]> git.proxmox.com Git - mirror_qemu.git/blob - exec.c
Get bsd-user host page protection code working on FreeBSD hosts
[mirror_qemu.git] / exec.c
1 /*
2 * virtual page mapping and translated block handling
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "config.h"
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
26 #include <stdlib.h>
27 #include <stdio.h>
28 #include <stdarg.h>
29 #include <string.h>
30 #include <errno.h>
31 #include <unistd.h>
32 #include <inttypes.h>
33
34 #include "cpu.h"
35 #include "exec-all.h"
36 #include "qemu-common.h"
37 #include "tcg.h"
38 #include "hw/hw.h"
39 #include "osdep.h"
40 #include "kvm.h"
41 #include "qemu-timer.h"
42 #if defined(CONFIG_USER_ONLY)
43 #include <qemu.h>
44 #include <signal.h>
45 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
46 #include <sys/param.h>
47 #if __FreeBSD_version >= 700104
48 #define HAVE_KINFO_GETVMMAP
49 #define sigqueue sigqueue_freebsd /* avoid redefinition */
50 #include <sys/time.h>
51 #include <sys/proc.h>
52 #include <machine/profile.h>
53 #define _KERNEL
54 #include <sys/user.h>
55 #undef _KERNEL
56 #undef sigqueue
57 #include <libutil.h>
58 #endif
59 #endif
60 #endif
61
62 //#define DEBUG_TB_INVALIDATE
63 //#define DEBUG_FLUSH
64 //#define DEBUG_TLB
65 //#define DEBUG_UNASSIGNED
66
67 /* make various TB consistency checks */
68 //#define DEBUG_TB_CHECK
69 //#define DEBUG_TLB_CHECK
70
71 //#define DEBUG_IOPORT
72 //#define DEBUG_SUBPAGE
73
74 #if !defined(CONFIG_USER_ONLY)
75 /* TB consistency checks only implemented for usermode emulation. */
76 #undef DEBUG_TB_CHECK
77 #endif
78
79 #define SMC_BITMAP_USE_THRESHOLD 10
80
81 static TranslationBlock *tbs;
82 int code_gen_max_blocks;
83 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
84 static int nb_tbs;
85 /* any access to the tbs or the page table must use this lock */
86 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
87
88 #if defined(__arm__) || defined(__sparc_v9__)
89 /* The prologue must be reachable with a direct jump. ARM and Sparc64
90 have limited branch ranges (possibly also PPC) so place it in a
91 section close to code segment. */
92 #define code_gen_section \
93 __attribute__((__section__(".gen_code"))) \
94 __attribute__((aligned (32)))
95 #elif defined(_WIN32)
96 /* Maximum alignment for Win32 is 16. */
97 #define code_gen_section \
98 __attribute__((aligned (16)))
99 #else
100 #define code_gen_section \
101 __attribute__((aligned (32)))
102 #endif
103
104 uint8_t code_gen_prologue[1024] code_gen_section;
105 static uint8_t *code_gen_buffer;
106 static unsigned long code_gen_buffer_size;
107 /* threshold to flush the translated code buffer */
108 static unsigned long code_gen_buffer_max_size;
109 uint8_t *code_gen_ptr;
110
111 #if !defined(CONFIG_USER_ONLY)
112 int phys_ram_fd;
113 uint8_t *phys_ram_dirty;
114 static int in_migration;
115
116 typedef struct RAMBlock {
117 uint8_t *host;
118 ram_addr_t offset;
119 ram_addr_t length;
120 struct RAMBlock *next;
121 } RAMBlock;
122
123 static RAMBlock *ram_blocks;
124 /* TODO: When we implement (and use) ram deallocation (e.g. for hotplug)
125 then we can no longer assume contiguous ram offsets, and external uses
126 of this variable will break. */
127 ram_addr_t last_ram_offset;
128 #endif
129
130 CPUState *first_cpu;
131 /* current CPU in the current thread. It is only valid inside
132 cpu_exec() */
133 CPUState *cpu_single_env;
134 /* 0 = Do not count executed instructions.
135 1 = Precise instruction counting.
136 2 = Adaptive rate instruction counting. */
137 int use_icount = 0;
138 /* Current instruction counter. While executing translated code this may
139 include some instructions that have not yet been executed. */
140 int64_t qemu_icount;
141
142 typedef struct PageDesc {
143 /* list of TBs intersecting this ram page */
144 TranslationBlock *first_tb;
145 /* in order to optimize self modifying code, we count the number
146 of lookups we do to a given page to use a bitmap */
147 unsigned int code_write_count;
148 uint8_t *code_bitmap;
149 #if defined(CONFIG_USER_ONLY)
150 unsigned long flags;
151 #endif
152 } PageDesc;
153
154 /* In system mode we want L1_MAP to be based on ram offsets,
155 while in user mode we want it to be based on virtual addresses. */
156 #if !defined(CONFIG_USER_ONLY)
157 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
158 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
159 #else
160 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
161 #endif
162 #else
163 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
164 #endif
165
166 /* Size of the L2 (and L3, etc) page tables. */
167 #define L2_BITS 10
168 #define L2_SIZE (1 << L2_BITS)
169
170 /* The bits remaining after N lower levels of page tables. */
171 #define P_L1_BITS_REM \
172 ((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
173 #define V_L1_BITS_REM \
174 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
175
176 /* Size of the L1 page table. Avoid silly small sizes. */
177 #if P_L1_BITS_REM < 4
178 #define P_L1_BITS (P_L1_BITS_REM + L2_BITS)
179 #else
180 #define P_L1_BITS P_L1_BITS_REM
181 #endif
182
183 #if V_L1_BITS_REM < 4
184 #define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
185 #else
186 #define V_L1_BITS V_L1_BITS_REM
187 #endif
188
189 #define P_L1_SIZE ((target_phys_addr_t)1 << P_L1_BITS)
190 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
191
192 #define P_L1_SHIFT (TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - P_L1_BITS)
193 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
194
195 unsigned long qemu_real_host_page_size;
196 unsigned long qemu_host_page_bits;
197 unsigned long qemu_host_page_size;
198 unsigned long qemu_host_page_mask;
199
200 /* This is a multi-level map on the virtual address space.
201 The bottom level has pointers to PageDesc. */
202 static void *l1_map[V_L1_SIZE];
203
204 #if !defined(CONFIG_USER_ONLY)
205 typedef struct PhysPageDesc {
206 /* offset in host memory of the page + io_index in the low bits */
207 ram_addr_t phys_offset;
208 ram_addr_t region_offset;
209 } PhysPageDesc;
210
211 /* This is a multi-level map on the physical address space.
212 The bottom level has pointers to PhysPageDesc. */
213 static void *l1_phys_map[P_L1_SIZE];
214
215 static void io_mem_init(void);
216
217 /* io memory support */
218 CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
219 CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
220 void *io_mem_opaque[IO_MEM_NB_ENTRIES];
221 static char io_mem_used[IO_MEM_NB_ENTRIES];
222 static int io_mem_watch;
223 #endif
224
225 /* log support */
226 #ifdef WIN32
227 static const char *logfilename = "qemu.log";
228 #else
229 static const char *logfilename = "/tmp/qemu.log";
230 #endif
231 FILE *logfile;
232 int loglevel;
233 static int log_append = 0;
234
235 /* statistics */
236 #if !defined(CONFIG_USER_ONLY)
237 static int tlb_flush_count;
238 #endif
239 static int tb_flush_count;
240 static int tb_phys_invalidate_count;
241
242 #ifdef _WIN32
243 static void map_exec(void *addr, long size)
244 {
245 DWORD old_protect;
246 VirtualProtect(addr, size,
247 PAGE_EXECUTE_READWRITE, &old_protect);
248
249 }
250 #else
251 static void map_exec(void *addr, long size)
252 {
253 unsigned long start, end, page_size;
254
255 page_size = getpagesize();
256 start = (unsigned long)addr;
257 start &= ~(page_size - 1);
258
259 end = (unsigned long)addr + size;
260 end += page_size - 1;
261 end &= ~(page_size - 1);
262
263 mprotect((void *)start, end - start,
264 PROT_READ | PROT_WRITE | PROT_EXEC);
265 }
266 #endif
267
268 static void page_init(void)
269 {
270 /* NOTE: we can always suppose that qemu_host_page_size >=
271 TARGET_PAGE_SIZE */
272 #ifdef _WIN32
273 {
274 SYSTEM_INFO system_info;
275
276 GetSystemInfo(&system_info);
277 qemu_real_host_page_size = system_info.dwPageSize;
278 }
279 #else
280 qemu_real_host_page_size = getpagesize();
281 #endif
282 if (qemu_host_page_size == 0)
283 qemu_host_page_size = qemu_real_host_page_size;
284 if (qemu_host_page_size < TARGET_PAGE_SIZE)
285 qemu_host_page_size = TARGET_PAGE_SIZE;
286 qemu_host_page_bits = 0;
287 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
288 qemu_host_page_bits++;
289 qemu_host_page_mask = ~(qemu_host_page_size - 1);
290
291 #if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
292 {
293 #ifdef HAVE_KINFO_GETVMMAP
294 struct kinfo_vmentry *freep;
295 int i, cnt;
296
297 freep = kinfo_getvmmap(getpid(), &cnt);
298 if (freep) {
299 mmap_lock();
300 for (i = 0; i < cnt; i++) {
301 unsigned long startaddr, endaddr;
302
303 startaddr = freep[i].kve_start;
304 endaddr = freep[i].kve_end;
305 if (h2g_valid(startaddr)) {
306 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
307
308 if (h2g_valid(endaddr)) {
309 endaddr = h2g(endaddr);
310 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
311 } else {
312 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
313 endaddr = ~0ul;
314 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
315 #endif
316 }
317 }
318 }
319 free(freep);
320 mmap_unlock();
321 }
322 #else
323 FILE *f;
324
325 last_brk = (unsigned long)sbrk(0);
326
327 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
328 f = fopen("/compat/linux/proc/self/maps", "r");
329 #else
330 f = fopen("/proc/self/maps", "r");
331 #endif
332 if (f) {
333 mmap_lock();
334
335 do {
336 unsigned long startaddr, endaddr;
337 int n;
338
339 n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
340
341 if (n == 2 && h2g_valid(startaddr)) {
342 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
343
344 if (h2g_valid(endaddr)) {
345 endaddr = h2g(endaddr);
346 } else {
347 endaddr = ~0ul;
348 }
349 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
350 }
351 } while (!feof(f));
352
353 fclose(f);
354 mmap_unlock();
355 }
356 #endif
357 }
358 #endif
359 }
360
361 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
362 {
363 PageDesc *pd;
364 void **lp;
365 int i;
366
367 #if defined(CONFIG_USER_ONLY)
368 /* We can't use qemu_malloc because it may recurse into a locked mutex.
