]> git.proxmox.com Git - mirror_qemu.git/blob - exec.c
provide cpu_index to env mapping
[mirror_qemu.git] / exec.c
1 /*
2 * virtual page mapping and translated block handling
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
19 */
20 #include "config.h"
21 #ifdef _WIN32
22 #include <windows.h>
23 #else
24 #include <sys/types.h>
25 #include <sys/mman.h>
26 #endif
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <stdarg.h>
30 #include <string.h>
31 #include <errno.h>
32 #include <unistd.h>
33 #include <inttypes.h>
34
35 #include "cpu.h"
36 #include "exec-all.h"
37 #include "qemu-common.h"
38 #include "tcg.h"
39 #include "hw/hw.h"
40 #include "osdep.h"
41 #include "kvm.h"
42 #if defined(CONFIG_USER_ONLY)
43 #include <qemu.h>
44 #endif
45
46 //#define DEBUG_TB_INVALIDATE
47 //#define DEBUG_FLUSH
48 //#define DEBUG_TLB
49 //#define DEBUG_UNASSIGNED
50
51 /* make various TB consistency checks */
52 //#define DEBUG_TB_CHECK
53 //#define DEBUG_TLB_CHECK
54
55 //#define DEBUG_IOPORT
56 //#define DEBUG_SUBPAGE
57
58 #if !defined(CONFIG_USER_ONLY)
59 /* TB consistency checks only implemented for usermode emulation. */
60 #undef DEBUG_TB_CHECK
61 #endif
62
63 #define SMC_BITMAP_USE_THRESHOLD 10
64
65 #if defined(TARGET_SPARC64)
66 #define TARGET_PHYS_ADDR_SPACE_BITS 41
67 #elif defined(TARGET_SPARC)
68 #define TARGET_PHYS_ADDR_SPACE_BITS 36
69 #elif defined(TARGET_ALPHA)
70 #define TARGET_PHYS_ADDR_SPACE_BITS 42
71 #define TARGET_VIRT_ADDR_SPACE_BITS 42
72 #elif defined(TARGET_PPC64)
73 #define TARGET_PHYS_ADDR_SPACE_BITS 42
74 #elif defined(TARGET_X86_64) && !defined(CONFIG_KQEMU)
75 #define TARGET_PHYS_ADDR_SPACE_BITS 42
76 #elif defined(TARGET_I386) && !defined(CONFIG_KQEMU)
77 #define TARGET_PHYS_ADDR_SPACE_BITS 36
78 #else
79 /* Note: for compatibility with kqemu, we use 32 bits for x86_64 */
80 #define TARGET_PHYS_ADDR_SPACE_BITS 32
81 #endif
82
83 static TranslationBlock *tbs;
84 int code_gen_max_blocks;
85 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
86 static int nb_tbs;
87 /* any access to the tbs or the page table must use this lock */
88 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
89
90 #if defined(__arm__) || defined(__sparc_v9__)
91 /* The prologue must be reachable with a direct jump. ARM and Sparc64
92 have limited branch ranges (possibly also PPC) so place it in a
93 section close to code segment. */
94 #define code_gen_section \
95 __attribute__((__section__(".gen_code"))) \
96 __attribute__((aligned (32)))
97 #else
98 #define code_gen_section \
99 __attribute__((aligned (32)))
100 #endif
101
102 uint8_t code_gen_prologue[1024] code_gen_section;
103 static uint8_t *code_gen_buffer;
104 static unsigned long code_gen_buffer_size;
105 /* threshold to flush the translated code buffer */
106 static unsigned long code_gen_buffer_max_size;
107 uint8_t *code_gen_ptr;
108
109 #if !defined(CONFIG_USER_ONLY)
110 int phys_ram_fd;
111 uint8_t *phys_ram_dirty;
112 static int in_migration;
113
114 typedef struct RAMBlock {
115 uint8_t *host;
116 ram_addr_t offset;
117 ram_addr_t length;
118 struct RAMBlock *next;
119 } RAMBlock;
120
121 static RAMBlock *ram_blocks;
122 /* TODO: When we implement (and use) ram deallocation (e.g. for hotplug)
123 then we can no longer assume contiguous ram offsets, and external uses
124 of this variable will break. */
125 ram_addr_t last_ram_offset;
126 #endif
127
128 CPUState *first_cpu;
129 /* current CPU in the current thread. It is only valid inside
130 cpu_exec() */
131 CPUState *cpu_single_env;
132 /* 0 = Do not count executed instructions.
133 1 = Precise instruction counting.
134 2 = Adaptive rate instruction counting. */
135 int use_icount = 0;
136 /* Current instruction counter. While executing translated code this may
137 include some instructions that have not yet been executed. */
138 int64_t qemu_icount;
139
140 typedef struct PageDesc {
141 /* list of TBs intersecting this ram page */
142 TranslationBlock *first_tb;
143 /* in order to optimize self modifying code, we count the number
144 of lookups we do to a given page to use a bitmap */
145 unsigned int code_write_count;
146 uint8_t *code_bitmap;
147 #if defined(CONFIG_USER_ONLY)
148 unsigned long flags;
149 #endif
150 } PageDesc;
151
152 typedef struct PhysPageDesc {
153 /* offset in host memory of the page + io_index in the low bits */
154 ram_addr_t phys_offset;
155 ram_addr_t region_offset;
156 } PhysPageDesc;
157
158 #define L2_BITS 10
159 #if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
160 /* XXX: this is a temporary hack for alpha target.
161 * In the future, this is to be replaced by a multi-level table
162 * to actually be able to handle the complete 64 bits address space.
163 */
164 #define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
165 #else
166 #define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
167 #endif
168
169 #define L1_SIZE (1 << L1_BITS)
170 #define L2_SIZE (1 << L2_BITS)
171
172 unsigned long qemu_real_host_page_size;
173 unsigned long qemu_host_page_bits;
174 unsigned long qemu_host_page_size;
175 unsigned long qemu_host_page_mask;
176
177 /* XXX: for system emulation, it could just be an array */
178 static PageDesc *l1_map[L1_SIZE];
179 static PhysPageDesc **l1_phys_map;
180
181 #if !defined(CONFIG_USER_ONLY)
182 static void io_mem_init(void);
183
184 /* io memory support */
185 CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
186 CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
187 void *io_mem_opaque[IO_MEM_NB_ENTRIES];
188 static char io_mem_used[IO_MEM_NB_ENTRIES];
189 static int io_mem_watch;
190 #endif
191
192 /* log support */
193 static const char *logfilename = "/tmp/qemu.log";
194 FILE *logfile;
195 int loglevel;
196 static int log_append = 0;
197
198 /* statistics */
199 static int tlb_flush_count;
200 static int tb_flush_count;
201 static int tb_phys_invalidate_count;
202
203 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
204 typedef struct subpage_t {
205 target_phys_addr_t base;
206 CPUReadMemoryFunc **mem_read[TARGET_PAGE_SIZE][4];
207 CPUWriteMemoryFunc **mem_write[TARGET_PAGE_SIZE][4];
208 void *opaque[TARGET_PAGE_SIZE][2][4];
209 ram_addr_t region_offset[TARGET_PAGE_SIZE][2][4];
210 } subpage_t;
211
212 #ifdef _WIN32
213 static void map_exec(void *addr, long size)
214 {
215 DWORD old_protect;
216 VirtualProtect(addr, size,
217 PAGE_EXECUTE_READWRITE, &old_protect);
218
219 }
220 #else
221 static void map_exec(void *addr, long size)
222 {
223 unsigned long start, end, page_size;
224
225 page_size = getpagesize();
226 start = (unsigned long)addr;
227 start &= ~(page_size - 1);
228
229 end = (unsigned long)addr + size;
230 end += page_size - 1;
231 end &= ~(page_size - 1);
232
233 mprotect((void *)start, end - start,
234 PROT_READ | PROT_WRITE | PROT_EXEC);
235 }
236 #endif
237
238 static void page_init(void)
239 {
240 /* NOTE: we can always suppose that qemu_host_page_size >=
241 TARGET_PAGE_SIZE */
242 #ifdef _WIN32
243 {
244 SYSTEM_INFO system_info;
245
246 GetSystemInfo(&system_info);
247 qemu_real_host_page_size = system_info.dwPageSize;
248 }
249 #else
250 qemu_real_host_page_size = getpagesize();
251 #endif
252 if (qemu_host_page_size == 0)
253 qemu_host_page_size = qemu_real_host_page_size;
254 if (qemu_host_page_size < TARGET_PAGE_SIZE)
255 qemu_host_page_size = TARGET_PAGE_SIZE;
256 qemu_host_page_bits = 0;
257 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
258 qemu_host_page_bits++;
259 qemu_host_page_mask = ~(qemu_host_page_size - 1);
260 l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
261 memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
262
263 #if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
264 {
265 long long startaddr, endaddr;
266 FILE *f;
267 int n;
268
269 mmap_lock();
270 last_brk = (unsigned long)sbrk(0);
271 f = fopen("/proc/self/maps", "r");
272 if (f) {
273 do {
274 n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
275 if (n == 2) {
276 startaddr = MIN(startaddr,
277 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
278 endaddr = MIN(endaddr,
279 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
280 page_set_flags(startaddr & TARGET_PAGE_MASK,
281 TARGET_PAGE_ALIGN(endaddr),
282 PAGE_RESERVED);
283 }
284 } while (!feof(f));
285 fclose(f);
286 }
287 mmap_unlock();
288 }
289 #endif
290 }
291
292 static inline PageDesc **page_l1_map(target_ulong index)
293 {
294 #if TARGET_LONG_BITS > 32
295 /* Host memory outside guest VM. For 32-bit targets we have already
296 excluded high addresses. */
297 if (index > ((target_ulong)L2_SIZE * L1_SIZE))
298 return NULL;
299 #endif
300 return &l1_map[index >> L2_BITS];
301 }
302
303 static inline PageDesc *page_find_alloc(target_ulong index)
304 {
305 PageDesc **lp, *p;
306 lp = page_l1_map(index);
307 if (!lp)
308 return NULL;
309
310 p = *lp;
311 if (!p) {
312 /* allocate if not found */
313 #if defined(CONFIG_USER_ONLY)
314 size_t len = sizeof(PageDesc) * L2_SIZE;
315 /* Don't use qemu_malloc because it may recurse. */
316 p = mmap(0, len, PROT_READ | PROT_WRITE,
317 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
318 *lp = p;
319 if (h2g_valid(p)) {
320 unsigned long addr = h2g(p);
321 page_set_flags(addr & TARGET_PAGE_MASK,
322 TARGET_PAGE_ALIGN(addr + len),
323 PAGE_RESERVED);
324 }
325 #else
326 p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE);
327 *lp = p;
328 #endif
329 }
330 return p + (index & (L2_SIZE - 1));
331 }
332
333 static inline PageDesc *page_find(target_ulong index)
334 {
335 PageDesc **lp, *p;
336 lp = page_l1_map(index);
337 if (!lp)
338 return NULL;
339
340 p = *lp;
341 if (!p)
342 return 0;
343 return p + (index & (L2_SIZE - 1));
344 }
345
346 static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
347 {
348 void **lp, **p;
349 PhysPageDesc *pd;
350
351 p = (void **)l1_phys_map;
352 #if TARGET_PHYS_ADDR_SPACE_BITS > 32
353
354 #if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
355 #error unsupported TARGET_PHYS_ADDR_SPACE_BITS
356 #endif
357 lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
358 p = *lp;
359 if (!p) {
360 /* allocate if not found */
361 if (!alloc)
362 return NULL;
363 p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
364 memset(p, 0, sizeof(void *) * L1_SIZE);
365 *lp = p;
366 }
367 #endif
368 lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
369 pd = *lp;
370 if (!pd) {
371 int i;
372 /* allocate if not found */
373 if (!alloc)
374 return NULL;
375 pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
376 *lp = pd;
377 for (i = 0; i < L2_SIZE; i++) {
378 pd[i].phys_offset = IO_MEM_UNASSIGNED;
379 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
380 }
381 }
382 return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
383 }
384
385 static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
386 {
387 return phys_page_find_alloc(index, 0);
388 }
389
390 #if !defined(CONFIG_USER_ONLY)
391 static void tlb_protect_code(ram_addr_t ram_addr);
392 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
393 target_ulong vaddr);
394 #define mmap_lock() do { } while(0)
395 #define mmap_unlock() do { } while(0)
396 #endif
397
398 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
399
400 #if defined(CONFIG_USER_ONLY)
401 /* Currently it is not recommended to allocate big chunks of data in
402 user mode. It will change when a dedicated libc will be used */
403 #define USE_STATIC_CODE_GEN_BUFFER
404 #endif
405
406 #ifdef USE_STATIC_CODE_GEN_BUFFER
407 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
408 #endif
409
410 static void code_gen_alloc(unsigned long tb_size)
411 {
412 #ifdef USE_STATIC_CODE_GEN_BUFFER
413 code_gen_buffer = static_code_gen_buffer;
414 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
415 map_exec(code_gen_buffer, code_gen_buffer_size);
416 #else
417 code_gen_buffer_size = tb_size;
418 if (code_gen_buffer_size == 0) {
419 #if defined(CONFIG_USER_ONLY)
420 /* in user mode, phys_ram_size is not meaningful */
421 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
422 #else
423 /* XXX: needs adjustments */
424 code_gen_buffer_size = (unsigned long)(ram_size / 4);
425 #endif
426 }
427 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
428 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
429 /* The code gen buffer location may have constraints depending on
430 the host cpu and OS */
431 #if defined(__linux__)
432 {
433 int flags;
434 void *start = NULL;
435
436 flags = MAP_PRIVATE | MAP_ANONYMOUS;
437 #if defined(__x86_64__)
438 flags |= MAP_32BIT;
439 /* Cannot map more than that */
440 if (code_gen_buffer_size > (800 * 1024 * 1024))
441 code_gen_buffer_size = (800 * 1024 * 1024);
442 #elif defined(__sparc_v9__)
443 // Map the buffer below 2G, so we can use direct calls and branches
444 flags |= MAP_FIXED;
445 start = (void *) 0x60000000UL;
446 if (code_gen_buffer_size > (512 * 1024 * 1024))
447 code_gen_buffer_size = (512 * 1024 * 1024);
448 #elif defined(__arm__)
449 /* Map the buffer below 32M, so we can use direct calls and branches */
450 flags |= MAP_FIXED;
451 start = (void *) 0x01000000UL;
452 if (code_gen_buffer_size > 16 * 1024 * 1024)
453 code_gen_buffer_size = 16 * 1024 * 1024;
454 #endif
455 code_gen_buffer = mmap(start, code_gen_buffer_size,
456 PROT_WRITE | PROT_READ | PROT_EXEC,
457 flags, -1, 0);
458 if (code_gen_buffer == MAP_FAILED) {
459 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
460 exit(1);
461 }
462 }
463 #elif defined(__FreeBSD__) || defined(__DragonFly__)
464 {
465 int flags;
466 void *addr = NULL;
467 flags = MAP_PRIVATE | MAP_ANONYMOUS;
468 #if defined(__x86_64__)
469 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
470 * 0x40000000 is free */
471 flags |= MAP_FIXED;
472 addr = (void *)0x40000000;
473 /* Cannot map more than that */
474 if (code_gen_buffer_size > (800 * 1024 * 1024))
475 code_gen_buffer_size = (800 * 1024 * 1024);
476 #endif
477 code_gen_buffer = mmap(addr, code_gen_buffer_size,
478 PROT_WRITE | PROT_READ | PROT_EXEC,
479 flags, -1, 0);
480 if (code_gen_buffer == MAP_FAILED) {
481 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
482 exit(1);
483 }
484 }
485 #else
486 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
487 map_exec(code_gen_buffer, code_gen_buffer_size);
488 #endif
489 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
490 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
491 code_gen_buffer_max_size = code_gen_buffer_size -
492 code_gen_max_block_size();
493 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
494 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
495 }
496
497 /* Must be called before using the QEMU cpus. 'tb_size' is the size
