_cpu(int index)
704 {
705 CPUState *cpu;
706
707 CPU_FOREACH(cpu) {
708 if (cpu->cpu_index == index) {
709 return cpu;
710 }
711 }
712
713 return NULL;
714 }
715
716 #if !defined(CONFIG_USER_ONLY)
717 void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx)
718 {
719 CPUAddressSpace *newas;
720
721 /* Target code should have set num_ases before calling us */
722 assert(asidx < cpu->num_ases);
723
724 if (asidx == 0) {
725 /* address space 0 gets the convenience alias */
726 cpu->as = as;
727 }
728
729 /* KVM cannot currently support multiple address spaces. */
730 assert(asidx == 0 || !kvm_enabled());
731
732 if (!cpu->cpu_ases) {
733 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
734 }
735
736 newas = &cpu->cpu_ases[asidx];
737 newas->cpu = cpu;
738 newas->as = as;
739 if (tcg_enabled()) {
740 newas->tcg_as_listener.commit = tcg_commit;
741 memory_listener_register(&newas->tcg_as_listener, as);
742 }
743 }
744
745 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
746 {
747 /* Return the AddressSpace corresponding to the specified index */
748 return cpu->cpu_ases[asidx].as;
749 }
750 #endif
751
752 void cpu_exec_unrealizefn(CPUState *cpu)
753 {
754 CPUClass *cc = CPU_GET_CLASS(cpu);
755
756 cpu_list_remove(cpu);
757
758 if (cc->vmsd != NULL) {
759 vmstate_unregister(NULL, cc->vmsd, cpu);
760 }
761 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
762 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
763 }
764 }
765
766 Property cpu_common_props[] = {
767 #ifndef CONFIG_USER_ONLY
768 /* Create a memory property for softmmu CPU object,
769 * so users can wire up its memory. (This can't go in qom/cpu.c
770 * because that file is compiled only once for both user-mode
771 * and system builds.) The default if no link is set up is to use
772 * the system address space.
773 */
774 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
775 MemoryRegion *),
776 #endif
777 DEFINE_PROP_END_OF_LIST(),
778 };
779
780 void cpu_exec_initfn(CPUState *cpu)
781 {
782 cpu->as = NULL;
783 cpu->num_ases = 0;
784
785 #ifndef CONFIG_USER_ONLY
786 cpu->thread_id = qemu_get_thread_id();
787 cpu->memory = system_memory;
788 object_ref(OBJECT(cpu->memory));
789 #endif
790 }
791
792 void cpu_exec_realizefn(CPUState *cpu, Error **errp)
793 {
794 CPUClass *cc = CPU_GET_CLASS(cpu);
795
796 cpu_list_add(cpu);
797
798 if (tcg_enabled() && !cc->tcg_initialized) {
799 cc->tcg_initialized = true;
800 cc->tcg_initialize();
801 }
802
803 #ifndef CONFIG_USER_ONLY
804 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
805 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
806 }
807 if (cc->vmsd != NULL) {
808 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
809 }
810 #endif
811 }
812
813 #if defined(CONFIG_USER_ONLY)
814 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
815 {
816 mmap_lock();
817 tb_lock();
818 tb_invalidate_phys_page_range(pc, pc + 1, 0);
819 tb_unlock();
820 mmap_unlock();
821 }
822 #else
823 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
824 {
825 MemTxAttrs attrs;
826 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
827 int asidx = cpu_asidx_from_attrs(cpu, attrs);
828 if (phys != -1) {
829 /* Locks grabbed by tb_invalidate_phys_addr */
830 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
831 phys | (pc & ~TARGET_PAGE_MASK));
832 }
833 }
834 #endif
835
836 #if defined(CONFIG_USER_ONLY)
837 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
838
839 {
840 }
841
842 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
843 int flags)
844 {
845 return -ENOSYS;
846 }
847
848 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
849 {
850 }
851
852 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
853 int flags, CPUWatchpoint **watchpoint)
854 {
855 return -ENOSYS;
856 }
857 #else
858 /* Add a watchpoint. */
859 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
860 int flags, CPUWatchpoint **watchpoint)
861 {
862 CPUWatchpoint *wp;
863
864 /* forbid ranges which are empty or run off the end of the address space */
865 if (len == 0 || (addr + len - 1) < addr) {
866 error_report("tried to set invalid watchpoint at %"
867 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
868 return -EINVAL;
869 }
870 wp = g_malloc(sizeof(*wp));
871
872 wp->vaddr = addr;
873 wp->len = len;
874 wp->flags = flags;
875
876 /* keep all GDB-injected watchpoints in front */
877 if (flags & BP_GDB) {
878 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
879 } else {
880 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
881 }
882
883 tlb_flush_page(cpu, addr);
884
885 if (watchpoint)
886 *watchpoint = wp;
887 return 0;
888 }
889
890 /* Remove a specific watchpoint. */
891 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
892 int flags)
893 {
894 CPUWatchpoint *wp;
895
896 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
897 if (addr == wp->vaddr && len == wp->len
898 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
899 cpu_watchpoint_remove_by_ref(cpu, wp);
900 return 0;
901 }
902 }
903 return -ENOENT;
904 }
905
906 /* Remove a specific watchpoint by reference. */
907 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
908 {
909 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
910
911 tlb_flush_page(cpu, watchpoint->vaddr);
912
913 g_free(watchpoint);
914 }
915
916 /* Remove all matching watchpoints. */
917 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
918 {
919 CPUWatchpoint *wp, *next;
920
921 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
922 if (wp->flags & mask) {
923 cpu_watchpoint_remove_by_ref(cpu, wp);
924 }
925 }
926 }
927
928 /* Return true if this watchpoint address matches the specified
929 * access (ie the address range covered by the watchpoint overlaps
930 * partially or completely with the address range covered by the
931 * access).
932 */
933 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
934 vaddr addr,
935 vaddr len)
936 {
937 /* We know the lengths are non-zero, but a little caution is
938 * required to avoid errors in the case where the range ends
939 * exactly at the top of the address space and so addr + len
940 * wraps round to zero.
941 */
942 vaddr wpend = wp->vaddr + wp->len - 1;
943 vaddr addrend = addr + len - 1;
944
945 return !(addr > wpend || wp->vaddr > addrend);
946 }
947
948 #endif
949
950 /* Add a breakpoint. */
951 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
952 CPUBreakpoint **breakpoint)
953 {
954 CPUBreakpoint *bp;
955
956 bp = g_malloc(sizeof(*bp));
957
958 bp->pc = pc;
959 bp->flags = flags;
960
961 /* keep all GDB-injected breakpoints in front */
962 if (flags & BP_GDB) {
963 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
964 } else {
965 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
966 }
967
968 breakpoint_invalidate(cpu, pc);
969
970 if (breakpoint) {
971 *breakpoint = bp;
972 }
973 return 0;
974 }
975
976 /* Remove a specific breakpoint. */
977 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
978 {
979 CPUBreakpoint *bp;
980
981 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
982 if (bp->pc == pc && bp->flags == flags) {
983 cpu_breakpoint_remove_by_ref(cpu, bp);
984 return 0;
985 }
986 }
987 return -ENOENT;
988 }
989
990 /* Remove a specific breakpoint by reference. */
991 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
992 {
993 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
994
995 breakpoint_invalidate(cpu, breakpoint->pc);
996
997 g_free(breakpoint);
998 }
999
1000 /* Remove all matching breakpoints. */
1001 void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
1002 {
1003 CPUBreakpoint *bp, *next;
1004
1005 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
1006 if (bp->flags & mask) {
1007 cpu_breakpoint_remove_by_ref(cpu, bp);
1008 }
1009 }
1010 }
1011
1012 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1013 CPU loop after each instruction */
1014 void cpu_single_step(CPUState *cpu, int enabled)
1015 {
1016 if (cpu->singlestep_enabled != enabled) {
1017 cpu->singlestep_enabled = enabled;
1018 if (kvm_enabled()) {
1019 kvm_update_guest_debug(cpu, 0);
1020 } else {
1021 /* must flush all the translated code to avoid inconsistencies */
1022 /* XXX: only flush what is necessary */
1023 tb_flush(cpu);
1024 }
1025 }
1026 }
1027
1028 void cpu_abort(CPUState *cpu, const char *fmt, ...)
1029 {
1030 va_list ap;
1031 va_list ap2;
1032
1033 va_start(ap, fmt);
1034 va_copy(ap2, ap);
1035 fprintf(stderr, "qemu: fatal: ");
1036 vfprintf(stderr, fmt, ap);
1037 fprintf(stderr, "\n");
1038 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1039 if (qemu_log_separate()) {
1040 qemu_log_lock();
1041 qemu_log("qemu: fatal: ");
1042 qemu_log_vprintf(fmt, ap2);
1043 qemu_log("\n");
1044 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1045 qemu_log_flush();
1046 qemu_log_unlock();
1047 qemu_log_close();
1048 }
1049 va_end(ap2);
1050 va_end(ap);
1051 replay_finish();
1052 #if defined(CONFIG_USER_ONLY)
1053 {
1054 struct sigaction act;
1055 sigfillset(&act.sa_mask);
1056 act.sa_handler = SIG_DFL;
1057 sigaction(SIGABRT, &act, NULL);
1058 }
1059 #endif
1060 abort();
1061 }
1062
1063 #if !defined(CONFIG_USER_ONLY)
1064 /* Called from RCU critical section */
1065 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1066 {
1067 RAMBlock *block;
1068
1069 block = atomic_rcu_read(&ram_list.mru_block);
1070 if (block && addr - block->offset < block->max_length) {
1071 return block;
1072 }
1073 RAMBLOCK_FOREACH(block) {
1074 if (addr - block->offset < block->max_length) {
1075 goto found;
1076 }
1077 }
1078
1079 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1080 abort();
1081
1082 found:
1083 /* It is safe to write mru_block outside the iothread lock. This
1084 * is what happens:
1085 *
1086 * mru_block = xxx
1087 * rcu_read_unlock()
1088 * xxx removed from list
1089 * rcu_read_lock()
1090 * read mru_block
1091 * mru_block = NULL;
1092 * call_rcu(reclaim_ramblock, xxx);
1093 * rcu_read_unlock()
1094 *
1095 * atomic_rcu_set is not needed here. The block was already published
1096 * when it was placed into the list. Here we're just making an extra
1097 * copy of the pointer.