369 Neither can we record the new pages we reserve while allocating a
370 given page because that may recurse into an unallocated page table
371 entry. Stuff the allocations we do make into a queue and process
372 them after having completed one entire page table allocation. */
373
374 unsigned long reserve[2 * (V_L1_SHIFT / L2_BITS)];
375 int reserve_idx = 0;
376
377 # define ALLOC(P, SIZE) \
378 do { \
379 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
380 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
381 if (h2g_valid(P)) { \
382 reserve[reserve_idx] = h2g(P); \
383 reserve[reserve_idx + 1] = SIZE; \
384 reserve_idx += 2; \
385 } \
386 } while (0)
387 #else
388 # define ALLOC(P, SIZE) \
389 do { P = qemu_mallocz(SIZE); } while (0)
390 #endif
391
392 /* Level 1. Always allocated. */
393 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
394
395 /* Level 2..N-1. */
396 for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
397 void **p = *lp;
398
399 if (p == NULL) {
400 if (!alloc) {
401 return NULL;
402 }
403 ALLOC(p, sizeof(void *) * L2_SIZE);
404 *lp = p;
405 }
406
407 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
408 }
409
410 pd = *lp;
411 if (pd == NULL) {
412 if (!alloc) {
413 return NULL;
414 }
415 ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
416 *lp = pd;
417 }
418
419 #undef ALLOC
420 #if defined(CONFIG_USER_ONLY)
421 for (i = 0; i < reserve_idx; i += 2) {
422 unsigned long addr = reserve[i];
423 unsigned long len = reserve[i + 1];
424
425 page_set_flags(addr & TARGET_PAGE_MASK,
426 TARGET_PAGE_ALIGN(addr + len),
427 PAGE_RESERVED);
428 }
429 #endif
430
431 return pd + (index & (L2_SIZE - 1));
432 }
433
434 static inline PageDesc *page_find(tb_page_addr_t index)
435 {
436 return page_find_alloc(index, 0);
437 }
438
439 #if !defined(CONFIG_USER_ONLY)
440 static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
441 {
442 PhysPageDesc *pd;
443 void **lp;
444 int i;
445
446 /* Level 1. Always allocated. */
447 lp = l1_phys_map + ((index >> P_L1_SHIFT) & (P_L1_SIZE - 1));
448
449 /* Level 2..N-1. */
450 for (i = P_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
451 void **p = *lp;
452 if (p == NULL) {
453 if (!alloc) {
454 return NULL;
455 }
456 *lp = p = qemu_mallocz(sizeof(void *) * L2_SIZE);
457 }
458 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
459 }
460
461 pd = *lp;
462 if (pd == NULL) {
463 int i;
464
465 if (!alloc) {
466 return NULL;
467 }
468
469 *lp = pd = qemu_malloc(sizeof(PhysPageDesc) * L2_SIZE);
470
471 for (i = 0; i < L2_SIZE; i++) {
472 pd[i].phys_offset = IO_MEM_UNASSIGNED;
473 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
474 }
475 }
476
477 return pd + (index & (L2_SIZE - 1));
478 }
479
480 static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
481 {
482 return phys_page_find_alloc(index, 0);
483 }
484
485 static void tlb_protect_code(ram_addr_t ram_addr);
486 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
487 target_ulong vaddr);
488 #define mmap_lock() do { } while(0)
489 #define mmap_unlock() do { } while(0)
490 #endif
491
492 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
493
494 #if defined(CONFIG_USER_ONLY)
495 /* Currently it is not recommended to allocate big chunks of data in
496 user mode. It will change when a dedicated libc will be used */
497 #define USE_STATIC_CODE_GEN_BUFFER
498 #endif
499
500 #ifdef USE_STATIC_CODE_GEN_BUFFER
501 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
502 #endif
503
504 static void code_gen_alloc(unsigned long tb_size)
505 {
506 #ifdef USE_STATIC_CODE_GEN_BUFFER
507 code_gen_buffer = static_code_gen_buffer;
508 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
509 map_exec(code_gen_buffer, code_gen_buffer_size);
510 #else
511 code_gen_buffer_size = tb_size;
512 if (code_gen_buffer_size == 0) {
513 #if defined(CONFIG_USER_ONLY)
514 /* in user mode, phys_ram_size is not meaningful */
515 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
516 #else
517 /* XXX: needs adjustments */
518 code_gen_buffer_size = (unsigned long)(ram_size / 4);
519 #endif
520 }
521 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
522 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
523 /* The code gen buffer location may have constraints depending on
524 the host cpu and OS */
525 #if defined(__linux__)
526 {
527 int flags;
528 void *start = NULL;
529
530 flags = MAP_PRIVATE | MAP_ANONYMOUS;
531 #if defined(__x86_64__)
532 flags |= MAP_32BIT;
533 /* Cannot map more than that */
534 if (code_gen_buffer_size > (800 * 1024 * 1024))
535 code_gen_buffer_size = (800 * 1024 * 1024);
536 #elif defined(__sparc_v9__)
537 // Map the buffer below 2G, so we can use direct calls and branches
538 flags |= MAP_FIXED;
539 start = (void *) 0x60000000UL;
540 if (code_gen_buffer_size > (512 * 1024 * 1024))
541 code_gen_buffer_size = (512 * 1024 * 1024);
542 #elif defined(__arm__)
543 /* Map the buffer below 32M, so we can use direct calls and branches */
544 flags |= MAP_FIXED;
545 start = (void *) 0x01000000UL;
546 if (code_gen_buffer_size > 16 * 1024 * 1024)
547 code_gen_buffer_size = 16 * 1024 * 1024;
548 #endif
549 code_gen_buffer = mmap(start, code_gen_buffer_size,
550 PROT_WRITE | PROT_READ | PROT_EXEC,
551 flags, -1, 0);
552 if (code_gen_buffer == MAP_FAILED) {
553 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
554 exit(1);
555 }
556 }
557 #elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
558 {
559 int flags;
560 void *addr = NULL;
561 flags = MAP_PRIVATE | MAP_ANONYMOUS;
562 #if defined(__x86_64__)
563 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
564 * 0x40000000 is free */
565 flags |= MAP_FIXED;
566 addr = (void *)0x40000000;
567 /* Cannot map more than that */
568 if (code_gen_buffer_size > (800 * 1024 * 1024))
569 code_gen_buffer_size = (800 * 1024 * 1024);
570 #endif
571 code_gen_buffer = mmap(addr, code_gen_buffer_size,
572 PROT_WRITE | PROT_READ | PROT_EXEC,
573 flags, -1, 0);
574 if (code_gen_buffer == MAP_FAILED) {
575 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
576 exit(1);
577 }
578 }
579 #else
580 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
581 map_exec(code_gen_buffer, code_gen_buffer_size);
582 #endif
583 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
584 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
585 code_gen_buffer_max_size = code_gen_buffer_size -
586 code_gen_max_block_size();
587 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
588 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
589 }
590
591 /* Must be called before using the QEMU cpus. 'tb_size' is the size
592 (in bytes) allocated to the translation buffer. Zero means default
593 size. */
594 void cpu_exec_init_all(unsigned long tb_size)
595 {
596 cpu_gen_init();
597 code_gen_alloc(tb_size);
598 code_gen_ptr = code_gen_buffer;
599 page_init();
600 #if !defined(CONFIG_USER_ONLY)
601 io_mem_init();
602 #endif
603 }
604
605 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
606
607 static int cpu_common_post_load(void *opaque, int version_id)
608 {
609 CPUState *env = opaque;
610
611 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
612 version_id is increased. */
613 env->interrupt_request &= ~0x01;
614 tlb_flush(env, 1);
615
616 return 0;
617 }
618
619 static const VMStateDescription vmstate_cpu_common = {
620 .name = "cpu_common",
621 .version_id = 1,
622 .minimum_version_id = 1,
623 .minimum_version_id_old = 1,
624 .post_load = cpu_common_post_load,
625 .fields = (VMStateField []) {
626 VMSTATE_UINT32(halted, CPUState),
627 VMSTATE_UINT32(interrupt_request, CPUState),
628 VMSTATE_END_OF_LIST()
629 }
630 };
631 #endif
632
633 CPUState *qemu_get_cpu(int cpu)
634 {
635 CPUState *env = first_cpu;
636
637 while (env) {
638 if (env->cpu_index == cpu)
639 break;
640 env = env->next_cpu;
641 }
642
643 return env;
644 }
645
646 void cpu_exec_init(CPUState *env)
647 {
648 CPUState **penv;
649 int cpu_index;
650
651 #if defined(CONFIG_USER_ONLY)
652 cpu_list_lock();
653 #endif
654 env->next_cpu = NULL;
655 penv = &first_cpu;
656 cpu_index = 0;
657 while (*penv != NULL) {
658 penv = &(*penv)->next_cpu;
659 cpu_index++;
660 }
661 env->cpu_index = cpu_index;
662 env->numa_node = 0;
663 QTAILQ_INIT(&env->breakpoints);
664 QTAILQ_INIT(&env->watchpoints);
665 *penv = env;
666 #if defined(CONFIG_USER_ONLY)
667 cpu_list_unlock();
668 #endif
669 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
670 vmstate_register(cpu_index, &vmstate_cpu_common, env);
671 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
672 cpu_save, cpu_load, env);
673 #endif
674 }
675
676 static inline void invalidate_page_bitmap(PageDesc *p)
677 {
678 if (p->code_bitmap) {
679 qemu_free(p->code_bitmap);
680 p->code_bitmap = NULL;
681 }
682 p->code_write_count = 0;
683 }
684
685 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
686
687 static void page_flush_tb_1 (int level, void **lp)
688 {
689 int i;
690
691 if (*lp == NULL) {
692 return;
693 }
694 if (level == 0) {
695 PageDesc *pd = *lp;
696 for (i = 0; i < L2_SIZE; ++i) {
697 pd[i].first_tb = NULL;
698 invalidate_page_bitmap(pd + i);
699 }
700 } else {
701 void **pp = *lp;
702 for (i = 0; i < L2_SIZE; ++i) {
703 page_flush_tb_1 (level - 1, pp + i);
704 }
705 }
706 }
707
708 static void page_flush_tb(void)
709 {
710 int i;
711 for (i = 0; i < V_L1_SIZE; i++) {
712 page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
713 }
714 }
715
716 /* flush all the translation blocks */
717 /* XXX: tb_flush is currently not thread safe */
718 void tb_flush(CPUState *env1)
719 {
720 CPUState *env;
721 #if defined(DEBUG_FLUSH)
722 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
723 (unsigned long)(code_gen_ptr - code_gen_buffer),
724 nb_tbs, nb_tbs > 0 ?
725 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
726 #endif
727 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
728 cpu_abort(env1, "Internal error: code buffer overflow\n");
729
730 nb_tbs = 0;
731
732 for(env = first_cpu; env != NULL; env = env->next_cpu) {
733 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
734 }
735
736 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
737 page_flush_tb();
738
739 code_gen_ptr = code_gen_buffer;
740 /* XXX: flush processor icache at this point if cache flush is
741 expensive */
742 tb_flush_count++;
743 }
744
745 #ifdef DEBUG_TB_CHECK
746
747 static void tb_invalidate_check(target_ulong address)
748 {
749 TranslationBlock *tb;
750 int i;
751 address &= TARGET_PAGE_MASK;
752 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
753 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
754 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
755 address >= tb->pc + tb->size)) {
756 printf("ERROR invalidate: address=" TARGET_FMT_lx
757 " PC=%08lx size=%04x\n",
758 address, (long)tb->pc, tb->size);
759 }
760 }
761 }
762 }
763
764 /* verify that all the pages have correct rights for code */
765 static void tb_page_check(void)
766 {
767 TranslationBlock *tb;
768 int i, flags1, flags2;
769
770 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
771 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
772 flags1 = page_get_flags(tb->pc);
773 flags2 = page_get_flags(tb->pc + tb->size - 1);
774 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
775 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
776 (long)tb->pc, tb->size, flags1, flags2);
777 }
778 }
779 }
780 }
781
782 #endif
783
784 /* invalidate one TB */
785 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
786 int next_offset)
787 {
788 TranslationBlock *tb1;
789 for(;;) {
790 tb1 = *ptb;
791 if (tb1 == tb) {
792 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
793 break;
794 }
795 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
796 }
797 }
798
799 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
800 {
801 TranslationBlock *tb1;
802 unsigned int n1;
803
804 for(;;) {
805 tb1 = *ptb;
806 n1 = (long)tb1 & 3;
807 tb1 = (TranslationBlock *)((long)tb1 & ~3);
808 if (tb1 == tb) {
809 *ptb = tb1->page_next[n1];
810 break;
811 }
812 ptb = &tb1->page_next[n1];
813 }
814 }
815
816 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
817 {
818 TranslationBlock *tb1, **ptb;
819 unsigned int n1;
820
821 ptb = &tb->jmp_next[n];
822 tb1 = *ptb;
823 if (tb1) {
824 /* find tb(n) in circular list */
825 for(;;) {
826 tb1 = *ptb;
827 n1 = (long)tb1 & 3;
828 tb1 = (TranslationBlock *)((long)tb1 & ~3);
829 if (n1 == n && tb1 == tb)
830 break;
831 if (n1 == 2) {
832 ptb = &tb1->jmp_first;
833 } else {
834 ptb = &tb1->jmp_next[n1];
835 }
836 }
837 /* now we can suppress tb(n) from the list */
838 *ptb = tb->jmp_next[n];
839
840 tb->jmp_next[n] = NULL;
841 }
842 }
843
844 /* reset the jump entry 'n' of a TB so that it is not chained to
845 another TB */
846 static inline void tb_reset_jump(TranslationBlock *tb, int n)
847 {
848 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
849 }
850
851 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
852 {
853 CPUState *env;
854 PageDesc *p;
855 unsigned int h, n1;
856 tb_page_addr_t phys_pc;
857 TranslationBlock *tb1, *tb2;
858
859 /* remove the TB from the hash list */
860 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
861 h = tb_phys_hash_func(phys_pc);
862 tb_remove(&tb_phys_hash[h], tb,
863 offsetof(TranslationBlock, phys_hash_next));
864
865 /* remove the TB from the page list */
866 if (tb->page_addr[0] != page_addr) {
867 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
868 tb_page_remove(&p->first_tb, tb);
869 invalidate_page_bitmap(p);
870 }
871 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
872 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
873 tb_page_remove(&p->first_tb, tb);
874 invalidate_page_bitmap(p);
875 }
876
877 tb_invalidated_flag = 1;
878
879 /* remove the TB from the hash list */
880 h = tb_jmp_cache_hash_func(tb->pc);
881 for(env = first_cpu; env != NULL; env = env->next_cpu) {
882 if (env->tb_jmp_cache[h] == tb)
883 env->tb_jmp_cache[h] = NULL;
884 }
885
886 /* suppress this TB from the two jump lists */
887 tb_jmp_remove(tb, 0);
888 tb_jmp_remove(tb, 1);
889