498 (in bytes) allocated to the translation buffer. Zero means default
499 size. */
500 void cpu_exec_init_all(unsigned long tb_size)
501 {
502 cpu_gen_init();
503 code_gen_alloc(tb_size);
504 code_gen_ptr = code_gen_buffer;
505 page_init();
506 #if !defined(CONFIG_USER_ONLY)
507 io_mem_init();
508 #endif
509 }
510
511 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
512
513 #define CPU_COMMON_SAVE_VERSION 1
514
515 static void cpu_common_save(QEMUFile *f, void *opaque)
516 {
517 CPUState *env = opaque;
518
519 cpu_synchronize_state(env, 0);
520
521 qemu_put_be32s(f, &env->halted);
522 qemu_put_be32s(f, &env->interrupt_request);
523 }
524
525 static int cpu_common_load(QEMUFile *f, void *opaque, int version_id)
526 {
527 CPUState *env = opaque;
528
529 if (version_id != CPU_COMMON_SAVE_VERSION)
530 return -EINVAL;
531
532 qemu_get_be32s(f, &env->halted);
533 qemu_get_be32s(f, &env->interrupt_request);
534 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
535 version_id is increased. */
536 env->interrupt_request &= ~0x01;
537 tlb_flush(env, 1);
538 cpu_synchronize_state(env, 1);
539
540 return 0;
541 }
542 #endif
543
544 CPUState *qemu_get_cpu(int cpu)
545 {
546 CPUState *env = first_cpu;
547
548 while (env) {
549 if (env->cpu_index == cpu)
550 break;
551 env = env->next_cpu;
552 }
553
554 return env;
555 }
556
557 void cpu_exec_init(CPUState *env)
558 {
559 CPUState **penv;
560 int cpu_index;
561
562 #if defined(CONFIG_USER_ONLY)
563 cpu_list_lock();
564 #endif
565 env->next_cpu = NULL;
566 penv = &first_cpu;
567 cpu_index = 0;
568 while (*penv != NULL) {
569 penv = &(*penv)->next_cpu;
570 cpu_index++;
571 }
572 env->cpu_index = cpu_index;
573 env->numa_node = 0;
574 TAILQ_INIT(&env->breakpoints);
575 TAILQ_INIT(&env->watchpoints);
576 *penv = env;
577 #if defined(CONFIG_USER_ONLY)
578 cpu_list_unlock();
579 #endif
580 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
581 register_savevm("cpu_common", cpu_index, CPU_COMMON_SAVE_VERSION,
582 cpu_common_save, cpu_common_load, env);
583 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
584 cpu_save, cpu_load, env);
585 #endif
586 }
587
588 static inline void invalidate_page_bitmap(PageDesc *p)
589 {
590 if (p->code_bitmap) {
591 qemu_free(p->code_bitmap);
592 p->code_bitmap = NULL;
593 }
594 p->code_write_count = 0;
595 }
596
597 /* set to NULL all the 'first_tb' fields in all PageDescs */
598 static void page_flush_tb(void)
599 {
600 int i, j;
601 PageDesc *p;
602
603 for(i = 0; i < L1_SIZE; i++) {
604 p = l1_map[i];
605 if (p) {
606 for(j = 0; j < L2_SIZE; j++) {
607 p->first_tb = NULL;
608 invalidate_page_bitmap(p);
609 p++;
610 }
611 }
612 }
613 }
614
615 /* flush all the translation blocks */
616 /* XXX: tb_flush is currently not thread safe */
617 void tb_flush(CPUState *env1)
618 {
619 CPUState *env;
620 #if defined(DEBUG_FLUSH)
621 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
622 (unsigned long)(code_gen_ptr - code_gen_buffer),
623 nb_tbs, nb_tbs > 0 ?
624 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
625 #endif
626 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
627 cpu_abort(env1, "Internal error: code buffer overflow\n");
628
629 nb_tbs = 0;
630
631 for(env = first_cpu; env != NULL; env = env->next_cpu) {
632 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
633 }
634
635 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
636 page_flush_tb();
637
638 code_gen_ptr = code_gen_buffer;
639 /* XXX: flush processor icache at this point if cache flush is
640 expensive */
641 tb_flush_count++;
642 }
643
644 #ifdef DEBUG_TB_CHECK
645
646 static void tb_invalidate_check(target_ulong address)
647 {
648 TranslationBlock *tb;
649 int i;
650 address &= TARGET_PAGE_MASK;
651 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
652 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
653 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
654 address >= tb->pc + tb->size)) {
655 printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n",
656 address, (long)tb->pc, tb->size);
657 }
658 }
659 }
660 }
661
662 /* verify that all the pages have correct rights for code */
663 static void tb_page_check(void)
664 {
665 TranslationBlock *tb;
666 int i, flags1, flags2;
667
668 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
669 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
670 flags1 = page_get_flags(tb->pc);
671 flags2 = page_get_flags(tb->pc + tb->size - 1);
672 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
673 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
674 (long)tb->pc, tb->size, flags1, flags2);
675 }
676 }
677 }
678 }
679
680 static void tb_jmp_check(TranslationBlock *tb)
681 {
682 TranslationBlock *tb1;
683 unsigned int n1;
684
685 /* suppress any remaining jumps to this TB */
686 tb1 = tb->jmp_first;
687 for(;;) {
688 n1 = (long)tb1 & 3;
689 tb1 = (TranslationBlock *)((long)tb1 & ~3);
690 if (n1 == 2)
691 break;
692 tb1 = tb1->jmp_next[n1];
693 }
694 /* check end of list */
695 if (tb1 != tb) {
696 printf("ERROR: jmp_list from 0x%08lx\n", (long)tb);
697 }
698 }
699
700 #endif
701
702 /* invalidate one TB */
703 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
704 int next_offset)
705 {
706 TranslationBlock *tb1;
707 for(;;) {
708 tb1 = *ptb;
709 if (tb1 == tb) {
710 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
711 break;
712 }
713 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
714 }
715 }
716
717 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
718 {
719 TranslationBlock *tb1;
720 unsigned int n1;
721
722 for(;;) {
723 tb1 = *ptb;
724 n1 = (long)tb1 & 3;
725 tb1 = (TranslationBlock *)((long)tb1 & ~3);
726 if (tb1 == tb) {
727 *ptb = tb1->page_next[n1];
728 break;
729 }
730 ptb = &tb1->page_next[n1];
731 }
732 }
733
734 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
735 {
736 TranslationBlock *tb1, **ptb;
737 unsigned int n1;
738
739 ptb = &tb->jmp_next[n];
740 tb1 = *ptb;
741 if (tb1) {
742 /* find tb(n) in circular list */
743 for(;;) {
744 tb1 = *ptb;
745 n1 = (long)tb1 & 3;
746 tb1 = (TranslationBlock *)((long)tb1 & ~3);
747 if (n1 == n && tb1 == tb)
748 break;
749 if (n1 == 2) {
750 ptb = &tb1->jmp_first;
751 } else {
752 ptb = &tb1->jmp_next[n1];
753 }
754 }
755 /* now we can suppress tb(n) from the list */
756 *ptb = tb->jmp_next[n];
757
758 tb->jmp_next[n] = NULL;
759 }
760 }
761
762 /* reset the jump entry 'n' of a TB so that it is not chained to
763 another TB */
764 static inline void tb_reset_jump(TranslationBlock *tb, int n)
765 {
766 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
767 }
768
769 void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
770 {
771 CPUState *env;
772 PageDesc *p;
773 unsigned int h, n1;
774 target_phys_addr_t phys_pc;
775 TranslationBlock *tb1, *tb2;
776
777 /* remove the TB from the hash list */
778 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
779 h = tb_phys_hash_func(phys_pc);
780 tb_remove(&tb_phys_hash[h], tb,
781 offsetof(TranslationBlock, phys_hash_next));
782
783 /* remove the TB from the page list */
784 if (tb->page_addr[0] != page_addr) {
785 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
786 tb_page_remove(&p->first_tb, tb);
787 invalidate_page_bitmap(p);
788 }
789 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
790 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
791 tb_page_remove(&p->first_tb, tb);
792 invalidate_page_bitmap(p);
793 }
794
795 tb_invalidated_flag = 1;
796
797 /* remove the TB from the hash list */
798 h = tb_jmp_cache_hash_func(tb->pc);
799 for(env = first_cpu; env != NULL; env = env->next_cpu) {
800 if (env->tb_jmp_cache[h] == tb)
801 env->tb_jmp_cache[h] = NULL;
802 }
803
804 /* suppress this TB from the two jump lists */
805 tb_jmp_remove(tb, 0);
806 tb_jmp_remove(tb, 1);
807
808 /* suppress any remaining jumps to this TB */
809 tb1 = tb->jmp_first;
810 for(;;) {
811 n1 = (long)tb1 & 3;
812 if (n1 == 2)
813 break;
814 tb1 = (TranslationBlock *)((long)tb1 & ~3);
815 tb2 = tb1->jmp_next[n1];
816 tb_reset_jump(tb1, n1);
817 tb1->jmp_next[n1] = NULL;
818 tb1 = tb2;
819 }
820 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
821
822 tb_phys_invalidate_count++;
823 }
824
825 static inline void set_bits(uint8_t *tab, int start, int len)
826 {
827 int end, mask, end1;
828
829 end = start + len;
830 tab += start >> 3;
831 mask = 0xff << (start & 7);
832 if ((start & ~7) == (end & ~7)) {
833 if (start < end) {
834 mask &= ~(0xff << (end & 7));
835 *tab |= mask;
836 }
837 } else {
838 *tab++ |= mask;
839 start = (start + 8) & ~7;
840 end1 = end & ~7;
841 while (start < end1) {
842 *tab++ = 0xff;
843 start += 8;
844 }
845 if (start < end) {
846 mask = ~(0xff << (end & 7));
847 *tab |= mask;
848 }
849 }
850 }
851
852 static void build_page_bitmap(PageDesc *p)
853 {
854 int n, tb_start, tb_end;
855 TranslationBlock *tb;
856
857 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
858
859 tb = p->first_tb;
860 while (tb != NULL) {
861 n = (long)tb & 3;
862 tb = (TranslationBlock *)((long)tb & ~3);
863 /* NOTE: this is subtle as a TB may span two physical pages */
864 if (n == 0) {
865 /* NOTE: tb_end may be after the end of the page, but
866 it is not a problem */
867 tb_start = tb->pc & ~TARGET_PAGE_MASK;
868 tb_end = tb_start + tb->size;
869 if (tb_end > TARGET_PAGE_SIZE)
870 tb_end = TARGET_PAGE_SIZE;
871 } else {
872 tb_start = 0;
873 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
874 }
875 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
876 tb = tb->page_next[n];
877 }
878 }
879
880 TranslationBlock *tb_gen_code(CPUState *env,
881 target_ulong pc, target_ulong cs_base,
882 int flags, int cflags)
883 {
884 TranslationBlock *tb;
885 uint8_t *tc_ptr;
886 target_ulong phys_pc, phys_page2, virt_page2;
887 int code_gen_size;
888
889 phys_pc = get_phys_addr_code(env, pc);
890 tb = tb_alloc(pc);
891 if (!tb) {
892 /* flush must be done */
893 tb_flush(env);
894 /* cannot fail at this point */
895 tb = tb_alloc(pc);
896 /* Don't forget to invalidate previous TB info. */
897 tb_invalidated_flag = 1;
898 }
899 tc_ptr = code_gen_ptr;
900 tb->tc_ptr = tc_ptr;
901 tb->cs_base = cs_base;
902 tb->flags = flags;
903 tb->cflags = cflags;
904 cpu_gen_code(env, tb, &code_gen_size);
905 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
906
907 /* check next page if needed */
908 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
909 phys_page2 = -1;
910 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
911 phys_page2 = get_phys_addr_code(env, virt_page2);
912 }
913 tb_link_phys(tb, phys_pc, phys_page2);
914 return tb;
915 }
916
917 /* invalidate all TBs which intersect with the target physical page
918 starting in range [start;end[. NOTE: start and end must refer to
919 the same physical page. 'is_cpu_write_access' should be true if called
920 from a real cpu write access: the virtual CPU will exit the current
921 TB if code is modified inside this TB. */
922 void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
923 int is_cpu_write_access)
924 {
925 TranslationBlock *tb, *tb_next, *saved_tb;
926 CPUState *env = cpu_single_env;
927 target_ulong tb_start, tb_end;
928 PageDesc *p;
929 int n;
930 #ifdef TARGET_HAS_PRECISE_SMC
931 int current_tb_not_found = is_cpu_write_access;
932 TranslationBlock *current_tb = NULL;
933 int current_tb_modified = 0;
934 target_ulong current_pc = 0;
935 target_ulong current_cs_base = 0;
936 int current_flags = 0;
937 #endif /* TARGET_HAS_PRECISE_SMC */
938
939 p = page_find(start >> TARGET_PAGE_BITS);
940 if (!p)
941 return;
942 if (!p->code_bitmap &&
943 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
944 is_cpu_write_access) {
945 /* build code bitmap */
946 build_page_bitmap(p);
947 }
948
949 /* we remove all the TBs in the range [start, end[ */
950 /* XXX: see if in some cases it could be faster to invalidate all the code */
951 tb = p->first_tb;
952 while (tb != NULL) {
953 n = (long)tb & 3;
954 tb = (TranslationBlock *)((long)tb & ~3);
955 tb_next = tb->page_next[n];
956 /* NOTE: this is subtle as a TB may span two physical pages */
957 if (n == 0) {
958 /* NOTE: tb_end may be after the end of the page, but
959 it is not a problem */
960 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
961 tb_end = tb_start + tb->size;
962 } else {
963 tb_start = tb->page_addr[1];
964 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
965 }
966 if (!(tb_end <= start || tb_start >= end)) {
967 #ifdef TARGET_HAS_PRECISE_SMC
968 if (current_tb_not_found) {
969 current_tb_not_found = 0;
970 current_tb = NULL;
971 if (env->mem_io_pc) {
972 /* now we have a real cpu fault */
973 current_tb = tb_find_pc(env->mem_io_pc);
974 }
975 }
976 if (current_tb == tb &&
977 (current_tb->cflags & CF_COUNT_MASK) != 1) {
978 /* If we are modifying the current TB, we must stop
979 its execution. We could be more precise by checking
980 that the modification is after the current PC, but it
981 would require a specialized function to partially
982 restore the CPU state */
983
984 current_tb_modified = 1;
985 cpu_restore_state(current_tb, env,
986 env->mem_io_pc, NULL);
987 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
988 &current_flags);
989 }
990 #endif /* TARGET_HAS_PRECISE_SMC */
991 /* we need to do that to handle the case where a signal
992 occurs while doing tb_phys_invalidate() */
993 saved_tb = NULL;
994 if (env) {
995 saved_tb = env->current_tb;
996 env->current_tb = NULL;
997 }
998 tb_phys_invalidate(tb, -1);
999 if (env) {
1000 env->current_tb = saved_tb;
1001 if (env->interrupt_request && env->current_tb)
1002 cpu_interrupt(env, env->interrupt_request);
1003 }
1004 }
1005 tb = tb_next;
1006 }
1007 #if !defined(CONFIG_USER_ONLY)
1008 /* if no code remaining, no need to continue to use slow writes */
1009 if (!p->first_tb) {
1010 invalidate_page_bitmap(p);
1011 if (is_cpu_write_access) {
1012 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
1013 }
1014 }
1015 #endif
1016 #ifdef TARGET_HAS_PRECISE_SMC
1017 if (current_tb_modified) {
1018 /* we generate a block containing just the instruction
1019 modifying the memory. It will ensure that it cannot modify
1020 itself */
1021 env->current_tb = NULL;
1022 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1023 cpu_resume_from_signal(env, NULL);
1024 }
1025 #endif
1026 }
1027
1028 /* len must be <= 8 and start must be a multiple of len */
1029 static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
1030 {
1031 PageDesc *p;
1032 int offset, b;
1033 #if 0
1034 if (1) {
1035 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1036 cpu_single_env->mem_io_vaddr, len,
1037 cpu_single_env->eip,