1098 */
1099 ram_list.mru_block = block;
1100 return block;
1101 }
1102
1103 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
1104 {
1105 CPUState *cpu;
1106 ram_addr_t start1;
1107 RAMBlock *block;
1108 ram_addr_t end;
1109
1110 end = TARGET_PAGE_ALIGN(start + length);
1111 start &= TARGET_PAGE_MASK;
1112
1113 rcu_read_lock();
1114 block = qemu_get_ram_block(start);
1115 assert(block == qemu_get_ram_block(end - 1));
1116 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1117 CPU_FOREACH(cpu) {
1118 tlb_reset_dirty(cpu, start1, length);
1119 }
1120 rcu_read_unlock();
1121 }
1122
1123 /* Note: start and end must be within the same ram block. */
1124 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1125 ram_addr_t length,
1126 unsigned client)
1127 {
1128 DirtyMemoryBlocks *blocks;
1129 unsigned long end, page;
1130 bool dirty = false;
1131
1132 if (length == 0) {
1133 return false;
1134 }
1135
1136 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1137 page = start >> TARGET_PAGE_BITS;
1138
1139 rcu_read_lock();
1140
1141 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1142
1143 while (page < end) {
1144 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1145 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1146 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1147
1148 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1149 offset, num);
1150 page += num;
1151 }
1152
1153 rcu_read_unlock();
1154
1155 if (dirty && tcg_enabled()) {
1156 tlb_reset_dirty_range_all(start, length);
1157 }
1158
1159 return dirty;
1160 }
1161
1162 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1163 (ram_addr_t start, ram_addr_t length, unsigned client)
1164 {
1165 DirtyMemoryBlocks *blocks;
1166 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1167 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1168 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1169 DirtyBitmapSnapshot *snap;
1170 unsigned long page, end, dest;
1171
1172 snap = g_malloc0(sizeof(*snap) +
1173 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1174 snap->start = first;
1175 snap->end = last;
1176
1177 page = first >> TARGET_PAGE_BITS;
1178 end = last >> TARGET_PAGE_BITS;
1179 dest = 0;
1180
1181 rcu_read_lock();
1182
1183 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1184
1185 while (page < end) {
1186 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1187 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1188 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1189
1190 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1191 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1192 offset >>= BITS_PER_LEVEL;
1193
1194 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1195 blocks->blocks[idx] + offset,
1196 num);
1197 page += num;
1198 dest += num >> BITS_PER_LEVEL;
1199 }
1200
1201 rcu_read_unlock();
1202
1203 if (tcg_enabled()) {
1204 tlb_reset_dirty_range_all(start, length);
1205 }
1206
1207 return snap;
1208 }
1209
1210 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1211 ram_addr_t start,
1212 ram_addr_t length)
1213 {
1214 unsigned long page, end;
1215
1216 assert(start >= snap->start);
1217 assert(start + length <= snap->end);
1218
1219 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1220 page = (start - snap->start) >> TARGET_PAGE_BITS;
1221
1222 while (page < end) {
1223 if (test_bit(page, snap->dirty)) {
1224 return true;
1225 }
1226 page++;
1227 }
1228 return false;
1229 }
1230
1231 /* Called from RCU critical section */
1232 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1233 MemoryRegionSection *section,
1234 target_ulong vaddr,
1235 hwaddr paddr, hwaddr xlat,
1236 int prot,
1237 target_ulong *address)
1238 {
1239 hwaddr iotlb;
1240 CPUWatchpoint *wp;
1241
1242 if (memory_region_is_ram(section->mr)) {
1243 /* Normal RAM. */
1244 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1245 if (!section->readonly) {
1246 iotlb |= PHYS_SECTION_NOTDIRTY;
1247 } else {
1248 iotlb |= PHYS_SECTION_ROM;
1249 }
1250 } else {
1251 AddressSpaceDispatch *d;
1252
1253 d = flatview_to_dispatch(section->fv);
1254 iotlb = section - d->map.sections;
1255 iotlb += xlat;
1256 }
1257
1258 /* Make accesses to pages with watchpoints go via the
1259 watchpoint trap routines. */
1260 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1261 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
1262 /* Avoid trapping reads of pages with a write breakpoint. */
1263 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
1264 iotlb = PHYS_SECTION_WATCH + paddr;
1265 *address |= TLB_MMIO;
1266 break;
1267 }
1268 }
1269 }
1270
1271 return iotlb;
1272 }
1273 #endif /* defined(CONFIG_USER_ONLY) */
1274
1275 #if !defined(CONFIG_USER_ONLY)
1276
1277 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1278 uint16_t section);
1279 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1280
1281 static void *(*phys_mem_alloc)(size_t size, uint64_t *align) =
1282 qemu_anon_ram_alloc;
1283
1284 /*
1285 * Set a custom physical guest memory alloator.
1286 * Accelerators with unusual needs may need this. Hopefully, we can
1287 * get rid of it eventually.
1288 */
1289 void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align))
1290 {
1291 phys_mem_alloc = alloc;
1292 }
1293
1294 static uint16_t phys_section_add(PhysPageMap *map,
1295 MemoryRegionSection *section)
1296 {
1297 /* The physical section number is ORed with a page-aligned
1298 * pointer to produce the iotlb entries. Thus it should
1299 * never overflow into the page-aligned value.
1300 */
1301 assert(map->sections_nb < TARGET_PAGE_SIZE);
1302
1303 if (map->sections_nb == map->sections_nb_alloc) {
1304 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1305 map->sections = g_renew(MemoryRegionSection, map->sections,
1306 map->sections_nb_alloc);
1307 }
1308 map->sections[map->sections_nb] = *section;
1309 memory_region_ref(section->mr);
1310 return map->sections_nb++;
1311 }
1312
1313 static void phys_section_destroy(MemoryRegion *mr)
1314 {
1315 bool have_sub_page = mr->subpage;
1316
1317 memory_region_unref(mr);
1318
1319 if (have_sub_page) {
1320 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1321 object_unref(OBJECT(&subpage->iomem));
1322 g_free(subpage);
1323 }
1324 }
1325
1326 static void phys_sections_free(PhysPageMap *map)
1327 {
1328 while (map->sections_nb > 0) {
1329 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1330 phys_section_destroy(section->mr);
1331 }
1332 g_free(map->sections);
1333 g_free(map->nodes);
1334 }
1335
1336 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1337 {
1338 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1339 subpage_t *subpage;
1340 hwaddr base = section->offset_within_address_space
1341 & TARGET_PAGE_MASK;
1342 MemoryRegionSection *existing = phys_page_find(d, base);
1343 MemoryRegionSection subsection = {
1344 .offset_within_address_space = base,
1345 .size = int128_make64(TARGET_PAGE_SIZE),
1346 };
1347 hwaddr start, end;
1348
1349 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1350
1351 if (!(existing->mr->subpage)) {
1352 subpage = subpage_init(fv, base);
1353 subsection.fv = fv;
1354 subsection.mr = &subpage->iomem;
1355 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1356 phys_section_add(&d->map, &subsection));
1357 } else {
1358 subpage = container_of(existing->mr, subpage_t, iomem);
1359 }
1360 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1361 end = start + int128_get64(section->size) - 1;
1362 subpage_register(subpage, start, end,
1363 phys_section_add(&d->map, section));
1364 }
1365
1366
1367 static void register_multipage(FlatView *fv,
1368 MemoryRegionSection *section)
1369 {
1370 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1371 hwaddr start_addr = section->offset_within_address_space;
1372 uint16_t section_index = phys_section_add(&d->map, section);
1373 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1374 TARGET_PAGE_BITS));
1375
1376 assert(num_pages);
1377 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1378 }
1379
1380 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1381 {
1382 MemoryRegionSection now = *section, remain = *section;
1383 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1384
1385 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1386 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1387 - now.offset_within_address_space;
1388
1389 now.size = int128_min(int128_make64(left), now.size);
1390 register_subpage(fv, &now);
1391 } else {
1392 now.size = int128_zero();
1393 }
1394 while (int128_ne(remain.size, now.size)) {
1395 remain.size = int128_sub(remain.size, now.size);
1396 remain.offset_within_address_space += int128_get64(now.size);
1397 remain.offset_within_region += int128_get64(now.size);
1398 now = remain;
1399 if (int128_lt(remain.size, page_size)) {
1400 register_subpage(fv, &now);
1401 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1402 now.size = page_size;
1403 register_subpage(fv, &now);
1404 } else {
1405 now.size = int128_and(now.size, int128_neg(page_size));
1406 register_multipage(fv, &now);
1407 }
1408 }
1409 }
1410
1411 void qemu_flush_coalesced_mmio_buffer(void)
1412 {
1413 if (kvm_enabled())
1414 kvm_flush_coalesced_mmio_buffer();
1415 }
1416
1417 void qemu_mutex_lock_ramlist(void)
1418 {
1419 qemu_mutex_lock(&ram_list.mutex);
1420 }
1421
1422 void qemu_mutex_unlock_ramlist(void)
1423 {
1424 qemu_mutex_unlock(&ram_list.mutex);
1425 }
1426
1427 void ram_block_dump(Monitor *mon)
1428 {
1429 RAMBlock *block;
1430 char *psize;
1431
1432 rcu_read_lock();
1433 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1434 "Block Name", "PSize", "Offset", "Used", "Total");
1435 RAMBLOCK_FOREACH(block) {
1436 psize = size_to_str(block->page_size);
1437 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1438 " 0x%016" PRIx64 "\n", block->idstr, psize,
1439 (uint64_t)block->offset,
1440 (uint64_t)block->used_length,
1441 (uint64_t)block->max_length);
1442 g_free(psize);
1443 }
1444 rcu_read_unlock();
1445 }
1446
1447 #ifdef __linux__
1448 /*
1449 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1450 * may or may not name the same files / on the same filesystem now as
1451 * when we actually open and map them. Iterate over the file
1452 * descriptors instead, and use qemu_fd_getpagesize().
1453 */
1454 static int find_max_supported_pagesize(Object *obj, void *opaque)
1455 {
1456 char *mem_path;
1457 long *hpsize_min = opaque;
1458
1459 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1460 mem_path = object_property_get_str(obj, "mem-path", NULL);
1461 if (mem_path) {
1462 long hpsize = qemu_mempath_getpagesize(mem_path);
1463 if (hpsize < *hpsize_min) {
1464 *hpsize_min = hpsize;
1465 }
1466 } else {
1467 *hpsize_min = getpagesize();
1468 }
1469 }
1470
1471 return 0;
1472 }
1473
1474 long qemu_getrampagesize(void)
1475 {
1476 long hpsize = LONG_MAX;
1477 long mainrampagesize;
1478 Object *memdev_root;
1479
1480 if (mem_path) {
1481 mainrampagesize = qemu_mempath_getpagesize(mem_path);
1482 } else {
1483 mainrampagesize = getpagesize();
1484 }
1485
1486 /* it's possible we have memory-backend objects with
1487 * hugepage-backed RAM. these may get mapped into system
1488 * address space via -numa parameters or memory hotplug
1489 * hooks. we want to take these into account, but we
1490 * also want to make sure these supported hugepage
1491 * sizes are applicable across the entire range of memory
1492 * we may boot from, so we take the min across all
1493 * backends, and assume normal pages in cases where a
1494 * backend isn't backed by hugepages.
1495 */
1496 memdev_root = object_resolve_path("/objects", NULL);
1497 if (memdev_root) {
1498 object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize);
1499 }
1500 if (hpsize == LONG_MAX) {
1501 /* No additional memory regions found ==> Report main RAM page size */
1502 return mainrampagesize;
1503 }
1504
1505 /* If NUMA is disabled or the NUMA nodes are not backed with a
1506 * memory-backend, then there is at least one node using "normal" RAM,
1507 * so if its page size is smaller we have got to report that size instead.