890 /* suppress any remaining jumps to this TB */
891 tb1 = tb->jmp_first;
892 for(;;) {
893 n1 = (long)tb1 & 3;
894 if (n1 == 2)
895 break;
896 tb1 = (TranslationBlock *)((long)tb1 & ~3);
897 tb2 = tb1->jmp_next[n1];
898 tb_reset_jump(tb1, n1);
899 tb1->jmp_next[n1] = NULL;
900 tb1 = tb2;
901 }
902 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
903
904 tb_phys_invalidate_count++;
905 }
906
907 static inline void set_bits(uint8_t *tab, int start, int len)
908 {
909 int end, mask, end1;
910
911 end = start + len;
912 tab += start >> 3;
913 mask = 0xff << (start & 7);
914 if ((start & ~7) == (end & ~7)) {
915 if (start < end) {
916 mask &= ~(0xff << (end & 7));
917 *tab |= mask;
918 }
919 } else {
920 *tab++ |= mask;
921 start = (start + 8) & ~7;
922 end1 = end & ~7;
923 while (start < end1) {
924 *tab++ = 0xff;
925 start += 8;
926 }
927 if (start < end) {
928 mask = ~(0xff << (end & 7));
929 *tab |= mask;
930 }
931 }
932 }
933
934 static void build_page_bitmap(PageDesc *p)
935 {
936 int n, tb_start, tb_end;
937 TranslationBlock *tb;
938
939 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
940
941 tb = p->first_tb;
942 while (tb != NULL) {
943 n = (long)tb & 3;
944 tb = (TranslationBlock *)((long)tb & ~3);
945 /* NOTE: this is subtle as a TB may span two physical pages */
946 if (n == 0) {
947 /* NOTE: tb_end may be after the end of the page, but
948 it is not a problem */
949 tb_start = tb->pc & ~TARGET_PAGE_MASK;
950 tb_end = tb_start + tb->size;
951 if (tb_end > TARGET_PAGE_SIZE)
952 tb_end = TARGET_PAGE_SIZE;
953 } else {
954 tb_start = 0;
955 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
956 }
957 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
958 tb = tb->page_next[n];
959 }
960 }
961
962 TranslationBlock *tb_gen_code(CPUState *env,
963 target_ulong pc, target_ulong cs_base,
964 int flags, int cflags)
965 {
966 TranslationBlock *tb;
967 uint8_t *tc_ptr;
968 tb_page_addr_t phys_pc, phys_page2;
969 target_ulong virt_page2;
970 int code_gen_size;
971
972 phys_pc = get_page_addr_code(env, pc);
973 tb = tb_alloc(pc);
974 if (!tb) {
975 /* flush must be done */
976 tb_flush(env);
977 /* cannot fail at this point */
978 tb = tb_alloc(pc);
979 /* Don't forget to invalidate previous TB info. */
980 tb_invalidated_flag = 1;
981 }
982 tc_ptr = code_gen_ptr;
983 tb->tc_ptr = tc_ptr;
984 tb->cs_base = cs_base;
985 tb->flags = flags;
986 tb->cflags = cflags;
987 cpu_gen_code(env, tb, &code_gen_size);
988 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
989
990 /* check next page if needed */
991 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
992 phys_page2 = -1;
993 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
994 phys_page2 = get_page_addr_code(env, virt_page2);
995 }
996 tb_link_page(tb, phys_pc, phys_page2);
997 return tb;
998 }
999
1000 /* invalidate all TBs which intersect with the target physical page
1001 starting in range [start;end[. NOTE: start and end must refer to
1002 the same physical page. 'is_cpu_write_access' should be true if called
1003 from a real cpu write access: the virtual CPU will exit the current
1004 TB if code is modified inside this TB. */
1005 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1006 int is_cpu_write_access)
1007 {
1008 TranslationBlock *tb, *tb_next, *saved_tb;
1009 CPUState *env = cpu_single_env;
1010 tb_page_addr_t tb_start, tb_end;
1011 PageDesc *p;
1012 int n;
1013 #ifdef TARGET_HAS_PRECISE_SMC
1014 int current_tb_not_found = is_cpu_write_access;
1015 TranslationBlock *current_tb = NULL;
1016 int current_tb_modified = 0;
1017 target_ulong current_pc = 0;
1018 target_ulong current_cs_base = 0;
1019 int current_flags = 0;
1020 #endif /* TARGET_HAS_PRECISE_SMC */
1021
1022 p = page_find(start >> TARGET_PAGE_BITS);
1023 if (!p)
1024 return;
1025 if (!p->code_bitmap &&
1026 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
1027 is_cpu_write_access) {
1028 /* build code bitmap */
1029 build_page_bitmap(p);
1030 }
1031
1032 /* we remove all the TBs in the range [start, end[ */
1033 /* XXX: see if in some cases it could be faster to invalidate all the code */
1034 tb = p->first_tb;
1035 while (tb != NULL) {
1036 n = (long)tb & 3;
1037 tb = (TranslationBlock *)((long)tb & ~3);
1038 tb_next = tb->page_next[n];
1039 /* NOTE: this is subtle as a TB may span two physical pages */
1040 if (n == 0) {
1041 /* NOTE: tb_end may be after the end of the page, but
1042 it is not a problem */
1043 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1044 tb_end = tb_start + tb->size;
1045 } else {
1046 tb_start = tb->page_addr[1];
1047 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1048 }
1049 if (!(tb_end <= start || tb_start >= end)) {
1050 #ifdef TARGET_HAS_PRECISE_SMC
1051 if (current_tb_not_found) {
1052 current_tb_not_found = 0;
1053 current_tb = NULL;
1054 if (env->mem_io_pc) {
1055 /* now we have a real cpu fault */
1056 current_tb = tb_find_pc(env->mem_io_pc);
1057 }
1058 }
1059 if (current_tb == tb &&
1060 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1061 /* If we are modifying the current TB, we must stop
1062 its execution. We could be more precise by checking
1063 that the modification is after the current PC, but it
1064 would require a specialized function to partially
1065 restore the CPU state */
1066
1067 current_tb_modified = 1;
1068 cpu_restore_state(current_tb, env,
1069 env->mem_io_pc, NULL);
1070 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1071 &current_flags);
1072 }
1073 #endif /* TARGET_HAS_PRECISE_SMC */
1074 /* we need to do that to handle the case where a signal
1075 occurs while doing tb_phys_invalidate() */
1076 saved_tb = NULL;
1077 if (env) {
1078 saved_tb = env->current_tb;
1079 env->current_tb = NULL;
1080 }
1081 tb_phys_invalidate(tb, -1);
1082 if (env) {
1083 env->current_tb = saved_tb;
1084 if (env->interrupt_request && env->current_tb)
1085 cpu_interrupt(env, env->interrupt_request);
1086 }
1087 }
1088 tb = tb_next;
1089 }
1090 #if !defined(CONFIG_USER_ONLY)
1091 /* if no code remaining, no need to continue to use slow writes */
1092 if (!p->first_tb) {
1093 invalidate_page_bitmap(p);
1094 if (is_cpu_write_access) {
1095 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
1096 }
1097 }
1098 #endif
1099 #ifdef TARGET_HAS_PRECISE_SMC
1100 if (current_tb_modified) {
1101 /* we generate a block containing just the instruction
1102 modifying the memory. It will ensure that it cannot modify
1103 itself */
1104 env->current_tb = NULL;
1105 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1106 cpu_resume_from_signal(env, NULL);
1107 }
1108 #endif
1109 }
1110
1111 /* len must be <= 8 and start must be a multiple of len */
1112 static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1113 {
1114 PageDesc *p;
1115 int offset, b;
1116 #if 0
1117 if (1) {
1118 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1119 cpu_single_env->mem_io_vaddr, len,
1120 cpu_single_env->eip,
1121 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
1122 }
1123 #endif
1124 p = page_find(start >> TARGET_PAGE_BITS);
1125 if (!p)
1126 return;
1127 if (p->code_bitmap) {
1128 offset = start & ~TARGET_PAGE_MASK;
1129 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1130 if (b & ((1 << len) - 1))
1131 goto do_invalidate;
1132 } else {
1133 do_invalidate:
1134 tb_invalidate_phys_page_range(start, start + len, 1);
1135 }
1136 }
1137
1138 #if !defined(CONFIG_SOFTMMU)
1139 static void tb_invalidate_phys_page(tb_page_addr_t addr,
1140 unsigned long pc, void *puc)
1141 {
1142 TranslationBlock *tb;
1143 PageDesc *p;
1144 int n;
1145 #ifdef TARGET_HAS_PRECISE_SMC
1146 TranslationBlock *current_tb = NULL;
1147 CPUState *env = cpu_single_env;
1148 int current_tb_modified = 0;
1149 target_ulong current_pc = 0;
1150 target_ulong current_cs_base = 0;
1151 int current_flags = 0;
1152 #endif
1153
1154 addr &= TARGET_PAGE_MASK;
1155 p = page_find(addr >> TARGET_PAGE_BITS);
1156 if (!p)
1157 return;
1158 tb = p->first_tb;
1159 #ifdef TARGET_HAS_PRECISE_SMC
1160 if (tb && pc != 0) {
1161 current_tb = tb_find_pc(pc);
1162 }
1163 #endif
1164 while (tb != NULL) {
1165 n = (long)tb & 3;
1166 tb = (TranslationBlock *)((long)tb & ~3);
1167 #ifdef TARGET_HAS_PRECISE_SMC
1168 if (current_tb == tb &&
1169 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1170 /* If we are modifying the current TB, we must stop
1171 its execution. We could be more precise by checking
1172 that the modification is after the current PC, but it
1173 would require a specialized function to partially
1174 restore the CPU state */
1175
1176 current_tb_modified = 1;
1177 cpu_restore_state(current_tb, env, pc, puc);
1178 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1179 &current_flags);
1180 }
1181 #endif /* TARGET_HAS_PRECISE_SMC */
1182 tb_phys_invalidate(tb, addr);
1183 tb = tb->page_next[n];
1184 }
1185 p->first_tb = NULL;
1186 #ifdef TARGET_HAS_PRECISE_SMC
1187 if (current_tb_modified) {
1188 /* we generate a block containing just the instruction
1189 modifying the memory. It will ensure that it cannot modify
1190 itself */
1191 env->current_tb = NULL;
1192 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1193 cpu_resume_from_signal(env, puc);
1194 }
1195 #endif
1196 }
1197 #endif
1198
1199 /* add the tb in the target page and protect it if necessary */
1200 static inline void tb_alloc_page(TranslationBlock *tb,
1201 unsigned int n, tb_page_addr_t page_addr)
1202 {
1203 PageDesc *p;
1204 TranslationBlock *last_first_tb;
1205
1206 tb->page_addr[n] = page_addr;
1207 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1208 tb->page_next[n] = p->first_tb;
1209 last_first_tb = p->first_tb;
1210 p->first_tb = (TranslationBlock *)((long)tb | n);
1211 invalidate_page_bitmap(p);
1212
1213 #if defined(TARGET_HAS_SMC) || 1
1214
1215 #if defined(CONFIG_USER_ONLY)
1216 if (p->flags & PAGE_WRITE) {
1217 target_ulong addr;
1218 PageDesc *p2;
1219 int prot;
1220
1221 /* force the host page as non writable (writes will have a
1222 page fault + mprotect overhead) */
1223 page_addr &= qemu_host_page_mask;
1224 prot = 0;
1225 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1226 addr += TARGET_PAGE_SIZE) {
1227
1228 p2 = page_find (addr >> TARGET_PAGE_BITS);
1229 if (!p2)
1230 continue;
1231 prot |= p2->flags;
1232 p2->flags &= ~PAGE_WRITE;
1233 }
1234 mprotect(g2h(page_addr), qemu_host_page_size,
1235 (prot & PAGE_BITS) & ~PAGE_WRITE);
1236 #ifdef DEBUG_TB_INVALIDATE
1237 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1238 page_addr);
1239 #endif
1240 }
1241 #else
1242 /* if some code is already present, then the pages are already
1243 protected. So we handle the case where only the first TB is
1244 allocated in a physical page */
1245 if (!last_first_tb) {
1246 tlb_protect_code(page_addr);
1247 }
1248 #endif
1249
1250 #endif /* TARGET_HAS_SMC */
1251 }
1252
1253 /* Allocate a new translation block. Flush the translation buffer if
1254 too many translation blocks or too much generated code. */
1255 TranslationBlock *tb_alloc(target_ulong pc)
1256 {
1257 TranslationBlock *tb;
1258
1259 if (nb_tbs >= code_gen_max_blocks ||
1260 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
1261 return NULL;
1262 tb = &tbs[nb_tbs++];
1263 tb->pc = pc;
1264 tb->cflags = 0;
1265 return tb;
1266 }
1267
1268 void tb_free(TranslationBlock *tb)
1269 {
1270 /* In practice this is mostly used for single use temporary TB
1271 Ignore the hard cases and just back up if this TB happens to
1272 be the last one generated. */
1273 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1274 code_gen_ptr = tb->tc_ptr;
1275 nb_tbs--;
1276 }
1277 }
1278
1279 /* add a new TB and link it to the physical page tables. phys_page2 is
1280 (-1) to indicate that only one page contains the TB. */
1281 void tb_link_page(TranslationBlock *tb,
1282 tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
1283 {
1284 unsigned int h;
1285 TranslationBlock **ptb;
1286
1287 /* Grab the mmap lock to stop another thread invalidating this TB
1288 before we are done. */
1289 mmap_lock();
1290 /* add in the physical hash table */
1291 h = tb_phys_hash_func(phys_pc);
1292 ptb = &tb_phys_hash[h];
1293 tb->phys_hash_next = *ptb;
1294 *ptb = tb;
1295
1296 /* add in the page list */
1297 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1298 if (phys_page2 != -1)
1299 tb_alloc_page(tb, 1, phys_page2);
1300 else
1301 tb->page_addr[1] = -1;
1302
1303 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1304 tb->jmp_next[0] = NULL;
1305 tb->jmp_next[1] = NULL;
1306
1307 /* init original jump addresses */
1308 if (tb->tb_next_offset[0] != 0xffff)
1309 tb_reset_jump(tb, 0);
1310 if (tb->tb_next_offset[1] != 0xffff)
1311 tb_reset_jump(tb, 1);
1312
1313 #ifdef DEBUG_TB_CHECK
1314 tb_page_check();
1315 #endif
1316 mmap_unlock();
1317 }
1318
1319 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1320 tb[1].tc_ptr. Return NULL if not found */
1321 TranslationBlock *tb_find_pc(unsigned long tc_ptr)
1322 {
1323 int m_min, m_max, m;
1324 unsigned long v;
1325 TranslationBlock *tb;
1326
1327 if (nb_tbs <= 0)
1328 return NULL;
1329 if (tc_ptr < (unsigned long)code_gen_buffer ||
1330 tc_ptr >= (unsigned long)code_gen_ptr)
1331 return NULL;
1332 /* binary search (cf Knuth) */
1333 m_min = 0;
1334 m_max = nb_tbs - 1;
1335 while (m_min <= m_max) {
1336 m = (m_min + m_max) >> 1;
1337 tb = &tbs[m];
1338 v = (unsigned long)tb->tc_ptr;
1339 if (v == tc_ptr)
1340 return tb;
1341 else if (tc_ptr < v) {
1342 m_max = m - 1;
1343 } else {
1344 m_min = m + 1;
1345 }
1346 }
1347 return &tbs[m_max];
1348 }
1349
1350 static void tb_reset_jump_recursive(TranslationBlock *tb);
1351
1352 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1353 {
1354 TranslationBlock *tb1, *tb_next, **ptb;
1355 unsigned int n1;
1356
1357 tb1 = tb->jmp_next[n];
1358 if (tb1 != NULL) {
1359 /* find head of list */
1360 for(;;) {
1361 n1 = (long)tb1 & 3;
1362 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1363 if (n1 == 2)
1364 break;
1365 tb1 = tb1->jmp_next[n1];
1366 }
1367 /* we are now sure now that tb jumps to tb1 */
1368 tb_next = tb1;
1369
1370 /* remove tb from the jmp_first list */