1038 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
1039 }
1040 #endif
1041 p = page_find(start >> TARGET_PAGE_BITS);
1042 if (!p)
1043 return;
1044 if (p->code_bitmap) {
1045 offset = start & ~TARGET_PAGE_MASK;
1046 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1047 if (b & ((1 << len) - 1))
1048 goto do_invalidate;
1049 } else {
1050 do_invalidate:
1051 tb_invalidate_phys_page_range(start, start + len, 1);
1052 }
1053 }
1054
1055 #if !defined(CONFIG_SOFTMMU)
1056 static void tb_invalidate_phys_page(target_phys_addr_t addr,
1057 unsigned long pc, void *puc)
1058 {
1059 TranslationBlock *tb;
1060 PageDesc *p;
1061 int n;
1062 #ifdef TARGET_HAS_PRECISE_SMC
1063 TranslationBlock *current_tb = NULL;
1064 CPUState *env = cpu_single_env;
1065 int current_tb_modified = 0;
1066 target_ulong current_pc = 0;
1067 target_ulong current_cs_base = 0;
1068 int current_flags = 0;
1069 #endif
1070
1071 addr &= TARGET_PAGE_MASK;
1072 p = page_find(addr >> TARGET_PAGE_BITS);
1073 if (!p)
1074 return;
1075 tb = p->first_tb;
1076 #ifdef TARGET_HAS_PRECISE_SMC
1077 if (tb && pc != 0) {
1078 current_tb = tb_find_pc(pc);
1079 }
1080 #endif
1081 while (tb != NULL) {
1082 n = (long)tb & 3;
1083 tb = (TranslationBlock *)((long)tb & ~3);
1084 #ifdef TARGET_HAS_PRECISE_SMC
1085 if (current_tb == tb &&
1086 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1087 /* If we are modifying the current TB, we must stop
1088 its execution. We could be more precise by checking
1089 that the modification is after the current PC, but it
1090 would require a specialized function to partially
1091 restore the CPU state */
1092
1093 current_tb_modified = 1;
1094 cpu_restore_state(current_tb, env, pc, puc);
1095 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1096 &current_flags);
1097 }
1098 #endif /* TARGET_HAS_PRECISE_SMC */
1099 tb_phys_invalidate(tb, addr);
1100 tb = tb->page_next[n];
1101 }
1102 p->first_tb = NULL;
1103 #ifdef TARGET_HAS_PRECISE_SMC
1104 if (current_tb_modified) {
1105 /* we generate a block containing just the instruction
1106 modifying the memory. It will ensure that it cannot modify
1107 itself */
1108 env->current_tb = NULL;
1109 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1110 cpu_resume_from_signal(env, puc);
1111 }
1112 #endif
1113 }
1114 #endif
1115
1116 /* add the tb in the target page and protect it if necessary */
1117 static inline void tb_alloc_page(TranslationBlock *tb,
1118 unsigned int n, target_ulong page_addr)
1119 {
1120 PageDesc *p;
1121 TranslationBlock *last_first_tb;
1122
1123 tb->page_addr[n] = page_addr;
1124 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
1125 tb->page_next[n] = p->first_tb;
1126 last_first_tb = p->first_tb;
1127 p->first_tb = (TranslationBlock *)((long)tb | n);
1128 invalidate_page_bitmap(p);
1129
1130 #if defined(TARGET_HAS_SMC) || 1
1131
1132 #if defined(CONFIG_USER_ONLY)
1133 if (p->flags & PAGE_WRITE) {
1134 target_ulong addr;
1135 PageDesc *p2;
1136 int prot;
1137
1138 /* force the host page as non writable (writes will have a
1139 page fault + mprotect overhead) */
1140 page_addr &= qemu_host_page_mask;
1141 prot = 0;
1142 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1143 addr += TARGET_PAGE_SIZE) {
1144
1145 p2 = page_find (addr >> TARGET_PAGE_BITS);
1146 if (!p2)
1147 continue;
1148 prot |= p2->flags;
1149 p2->flags &= ~PAGE_WRITE;
1150 page_get_flags(addr);
1151 }
1152 mprotect(g2h(page_addr), qemu_host_page_size,
1153 (prot & PAGE_BITS) & ~PAGE_WRITE);
1154 #ifdef DEBUG_TB_INVALIDATE
1155 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1156 page_addr);
1157 #endif
1158 }
1159 #else
1160 /* if some code is already present, then the pages are already
1161 protected. So we handle the case where only the first TB is
1162 allocated in a physical page */
1163 if (!last_first_tb) {
1164 tlb_protect_code(page_addr);
1165 }
1166 #endif
1167
1168 #endif /* TARGET_HAS_SMC */
1169 }
1170
1171 /* Allocate a new translation block. Flush the translation buffer if
1172 too many translation blocks or too much generated code. */
1173 TranslationBlock *tb_alloc(target_ulong pc)
1174 {
1175 TranslationBlock *tb;
1176
1177 if (nb_tbs >= code_gen_max_blocks ||
1178 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
1179 return NULL;
1180 tb = &tbs[nb_tbs++];
1181 tb->pc = pc;
1182 tb->cflags = 0;
1183 return tb;
1184 }
1185
1186 void tb_free(TranslationBlock *tb)
1187 {
1188 /* In practice this is mostly used for single use temporary TB
1189 Ignore the hard cases and just back up if this TB happens to
1190 be the last one generated. */
1191 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1192 code_gen_ptr = tb->tc_ptr;
1193 nb_tbs--;
1194 }
1195 }
1196
1197 /* add a new TB and link it to the physical page tables. phys_page2 is
1198 (-1) to indicate that only one page contains the TB. */
1199 void tb_link_phys(TranslationBlock *tb,
1200 target_ulong phys_pc, target_ulong phys_page2)
1201 {
1202 unsigned int h;
1203 TranslationBlock **ptb;
1204
1205 /* Grab the mmap lock to stop another thread invalidating this TB
1206 before we are done. */
1207 mmap_lock();
1208 /* add in the physical hash table */
1209 h = tb_phys_hash_func(phys_pc);
1210 ptb = &tb_phys_hash[h];
1211 tb->phys_hash_next = *ptb;
1212 *ptb = tb;
1213
1214 /* add in the page list */
1215 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1216 if (phys_page2 != -1)
1217 tb_alloc_page(tb, 1, phys_page2);
1218 else
1219 tb->page_addr[1] = -1;
1220
1221 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1222 tb->jmp_next[0] = NULL;
1223 tb->jmp_next[1] = NULL;
1224
1225 /* init original jump addresses */
1226 if (tb->tb_next_offset[0] != 0xffff)
1227 tb_reset_jump(tb, 0);
1228 if (tb->tb_next_offset[1] != 0xffff)
1229 tb_reset_jump(tb, 1);
1230
1231 #ifdef DEBUG_TB_CHECK
1232 tb_page_check();
1233 #endif
1234 mmap_unlock();
1235 }
1236
1237 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1238 tb[1].tc_ptr. Return NULL if not found */
1239 TranslationBlock *tb_find_pc(unsigned long tc_ptr)
1240 {
1241 int m_min, m_max, m;
1242 unsigned long v;
1243 TranslationBlock *tb;
1244
1245 if (nb_tbs <= 0)
1246 return NULL;
1247 if (tc_ptr < (unsigned long)code_gen_buffer ||
1248 tc_ptr >= (unsigned long)code_gen_ptr)
1249 return NULL;
1250 /* binary search (cf Knuth) */
1251 m_min = 0;
1252 m_max = nb_tbs - 1;
1253 while (m_min <= m_max) {
1254 m = (m_min + m_max) >> 1;
1255 tb = &tbs[m];
1256 v = (unsigned long)tb->tc_ptr;
1257 if (v == tc_ptr)
1258 return tb;
1259 else if (tc_ptr < v) {
1260 m_max = m - 1;
1261 } else {
1262 m_min = m + 1;
1263 }
1264 }
1265 return &tbs[m_max];
1266 }
1267
1268 static void tb_reset_jump_recursive(TranslationBlock *tb);
1269
1270 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1271 {
1272 TranslationBlock *tb1, *tb_next, **ptb;
1273 unsigned int n1;
1274
1275 tb1 = tb->jmp_next[n];
1276 if (tb1 != NULL) {
1277 /* find head of list */
1278 for(;;) {
1279 n1 = (long)tb1 & 3;
1280 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1281 if (n1 == 2)
1282 break;
1283 tb1 = tb1->jmp_next[n1];
1284 }
1285 /* we are now sure now that tb jumps to tb1 */
1286 tb_next = tb1;
1287
1288 /* remove tb from the jmp_first list */
1289 ptb = &tb_next->jmp_first;
1290 for(;;) {
1291 tb1 = *ptb;
1292 n1 = (long)tb1 & 3;
1293 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1294 if (n1 == n && tb1 == tb)
1295 break;
1296 ptb = &tb1->jmp_next[n1];
1297 }
1298 *ptb = tb->jmp_next[n];
1299 tb->jmp_next[n] = NULL;
1300
1301 /* suppress the jump to next tb in generated code */
1302 tb_reset_jump(tb, n);
1303
1304 /* suppress jumps in the tb on which we could have jumped */
1305 tb_reset_jump_recursive(tb_next);
1306 }
1307 }
1308
1309 static void tb_reset_jump_recursive(TranslationBlock *tb)
1310 {
1311 tb_reset_jump_recursive2(tb, 0);
1312 tb_reset_jump_recursive2(tb, 1);
1313 }
1314
1315 #if defined(TARGET_HAS_ICE)
1316 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1317 {
1318 target_phys_addr_t addr;
1319 target_ulong pd;
1320 ram_addr_t ram_addr;
1321 PhysPageDesc *p;
1322
1323 addr = cpu_get_phys_page_debug(env, pc);
1324 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1325 if (!p) {
1326 pd = IO_MEM_UNASSIGNED;
1327 } else {
1328 pd = p->phys_offset;
1329 }
1330 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
1331 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1332 }
1333 #endif
1334
1335 /* Add a watchpoint. */
1336 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1337 int flags, CPUWatchpoint **watchpoint)
1338 {
1339 target_ulong len_mask = ~(len - 1);
1340 CPUWatchpoint *wp;
1341
1342 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1343 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1344 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1345 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1346 return -EINVAL;
1347 }
1348 wp = qemu_malloc(sizeof(*wp));
1349
1350 wp->vaddr = addr;
1351 wp->len_mask = len_mask;
1352 wp->flags = flags;
1353
1354 /* keep all GDB-injected watchpoints in front */
1355 if (flags & BP_GDB)
1356 TAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1357 else
1358 TAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
1359
1360 tlb_flush_page(env, addr);
1361
1362 if (watchpoint)
1363 *watchpoint = wp;
1364 return 0;
1365 }
1366
1367 /* Remove a specific watchpoint. */
1368 int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1369 int flags)
1370 {
1371 target_ulong len_mask = ~(len - 1);
1372 CPUWatchpoint *wp;
1373
1374 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
1375 if (addr == wp->vaddr && len_mask == wp->len_mask
1376 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1377 cpu_watchpoint_remove_by_ref(env, wp);
1378 return 0;
1379 }
1380 }
1381 return -ENOENT;
1382 }
1383
1384 /* Remove a specific watchpoint by reference. */
1385 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1386 {
1387 TAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
1388
1389 tlb_flush_page(env, watchpoint->vaddr);
1390
1391 qemu_free(watchpoint);
1392 }
1393
1394 /* Remove all matching watchpoints. */
1395 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1396 {
1397 CPUWatchpoint *wp, *next;
1398
1399 TAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
1400 if (wp->flags & mask)
1401 cpu_watchpoint_remove_by_ref(env, wp);
1402 }
1403 }
1404
1405 /* Add a breakpoint. */
1406 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1407 CPUBreakpoint **breakpoint)
1408 {
1409 #if defined(TARGET_HAS_ICE)
1410 CPUBreakpoint *bp;
1411
1412 bp = qemu_malloc(sizeof(*bp));
1413
1414 bp->pc = pc;
1415 bp->flags = flags;
1416
1417 /* keep all GDB-injected breakpoints in front */
1418 if (flags & BP_GDB)
1419 TAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1420 else
1421 TAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
1422
1423 breakpoint_invalidate(env, pc);
1424
1425 if (breakpoint)
1426 *breakpoint = bp;
1427 return 0;
1428 #else
1429 return -ENOSYS;
1430 #endif
1431 }
1432
1433 /* Remove a specific breakpoint. */
1434 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1435 {
1436 #if defined(TARGET_HAS_ICE)
1437 CPUBreakpoint *bp;
1438
1439 TAILQ_FOREACH(bp, &env->breakpoints, entry) {
1440 if (bp->pc == pc && bp->flags == flags) {
1441 cpu_breakpoint_remove_by_ref(env, bp);
1442 return 0;
1443 }
1444 }
1445 return -ENOENT;
1446 #else
1447 return -ENOSYS;
1448 #endif
1449 }
1450
1451 /* Remove a specific breakpoint by reference. */
1452 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
1453 {
1454 #if defined(TARGET_HAS_ICE)
1455 TAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
1456
1457 breakpoint_invalidate(env, breakpoint->pc);
1458
1459 qemu_free(breakpoint);
1460 #endif
1461 }
1462
1463 /* Remove all matching breakpoints. */
1464 void cpu_breakpoint_remove_all(CPUState *env, int mask)
1465 {
1466 #if defined(TARGET_HAS_ICE)
1467 CPUBreakpoint *bp, *next;
1468
1469 TAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
1470 if (bp->flags & mask)
1471 cpu_breakpoint_remove_by_ref(env, bp);
1472 }
1473 #endif
1474 }
1475
1476 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1477 CPU loop after each instruction */
1478 void cpu_single_step(CPUState *env, int enabled)
1479 {
1480 #if defined(TARGET_HAS_ICE)
1481 if (env->singlestep_enabled != enabled) {
1482 env->singlestep_enabled = enabled;
1483 if (kvm_enabled())
1484 kvm_update_guest_debug(env, 0);
1485 else {
1486 /* must flush all the translated code to avoid inconsistencies */
1487 /* XXX: only flush what is necessary */
1488 tb_flush(env);
1489 }
1490 }
1491 #endif
1492 }
1493
1494 /* enable or disable low levels log */
1495 void cpu_set_log(int log_flags)
1496 {
1497 loglevel = log_flags;
1498 if (loglevel && !logfile) {
1499 logfile = fopen(logfilename, log_append ? "a" : "w");
1500 if (!logfile) {
1501 perror(logfilename);
1502 _exit(1);
1503 }
1504 #if !defined(CONFIG_SOFTMMU)
1505 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1506 {
1507 static char logfile_buf[4096];
1508 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1509 }
1510 #else
1511 setvbuf(logfile, NULL, _IOLBF, 0);
1512 #endif
1513 log_append = 1;
1514 }
1515 if (!loglevel && logfile) {
1516 fclose(logfile);
1517 logfile = NULL;
1518 }
1519 }
1520
1521 void cpu_set_log_filename(const char *filename)
1522 {
1523 logfilename = strdup(filename);
1524 if (logfile) {
1525 fclose(logfile);
1526 logfile = NULL;
1527 }
1528 cpu_set_log(loglevel);
1529 }
1530
1531 static void cpu_unlink_tb(CPUState *env)
1532 {
1533 #if defined(USE_NPTL)
1534 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1535 problem and hope the cpu will stop of its own accord. For userspace
1536 emulation this often isn't actually as bad as it sounds. Often
1537 signals are used primarily to interrupt blocking syscalls. */
1538 #else
1539 TranslationBlock *tb;
1540 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1541
1542 tb = env->current_tb;
1543 /* if the cpu is currently executing code, we must unlink it and
1544 all the potentially executing TB */
1545 if (tb && !testandset(&interrupt_lock)) {
1546 env->current_tb = NULL;
1547 tb_reset_jump_recursive(tb);
1548 resetlock(&interrupt_lock);
1549 }
1550 #endif
1551 }
1552
1553 /* mask must never be zero, except for A20 change call */
1554 void cpu_interrupt(CPUState *env, int mask)
1555 {
1556 int old_mask;
1557
1558 old_mask = env->interrupt_request;
1559 env->interrupt_request |= mask;
1560
1561 #ifndef CONFIG_USER_ONLY
1562 /*
1563 * If called from iothread context, wake the target cpu in
1564 * case its halted.