1508 */
1509 if (hpsize > mainrampagesize &&
1510 (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
1511 static bool warned;
1512 if (!warned) {
1513 error_report("Huge page support disabled (n/a for main memory).");
1514 warned = true;
1515 }
1516 return mainrampagesize;
1517 }
1518
1519 return hpsize;
1520 }
1521 #else
1522 long qemu_getrampagesize(void)
1523 {
1524 return getpagesize();
1525 }
1526 #endif
1527
1528 #ifdef __linux__
1529 static int64_t get_file_size(int fd)
1530 {
1531 int64_t size = lseek(fd, 0, SEEK_END);
1532 if (size < 0) {
1533 return -errno;
1534 }
1535 return size;
1536 }
1537
1538 static int file_ram_open(const char *path,
1539 const char *region_name,
1540 bool *created,
1541 Error **errp)
1542 {
1543 char *filename;
1544 char *sanitized_name;
1545 char *c;
1546 int fd = -1;
1547
1548 *created = false;
1549 for (;;) {
1550 fd = open(path, O_RDWR);
1551 if (fd >= 0) {
1552 /* @path names an existing file, use it */
1553 break;
1554 }
1555 if (errno == ENOENT) {
1556 /* @path names a file that doesn't exist, create it */
1557 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1558 if (fd >= 0) {
1559 *created = true;
1560 break;
1561 }
1562 } else if (errno == EISDIR) {
1563 /* @path names a directory, create a file there */
1564 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1565 sanitized_name = g_strdup(region_name);
1566 for (c = sanitized_name; *c != '\0'; c++) {
1567 if (*c == '/') {
1568 *c = '_';
1569 }
1570 }
1571
1572 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1573 sanitized_name);
1574 g_free(sanitized_name);
1575
1576 fd = mkstemp(filename);
1577 if (fd >= 0) {
1578 unlink(filename);
1579 g_free(filename);
1580 break;
1581 }
1582 g_free(filename);
1583 }
1584 if (errno != EEXIST && errno != EINTR) {
1585 error_setg_errno(errp, errno,
1586 "can't open backing store %s for guest RAM",
1587 path);
1588 return -1;
1589 }
1590 /*
1591 * Try again on EINTR and EEXIST. The latter happens when
1592 * something else creates the file between our two open().
1593 */
1594 }
1595
1596 return fd;
1597 }
1598
1599 static void *file_ram_alloc(RAMBlock *block,
1600 ram_addr_t memory,
1601 int fd,
1602 bool truncate,
1603 Error **errp)
1604 {
1605 void *area;
1606
1607 block->page_size = qemu_fd_getpagesize(fd);
1608 block->mr->align = block->page_size;
1609 #if defined(__s390x__)
1610 if (kvm_enabled()) {
1611 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1612 }
1613 #endif
1614
1615 if (memory < block->page_size) {
1616 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1617 "or larger than page size 0x%zx",
1618 memory, block->page_size);
1619 return NULL;
1620 }
1621
1622 memory = ROUND_UP(memory, block->page_size);
1623
1624 /*
1625 * ftruncate is not supported by hugetlbfs in older
1626 * hosts, so don't bother bailing out on errors.
1627 * If anything goes wrong with it under other filesystems,
1628 * mmap will fail.
1629 *
1630 * Do not truncate the non-empty backend file to avoid corrupting
1631 * the existing data in the file. Disabling shrinking is not
1632 * enough. For example, the current vNVDIMM implementation stores
1633 * the guest NVDIMM labels at the end of the backend file. If the
1634 * backend file is later extended, QEMU will not be able to find
1635 * those labels. Therefore, extending the non-empty backend file
1636 * is disabled as well.
1637 */
1638 if (truncate && ftruncate(fd, memory)) {
1639 perror("ftruncate");
1640 }
1641
1642 area = qemu_ram_mmap(fd, memory, block->mr->align,
1643 block->flags & RAM_SHARED);
1644 if (area == MAP_FAILED) {
1645 error_setg_errno(errp, errno,
1646 "unable to map backing store for guest RAM");
1647 return NULL;
1648 }
1649
1650 if (mem_prealloc) {
1651 os_mem_prealloc(fd, area, memory, smp_cpus, errp);
1652 if (errp && *errp) {
1653 qemu_ram_munmap(area, memory);
1654 return NULL;
1655 }
1656 }
1657
1658 block->fd = fd;
1659 return area;
1660 }
1661 #endif
1662
1663 /* Called with the ramlist lock held. */
1664 static ram_addr_t find_ram_offset(ram_addr_t size)
1665 {
1666 RAMBlock *block, *next_block;
1667 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1668
1669 assert(size != 0); /* it would hand out same offset multiple times */
1670
1671 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1672 return 0;
1673 }
1674
1675 RAMBLOCK_FOREACH(block) {
1676 ram_addr_t end, next = RAM_ADDR_MAX;
1677
1678 end = block->offset + block->max_length;
1679
1680 RAMBLOCK_FOREACH(next_block) {
1681 if (next_block->offset >= end) {
1682 next = MIN(next, next_block->offset);
1683 }
1684 }
1685 if (next - end >= size && next - end < mingap) {
1686 offset = end;
1687 mingap = next - end;
1688 }
1689 }
1690
1691 if (offset == RAM_ADDR_MAX) {
1692 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1693 (uint64_t)size);
1694 abort();
1695 }
1696
1697 return offset;
1698 }
1699
1700 unsigned long last_ram_page(void)
1701 {
1702 RAMBlock *block;
1703 ram_addr_t last = 0;
1704
1705 rcu_read_lock();
1706 RAMBLOCK_FOREACH(block) {
1707 last = MAX(last, block->offset + block->max_length);
1708 }
1709 rcu_read_unlock();
1710 return last >> TARGET_PAGE_BITS;
1711 }
1712
1713 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1714 {
1715 int ret;
1716
1717 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1718 if (!machine_dump_guest_core(current_machine)) {
1719 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1720 if (ret) {
1721 perror("qemu_madvise");
1722 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1723 "but dump_guest_core=off specified\n");
1724 }
1725 }
1726 }
1727
1728 const char *qemu_ram_get_idstr(RAMBlock *rb)
1729 {
1730 return rb->idstr;
1731 }
1732
1733 bool qemu_ram_is_shared(RAMBlock *rb)
1734 {
1735 return rb->flags & RAM_SHARED;
1736 }
1737
1738 /* Called with iothread lock held. */
1739 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
1740 {
1741 RAMBlock *block;
1742
1743 assert(new_block);
1744 assert(!new_block->idstr[0]);
1745
1746 if (dev) {
1747 char *id = qdev_get_dev_path(dev);
1748 if (id) {
1749 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1750 g_free(id);
1751 }
1752 }
1753 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1754
1755 rcu_read_lock();
1756 RAMBLOCK_FOREACH(block) {
1757 if (block != new_block &&
1758 !strcmp(block->idstr, new_block->idstr)) {
1759 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1760 new_block->idstr);
1761 abort();
1762 }
1763 }
1764 rcu_read_unlock();
1765 }
1766
1767 /* Called with iothread lock held. */
1768 void qemu_ram_unset_idstr(RAMBlock *block)
1769 {
1770 /* FIXME: arch_init.c assumes that this is not called throughout
1771 * migration. Ignore the problem since hot-unplug during migration
1772 * does not work anyway.
1773 */
1774 if (block) {
1775 memset(block->idstr, 0, sizeof(block->idstr));
1776 }
1777 }
1778
1779 size_t qemu_ram_pagesize(RAMBlock *rb)
1780 {
1781 return rb->page_size;
1782 }
1783
1784 /* Returns the largest size of page in use */
1785 size_t qemu_ram_pagesize_largest(void)
1786 {
1787 RAMBlock *block;
1788 size_t largest = 0;
1789
1790 RAMBLOCK_FOREACH(block) {
1791 largest = MAX(largest, qemu_ram_pagesize(block));
1792 }
1793
1794 return largest;
1795 }
1796
1797 static int memory_try_enable_merging(void *addr, size_t len)
1798 {
1799 if (!machine_mem_merge(current_machine)) {
1800 /* disabled by the user */
1801 return 0;
1802 }
1803
1804 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1805 }
1806
1807 /* Only legal before guest might have detected the memory size: e.g. on
1808 * incoming migration, or right after reset.
1809 *
1810 * As memory core doesn't know how is memory accessed, it is up to
1811 * resize callback to update device state and/or add assertions to detect
1812 * misuse, if necessary.
1813 */
1814 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
1815 {
1816 assert(block);
1817
1818 newsize = HOST_PAGE_ALIGN(newsize);
1819
1820 if (block->used_length == newsize) {
1821 return 0;
1822 }
1823
1824 if (!(block->flags & RAM_RESIZEABLE)) {
1825 error_setg_errno(errp, EINVAL,
1826 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1827 " in != 0x" RAM_ADDR_FMT, block->idstr,
1828 newsize, block->used_length);
1829 return -EINVAL;
1830 }
1831
1832 if (block->max_length < newsize) {
1833 error_setg_errno(errp, EINVAL,
1834 "Length too large: %s: 0x" RAM_ADDR_FMT
1835 " > 0x" RAM_ADDR_FMT, block->idstr,
1836 newsize, block->max_length);
1837 return -EINVAL;
1838 }
1839
1840 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1841 block->used_length = newsize;
1842 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1843 DIRTY_CLIENTS_ALL);
1844 memory_region_set_size(block->mr, newsize);
1845 if (block->resized) {
1846 block->resized(block->idstr, newsize, block->host);
1847 }
1848 return 0;
1849 }
1850
1851 /* Called with ram_list.mutex held */
1852 static void dirty_memory_extend(ram_addr_t old_ram_size,
1853 ram_addr_t new_ram_size)
1854 {
1855 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1856 DIRTY_MEMORY_BLOCK_SIZE);
1857 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1858 DIRTY_MEMORY_BLOCK_SIZE);
1859 int i;
1860
1861 /* Only need to extend if block count increased */
1862 if (new_num_blocks <= old_num_blocks) {
1863 return;
1864 }
1865
1866 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1867 DirtyMemoryBlocks *old_blocks;
1868 DirtyMemoryBlocks *new_blocks;
1869 int j;
1870
1871 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
1872 new_blocks = g_malloc(sizeof(*new_blocks) +
1873 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1874
1875 if (old_num_blocks) {
1876 memcpy(new_blocks->blocks, old_blocks->blocks,
1877 old_num_blocks * sizeof(old_blocks->blocks[0]));
1878 }
1879
1880 for (j = old_num_blocks; j < new_num_blocks; j++) {
1881 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1882 }
1883
1884 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1885
1886 if (old_blocks) {
1887 g_free_rcu(old_blocks, rcu);
1888 }
1889 }
1890 }
1891
1892 static void ram_block_add(RAMBlock *new_block, Error **errp)
1893 {
1894 RAMBlock *block;
1895 RAMBlock *last_block = NULL;
1896 ram_addr_t old_ram_size, new_ram_size;
1897 Error *err = NULL;
1898
1899 old_ram_size = last_ram_page();
1900
1901 qemu_mutex_lock_ramlist();
1902 new_block->offset = find_ram_offset(new_block->max_length);
1903
1904 if (!new_block->host) {
1905 if (xen_enabled()) {
1906 xen_ram_alloc(new_block->offset, new_block->max_length,
1907 new_block->mr, &err);
1908 if (err) {
1909 error_propagate(errp, err);
1910 qemu_mutex_unlock_ramlist();
1911 return;
1912 }
1913 } else {
1914 new_block->host = phys_mem_alloc(new_block->max_length,
1915 &new_block->mr->align);
1916 if (!new_block->host) {
1917 error_setg_errno(errp, errno,
1918 "cannot set up guest memory '%s'",
1919 memory_region_name(new_block->mr));
1920 qemu_mutex_unlock_ramlist();
1921 return;
1922 }
1923 memory_try_enable_merging(new_block->host, new_block->max_length);
1924 }
1925 }
1926
1927 new_ram_size = MAX(old_ram_size,
1928 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1929 if (new_ram_size > old_ram_size) {
1930 dirty_memory_extend(old_ram_size, new_ram_size);
1931 }
1932 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1933 * QLIST (which has an RCU-friendly variant) does not have insertion at
1934 * tail, so save the last element in last_block.