1371 ptb = &tb_next->jmp_first;
1372 for(;;) {
1373 tb1 = *ptb;
1374 n1 = (long)tb1 & 3;
1375 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1376 if (n1 == n && tb1 == tb)
1377 break;
1378 ptb = &tb1->jmp_next[n1];
1379 }
1380 *ptb = tb->jmp_next[n];
1381 tb->jmp_next[n] = NULL;
1382
1383 /* suppress the jump to next tb in generated code */
1384 tb_reset_jump(tb, n);
1385
1386 /* suppress jumps in the tb on which we could have jumped */
1387 tb_reset_jump_recursive(tb_next);
1388 }
1389 }
1390
1391 static void tb_reset_jump_recursive(TranslationBlock *tb)
1392 {
1393 tb_reset_jump_recursive2(tb, 0);
1394 tb_reset_jump_recursive2(tb, 1);
1395 }
1396
1397 #if defined(TARGET_HAS_ICE)
1398 #if defined(CONFIG_USER_ONLY)
1399 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1400 {
1401 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1402 }
1403 #else
1404 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1405 {
1406 target_phys_addr_t addr;
1407 target_ulong pd;
1408 ram_addr_t ram_addr;
1409 PhysPageDesc *p;
1410
1411 addr = cpu_get_phys_page_debug(env, pc);
1412 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1413 if (!p) {
1414 pd = IO_MEM_UNASSIGNED;
1415 } else {
1416 pd = p->phys_offset;
1417 }
1418 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
1419 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1420 }
1421 #endif
1422 #endif /* TARGET_HAS_ICE */
1423
1424 #if defined(CONFIG_USER_ONLY)
1425 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1426
1427 {
1428 }
1429
1430 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1431 int flags, CPUWatchpoint **watchpoint)
1432 {
1433 return -ENOSYS;
1434 }
1435 #else
1436 /* Add a watchpoint. */
1437 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1438 int flags, CPUWatchpoint **watchpoint)
1439 {
1440 target_ulong len_mask = ~(len - 1);
1441 CPUWatchpoint *wp;
1442
1443 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1444 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1445 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1446 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1447 return -EINVAL;
1448 }
1449 wp = qemu_malloc(sizeof(*wp));
1450
1451 wp->vaddr = addr;
1452 wp->len_mask = len_mask;
1453 wp->flags = flags;
1454
1455 /* keep all GDB-injected watchpoints in front */
1456 if (flags & BP_GDB)
1457 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1458 else
1459 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
1460
1461 tlb_flush_page(env, addr);
1462
1463 if (watchpoint)
1464 *watchpoint = wp;
1465 return 0;
1466 }
1467
1468 /* Remove a specific watchpoint. */
1469 int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1470 int flags)
1471 {
1472 target_ulong len_mask = ~(len - 1);
1473 CPUWatchpoint *wp;
1474
1475 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1476 if (addr == wp->vaddr && len_mask == wp->len_mask
1477 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1478 cpu_watchpoint_remove_by_ref(env, wp);
1479 return 0;
1480 }
1481 }
1482 return -ENOENT;
1483 }
1484
1485 /* Remove a specific watchpoint by reference. */
1486 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1487 {
1488 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
1489
1490 tlb_flush_page(env, watchpoint->vaddr);
1491
1492 qemu_free(watchpoint);
1493 }
1494
1495 /* Remove all matching watchpoints. */
1496 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1497 {
1498 CPUWatchpoint *wp, *next;
1499
1500 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
1501 if (wp->flags & mask)
1502 cpu_watchpoint_remove_by_ref(env, wp);
1503 }
1504 }
1505 #endif
1506
1507 /* Add a breakpoint. */
1508 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1509 CPUBreakpoint **breakpoint)
1510 {
1511 #if defined(TARGET_HAS_ICE)
1512 CPUBreakpoint *bp;
1513
1514 bp = qemu_malloc(sizeof(*bp));
1515
1516 bp->pc = pc;
1517 bp->flags = flags;
1518
1519 /* keep all GDB-injected breakpoints in front */
1520 if (flags & BP_GDB)
1521 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1522 else
1523 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
1524
1525 breakpoint_invalidate(env, pc);
1526
1527 if (breakpoint)
1528 *breakpoint = bp;
1529 return 0;
1530 #else
1531 return -ENOSYS;
1532 #endif
1533 }
1534
1535 /* Remove a specific breakpoint. */
1536 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1537 {
1538 #if defined(TARGET_HAS_ICE)
1539 CPUBreakpoint *bp;
1540
1541 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1542 if (bp->pc == pc && bp->flags == flags) {
1543 cpu_breakpoint_remove_by_ref(env, bp);
1544 return 0;
1545 }
1546 }
1547 return -ENOENT;
1548 #else
1549 return -ENOSYS;
1550 #endif
1551 }
1552
1553 /* Remove a specific breakpoint by reference. */
1554 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
1555 {
1556 #if defined(TARGET_HAS_ICE)
1557 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
1558
1559 breakpoint_invalidate(env, breakpoint->pc);
1560
1561 qemu_free(breakpoint);
1562 #endif
1563 }
1564
1565 /* Remove all matching breakpoints. */
1566 void cpu_breakpoint_remove_all(CPUState *env, int mask)
1567 {
1568 #if defined(TARGET_HAS_ICE)
1569 CPUBreakpoint *bp, *next;
1570
1571 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
1572 if (bp->flags & mask)
1573 cpu_breakpoint_remove_by_ref(env, bp);
1574 }
1575 #endif
1576 }
1577
1578 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1579 CPU loop after each instruction */
1580 void cpu_single_step(CPUState *env, int enabled)
1581 {
1582 #if defined(TARGET_HAS_ICE)
1583 if (env->singlestep_enabled != enabled) {
1584 env->singlestep_enabled = enabled;
1585 if (kvm_enabled())
1586 kvm_update_guest_debug(env, 0);
1587 else {
1588 /* must flush all the translated code to avoid inconsistencies */
1589 /* XXX: only flush what is necessary */
1590 tb_flush(env);
1591 }
1592 }
1593 #endif
1594 }
1595
1596 /* enable or disable low levels log */
1597 void cpu_set_log(int log_flags)
1598 {
1599 loglevel = log_flags;
1600 if (loglevel && !logfile) {
1601 logfile = fopen(logfilename, log_append ? "a" : "w");
1602 if (!logfile) {
1603 perror(logfilename);
1604 _exit(1);
1605 }
1606 #if !defined(CONFIG_SOFTMMU)
1607 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1608 {
1609 static char logfile_buf[4096];
1610 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1611 }
1612 #elif !defined(_WIN32)
1613 /* Win32 doesn't support line-buffering and requires size >= 2 */
1614 setvbuf(logfile, NULL, _IOLBF, 0);
1615 #endif
1616 log_append = 1;
1617 }
1618 if (!loglevel && logfile) {
1619 fclose(logfile);
1620 logfile = NULL;
1621 }
1622 }
1623
1624 void cpu_set_log_filename(const char *filename)
1625 {
1626 logfilename = strdup(filename);
1627 if (logfile) {
1628 fclose(logfile);
1629 logfile = NULL;
1630 }
1631 cpu_set_log(loglevel);
1632 }
1633
1634 static void cpu_unlink_tb(CPUState *env)
1635 {
1636 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1637 problem and hope the cpu will stop of its own accord. For userspace
1638 emulation this often isn't actually as bad as it sounds. Often
1639 signals are used primarily to interrupt blocking syscalls. */
1640 TranslationBlock *tb;
1641 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1642
1643 spin_lock(&interrupt_lock);
1644 tb = env->current_tb;
1645 /* if the cpu is currently executing code, we must unlink it and
1646 all the potentially executing TB */
1647 if (tb) {
1648 env->current_tb = NULL;
1649 tb_reset_jump_recursive(tb);
1650 }
1651 spin_unlock(&interrupt_lock);
1652 }
1653
1654 /* mask must never be zero, except for A20 change call */
1655 void cpu_interrupt(CPUState *env, int mask)
1656 {
1657 int old_mask;
1658
1659 old_mask = env->interrupt_request;
1660 env->interrupt_request |= mask;
1661
1662 #ifndef CONFIG_USER_ONLY
1663 /*
1664 * If called from iothread context, wake the target cpu in
1665 * case its halted.
1666 */
1667 if (!qemu_cpu_self(env)) {
1668 qemu_cpu_kick(env);
1669 return;
1670 }
1671 #endif
1672
1673 if (use_icount) {
1674 env->icount_decr.u16.high = 0xffff;
1675 #ifndef CONFIG_USER_ONLY
1676 if (!can_do_io(env)
1677 && (mask & ~old_mask) != 0) {
1678 cpu_abort(env, "Raised interrupt while not in I/O function");
1679 }
1680 #endif
1681 } else {
1682 cpu_unlink_tb(env);
1683 }
1684 }
1685
1686 void cpu_reset_interrupt(CPUState *env, int mask)
1687 {
1688 env->interrupt_request &= ~mask;
1689 }
1690
1691 void cpu_exit(CPUState *env)
1692 {
1693 env->exit_request = 1;
1694 cpu_unlink_tb(env);
1695 }
1696
1697 const CPULogItem cpu_log_items[] = {
1698 { CPU_LOG_TB_OUT_ASM, "out_asm",
1699 "show generated host assembly code for each compiled TB" },
1700 { CPU_LOG_TB_IN_ASM, "in_asm",
1701 "show target assembly code for each compiled TB" },
1702 { CPU_LOG_TB_OP, "op",
1703 "show micro ops for each compiled TB" },
1704 { CPU_LOG_TB_OP_OPT, "op_opt",
1705 "show micro ops "
1706 #ifdef TARGET_I386
1707 "before eflags optimization and "
1708 #endif
1709 "after liveness analysis" },
1710 { CPU_LOG_INT, "int",
1711 "show interrupts/exceptions in short format" },
1712 { CPU_LOG_EXEC, "exec",
1713 "show trace before each executed TB (lots of logs)" },
1714 { CPU_LOG_TB_CPU, "cpu",
1715 "show CPU state before block translation" },
1716 #ifdef TARGET_I386
1717 { CPU_LOG_PCALL, "pcall",
1718 "show protected mode far calls/returns/exceptions" },
1719 { CPU_LOG_RESET, "cpu_reset",
1720 "show CPU state before CPU resets" },
1721 #endif
1722 #ifdef DEBUG_IOPORT
1723 { CPU_LOG_IOPORT, "ioport",
1724 "show all i/o ports accesses" },
1725 #endif
1726 { 0, NULL, NULL },
1727 };
1728
1729 #ifndef CONFIG_USER_ONLY
1730 static QLIST_HEAD(memory_client_list, CPUPhysMemoryClient) memory_client_list
1731 = QLIST_HEAD_INITIALIZER(memory_client_list);
1732
1733 static void cpu_notify_set_memory(target_phys_addr_t start_addr,
1734 ram_addr_t size,
1735 ram_addr_t phys_offset)
1736 {
1737 CPUPhysMemoryClient *client;
1738 QLIST_FOREACH(client, &memory_client_list, list) {
1739 client->set_memory(client, start_addr, size, phys_offset);
1740 }
1741 }
1742
1743 static int cpu_notify_sync_dirty_bitmap(target_phys_addr_t start,
1744 target_phys_addr_t end)
1745 {
1746 CPUPhysMemoryClient *client;
1747 QLIST_FOREACH(client, &memory_client_list, list) {
1748 int r = client->sync_dirty_bitmap(client, start, end);
1749 if (r < 0)
1750 return r;
1751 }
1752 return 0;
1753 }
1754
1755 static int cpu_notify_migration_log(int enable)
1756 {
1757 CPUPhysMemoryClient *client;
1758 QLIST_FOREACH(client, &memory_client_list, list) {
1759 int r = client->migration_log(client, enable);
1760 if (r < 0)
1761 return r;
1762 }
1763 return 0;
1764 }
1765
1766 static void phys_page_for_each_1(CPUPhysMemoryClient *client,
1767 int level, void **lp)
1768 {
1769 int i;
1770
1771 if (*lp == NULL) {
1772 return;
1773 }
1774 if (level == 0) {
1775 PhysPageDesc *pd = *lp;
1776 for (i = 0; i < L2_SIZE; ++i) {
1777 if (pd[i].phys_offset != IO_MEM_UNASSIGNED) {
1778 client->set_memory(client, pd[i].region_offset,
1779 TARGET_PAGE_SIZE, pd[i].phys_offset);
1780 }
1781 }
1782 } else {
1783 void **pp = *lp;
1784 for (i = 0; i < L2_SIZE; ++i) {
1785 phys_page_for_each_1(client, level - 1, pp + i);
1786 }
1787 }
1788 }
1789
1790 static void phys_page_for_each(CPUPhysMemoryClient *client)
1791 {
1792 int i;
1793 for (i = 0; i < P_L1_SIZE; ++i) {
1794 phys_page_for_each_1(client, P_L1_SHIFT / L2_BITS - 1,
1795 l1_phys_map + 1);
1796 }
1797 }
1798
1799 void cpu_register_phys_memory_client(CPUPhysMemoryClient *client)
1800 {
1801 QLIST_INSERT_HEAD(&memory_client_list, client, list);
1802 phys_page_for_each(client);
1803 }
1804
1805 void cpu_unregister_phys_memory_client(CPUPhysMemoryClient *client)
1806 {
1807 QLIST_REMOVE(client, list);
1808 }
1809 #endif
1810
1811 static int cmp1(const char *s1, int n, const char *s2)
1812 {
1813 if (strlen(s2) != n)
1814 return 0;
1815 return memcmp(s1, s2, n) == 0;
1816 }
1817
1818 /* takes a comma separated list of log masks. Return 0 if error. */
1819 int cpu_str_to_log_mask(const char *str)
1820 {
1821 const CPULogItem *item;
1822 int mask;
1823 const char *p, *p1;
1824
1825 p = str;
1826 mask = 0;
1827 for(;;) {
1828 p1 = strchr(p, ',');
1829 if (!p1)
1830 p1 = p + strlen(p);
1831 if(cmp1(p,p1-p,"all")) {
1832 for(item = cpu_log_items; item->mask != 0; item++) {
1833 mask |= item->mask;
1834 }
1835 } else {
1836 for(item = cpu_log_items; item->mask != 0; item++) {
1837 if (cmp1(p, p1 - p, item->name))
1838 goto found;
1839 }
1840 return 0;
1841 }
1842 found:
1843 mask |= item->mask;
1844 if (*p1 != ',')
1845 break;
1846 p = p1 + 1;
1847 }
1848 return mask;
1849 }
1850
1851 void cpu_abort(CPUState *env, const char *fmt, ...)
1852 {
1853 va_list ap;
1854 va_list ap2;
1855
1856 va_start(ap, fmt);
1857 va_copy(ap2, ap);
1858 fprintf(stderr, "qemu: fatal: ");
1859 vfprintf(stderr, fmt, ap);
1860 fprintf(stderr, "\n");
1861 #ifdef TARGET_I386
1862 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1863 #else
1864 cpu_dump_state(env, stderr, fprintf, 0);
1865 #endif
1866 if (qemu_log_enabled()) {
1867 qemu_log("qemu: fatal: ");
1868 qemu_log_vprintf(fmt, ap2);
1869 qemu_log("\n");
1870 #ifdef TARGET_I386
1871 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
1872 #else
1873 log_cpu_state(env, 0);
1874 #endif
1875 qemu_log_flush();
1876 qemu_log_close();
1877 }
1878 va_end(ap2);
1879 va_end(ap);
1880 #if defined(CONFIG_USER_ONLY)
1881 {
1882 struct sigaction act;
1883 sigfillset(&act.sa_mask);
1884 act.sa_handler = SIG_DFL;
1885 sigaction(SIGABRT, &act, NULL);
1886 }
1887 #endif
1888 abort();
1889 }
1890
1891 CPUState *cpu_copy(CPUState *env)
1892 {
1893 CPUState *new_env = cpu_init(env->cpu_model_str);
1894 CPUState *next_cpu = new_env->next_cpu;
1895 int cpu_index = new_env->cpu_index;
1896 #if defined(TARGET_HAS_ICE)
1897 CPUBreakpoint *bp;
1898 CPUWatchpoint *wp;
1899 #endif
1900
1901 memcpy(new_env, env, sizeof(CPUState));
1902
1903 /* Preserve chaining and index. */
1904 new_env->next_cpu = next_cpu;
1905 new_env->cpu_index = cpu_index;
1906
1907 /* Clone all break/watchpoints.