1565 */
1566 if (!qemu_cpu_self(env)) {
1567 qemu_cpu_kick(env);
1568 return;
1569 }
1570 #endif
1571
1572 if (use_icount) {
1573 env->icount_decr.u16.high = 0xffff;
1574 #ifndef CONFIG_USER_ONLY
1575 if (!can_do_io(env)
1576 && (mask & ~old_mask) != 0) {
1577 cpu_abort(env, "Raised interrupt while not in I/O function");
1578 }
1579 #endif
1580 } else {
1581 cpu_unlink_tb(env);
1582 }
1583 }
1584
1585 void cpu_reset_interrupt(CPUState *env, int mask)
1586 {
1587 env->interrupt_request &= ~mask;
1588 }
1589
1590 void cpu_exit(CPUState *env)
1591 {
1592 env->exit_request = 1;
1593 cpu_unlink_tb(env);
1594 }
1595
1596 const CPULogItem cpu_log_items[] = {
1597 { CPU_LOG_TB_OUT_ASM, "out_asm",
1598 "show generated host assembly code for each compiled TB" },
1599 { CPU_LOG_TB_IN_ASM, "in_asm",
1600 "show target assembly code for each compiled TB" },
1601 { CPU_LOG_TB_OP, "op",
1602 "show micro ops for each compiled TB" },
1603 { CPU_LOG_TB_OP_OPT, "op_opt",
1604 "show micro ops "
1605 #ifdef TARGET_I386
1606 "before eflags optimization and "
1607 #endif
1608 "after liveness analysis" },
1609 { CPU_LOG_INT, "int",
1610 "show interrupts/exceptions in short format" },
1611 { CPU_LOG_EXEC, "exec",
1612 "show trace before each executed TB (lots of logs)" },
1613 { CPU_LOG_TB_CPU, "cpu",
1614 "show CPU state before block translation" },
1615 #ifdef TARGET_I386
1616 { CPU_LOG_PCALL, "pcall",
1617 "show protected mode far calls/returns/exceptions" },
1618 { CPU_LOG_RESET, "cpu_reset",
1619 "show CPU state before CPU resets" },
1620 #endif
1621 #ifdef DEBUG_IOPORT
1622 { CPU_LOG_IOPORT, "ioport",
1623 "show all i/o ports accesses" },
1624 #endif
1625 { 0, NULL, NULL },
1626 };
1627
1628 static int cmp1(const char *s1, int n, const char *s2)
1629 {
1630 if (strlen(s2) != n)
1631 return 0;
1632 return memcmp(s1, s2, n) == 0;
1633 }
1634
1635 /* takes a comma separated list of log masks. Return 0 if error. */
1636 int cpu_str_to_log_mask(const char *str)
1637 {
1638 const CPULogItem *item;
1639 int mask;
1640 const char *p, *p1;
1641
1642 p = str;
1643 mask = 0;
1644 for(;;) {
1645 p1 = strchr(p, ',');
1646 if (!p1)
1647 p1 = p + strlen(p);
1648 if(cmp1(p,p1-p,"all")) {
1649 for(item = cpu_log_items; item->mask != 0; item++) {
1650 mask |= item->mask;
1651 }
1652 } else {
1653 for(item = cpu_log_items; item->mask != 0; item++) {
1654 if (cmp1(p, p1 - p, item->name))
1655 goto found;
1656 }
1657 return 0;
1658 }
1659 found:
1660 mask |= item->mask;
1661 if (*p1 != ',')
1662 break;
1663 p = p1 + 1;
1664 }
1665 return mask;
1666 }
1667
1668 void cpu_abort(CPUState *env, const char *fmt, ...)
1669 {
1670 va_list ap;
1671 va_list ap2;
1672
1673 va_start(ap, fmt);
1674 va_copy(ap2, ap);
1675 fprintf(stderr, "qemu: fatal: ");
1676 vfprintf(stderr, fmt, ap);
1677 fprintf(stderr, "\n");
1678 #ifdef TARGET_I386
1679 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1680 #else
1681 cpu_dump_state(env, stderr, fprintf, 0);
1682 #endif
1683 if (qemu_log_enabled()) {
1684 qemu_log("qemu: fatal: ");
1685 qemu_log_vprintf(fmt, ap2);
1686 qemu_log("\n");
1687 #ifdef TARGET_I386
1688 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
1689 #else
1690 log_cpu_state(env, 0);
1691 #endif
1692 qemu_log_flush();
1693 qemu_log_close();
1694 }
1695 va_end(ap2);
1696 va_end(ap);
1697 abort();
1698 }
1699
1700 CPUState *cpu_copy(CPUState *env)
1701 {
1702 CPUState *new_env = cpu_init(env->cpu_model_str);
1703 CPUState *next_cpu = new_env->next_cpu;
1704 int cpu_index = new_env->cpu_index;
1705 #if defined(TARGET_HAS_ICE)
1706 CPUBreakpoint *bp;
1707 CPUWatchpoint *wp;
1708 #endif
1709
1710 memcpy(new_env, env, sizeof(CPUState));
1711
1712 /* Preserve chaining and index. */
1713 new_env->next_cpu = next_cpu;
1714 new_env->cpu_index = cpu_index;
1715
1716 /* Clone all break/watchpoints.
1717 Note: Once we support ptrace with hw-debug register access, make sure
1718 BP_CPU break/watchpoints are handled correctly on clone. */
1719 TAILQ_INIT(&env->breakpoints);
1720 TAILQ_INIT(&env->watchpoints);
1721 #if defined(TARGET_HAS_ICE)
1722 TAILQ_FOREACH(bp, &env->breakpoints, entry) {
1723 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1724 }
1725 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
1726 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1727 wp->flags, NULL);
1728 }
1729 #endif
1730
1731 return new_env;
1732 }
1733
1734 #if !defined(CONFIG_USER_ONLY)
1735
1736 static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1737 {
1738 unsigned int i;
1739
1740 /* Discard jump cache entries for any tb which might potentially
1741 overlap the flushed page. */
1742 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1743 memset (&env->tb_jmp_cache[i], 0,
1744 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1745
1746 i = tb_jmp_cache_hash_page(addr);
1747 memset (&env->tb_jmp_cache[i], 0,
1748 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1749 }
1750
1751 /* NOTE: if flush_global is true, also flush global entries (not
1752 implemented yet) */
1753 void tlb_flush(CPUState *env, int flush_global)
1754 {
1755 int i;
1756
1757 #if defined(DEBUG_TLB)
1758 printf("tlb_flush:\n");
1759 #endif
1760 /* must reset current TB so that interrupts cannot modify the
1761 links while we are modifying them */
1762 env->current_tb = NULL;
1763
1764 for(i = 0; i < CPU_TLB_SIZE; i++) {
1765 env->tlb_table[0][i].addr_read = -1;
1766 env->tlb_table[0][i].addr_write = -1;
1767 env->tlb_table[0][i].addr_code = -1;
1768 env->tlb_table[1][i].addr_read = -1;
1769 env->tlb_table[1][i].addr_write = -1;
1770 env->tlb_table[1][i].addr_code = -1;
1771 #if (NB_MMU_MODES >= 3)
1772 env->tlb_table[2][i].addr_read = -1;
1773 env->tlb_table[2][i].addr_write = -1;
1774 env->tlb_table[2][i].addr_code = -1;
1775 #endif
1776 #if (NB_MMU_MODES >= 4)
1777 env->tlb_table[3][i].addr_read = -1;
1778 env->tlb_table[3][i].addr_write = -1;
1779 env->tlb_table[3][i].addr_code = -1;
1780 #endif
1781 #if (NB_MMU_MODES >= 5)
1782 env->tlb_table[4][i].addr_read = -1;
1783 env->tlb_table[4][i].addr_write = -1;
1784 env->tlb_table[4][i].addr_code = -1;
1785 #endif
1786
1787 }
1788
1789 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
1790
1791 #ifdef CONFIG_KQEMU
1792 if (env->kqemu_enabled) {
1793 kqemu_flush(env, flush_global);
1794 }
1795 #endif
1796 tlb_flush_count++;
1797 }
1798
1799 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
1800 {
1801 if (addr == (tlb_entry->addr_read &
1802 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1803 addr == (tlb_entry->addr_write &
1804 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1805 addr == (tlb_entry->addr_code &
1806 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1807 tlb_entry->addr_read = -1;
1808 tlb_entry->addr_write = -1;
1809 tlb_entry->addr_code = -1;
1810 }
1811 }
1812
1813 void tlb_flush_page(CPUState *env, target_ulong addr)
1814 {
1815 int i;
1816
1817 #if defined(DEBUG_TLB)
1818 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
1819 #endif
1820 /* must reset current TB so that interrupts cannot modify the
1821 links while we are modifying them */
1822 env->current_tb = NULL;
1823
1824 addr &= TARGET_PAGE_MASK;
1825 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1826 tlb_flush_entry(&env->tlb_table[0][i], addr);
1827 tlb_flush_entry(&env->tlb_table[1][i], addr);
1828 #if (NB_MMU_MODES >= 3)
1829 tlb_flush_entry(&env->tlb_table[2][i], addr);
1830 #endif
1831 #if (NB_MMU_MODES >= 4)
1832 tlb_flush_entry(&env->tlb_table[3][i], addr);
1833 #endif
1834 #if (NB_MMU_MODES >= 5)
1835 tlb_flush_entry(&env->tlb_table[4][i], addr);
1836 #endif
1837
1838 tlb_flush_jmp_cache(env, addr);
1839
1840 #ifdef CONFIG_KQEMU
1841 if (env->kqemu_enabled) {
1842 kqemu_flush_page(env, addr);
1843 }
1844 #endif
1845 }
1846
1847 /* update the TLBs so that writes to code in the virtual page 'addr'
1848 can be detected */
1849 static void tlb_protect_code(ram_addr_t ram_addr)
1850 {
1851 cpu_physical_memory_reset_dirty(ram_addr,
1852 ram_addr + TARGET_PAGE_SIZE,
1853 CODE_DIRTY_FLAG);
1854 }
1855
1856 /* update the TLB so that writes in physical page 'phys_addr' are no longer
1857 tested for self modifying code */
1858 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
1859 target_ulong vaddr)
1860 {
1861 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1862 }
1863
1864 static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1865 unsigned long start, unsigned long length)
1866 {
1867 unsigned long addr;
1868 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1869 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1870 if ((addr - start) < length) {
1871 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1872 }
1873 }
1874 }
1875
1876 /* Note: start and end must be within the same ram block. */
1877 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
1878 int dirty_flags)
1879 {
1880 CPUState *env;
1881 unsigned long length, start1;
1882 int i, mask, len;
1883 uint8_t *p;
1884
1885 start &= TARGET_PAGE_MASK;
1886 end = TARGET_PAGE_ALIGN(end);
1887
1888 length = end - start;
1889 if (length == 0)
1890 return;
1891 len = length >> TARGET_PAGE_BITS;
1892 #ifdef CONFIG_KQEMU
1893 /* XXX: should not depend on cpu context */
1894 env = first_cpu;
1895 if (env->kqemu_enabled) {
1896 ram_addr_t addr;
1897 addr = start;
1898 for(i = 0; i < len; i++) {
1899 kqemu_set_notdirty(env, addr);
1900 addr += TARGET_PAGE_SIZE;
1901 }
1902 }
1903 #endif
1904 mask = ~dirty_flags;
1905 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1906 for(i = 0; i < len; i++)
1907 p[i] &= mask;
1908
1909 /* we modify the TLB cache so that the dirty bit will be set again
1910 when accessing the range */
1911 start1 = (unsigned long)qemu_get_ram_ptr(start);
1912 /* Chek that we don't span multiple blocks - this breaks the
1913 address comparisons below. */
1914 if ((unsigned long)qemu_get_ram_ptr(end - 1) - start1
1915 != (end - 1) - start) {
1916 abort();
1917 }
1918
1919 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1920 for(i = 0; i < CPU_TLB_SIZE; i++)
1921 tlb_reset_dirty_range(&env->tlb_table[0][i], start1, length);
1922 for(i = 0; i < CPU_TLB_SIZE; i++)
1923 tlb_reset_dirty_range(&env->tlb_table[1][i], start1, length);
1924 #if (NB_MMU_MODES >= 3)
1925 for(i = 0; i < CPU_TLB_SIZE; i++)
1926 tlb_reset_dirty_range(&env->tlb_table[2][i], start1, length);
1927 #endif
1928 #if (NB_MMU_MODES >= 4)
1929 for(i = 0; i < CPU_TLB_SIZE; i++)
1930 tlb_reset_dirty_range(&env->tlb_table[3][i], start1, length);
1931 #endif
1932 #if (NB_MMU_MODES >= 5)
1933 for(i = 0; i < CPU_TLB_SIZE; i++)
1934 tlb_reset_dirty_range(&env->tlb_table[4][i], start1, length);
1935 #endif
1936 }
1937 }
1938
1939 int cpu_physical_memory_set_dirty_tracking(int enable)
1940 {
1941 in_migration = enable;
1942 if (kvm_enabled()) {
1943 return kvm_set_migration_log(enable);
1944 }
1945 return 0;
1946 }
1947
1948 int cpu_physical_memory_get_dirty_tracking(void)
1949 {
1950 return in_migration;
1951 }
1952
1953 int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
1954 target_phys_addr_t end_addr)
1955 {
1956 int ret = 0;
1957
1958 if (kvm_enabled())
1959 ret = kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
1960 return ret;
1961 }
1962
1963 static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
1964 {
1965 ram_addr_t ram_addr;
1966 void *p;
1967
1968 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1969 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
1970 + tlb_entry->addend);
1971 ram_addr = qemu_ram_addr_from_host(p);
1972 if (!cpu_physical_memory_is_dirty(ram_addr)) {
1973 tlb_entry->addr_write |= TLB_NOTDIRTY;
1974 }
1975 }
1976 }
1977
1978 /* update the TLB according to the current state of the dirty bits */
1979 void cpu_tlb_update_dirty(CPUState *env)
1980 {
1981 int i;
1982 for(i = 0; i < CPU_TLB_SIZE; i++)
1983 tlb_update_dirty(&env->tlb_table[0][i]);
1984 for(i = 0; i < CPU_TLB_SIZE; i++)
1985 tlb_update_dirty(&env->tlb_table[1][i]);
1986 #if (NB_MMU_MODES >= 3)
1987 for(i = 0; i < CPU_TLB_SIZE; i++)
1988 tlb_update_dirty(&env->tlb_table[2][i]);
1989 #endif
1990 #if (NB_MMU_MODES >= 4)
1991 for(i = 0; i < CPU_TLB_SIZE; i++)
1992 tlb_update_dirty(&env->tlb_table[3][i]);
1993 #endif
1994 #if (NB_MMU_MODES >= 5)
1995 for(i = 0; i < CPU_TLB_SIZE; i++)
1996 tlb_update_dirty(&env->tlb_table[4][i]);
1997 #endif
1998 }
1999
2000 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
2001 {
2002 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
2003 tlb_entry->addr_write = vaddr;
2004 }
2005
2006 /* update the TLB corresponding to virtual page vaddr
2007 so that it is no longer dirty */
2008 static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
2009 {
2010 int i;
2011
2012 vaddr &= TARGET_PAGE_MASK;
2013 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2014 tlb_set_dirty1(&env->tlb_table[0][i], vaddr);
2015 tlb_set_dirty1(&env->tlb_table[1][i], vaddr);
2016 #if (NB_MMU_MODES >= 3)
2017 tlb_set_dirty1(&env->tlb_table[2][i], vaddr);