1935 */
1936 RAMBLOCK_FOREACH(block) {
1937 last_block = block;
1938 if (block->max_length < new_block->max_length) {
1939 break;
1940 }
1941 }
1942 if (block) {
1943 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
1944 } else if (last_block) {
1945 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
1946 } else { /* list is empty */
1947 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
1948 }
1949 ram_list.mru_block = NULL;
1950
1951 /* Write list before version */
1952 smp_wmb();
1953 ram_list.version++;
1954 qemu_mutex_unlock_ramlist();
1955
1956 cpu_physical_memory_set_dirty_range(new_block->offset,
1957 new_block->used_length,
1958 DIRTY_CLIENTS_ALL);
1959
1960 if (new_block->host) {
1961 qemu_ram_setup_dump(new_block->host, new_block->max_length);
1962 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
1963 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
1964 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
1965 ram_block_notify_add(new_block->host, new_block->max_length);
1966 }
1967 }
1968
1969 #ifdef __linux__
1970 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
1971 bool share, int fd,
1972 Error **errp)
1973 {
1974 RAMBlock *new_block;
1975 Error *local_err = NULL;
1976 int64_t file_size;
1977
1978 if (xen_enabled()) {
1979 error_setg(errp, "-mem-path not supported with Xen");
1980 return NULL;
1981 }
1982
1983 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1984 error_setg(errp,
1985 "host lacks kvm mmu notifiers, -mem-path unsupported");
1986 return NULL;
1987 }
1988
1989 if (phys_mem_alloc != qemu_anon_ram_alloc) {
1990 /*
1991 * file_ram_alloc() needs to allocate just like
1992 * phys_mem_alloc, but we haven't bothered to provide
1993 * a hook there.
1994 */
1995 error_setg(errp,
1996 "-mem-path not supported with this accelerator");
1997 return NULL;
1998 }
1999
2000 size = HOST_PAGE_ALIGN(size);
2001 file_size = get_file_size(fd);
2002 if (file_size > 0 && file_size < size) {
2003 error_setg(errp, "backing store %s size 0x%" PRIx64
2004 " does not match 'size' option 0x" RAM_ADDR_FMT,
2005 mem_path, file_size, size);
2006 return NULL;
2007 }
2008
2009 new_block = g_malloc0(sizeof(*new_block));
2010 new_block->mr = mr;
2011 new_block->used_length = size;
2012 new_block->max_length = size;
2013 new_block->flags = share ? RAM_SHARED : 0;
2014 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
2015 if (!new_block->host) {
2016 g_free(new_block);
2017 return NULL;
2018 }
2019
2020 ram_block_add(new_block, &local_err);
2021 if (local_err) {
2022 g_free(new_block);
2023 error_propagate(errp, local_err);
2024 return NULL;
2025 }
2026 return new_block;
2027
2028 }
2029
2030
2031 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2032 bool share, const char *mem_path,
2033 Error **errp)
2034 {
2035 int fd;
2036 bool created;
2037 RAMBlock *block;
2038
2039 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2040 if (fd < 0) {
2041 return NULL;
2042 }
2043
2044 block = qemu_ram_alloc_from_fd(size, mr, share, fd, errp);
2045 if (!block) {
2046 if (created) {
2047 unlink(mem_path);
2048 }
2049 close(fd);
2050 return NULL;
2051 }
2052
2053 return block;
2054 }
2055 #endif
2056
2057 static
2058 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2059 void (*resized)(const char*,
2060 uint64_t length,
2061 void *host),
2062 void *host, bool resizeable,
2063 MemoryRegion *mr, Error **errp)
2064 {
2065 RAMBlock *new_block;
2066 Error *local_err = NULL;
2067
2068 size = HOST_PAGE_ALIGN(size);
2069 max_size = HOST_PAGE_ALIGN(max_size);
2070 new_block = g_malloc0(sizeof(*new_block));
2071 new_block->mr = mr;
2072 new_block->resized = resized;
2073 new_block->used_length = size;
2074 new_block->max_length = max_size;
2075 assert(max_size >= size);
2076 new_block->fd = -1;
2077 new_block->page_size = getpagesize();
2078 new_block->host = host;
2079 if (host) {
2080 new_block->flags |= RAM_PREALLOC;
2081 }
2082 if (resizeable) {
2083 new_block->flags |= RAM_RESIZEABLE;
2084 }
2085 ram_block_add(new_block, &local_err);
2086 if (local_err) {
2087 g_free(new_block);
2088 error_propagate(errp, local_err);
2089 return NULL;
2090 }
2091 return new_block;
2092 }
2093
2094 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2095 MemoryRegion *mr, Error **errp)
2096 {
2097 return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp);
2098 }
2099
2100 RAMBlock *qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp)
2101 {
2102 return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp);
2103 }
2104
2105 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2106 void (*resized)(const char*,
2107 uint64_t length,
2108 void *host),
2109 MemoryRegion *mr, Error **errp)
2110 {
2111 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp);
2112 }
2113
2114 static void reclaim_ramblock(RAMBlock *block)
2115 {
2116 if (block->flags & RAM_PREALLOC) {
2117 ;
2118 } else if (xen_enabled()) {
2119 xen_invalidate_map_cache_entry(block->host);
2120 #ifndef _WIN32
2121 } else if (block->fd >= 0) {
2122 qemu_ram_munmap(block->host, block->max_length);
2123 close(block->fd);
2124 #endif
2125 } else {
2126 qemu_anon_ram_free(block->host, block->max_length);
2127 }
2128 g_free(block);
2129 }
2130
2131 void qemu_ram_free(RAMBlock *block)
2132 {
2133 if (!block) {
2134 return;
2135 }
2136
2137 if (block->host) {
2138 ram_block_notify_remove(block->host, block->max_length);
2139 }
2140
2141 qemu_mutex_lock_ramlist();
2142 QLIST_REMOVE_RCU(block, next);
2143 ram_list.mru_block = NULL;
2144 /* Write list before version */
2145 smp_wmb();
2146 ram_list.version++;
2147 call_rcu(block, reclaim_ramblock, rcu);
2148 qemu_mutex_unlock_ramlist();
2149 }
2150
2151 #ifndef _WIN32
2152 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2153 {
2154 RAMBlock *block;
2155 ram_addr_t offset;
2156 int flags;
2157 void *area, *vaddr;
2158
2159 RAMBLOCK_FOREACH(block) {
2160 offset = addr - block->offset;
2161 if (offset < block->max_length) {
2162 vaddr = ramblock_ptr(block, offset);
2163 if (block->flags & RAM_PREALLOC) {
2164 ;
2165 } else if (xen_enabled()) {
2166 abort();
2167 } else {
2168 flags = MAP_FIXED;
2169 if (block->fd >= 0) {
2170 flags |= (block->flags & RAM_SHARED ?
2171 MAP_SHARED : MAP_PRIVATE);
2172 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2173 flags, block->fd, offset);
2174 } else {
2175 /*
2176 * Remap needs to match alloc. Accelerators that
2177 * set phys_mem_alloc never remap. If they did,
2178 * we'd need a remap hook here.
2179 */
2180 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2181
2182 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2183 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2184 flags, -1, 0);
2185 }
2186 if (area != vaddr) {
2187 fprintf(stderr, "Could not remap addr: "
2188 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
2189 length, addr);
2190 exit(1);
2191 }
2192 memory_try_enable_merging(vaddr, length);
2193 qemu_ram_setup_dump(vaddr, length);
2194 }
2195 }
2196 }
2197 }
2198 #endif /* !_WIN32 */
2199
2200 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2201 * This should not be used for general purpose DMA. Use address_space_map
2202 * or address_space_rw instead. For local memory (e.g. video ram) that the
2203 * device owns, use memory_region_get_ram_ptr.
2204 *
2205 * Called within RCU critical section.
2206 */
2207 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2208 {
2209 RAMBlock *block = ram_block;
2210
2211 if (block == NULL) {
2212 block = qemu_get_ram_block(addr);
2213 addr -= block->offset;
2214 }
2215
2216 if (xen_enabled() && block->host == NULL) {
2217 /* We need to check if the requested address is in the RAM
2218 * because we don't want to map the entire memory in QEMU.
2219 * In that case just map until the end of the page.
2220 */
2221 if (block->offset == 0) {
2222 return xen_map_cache(addr, 0, 0, false);
2223 }
2224
2225 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2226 }
2227 return ramblock_ptr(block, addr);
2228 }
2229
2230 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2231 * but takes a size argument.
2232 *
2233 * Called within RCU critical section.
2234 */
2235 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2236 hwaddr *size, bool lock)
2237 {
2238 RAMBlock *block = ram_block;
2239 if (*size == 0) {
2240 return NULL;
2241 }
2242
2243 if (block == NULL) {
2244 block = qemu_get_ram_block(addr);
2245 addr -= block->offset;
2246 }
2247 *size = MIN(*size, block->max_length - addr);
2248
2249 if (xen_enabled() && block->host == NULL) {
2250 /* We need to check if the requested address is in the RAM
2251 * because we don't want to map the entire memory in QEMU.
2252 * In that case just map the requested area.
2253 */
2254 if (block->offset == 0) {
2255 return xen_map_cache(addr, *size, lock, lock);
2256 }
2257
2258 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2259 }
2260
2261 return ramblock_ptr(block, addr);
2262 }
2263
2264 /*
2265 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2266 * in that RAMBlock.