1908 Note: Once we support ptrace with hw-debug register access, make sure
1909 BP_CPU break/watchpoints are handled correctly on clone. */
1910 QTAILQ_INIT(&env->breakpoints);
1911 QTAILQ_INIT(&env->watchpoints);
1912 #if defined(TARGET_HAS_ICE)
1913 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1914 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1915 }
1916 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1917 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1918 wp->flags, NULL);
1919 }
1920 #endif
1921
1922 return new_env;
1923 }
1924
1925 #if !defined(CONFIG_USER_ONLY)
1926
1927 static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1928 {
1929 unsigned int i;
1930
1931 /* Discard jump cache entries for any tb which might potentially
1932 overlap the flushed page. */
1933 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1934 memset (&env->tb_jmp_cache[i], 0,
1935 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1936
1937 i = tb_jmp_cache_hash_page(addr);
1938 memset (&env->tb_jmp_cache[i], 0,
1939 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1940 }
1941
1942 static CPUTLBEntry s_cputlb_empty_entry = {
1943 .addr_read = -1,
1944 .addr_write = -1,
1945 .addr_code = -1,
1946 .addend = -1,
1947 };
1948
1949 /* NOTE: if flush_global is true, also flush global entries (not
1950 implemented yet) */
1951 void tlb_flush(CPUState *env, int flush_global)
1952 {
1953 int i;
1954
1955 #if defined(DEBUG_TLB)
1956 printf("tlb_flush:\n");
1957 #endif
1958 /* must reset current TB so that interrupts cannot modify the
1959 links while we are modifying them */
1960 env->current_tb = NULL;
1961
1962 for(i = 0; i < CPU_TLB_SIZE; i++) {
1963 int mmu_idx;
1964 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1965 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
1966 }
1967 }
1968
1969 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
1970
1971 env->tlb_flush_addr = -1;
1972 env->tlb_flush_mask = 0;
1973 tlb_flush_count++;
1974 }
1975
1976 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
1977 {
1978 if (addr == (tlb_entry->addr_read &
1979 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1980 addr == (tlb_entry->addr_write &
1981 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1982 addr == (tlb_entry->addr_code &
1983 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1984 *tlb_entry = s_cputlb_empty_entry;
1985 }
1986 }
1987
1988 void tlb_flush_page(CPUState *env, target_ulong addr)
1989 {
1990 int i;
1991 int mmu_idx;
1992
1993 #if defined(DEBUG_TLB)
1994 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
1995 #endif
1996 /* Check if we need to flush due to large pages. */
1997 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
1998 #if defined(DEBUG_TLB)
1999 printf("tlb_flush_page: forced full flush ("
2000 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
2001 env->tlb_flush_addr, env->tlb_flush_mask);
2002 #endif
2003 tlb_flush(env, 1);
2004 return;
2005 }
2006 /* must reset current TB so that interrupts cannot modify the
2007 links while we are modifying them */
2008 env->current_tb = NULL;
2009
2010 addr &= TARGET_PAGE_MASK;
2011 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2012 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2013 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
2014
2015 tlb_flush_jmp_cache(env, addr);
2016 }
2017
2018 /* update the TLBs so that writes to code in the virtual page 'addr'
2019 can be detected */
2020 static void tlb_protect_code(ram_addr_t ram_addr)
2021 {
2022 cpu_physical_memory_reset_dirty(ram_addr,
2023 ram_addr + TARGET_PAGE_SIZE,
2024 CODE_DIRTY_FLAG);
2025 }
2026
2027 /* update the TLB so that writes in physical page 'phys_addr' are no longer
2028 tested for self modifying code */
2029 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
2030 target_ulong vaddr)
2031 {
2032 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
2033 }
2034
2035 static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
2036 unsigned long start, unsigned long length)
2037 {
2038 unsigned long addr;
2039 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2040 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
2041 if ((addr - start) < length) {
2042 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
2043 }
2044 }
2045 }
2046
2047 /* Note: start and end must be within the same ram block. */
2048 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
2049 int dirty_flags)
2050 {
2051 CPUState *env;
2052 unsigned long length, start1;
2053 int i, mask, len;
2054 uint8_t *p;
2055
2056 start &= TARGET_PAGE_MASK;
2057 end = TARGET_PAGE_ALIGN(end);
2058
2059 length = end - start;
2060 if (length == 0)
2061 return;
2062 len = length >> TARGET_PAGE_BITS;
2063 mask = ~dirty_flags;
2064 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
2065 for(i = 0; i < len; i++)
2066 p[i] &= mask;
2067
2068 /* we modify the TLB cache so that the dirty bit will be set again
2069 when accessing the range */
2070 start1 = (unsigned long)qemu_get_ram_ptr(start);
2071 /* Chek that we don't span multiple blocks - this breaks the
2072 address comparisons below. */
2073 if ((unsigned long)qemu_get_ram_ptr(end - 1) - start1
2074 != (end - 1) - start) {
2075 abort();
2076 }
2077
2078 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2079 int mmu_idx;
2080 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2081 for(i = 0; i < CPU_TLB_SIZE; i++)
2082 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
2083 start1, length);
2084 }
2085 }
2086 }
2087
2088 int cpu_physical_memory_set_dirty_tracking(int enable)
2089 {
2090 int ret = 0;
2091 in_migration = enable;
2092 ret = cpu_notify_migration_log(!!enable);
2093 return ret;
2094 }
2095
2096 int cpu_physical_memory_get_dirty_tracking(void)
2097 {
2098 return in_migration;
2099 }
2100
2101 int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
2102 target_phys_addr_t end_addr)
2103 {
2104 int ret;
2105
2106 ret = cpu_notify_sync_dirty_bitmap(start_addr, end_addr);
2107 return ret;
2108 }
2109
2110 static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
2111 {
2112 ram_addr_t ram_addr;
2113 void *p;
2114
2115 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2116 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
2117 + tlb_entry->addend);
2118 ram_addr = qemu_ram_addr_from_host(p);
2119 if (!cpu_physical_memory_is_dirty(ram_addr)) {
2120 tlb_entry->addr_write |= TLB_NOTDIRTY;
2121 }
2122 }
2123 }
2124
2125 /* update the TLB according to the current state of the dirty bits */
2126 void cpu_tlb_update_dirty(CPUState *env)
2127 {
2128 int i;
2129 int mmu_idx;
2130 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2131 for(i = 0; i < CPU_TLB_SIZE; i++)
2132 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
2133 }
2134 }
2135
2136 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
2137 {
2138 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
2139 tlb_entry->addr_write = vaddr;
2140 }
2141
2142 /* update the TLB corresponding to virtual page vaddr
2143 so that it is no longer dirty */
2144 static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
2145 {
2146 int i;
2147 int mmu_idx;
2148
2149 vaddr &= TARGET_PAGE_MASK;
2150 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2151 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2152 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
2153 }
2154
2155 /* Our TLB does not support large pages, so remember the area covered by
2156 large pages and trigger a full TLB flush if these are invalidated. */
2157 static void tlb_add_large_page(CPUState *env, target_ulong vaddr,
2158 target_ulong size)
2159 {
2160 target_ulong mask = ~(size - 1);
2161
2162 if (env->tlb_flush_addr == (target_ulong)-1) {
2163 env->tlb_flush_addr = vaddr & mask;
2164 env->tlb_flush_mask = mask;
2165 return;
2166 }
2167 /* Extend the existing region to include the new page.
2168 This is a compromise between unnecessary flushes and the cost
2169 of maintaining a full variable size TLB. */
2170 mask &= env->tlb_flush_mask;
2171 while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
2172 mask <<= 1;
2173 }
2174 env->tlb_flush_addr &= mask;
2175 env->tlb_flush_mask = mask;
2176 }
2177
2178 /* Add a new TLB entry. At most one entry for a given virtual address
2179 is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
2180 supplied size is only used by tlb_flush_page. */
2181 void tlb_set_page(CPUState *env, target_ulong vaddr,
2182 target_phys_addr_t paddr, int prot,
2183 int mmu_idx, target_ulong size)
2184 {
2185 PhysPageDesc *p;
2186 unsigned long pd;
2187 unsigned int index;
2188 target_ulong address;
2189 target_ulong code_address;
2190 target_phys_addr_t addend;
2191 CPUTLBEntry *te;
2192 CPUWatchpoint *wp;
2193 target_phys_addr_t iotlb;
2194
2195 assert(size >= TARGET_PAGE_SIZE);
2196 if (size != TARGET_PAGE_SIZE) {
2197 tlb_add_large_page(env, vaddr, size);
2198 }
2199 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
2200 if (!p) {
2201 pd = IO_MEM_UNASSIGNED;
2202 } else {
2203 pd = p->phys_offset;
2204 }
2205 #if defined(DEBUG_TLB)
2206 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
2207 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
2208 #endif
2209
2210 address = vaddr;
2211 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2212 /* IO memory case (romd handled later) */
2213 address |= TLB_MMIO;
2214 }
2215 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
2216 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2217 /* Normal RAM. */
2218 iotlb = pd & TARGET_PAGE_MASK;
2219 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2220 iotlb |= IO_MEM_NOTDIRTY;
2221 else
2222 iotlb |= IO_MEM_ROM;
2223 } else {
2224 /* IO handlers are currently passed a physical address.
2225 It would be nice to pass an offset from the base address
2226 of that region. This would avoid having to special case RAM,
2227 and avoid full address decoding in every device.
2228 We can't use the high bits of pd for this because
2229 IO_MEM_ROMD uses these as a ram address. */
2230 iotlb = (pd & ~TARGET_PAGE_MASK);
2231 if (p) {
2232 iotlb += p->region_offset;
2233 } else {
2234 iotlb += paddr;
2235 }
2236 }
2237
2238 code_address = address;
2239 /* Make accesses to pages with watchpoints go via the
2240 watchpoint trap routines. */
2241 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
2242 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
2243 iotlb = io_mem_watch + paddr;
2244 /* TODO: The memory case can be optimized by not trapping
2245 reads of pages with a write breakpoint. */
2246 address |= TLB_MMIO;
2247 }
2248 }
2249
2250 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2251 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2252 te = &env->tlb_table[mmu_idx][index];
2253 te->addend = addend - vaddr;
2254 if (prot & PAGE_READ) {
2255 te->addr_read = address;
2256 } else {
2257 te->addr_read = -1;
2258 }
2259
2260 if (prot & PAGE_EXEC) {
2261 te->addr_code = code_address;
2262 } else {
2263 te->addr_code = -1;
2264 }
2265 if (prot & PAGE_WRITE) {
2266 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2267 (pd & IO_MEM_ROMD)) {
2268 /* Write access calls the I/O callback. */
2269 te->addr_write = address | TLB_MMIO;
2270 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2271 !cpu_physical_memory_is_dirty(pd)) {
2272 te->addr_write = address | TLB_NOTDIRTY;
2273 } else {
2274 te->addr_write = address;
2275 }
2276 } else {
2277 te->addr_write = -1;
2278 }
2279 }
2280
2281 #else
2282
2283 void tlb_flush(CPUState *env, int flush_global)
2284 {
2285 }
2286
2287 void tlb_flush_page(CPUState *env, target_ulong addr)
2288 {
2289 }
2290
2291 /*
2292 * Walks guest process memory "regions" one by one
2293 * and calls callback function 'fn' for each region.
2294 */
2295
2296 struct walk_memory_regions_data
2297 {
2298 walk_memory_regions_fn fn;
2299 void *priv;
2300 unsigned long start;
2301 int prot;
2302 };
2303
2304 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
2305 abi_ulong end, int new_prot)
2306 {
2307 if (data->start != -1ul) {
2308 int rc = data->fn(data->priv, data->start, end, data->prot);
2309 if (rc != 0) {
2310 return rc;
2311 }
2312 }
2313
2314 data->start = (new_prot ? end : -1ul);
2315 data->prot = new_prot;
2316
2317 return 0;
2318 }
2319
2320 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
2321 abi_ulong base, int level, void **lp)
2322 {
2323 abi_ulong pa;
2324 int i, rc;
2325
2326 if (*lp == NULL) {
2327 return walk_memory_regions_end(data, base, 0);
2328 }
2329
2330 if (level == 0) {
2331 PageDesc *pd = *lp;
2332 for (i = 0; i < L2_SIZE; ++i) {
2333 int prot = pd[i].flags;
2334
2335 pa = base | (i << TARGET_PAGE_BITS);
2336 if (prot != data->prot) {
2337 rc = walk_memory_regions_end(data, pa, prot);
2338 if (rc != 0) {
2339 return rc;
2340 }
2341 }
2342 }
2343 } else {
2344 void **pp = *lp;
2345 for (i = 0; i < L2_SIZE; ++i) {
2346 pa = base | ((abi_ulong)i <<
2347 (TARGET_PAGE_BITS + L2_BITS * level));
2348 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2349 if (rc != 0) {
2350 return rc;
2351 }
2352 }
2353 }
2354
2355 return 0;
2356 }
2357
2358 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2359 {
2360 struct walk_memory_regions_data data;
2361 unsigned long i;
2362
2363 data.fn = fn;
2364 data.priv = priv;
2365 data.start = -1ul;
2366 data.prot = 0;
2367
2368 for (i = 0; i < V_L1_SIZE; i++) {
2369 int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
2370 V_L1_SHIFT / L2_BITS - 1, l1_map + i);
2371 if (rc != 0) {
2372 return rc;
2373 }
2374 }
2375
2376 return walk_memory_regions_end(&data, 0, 0);
2377 }
2378
2379 static int dump_region(void *priv, abi_ulong start,
2380 abi_ulong end, unsigned long prot)
2381 {
2382 FILE *f = (FILE *)priv;
2383
2384 (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
2385 " "TARGET_ABI_FMT_lx" %c%c%c\n",
2386 start, end, end - start,
2387 ((prot & PAGE_READ) ? 'r' : '-'),
2388 ((prot & PAGE_WRITE) ? 'w' : '-'),
2389 ((prot & PAGE_EXEC) ? 'x' : '-'));
2390
2391 return (0);
2392 }
2393
2394 /* dump memory mappings */
2395 void page_dump(FILE *f)
2396 {
2397 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2398 "start", "end", "size", "prot");
2399 walk_memory_regions(f, dump_region);
2400 }
2401
2402 int page_get_flags(target_ulong address)
2403 {
2404 PageDesc *p;
2405
2406 p = page_find(address >> TARGET_PAGE_BITS);
2407 if (!p)
2408 return 0;
2409 return p->flags;
2410 }
2411
2412 /* Modify the flags of a page and invalidate the code if necessary.
2413 The flag PAGE_WRITE_ORG is positioned automatically depending
2414 on PAGE_WRITE. The mmap_lock should already be held. */
2415 void page_set_flags(target_ulong start, target_ulong end, int flags)
2416 {
2417 target_ulong addr, len;
2418
2419 /* This function should never be called with addresses outside the
2420 guest address space. If this assert fires, it probably indicates
2421 a missing call to h2g_valid. */
2422 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2423 assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2424 #endif
2425 assert(start < end);
2426
2427 start = start & TARGET_PAGE_MASK;
2428 end = TARGET_PAGE_ALIGN(end);
2429
2430 if (flags & PAGE_WRITE) {
2431 flags |= PAGE_WRITE_ORG;
2432 }
2433
2434 for (addr = start, len = end - start;
2435 len != 0;
2436 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2437 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2438
2439 /* If the write protection bit is set, then we invalidate
2440 the code inside. */
2441 if (!(p->flags & PAGE_WRITE) &&
2442 (flags & PAGE_WRITE) &&
2443 p->first_tb) {
2444 tb_invalidate_phys_page(addr, 0, NULL);
2445 }
2446 p->flags = flags;
2447 }
2448 }
2449
2450 int page_check_range(target_ulong start, target_ulong len, int flags)
2451 {
2452 PageDesc *p;
2453 target_ulong end;
2454 target_ulong addr;
2455
2456 /* This function should never be called with addresses outside the
2457 guest address space. If this assert fires, it probably indicates
2458 a missing call to h2g_valid. */
2459 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2460 assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2461 #endif
2462
2463 if (start + len - 1 < start) {
2464 /* We've wrapped around. */
2465 return -1;
2466 }
2467
2468 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2469 start = start & TARGET_PAGE_MASK;
2470
2471 for (addr = start, len = end - start;
2472 len != 0;
2473 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2474 p = page_find(addr >> TARGET_PAGE_BITS);
2475 if( !p )
2476 return -1;
2477 if( !(p->flags & PAGE_VALID) )
2478 return -1;
2479
2480 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
2481 return -1;
2482 if (flags & PAGE_WRITE) {
2483 if (!(p->flags & PAGE_WRITE_ORG))
2484 return -1;
2485 /* unprotect the page if it was put read-only because it
2486 contains translated code */
2487 if (!(p->flags & PAGE_WRITE)) {
2488 if (!page_unprotect(addr, 0, NULL))
2489 return -1;
2490 }
2491 return 0;
2492 }
2493 }
2494 return 0;
2495 }
2496
2497 /* called from signal handler: invalidate the code and unprotect the
2498 page. Return TRUE if the fault was successfully handled. */
2499 int page_unprotect(target_ulong address, unsigned long pc, void *puc)
2500 {
2501 unsigned int page_index, prot, pindex;
2502 PageDesc *p, *p1;
2503 target_ulong host_start, host_end, addr;
2504
2505 /* Technically this isn't safe inside a signal handler. However we
2506 know this only ever happens in a synchronous SEGV handler, so in
2507 practice it seems to be ok. */
2508 mmap_lock();
2509
2510 host_start = address & qemu_host_page_mask;
2511 page_index = host_start >> TARGET_PAGE_BITS;
2512 p1 = page_find(page_index);
2513 if (!p1) {
2514 mmap_unlock();
2515 return 0;
2516 }
2517 host_end = host_start + qemu_host_page_size;
2518 p = p1;
2519 prot = 0;
2520 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
2521 prot |= p->flags;
2522 p++;
2523 }
2524 /* if the page was really writable, then we change its
2525 protection back to writable */
2526 if (prot & PAGE_WRITE_ORG) {
2527 pindex = (address - host_start) >> TARGET_PAGE_BITS;
2528 if (!(p1[pindex].flags & PAGE_WRITE)) {
2529 mprotect((void *)g2h(host_start), qemu_host_page_size,
2530 (prot & PAGE_BITS) | PAGE_WRITE);
2531 p1[pindex].flags |= PAGE_WRITE;
2532 /* and since the content will be modified, we must invalidate
2533 the corresponding translated code. */
2534 tb_invalidate_phys_page(address, pc, puc);
2535 #ifdef DEBUG_TB_CHECK
2536 tb_invalidate_check(address);
2537 #endif
2538 mmap_unlock();
2539 return 1;
2540 }
2541 }
2542 mmap_unlock();
2543 return 0;
2544 }
2545
2546 static inline void tlb_set_dirty(CPUState *env,
2547 unsigned long addr, target_ulong vaddr)
2548 {
2549 }
2550 #endif /* defined(CONFIG_USER_ONLY) */
2551
2552 #if !defined(CONFIG_USER_ONLY)
2553
2554 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2555 typedef struct subpage_t {
2556 target_phys_addr_t base;
2557 CPUReadMemoryFunc * const *mem_read[TARGET_PAGE_SIZE][4];
2558 CPUWriteMemoryFunc * const *mem_write[TARGET_PAGE_SIZE][4];
2559 void *opaque[TARGET_PAGE_SIZE][2][4];
2560 ram_addr_t region_offset[TARGET_PAGE_SIZE][2][4];
2561 } subpage_t;
2562
2563 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2564 ram_addr_t memory, ram_addr_t region_offset);
2565 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2566 ram_addr_t orig_memory, ram_addr_t region_offset);
2567 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2568 need_subpage) \
2569 do { \
2570 if (addr > start_addr) \
2571 start_addr2 = 0; \
2572 else { \
2573 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2574 if (start_addr2 > 0) \
2575 need_subpage = 1; \
2576 } \
2577 \
2578 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2579 end_addr2 = TARGET_PAGE_SIZE - 1; \
2580 else { \
2581 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2582 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2583 need_subpage = 1; \
2584 } \
2585 } while (0)
2586
2587 /* register physical memory.