2018 #endif
2019 #if (NB_MMU_MODES >= 4)
2020 tlb_set_dirty1(&env->tlb_table[3][i], vaddr);
2021 #endif
2022 #if (NB_MMU_MODES >= 5)
2023 tlb_set_dirty1(&env->tlb_table[4][i], vaddr);
2024 #endif
2025 }
2026
2027 /* add a new TLB entry. At most one entry for a given virtual address
2028 is permitted. Return 0 if OK or 2 if the page could not be mapped
2029 (can only happen in non SOFTMMU mode for I/O pages or pages
2030 conflicting with the host address space). */
2031 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
2032 target_phys_addr_t paddr, int prot,
2033 int mmu_idx, int is_softmmu)
2034 {
2035 PhysPageDesc *p;
2036 unsigned long pd;
2037 unsigned int index;
2038 target_ulong address;
2039 target_ulong code_address;
2040 target_phys_addr_t addend;
2041 int ret;
2042 CPUTLBEntry *te;
2043 CPUWatchpoint *wp;
2044 target_phys_addr_t iotlb;
2045
2046 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
2047 if (!p) {
2048 pd = IO_MEM_UNASSIGNED;
2049 } else {
2050 pd = p->phys_offset;
2051 }
2052 #if defined(DEBUG_TLB)
2053 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
2054 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
2055 #endif
2056
2057 ret = 0;
2058 address = vaddr;
2059 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2060 /* IO memory case (romd handled later) */
2061 address |= TLB_MMIO;
2062 }
2063 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
2064 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2065 /* Normal RAM. */
2066 iotlb = pd & TARGET_PAGE_MASK;
2067 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2068 iotlb |= IO_MEM_NOTDIRTY;
2069 else
2070 iotlb |= IO_MEM_ROM;
2071 } else {
2072 /* IO handlers are currently passed a physical address.
2073 It would be nice to pass an offset from the base address
2074 of that region. This would avoid having to special case RAM,
2075 and avoid full address decoding in every device.
2076 We can't use the high bits of pd for this because
2077 IO_MEM_ROMD uses these as a ram address. */
2078 iotlb = (pd & ~TARGET_PAGE_MASK);
2079 if (p) {
2080 iotlb += p->region_offset;
2081 } else {
2082 iotlb += paddr;
2083 }
2084 }
2085
2086 code_address = address;
2087 /* Make accesses to pages with watchpoints go via the
2088 watchpoint trap routines. */
2089 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
2090 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
2091 iotlb = io_mem_watch + paddr;
2092 /* TODO: The memory case can be optimized by not trapping
2093 reads of pages with a write breakpoint. */
2094 address |= TLB_MMIO;
2095 }
2096 }
2097
2098 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2099 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2100 te = &env->tlb_table[mmu_idx][index];
2101 te->addend = addend - vaddr;
2102 if (prot & PAGE_READ) {
2103 te->addr_read = address;
2104 } else {
2105 te->addr_read = -1;
2106 }
2107
2108 if (prot & PAGE_EXEC) {
2109 te->addr_code = code_address;
2110 } else {
2111 te->addr_code = -1;
2112 }
2113 if (prot & PAGE_WRITE) {
2114 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2115 (pd & IO_MEM_ROMD)) {
2116 /* Write access calls the I/O callback. */
2117 te->addr_write = address | TLB_MMIO;
2118 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2119 !cpu_physical_memory_is_dirty(pd)) {
2120 te->addr_write = address | TLB_NOTDIRTY;
2121 } else {
2122 te->addr_write = address;
2123 }
2124 } else {
2125 te->addr_write = -1;
2126 }
2127 return ret;
2128 }
2129
2130 #else
2131
2132 void tlb_flush(CPUState *env, int flush_global)
2133 {
2134 }
2135
2136 void tlb_flush_page(CPUState *env, target_ulong addr)
2137 {
2138 }
2139
2140 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
2141 target_phys_addr_t paddr, int prot,
2142 int mmu_idx, int is_softmmu)
2143 {
2144 return 0;
2145 }
2146
2147 /*
2148 * Walks guest process memory "regions" one by one
2149 * and calls callback function 'fn' for each region.
2150 */
2151 int walk_memory_regions(void *priv,
2152 int (*fn)(void *, unsigned long, unsigned long, unsigned long))
2153 {
2154 unsigned long start, end;
2155 PageDesc *p = NULL;
2156 int i, j, prot, prot1;
2157 int rc = 0;
2158
2159 start = end = -1;
2160 prot = 0;
2161
2162 for (i = 0; i <= L1_SIZE; i++) {
2163 p = (i < L1_SIZE) ? l1_map[i] : NULL;
2164 for (j = 0; j < L2_SIZE; j++) {
2165 prot1 = (p == NULL) ? 0 : p[j].flags;
2166 /*
2167 * "region" is one continuous chunk of memory
2168 * that has same protection flags set.
2169 */
2170 if (prot1 != prot) {
2171 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
2172 if (start != -1) {
2173 rc = (*fn)(priv, start, end, prot);
2174 /* callback can stop iteration by returning != 0 */
2175 if (rc != 0)
2176 return (rc);
2177 }
2178 if (prot1 != 0)
2179 start = end;
2180 else
2181 start = -1;
2182 prot = prot1;
2183 }
2184 if (p == NULL)
2185 break;
2186 }
2187 }
2188 return (rc);
2189 }
2190
2191 static int dump_region(void *priv, unsigned long start,
2192 unsigned long end, unsigned long prot)
2193 {
2194 FILE *f = (FILE *)priv;
2195
2196 (void) fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
2197 start, end, end - start,
2198 ((prot & PAGE_READ) ? 'r' : '-'),
2199 ((prot & PAGE_WRITE) ? 'w' : '-'),
2200 ((prot & PAGE_EXEC) ? 'x' : '-'));
2201
2202 return (0);
2203 }
2204
2205 /* dump memory mappings */
2206 void page_dump(FILE *f)
2207 {
2208 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2209 "start", "end", "size", "prot");
2210 walk_memory_regions(f, dump_region);
2211 }
2212
2213 int page_get_flags(target_ulong address)
2214 {
2215 PageDesc *p;
2216
2217 p = page_find(address >> TARGET_PAGE_BITS);
2218 if (!p)
2219 return 0;
2220 return p->flags;
2221 }
2222
2223 /* modify the flags of a page and invalidate the code if
2224 necessary. The flag PAGE_WRITE_ORG is positioned automatically
2225 depending on PAGE_WRITE */
2226 void page_set_flags(target_ulong start, target_ulong end, int flags)
2227 {
2228 PageDesc *p;
2229 target_ulong addr;
2230
2231 /* mmap_lock should already be held. */
2232 start = start & TARGET_PAGE_MASK;
2233 end = TARGET_PAGE_ALIGN(end);
2234 if (flags & PAGE_WRITE)
2235 flags |= PAGE_WRITE_ORG;
2236 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2237 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
2238 /* We may be called for host regions that are outside guest
2239 address space. */
2240 if (!p)
2241 return;
2242 /* if the write protection is set, then we invalidate the code
2243 inside */
2244 if (!(p->flags & PAGE_WRITE) &&
2245 (flags & PAGE_WRITE) &&
2246 p->first_tb) {
2247 tb_invalidate_phys_page(addr, 0, NULL);
2248 }
2249 p->flags = flags;
2250 }
2251 }
2252
2253 int page_check_range(target_ulong start, target_ulong len, int flags)
2254 {
2255 PageDesc *p;
2256 target_ulong end;
2257 target_ulong addr;
2258
2259 if (start + len < start)
2260 /* we've wrapped around */
2261 return -1;
2262
2263 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2264 start = start & TARGET_PAGE_MASK;
2265
2266 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2267 p = page_find(addr >> TARGET_PAGE_BITS);
2268 if( !p )
2269 return -1;
2270 if( !(p->flags & PAGE_VALID) )
2271 return -1;
2272
2273 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
2274 return -1;
2275 if (flags & PAGE_WRITE) {
2276 if (!(p->flags & PAGE_WRITE_ORG))
2277 return -1;
2278 /* unprotect the page if it was put read-only because it
2279 contains translated code */
2280 if (!(p->flags & PAGE_WRITE)) {
2281 if (!page_unprotect(addr, 0, NULL))
2282 return -1;
2283 }
2284 return 0;
2285 }
2286 }
2287 return 0;
2288 }
2289
2290 /* called from signal handler: invalidate the code and unprotect the
2291 page. Return TRUE if the fault was successfully handled. */
2292 int page_unprotect(target_ulong address, unsigned long pc, void *puc)
2293 {
2294 unsigned int page_index, prot, pindex;
2295 PageDesc *p, *p1;
2296 target_ulong host_start, host_end, addr;
2297
2298 /* Technically this isn't safe inside a signal handler. However we
2299 know this only ever happens in a synchronous SEGV handler, so in
2300 practice it seems to be ok. */
2301 mmap_lock();
2302
2303 host_start = address & qemu_host_page_mask;
2304 page_index = host_start >> TARGET_PAGE_BITS;
2305 p1 = page_find(page_index);
2306 if (!p1) {
2307 mmap_unlock();
2308 return 0;
2309 }
2310 host_end = host_start + qemu_host_page_size;
2311 p = p1;
2312 prot = 0;
2313 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
2314 prot |= p->flags;
2315 p++;
2316 }
2317 /* if the page was really writable, then we change its
2318 protection back to writable */
2319 if (prot & PAGE_WRITE_ORG) {
2320 pindex = (address - host_start) >> TARGET_PAGE_BITS;
2321 if (!(p1[pindex].flags & PAGE_WRITE)) {
2322 mprotect((void *)g2h(host_start), qemu_host_page_size,
2323 (prot & PAGE_BITS) | PAGE_WRITE);
2324 p1[pindex].flags |= PAGE_WRITE;
2325 /* and since the content will be modified, we must invalidate
2326 the corresponding translated code. */
2327 tb_invalidate_phys_page(address, pc, puc);
2328 #ifdef DEBUG_TB_CHECK
2329 tb_invalidate_check(address);
2330 #endif
2331 mmap_unlock();
2332 return 1;
2333 }
2334 }
2335 mmap_unlock();
2336 return 0;
2337 }
2338
2339 static inline void tlb_set_dirty(CPUState *env,
2340 unsigned long addr, target_ulong vaddr)
2341 {
2342 }
2343 #endif /* defined(CONFIG_USER_ONLY) */
2344
2345 #if !defined(CONFIG_USER_ONLY)
2346
2347 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2348 ram_addr_t memory, ram_addr_t region_offset);
2349 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2350 ram_addr_t orig_memory, ram_addr_t region_offset);
2351 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2352 need_subpage) \
2353 do { \
2354 if (addr > start_addr) \
2355 start_addr2 = 0; \
2356 else { \
2357 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2358 if (start_addr2 > 0) \
2359 need_subpage = 1; \
2360 } \
2361 \
2362 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2363 end_addr2 = TARGET_PAGE_SIZE - 1; \
2364 else { \
2365 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2366 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2367 need_subpage = 1; \
2368 } \
2369 } while (0)
2370
2371 /* register physical memory. 'size' must be a multiple of the target
2372 page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2373 io memory page. The address used when calling the IO function is
2374 the offset from the start of the region, plus region_offset. Both
2375 start_addr and region_offset are rounded down to a page boundary
2376 before calculating this offset. This should not be a problem unless
2377 the low bits of start_addr and region_offset differ. */
2378 void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2379 ram_addr_t size,
2380 ram_addr_t phys_offset,
2381 ram_addr_t region_offset)
2382 {
2383 target_phys_addr_t addr, end_addr;
2384 PhysPageDesc *p;
2385 CPUState *env;
2386 ram_addr_t orig_size = size;
2387 void *subpage;
2388
2389 #ifdef CONFIG_KQEMU
2390 /* XXX: should not depend on cpu context */
2391 env = first_cpu;
2392 if (env->kqemu_enabled) {
2393 kqemu_set_phys_mem(start_addr, size, phys_offset);
2394 }
2395 #endif
2396 if (kvm_enabled())
2397 kvm_set_phys_mem(start_addr, size, phys_offset);
2398
2399 if (phys_offset == IO_MEM_UNASSIGNED) {
2400 region_offset = start_addr;
2401 }
2402 region_offset &= TARGET_PAGE_MASK;
2403 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
2404 end_addr = start_addr + (target_phys_addr_t)size;
2405 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
2406 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2407 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
2408 ram_addr_t orig_memory = p->phys_offset;
2409 target_phys_addr_t start_addr2, end_addr2;
2410 int need_subpage = 0;
2411
2412 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2413 need_subpage);
2414 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2415 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2416 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2417 &p->phys_offset, orig_memory,
2418 p->region_offset);
2419 } else {
2420 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2421 >> IO_MEM_SHIFT];
2422 }
2423 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2424 region_offset);
2425 p->region_offset = 0;
2426 } else {
2427 p->phys_offset = phys_offset;
2428 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2429 (phys_offset & IO_MEM_ROMD))
2430 phys_offset += TARGET_PAGE_SIZE;
2431 }
2432 } else {
2433 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2434 p->phys_offset = phys_offset;
2435 p->region_offset = region_offset;
2436 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2437 (phys_offset & IO_MEM_ROMD)) {
2438 phys_offset += TARGET_PAGE_SIZE;
2439 } else {
2440 target_phys_addr_t start_addr2, end_addr2;
2441 int need_subpage = 0;
2442
2443 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2444 end_addr2, need_subpage);