2267 *
2268 * ptr: Host pointer to look up
2269 * round_offset: If true round the result offset down to a page boundary
2270 * *ram_addr: set to result ram_addr
2271 * *offset: set to result offset within the RAMBlock
2272 *
2273 * Returns: RAMBlock (or NULL if not found)
2274 *
2275 * By the time this function returns, the returned pointer is not protected
2276 * by RCU anymore. If the caller is not within an RCU critical section and
2277 * does not hold the iothread lock, it must have other means of protecting the
2278 * pointer, such as a reference to the region that includes the incoming
2279 * ram_addr_t.
2280 */
2281 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2282 ram_addr_t *offset)
2283 {
2284 RAMBlock *block;
2285 uint8_t *host = ptr;
2286
2287 if (xen_enabled()) {
2288 ram_addr_t ram_addr;
2289 rcu_read_lock();
2290 ram_addr = xen_ram_addr_from_mapcache(ptr);
2291 block = qemu_get_ram_block(ram_addr);
2292 if (block) {
2293 *offset = ram_addr - block->offset;
2294 }
2295 rcu_read_unlock();
2296 return block;
2297 }
2298
2299 rcu_read_lock();
2300 block = atomic_rcu_read(&ram_list.mru_block);
2301 if (block && block->host && host - block->host < block->max_length) {
2302 goto found;
2303 }
2304
2305 RAMBLOCK_FOREACH(block) {
2306 /* This case append when the block is not mapped. */
2307 if (block->host == NULL) {
2308 continue;
2309 }
2310 if (host - block->host < block->max_length) {
2311 goto found;
2312 }
2313 }
2314
2315 rcu_read_unlock();
2316 return NULL;
2317
2318 found:
2319 *offset = (host - block->host);
2320 if (round_offset) {
2321 *offset &= TARGET_PAGE_MASK;
2322 }
2323 rcu_read_unlock();
2324 return block;
2325 }
2326
2327 /*
2328 * Finds the named RAMBlock
2329 *
2330 * name: The name of RAMBlock to find
2331 *
2332 * Returns: RAMBlock (or NULL if not found)
2333 */
2334 RAMBlock *qemu_ram_block_by_name(const char *name)
2335 {
2336 RAMBlock *block;
2337
2338 RAMBLOCK_FOREACH(block) {
2339 if (!strcmp(name, block->idstr)) {
2340 return block;
2341 }
2342 }
2343
2344 return NULL;
2345 }
2346
2347 /* Some of the softmmu routines need to translate from a host pointer
2348 (typically a TLB entry) back to a ram offset. */
2349 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2350 {
2351 RAMBlock *block;
2352 ram_addr_t offset;
2353
2354 block = qemu_ram_block_from_host(ptr, false, &offset);
2355 if (!block) {
2356 return RAM_ADDR_INVALID;
2357 }
2358
2359 return block->offset + offset;
2360 }
2361
2362 /* Called within RCU critical section. */
2363 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
2364 uint64_t val, unsigned size)
2365 {
2366 bool locked = false;
2367
2368 assert(tcg_enabled());
2369 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
2370 locked = true;
2371 tb_lock();
2372 tb_invalidate_phys_page_fast(ram_addr, size);
2373 }
2374 switch (size) {
2375 case 1:
2376 stb_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2377 break;
2378 case 2:
2379 stw_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2380 break;
2381 case 4:
2382 stl_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2383 break;
2384 case 8:
2385 stq_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2386 break;
2387 default:
2388 abort();
2389 }
2390
2391 if (locked) {
2392 tb_unlock();
2393 }
2394
2395 /* Set both VGA and migration bits for simplicity and to remove
2396 * the notdirty callback faster.
2397 */
2398 cpu_physical_memory_set_dirty_range(ram_addr, size,
2399 DIRTY_CLIENTS_NOCODE);
2400 /* we remove the notdirty callback only if the code has been
2401 flushed */
2402 if (!cpu_physical_memory_is_clean(ram_addr)) {
2403 tlb_set_dirty(current_cpu, current_cpu->mem_io_vaddr);
2404 }
2405 }
2406
2407 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2408 unsigned size, bool is_write)
2409 {
2410 return is_write;
2411 }
2412
2413 static const MemoryRegionOps notdirty_mem_ops = {
2414 .write = notdirty_mem_write,
2415 .valid.accepts = notdirty_mem_accepts,
2416 .endianness = DEVICE_NATIVE_ENDIAN,
2417 .valid = {
2418 .min_access_size = 1,
2419 .max_access_size = 8,
2420 .unaligned = false,
2421 },
2422 .impl = {
2423 .min_access_size = 1,
2424 .max_access_size = 8,
2425 .unaligned = false,
2426 },
2427 };
2428
2429 /* Generate a debug exception if a watchpoint has been hit. */
2430 static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
2431 {
2432 CPUState *cpu = current_cpu;
2433 CPUClass *cc = CPU_GET_CLASS(cpu);
2434 target_ulong vaddr;
2435 CPUWatchpoint *wp;
2436
2437 assert(tcg_enabled());
2438 if (cpu->watchpoint_hit) {
2439 /* We re-entered the check after replacing the TB. Now raise
2440 * the debug interrupt so that is will trigger after the
2441 * current instruction. */
2442 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2443 return;
2444 }
2445 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2446 vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
2447 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2448 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2449 && (wp->flags & flags)) {
2450 if (flags == BP_MEM_READ) {
2451 wp->flags |= BP_WATCHPOINT_HIT_READ;
2452 } else {
2453 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2454 }
2455 wp->hitaddr = vaddr;
2456 wp->hitattrs = attrs;
2457 if (!cpu->watchpoint_hit) {
2458 if (wp->flags & BP_CPU &&
2459 !cc->debug_check_watchpoint(cpu, wp)) {
2460 wp->flags &= ~BP_WATCHPOINT_HIT;
2461 continue;
2462 }
2463 cpu->watchpoint_hit = wp;
2464
2465 /* Both tb_lock and iothread_mutex will be reset when
2466 * cpu_loop_exit or cpu_loop_exit_noexc longjmp
2467 * back into the cpu_exec main loop.
2468 */
2469 tb_lock();
2470 tb_check_watchpoint(cpu);
2471 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2472 cpu->exception_index = EXCP_DEBUG;
2473 cpu_loop_exit(cpu);
2474 } else {
2475 /* Force execution of one insn next time. */
2476 cpu->cflags_next_tb = 1 | curr_cflags();
2477 cpu_loop_exit_noexc(cpu);
2478 }
2479 }
2480 } else {
2481 wp->flags &= ~BP_WATCHPOINT_HIT;
2482 }
2483 }
2484 }
2485
2486 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2487 so these check for a hit then pass through to the normal out-of-line
2488 phys routines. */
2489 static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2490 unsigned size, MemTxAttrs attrs)
2491 {
2492 MemTxResult res;
2493 uint64_t data;
2494 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2495 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2496
2497 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
2498 switch (size) {
2499 case 1:
2500 data = address_space_ldub(as, addr, attrs, &res);
2501 break;
2502 case 2:
2503 data = address_space_lduw(as, addr, attrs, &res);
2504 break;
2505 case 4:
2506 data = address_space_ldl(as, addr, attrs, &res);
2507 break;
2508 case 8:
2509 data = address_space_ldq(as, addr, attrs, &res);
2510 break;
2511 default: abort();
2512 }
2513 *pdata = data;
2514 return res;
2515 }
2516
2517 static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2518 uint64_t val, unsigned size,
2519 MemTxAttrs attrs)
2520 {
2521 MemTxResult res;
2522 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2523 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2524
2525 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
2526 switch (size) {
2527 case 1:
2528 address_space_stb(as, addr, val, attrs, &res);
2529 break;
2530 case 2:
2531 address_space_stw(as, addr, val, attrs, &res);
2532 break;
2533 case 4:
2534 address_space_stl(as, addr, val, attrs, &res);
2535 break;
2536 case 8:
2537 address_space_stq(as, addr, val, attrs, &res);
2538 break;
2539 default: abort();
2540 }
2541 return res;
2542 }
2543
2544 static const MemoryRegionOps watch_mem_ops = {
2545 .read_with_attrs = watch_mem_read,
2546 .write_with_attrs = watch_mem_write,
2547 .endianness = DEVICE_NATIVE_ENDIAN,
2548 .valid = {
2549 .min_access_size = 1,
2550 .max_access_size = 8,
2551 .unaligned = false,
2552 },
2553 .impl = {
2554 .min_access_size = 1,
2555 .max_access_size = 8,
2556 .unaligned = false,
2557 },
2558 };
2559
2560 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2561 const uint8_t *buf, int len);
2562 static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
2563 bool is_write);
2564
2565 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2566 unsigned len, MemTxAttrs attrs)
2567 {
2568 subpage_t *subpage = opaque;
2569 uint8_t buf[8];
2570 MemTxResult res;
2571
2572 #if defined(DEBUG_SUBPAGE)
2573 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2574 subpage, len, addr);
2575 #endif
2576 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2577 if (res) {
2578 return res;
2579 }
2580 switch (len) {
2581 case 1:
2582 *data = ldub_p(buf);
2583 return MEMTX_OK;
2584 case 2:
2585 *data = lduw_p(buf);
2586 return MEMTX_OK;
2587 case 4:
2588 *data = ldl_p(buf);
2589 return MEMTX_OK;
2590 case 8:
2591 *data = ldq_p(buf);
2592 return MEMTX_OK;
2593 default:
2594 abort();
2595 }
2596 }
2597
2598 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2599 uint64_t value, unsigned len, MemTxAttrs attrs)
2600 {
2601 subpage_t *subpage = opaque;
2602 uint8_t buf[8];
2603
2604 #if defined(DEBUG_SUBPAGE)
2605 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2606 " value %"PRIx64"\n",
2607 __func__, subpage, len, addr, value);
2608 #endif
2609 switch (len) {
2610 case 1:
2611 stb_p(buf, value);
2612 break;
2613 case 2:
2614 stw_p(buf, value);
2615 break;
2616 case 4:
2617 stl_p(buf, value);
2618 break;
2619 case 8:
2620 stq_p(buf, value);
2621 break;
2622 default:
2623 abort();
2624 }
2625 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2626 }
2627
2628 static bool subpage_accepts(void *opaque, hwaddr addr,
2629 unsigned len, bool is_write)
2630 {
2631 subpage_t *subpage = opaque;
2632 #if defined(DEBUG_SUBPAGE)
2633 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2634 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2635 #endif
2636
2637 return flatview_access_valid(subpage->fv, addr + subpage->base,
2638 len, is_write);
2639 }
2640
2641 static const MemoryRegionOps subpage_ops = {
2642 .read_with_attrs = subpage_read,
2643 .write_with_attrs = subpage_write,
2644 .impl.min_access_size = 1,
2645 .impl.max_access_size = 8,
2646 .valid.min_access_size = 1,
2647 .valid.max_access_size = 8,
2648 .valid.accepts = subpage_accepts,
2649 .endianness = DEVICE_NATIVE_ENDIAN,
2650 };
2651
2652 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2653 uint16_t section)
2654 {
2655 int idx, eidx;
2656
2657 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2658 return -1;
2659 idx = SUBPAGE_IDX(start);
2660 eidx = SUBPAGE_IDX(end);
2661 #if defined(DEBUG_SUBPAGE)
2662 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2663 __func__, mmio, start, end, idx, eidx, section);
2664 #endif
2665 for (; idx <= eidx; idx++) {
2666 mmio->sub_section[idx] = section;
2667 }
2668
2669 return 0;
2670 }
2671
2672 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2673 {
2674 subpage_t *mmio;
2675
2676 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2677 mmio->fv = fv;
2678 mmio->base = base;
2679 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2680 NULL, TARGET_PAGE_SIZE);
2681 mmio->iomem.subpage = true;
2682 #if defined(DEBUG_SUBPAGE)
2683 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2684 mmio, base, TARGET_PAGE_SIZE);
2685 #endif
2686 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
2687
2688 return mmio;
2689 }
2690
2691 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2692 {
2693 assert(fv);
2694 MemoryRegionSection section = {
2695 .fv = fv,
2696 .mr = mr,
2697 .offset_within_address_space = 0,
2698 .offset_within_region = 0,
2699 .size = int128_2_64(),
2700 };
2701
2702 return phys_section_add(map, &section);
2703 }
2704
2705 MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs)
2706 {
2707 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2708 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2709 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
2710 MemoryRegionSection *sections = d->map.sections;
2711
2712 return sections[index & ~TARGET_PAGE_MASK].mr;
2713 }
2714
2715 static void io_mem_init(void)
2716 {
2717 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX);
2718 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2719 NULL, UINT64_MAX);
2720
2721 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
2722 * which can be called without the iothread mutex.