2588 For RAM, 'size' must be a multiple of the target page size.
2589 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2590 io memory page. The address used when calling the IO function is
2591 the offset from the start of the region, plus region_offset. Both
2592 start_addr and region_offset are rounded down to a page boundary
2593 before calculating this offset. This should not be a problem unless
2594 the low bits of start_addr and region_offset differ. */
2595 void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2596 ram_addr_t size,
2597 ram_addr_t phys_offset,
2598 ram_addr_t region_offset)
2599 {
2600 target_phys_addr_t addr, end_addr;
2601 PhysPageDesc *p;
2602 CPUState *env;
2603 ram_addr_t orig_size = size;
2604 void *subpage;
2605
2606 cpu_notify_set_memory(start_addr, size, phys_offset);
2607
2608 if (phys_offset == IO_MEM_UNASSIGNED) {
2609 region_offset = start_addr;
2610 }
2611 region_offset &= TARGET_PAGE_MASK;
2612 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
2613 end_addr = start_addr + (target_phys_addr_t)size;
2614 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
2615 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2616 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
2617 ram_addr_t orig_memory = p->phys_offset;
2618 target_phys_addr_t start_addr2, end_addr2;
2619 int need_subpage = 0;
2620
2621 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2622 need_subpage);
2623 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2624 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2625 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2626 &p->phys_offset, orig_memory,
2627 p->region_offset);
2628 } else {
2629 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2630 >> IO_MEM_SHIFT];
2631 }
2632 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2633 region_offset);
2634 p->region_offset = 0;
2635 } else {
2636 p->phys_offset = phys_offset;
2637 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2638 (phys_offset & IO_MEM_ROMD))
2639 phys_offset += TARGET_PAGE_SIZE;
2640 }
2641 } else {
2642 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2643 p->phys_offset = phys_offset;
2644 p->region_offset = region_offset;
2645 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2646 (phys_offset & IO_MEM_ROMD)) {
2647 phys_offset += TARGET_PAGE_SIZE;
2648 } else {
2649 target_phys_addr_t start_addr2, end_addr2;
2650 int need_subpage = 0;
2651
2652 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2653 end_addr2, need_subpage);
2654
2655 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2656 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2657 &p->phys_offset, IO_MEM_UNASSIGNED,
2658 addr & TARGET_PAGE_MASK);
2659 subpage_register(subpage, start_addr2, end_addr2,
2660 phys_offset, region_offset);
2661 p->region_offset = 0;
2662 }
2663 }
2664 }
2665 region_offset += TARGET_PAGE_SIZE;
2666 }
2667
2668 /* since each CPU stores ram addresses in its TLB cache, we must
2669 reset the modified entries */
2670 /* XXX: slow ! */
2671 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2672 tlb_flush(env, 1);
2673 }
2674 }
2675
2676 /* XXX: temporary until new memory mapping API */
2677 ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
2678 {
2679 PhysPageDesc *p;
2680
2681 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2682 if (!p)
2683 return IO_MEM_UNASSIGNED;
2684 return p->phys_offset;
2685 }
2686
2687 void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2688 {
2689 if (kvm_enabled())
2690 kvm_coalesce_mmio_region(addr, size);
2691 }
2692
2693 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2694 {
2695 if (kvm_enabled())
2696 kvm_uncoalesce_mmio_region(addr, size);
2697 }
2698
2699 void qemu_flush_coalesced_mmio_buffer(void)
2700 {
2701 if (kvm_enabled())
2702 kvm_flush_coalesced_mmio_buffer();
2703 }
2704
2705 #if defined(__linux__) && !defined(TARGET_S390X)
2706
2707 #include <sys/vfs.h>
2708
2709 #define HUGETLBFS_MAGIC 0x958458f6
2710
2711 static long gethugepagesize(const char *path)
2712 {
2713 struct statfs fs;
2714 int ret;
2715
2716 do {
2717 ret = statfs(path, &fs);
2718 } while (ret != 0 && errno == EINTR);
2719
2720 if (ret != 0) {
2721 perror(path);
2722 return 0;
2723 }
2724
2725 if (fs.f_type != HUGETLBFS_MAGIC)
2726 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
2727
2728 return fs.f_bsize;
2729 }
2730
2731 static void *file_ram_alloc(ram_addr_t memory, const char *path)
2732 {
2733 char *filename;
2734 void *area;
2735 int fd;
2736 #ifdef MAP_POPULATE
2737 int flags;
2738 #endif
2739 unsigned long hpagesize;
2740
2741 hpagesize = gethugepagesize(path);
2742 if (!hpagesize) {
2743 return NULL;
2744 }
2745
2746 if (memory < hpagesize) {
2747 return NULL;
2748 }
2749
2750 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2751 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2752 return NULL;
2753 }
2754
2755 if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
2756 return NULL;
2757 }
2758
2759 fd = mkstemp(filename);
2760 if (fd < 0) {
2761 perror("unable to create backing store for hugepages");
2762 free(filename);
2763 return NULL;
2764 }
2765 unlink(filename);
2766 free(filename);
2767
2768 memory = (memory+hpagesize-1) & ~(hpagesize-1);
2769
2770 /*
2771 * ftruncate is not supported by hugetlbfs in older
2772 * hosts, so don't bother bailing out on errors.
2773 * If anything goes wrong with it under other filesystems,
2774 * mmap will fail.
2775 */
2776 if (ftruncate(fd, memory))
2777 perror("ftruncate");
2778
2779 #ifdef MAP_POPULATE
2780 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2781 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2782 * to sidestep this quirk.
2783 */
2784 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
2785 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
2786 #else
2787 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
2788 #endif
2789 if (area == MAP_FAILED) {
2790 perror("file_ram_alloc: can't mmap RAM pages");
2791 close(fd);
2792 return (NULL);
2793 }
2794 return area;
2795 }
2796 #endif
2797
2798 ram_addr_t qemu_ram_alloc(ram_addr_t size)
2799 {
2800 RAMBlock *new_block;
2801
2802 size = TARGET_PAGE_ALIGN(size);
2803 new_block = qemu_malloc(sizeof(*new_block));
2804
2805 if (mem_path) {
2806 #if defined (__linux__) && !defined(TARGET_S390X)
2807 new_block->host = file_ram_alloc(size, mem_path);
2808 if (!new_block->host)
2809 exit(1);
2810 #else
2811 fprintf(stderr, "-mem-path option unsupported\n");
2812 exit(1);
2813 #endif
2814 } else {
2815 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2816 /* XXX S390 KVM requires the topmost vma of the RAM to be < 256GB */
2817 new_block->host = mmap((void*)0x1000000, size,
2818 PROT_EXEC|PROT_READ|PROT_WRITE,
2819 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
2820 #else
2821 new_block->host = qemu_vmalloc(size);
2822 #endif
2823 #ifdef MADV_MERGEABLE
2824 madvise(new_block->host, size, MADV_MERGEABLE);
2825 #endif
2826 }
2827 new_block->offset = last_ram_offset;
2828 new_block->length = size;
2829
2830 new_block->next = ram_blocks;
2831 ram_blocks = new_block;
2832
2833 phys_ram_dirty = qemu_realloc(phys_ram_dirty,
2834 (last_ram_offset + size) >> TARGET_PAGE_BITS);
2835 memset(phys_ram_dirty + (last_ram_offset >> TARGET_PAGE_BITS),
2836 0xff, size >> TARGET_PAGE_BITS);
2837
2838 last_ram_offset += size;
2839
2840 if (kvm_enabled())
2841 kvm_setup_guest_memory(new_block->host, size);
2842
2843 return new_block->offset;
2844 }
2845
2846 void qemu_ram_free(ram_addr_t addr)
2847 {
2848 /* TODO: implement this. */
2849 }
2850
2851 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2852 With the exception of the softmmu code in this file, this should
2853 only be used for local memory (e.g. video ram) that the device owns,
2854 and knows it isn't going to access beyond the end of the block.