2445
2446 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2447 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2448 &p->phys_offset, IO_MEM_UNASSIGNED,
2449 addr & TARGET_PAGE_MASK);
2450 subpage_register(subpage, start_addr2, end_addr2,
2451 phys_offset, region_offset);
2452 p->region_offset = 0;
2453 }
2454 }
2455 }
2456 region_offset += TARGET_PAGE_SIZE;
2457 }
2458
2459 /* since each CPU stores ram addresses in its TLB cache, we must
2460 reset the modified entries */
2461 /* XXX: slow ! */
2462 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2463 tlb_flush(env, 1);
2464 }
2465 }
2466
2467 /* XXX: temporary until new memory mapping API */
2468 ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
2469 {
2470 PhysPageDesc *p;
2471
2472 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2473 if (!p)
2474 return IO_MEM_UNASSIGNED;
2475 return p->phys_offset;
2476 }
2477
2478 void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2479 {
2480 if (kvm_enabled())
2481 kvm_coalesce_mmio_region(addr, size);
2482 }
2483
2484 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2485 {
2486 if (kvm_enabled())
2487 kvm_uncoalesce_mmio_region(addr, size);
2488 }
2489
2490 #ifdef CONFIG_KQEMU
2491 /* XXX: better than nothing */
2492 static ram_addr_t kqemu_ram_alloc(ram_addr_t size)
2493 {
2494 ram_addr_t addr;
2495 if ((last_ram_offset + size) > kqemu_phys_ram_size) {
2496 fprintf(stderr, "Not enough memory (requested_size = %" PRIu64 ", max memory = %" PRIu64 ")\n",
2497 (uint64_t)size, (uint64_t)kqemu_phys_ram_size);
2498 abort();
2499 }
2500 addr = last_ram_offset;
2501 last_ram_offset = TARGET_PAGE_ALIGN(last_ram_offset + size);
2502 return addr;
2503 }
2504 #endif
2505
2506 ram_addr_t qemu_ram_alloc(ram_addr_t size)
2507 {
2508 RAMBlock *new_block;
2509
2510 #ifdef CONFIG_KQEMU
2511 if (kqemu_phys_ram_base) {
2512 return kqemu_ram_alloc(size);
2513 }
2514 #endif
2515
2516 size = TARGET_PAGE_ALIGN(size);
2517 new_block = qemu_malloc(sizeof(*new_block));
2518
2519 new_block->host = qemu_vmalloc(size);
2520 new_block->offset = last_ram_offset;
2521 new_block->length = size;
2522
2523 new_block->next = ram_blocks;
2524 ram_blocks = new_block;
2525
2526 phys_ram_dirty = qemu_realloc(phys_ram_dirty,
2527 (last_ram_offset + size) >> TARGET_PAGE_BITS);
2528 memset(phys_ram_dirty + (last_ram_offset >> TARGET_PAGE_BITS),
2529 0xff, size >> TARGET_PAGE_BITS);
2530
2531 last_ram_offset += size;
2532
2533 if (kvm_enabled())
2534 kvm_setup_guest_memory(new_block->host, size);
2535
2536 return new_block->offset;
2537 }
2538
2539 void qemu_ram_free(ram_addr_t addr)
2540 {
2541 /* TODO: implement this. */
2542 }
2543
2544 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2545 With the exception of the softmmu code in this file, this should
2546 only be used for local memory (e.g. video ram) that the device owns,
2547 and knows it isn't going to access beyond the end of the block.
2548
2549 It should not be used for general purpose DMA.
2550 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2551 */
2552 void *qemu_get_ram_ptr(ram_addr_t addr)
2553 {
2554 RAMBlock *prev;
2555 RAMBlock **prevp;
2556 RAMBlock *block;
2557
2558 #ifdef CONFIG_KQEMU
2559 if (kqemu_phys_ram_base) {
2560 return kqemu_phys_ram_base + addr;
2561 }
2562 #endif
2563
2564 prev = NULL;
2565 prevp = &ram_blocks;
2566 block = ram_blocks;
2567 while (block && (block->offset > addr
2568 || block->offset + block->length <= addr)) {
2569 if (prev)
2570 prevp = &prev->next;
2571 prev = block;
2572 block = block->next;
2573 }
2574 if (!block) {
2575 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2576 abort();
2577 }
2578 /* Move this entry to to start of the list. */
2579 if (prev) {
2580 prev->next = block->next;
2581 block->next = *prevp;
2582 *prevp = block;
2583 }
2584 return block->host + (addr - block->offset);
2585 }
2586
2587 /* Some of the softmmu routines need to translate from a host pointer
2588 (typically a TLB entry) back to a ram offset. */
2589 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2590 {
2591 RAMBlock *prev;
2592 RAMBlock **prevp;
2593 RAMBlock *block;
2594 uint8_t *host = ptr;
2595
2596 #ifdef CONFIG_KQEMU
2597 if (kqemu_phys_ram_base) {
2598 return host - kqemu_phys_ram_base;
2599 }
2600 #endif
2601
2602 prev = NULL;
2603 prevp = &ram_blocks;
2604 block = ram_blocks;
2605 while (block && (block->host > host
2606 || block->host + block->length <= host)) {
2607 if (prev)
2608 prevp = &prev->next;
2609 prev = block;
2610 block = block->next;
2611 }
2612 if (!block) {
2613 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2614 abort();
2615 }
2616 return block->offset + (host - block->host);
2617 }
2618
2619 static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
2620 {
2621 #ifdef DEBUG_UNASSIGNED
2622 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2623 #endif
2624 #if defined(TARGET_SPARC)
2625 do_unassigned_access(addr, 0, 0, 0, 1);
2626 #endif
2627 return 0;
2628 }
2629
2630 static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
2631 {
2632 #ifdef DEBUG_UNASSIGNED
2633 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2634 #endif
2635 #if defined(TARGET_SPARC)
2636 do_unassigned_access(addr, 0, 0, 0, 2);
2637 #endif
2638 return 0;
2639 }
2640
2641 static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
2642 {
2643 #ifdef DEBUG_UNASSIGNED
2644 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2645 #endif
2646 #if defined(TARGET_SPARC)
2647 do_unassigned_access(addr, 0, 0, 0, 4);
2648 #endif
2649 return 0;
2650 }
2651
2652 static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
2653 {
2654 #ifdef DEBUG_UNASSIGNED
2655 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2656 #endif
2657 #if defined(TARGET_SPARC)
2658 do_unassigned_access(addr, 1, 0, 0, 1);
2659 #endif
2660 }
2661
2662 static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
2663 {
2664 #ifdef DEBUG_UNASSIGNED
2665 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2666 #endif
2667 #if defined(TARGET_SPARC)
2668 do_unassigned_access(addr, 1, 0, 0, 2);
2669 #endif
2670 }
2671
2672 static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
2673 {
2674 #ifdef DEBUG_UNASSIGNED
2675 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2676 #endif
2677 #if defined(TARGET_SPARC)
2678 do_unassigned_access(addr, 1, 0, 0, 4);
2679 #endif
2680 }
2681
2682 static CPUReadMemoryFunc *unassigned_mem_read[3] = {
2683 unassigned_mem_readb,
2684 unassigned_mem_readw,
2685 unassigned_mem_readl,
2686 };
2687
2688 static CPUWriteMemoryFunc *unassigned_mem_write[3] = {
2689 unassigned_mem_writeb,
2690 unassigned_mem_writew,
2691 unassigned_mem_writel,
2692 };
2693
2694 static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
2695 uint32_t val)
2696 {
2697 int dirty_flags;
2698 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2699 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2700 #if !defined(CONFIG_USER_ONLY)
2701 tb_invalidate_phys_page_fast(ram_addr, 1);
2702 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2703 #endif
2704 }
2705 stb_p(qemu_get_ram_ptr(ram_addr), val);
2706 #ifdef CONFIG_KQEMU
2707 if (cpu_single_env->kqemu_enabled &&
2708 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2709 kqemu_modify_page(cpu_single_env, ram_addr);
2710 #endif
2711 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2712 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2713 /* we remove the notdirty callback only if the code has been
2714 flushed */
2715 if (dirty_flags == 0xff)
2716 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2717 }
2718
2719 static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
2720 uint32_t val)
2721 {
2722 int dirty_flags;
2723 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2724 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2725 #if !defined(CONFIG_USER_ONLY)
2726 tb_invalidate_phys_page_fast(ram_addr, 2);
2727 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2728 #endif
2729 }
2730 stw_p(qemu_get_ram_ptr(ram_addr), val);
2731 #ifdef CONFIG_KQEMU
2732 if (cpu_single_env->kqemu_enabled &&
2733 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2734 kqemu_modify_page(cpu_single_env, ram_addr);
2735 #endif
2736 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2737 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2738 /* we remove the notdirty callback only if the code has been
2739 flushed */
2740 if (dirty_flags == 0xff)
2741 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2742 }
2743
2744 static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
2745 uint32_t val)
2746 {
2747 int dirty_flags;
2748 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2749 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2750 #if !defined(CONFIG_USER_ONLY)
2751 tb_invalidate_phys_page_fast(ram_addr, 4);
2752 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2753 #endif
2754 }
2755 stl_p(qemu_get_ram_ptr(ram_addr), val);
2756 #ifdef CONFIG_KQEMU
2757 if (cpu_single_env->kqemu_enabled &&
2758 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2759 kqemu_modify_page(cpu_single_env, ram_addr);
2760 #endif
2761 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2762 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2763 /* we remove the notdirty callback only if the code has been
2764 flushed */
2765 if (dirty_flags == 0xff)
2766 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2767 }
2768
2769 static CPUReadMemoryFunc *error_mem_read[3] = {
2770 NULL, /* never used */
2771 NULL, /* never used */
2772 NULL, /* never used */
2773 };
2774
2775 static CPUWriteMemoryFunc *notdirty_mem_write[3] = {
2776 notdirty_mem_writeb,
2777 notdirty_mem_writew,
2778 notdirty_mem_writel,
2779 };
2780
2781 /* Generate a debug exception if a watchpoint has been hit. */
2782 static void check_watchpoint(int offset, int len_mask, int flags)
2783 {
2784 CPUState *env = cpu_single_env;
2785 target_ulong pc, cs_base;
2786 TranslationBlock *tb;
2787 target_ulong vaddr;
2788 CPUWatchpoint *wp;
2789 int cpu_flags;
2790
2791 if (env->watchpoint_hit) {
2792 /* We re-entered the check after replacing the TB. Now raise
2793 * the debug interrupt so that is will trigger after the
2794 * current instruction. */
2795 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2796 return;
2797 }
2798 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2799 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
2800 if ((vaddr == (wp->vaddr & len_mask) ||
2801 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
2802 wp->flags |= BP_WATCHPOINT_HIT;
2803 if (!env->watchpoint_hit) {
2804 env->watchpoint_hit = wp;
2805 tb = tb_find_pc(env->mem_io_pc);
2806 if (!tb) {
2807 cpu_abort(env, "check_watchpoint: could not find TB for "
2808 "pc=%p", (void *)env->mem_io_pc);
2809 }
2810 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
2811 tb_phys_invalidate(tb, -1);
2812 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2813 env->exception_index = EXCP_DEBUG;
2814 } else {
2815 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2816 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
2817 }
2818 cpu_resume_from_signal(env, NULL);
2819 }
2820 } else {
2821 wp->flags &= ~BP_WATCHPOINT_HIT;
2822 }
2823 }
2824 }
2825
2826 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2827 so these check for a hit then pass through to the normal out-of-line
2828 phys routines. */
2829 static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
2830 {
2831 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
2832 return ldub_phys(addr);
2833 }
2834
2835 static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
2836 {
2837 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
2838 return lduw_phys(addr);
2839 }
2840
2841 static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
2842 {
2843 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
2844 return ldl_phys(addr);
2845 }
2846
2847 static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
2848 uint32_t val)
2849 {
2850 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
2851 stb_phys(addr, val);
2852 }
2853
2854 static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
2855 uint32_t val)
2856 {
2857 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
2858 stw_phys(addr, val);
2859 }
2860
2861 static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
2862 uint32_t val)
2863 {
2864 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
2865 stl_phys(addr, val);
2866 }
2867
2868 static CPUReadMemoryFunc *watch_mem_read[3] = {
2869 watch_mem_readb,
2870 watch_mem_readw,
2871 watch_mem_readl,
2872 };
2873
2874 static CPUWriteMemoryFunc *watch_mem_write[3] = {
2875 watch_mem_writeb,
2876 watch_mem_writew,
2877 watch_mem_writel,
2878 };
2879
2880 static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
2881 unsigned int len)
2882 {
2883 uint32_t ret;
2884 unsigned int idx;
2885
2886 idx = SUBPAGE_IDX(addr);
2887 #if defined(DEBUG_SUBPAGE)