2723 */
2724 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
2725 NULL, UINT64_MAX);
2726 memory_region_clear_global_locking(&io_mem_notdirty);
2727
2728 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
2729 NULL, UINT64_MAX);
2730 }
2731
2732 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2733 {
2734 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2735 uint16_t n;
2736
2737 n = dummy_section(&d->map, fv, &io_mem_unassigned);
2738 assert(n == PHYS_SECTION_UNASSIGNED);
2739 n = dummy_section(&d->map, fv, &io_mem_notdirty);
2740 assert(n == PHYS_SECTION_NOTDIRTY);
2741 n = dummy_section(&d->map, fv, &io_mem_rom);
2742 assert(n == PHYS_SECTION_ROM);
2743 n = dummy_section(&d->map, fv, &io_mem_watch);
2744 assert(n == PHYS_SECTION_WATCH);
2745
2746 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2747
2748 return d;
2749 }
2750
2751 void address_space_dispatch_free(AddressSpaceDispatch *d)
2752 {
2753 phys_sections_free(&d->map);
2754 g_free(d);
2755 }
2756
2757 static void tcg_commit(MemoryListener *listener)
2758 {
2759 CPUAddressSpace *cpuas;
2760 AddressSpaceDispatch *d;
2761
2762 /* since each CPU stores ram addresses in its TLB cache, we must
2763 reset the modified entries */
2764 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2765 cpu_reloading_memory_map();
2766 /* The CPU and TLB are protected by the iothread lock.
2767 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2768 * may have split the RCU critical section.
2769 */
2770 d = address_space_to_dispatch(cpuas->as);
2771 atomic_rcu_set(&cpuas->memory_dispatch, d);
2772 tlb_flush(cpuas->cpu);
2773 }
2774
2775 static void memory_map_init(void)
2776 {
2777 system_memory = g_malloc(sizeof(*system_memory));
2778
2779 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2780 address_space_init(&address_space_memory, system_memory, "memory");
2781
2782 system_io = g_malloc(sizeof(*system_io));
2783 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2784 65536);
2785 address_space_init(&address_space_io, system_io, "I/O");
2786 }
2787
2788 MemoryRegion *get_system_memory(void)
2789 {
2790 return system_memory;
2791 }
2792
2793 MemoryRegion *get_system_io(void)
2794 {
2795 return system_io;
2796 }
2797
2798 #endif /* !defined(CONFIG_USER_ONLY) */
2799
2800 /* physical memory access (slow version, mainly for debug) */
2801 #if defined(CONFIG_USER_ONLY)
2802 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
2803 uint8_t *buf, int len, int is_write)
2804 {
2805 int l, flags;
2806 target_ulong page;
2807 void * p;
2808
2809 while (len > 0) {
2810 page = addr & TARGET_PAGE_MASK;
2811 l = (page + TARGET_PAGE_SIZE) - addr;
2812 if (l > len)
2813 l = len;
2814 flags = page_get_flags(page);
2815 if (!(flags & PAGE_VALID))
2816 return -1;
2817 if (is_write) {
2818 if (!(flags & PAGE_WRITE))
2819 return -1;
2820 /* XXX: this code should not depend on lock_user */
2821 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
2822 return -1;
2823 memcpy(p, buf, l);
2824 unlock_user(p, addr, l);
2825 } else {
2826 if (!(flags & PAGE_READ))
2827 return -1;
2828 /* XXX: this code should not depend on lock_user */
2829 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
2830 return -1;
2831 memcpy(buf, p, l);
2832 unlock_user(p, addr, 0);
2833 }
2834 len -= l;
2835 buf += l;
2836 addr += l;
2837 }
2838 return 0;
2839 }
2840
2841 #else
2842
2843 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
2844 hwaddr length)
2845 {
2846 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2847 addr += memory_region_get_ram_addr(mr);
2848
2849 /* No early return if dirty_log_mask is or becomes 0, because
2850 * cpu_physical_memory_set_dirty_range will still call
2851 * xen_modified_memory.
2852 */
2853 if (dirty_log_mask) {
2854 dirty_log_mask =
2855 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2856 }
2857 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2858 assert(tcg_enabled());
2859 tb_lock();
2860 tb_invalidate_phys_range(addr, addr + length);
2861 tb_unlock();
2862 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
2863 }
2864 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
2865 }
2866
2867 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
2868 {
2869 unsigned access_size_max = mr->ops->valid.max_access_size;
2870
2871 /* Regions are assumed to support 1-4 byte accesses unless
2872 otherwise specified. */
2873 if (access_size_max == 0) {
2874 access_size_max = 4;
2875 }
2876
2877 /* Bound the maximum access by the alignment of the address. */
2878 if (!mr->ops->impl.unaligned) {
2879 unsigned align_size_max = addr & -addr;
2880 if (align_size_max != 0 && align_size_max < access_size_max) {
2881 access_size_max = align_size_max;
2882 }
2883 }
2884
2885 /* Don't attempt accesses larger than the maximum. */
2886 if (l > access_size_max) {
2887 l = access_size_max;
2888 }
2889 l = pow2floor(l);
2890
2891 return l;
2892 }
2893
2894 static bool prepare_mmio_access(MemoryRegion *mr)
2895 {
2896 bool unlocked = !qemu_mutex_iothread_locked();
2897 bool release_lock = false;
2898
2899 if (unlocked && mr->global_locking) {
2900 qemu_mutex_lock_iothread();
2901 unlocked = false;
2902 release_lock = true;
2903 }
2904 if (mr->flush_coalesced_mmio) {
2905 if (unlocked) {
2906 qemu_mutex_lock_iothread();
2907 }
2908 qemu_flush_coalesced_mmio_buffer();
2909 if (unlocked) {
2910 qemu_mutex_unlock_iothread();
2911 }
2912 }
2913
2914 return release_lock;
2915 }
2916
2917 /* Called within RCU critical section. */
2918 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
2919 MemTxAttrs attrs,
2920 const uint8_t *buf,
2921 int len, hwaddr addr1,
2922 hwaddr l, MemoryRegion *mr)
2923 {
2924 uint8_t *ptr;
2925 uint64_t val;
2926 MemTxResult result = MEMTX_OK;
2927 bool release_lock = false;
2928
2929 for (;;) {
2930 if (!memory_access_is_direct(mr, true)) {
2931 release_lock |= prepare_mmio_access(mr);
2932 l = memory_access_size(mr, l, addr1);
2933 /* XXX: could force current_cpu to NULL to avoid
2934 potential bugs */
2935 switch (l) {
2936 case 8:
2937 /* 64 bit write access */
2938 val = ldq_p(buf);
2939 result |= memory_region_dispatch_write(mr, addr1, val, 8,
2940 attrs);
2941 break;
2942 case 4:
2943 /* 32 bit write access */
2944 val = (uint32_t)ldl_p(buf);
2945 result |= memory_region_dispatch_write(mr, addr1, val, 4,
2946 attrs);
2947 break;
2948 case 2:
2949 /* 16 bit write access */
2950 val = lduw_p(buf);
2951 result |= memory_region_dispatch_write(mr, addr1, val, 2,
2952 attrs);
2953 break;
2954 case 1:
2955 /* 8 bit write access */
2956 val = ldub_p(buf);
2957 result |= memory_region_dispatch_write(mr, addr1, val, 1,
2958 attrs);
2959 break;
2960 default:
2961 abort();
2962 }
2963 } else {
2964 /* RAM case */
2965 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
2966 memcpy(ptr, buf, l);
2967 invalidate_and_set_dirty(mr, addr1, l);
2968 }
2969
2970 if (release_lock) {
2971 qemu_mutex_unlock_iothread();
2972 release_lock = false;
2973 }
2974
2975 len -= l;
2976 buf += l;
2977 addr += l;
2978
2979 if (!len) {
2980 break;
2981 }
2982
2983 l = len;
2984 mr = flatview_translate(fv, addr, &addr1, &l, true);
2985 }
2986
2987 return result;
2988 }
2989
2990 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2991 const uint8_t *buf, int len)
2992 {
2993 hwaddr l;
2994 hwaddr addr1;
2995 MemoryRegion *mr;
2996 MemTxResult result = MEMTX_OK;
2997
2998 if (len > 0) {
2999 rcu_read_lock();
3000 l = len;
3001 mr = flatview_translate(fv, addr, &addr1, &l, true);
3002 result = flatview_write_continue(fv, addr, attrs, buf, len,
3003 addr1, l, mr);
3004 rcu_read_unlock();
3005 }
3006
3007 return result;
3008 }
3009
3010 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3011 MemTxAttrs attrs,
3012 const uint8_t *buf, int len)
3013 {
3014 return flatview_write(address_space_to_flatview(as), addr, attrs, buf, len);
3015 }
3016
3017 /* Called within RCU critical section. */
3018 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3019 MemTxAttrs attrs, uint8_t *buf,
3020 int len, hwaddr addr1, hwaddr l,
3021 MemoryRegion *mr)
3022 {
3023 uint8_t *ptr;
3024 uint64_t val;
3025 MemTxResult result = MEMTX_OK;
3026 bool release_lock = false;
3027
3028 for (;;) {
3029 if (!memory_access_is_direct(mr, false)) {
3030 /* I/O case */
3031 release_lock |= prepare_mmio_access(mr);
3032 l = memory_access_size(mr, l, addr1);
3033 switch (l) {
3034 case 8:
3035 /* 64 bit read access */
3036 result |= memory_region_dispatch_read(mr, addr1, &val, 8,
3037 attrs);
3038 stq_p(buf, val);
3039 break;
3040 case 4:
3041 /* 32 bit read access */
3042 result |= memory_region_dispatch_read(mr, addr1, &val, 4,
3043 attrs);
3044 stl_p(buf, val);
3045 break;
3046 case 2:
3047 /* 16 bit read access */
3048 result |= memory_region_dispatch_read(mr, addr1, &val, 2,
3049 attrs);
3050 stw_p(buf, val);
3051 break;
3052 case 1:
3053 /* 8 bit read access */
3054 result |= memory_region_dispatch_read(mr, addr1, &val, 1,