2855
2856 It should not be used for general purpose DMA.
2857 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2858 */
2859 void *qemu_get_ram_ptr(ram_addr_t addr)
2860 {
2861 RAMBlock *prev;
2862 RAMBlock **prevp;
2863 RAMBlock *block;
2864
2865 prev = NULL;
2866 prevp = &ram_blocks;
2867 block = ram_blocks;
2868 while (block && (block->offset > addr
2869 || block->offset + block->length <= addr)) {
2870 if (prev)
2871 prevp = &prev->next;
2872 prev = block;
2873 block = block->next;
2874 }
2875 if (!block) {
2876 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2877 abort();
2878 }
2879 /* Move this entry to to start of the list. */
2880 if (prev) {
2881 prev->next = block->next;
2882 block->next = *prevp;
2883 *prevp = block;
2884 }
2885 return block->host + (addr - block->offset);
2886 }
2887
2888 /* Some of the softmmu routines need to translate from a host pointer
2889 (typically a TLB entry) back to a ram offset. */
2890 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2891 {
2892 RAMBlock *prev;
2893 RAMBlock *block;
2894 uint8_t *host = ptr;
2895
2896 prev = NULL;
2897 block = ram_blocks;
2898 while (block && (block->host > host
2899 || block->host + block->length <= host)) {
2900 prev = block;
2901 block = block->next;
2902 }
2903 if (!block) {
2904 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2905 abort();
2906 }
2907 return block->offset + (host - block->host);
2908 }
2909
2910 static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
2911 {
2912 #ifdef DEBUG_UNASSIGNED
2913 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2914 #endif
2915 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2916 do_unassigned_access(addr, 0, 0, 0, 1);
2917 #endif
2918 return 0;
2919 }
2920
2921 static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
2922 {
2923 #ifdef DEBUG_UNASSIGNED
2924 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2925 #endif
2926 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2927 do_unassigned_access(addr, 0, 0, 0, 2);
2928 #endif
2929 return 0;
2930 }
2931
2932 static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
2933 {
2934 #ifdef DEBUG_UNASSIGNED
2935 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2936 #endif
2937 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2938 do_unassigned_access(addr, 0, 0, 0, 4);
2939 #endif
2940 return 0;
2941 }
2942
2943 static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
2944 {
2945 #ifdef DEBUG_UNASSIGNED
2946 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2947 #endif
2948 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2949 do_unassigned_access(addr, 1, 0, 0, 1);
2950 #endif
2951 }
2952
2953 static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
2954 {
2955 #ifdef DEBUG_UNASSIGNED
2956 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2957 #endif
2958 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2959 do_unassigned_access(addr, 1, 0, 0, 2);
2960 #endif
2961 }
2962
2963 static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
2964 {
2965 #ifdef DEBUG_UNASSIGNED
2966 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2967 #endif
2968 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2969 do_unassigned_access(addr, 1, 0, 0, 4);
2970 #endif
2971 }
2972
2973 static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
2974 unassigned_mem_readb,
2975 unassigned_mem_readw,
2976 unassigned_mem_readl,
2977 };
2978
2979 static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
2980 unassigned_mem_writeb,
2981 unassigned_mem_writew,
2982 unassigned_mem_writel,
2983 };
2984
2985 static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
2986 uint32_t val)
2987 {
2988 int dirty_flags;
2989 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2990 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2991 #if !defined(CONFIG_USER_ONLY)
2992 tb_invalidate_phys_page_fast(ram_addr, 1);
2993 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2994 #endif
2995 }
2996 stb_p(qemu_get_ram_ptr(ram_addr), val);
2997 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2998 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2999 /* we remove the notdirty callback only if the code has been
3000 flushed */
3001 if (dirty_flags == 0xff)
3002 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
3003 }
3004
3005 static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
3006 uint32_t val)
3007 {
3008 int dirty_flags;
3009 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
3010 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
3011 #if !defined(CONFIG_USER_ONLY)
3012 tb_invalidate_phys_page_fast(ram_addr, 2);
3013 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
3014 #endif
3015 }
3016 stw_p(qemu_get_ram_ptr(ram_addr), val);
3017 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
3018 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
3019 /* we remove the notdirty callback only if the code has been
3020 flushed */
3021 if (dirty_flags == 0xff)
3022 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
3023 }
3024
3025 static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
3026 uint32_t val)
3027 {
3028 int dirty_flags;
3029 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
3030 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
3031 #if !defined(CONFIG_USER_ONLY)
3032 tb_invalidate_phys_page_fast(ram_addr, 4);
3033 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
3034 #endif
3035 }
3036 stl_p(qemu_get_ram_ptr(ram_addr), val);
3037 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
3038 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
3039 /* we remove the notdirty callback only if the code has been
3040 flushed */
3041 if (dirty_flags == 0xff)
3042 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
3043 }
3044
3045 static CPUReadMemoryFunc * const error_mem_read[3] = {
3046 NULL, /* never used */
3047 NULL, /* never used */
3048 NULL, /* never used */
3049 };
3050
3051 static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
3052 notdirty_mem_writeb,
3053 notdirty_mem_writew,
3054 notdirty_mem_writel,
3055 };
3056
3057 /* Generate a debug exception if a watchpoint has been hit. */
3058 static void check_watchpoint(int offset, int len_mask, int flags)
3059 {
3060 CPUState *env = cpu_single_env;
3061 target_ulong pc, cs_base;
3062 TranslationBlock *tb;
3063 target_ulong vaddr;
3064 CPUWatchpoint *wp;
3065 int cpu_flags;
3066
3067 if (env->watchpoint_hit) {
3068 /* We re-entered the check after replacing the TB. Now raise
3069 * the debug interrupt so that is will trigger after the
3070 * current instruction. */
3071 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
3072 return;
3073 }
3074 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
3075 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
3076 if ((vaddr == (wp->vaddr & len_mask) ||
3077 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
3078 wp->flags |= BP_WATCHPOINT_HIT;
3079 if (!env->watchpoint_hit) {
3080 env->watchpoint_hit = wp;
3081 tb = tb_find_pc(env->mem_io_pc);
3082 if (!tb) {
3083 cpu_abort(env, "check_watchpoint: could not find TB for "
3084 "pc=%p", (void *)env->mem_io_pc);
3085 }
3086 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
3087 tb_phys_invalidate(tb, -1);
3088 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
3089 env->exception_index = EXCP_DEBUG;
3090 } else {
3091 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
3092 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
3093 }
3094 cpu_resume_from_signal(env, NULL);
3095 }
3096 } else {
3097 wp->flags &= ~BP_WATCHPOINT_HIT;
3098 }
3099 }
3100 }
3101
3102 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
3103 so these check for a hit then pass through to the normal out-of-line
3104 phys routines. */
3105 static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
3106 {
3107 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
3108 return ldub_phys(addr);
3109 }
3110
3111 static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
3112 {
3113 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
3114 return lduw_phys(addr);
3115 }
3116
3117 static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
3118 {
3119 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
3120 return ldl_phys(addr);
3121 }
3122
3123 static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
3124 uint32_t val)
3125 {
3126 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
3127 stb_phys(addr, val);
3128 }
3129
3130 static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
3131 uint32_t val)
3132 {
3133 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
3134 stw_phys(addr, val);
3135 }
3136
3137 static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
3138 uint32_t val)
3139 {
3140 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
3141 stl_phys(addr, val);
3142 }
3143
3144 static CPUReadMemoryFunc * const watch_mem_read[3] = {
3145 watch_mem_readb,
3146 watch_mem_readw,
3147 watch_mem_readl,
3148 };
3149
3150 static CPUWriteMemoryFunc * const watch_mem_write[3] = {
3151 watch_mem_writeb,
3152 watch_mem_writew,
3153 watch_mem_writel,
3154 };
3155
3156 static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
3157 unsigned int len)
3158 {
3159 uint32_t ret;
3160 unsigned int idx;
3161
3162 idx = SUBPAGE_IDX(addr);
3163 #if defined(DEBUG_SUBPAGE)
3164 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
3165 mmio, len, addr, idx);
3166 #endif
3167 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len],
3168 addr + mmio->region_offset[idx][0][len]);
3169
3170 return ret;
3171 }
3172
3173 static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
3174 uint32_t value, unsigned int len)
3175 {
3176 unsigned int idx;
3177
3178 idx = SUBPAGE_IDX(addr);
3179 #if defined(DEBUG_SUBPAGE)
3180 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
3181 mmio, len, addr, idx, value);
3182 #endif
3183 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len],
3184 addr + mmio->region_offset[idx][1][len],
3185 value);
3186 }
3187
3188 static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
3189 {
3190 #if defined(DEBUG_SUBPAGE)
3191 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
3192 #endif
3193
3194 return subpage_readlen(opaque, addr, 0);
3195 }
3196
3197 static void subpage_writeb (void *opaque, target_phys_addr_t addr,
3198 uint32_t value)
3199 {
3200 #if defined(DEBUG_SUBPAGE)
3201 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
3202 #endif
3203 subpage_writelen(opaque, addr, value, 0);
3204 }
3205
3206 static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
3207 {
3208 #if defined(DEBUG_SUBPAGE)
3209 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
3210 #endif
3211
3212 return subpage_readlen(opaque, addr, 1);
3213 }
3214
3215 static void subpage_writew (void *opaque, target_phys_addr_t addr,
3216 uint32_t value)
3217 {
3218 #if defined(DEBUG_SUBPAGE)
3219 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
3220 #endif
3221 subpage_writelen(opaque, addr, value, 1);
3222 }
3223
3224 static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
3225 {
3226 #if defined(DEBUG_SUBPAGE)
3227 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
3228 #endif
3229
3230 return subpage_readlen(opaque, addr, 2);
3231 }
3232
3233 static void subpage_writel (void *opaque,
3234 target_phys_addr_t addr, uint32_t value)
3235 {
3236 #if defined(DEBUG_SUBPAGE)
3237 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
3238 #endif
3239 subpage_writelen(opaque, addr, value, 2);
3240 }
3241
3242 static CPUReadMemoryFunc * const subpage_read[] = {
3243 &subpage_readb,
3244 &subpage_readw,
3245 &subpage_readl,
3246 };
3247
3248 static CPUWriteMemoryFunc * const subpage_write[] = {
3249 &subpage_writeb,
3250 &subpage_writew,
3251 &subpage_writel,
3252 };
3253
3254 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
3255 ram_addr_t memory, ram_addr_t region_offset)
3256 {
3257 int idx, eidx;
3258 unsigned int i;
3259
3260 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3261 return -1;
3262 idx = SUBPAGE_IDX(start);
3263 eidx = SUBPAGE_IDX(end);
3264 #if defined(DEBUG_SUBPAGE)
3265 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
3266 mmio, start, end, idx, eidx, memory);
3267 #endif
3268 memory >>= IO_MEM_SHIFT;
3269 for (; idx <= eidx; idx++) {
3270 for (i = 0; i < 4; i++) {
3271 if (io_mem_read[memory][i]) {
3272 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
3273 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
3274 mmio->region_offset[idx][0][i] = region_offset;
3275 }
3276 if (io_mem_write[memory][i]) {
3277 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
3278 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
3279 mmio->region_offset[idx][1][i] = region_offset;
3280 }
3281 }
3282 }
3283
3284 return 0;
3285 }
3286
3287 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
3288 ram_addr_t orig_memory, ram_addr_t region_offset)
3289 {
3290 subpage_t *mmio;
3291 int subpage_memory;
3292
3293 mmio = qemu_mallocz(sizeof(subpage_t));
3294
3295 mmio->base = base;
3296 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio);
3297 #if defined(DEBUG_SUBPAGE)
3298 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3299 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
3300 #endif
3301 *phys = subpage_memory | IO_MEM_SUBPAGE;
3302 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory,
3303 region_offset);
3304
3305 return mmio;
3306 }
3307
3308 static int get_free_io_mem_idx(void)
3309 {
3310 int i;
3311
3312 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
3313 if (!io_mem_used[i]) {
3314 io_mem_used[i] = 1;
3315 return i;
3316 }
3317 fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
3318 return -1;
3319 }
3320
3321 /* mem_read and mem_write are arrays of functions containing the
3322 function to access byte (index 0), word (index 1) and dword (index
3323 2). Functions can be omitted with a NULL function pointer.
3324 If io_index is non zero, the corresponding io zone is
3325 modified. If it is zero, a new io zone is allocated. The return
3326 value can be used with cpu_register_physical_memory(). (-1) is
3327 returned if error. */
3328 static int cpu_register_io_memory_fixed(int io_index,
3329 CPUReadMemoryFunc * const *mem_read,
3330 CPUWriteMemoryFunc * const *mem_write,
3331 void *opaque)
3332 {
3333 int i, subwidth = 0;
3334
3335 if (io_index <= 0) {
3336 io_index = get_free_io_mem_idx();
3337 if (io_index == -1)
3338 return io_index;
3339 } else {
3340 io_index >>= IO_MEM_SHIFT;
3341 if (io_index >= IO_MEM_NB_ENTRIES)
3342 return -1;
3343 }
3344
3345 for(i = 0;i < 3; i++) {
3346 if (!mem_read[i] || !mem_write[i])
3347 subwidth = IO_MEM_SUBWIDTH;
3348 io_mem_read[io_index][i] = mem_read[i];
3349 io_mem_write[io_index][i] = mem_write[i];
3350 }
3351 io_mem_opaque[io_index] = opaque;
3352 return (io_index << IO_MEM_SHIFT) | subwidth;
3353 }
3354
3355 int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
3356 CPUWriteMemoryFunc * const *mem_write,
3357 void *opaque)
3358 {
3359 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque);
3360 }
3361
3362 void cpu_unregister_io_memory(int io_table_address)
3363 {
3364 int i;
3365 int io_index = io_table_address >> IO_MEM_SHIFT;
3366
3367 for (i=0;i < 3; i++) {
3368 io_mem_read[io_index][i] = unassigned_mem_read[i];
3369 io_mem_write[io_index][i] = unassigned_mem_write[i];
3370 }
3371 io_mem_opaque[io_index] = NULL;
3372 io_mem_used[io_index] = 0;
3373 }
3374
3375 static void io_mem_init(void)
3376 {
3377 int i;
3378
3379 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read, unassigned_mem_write, NULL);
3380 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read, unassigned_mem_write, NULL);
3381 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read, notdirty_mem_write, NULL);
3382 for (i=0; i<5; i++)
3383 io_mem_used[i] = 1;
3384
3385 io_mem_watch = cpu_register_io_memory(watch_mem_read,
3386 watch_mem_write, NULL);
3387 }
3388
3389 #endif /* !defined(CONFIG_USER_ONLY) */
3390
3391 /* physical memory access (slow version, mainly for debug) */
3392 #if defined(CONFIG_USER_ONLY)
3393 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3394 uint8_t *buf, int len, int is_write)
3395 {
3396 int l, flags;
3397 target_ulong page;
3398 void * p;
3399
3400 while (len > 0) {
3401 page = addr & TARGET_PAGE_MASK;
3402 l = (page + TARGET_PAGE_SIZE) - addr;
3403 if (l > len)
3404 l = len;
3405 flags = page_get_flags(page);
3406 if (!(flags & PAGE_VALID))
3407 return -1;
3408 if (is_write) {
3409 if (!(flags & PAGE_WRITE))
3410 return -1;
3411 /* XXX: this code should not depend on lock_user */
3412 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3413 return -1;
3414 memcpy(p, buf, l);
3415 unlock_user(p, addr, l);
3416 } else {
3417 if (!(flags & PAGE_READ))
3418 return -1;
3419 /* XXX: this code should not depend on lock_user */
3420 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3421 return -1;
3422 memcpy(buf, p, l);
3423 unlock_user(p, addr, 0);
3424 }
3425 len -= l;
3426 buf += l;
3427 addr += l;
3428 }
3429 return 0;
3430 }
3431
3432 #else
3433 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
3434 int len, int is_write)
3435 {
3436 int l, io_index;
3437 uint8_t *ptr;
3438 uint32_t val;
3439 target_phys_addr_t page;
3440 unsigned long pd;
3441 PhysPageDesc *p;
3442
3443 while (len > 0) {
3444 page = addr & TARGET_PAGE_MASK;
3445 l = (page + TARGET_PAGE_SIZE) - addr;
3446 if (l > len)
3447 l = len;
3448 p = phys_page_find(page >> TARGET_PAGE_BITS);
3449 if (!p) {
3450 pd = IO_MEM_UNASSIGNED;
3451 } else {
3452 pd = p->phys_offset;
3453 }
3454
3455 if (is_write) {
3456 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3457 target_phys_addr_t addr1 = addr;
3458 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3459 if (p)
3460 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3461 /* XXX: could force cpu_single_env to NULL to avoid
3462 potential bugs */
3463 if (l >= 4 && ((addr1 & 3) == 0)) {
3464 /* 32 bit write access */
3465 val = ldl_p(buf);
3466 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
3467 l = 4;
3468 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3469 /* 16 bit write access */
3470 val = lduw_p(buf);
3471 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
3472 l = 2;
3473 } else {
3474 /* 8 bit write access */
3475 val = ldub_p(buf);
3476 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
3477 l = 1;
3478 }
3479 } else {
3480 unsigned long addr1;
3481 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3482 /* RAM case */
3483 ptr = qemu_get_ram_ptr(addr1);
3484 memcpy(ptr, buf, l);
3485 if (!cpu_physical_memory_is_dirty(addr1)) {
3486 /* invalidate code */
3487 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3488 /* set dirty bit */
3489 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3490 (0xff & ~CODE_DIRTY_FLAG);
3491 }
3492 }
3493 } else {
3494 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3495 !(pd & IO_MEM_ROMD)) {
3496 target_phys_addr_t addr1 = addr;
3497 /* I/O case */
3498 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3499 if (p)
3500 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3501 if (l >= 4 && ((addr1 & 3) == 0)) {
3502 /* 32 bit read access */
3503 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
3504 stl_p(buf, val);
3505 l = 4;
3506 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3507 /* 16 bit read access */
3508 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
3509 stw_p(buf, val);
3510 l = 2;
3511 } else {
3512 /* 8 bit read access */
3513 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
3514 stb_p(buf, val);
3515 l = 1;
3516 }
3517 } else {
3518 /* RAM case */
3519 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3520 (addr & ~TARGET_PAGE_MASK);
3521 memcpy(buf, ptr, l);
3522 }
3523 }
3524 len -= l;
3525 buf += l;
3526 addr += l;
3527 }
3528 }
3529
3530 /* used for ROM loading : can write in RAM and ROM */
3531 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
3532 const uint8_t *buf, int len)
3533 {
3534 int l;
3535 uint8_t *ptr;
3536 target_phys_addr_t page;
3537 unsigned long pd;
3538 PhysPageDesc *p;
3539
3540 while (len > 0) {
3541 page = addr & TARGET_PAGE_MASK;
3542 l = (page + TARGET_PAGE_SIZE) - addr;
3543 if (l > len)
3544 l = len;
3545 p = phys_page_find(page >> TARGET_PAGE_BITS);
3546 if (!p) {
3547 pd = IO_MEM_UNASSIGNED;
3548 } else {
3549 pd = p->phys_offset;
3550 }
3551
3552 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
3553 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3554 !(pd & IO_MEM_ROMD)) {
3555 /* do nothing */
3556 } else {
3557 unsigned long addr1;
3558 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3559 /* ROM/RAM case */
3560 ptr = qemu_get_ram_ptr(addr1);
3561 memcpy(ptr, buf, l);
3562 }
3563 len -= l;
3564 buf += l;
3565 addr += l;
3566 }
3567 }
3568
3569 typedef struct {
3570 void *buffer;
3571 target_phys_addr_t addr;
3572 target_phys_addr_t len;
3573 } BounceBuffer;
3574
3575 static BounceBuffer bounce;
3576
3577 typedef struct MapClient {
3578 void *opaque;
3579 void (*callback)(void *opaque);
3580 QLIST_ENTRY(MapClient) link;
3581 } MapClient;
3582
3583 static QLIST_HEAD(map_client_list, MapClient) map_client_list
3584 = QLIST_HEAD_INITIALIZER(map_client_list);
3585
3586 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3587 {
3588 MapClient *client = qemu_malloc(sizeof(*client));
3589
3590 client->opaque = opaque;
3591 client->callback = callback;
3592 QLIST_INSERT_HEAD(&map_client_list, client, link);
3593 return client;
3594 }
3595
3596 void cpu_unregister_map_client(void *_client)
3597 {
3598 MapClient *client = (MapClient *)_client;
3599
3600 QLIST_REMOVE(client, link);
3601 qemu_free(client);
3602 }
3603
3604 static void cpu_notify_map_clients(void)
3605 {
3606 MapClient *client;
3607
3608 while (!QLIST_EMPTY(&map_client_list)) {
3609 client = QLIST_FIRST(&map_client_list);
3610 client->callback(client->opaque);
3611 cpu_unregister_map_client(client);
3612 }
3613 }
3614
3615 /* Map a physical memory region into a host virtual address.