2888 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
2889 mmio, len, addr, idx);
2890 #endif
2891 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len],
2892 addr + mmio->region_offset[idx][0][len]);
2893
2894 return ret;
2895 }
2896
2897 static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
2898 uint32_t value, unsigned int len)
2899 {
2900 unsigned int idx;
2901
2902 idx = SUBPAGE_IDX(addr);
2903 #if defined(DEBUG_SUBPAGE)
2904 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
2905 mmio, len, addr, idx, value);
2906 #endif
2907 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len],
2908 addr + mmio->region_offset[idx][1][len],
2909 value);
2910 }
2911
2912 static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
2913 {
2914 #if defined(DEBUG_SUBPAGE)
2915 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2916 #endif
2917
2918 return subpage_readlen(opaque, addr, 0);
2919 }
2920
2921 static void subpage_writeb (void *opaque, target_phys_addr_t addr,
2922 uint32_t value)
2923 {
2924 #if defined(DEBUG_SUBPAGE)
2925 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2926 #endif
2927 subpage_writelen(opaque, addr, value, 0);
2928 }
2929
2930 static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
2931 {
2932 #if defined(DEBUG_SUBPAGE)
2933 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2934 #endif
2935
2936 return subpage_readlen(opaque, addr, 1);
2937 }
2938
2939 static void subpage_writew (void *opaque, target_phys_addr_t addr,
2940 uint32_t value)
2941 {
2942 #if defined(DEBUG_SUBPAGE)
2943 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2944 #endif
2945 subpage_writelen(opaque, addr, value, 1);
2946 }
2947
2948 static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
2949 {
2950 #if defined(DEBUG_SUBPAGE)
2951 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2952 #endif
2953
2954 return subpage_readlen(opaque, addr, 2);
2955 }
2956
2957 static void subpage_writel (void *opaque,
2958 target_phys_addr_t addr, uint32_t value)
2959 {
2960 #if defined(DEBUG_SUBPAGE)
2961 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2962 #endif
2963 subpage_writelen(opaque, addr, value, 2);
2964 }
2965
2966 static CPUReadMemoryFunc *subpage_read[] = {
2967 &subpage_readb,
2968 &subpage_readw,
2969 &subpage_readl,
2970 };
2971
2972 static CPUWriteMemoryFunc *subpage_write[] = {
2973 &subpage_writeb,
2974 &subpage_writew,
2975 &subpage_writel,
2976 };
2977
2978 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2979 ram_addr_t memory, ram_addr_t region_offset)
2980 {
2981 int idx, eidx;
2982 unsigned int i;
2983
2984 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2985 return -1;
2986 idx = SUBPAGE_IDX(start);
2987 eidx = SUBPAGE_IDX(end);
2988 #if defined(DEBUG_SUBPAGE)
2989 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %d\n", __func__,
2990 mmio, start, end, idx, eidx, memory);
2991 #endif
2992 memory >>= IO_MEM_SHIFT;
2993 for (; idx <= eidx; idx++) {
2994 for (i = 0; i < 4; i++) {
2995 if (io_mem_read[memory][i]) {
2996 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
2997 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
2998 mmio->region_offset[idx][0][i] = region_offset;
2999 }
3000 if (io_mem_write[memory][i]) {
3001 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
3002 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
3003 mmio->region_offset[idx][1][i] = region_offset;
3004 }
3005 }
3006 }
3007
3008 return 0;
3009 }
3010
3011 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
3012 ram_addr_t orig_memory, ram_addr_t region_offset)
3013 {
3014 subpage_t *mmio;
3015 int subpage_memory;
3016
3017 mmio = qemu_mallocz(sizeof(subpage_t));
3018
3019 mmio->base = base;
3020 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio);
3021 #if defined(DEBUG_SUBPAGE)
3022 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3023 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
3024 #endif
3025 *phys = subpage_memory | IO_MEM_SUBPAGE;
3026 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory,
3027 region_offset);
3028
3029 return mmio;
3030 }
3031
3032 static int get_free_io_mem_idx(void)
3033 {
3034 int i;
3035
3036 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
3037 if (!io_mem_used[i]) {
3038 io_mem_used[i] = 1;
3039 return i;
3040 }
3041
3042 return -1;
3043 }
3044
3045 /* mem_read and mem_write are arrays of functions containing the
3046 function to access byte (index 0), word (index 1) and dword (index
3047 2). Functions can be omitted with a NULL function pointer.
3048 If io_index is non zero, the corresponding io zone is
3049 modified. If it is zero, a new io zone is allocated. The return
3050 value can be used with cpu_register_physical_memory(). (-1) is
3051 returned if error. */
3052 static int cpu_register_io_memory_fixed(int io_index,
3053 CPUReadMemoryFunc **mem_read,
3054 CPUWriteMemoryFunc **mem_write,
3055 void *opaque)
3056 {
3057 int i, subwidth = 0;
3058
3059 if (io_index <= 0) {
3060 io_index = get_free_io_mem_idx();
3061 if (io_index == -1)
3062 return io_index;
3063 } else {
3064 io_index >>= IO_MEM_SHIFT;
3065 if (io_index >= IO_MEM_NB_ENTRIES)
3066 return -1;
3067 }
3068
3069 for(i = 0;i < 3; i++) {
3070 if (!mem_read[i] || !mem_write[i])
3071 subwidth = IO_MEM_SUBWIDTH;
3072 io_mem_read[io_index][i] = mem_read[i];
3073 io_mem_write[io_index][i] = mem_write[i];
3074 }
3075 io_mem_opaque[io_index] = opaque;
3076 return (io_index << IO_MEM_SHIFT) | subwidth;
3077 }
3078
3079 int cpu_register_io_memory(CPUReadMemoryFunc **mem_read,
3080 CPUWriteMemoryFunc **mem_write,
3081 void *opaque)
3082 {
3083 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque);
3084 }
3085
3086 void cpu_unregister_io_memory(int io_table_address)
3087 {
3088 int i;
3089 int io_index = io_table_address >> IO_MEM_SHIFT;
3090
3091 for (i=0;i < 3; i++) {
3092 io_mem_read[io_index][i] = unassigned_mem_read[i];
3093 io_mem_write[io_index][i] = unassigned_mem_write[i];
3094 }
3095 io_mem_opaque[io_index] = NULL;
3096 io_mem_used[io_index] = 0;
3097 }
3098
3099 static void io_mem_init(void)
3100 {
3101 int i;
3102
3103 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read, unassigned_mem_write, NULL);
3104 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read, unassigned_mem_write, NULL);
3105 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read, notdirty_mem_write, NULL);
3106 for (i=0; i<5; i++)
3107 io_mem_used[i] = 1;
3108
3109 io_mem_watch = cpu_register_io_memory(watch_mem_read,
3110 watch_mem_write, NULL);
3111 #ifdef CONFIG_KQEMU
3112 if (kqemu_phys_ram_base) {
3113 /* alloc dirty bits array */
3114 phys_ram_dirty = qemu_vmalloc(kqemu_phys_ram_size >> TARGET_PAGE_BITS);
3115 memset(phys_ram_dirty, 0xff, kqemu_phys_ram_size >> TARGET_PAGE_BITS);
3116 }
3117 #endif
3118 }
3119
3120 #endif /* !defined(CONFIG_USER_ONLY) */
3121
3122 /* physical memory access (slow version, mainly for debug) */
3123 #if defined(CONFIG_USER_ONLY)
3124 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
3125 int len, int is_write)
3126 {
3127 int l, flags;
3128 target_ulong page;
3129 void * p;
3130
3131 while (len > 0) {
3132 page = addr & TARGET_PAGE_MASK;
3133 l = (page + TARGET_PAGE_SIZE) - addr;
3134 if (l > len)
3135 l = len;
3136 flags = page_get_flags(page);
3137 if (!(flags & PAGE_VALID))
3138 return;
3139 if (is_write) {
3140 if (!(flags & PAGE_WRITE))
3141 return;
3142 /* XXX: this code should not depend on lock_user */
3143 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3144 /* FIXME - should this return an error rather than just fail? */
3145 return;
3146 memcpy(p, buf, l);
3147 unlock_user(p, addr, l);
3148 } else {
3149 if (!(flags & PAGE_READ))
3150 return;
3151 /* XXX: this code should not depend on lock_user */
3152 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3153 /* FIXME - should this return an error rather than just fail? */
3154 return;
3155 memcpy(buf, p, l);
3156 unlock_user(p, addr, 0);
3157 }
3158 len -= l;
3159 buf += l;
3160 addr += l;
3161 }
3162 }
3163
3164 #else
3165 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
3166 int len, int is_write)
3167 {
3168 int l, io_index;
3169 uint8_t *ptr;
3170 uint32_t val;
3171 target_phys_addr_t page;
3172 unsigned long pd;
3173 PhysPageDesc *p;
3174
3175 while (len > 0) {
3176 page = addr & TARGET_PAGE_MASK;
3177 l = (page + TARGET_PAGE_SIZE) - addr;
3178 if (l > len)
3179 l = len;
3180 p = phys_page_find(page >> TARGET_PAGE_BITS);
3181 if (!p) {
3182 pd = IO_MEM_UNASSIGNED;
3183 } else {
3184 pd = p->phys_offset;
3185 }
3186
3187 if (is_write) {
3188 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3189 target_phys_addr_t addr1 = addr;
3190 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3191 if (p)
3192 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3193 /* XXX: could force cpu_single_env to NULL to avoid
3194 potential bugs */
3195 if (l >= 4 && ((addr1 & 3) == 0)) {
3196 /* 32 bit write access */
3197 val = ldl_p(buf);
3198 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
3199 l = 4;
3200 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3201 /* 16 bit write access */
3202 val = lduw_p(buf);
3203 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
3204 l = 2;
3205 } else {
3206 /* 8 bit write access */
3207 val = ldub_p(buf);
3208 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
3209 l = 1;
3210 }
3211 } else {
3212 unsigned long addr1;
3213 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3214 /* RAM case */
3215 ptr = qemu_get_ram_ptr(addr1);
3216 memcpy(ptr, buf, l);
3217 if (!cpu_physical_memory_is_dirty(addr1)) {
3218 /* invalidate code */
3219 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3220 /* set dirty bit */
3221 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3222 (0xff & ~CODE_DIRTY_FLAG);
3223 }
3224 }
3225 } else {
3226 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3227 !(pd & IO_MEM_ROMD)) {
3228 target_phys_addr_t addr1 = addr;
3229 /* I/O case */
3230 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3231 if (p)
3232 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3233 if (l >= 4 && ((addr1 & 3) == 0)) {
3234 /* 32 bit read access */
3235 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
3236 stl_p(buf, val);
3237 l = 4;
3238 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3239 /* 16 bit read access */
3240 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
3241 stw_p(buf, val);
3242 l = 2;
3243 } else {
3244 /* 8 bit read access */
3245 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
3246 stb_p(buf, val);
3247 l = 1;
3248 }
3249 } else {
3250 /* RAM case */
3251 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3252 (addr & ~TARGET_PAGE_MASK);
3253 memcpy(buf, ptr, l);
3254 }
3255 }
3256 len -= l;
3257 buf += l;
3258 addr += l;
3259 }
3260 }
3261
3262 /* used for ROM loading : can write in RAM and ROM */
3263 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
3264 const uint8_t *buf, int len)
3265 {
3266 int l;
3267 uint8_t *ptr;
3268 target_phys_addr_t page;
3269 unsigned long pd;
3270 PhysPageDesc *p;
3271
3272 while (len > 0) {
3273 page = addr & TARGET_PAGE_MASK;
3274 l = (page + TARGET_PAGE_SIZE) - addr;
3275 if (l > len)
3276 l = len;
3277 p = phys_page_find(page >> TARGET_PAGE_BITS);
3278 if (!p) {
3279 pd = IO_MEM_UNASSIGNED;
3280 } else {
3281 pd = p->phys_offset;
3282 }
3283
3284 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
3285 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3286 !(pd & IO_MEM_ROMD)) {
3287 /* do nothing */
3288 } else {
3289 unsigned long addr1;
3290 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3291 /* ROM/RAM case */
3292 ptr = qemu_get_ram_ptr(addr1);
3293 memcpy(ptr, buf, l);
3294 }
3295 len -= l;
3296 buf += l;
3297 addr += l;
3298 }
3299 }
3300
3301 typedef struct {
3302 void *buffer;
3303 target_phys_addr_t addr;
3304 target_phys_addr_t len;
3305 } BounceBuffer;
3306
3307 static BounceBuffer bounce;
3308
3309 typedef struct MapClient {
3310 void *opaque;
3311 void (*callback)(void *opaque);
3312 LIST_ENTRY(MapClient) link;
3313 } MapClient;
3314
3315 static LIST_HEAD(map_client_list, MapClient) map_client_list
3316 = LIST_HEAD_INITIALIZER(map_client_list);
3317
3318 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3319 {
3320 MapClient *client = qemu_malloc(sizeof(*client));
3321
3322 client->opaque = opaque;
3323 client->callback = callback;
3324 LIST_INSERT_HEAD(&map_client_list, client, link);
3325 return client;
3326 }
3327
3328 void cpu_unregister_map_client(void *_client)
3329 {
3330 MapClient *client = (MapClient *)_client;
3331
3332 LIST_REMOVE(client, link);
3333 }
3334
3335 static void cpu_notify_map_clients(void)
3336 {
3337 MapClient *client;
3338
3339 while (!LIST_EMPTY(&map_client_list)) {
3340 client = LIST_FIRST(&map_client_list);
3341 client->callback(client->opaque);
3342 LIST_REMOVE(client, link);
3343 }
3344 }
3345
3346 /* Map a physical memory region into a host virtual address.