3055 attrs);
3056 stb_p(buf, val);
3057 break;
3058 default:
3059 abort();
3060 }
3061 } else {
3062 /* RAM case */
3063 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3064 memcpy(buf, ptr, l);
3065 }
3066
3067 if (release_lock) {
3068 qemu_mutex_unlock_iothread();
3069 release_lock = false;
3070 }
3071
3072 len -= l;
3073 buf += l;
3074 addr += l;
3075
3076 if (!len) {
3077 break;
3078 }
3079
3080 l = len;
3081 mr = flatview_translate(fv, addr, &addr1, &l, false);
3082 }
3083
3084 return result;
3085 }
3086
3087 MemTxResult flatview_read_full(FlatView *fv, hwaddr addr,
3088 MemTxAttrs attrs, uint8_t *buf, int len)
3089 {
3090 hwaddr l;
3091 hwaddr addr1;
3092 MemoryRegion *mr;
3093 MemTxResult result = MEMTX_OK;
3094
3095 if (len > 0) {
3096 rcu_read_lock();
3097 l = len;
3098 mr = flatview_translate(fv, addr, &addr1, &l, false);
3099 result = flatview_read_continue(fv, addr, attrs, buf, len,
3100 addr1, l, mr);
3101 rcu_read_unlock();
3102 }
3103
3104 return result;
3105 }
3106
3107 static MemTxResult flatview_rw(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3108 uint8_t *buf, int len, bool is_write)
3109 {
3110 if (is_write) {
3111 return flatview_write(fv, addr, attrs, (uint8_t *)buf, len);
3112 } else {
3113 return flatview_read(fv, addr, attrs, (uint8_t *)buf, len);
3114 }
3115 }
3116
3117 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
3118 MemTxAttrs attrs, uint8_t *buf,
3119 int len, bool is_write)
3120 {
3121 return flatview_rw(address_space_to_flatview(as),
3122 addr, attrs, buf, len, is_write);
3123 }
3124
3125 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
3126 int len, int is_write)
3127 {
3128 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3129 buf, len, is_write);
3130 }
3131
3132 enum write_rom_type {
3133 WRITE_DATA,
3134 FLUSH_CACHE,
3135 };
3136
3137 static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
3138 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
3139 {
3140 hwaddr l;
3141 uint8_t *ptr;
3142 hwaddr addr1;
3143 MemoryRegion *mr;
3144
3145 rcu_read_lock();
3146 while (len > 0) {
3147 l = len;
3148 mr = address_space_translate(as, addr, &addr1, &l, true);
3149
3150 if (!(memory_region_is_ram(mr) ||
3151 memory_region_is_romd(mr))) {
3152 l = memory_access_size(mr, l, addr1);
3153 } else {
3154 /* ROM/RAM case */
3155 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3156 switch (type) {
3157 case WRITE_DATA:
3158 memcpy(ptr, buf, l);
3159 invalidate_and_set_dirty(mr, addr1, l);
3160 break;
3161 case FLUSH_CACHE:
3162 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3163 break;
3164 }
3165 }
3166 len -= l;
3167 buf += l;
3168 addr += l;
3169 }
3170 rcu_read_unlock();
3171 }
3172
3173 /* used for ROM loading : can write in RAM and ROM */
3174 void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
3175 const uint8_t *buf, int len)
3176 {
3177 cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
3178 }
3179
3180 void cpu_flush_icache_range(hwaddr start, int len)
3181 {
3182 /*
3183 * This function should do the same thing as an icache flush that was
3184 * triggered from within the guest. For TCG we are always cache coherent,
3185 * so there is no need to flush anything. For KVM / Xen we need to flush
3186 * the host's instruction cache at least.
3187 */
3188 if (tcg_enabled()) {
3189 return;
3190 }
3191
3192 cpu_physical_memory_write_rom_internal(&address_space_memory,
3193 start, NULL, len, FLUSH_CACHE);
3194 }
3195
3196 typedef struct {
3197 MemoryRegion *mr;
3198 void *buffer;
3199 hwaddr addr;
3200 hwaddr len;
3201 bool in_use;
3202 } BounceBuffer;
3203
3204 static BounceBuffer bounce;
3205
3206 typedef struct MapClient {
3207 QEMUBH *bh;
3208 QLIST_ENTRY(MapClient) link;
3209 } MapClient;
3210
3211 QemuMutex map_client_list_lock;
3212 static QLIST_HEAD(map_client_list, MapClient) map_client_list
3213 = QLIST_HEAD_INITIALIZER(map_client_list);
3214
3215 static void cpu_unregister_map_client_do(MapClient *client)
3216 {
3217 QLIST_REMOVE(client, link);
3218 g_free(client);
3219 }
3220
3221 static void cpu_notify_map_clients_locked(void)
3222 {
3223 MapClient *client;
3224
3225 while (!QLIST_EMPTY(&map_client_list)) {
3226 client = QLIST_FIRST(&map_client_list);
3227 qemu_bh_schedule(client->bh);
3228 cpu_unregister_map_client_do(client);
3229 }
3230 }
3231
3232 void cpu_register_map_client(QEMUBH *bh)
3233 {
3234 MapClient *client = g_malloc(sizeof(*client));
3235
3236 qemu_mutex_lock(&map_client_list_lock);
3237 client->bh = bh;
3238 QLIST_INSERT_HEAD(&map_client_list, client, link);
3239 if (!atomic_read(&bounce.in_use)) {
3240 cpu_notify_map_clients_locked();
3241 }
3242 qemu_mutex_unlock(&map_client_list_lock);
3243 }
3244
3245 void cpu_exec_init_all(void)
3246 {
3247 qemu_mutex_init(&ram_list.mutex);
3248 /* The data structures we set up here depend on knowing the page size,
3249 * so no more changes can be made after this point.
3250 * In an ideal world, nothing we did before we had finished the
3251 * machine setup would care about the target page size, and we could
3252 * do this much later, rather than requiring board models to state
3253 * up front what their requirements are.
3254 */
3255 finalize_target_page_bits();
3256 io_mem_init();
3257 memory_map_init();
3258 qemu_mutex_init(&map_client_list_lock);
3259 }
3260
3261 void cpu_unregister_map_client(QEMUBH *bh)
3262 {
3263 MapClient *client;
3264
3265 qemu_mutex_lock(&map_client_list_lock);
3266 QLIST_FOREACH(client, &map_client_list, link) {
3267 if (client->bh == bh) {
3268 cpu_unregister_map_client_do(client);
3269 break;
3270 }
3271 }
3272 qemu_mutex_unlock(&map_client_list_lock);
3273 }
3274
3275 static void cpu_notify_map_clients(void)
3276 {
3277 qemu_mutex_lock(&map_client_list_lock);
3278 cpu_notify_map_clients_locked();
3279 qemu_mutex_unlock(&map_client_list_lock);
3280 }
3281
3282 static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
3283 bool is_write)
3284 {
3285 MemoryRegion *mr;
3286 hwaddr l, xlat;
3287
3288 rcu_read_lock();
3289 while (len > 0) {
3290 l = len;
3291 mr = flatview_translate(fv, addr, &xlat, &l, is_write);
3292 if (!memory_access_is_direct(mr, is_write)) {
3293 l = memory_access_size(mr, l, addr);
3294 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
3295 rcu_read_unlock();
3296 return false;
3297 }
3298 }
3299
3300 len -= l;
3301 addr += l;
3302 }
3303 rcu_read_unlock();
3304 return true;
3305 }
3306
3307 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3308 int len, bool is_write)
3309 {
3310 return flatview_access_valid(address_space_to_flatview(as),
3311 addr, len, is_write);
3312 }
3313
3314 static hwaddr
3315 flatview_extend_translation(FlatView *fv, hwaddr addr,
3316 hwaddr target_len,
3317 MemoryRegion *mr, hwaddr base, hwaddr len,
3318 bool is_write)
3319 {
3320 hwaddr done = 0;
3321 hwaddr xlat;
3322 MemoryRegion *this_mr;
3323
3324 for (;;) {
3325 target_len -= len;
3326 addr += len;
3327 done += len;
3328 if (target_len == 0) {
3329 return done;
3330 }
3331
3332 len = target_len;
3333 this_mr = flatview_translate(fv, addr, &xlat,
3334 &len, is_write);
3335 if (this_mr != mr || xlat != base + done) {
3336 return done;
3337 }
3338 }
3339 }
3340
3341 /* Map a physical memory region into a host virtual address.
3342 * May map a subset of the requested range, given by and returned in *plen.
3343 * May return NULL if resources needed to perform the mapping are exhausted.
3344 * Use only for reads OR writes - not for read-modify-write operations.
3345 * Use cpu_register_map_client() to know when retrying the map operation is
3346 * likely to succeed.
3347 */
3348 void *address_space_map(AddressSpace *as,
3349 hwaddr addr,
3350 hwaddr *plen,
3351 bool is_write)
3352 {
3353 hwaddr len = *plen;
3354 hwaddr l, xlat;
3355 MemoryRegion *mr;
3356 void *ptr;
3357 FlatView *fv = address_space_to_flatview(as);
3358
3359 if (len == 0) {
3360 return NULL;
3361 }
3362
3363 l = len;
3364 rcu_read_lock();
3365 mr = flatview_translate(fv, addr, &xlat, &l, is_write);
3366
3367 if (!memory_access_is_direct(mr, is_write)) {
3368 if (atomic_xchg(&bounce.in_use, true)) {
3369 rcu_read_unlock();
3370 return NULL;
3371 }
3372 /* Avoid unbounded allocations */
3373 l = MIN(l, TARGET_PAGE_SIZE);
3374 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3375 bounce.addr = addr;
3376 bounce.len = l;
3377
3378 memory_region_ref(mr);
3379 bounce.mr = mr;
3380 if (!is_write) {
3381 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3382 bounce.buffer, l);
3383 }
3384
3385 rcu_read_unlock();
3386 *plen = l;
3387 return bounce.buffer;
3388 }
3389
3390
3391 memory_region_ref(mr);
3392 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3393 l, is_write);
3394 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3395 rcu_read_unlock();
3396
3397 return ptr;
3398 }
3399
3400 /* Unmaps a memory region previously mapped by address_space_map().