3616 * May map a subset of the requested range, given by and returned in *plen.
3617 * May return NULL if resources needed to perform the mapping are exhausted.
3618 * Use only for reads OR writes - not for read-modify-write operations.
3619 * Use cpu_register_map_client() to know when retrying the map operation is
3620 * likely to succeed.
3621 */
3622 void *cpu_physical_memory_map(target_phys_addr_t addr,
3623 target_phys_addr_t *plen,
3624 int is_write)
3625 {
3626 target_phys_addr_t len = *plen;
3627 target_phys_addr_t done = 0;
3628 int l;
3629 uint8_t *ret = NULL;
3630 uint8_t *ptr;
3631 target_phys_addr_t page;
3632 unsigned long pd;
3633 PhysPageDesc *p;
3634 unsigned long addr1;
3635
3636 while (len > 0) {
3637 page = addr & TARGET_PAGE_MASK;
3638 l = (page + TARGET_PAGE_SIZE) - addr;
3639 if (l > len)
3640 l = len;
3641 p = phys_page_find(page >> TARGET_PAGE_BITS);
3642 if (!p) {
3643 pd = IO_MEM_UNASSIGNED;
3644 } else {
3645 pd = p->phys_offset;
3646 }
3647
3648 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3649 if (done || bounce.buffer) {
3650 break;
3651 }
3652 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3653 bounce.addr = addr;
3654 bounce.len = l;
3655 if (!is_write) {
3656 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3657 }
3658 ptr = bounce.buffer;
3659 } else {
3660 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3661 ptr = qemu_get_ram_ptr(addr1);
3662 }
3663 if (!done) {
3664 ret = ptr;
3665 } else if (ret + done != ptr) {
3666 break;
3667 }
3668
3669 len -= l;
3670 addr += l;
3671 done += l;
3672 }
3673 *plen = done;
3674 return ret;
3675 }
3676
3677 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3678 * Will also mark the memory as dirty if is_write == 1. access_len gives
3679 * the amount of memory that was actually read or written by the caller.
3680 */
3681 void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3682 int is_write, target_phys_addr_t access_len)
3683 {
3684 if (buffer != bounce.buffer) {
3685 if (is_write) {
3686 ram_addr_t addr1 = qemu_ram_addr_from_host(buffer);
3687 while (access_len) {
3688 unsigned l;
3689 l = TARGET_PAGE_SIZE;
3690 if (l > access_len)
3691 l = access_len;
3692 if (!cpu_physical_memory_is_dirty(addr1)) {
3693 /* invalidate code */
3694 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3695 /* set dirty bit */
3696 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3697 (0xff & ~CODE_DIRTY_FLAG);
3698 }
3699 addr1 += l;
3700 access_len -= l;
3701 }
3702 }
3703 return;
3704 }
3705 if (is_write) {
3706 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3707 }
3708 qemu_vfree(bounce.buffer);
3709 bounce.buffer = NULL;
3710 cpu_notify_map_clients();
3711 }
3712
3713 /* warning: addr must be aligned */
3714 uint32_t ldl_phys(target_phys_addr_t addr)
3715 {
3716 int io_index;
3717 uint8_t *ptr;
3718 uint32_t val;
3719 unsigned long pd;
3720 PhysPageDesc *p;
3721
3722 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3723 if (!p) {
3724 pd = IO_MEM_UNASSIGNED;
3725 } else {
3726 pd = p->phys_offset;
3727 }
3728
3729 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3730 !(pd & IO_MEM_ROMD)) {
3731 /* I/O case */
3732 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3733 if (p)
3734 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3735 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3736 } else {
3737 /* RAM case */
3738 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3739 (addr & ~TARGET_PAGE_MASK);
3740 val = ldl_p(ptr);
3741 }
3742 return val;
3743 }
3744
3745 /* warning: addr must be aligned */
3746 uint64_t ldq_phys(target_phys_addr_t addr)
3747 {
3748 int io_index;
3749 uint8_t *ptr;
3750 uint64_t val;
3751 unsigned long pd;
3752 PhysPageDesc *p;
3753
3754 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3755 if (!p) {
3756 pd = IO_MEM_UNASSIGNED;
3757 } else {
3758 pd = p->phys_offset;
3759 }
3760
3761 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3762 !(pd & IO_MEM_ROMD)) {
3763 /* I/O case */
3764 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3765 if (p)
3766 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3767 #ifdef TARGET_WORDS_BIGENDIAN
3768 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3769 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3770 #else
3771 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3772 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3773 #endif
3774 } else {
3775 /* RAM case */
3776 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3777 (addr & ~TARGET_PAGE_MASK);
3778 val = ldq_p(ptr);
3779 }
3780 return val;
3781 }
3782
3783 /* XXX: optimize */
3784 uint32_t ldub_phys(target_phys_addr_t addr)
3785 {
3786 uint8_t val;
3787 cpu_physical_memory_read(addr, &val, 1);
3788 return val;
3789 }
3790
3791 /* XXX: optimize */
3792 uint32_t lduw_phys(target_phys_addr_t addr)
3793 {
3794 uint16_t val;
3795 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
3796 return tswap16(val);
3797 }
3798
3799 /* warning: addr must be aligned. The ram page is not masked as dirty
3800 and the code inside is not invalidated. It is useful if the dirty
3801 bits are used to track modified PTEs */
3802 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
3803 {
3804 int io_index;
3805 uint8_t *ptr;
3806 unsigned long pd;
3807 PhysPageDesc *p;
3808
3809 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3810 if (!p) {
3811 pd = IO_MEM_UNASSIGNED;
3812 } else {
3813 pd = p->phys_offset;
3814 }
3815
3816 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3817 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3818 if (p)
3819 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3820 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3821 } else {
3822 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3823 ptr = qemu_get_ram_ptr(addr1);
3824 stl_p(ptr, val);
3825
3826 if (unlikely(in_migration)) {
3827 if (!cpu_physical_memory_is_dirty(addr1)) {
3828 /* invalidate code */
3829 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3830 /* set dirty bit */
3831 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3832 (0xff & ~CODE_DIRTY_FLAG);
3833 }
3834 }
3835 }
3836 }
3837
3838 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
3839 {
3840 int io_index;
3841 uint8_t *ptr;
3842 unsigned long pd;
3843 PhysPageDesc *p;
3844
3845 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3846 if (!p) {
3847 pd = IO_MEM_UNASSIGNED;
3848 } else {
3849 pd = p->phys_offset;
3850 }
3851
3852 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3853 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3854 if (p)
3855 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3856 #ifdef TARGET_WORDS_BIGENDIAN
3857 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3858 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3859 #else
3860 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3861 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3862 #endif
3863 } else {
3864 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3865 (addr & ~TARGET_PAGE_MASK);
3866 stq_p(ptr, val);
3867 }
3868 }
3869
3870 /* warning: addr must be aligned */
3871 void stl_phys(target_phys_addr_t addr, uint32_t val)
3872 {
3873 int io_index;
3874 uint8_t *ptr;
3875 unsigned long pd;
3876 PhysPageDesc *p;
3877
3878 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3879 if (!p) {
3880 pd = IO_MEM_UNASSIGNED;
3881 } else {
3882 pd = p->phys_offset;
3883 }
3884
3885 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3886 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3887 if (p)
3888 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3889 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3890 } else {
3891 unsigned long addr1;
3892 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3893 /* RAM case */
3894 ptr = qemu_get_ram_ptr(addr1);
3895 stl_p(ptr, val);
3896 if (!cpu_physical_memory_is_dirty(addr1)) {
3897 /* invalidate code */
3898 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3899 /* set dirty bit */
3900 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3901 (0xff & ~CODE_DIRTY_FLAG);
3902 }
3903 }
3904 }
3905
3906 /* XXX: optimize */
3907 void stb_phys(target_phys_addr_t addr, uint32_t val)
3908 {
3909 uint8_t v = val;
3910 cpu_physical_memory_write(addr, &v, 1);
3911 }
3912
3913 /* XXX: optimize */
3914 void stw_phys(target_phys_addr_t addr, uint32_t val)
3915 {
3916 uint16_t v = tswap16(val);
3917 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3918 }
3919
3920 /* XXX: optimize */
3921 void stq_phys(target_phys_addr_t addr, uint64_t val)
3922 {
3923 val = tswap64(val);
3924 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3925 }
3926
3927 /* virtual memory access for debug (includes writing to ROM) */
3928 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3929 uint8_t *buf, int len, int is_write)
3930 {
3931 int l;
3932 target_phys_addr_t phys_addr;
3933 target_ulong page;
3934
3935 while (len > 0) {
3936 page = addr & TARGET_PAGE_MASK;
3937 phys_addr = cpu_get_phys_page_debug(env, page);
3938 /* if no physical page mapped, return an error */
3939 if (phys_addr == -1)
3940 return -1;
3941 l = (page + TARGET_PAGE_SIZE) - addr;
3942 if (l > len)
3943 l = len;
3944 phys_addr += (addr & ~TARGET_PAGE_MASK);
3945 if (is_write)
3946 cpu_physical_memory_write_rom(phys_addr, buf, l);
3947 else
3948 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
3949 len -= l;
3950 buf += l;
3951 addr += l;
3952 }
3953 return 0;
3954 }
3955 #endif
3956
3957 /* in deterministic execution mode, instructions doing device I/Os
3958 must be at the end of the TB */
3959 void cpu_io_recompile(CPUState *env, void *retaddr)
3960 {
3961 TranslationBlock *tb;
3962 uint32_t n, cflags;
3963 target_ulong pc, cs_base;
3964 uint64_t flags;
3965
3966 tb = tb_find_pc((unsigned long)retaddr);
3967 if (!tb) {
3968 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3969 retaddr);
3970 }
3971 n = env->icount_decr.u16.low + tb->icount;
3972 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3973 /* Calculate how many instructions had been executed before the fault
3974 occurred. */
3975 n = n - env->icount_decr.u16.low;
3976 /* Generate a new TB ending on the I/O insn. */
3977 n++;
3978 /* On MIPS and SH, delay slot instructions can only be restarted if
3979 they were already the first instruction in the TB. If this is not
3980 the first instruction in a TB then re-execute the preceding
3981 branch. */
3982 #if defined(TARGET_MIPS)
3983 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3984 env->active_tc.PC -= 4;
3985 env->icount_decr.u16.low++;
3986 env->hflags &= ~MIPS_HFLAG_BMASK;
3987 }
3988 #elif defined(TARGET_SH4)
3989 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3990 && n > 1) {
3991 env->pc -= 2;
3992 env->icount_decr.u16.low++;
3993 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3994 }
3995 #endif
3996 /* This should never happen. */
3997 if (n > CF_COUNT_MASK)
3998 cpu_abort(env, "TB too big during recompile");
3999
4000 cflags = n | CF_LAST_IO;
4001 pc = tb->pc;
4002 cs_base = tb->cs_base;
4003 flags = tb->flags;
4004 tb_phys_invalidate(tb, -1);
4005 /* FIXME: In theory this could raise an exception. In practice
4006 we have already translated the block once so it's probably ok. */
4007 tb_gen_code(env, pc, cs_base, flags, cflags);
4008 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
4009 the first in the TB) then we end up generating a whole new TB and
4010 repeating the fault, which is horribly inefficient.
4011 Better would be to execute just this insn uncached, or generate a
4012 second new TB. */
4013 cpu_resume_from_signal(env, NULL);
4014 }
4015
4016 #if !defined(CONFIG_USER_ONLY)
4017
4018 void dump_exec_info(FILE *f,
4019 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
4020 {
4021 int i, target_code_size, max_target_code_size;
4022 int direct_jmp_count, direct_jmp2_count, cross_page;
4023 TranslationBlock *tb;
4024
4025 target_code_size = 0;
4026 max_target_code_size = 0;
4027 cross_page = 0;
4028 direct_jmp_count = 0;
4029 direct_jmp2_count = 0;
4030 for(i = 0; i < nb_tbs; i++) {
4031 tb = &tbs[i];
4032 target_code_size += tb->size;
4033 if (tb->size > max_target_code_size)
4034 max_target_code_size = tb->size;
4035 if (tb->page_addr[1] != -1)
4036 cross_page++;
4037 if (tb->tb_next_offset[0] != 0xffff) {
4038 direct_jmp_count++;
4039 if (tb->tb_next_offset[1] != 0xffff) {
4040 direct_jmp2_count++;
4041 }
4042 }
4043 }
4044 /* XXX: avoid using doubles ? */
4045 cpu_fprintf(f, "Translation buffer state:\n");
4046 cpu_fprintf(f, "gen code size %ld/%ld\n",
4047 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
4048 cpu_fprintf(f, "TB count %d/%d\n",
4049 nb_tbs, code_gen_max_blocks);
4050 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
4051 nb_tbs ? target_code_size / nb_tbs : 0,
4052 max_target_code_size);
4053 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
4054 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
4055 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
4056 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
4057 cross_page,
4058 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
4059 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
4060 direct_jmp_count,
4061 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
4062 direct_jmp2_count,
4063 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
4064 cpu_fprintf(f, "\nStatistics:\n");
4065 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
4066 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
4067 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
4068 tcg_dump_info(f, cpu_fprintf);
4069 }
4070
4071 #define MMUSUFFIX _cmmu
4072 #define GETPC() NULL
4073 #define env cpu_single_env
4074 #define SOFTMMU_CODE_ACCESS
4075
4076 #define SHIFT 0
4077 #include "softmmu_template.h"
4078
4079 #define SHIFT 1
4080 #include "softmmu_template.h"
4081
4082 #define SHIFT 2
4083 #include "softmmu_template.h"
4084
4085 #define SHIFT 3
4086 #include "softmmu_template.h"
4087
4088 #undef env
4089
4090 #endif