3347 * May map a subset of the requested range, given by and returned in *plen.
3348 * May return NULL if resources needed to perform the mapping are exhausted.
3349 * Use only for reads OR writes - not for read-modify-write operations.
3350 * Use cpu_register_map_client() to know when retrying the map operation is
3351 * likely to succeed.
3352 */
3353 void *cpu_physical_memory_map(target_phys_addr_t addr,
3354 target_phys_addr_t *plen,
3355 int is_write)
3356 {
3357 target_phys_addr_t len = *plen;
3358 target_phys_addr_t done = 0;
3359 int l;
3360 uint8_t *ret = NULL;
3361 uint8_t *ptr;
3362 target_phys_addr_t page;
3363 unsigned long pd;
3364 PhysPageDesc *p;
3365 unsigned long addr1;
3366
3367 while (len > 0) {
3368 page = addr & TARGET_PAGE_MASK;
3369 l = (page + TARGET_PAGE_SIZE) - addr;
3370 if (l > len)
3371 l = len;
3372 p = phys_page_find(page >> TARGET_PAGE_BITS);
3373 if (!p) {
3374 pd = IO_MEM_UNASSIGNED;
3375 } else {
3376 pd = p->phys_offset;
3377 }
3378
3379 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3380 if (done || bounce.buffer) {
3381 break;
3382 }
3383 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3384 bounce.addr = addr;
3385 bounce.len = l;
3386 if (!is_write) {
3387 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3388 }
3389 ptr = bounce.buffer;
3390 } else {
3391 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3392 ptr = qemu_get_ram_ptr(addr1);
3393 }
3394 if (!done) {
3395 ret = ptr;
3396 } else if (ret + done != ptr) {
3397 break;
3398 }
3399
3400 len -= l;
3401 addr += l;
3402 done += l;
3403 }
3404 *plen = done;
3405 return ret;
3406 }
3407
3408 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3409 * Will also mark the memory as dirty if is_write == 1. access_len gives
3410 * the amount of memory that was actually read or written by the caller.
3411 */
3412 void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3413 int is_write, target_phys_addr_t access_len)
3414 {
3415 if (buffer != bounce.buffer) {
3416 if (is_write) {
3417 ram_addr_t addr1 = qemu_ram_addr_from_host(buffer);
3418 while (access_len) {
3419 unsigned l;
3420 l = TARGET_PAGE_SIZE;
3421 if (l > access_len)
3422 l = access_len;
3423 if (!cpu_physical_memory_is_dirty(addr1)) {
3424 /* invalidate code */
3425 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3426 /* set dirty bit */
3427 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3428 (0xff & ~CODE_DIRTY_FLAG);
3429 }
3430 addr1 += l;
3431 access_len -= l;
3432 }
3433 }
3434 return;
3435 }
3436 if (is_write) {
3437 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3438 }
3439 qemu_free(bounce.buffer);
3440 bounce.buffer = NULL;
3441 cpu_notify_map_clients();
3442 }
3443
3444 /* warning: addr must be aligned */
3445 uint32_t ldl_phys(target_phys_addr_t addr)
3446 {
3447 int io_index;
3448 uint8_t *ptr;
3449 uint32_t val;
3450 unsigned long pd;
3451 PhysPageDesc *p;
3452
3453 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3454 if (!p) {
3455 pd = IO_MEM_UNASSIGNED;
3456 } else {
3457 pd = p->phys_offset;
3458 }
3459
3460 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3461 !(pd & IO_MEM_ROMD)) {
3462 /* I/O case */
3463 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3464 if (p)
3465 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3466 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3467 } else {
3468 /* RAM case */
3469 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3470 (addr & ~TARGET_PAGE_MASK);
3471 val = ldl_p(ptr);
3472 }
3473 return val;
3474 }
3475
3476 /* warning: addr must be aligned */
3477 uint64_t ldq_phys(target_phys_addr_t addr)
3478 {
3479 int io_index;
3480 uint8_t *ptr;
3481 uint64_t val;
3482 unsigned long pd;
3483 PhysPageDesc *p;
3484
3485 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3486 if (!p) {
3487 pd = IO_MEM_UNASSIGNED;
3488 } else {
3489 pd = p->phys_offset;
3490 }
3491
3492 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3493 !(pd & IO_MEM_ROMD)) {
3494 /* I/O case */
3495 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3496 if (p)
3497 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3498 #ifdef TARGET_WORDS_BIGENDIAN
3499 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3500 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3501 #else
3502 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3503 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3504 #endif
3505 } else {
3506 /* RAM case */
3507 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3508 (addr & ~TARGET_PAGE_MASK);
3509 val = ldq_p(ptr);
3510 }
3511 return val;
3512 }
3513
3514 /* XXX: optimize */
3515 uint32_t ldub_phys(target_phys_addr_t addr)
3516 {
3517 uint8_t val;
3518 cpu_physical_memory_read(addr, &val, 1);
3519 return val;
3520 }
3521
3522 /* XXX: optimize */
3523 uint32_t lduw_phys(target_phys_addr_t addr)
3524 {
3525 uint16_t val;
3526 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
3527 return tswap16(val);
3528 }
3529
3530 /* warning: addr must be aligned. The ram page is not masked as dirty
3531 and the code inside is not invalidated. It is useful if the dirty
3532 bits are used to track modified PTEs */
3533 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
3534 {
3535 int io_index;
3536 uint8_t *ptr;
3537 unsigned long pd;
3538 PhysPageDesc *p;
3539
3540 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3541 if (!p) {
3542 pd = IO_MEM_UNASSIGNED;
3543 } else {
3544 pd = p->phys_offset;
3545 }
3546
3547 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3548 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3549 if (p)
3550 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3551 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3552 } else {
3553 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3554 ptr = qemu_get_ram_ptr(addr1);
3555 stl_p(ptr, val);
3556
3557 if (unlikely(in_migration)) {
3558 if (!cpu_physical_memory_is_dirty(addr1)) {
3559 /* invalidate code */
3560 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3561 /* set dirty bit */
3562 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3563 (0xff & ~CODE_DIRTY_FLAG);
3564 }
3565 }
3566 }
3567 }
3568
3569 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
3570 {
3571 int io_index;
3572 uint8_t *ptr;
3573 unsigned long pd;
3574 PhysPageDesc *p;
3575
3576 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3577 if (!p) {
3578 pd = IO_MEM_UNASSIGNED;
3579 } else {
3580 pd = p->phys_offset;
3581 }
3582
3583 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3584 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3585 if (p)
3586 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3587 #ifdef TARGET_WORDS_BIGENDIAN
3588 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3589 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3590 #else
3591 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3592 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3593 #endif
3594 } else {
3595 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3596 (addr & ~TARGET_PAGE_MASK);
3597 stq_p(ptr, val);
3598 }
3599 }
3600
3601 /* warning: addr must be aligned */
3602 void stl_phys(target_phys_addr_t addr, uint32_t val)
3603 {
3604 int io_index;
3605 uint8_t *ptr;
3606 unsigned long pd;
3607 PhysPageDesc *p;
3608
3609 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3610 if (!p) {
3611 pd = IO_MEM_UNASSIGNED;
3612 } else {
3613 pd = p->phys_offset;
3614 }
3615
3616 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3617 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3618 if (p)
3619 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3620 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3621 } else {
3622 unsigned long addr1;
3623 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3624 /* RAM case */
3625 ptr = qemu_get_ram_ptr(addr1);
3626 stl_p(ptr, val);
3627 if (!cpu_physical_memory_is_dirty(addr1)) {
3628 /* invalidate code */
3629 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3630 /* set dirty bit */
3631 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3632 (0xff & ~CODE_DIRTY_FLAG);
3633 }
3634 }
3635 }
3636
3637 /* XXX: optimize */
3638 void stb_phys(target_phys_addr_t addr, uint32_t val)
3639 {
3640 uint8_t v = val;
3641 cpu_physical_memory_write(addr, &v, 1);
3642 }
3643
3644 /* XXX: optimize */
3645 void stw_phys(target_phys_addr_t addr, uint32_t val)
3646 {
3647 uint16_t v = tswap16(val);
3648 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3649 }
3650
3651 /* XXX: optimize */
3652 void stq_phys(target_phys_addr_t addr, uint64_t val)
3653 {
3654 val = tswap64(val);
3655 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3656 }
3657
3658 #endif
3659
3660 /* virtual memory access for debug (includes writing to ROM) */
3661 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3662 uint8_t *buf, int len, int is_write)
3663 {
3664 int l;
3665 target_phys_addr_t phys_addr;
3666 target_ulong page;
3667
3668 while (len > 0) {
3669 page = addr & TARGET_PAGE_MASK;
3670 phys_addr = cpu_get_phys_page_debug(env, page);
3671 /* if no physical page mapped, return an error */
3672 if (phys_addr == -1)
3673 return -1;
3674 l = (page + TARGET_PAGE_SIZE) - addr;
3675 if (l > len)
3676 l = len;
3677 phys_addr += (addr & ~TARGET_PAGE_MASK);
3678 #if !defined(CONFIG_USER_ONLY)
3679 if (is_write)
3680 cpu_physical_memory_write_rom(phys_addr, buf, l);
3681 else
3682 #endif
3683 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
3684 len -= l;
3685 buf += l;
3686 addr += l;
3687 }
3688 return 0;
3689 }
3690
3691 /* in deterministic execution mode, instructions doing device I/Os
3692 must be at the end of the TB */
3693 void cpu_io_recompile(CPUState *env, void *retaddr)
3694 {
3695 TranslationBlock *tb;
3696 uint32_t n, cflags;
3697 target_ulong pc, cs_base;
3698 uint64_t flags;
3699
3700 tb = tb_find_pc((unsigned long)retaddr);
3701 if (!tb) {
3702 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3703 retaddr);
3704 }
3705 n = env->icount_decr.u16.low + tb->icount;
3706 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3707 /* Calculate how many instructions had been executed before the fault
3708 occurred. */
3709 n = n - env->icount_decr.u16.low;
3710 /* Generate a new TB ending on the I/O insn. */
3711 n++;
3712 /* On MIPS and SH, delay slot instructions can only be restarted if
3713 they were already the first instruction in the TB. If this is not
3714 the first instruction in a TB then re-execute the preceding
3715 branch. */
3716 #if defined(TARGET_MIPS)
3717 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3718 env->active_tc.PC -= 4;
3719 env->icount_decr.u16.low++;
3720 env->hflags &= ~MIPS_HFLAG_BMASK;
3721 }
3722 #elif defined(TARGET_SH4)
3723 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3724 && n > 1) {
3725 env->pc -= 2;
3726 env->icount_decr.u16.low++;
3727 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3728 }
3729 #endif
3730 /* This should never happen. */
3731 if (n > CF_COUNT_MASK)
3732 cpu_abort(env, "TB too big during recompile");
3733
3734 cflags = n | CF_LAST_IO;
3735 pc = tb->pc;
3736 cs_base = tb->cs_base;
3737 flags = tb->flags;
3738 tb_phys_invalidate(tb, -1);
3739 /* FIXME: In theory this could raise an exception. In practice
3740 we have already translated the block once so it's probably ok. */
3741 tb_gen_code(env, pc, cs_base, flags, cflags);
3742 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
3743 the first in the TB) then we end up generating a whole new TB and
3744 repeating the fault, which is horribly inefficient.
3745 Better would be to execute just this insn uncached, or generate a
3746 second new TB. */
3747 cpu_resume_from_signal(env, NULL);
3748 }
3749
3750 void dump_exec_info(FILE *f,
3751 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
3752 {
3753 int i, target_code_size, max_target_code_size;
3754 int direct_jmp_count, direct_jmp2_count, cross_page;
3755 TranslationBlock *tb;
3756
3757 target_code_size = 0;
3758 max_target_code_size = 0;
3759 cross_page = 0;
3760 direct_jmp_count = 0;
3761 direct_jmp2_count = 0;
3762 for(i = 0; i < nb_tbs; i++) {
3763 tb = &tbs[i];
3764 target_code_size += tb->size;
3765 if (tb->size > max_target_code_size)
3766 max_target_code_size = tb->size;
3767 if (tb->page_addr[1] != -1)
3768 cross_page++;
3769 if (tb->tb_next_offset[0] != 0xffff) {
3770 direct_jmp_count++;
3771 if (tb->tb_next_offset[1] != 0xffff) {
3772 direct_jmp2_count++;
3773 }
3774 }
3775 }
3776 /* XXX: avoid using doubles ? */
3777 cpu_fprintf(f, "Translation buffer state:\n");
3778 cpu_fprintf(f, "gen code size %ld/%ld\n",
3779 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
3780 cpu_fprintf(f, "TB count %d/%d\n",
3781 nb_tbs, code_gen_max_blocks);
3782 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
3783 nb_tbs ? target_code_size / nb_tbs : 0,
3784 max_target_code_size);
3785 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
3786 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
3787 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
3788 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
3789 cross_page,
3790 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
3791 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
3792 direct_jmp_count,
3793 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
3794 direct_jmp2_count,
3795 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
3796 cpu_fprintf(f, "\nStatistics:\n");
3797 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
3798 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
3799 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
3800 tcg_dump_info(f, cpu_fprintf);
3801 }
3802
3803 #if !defined(CONFIG_USER_ONLY)
3804
3805 #define MMUSUFFIX _cmmu
3806 #define GETPC() NULL
3807 #define env cpu_single_env
3808 #define SOFTMMU_CODE_ACCESS
3809
3810 #define SHIFT 0
3811 #include "softmmu_template.h"
3812
3813 #define SHIFT 1
3814 #include "softmmu_template.h"
3815
3816 #define SHIFT 2
3817 #include "softmmu_template.h"
3818
3819 #define SHIFT 3
3820 #include "softmmu_template.h"
3821
3822 #undef env
3823
3824 #endif