3401 * Will also mark the memory as dirty if is_write == 1. access_len gives
3402 * the amount of memory that was actually read or written by the caller.
3403 */
3404 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3405 int is_write, hwaddr access_len)
3406 {
3407 if (buffer != bounce.buffer) {
3408 MemoryRegion *mr;
3409 ram_addr_t addr1;
3410
3411 mr = memory_region_from_host(buffer, &addr1);
3412 assert(mr != NULL);
3413 if (is_write) {
3414 invalidate_and_set_dirty(mr, addr1, access_len);
3415 }
3416 if (xen_enabled()) {
3417 xen_invalidate_map_cache_entry(buffer);
3418 }
3419 memory_region_unref(mr);
3420 return;
3421 }
3422 if (is_write) {
3423 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3424 bounce.buffer, access_len);
3425 }
3426 qemu_vfree(bounce.buffer);
3427 bounce.buffer = NULL;
3428 memory_region_unref(bounce.mr);
3429 atomic_mb_set(&bounce.in_use, false);
3430 cpu_notify_map_clients();
3431 }
3432
3433 void *cpu_physical_memory_map(hwaddr addr,
3434 hwaddr *plen,
3435 int is_write)
3436 {
3437 return address_space_map(&address_space_memory, addr, plen, is_write);
3438 }
3439
3440 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3441 int is_write, hwaddr access_len)
3442 {
3443 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3444 }
3445
3446 #define ARG1_DECL AddressSpace *as
3447 #define ARG1 as
3448 #define SUFFIX
3449 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3450 #define IS_DIRECT(mr, is_write) memory_access_is_direct(mr, is_write)
3451 #define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3452 #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3453 #define RCU_READ_LOCK(...) rcu_read_lock()
3454 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3455 #include "memory_ldst.inc.c"
3456
3457 int64_t address_space_cache_init(MemoryRegionCache *cache,
3458 AddressSpace *as,
3459 hwaddr addr,
3460 hwaddr len,
3461 bool is_write)
3462 {
3463 cache->len = len;
3464 cache->as = as;
3465 cache->xlat = addr;
3466 return len;
3467 }
3468
3469 void address_space_cache_invalidate(MemoryRegionCache *cache,
3470 hwaddr addr,
3471 hwaddr access_len)
3472 {
3473 }
3474
3475 void address_space_cache_destroy(MemoryRegionCache *cache)
3476 {
3477 cache->as = NULL;
3478 }
3479
3480 #define ARG1_DECL MemoryRegionCache *cache
3481 #define ARG1 cache
3482 #define SUFFIX _cached
3483 #define TRANSLATE(addr, ...) \
3484 address_space_translate(cache->as, cache->xlat + (addr), __VA_ARGS__)
3485 #define IS_DIRECT(mr, is_write) true
3486 #define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3487 #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3488 #define RCU_READ_LOCK() rcu_read_lock()
3489 #define RCU_READ_UNLOCK() rcu_read_unlock()
3490 #include "memory_ldst.inc.c"
3491
3492 /* virtual memory access for debug (includes writing to ROM) */
3493 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3494 uint8_t *buf, int len, int is_write)
3495 {
3496 int l;
3497 hwaddr phys_addr;
3498 target_ulong page;
3499
3500 cpu_synchronize_state(cpu);
3501 while (len > 0) {
3502 int asidx;
3503 MemTxAttrs attrs;
3504
3505 page = addr & TARGET_PAGE_MASK;
3506 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3507 asidx = cpu_asidx_from_attrs(cpu, attrs);
3508 /* if no physical page mapped, return an error */
3509 if (phys_addr == -1)
3510 return -1;
3511 l = (page + TARGET_PAGE_SIZE) - addr;
3512 if (l > len)
3513 l = len;
3514 phys_addr += (addr & ~TARGET_PAGE_MASK);
3515 if (is_write) {
3516 cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
3517 phys_addr, buf, l);
3518 } else {
3519 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3520 MEMTXATTRS_UNSPECIFIED,
3521 buf, l, 0);
3522 }
3523 len -= l;
3524 buf += l;
3525 addr += l;
3526 }
3527 return 0;
3528 }
3529
3530 /*
3531 * Allows code that needs to deal with migration bitmaps etc to still be built
3532 * target independent.
3533 */
3534 size_t qemu_target_page_size(void)
3535 {
3536 return TARGET_PAGE_SIZE;
3537 }
3538
3539 int qemu_target_page_bits(void)
3540 {
3541 return TARGET_PAGE_BITS;
3542 }
3543
3544 int qemu_target_page_bits_min(void)
3545 {
3546 return TARGET_PAGE_BITS_MIN;
3547 }
3548 #endif
3549
3550 /*
3551 * A helper function for the _utterly broken_ virtio device model to find out if
3552 * it's running on a big endian machine. Don't do this at home kids!
3553 */
3554 bool target_words_bigendian(void);
3555 bool target_words_bigendian(void)
3556 {
3557 #if defined(TARGET_WORDS_BIGENDIAN)
3558 return true;
3559 #else
3560 return false;
3561 #endif
3562 }
3563
3564 #ifndef CONFIG_USER_ONLY
3565 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3566 {
3567 MemoryRegion*mr;
3568 hwaddr l = 1;
3569 bool res;
3570
3571 rcu_read_lock();
3572 mr = address_space_translate(&address_space_memory,
3573 phys_addr, &phys_addr, &l, false);
3574
3575 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3576 rcu_read_unlock();
3577 return res;
3578 }
3579
3580 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3581 {
3582 RAMBlock *block;
3583 int ret = 0;
3584
3585 rcu_read_lock();
3586 RAMBLOCK_FOREACH(block) {
3587 ret = func(block->idstr, block->host, block->offset,
3588 block->used_length, opaque);
3589 if (ret) {
3590 break;
3591 }
3592 }
3593 rcu_read_unlock();
3594 return ret;
3595 }
3596
3597 /*
3598 * Unmap pages of memory from start to start+length such that
3599 * they a) read as 0, b) Trigger whatever fault mechanism
3600 * the OS provides for postcopy.
3601 * The pages must be unmapped by the end of the function.
3602 * Returns: 0 on success, none-0 on failure
3603 *
3604 */
3605 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3606 {
3607 int ret = -1;
3608
3609 uint8_t *host_startaddr = rb->host + start;
3610
3611 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
3612 error_report("ram_block_discard_range: Unaligned start address: %p",
3613 host_startaddr);
3614 goto err;
3615 }
3616
3617 if ((start + length) <= rb->used_length) {
3618 uint8_t *host_endaddr = host_startaddr + length;
3619 if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
3620 error_report("ram_block_discard_range: Unaligned end address: %p",
3621 host_endaddr);
3622 goto err;
3623 }
3624
3625 errno = ENOTSUP; /* If we are missing MADVISE etc */
3626
3627 if (rb->page_size == qemu_host_page_size) {
3628 #if defined(CONFIG_MADVISE)
3629 /* Note: We need the madvise MADV_DONTNEED behaviour of definitely
3630 * freeing the page.
3631 */
3632 ret = madvise(host_startaddr, length, MADV_DONTNEED);
3633 #endif
3634 } else {
3635 /* Huge page case - unfortunately it can't do DONTNEED, but
3636 * it can do the equivalent by FALLOC_FL_PUNCH_HOLE in the
3637 * huge page file.
3638 */
3639 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3640 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3641 start, length);
3642 #endif
3643 }
3644 if (ret) {
3645 ret = -errno;
3646 error_report("ram_block_discard_range: Failed to discard range "
3647 "%s:%" PRIx64 " +%zx (%d)",
3648 rb->idstr, start, length, ret);
3649 }
3650 } else {
3651 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3652 "/%zx/" RAM_ADDR_FMT")",
3653 rb->idstr, start, length, rb->used_length);
3654 }
3655
3656 err:
3657 return ret;
3658 }
3659
3660 #endif
3661
3662 void page_size_init(void)
3663 {
3664 /* NOTE: we can always suppose that qemu_host_page_size >=
3665 TARGET_PAGE_SIZE */
3666 if (qemu_host_page_size == 0) {
3667 qemu_host_page_size = qemu_real_host_page_size;
3668 }
3669 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
3670 qemu_host_page_size = TARGET_PAGE_SIZE;
3671 }
3672 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
3673 }
3674
3675 #if !defined(CONFIG_USER_ONLY)
3676
3677 static void mtree_print_phys_entries(fprintf_function mon, void *f,
3678 int start, int end, int skip, int ptr)
3679 {
3680 if (start == end - 1) {
3681 mon(f, "\t%3d ", start);
3682 } else {
3683 mon(f, "\t%3d..%-3d ", start, end - 1);
3684 }
3685 mon(f, " skip=%d ", skip);
3686 if (ptr == PHYS_MAP_NODE_NIL) {
3687 mon(f, " ptr=NIL");
3688 } else if (!skip) {
3689 mon(f, " ptr=#%d", ptr);
3690 } else {
3691 mon(f, " ptr=[%d]", ptr);
3692 }
3693 mon(f, "\n");
3694 }
3695
3696 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3697 int128_sub((size), int128_one())) : 0)
3698
3699 void mtree_print_dispatch(fprintf_function mon, void *f,
3700 AddressSpaceDispatch *d, MemoryRegion *root)
3701 {
3702 int i;
3703
3704 mon(f, " Dispatch\n");
3705 mon(f, " Physical sections\n");
3706
3707 for (i = 0; i < d->map.sections_nb; ++i) {
3708 MemoryRegionSection *s = d->map.sections + i;
3709 const char *names[] = { " [unassigned]", " [not dirty]",
3710 " [ROM]", " [watch]" };
3711
3712 mon(f, " #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx " %s%s%s%s%s",
3713 i,
3714 s->offset_within_address_space,
3715 s->offset_within_address_space + MR_SIZE(s->mr->size),
3716 s->mr->name ? s->mr->name : "(noname)",
3717 i < ARRAY_SIZE(names) ? names[i] : "",
3718 s->mr == root ? " [ROOT]" : "",
3719 s == d->mru_section ? " [MRU]" : "",
3720 s->mr->is_iommu ? " [iommu]" : "");
3721
3722 if (s->mr->alias) {
3723 mon(f, " alias=%s", s->mr->alias->name ?
3724 s->mr->alias->name : "noname");
3725 }
3726 mon(f, "\n");
3727 }
3728
3729 mon(f, " Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
3730 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
3731 for (i = 0; i < d->map.nodes_nb; ++i) {
3732 int j, jprev;
3733 PhysPageEntry prev;
3734 Node *n = d->map.nodes + i;
3735
3736 mon(f, " [%d]\n", i);
3737
3738 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
3739 PhysPageEntry *pe = *n + j;
3740
3741 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
3742 continue;
3743 }
3744
3745 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
3746
3747 jprev = j;
3748 prev = *pe;
3749 }
3750
3751 if (jprev != ARRAY_SIZE(*n)) {
3752 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
3753 }
3754 }
3755 }
3756
3757 #endif